
HAL Id: pastel-00002950
https://pastel.hal.science/pastel-00002950

Submitted on 28 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modèles analytiques et évaluation de performances dans
les grands réseaux mobiles ad hoc.

Georgios Rodolakis

To cite this version:
Georgios Rodolakis. Modèles analytiques et évaluation de performances dans les grands réseaux
mobiles ad hoc.. Informatique [cs]. Ecole Polytechnique X, 2006. Français. �NNT : �. �pastel-00002950�

https://pastel.hal.science/pastel-00002950
https://hal.archives-ouvertes.fr

Thesis presented to ful�ll the requirements for the degree of
Doctor in Computer Science of Ecole Polytechnique

Analytical Models and Performance Evaluation
in Massive Mobile Ad Hoc Networks

Georgios Rodolakis

Defended on december 7th 2006 before the following committee :
Philippe Jacquet, INRIA (advisor)

Anthony Ephremides, University of Maryland (reviewer)
Olivier Festor, LORIA (reviewer)

Wojciech Szpankowski, Purdue University(reviewer)
Khaldoun Al Agha, Université Paris XI (examiner)

Laurent Viennot, INRIA (examiner)

Abstract

In this thesis, we study di�erent aspects of communication protocols for mobile
ad hoc networks. Our goal is to provide analytical models for each of these aspects
and to combine the models in order to evaluate the entire system's performance. We
consider protocols of all layers starting from medium access control. We begin our study
with the IEEE 802.11 protocol and we show via analytical means that the channel
access delays follow an asymptotic power law distribution. Based on this result, we
discuss a cross-layer protocol with the goal to provide delay based QoS guarantees
in multi-hop wireless networks. The next topic involves the scalability of link state
routing protocols in massive ad hoc networks. We compare theoretical results on the
capacity of wireless networks with the achievable bounds when we take into account
the protocol operation and overhead. We adapt the information theoretic bounds to
multicast communications and we propose MOST, a protocol for multicast routing which
yields optimal performance in the asymptotic case of large ad hoc networks. We then
study the behavior of TCP and the impact of the heavy tailed delays observed previously
in TCP tra�c autocorrelations, again in the context of large networks. In the �nal part
we are concerned with network management and organization, in order to provide user
services satisfying QoS constraints. We take here a more general approach regarding the
network setting, which consists in placing replicated servers in appropriate locations,
based on QoS information obtained from lower layers.

Résumé

Dans cette thèse, nous étudions les di�érents aspects des protocoles de communica-
tion pour les réseaux mobiles ad hoc. Notre but est d'établir des modèles analytiques
pour chacun de ces aspects et de combiner les modèles pour évaluer la performance du
système en entier. Nous considérons les protocoles de toutes les couches, à partir de la
couche de contrôle d'accès au canal. Nous commençons notre étude avec le protocole
IEEE 802.11 et nous démontrons que les délais d'accès au canal suivent une distribution
polynomiale. Basés sur ce résultat, nous présentons un protocole inter-couche a�n d'o�rir
des garanties de qualité de service de délai dans les réseaux sans �l multi-sauts. Le
prochain sujet abordé est la scalabilité des protocoles de routage d'état de liens dans les
réseaux ad hoc massifs. Nous comparons les résultats théoriques connus sur la capacité
des réseaux sans �l avec les bornes atteignables quand on tient compte du tra�c de
contrôle des protocoles utilisées. Nous adaptons les bornes théoriques à la communication
multicast et nous proposons MOST, un protocole multicast qui atteint des performances
asymptotiquement optimales dans les grands réseaux mobiles ad hoc. Ensuite, nous
étudions le comportement du protocole TCP et l'impact des délais polynomiaux observés
précédemment par rapport aux autocorrélations du tra�c TCP, toujours dans le contexte
de grands réseaux. Finalement, nous nous intéressons à l'organisation et la gestion du
réseau, a�n d'o�rir des services de qualité garantie. Notre approche peut être appliquée
dans un contexte général et consiste à placer des serveurs répliqués dans le réseau, selon
les informations de qualité de service fournies par les couches inferieures.

Contents

Preface 1
Thesis Organization and Contributions . 2

1 Introduction to Wireless Network Protocols 5
1.1 Network Protocols Architecture . 5

1.2 Wireless Network Technologies . 7

1.3 Mobile Ad Hoc Networks (MANETs) . 8

1.3.1 Routing in Mobile Ad Hoc Networks 9

1.3.2 Optimized Link State Routing (OLSR) Protocol 10

2 Delay Asymptotics and Routing in 802.11 Multi-hop Networks 15
2.1 IEEE 802.11 MAC Protocol . 17

2.1.1 Distributed Coordination Function 17

2.1.2 Exponential Back-o� Procedure 18

2.2 Asymptotic Delay Analysis . 19

2.2.1 One-hop Delay Analysis . 19

2.2.2 Multi-hop Delay Analysis . 25

2.2.3 Simulation Results . 27

2.3 Optimal Delay Based Routing . 33

2.3.1 Cross-layer Delay Estimation Protocol 33

2.3.2 Delay Distribution Based Routing 35

2.4 Conclusion . 36

ii CONTENTS

3 Scalability Optimizations for Massive Wireless Networks 39
3.1 Neighborhood Management Optimization 40

3.1.1 Modeling Massively Dense Ad Hoc Networks 40

3.1.2 Minimizing the Number of Retransmissions 43

3.2 Scalability of Routing Protocols . 45

3.2.1 OLSR Scalability . 46

3.2.2 Fish Eye OLSR . 49

3.2.3 Useful Capacity . 51

3.3 Conclusion . 52

Appendix: Factor λ in r(λ) . 53

4 Multicast Scaling Properties in Large Ad Hoc Networks 55
4.1 Asymptotic Multicast Properties in Ad Hoc Networks 56

4.1.1 Multicast Cost Scaling Law . 56

4.1.2 Capacity of Multicast Communication 60

4.1.3 Numerical Results . 61

4.2 Speci�cation and Simulation of MOST Protocol 65

4.2.1 Overlay Tree Construction . 66

4.2.2 Speci�cation of MOST Protocol 69

4.2.3 Implementation Overview . 71

4.2.4 Simulation Results . 72

4.3 Conclusion . 77

5 Analysis of Tra�c Autocorrelations in Large Networks 79
5.1 Autocorrelations Due to MAC Protocols 80

5.1.1 Throughput Analysis . 82

5.1.2 Autocorrelation Analysis . 86

5.2 Autocorrelations in TCP Tra�c . 90

5.2.1 TCP Protocol Overview and Models 90

5.2.2 Autocorrelation Function of a Single TCP Connection 95

CONTENTS iii

5.2.3 Long Term Dependencies in Multi-user TCP 98
5.3 Conclusion . 100

6 Replicated Server Placement with QoS Constraints 103
6.1 Problem Formulation . 105

6.1.1 Optimization Problem Formulation 106
6.1.2 Problem Decomposition . 108

6.2 Pseudopolynomial Algorithm . 110
6.2.1 Pseudopolynomial Algorithm for Problem 1 110
6.2.2 Pseudopolynomial Algorithm for Problem 2 112
6.2.3 Pseudopolynomial Algorithm for Problem 3 112

6.3 Polynomial Algorithm . 115
6.3.1 Polynomial Algorithms for Problems 1 and 2 116
6.3.2 Polynomial Algorithm for Problem 3 117

6.4 Numerical Results . 122
6.5 Conclusion . 124
Appendix: Proofs of the Lemmas . 125

Conclusions and Perspectives 135

iv CONTENTS

Preface

The main focus of this thesis consists in the analytical modeling of mobile ad hoc
networks. Ad hoc networks are autonomous self-organizing systems of mobile nodes
which can communicate without the need of any �xed infrastructure or central control
entity. This is made possible by incorporating routing capabilities in the mobile nodes,
thus forming multi-hop wireless networks.

With the generalization of the use of mobile devices and the emergence of new
wireless Internet services, we expect the importance of wireless networks to continue
to grow in the future. In this context, ad hoc networks constitute an interesting
solution for providing wireless connectivity to the increasing numbers of mobile devices.
However, the deployment of large scale networks presents important challenges, and
these challenges are even more intensi�ed in the harsher mobile wireless environment.
This accentuates the importance of performance considerations regarding the various
protocols at use in this case.

Consequently, in this thesis we study di�erent aspects of communication protocols
in the context of very large mobile ad hoc networks. Our goal is to provide analytical
models for each of these aspects and to combine the models in order to evaluate the entire
system's performance. We take the approach of evaluating the protocols performance in
an asymptotic setting, as is the case in the analysis of algorithms. Although, it could
be argued that the real life networks are �nite in size and therefore such an approach is
not realistic, we believe that the opposite is true. As discussed previously, we expect in
the future a massive emergence of wireless networks. Moreover, an asymptotic approach
makes it possible to identify which system parameters have the most important impact
on the network performance in general cases. Hence, we are able to simplify the problems
signi�cantly without loss of any meaningful information, and to provide solutions that
can scale naturally to large networks, or to identify in which situations the protocol
operation may reach a performance limit. In fact, for several problems considered in
this thesis, although the theoretical analysis was performed in an asymptotic setting, we
were able to verify the results with simulations of realistic situations.

We consider protocols of all layers starting from medium access control. Therefore,
the thesis is organized following the layer stack in ascending order. We gradually take
a more abstract and general approach with regards to the problem formulations, as we

2 Preface

move up in the layers. However, we comment on the relevance of previously derived
results in more speci�c contexts. Another goal of our work is to utilize the analysis in
order to propose practical solutions to those speci�c situations, in the form of protocols
or algorithms.

We begin with an analysis of channel access mechanisms and their interaction with
routing protocols, with the goal to provide delay based QoS guarantees in multi-hop
wireless networks. The next topic involves the scalability of routing protocols in massive
ad hoc networks. We compare theoretical results on the capacity of wireless networks
with the achievable bounds when we take into account the protocol operation and
overhead. We adapt the information theoretic bounds to multicast communications
and we propose a protocol for multicast routing which yields optimal performance in
the asymptotic case of large ad hoc networks. We then study the behavior of transport
protocols in this context, based on the lower layer protocol models. In the �nal part
we are concerned with network management and organization, in order to provide user
services satisfying QoS constraints.

Thesis Organization and Contributions

We present now the contents of each chapter in more details, and we outline our main
contributions.

Chapter 1: Introduction to Wireless Network Protocols

In this chapter, we describe the way that protocols are organized in layers and we give
a brief overview of the basic operation of Internet protocols that will be studied in the
following sections. This discussion permits to place the di�erent thesis contributions in
perspective and to outline the organization of this document with regards to the layer
stack. We then introduce the concept of mobile ad hoc networks in the context of other
wireless technologies. We also give a detailed description of the Optimized Link State
Routing (OLSR) protocol, which constitutes the basis of most of the work in this thesis.

Chapter 2: Delay Asymptotics and Routing in 802.11 Multi-hop Networks

This chapter addresses the problem of the evaluation of the delay distribution via
analytical means in IEEE 802.11 wireless ad hoc networks. We show that, under
certain assumptions, the asymptotic delay distribution can be expressed as a power
law. Based on the latter result, we present a cross-layer delay estimation protocol and
we derive new delay distribution based routing algorithms, which are well adapted to
the QoS requirements of real-time multimedia applications. In fact, multimedia services
are not sensitive to average delays, but rather to the asymptotic delay distributions.
Indeed, video streaming applications drop frames when they are received beyond a delay

Thesis Organization and Contributions 3

threshold, determined by the bu�er size. Although delay distribution based routing
is an NP-hard problem, we show that it can be solved in polynomial time when the
delay threshold is large, because of the asymptotic power law distribution of the link
delays. The theoretical study has been presented in [3]. The cross-layer protocol will be
published in [8].

Chapter 3: Scalability Optimizations for Massive Wireless Networks

In this chapter, we study the macroscopic behavior of ad hoc networks in a large scale.
We establish a model in which the global network performance can be optimized based
on local neighbor tuning adjustments. Moreover, we study the scalability of link state
routing and OLSR in particular, and we compare their expected performance with
recently obtained theoretical bounds on how well wireless networks could scale. Gupta
and Kumar have shown that the total capacity of wireless networks grows according to
the square root of the number of nodes. We analyze how this bound is not reached
in this case, and we study how much the scalability is enhanced with the use of Fish
Eye techniques in addition to the link state routing framework. We show that with this
enhancement, the theoretical scalability bounds are reached. In fact, our model permits
to quantify the total network capacity in a concise way, i.e., to determine the value of
the constant factor in front of the square root capacity formula. The results have been
published in [1].

Chapter 4: Multicast Scaling Properties in Large Ad Hoc Networks

In this chapter, we study the bene�ts of multicast routing in the performance of mobile
ad hoc networks, by remaining in the context of massive wireless networks. In particular
we show that if a node wishes to communicate with n distinct destinations, multicast
can reduce the overall network load by a factor O (

√
n), when used instead of unicast.

One of the implications of this scaling property consists in a signi�cant increase of the
total capacity of the network for data delivery. We present MOST, a Multicast Overlay
Spanning Tree routing protocol based on OLSR, which achieves the previously derived
asymptotically optimal capacity results. We perform simulations of the MOST protocol
under the ns-2 simulator to verify the theoretical results, and we present a fully working
implementation for real network environments. The theoretical study was presented
in [4]. The work concerning the protocol will be published in [9].

Chapter 5: Analysis of Tra�c Autocorrelations in Large Networks

This chapter addresses the problem of evaluating the performance of the transport layer
TCP protocol, and of characterizing analytically the autocorrelation structure of tra�c
in large networks. At �rst, we characterize the impact of MAC protocols in both wired
and wireless contexts, such as Ethernet and IEEE 802.11, and we show that they can be a

4 Preface

cause for long term dependencies. We then show that, under simple models, a single TCP
connection generates tra�c with an exponentially decreasing autocorrelation function.
However, several TCP connections sharing a given link can generate tra�c with long
term dependencies, under the condition that the distribution of their round trip delays
is heavy tailed. Part of this work was presented in [5].

Chapter 6: Replicated Server Placement with QoS Constraints

In this �nal chapter, we focus on the e�cient provision of services to the network users.
Thus, we revisit the issue of delay-based routing in a general setting, not speci�c to
wireless networks. We address the problem of placing replicated servers with QoS
constraints. Each server site may consist of multiple server types with varying capacities
and each site can be placed in any location among those belonging to a given set. Each
client can de served by more than one locations as long as the request round-trip delay
satis�es predetermined upper bounds. Our main focus is to minimize the cost of using
the servers and utilizing the link bandwidth, while serving requests according to their
delay constraint. This is an NP-hard problem. A pseudopolynomial and a polynomial
algorithm that provide guaranteed approximation factors with respect to the optimal
for the problem at hand are presented. The results were presented in [6] and [2].

Chapter 1

Introduction to Wireless Network
Protocols

In recent years, rapid advancements in wireless communication technologies have resulted
in a generalization of the use of mobile devices and a vast proliferation of wireless
networks. Mobile devices o�er possibilities for new applications and it is expected
in the future that the driving factor in the Internet's growth will come from wireless
technologies, with the emergence of services o�ered over wireless connections. In this
chapter we present an introduction to the organization of the main protocols which
are in use in the Internet. Within this context, we present the currently prominent
wireless network technologies and standards. We also introduce the concept of mobile
ad hoc networks and we give a detailed description of the Optimized Link State Routing
Protocol (OLSR), which constitutes the basis of our work in this thesis.

1.1 Network Protocols Architecture

To reduce their design complexity, networks are organized as a stack of layers. The
purpose of each layer is to o�er certain services to the higher layers, keeping the details
of the actual implementation hidden. Therefore, a layer on one machine carries on
a conversation with a corresponding layer on another machine. The set of rules and
conventions used in this conversation are de�ned by this layer's protocol. In Figure 1.1
we present a model of the Internet protocols' layered architecture [99], as well as the
classi�cation of some protocols that we study in this thesis.

In the following we describe the functions of each layer and we outline the operation
of some protocols that will be studied in further detail in other chapters. We also
comment on the thesis organization, which in fact follows the protocol stack.

6 Introduction to Wireless Network Protocols

Link layer

3

4

5 Application layer

Transport layer

Network layer

Physical layer

MAC
WiMAX (IEEE 802.16), Bluetooth, etc.

Ethernet (IEEE 802.3), Wifi (IEEE 802.11),

IP, OLSR, Multicast protocols

TCP, UDP

Internet services: VoIP, video streaming, etc.

2

1

Figure 1.1: Layers and protocols considered in the context of this work.

Layer 1: The Physical Layer This layer is concerned with encoding and transmit-
ting data over a communication channel. The physical layer protocols are in charge of
moving the raw bits representing the data from one device to another.

Layer 2: The Link Layer The link layer protocols are responsible for forming and
monitoring frames (ordered sequences of bits) transferred over a link connecting the
sender and the receiver. Broadcast networks have an additional issue: how to control
access to the shared channel. A special sublayer of the link layer, the Medium Access
Control (MAC) sublayer, deals with this problem. An example of a layer 2 protocol
for wired networks is Ethernet (cf. Section 5.1). As shown in Figure 1.1, the wireless
protocols that we study in this work are situated in this layer too. In the next section we
will describe the di�erent types of wireless technologies and the corresponding protocol
standards. In fact, the standards generally refer to physical as well as MAC/link layer
speci�cations. However, in this thesis we are mostly interested in the MAC protocols.
IEEE 802.11 is a layer 2 protocol that we will study extensively in Chapter 2.

Layer 3: The Network Layer This layer connects machines using possibly di�erent
technologies, creating the abstraction of a network. A key issue is determining how
packets are routed from source to destination. The most important layer 3 protocol
is the Internet Protocol (IP). IP de�nes an o�cial packet format and identi�es each
machine with a unique identi�er: the IP address. This addressing makes routing possible.
Therefore, the OLSR routing protocol which we present in this chapter is a network layer
protocol. IP also de�nes identi�ers for groups of machines, in order to allow multicast,
i.e., one to many communication. Thus, we place multicast routing protocols in the
network layer too. Due to the importance of routing, layer 3 considerations are present
throughout the thesis when we study other layers. Conversely, this layer is our main
focus in Chapters 3 and 4.

Layer 4: The Transport Layer At a basic level, this layer accepts incoming data
from applications, fragments it into discrete packets and passes each one on to the

1.2 Wireless Network Technologies 7

network layer; at the other end it reassembles the received packets into the output stream.
In fact, the transport layer is a true end-to-end layer, all the way from the source to the
destination. In other words, a program on the source machine carries on a conversation
with a similar program on the destination machine. Hence, the transport layer is
responsible for distributing the right packets to to the right application. This distinction
is done by adding to packets application-speci�c identi�ers, called ports. The two main
layer 4 protocols in the Internet are UDP and TCP. UDP (User Datagram Protocol)
is an unreliable, connectionless protocol. TCP (Transmission Control Protocol) o�ers
more transport layer functionalities. It is a reliable connection-oriented protocol that
allows a byte stream originating on one machine to be delivered without error on any
other machine in the Internet. TCP also handles �ow control to make sure a fast sender
cannot swamp a slow receiver with more messages than it can handle. The TCP protocol
will be described in more detail and analyzed in Chapter 5.

Layer 5: The Application Layer This layer contains the protocols that directly
provide services to the users. One widely-used application protocol is HTTP (HyperText
Transfer Protocol), which is the basis for Web browsing. Other examples of services are
VoIP (Voice Over IP), video streaming etc. We will be concerned with how to manage
and organize such services in Chapter 6.

1.2 Wireless Network Technologies

Wireless technologies can be placed at the bottom of the layer stack. In the Internet
context, they de�ne the physical and medium access functions, and can be used in
conjunction with the TCP/IP protocols. We discuss here some of the current wireless
technologies and standards which have been developed for several practical purposes,
ranging from short-ranged device interconnection to wide area voice and data networks.

Wireless Local Area Networks (WLANs) are the wireless equivalent of local area
networks, which are usually privately-owned networks within a single building or campus,
of up to a few kilometers in size. The prominent IEEE 802.11 standard [14] has become
synonymous with WLANs due to its wide-spread success over the last years. It is
more commonly known as Wi� and constitutes today a widely deployed solution for
providing wireless access to notebook computers in o�ces, public spaces, university
campuses etc. The name IEEE 802.11 corresponds to the working group in charge of
the standardization in the IEEE (Institute of Electrical and Electronics Engineers). The
standardization process began in the mid nineties, resulting in a �rst version of the
802.11 protocol in 1997 running at either 1 Mbps or 2 Mbps. From 1999 to 2003 the
standards committee proposed three high-speed amendments: 802.11a operating in the
wider 5 GHz ISM frequency band and delivering 54 Mbps, 802.11b in the 2.4 GHz ISM
band achieving up to 11 Mbps, and 802.11g which shares the same frequency spectrum
as 802.11b and the same physical layer technology as 802.11a for rates up to 54 Mbps.

8 Introduction to Wireless Network Protocols

The proposed standards include physical layer and MAC layer speci�cations. In this
thesis, we are interested in the MAC layer of the protocol. The 802.11 MAC protocol can
operate in two modes. In the base station mode, all communications go through the base
station, called an access point in 802.11 terminology. In the ad hoc mode, the computers
communicate with each other directly. The MAC speci�cation de�nes two channel access
methods: the Point Coordination Function (PCF) where transmissions are coordinated
by the access points, and the Distributed Coordination Function (DCF) which is based
on the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) mechanism.
However, PCF mode is optional and it is rarely implemented. A detailed description of
the DCF mode will be presented in Chapter 2.

Another kind of wireless networks is utilized for system interconnection without
wires, within an operating space of a few meters: for example, a wireless network
connecting a computer with its mouse, keyboard, and printer. A technology which
permits to create small range networks for wireless device interconnection, with rates
that can reach 1Mbps, is Bluetooth [11].

A category of wireless networks spanning over large geographical areas are the
cellular telephone networks. In addition to these low-speed networks, high-bandwidth
metropolitan area networks are also being developed, with the goal to provide the users
with wireless broadband Internet connectivity. A technology being developed for this
purpose is the IEEE 802.16 standard [15][16], also known as WiMAX which operates in
the 10 to 66 GHz frequency range, in areas of several square kilometers.

A characteristic of the described current technologies is the need for a �xed
infrastructure. Base stations or access points synchronize the wireless devices and allow
them to form a network. However, in some situations this approach is not practical and
there is a need to deploy self-organizing wireless multi-hop networks. For example,
small inexpensive electronic devices, like �re or intrusion detection sensors, can be
distributed over large areas and monitor di�erent events. In order to collect the data in
an e�cient and cost-e�ective way, the devices can be organized in sensor networks and
relay the information over multi-hop wireless paths to a data collection center. For the
more complex situation where the devices are mobile and with heavier data transport
requirements, we describe in the next section Mobile Ad hoc Networks (MANETs) and
we mention some potential applications.

1.3 Mobile Ad Hoc Networks (MANETs)

A Mobile Ad hoc Network (MANET) is an autonomous system of mobile nodes which
can move freely and communicate over wireless links, without any �xed infrastructure
or central control [41]. In contrast to the wireless networks already described, MANETs
must support robust and e�cient operation in a mobile wireless environment by
incorporating routing functionality into the nodes. Such networks are envisioned to
have dynamic, sometimes rapidly-changing, random, multi-hop topologies which are

1.3 Mobile Ad Hoc Networks (MANETs) 9

likely composed of relatively bandwidth-constrained wireless links.
Mobile ad hoc networks are suited for situations where a �xed infrastructure is

not available, not trusted, too expensive or unreliable. A MANET can operate
either in isolation, or as a �stub� network connecting to a �xed internetwork. Some
examples of applications include: military or emergency networks, the interconnection of
notebook computers or PDAs in a conference or campus, highway networks, inexpensive
alternatives or enhancements to cell-based mobile network infrastructures, as well as
extensions to WLANs when radio coverage is di�cult, etc.

The challenges of ad hoc networking are di�erent from those of wired networks and
hence most Internet solutions that were developed and applied successfully on wired
networks fail in the harsher mobile ad hoc environment. We mention some salient
MANET characteristics, as described in [41]:

• Dynamic topologies,

• Bandwidth-constrained, variable capacity links,

• Energy-constrained operation,

• Limited physical security.

Moreover, since some envisioned MANETs may be relatively large, another require-
ment for these networks is the ability to scale, which is a characteristic that will be
addressed in Chapter 3 of this thesis.

1.3.1 Routing in Mobile Ad Hoc Networks

As a result of the previously described characteristics and the promising application
prospects, ad hoc networking has attracted signi�cant research interest and routing
protocols have been developed speci�cally for MANETS. The protocols can be classi�ed
essentially in two main categories: proactive protocols and reactive protocols. Each
approach has its own advantages and their relative performance depends on the network
topology, mobility of the nodes, as well as the tra�c patterns.

Proactive protocols maintain a routing table with paths to every destination in the
network. For this purpose the protocol needs to continuously exchange information
between nodes about the network topology. The downside of this approach is the
overhead which is generated by the protocol. However MANET protocols optimize
the bandwidth utilization. On the other hand, there is the advantage that routes are
available instantly when a they are needed. An example of a proactive routing protocol
is OLSR (Optimized Link State Routing) [37].

Reactive protocols operate on-demand, i.e., routes are calculated according to user
demands and the routing tables which are maintained are incomplete. This reduces

10 Introduction to Wireless Network Protocols

the protocol overhead in case only a few routes in the network are in use, at the cost
of additional delay. An example of a routing protocol using the reactive approach is
AODV (Ad hoc On-Demand Distance Vector Routing) [91].

In the following section, we give a description of the OLSR proactive routing protocol,
since the presented protocol solutions to di�erent ad hoc network issues that we study
(for instance QoS, multicast, or scalability) are proposed as extensions to OLSR.

1.3.2 Optimized Link State Routing (OLSR) Protocol

The Optimized Link State Routing Protocol (OLSR) [37] operates as a table driven,
proactive protocol, i.e., exchanges topology information with other nodes of the network
regularly. This protocol is actually an optimized version of the link state routing protocol
for wired networks [86]. This optimization is achieved with the utilization of the concept
of multipoint relays (MPR). Each node selects a set of its neighbor nodes as MPRs. In
OLSR, only nodes, selected as such MPRs, are responsible for forwarding control tra�c,
intended for di�usion into the entire network. MPRs provide an e�cient mechanism for
�ooding control tra�c by reducing the number of transmissions required. For its core
operation, OLSR uses two types of control messages: Hello messages and TC messages.

Uni�ed Packet Format

OLSR communicates using a uni�ed packet format for all data related to the protocol.
The purpose of this is to facilitate extensibility of the protocol without breaking
backwards compatibility. This also provides an easy way of piggybacking di�erent
types of information into a single transmission, and thus for a given implementation
to optimize towards utilizing the maximal frame-size, provided by the network. These
packets are embedded in UDP datagrams for transmission over the network. Each packet
encapsulates one or more messages. The messages share a common header format, which
enables nodes to correctly accept and (if applicable) retransmit messages of an unknown
type. In Figure 1.2 we depict the basic layout of any packet in OLSR (omitting IP and
UDP headers).

The Message Type �eld indicates which type of message is to be found in the
MESSAGE part. The VTime �eld indicates for how long time after reception a node
must consider the information contained in the message as valid. The Originator
Address contains the main address of the node, which has originally generated this
message.

MPR Optimization

MPR nodes are elected by their neighbors because they cover their two-hop neighbor-
hood. Therefore, MPR selection is performed in an entirely distributed manner. The

1.3 Mobile Ad Hoc Networks (MANETs) 11

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Packet Length | Packet Sequence Number |
+-+
| Message Type | Vtime | Message Size |
+-+
| Originator Address |
+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+
| |
: MESSAGE :
| |
+-+
| Message Type | Vtime | Message Size |
+-+
| Originator Address |
+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+
| |
: MESSAGE :
| |
+-+
: :

(etc.)

Figure 1.2: Generic OLSR packet format.

protocol uses the MPRs to facilitate e�cient �ooding of control messages in the entire
network. Moreover, in route calculation, the MPRs are used to form the route from a
given node to any destination in the network.

A node selects MPRs from among its one hop neighbors with symmetric, i.e., bi-
directional, linkages. Therefore, selecting the route through MPRs automatically avoids
the problems associated with data packet transfer over uni-directional links (such as
the problem of not getting link-layer acknowledgments for data packets at each hop, for
link-layers employing this technique for unicast tra�c).

Once the MPR set is determined, optimized �ooding can be achieved if each node
retransmits a broadcast packet whenever it receives its �rst copy from a neighbor that
has selected the node as a multipoint relay. In Figure 1.3, we depict an example of the
gain that can be achieved by using MPR �ooding instead of a pure �ooding mechanism.

12 Introduction to Wireless Network Protocols

(a) Pure �ooding: 8 retransmissions. (b) MPR �ooding: 4 retransmissions.

Figure 1.3: Di�usion of a message using pure �ooding and MPR �ooding.

Neighbor Sensing

Hello messages have the role of neighbor detection, as well as determining the status
of the links. They are exchanged periodically between neighboring nodes, without
being forwarded. In Hello messages, nodes advertize their neighborhood information.
Therefore, using Hello messages, a node can determine which nodes are its symmetric
neighbors and select its MPRs. The MPR information is also advertized in the Hellos,
hence nodes can determine which neighbors have selected them as MPRs.

To ensure that the quality of the links established by OLSR is good, a link hysteresis
strategy is proposed in advanced neighbor sensing. Essentially, an additional parameter
is associated with each link, which de�nes the link quality. This parameter's estimation
can be done using the percentage of Hello messages that are actually received from
each neighbor. If this value exceeds a certain threshold (HYST_THRESHOLD_HIGH)
the link can be established. On the other hand, when the quality drops below the
minimum threshold (HYST_THRESHOLD_LOW) the link is considered to be in a
pending state and it is not used for data forwarding. Additionally, a similar strategy
can be implemented using the signal to noise ratio.

Topology Dissemination

Each node maintains topological information about the network, obtained by means of
TC (Topology Control) messages. TC messages are �ooded in the network periodically
taking advantage of MPRs to reduce the control tra�c overhead. Furthermore, only
MPR nodes have the responsibility to declare link state information in the network. In
order to save more on control tra�c, nodes have the possibility to advertize a small

1.3 Mobile Ad Hoc Networks (MANETs) 13

subset of their neighbor links. The advertized link set can be limited to MPR links, i.e.,
the neighbors that have elected this node as an MPR. In this case the nodes have only
a partial knowledge of the network topology. The fact that any given node can compute
a shortest path to any arbitrary destination comes from the fact that the node knows
its own neighbor list. However there is an option to advertize additional information, as
the whole neighbor list.

14 Introduction to Wireless Network Protocols

Chapter 2

Delay Asymptotics and Routing in
802.11 Multi-hop Networks

In this chapter, we begin our study on the performance of wireless networks. We model
the performance of layer 2 and 3 protocols and their impact on the delay in the delivery of
data packets. This delay is of primary importance for a wide range of applications, such
as VoIP, interactive multimedia, video streaming, etc. In Table 2.1 we give an example
of delay requirements for packet delivery in voice applications. Similar requirements can
be formulated for other parameters such as the jitter, i.e., the variance of the delay. We
note that this example may be used as an indication for other interactive applications
as well, since the threshold after which the delay starts becoming noticeable by the user
is 100 ms. Therefore, the delay in the delivery of packets must not exceed a certain
threshold, which depends on the application, in order to achieve acceptable quality of
service.

Table 2.1: Delay requirements for voice tra�c.

Delay Perceived quality
< 100-150 ms Delay not detectable
150-250 ms Delay noticeable, quality still acceptable
> 250-300 ms Unacceptable delay

With the wide deployment of wireless networks in home and o�ce networks, as well
as the expected growth of mesh and ad hoc networks, the possibility of supporting real-
time applications becomes a crucial requirement in this context. Hence, we investigate
the performance of wireless networks utilizing the IEEE 802.11 protocol (most commonly
known as Wi�). Our goal is to analyze the impact of the random channel access
mechanism on the packet delays, and to use the analysis to provide optimal routing
solutions for multi-hop wireless networks, since in this case a detailed understanding of

16 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

the impact of both the underlying channel access and routing protocols on the delay
characteristics is essential. More precisely, we address the problem of the analytical
evaluation of the delay distribution in a multi-hop wireless network with IEEE 802.11
MAC protocol [14] under the Optimized Link State Routing (OLSR) protocol. The main
channel access mechanism in IEEE 802.11 is the Distributed Coordination Function
(DCF), which is a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
scheme. DCF was designed initially for asynchronous tra�c and since it is a random
access protocol it does not provide any guarantee for delay sensitive applications.

Most of previous research about the performance of the 802.11 protocol concerns
single hop networks. A simple analytical model of the 802.11 DCF access mechanism
was introduced in [28] and was used to analyze the saturation throughput performance.
The MAC layer service time was studied in [107], by expanding the previous model.
The delay in both saturated and unsaturated networks was also studied in [103], where
each node was modelled as a discrete time queue. In the case of multi-hop networks, the
majority of QoS solutions proposed are concerned with bandwidth requirements (see [88]
for a study in the 802.11 context). A protocol which supports multiple metric routing
criteria (including the average delay) is the QOLSR extension [26, 25] to OLSR. Our
goal in this thesis is to propose a delay based routing solution speci�c to IEEE 802.11
networks, in order to achieve the best possible performance.

Therefore, we evaluate the performance of the 802.11 protocol in the context of
wireless ad hoc networks, and we obtain both one-hop and multi-hop delay estimates.
We denote by W the end-to-end delivery delay of a packet. We analyze the delay
distribution P (W > T) and we show that in the case that T is large (i.e., several times
the average delay) the probability P (W > T) decays as a power law, namely in T−a,
where a is a constant. Based on the analysis, we present a cross-layer framework, which
takes into consideration all aspects of the network protocols in use, to evaluate the
delay distribution P (W > T) for any large T and we use it in order to �nd routes that
satisfy given delay requirements. A delay-oriented quality of service for a connection
is generally expressed via a maximum acceptable delay T and a maximum over-delay
ratio ε, speci�ed by the application, requiring that during the connection the constraint
P (W > T) < ε is veri�ed. In general �nding the optimal route that minimizes an over-
delay ratio is NP-hard [57]. Nevertheless, the fact that the delay distribution at every
node router is in power law allows us to specify a polynomial approximation algorithm
with an approximation factor of 1 + O(T−1).

The chapter is organized as follows. In Section 2.1, we present an overview of the
IEEE 802.11 MAC protocol. In Section 2.2 we introduce the general model framework
and we analyze the one-hop as well as the multi-hop delay distribution. The analysis
is veri�ed via simulations. In Section 2.3 we describe a cross-layer delay estimation
protocol based on OLSR, and we indicate how the previous analysis can be used in
delay distribution based routing.

2.1 IEEE 802.11 MAC Protocol 17

2.1 IEEE 802.11 MAC Protocol

A general introduction of the IEEE 802.11 protocols was presented in Chapter 1. Since
the context of this chapter is the study of ad hoc networks, we focus on the DCF mode,
of which we give a more detailed description.

2.1.1 Distributed Coordination Function

The Distributed Coordination Function (DCF) is the fundamental access method used
in the IEEE 802.11 MAC protocol. It is based on the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) mechanism, which is designed to reduce the
collisions due to multiple sources transmitting simultaneously on a shared channel. In
the CSMA/CA protocol, a station transmits only if the medium is idle. The medium is
considered as idle if it is sensed to be idle for a duration greater than the Distributed
Inter-frame Space (DIFS). If the medium is sensed as busy, the transmission is deferred
until the end of the ongoing transmission. When the medium becomes idle after a busy
period, the node does not transmit immediately, because multiple stations could have
been waiting for the end of the transmission and may attempt to access the channel
again at the same time. Therefore, the node starts a random wait by initializing
its back-o� timer. The back-o� timer is randomly selected in an interval called the
contention window and has the granularity of one slot. Every time the channel is sensed
to be idle, the back-o� counter is decremented. When the counter reaches zero, the
node can start its transmission. If the channel is sensed as busy during the back-
o� procedure, the counter is frozen and then resumed when the channel becomes idle
for a DIFS again. To make sure that a transmitted unicast frame has reached its
destination, an Acknowledgement frame is generated from the destination to the source.
This frame is sent after a time interval equal to a SIFS (Short InterFrame Space), which
is shorter than a DIFS, e�ectively giving higher priority to Acknowledgement frames.
The source node can detect lost frames if after a �xed time interval, called AckTimeout,
an acknowledgement has not been received. On the other hand, broadcast frames are not
acknowledged, hence they are not retransmitted in case there is a collision. The channel
access mechanism is summarized in Figure 2.1, where we depict the medium occupancy
during a successful unicast frame transmission (i.e., where no collisions occur).

The above carrier sense is called physical carrier sense because it is performed at
the air interface. A virtual carrier sense is also possible in the DCF mode to resolve
the problem of the hidden terminal. This problem occurs when two nodes that are not
within hearing distance of each other create collisions at a third terminal that receives the
transmission from both. The virtual carrier sense is performed at the MAC sublayer. The
channel is reserved before each transmission, so instead of transmitting the data frame
after sensing that the channel is idle, the station sends an RTS (Request To Send) frame
to the destination. The receiver replies by a CTS (Clear To Send) frame, after which the
data transfer can start. However, the use of RTS/CTS frames imposes additional delay

18 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Ack

� �
� �
� �

� �
� �
� �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

DIFS DIFS

Back−off counter

decrementation

SIFS

The back−off counter is frozen

Channel Occupied

Data Frame

Figure 2.1: Example of medium occupancy in a successful unicast transmission using
the DCF channel access mechanism.

and bandwidth overhead. Therefore the RTS/CTS mechanism is recommended only for
big packets.

2.1.2 Exponential Back-o� Procedure

As discussed previously, the wireless nodes maintain a rotating back-o� timer in order
to randomize their access to the channel and reduce the collision probability. According
to the CSMA protocol, the back-o� timer is selected in an interval {0, . . . , CW − 1},
where CW is the contention window. In spite of that, collisions can still occur. In order
to reduce the probability of further collisions, the contention window is doubled after
each collision to increase the random waiting time.

(re)transmission attempt

32

C
on

te
nt

io
n

W
in

do
w

1024

256

128
64

512

1 2 3 4 5 6 7

Figure 2.2: Binary exponential back-o�.

2.2 Asymptotic Delay Analysis 19

Initially the contention window is set to CWmin. If a collision occurs the nodes select
a new back-o� number in an enlarged interval {0, . . . , 2CWmin − 1}. The contention
window length is multiplied by two after each collision until it reaches the maximum
value CWmax. When the frame is transmitted successfully or the maximal number
of retransmissions is reached, the back-o� interval length is reset to CWmin for the
next packet. The retransmission limit is de�ned in the standard depending on the
size of packets. For packets longer than the RTS threshold, i.e., packets which are
preceded by an RTS/CTS exchange, the limit is 4, while for shorter packets the limit is
7. The exponential back-o� procedure is illustrated in Figure 2.2, where according to
the speci�cation CWmin = 32 and CWmax = 1024.

2.2 Asymptotic Delay Analysis

In this section, we carry out the analytical study of end-to-end delays in 802.11 multi-
hop networks. In order to simplify the formula derivations, we perform the analysis
under certain modeling assumptions. For instance, we use an M/G/1 queueing model
for the nodes, which cannot be considered a priori entirely realistic. However, we have
veri�ed via simulations that our model is pertinent and can accurately predict the shape
of the node delay distributions in the domain of interest. Furthermore, the assumptions
we make are not fundamental for our results, therefore we comment on plausible model
generalizations whenever possible. We focus on the asymptotic case of large delays,
which permits to single out which system parameters have the most signi�cant in�uence
on the delay performance.

2.2.1 One-hop Delay Analysis

Methodology Overview

A wireless node can be seen as a bu�er �lled by incoming messages and with a single
server that performs the CSMA/CA multiple access protocol. We model this system as
an M/G/1 queue, i.e., we assume:

1. The input packet �ow in the bu�er is Poisson of rate λ packets per slot;

2. Service delays are independent.

In fact, the M/G/1 hypothesis is just a matter of simplifying approach. Since we are
going to deal with heavy tailed distribution of service times, the consequence on queueing
time distribution can be generalized to a much larger class of queueing models. For
example it is not necessary to assume independence between service times or to restrict
to Poisson input in order to derive a power law queueing distribution (but in this case
the coe�cients change). Nonetheless, as we verify later in the simulations section, the
M/G/1 hypothesis leads to satisfactory results.

20 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Service Delay Determination

The IEEE 802.11 CSMA/CA protocol uses a rotating back-o� mechanism where the
nodes have to wait a random number of idle slots between transmission attempts. Let C
be the random variable that expresses the number of busy slots between two consecutive
idle slots. Let p(L) be the probability of collision that is experienced by packets, when
the packet length is L (that is the transfer time of the packet in the channel, expressed
in slots, which is proportional to its size in bits). The longer the packet is, the more
likely it is to collide. We take the following assumptions:

1. Durations between successive idle slots are independent and i.i.d;

2. Collision events on successive transmissions of the same packet are independent.

In practice there is a maximum number of retransmissions after which the packet is
discarded in case of permanent failure. The default maximum retry is 7 and can lead to
considerable delays. Since this delay is larger than the maximum acceptable delay we
think of regarding connection QoS, it does not practically matter to set the maximum
number of retries to in�nity.

Let C(z) be the probability generating function
∑

n P (C = n)zn+1, quantity C being
expressed in slot duration. This generating function corresponds to the time needed for
a back-o� counter decrease, expressed by the random variable C + 1 (we add one slot
to the quantity C for the decrease to be taken into account). Identity C(z) = z would
mean that C = 0 always, i.e., the channel is permanently sensed idle (note that in this
case one slot is still needed for the counter decrease).

Let β(z, L, p, k) be the probability generating function of the service delay when the
packet length is L, the collision probability is p and the initial back-o� interval is k. The
service delay of a packet corresponds to the time elapsed since it was extracted from the
bu�er until it is transmitted successfully. Therefore, it takes into account retransmissions
due to collisions and it includes the time needed to access to the channel (corresponding
to the rotating back-o� decrementation) plus the �xed packet transmission length.

We will express all these quantities using generating functions, starting from the
time needed to access the channel, or equivalently the back-o� counter decrease. As
discussed earlier, each back-o� decrease is expressed by the random variable C +1, with
generating function C(z). If the back-o� counter is i, the total time to access the channel
is the time needed for i counter decreases, or the sum of i times the random variable C.
From the independence assumption it comes that in this case the channel access time
can be expressed by generating function C(z)i. Since the initial back-o� window is k,
and the back-o� counter value is selected uniformly at random in the interval {1, . . . , k}
(we also take here into account the DIFS interval), the generating function of the total
channel access time can be written as 1

k

∑
i=1..k C(z)i, which results from the previous

discussion by taking either possible value for i with probability 1
k . Once the channel is

2.2 Asymptotic Delay Analysis 21

accessed the time needed to transmit the packet is �xed and equal to L1, therefore it can
be expressed by generating function zL. Hence the the service time when no collision
occurs comes from adding the previous two quantities, or equivalently the corresponding
generating function is equal to the product of the above generating functions, i.e.,

zL

k

∑

i=1..k

C(z)i =
C(z)k+1 − C(z)

C(z)− 1
zL

k
. (2.1)

In order to account for packet collisions, we obtain the following recursion:

β(z, L, p, k) =
C(z)k+1 − C(z)

C(z)− 1
zL

k
× (1− p + pβ(z, L, p, 2k)) . (2.2)

In case there is no collision (with probability 1 − p), the service delay corresponds to
our previous calculations. The term β(z, L, p, 2k) is obtained from the case where there
is a collision (with probability p), hence the procedure is repeated after doubling the
back-o� interval and this results in an additional service delay term.

The service delay probability generating function is

β(z) = E[β(z, L, p(L), CWmin)],

which is obtained by averaging on packet length L and collision probabilities p(L).
Figure 2.3 shows the 200 �rst coe�cients of β(z) when C(z) = 0.8z + 0.2z4, L = 4

and p = 0.3. In this theoretical example, the packet transferring time is 4 slots, and each
decrementation of the back-o� counter takes one slot with probability 80% and 4 slots
with probability 20% (which means that the channel is busy with a packet transmission).
The coe�cients in this �gure were obtained from numerical calculations using Maple,
by iterating the recursive equation (2.2).

Figure 2.3: Coe�cients of β(z).

1L can be adjusted to include AckTimeouts too.

22 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Delays Including Queueing

In order to compute the delay experienced by packets in the bu�er, we take the formula
for slotted M/G/1 for the queue delay probability generating function q(z):

q(z) = exp((β(z)− 1)
λ

2
)

(1− λβ′(1))(1− z)
1− z exp(−(β(z)− 1)λ)

. (2.3)

This needs the provision that β′(1) exists. We will see that this implies that p < 1
2 .

Similarly, for the existence of the kth moment of service time we need that p < 2−k. If
λ ¿ 1 then we can replace (2.3) by:

q(z) ≈ (1− λβ′(1))
1− z

1−z (1− β(z))λ
. (2.4)

The generating function of the overall delay, so called one-hop node delay (queueing
+ service), of a packet of length L with collision probability p, w(z, L, p) satis�es the
identity:

w(z, L, p) = q(z)β(z, L, p, CWmin). (2.5)

Figure 2.4 shows the coe�cients of w(z) for λ = 0.02. Notice that β′(1) = 22.939 · · · .

.1e3.5e2

.5e-2

.1e-2

.5e-3

.1e-1

.1e25.

Figure 2.4: Coe�cients of w(z).

Asymptotic Analysis

We denote S the service time and W the overall delay in a router. In this section we
derive asymptotic estimates for the distributions of the above quantities by applying
Flajolet-Odlyzko theorems [50].

2.2 Asymptotic Delay Analysis 23

Theorem 1 We have the expansion for z around 1:

β(z, L, p, k) = 1 + (1− z)v(1− z) + (kC ′(1)(1− z))Bα(log(1− z))
+O((1− z)B+1),

where v(x) is a polynomial, B = − log2 p assuming that B is not integer, and α(x) is a
periodic function of period log 2 with small �uctuation.

Proof: We �x L and p and set e−θ = C(z) and denote j(θ, k) = β(z, k). We have

j(θ, k) =
1− e−kθ

kθ
f(θ)(1− p + pj(θ, 2k)),

with f(θ) = eθ θ
1−e−θ zL.

It is clear that
θ = (1− z)C ′(1) + O((1− z)2).

We de�ne g(θ) =
∏

i≥1
1−e−θ2−i

θ2−i . Thus if ν(θ, k) = g(kθ)j(θ, k), then

ν(θ, k) = g(2kθ)f(θ)(1− p) + pf(θ)ν(θ, 2k).

And ν(θ, k) = 1−p
p

∑
i≥1(f(θ)p)ig(2ikθ).

It can be proven that function g(θ) is analytical and behaves like 1 + O(θ) when
θ → 0 and converges to zero faster than any power law when θ →∞.

Let rB(θ) be the polynomial of degree bBc, which is the Taylor expansion of g(θ)eθ

at θ = 0. Recall that B = − log2 p.
Let gB(θ) = g(θ)− rB(θ)e−θ. Clearly gB(θ) = O(θdBe) when θ → 0.
We have

ν(θ, k) = uB(θ) +
1− p

p

∑

i≥1

(f(θ)p)igB(2ikθ),

with
uB(θ) =

1− p

p

∑

i≥1

(f(θ)p)irB(2ikθ)e−2ikθ.

Clearly uB(θ) is an analytical function with uB(θ) = 1 + O(θ).
Let

νB(θ, k) =
1− p

p

∑

i≥1

(f(θ)p)igB(2ikθ).

We will show that µB(θ, k) = θ−BνB(θ, k) is bounded when θ → 0. Let hB(θ) =
θ−BgB(θ).

24 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

We have
µB(θ, k) =

1− p

p

∑

i≥1

(f(θ))ihB(2ikθ)kB.

Since f(θ) = 1 + O(θ), when θ → 0, we have µB(θ, k) which converges to α(log θ) =∑
i hB(2ikθ)kB, the sum being on all integers i, including the negative integers. The

sum converges because hB(θ) = O(θε) with ε = dBe − B and hB(θ) decays faster than
any power law. Notice that function α(x) is periodic of period log 2.

Therefore j(θ, k) = ν(θ,k)
g(kθ) has asymptotic expansion

uB(θ)
g(kθ)

+ α(log θ)θB + O(θB+ε).

The theorem follows with a change of variable.

Theorem 2 The probability that the service time is greater than T , for T large is
P (S > T) = (CWminC

′(1))Bα∗(log T)T−B + O(T−B−1),

where α∗(x) is also a periodic function of period log 2 with small �uctuation.

Proof: From the previous theorem it comes that β(z) �ts Flajolet-Odlyzko asymptotic
conditions [50].

By writing the function α(log(1− z)) as a Fourier series:

α(log(1− z)) =
∑

n

αn(1− z)
2inπ
log 2 ,

and applying Flajolet-Odlyzko theorems, we have
P (S > T) = (WminC

′(1))Bα∗(log T)T−B + O(T−B−1),

where α∗ is periodic in log T , of period log 2 :

α∗(log(T)) =
∑
n

αn

Γ(2−B − 2inπ
log 2)

T
2inπ
log 2 .

Theorem 3 We have the expansion for z around 1:
w(z) = 1 + (1− z)u(1− z)

+
λ(CWminC

′(1))B

1− λβ′(1)
α(log(1− z))(1− z)B−1

+O((1− z)B),

where u(x) is an analytic function.

2.2 Asymptotic Delay Analysis 25

Proof: We substitute the expansion for β(z) around z = 1, derived in Theorem 1, in
the formula for q(z) given by (2.4). The theorem follows by using the expansion around
z = 1 in equation w(z) = q(z)β(z).

Theorem 4 The probability that the delay in a router is greater than T , for T large is

P (W > T) =
λ(CWminC

′(1))B

1− λβ′(1)
α∗(log T)T 1−B + O(T−B).

Proof: We use the result of the previous theorem and we apply Flajolet-Odlyzko
theorems on w(z).

Notice that the delay distribution tail decays in power law. As a corollary it
turns out that the existence of the kth moment of the delay needs p < 2−k−1. Also,
to obtain the asymptotic delay distribution estimate, only the average of the channel
occupancy distribution C ′(1) is required, rather than the distribution C(z).

Remark The latter assume non integer B, otherwise we have:

w(z) = 1 + (1− z)u(1− z)

+
λ(CWminC

′(1))B

1− λβ′(1)
α1(log(1− z)) log(1− z)(1− z)B−1

+O((1− z)B).

and in this case:

P (W > T) =
λ(CWminC

′(1))B

1− λβ′(1)
α∗1(log T)T 1−B + O(T−B).

In the following we assume that B is non-integer.

2.2.2 Multi-hop Delay Analysis

We now compute the end-to-end delay distribution for any given route in the network,
based on the one-hop delay analysis discussed previously. For this purpose, we assume
that the M/G/1 model remains valid for each node. This is the strongest hypothesis in
our analysis since the tra�c coming from relay nodes is not Poisson. The Markovian
input can be justi�ed theoretically as the sum of a large number of independent
random tra�cs generated by the neighboring nodes. In practice, even if this is not
completely veri�ed, the model still gives a very satisfactory approximation, as discussed
in Section 2.2.1. Furthermore, we assume that when travelling on its route, the delay

26 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

experienced by a packet on a router is independent of the delay experienced on the other
routers. This latter assumption makes the problem easier to handle mathematically.
However it is not fundamental for our result, since it is known that the sum of two
random variables in power law is still in power law whatever the dependence assumptions
between them. The power law in the resulting distribution function will be the maximum
of the respective power laws of the variables, except that the factor in front of it will
depend on the dependence assumptions. To see this, consider two random variables
X1, X2, such that P (X1 > T) ∝ T−B1 and P (X2 > T) ∝ T−B2 . We will show that
X1 + X2 is also in power law.

We have the lower power law bound: P (X1 + X2 > T) ≥ P (X1 > T).
Also, we can obtain an upper power law bound since:

1. X1 + X2 ≤ 2max{X1, X2},
2. P (max{X1, X2} > T) = P (X1 > T ∧X2 > T) ≤ P (X1 > T) + P (X2 > T).

Assuming independence from now on for simpli�cation purposes, if there are n routers
in the route from the source to the destination then the probability generating function
of the end-to-end delay is equal to the product

∏
i∈route wi(z), where wi(z) is the

probability generating function of the delay at router number i and route is a set of
router indices.

Still, with Flajolet Odlyzko result [50], if each wi(z) is of the form :

1 + (z − 1)gi(z) + ci(z − 1)Bi−1 + O((z − 1)Bi),

then the leading term of P (W (route) > T) is
∑

i∈route
c∗i T

1−Bi ,

with c∗i = ci
Γ(2−B) .

Keeping only leading terms:

P (W (route) > T) ≈ c(route)T 1−B(route),

where B(route) = minBi and c(route) =
∑

Bj=B c∗j .
An unexpected consequence of the above is that a good choice for the route should

not be the shortest path in number of hops. In the shortest path the lap between two
consecutive routers may be too large, leading to too large collision rates and therefore a
too low value of B(route). If we take shorter hops between routers, then we will reduce
the collision rate and get a larger value of B(route). Of course this would be done in
the detriment of a larger number of hops and a larger value of c(route). But, since in
c(route)T 1−B(route) parameter T is supposed to be large, the reduction of T 1−B(route)

2.2 Asymptotic Delay Analysis 27

would prevail in most cases on the c(route) increase. Interestingly enough, increasing the
number of hops and c(route) will in most cases increase the average end-to-end delay.
Therefore we have the paradoxical case where increasing the average delay actually
decreases the over-delay loss ratio. This is due to the fact that we expect the average
delay to be much lower than the maximum acceptable delay T . Consequently, routing
with respect to the average delay may con�ict with the minimization of the over-delay
ratio.

Conversely, the optimal route may be too long since it may have too short hops. In
this case the connection may waste too many resources. Instead of choosing the route
that minimizes P (W > T) it is probably wiser to seek the shortest route that satis�es
the requirement P (W > T) ≤ ε.

2.2.3 Simulation Results

We use the ns-2 [46] simulator to validate our delay modeling. We study various scenarios
for di�erent purposes. We compare the analytic service time distribution with the
measured service time distribution (obtained by ns-2 simulations). We aim to show that
the service time and the sojourn time (in other words the delay including queuing too)
are in power law. Furthermore, we investigate whether one-hop delays are independent
within a route, and �nally we show that the end-to-end delay is in power law too.
Common simulation parameters are summarized in Table 2.2.

Table 2.2: Simulation Settings.

MAC Parameters Wmin 32, slot 20µ s
Propagation model Two ray ground
Transmission range 250m
Packet size 1000 bytes
Tra�c type Exponential (Poisson)
Simulation time 300s
Simulation area 800×800m2

Routing protocol OLSR

One-hop Delay Measures

In the �rst scenario, we consider an ad hoc network with 5 nodes as shown in Figure 2.5.
The 802.11 bandwidth is 1Mb. Five exponential �ows with 140kbs data rate are launched
between di�erent pairs of nodes (represented by arrows in Figure 2.5). In order to study
the cumulative delay distribution in node 2, we measure the main parameters in this
node for the conducted simulation, as presented in Table 2.3.

28 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

(0) (1)

(4)

(3) (2)

Figure 2.5: Topology 1.

Table 2.3: Measured parameters.

Channel occupancy C(z) ' 0.82z + 0.04z16 + 0.03z125 + 0.1z445

Packets per slot λ = 0.00024 packets/slot (12 packets/second)
Collision probability p = 0.09, B = 3.45

Based on these parameters and (2.2), we use Maple to compute the service time
distribution, which we draw in Figure 2.6. The service time distribution measured via
ns-2 simulation is shown in Figure 2.7. To demonstrate that the service time distribution
is in power law with B = −log2(p) (here B = 3.45), as stated in Theorem 2, we draw
the equation Y = αX−3.45, where α is a constant, and we compare the two plots. Figure
2.7 shows that, for T large enough, the service time distribution and Y have the same
power law exponent.

1.

.1

.1e-3

.1e-1

.1e-2

.1e5.1e4

Figure 2.6: Analytic service time distribution.

2.2 Asymptotic Delay Analysis 29

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000

P
(w

>
T

)

T (slots)

Service time distribution
T^(-3.45)

Figure 2.7: Measured service time distribution.

In the same way, we measure the sojourn time distribution (also called node delay)
which we present in Figure 2.8. We notice that for T between 4000 and 40000 slots
(i.e., 80ms to 800ms), the node delay is in power law with exponent 1−B = −2.45, in
accordance with Theorem 4.

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000

P
(w

>
T

)

T (slots)

Node delay distribution
T^(-2.45)

Figure 2.8: Measured node delay distribution.

30 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Multi-hop Delay Measures

Secondly, we consider a randomly generated topology of 50 nodes which is depicted in
Figure 2.9. We launch 10 exponential �ows in the network and we measure for each the
end-to-end delay distribution. We run several simulations by varying the throughput
from 2 to 8 packets per second. We consider the �ow following the �ve hop path shown in
Figure 2.9. We measure the end-to-end delay of this �ow as well as collision probabilities
along the path (for each hop). Table 2.4 summarizes the obtained probabilities.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

Figure 2.9: Topology 2.

Table 2.4: Collision probabilities for each hop of the path.

Throughput Per hop collision probabilities %
2pkt/s 0.53 0.94 0.19 1.05 1.13
8pkt/s 1.11 2.28 0.45 5.43 5.75

Figure 2.10 compares the measured end-to-end delay distribution with theoretical
results for sending rates of 2 and 8 packets per second respectively. According to the
analysis of multi-hop delay distribution in Section 2.2.2, the power law exponent is
equal to 1 + log2(p) such that p corresponds to the highest collision probability along
the path. Referring to Table 2.4, the highest collision probability on this path is 0.0113
(1−B = −5.46) and 0.0575 (1−B = −3.12) for tra�c rates of 2 and 8 pkt/s respectively.

We also measure the single hop delay distributions along the path connecting the
source to the destination. Let Wi, i = 1...5, be the distribution generating functions for
each hop and W the end-to-end delay distribution generating function. We compute the

2.2 Asymptotic Delay Analysis 31

 0.001

 0.01

 0.1

 1

 10

ms

delay ccdf
aX^(-5.46)

(a) Sending rate of 2pkt/s.

 0.001

 0.01

 0.1

 1

 1 10 100

ms

delay ccdf
Cx^(-3.12)

(b) Sending rate of 8pkt/s.

Figure 2.10: Comparison between end-to-end delay distribution and the corresponding
power law.

32 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

 0.001

 0.01

 0.1

 1

 100 1000

slots

delay ccdf
"Convolution"

Cx^(-5.46)

(a) Sending rate of 2pkt/s.

 0.001

 0.01

 0.1

 1

 100 1000 10000

slots

delay ccdf
"Convolution"

Cx^(-3.12)

(b) Sending rate of 8pkt/s.

Figure 2.11: Comparison between the end-to-end distribution and the convolution of
single hop distributions.

2.3 Optimal Delay Based Routing 33

product
∏

i=1...5 Wi and we compare it to W . In case the delays are independent within
a route, the above product corresponds to the end to end delay distribution, since it
expresses the convolution of random variables Wi, i = 1...5. As shown in Figure 2.11,
the curves representing W and

∏
i=1...5 Wi are slightly di�erent which means that there

is a weak dependence between single hop delays, yet it is weaker when the network is
lightly loaded. Notice that even when the independence assumption is not completely
veri�ed, the delay is still a power law as explained in Section 2.2.2.

2.3 Optimal Delay Based Routing

In this section, we present a delay estimation protocol, used to obtain estimates of the
delay distributions for all routes in the network in a proactive way, and subsequently
we show how this information can be used to optimize route computation. In fact, we
propose an extension to the OLSR routing protocol to support delay estimation for any
given route.

2.3.1 Cross-layer Delay Estimation Protocol

As mentioned previously, the single hop delay distribution estimate is based on the
knowledge of the collision probability and the average of the channel occupancy
distribution C, which are basically MAC layer parameters. The multi-hop delay
distribution is based on the knowledge of single hop characteristics along a given route,
clearly concerning the functioning of the routing protocol. Therefore, the extended
protocol needs to interact with the MAC layer. In Figure 2.12, we depict the protocol
framework.

Average of Channel Occupancy Distribution C

The channel occupancy information concerns the internal functioning of wireless
cards and is not actually known. However, the card acknowledges successful frame
transmissions by sending special interrupts to the driver. This allows to measure
the service time of transmitted packets. Knowing the service time, it is possible to
deduce the time needed to access the channel in case of broadcast packets such as
OLSR Hello messages (since they are not retransmitted when a collision occurs). Thus,
based on (2.1), it is possible to derive the mean of the channel occupancy distribution
C from the mean of the Hello access time distribution, noted by µhello. We have
C ′(1) = 2µhello

CWmin+1 .

34 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Figure 2.12: Delay estimation protocol framework.

Collision Probability Estimation

The collision probability is estimated by OLSR, since this information is not currently
provided by wireless cards. OLSR has a procedure in the advanced neighbor sensing
option that allows to compute the collision rate of Hello messages (link quality level
parameter, cf. Section 1.3.2). It uses the Hello message sequence number in order to
identify the missing Hellos. However there could be a di�culty in the fact that the
collision probability p(L) may depend strongly on packet length L. One may expect a
dependence of the kind − log p(L) = aL + b where a and b are scalar coe�cients. Since
the neighbor has no idea of the size of missing Hellos, the transmitter should advertize
the length distribution of its Hellos. Comparing with its received Hello distribution the
neighbor would be able to determine the coe�cients a and b. By default the neighbor
assumes a = 0, i.e., all packets have the same collision rate regardless of their length.

Advertizing Link Quality

Multi-hop delay computation is based on the knowledge of the one-hop delays of the
route. Thus, each node must inform the entire network of its local information.
Therefore, we introduce a Link Quality Advertizement (LQA) message, which is
broadcasted in the network via the optimized MPR-�ooding mechanism of OLSR. For
our purpose, it is preferable to use the option full-OLSR, i.e., to advertize the whole
neighbor set instead of the MPR selector set. The node advertizes for each link ` the
collision rate p`, and for itself it advertizes the global λ, provided by the kernel as shown

2.3 Optimal Delay Based Routing 35

in Figure 2.12, and the value of C ′(1). Another alternative is to advertize directly the
tuple (p, λ(WminC′(1))B

1−λβ′(1)). Using the information collected from LQA messages, each node
can calculate the delay distribution for any route in the network.

2.3.2 Delay Distribution Based Routing

In this section, we utilize the knowledge provided by the protocol presented in
Section 2.3.1 to perform routing according to delay requirements speci�ed by the
application layer. These requirements are expressed as a maximum delay threshold
T , and a maximum acceptable ratio of packets ε to exceed this threshold. To satisfy this
constraint, we need to know the delay distribution in every node. The problem of delay
distribution based routing consists in �nding a route that satis�es the application end-to-
end delay requirement P (W > T) < ε for a given connection. Multiple routes satisfying
such a delay constraint can be found in the network, hence a routing algorithm must
select one among them. In this section, we explore two possible directions. The �rst
direction consists in �nding the optimal route that minimizes P (W > T). The second
direction consists in �nding the shortest route (in hops) that satis�es the requirement
P (W > T) ≤ ε.

Finding the Optimal Route

In general, �nding the optimal route with respect to a delay distribution is NP hard [57].
But if we stick to the asymptotic expression, we can �nd a polynomial Dijkstra like
algorithm. The problem is to �nd the route that provides the best asymptotic expansion
of the quantity P (W (route) > T) when T → ∞. By best asymptotic expansion
we mean the one that provides asymptotically the lowest P (W (route) > T). Since
we expect that P (W (route) > T) is asymptotically equivalent to

∑
i∈route c∗i T

1−Bi

(cf. Section 2.2.2), the idea consists in minimizing the sum of the leading terms of the
one-hop delay distributions along the route. Hence, the routing algorithm is e�ectively
a Dijkstra algorithm, where the weights on the links are c∗T 1−B. Parameters c∗ and
B are calculated according to the analysis in Section 2.2.2. The weight of the route is
the sum of the weights of the links, and the optimal route is the route that minimizes
this sum. When T is �nite, the sum of the weights on a route gives an approximation
of the end-to-end delay distribution within a factor 1 + O(T−B(route)), according to
the asymptotic analysis. Since B(route) > 1, the algorithm is optimal within a factor
1 + O(T−1).

Finding the Shortest Route Satisfying the Delay Constraint

As discussed previously, the shortest route that satis�es the constraint P (W > T) ≤ ε
is generally preferable to the much longer route that minimizes the quantity P (W > T).
Moreover, a major problem due to the use of any dynamic metric is route �uctuation.

36 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

However, the proposed routing on the shortest path that veri�es an over-delay ratio
constraint provides more stable routes. In the previous section we described a polynomial
search algorithm which is optimal within a factor 1 + O(T−1), hence for T su�ciently
large the search provides the optimal route. In the present section we aim to �nd
the shortest route according to a certain additive metric on links, i.e., the number of
hops, which satis�es a given constraint according to another additive metric, i.e., the
quantities c∗T 1−B. In general such a multi-metric optimization problem is again NP-
hard. However since the �rst metric can only take integer values we can easily make it
polynomial using dynamic programming.

We model the network as a weighted graph. We consider a source node s. We
denote by vj , j = 1...n, all the nodes in the network, where v1 is the source s. Each link
connecting two nodes (vi, vj) is associated to a weight wvi,vj which corresponds to the
asymptotic probability c∗T 1−B.

For each node vj we de�ne p(i, vj) as the smallest known value according to the sum
of the weights w, of all routes of length i that connect the source node s to node vj .
Note that i ≤ n, since the longest path in the network is at most n hops.

We describe the algorithm as follows. We initialize all values p(0, vj), for j = 1...n
to in�nity except for p(0, v1) = 0. We will compute p(i, vj) for all i, j. For each i ≥ 1 in
increasing order, we compute the values p(i, vj), j = 1...n, using equation

p(i, vj) = min
c∈N (vj)

(p(i− 1, c) + wc,vj),

where N (vj) is the neighborhood of node vj and wc,vj is the weight of the link (c, vj).
Notice that for all values of i that are smaller than the distance between s and vj we
have p(i, vj) = ∞.

The aggregate computational cost of p(i, vj) for all nodes vj and for a given i is
O(m), where m is the total number of links in the network. Hence, in the worst case,
the total time needed to construct the table p(i, vj) for all possible values i, j = 0...n
is O(mn). Once the table has been constructed, the shortest route to any destination
d satisfying the required delay constraint, corresponds to the route of minimum i such
that p(i, d) < ε. In case the algorithm computes the route for one particular destination,
the iteration on the route length i can stop as soon as a feasible route is found.

2.4 Conclusion

We analyzed the delay distribution in 802.11 multi-hop networks and we demonstrated
that for large values of T the cumulative delay distribution P (W > T) is a power law.
In practice, simulations show that this is true from T equal to approximately twice the
average. The delay distribution for a speci�c route can be derived based on MAC layer
as well as network layer parameters, hence we present a cross-layer solution for a delay
estimation protocol as an extension to the OLSR routing protocol. Furthermore, the

2.4 Conclusion 37

information from this protocol can be used to compute the route that satis�es the QoS
delay requirements speci�ed by a multimedia application. In fact delay distribution
based routing is known to be an NP-hard problem. However, the asymptotic analysis in
power law makes it possible to obtain a polynomial, Dijkstra-like, algorithm.

It is important to note that the routing algorithm does not guarantee that the
calculated route will satisfy the delay constraint after launching the new tra�c. In case
the new connection has a signi�cant impact on the network conditions, it is necessary
to dynamically control the delay, in order to check whether the constraint is still
veri�ed. Due to its proactive nature, the proposed delay estimation protocol allows to
compute periodically the end-to-end delay, thus the routes can be readjusted. Therefore,
it would be interesting to combine the delay routing protocol with a mechanism
providing dynamic delay control, as well as admission control when the connection delay
requirements cannot be satis�ed.

38 Delay Asymptotics and Routing in 802.11 Multi-hop Networks

Chapter 3

Scalability Optimizations for
Massive Wireless Networks

After the detailed protocol analysis in the previous chapter, we now examine the
macroscopic behavior of ad hoc networks in a massive scale. Our interest lies in the
scalability properties of wireless ad hoc networks. Namely, we study the impact of
the large number of nodes in the system performance and the theoretical feasibility
of such networks using existing network layer protocols. The most important result
about the scalability of wireless networks was obtained by Gupta and Kumar in their
seminal paper [58]. They showed via information theory that when the number of nodes
N in the network increases (with randomly placed nodes and uniform tra�c density),
the maximum network capacity per node is O(1√

N log N
). This is in contrast to the

case where all nodes share a common medium (for example when all wireless nodes are
within hearing range), which results in an average O(1

N) share of the available capacity.
In fact, the capacity of the network increases when the radio ranges decrease due to
spatial reuse, in spite of interferences and multihoping. However, there is a lower limit
to the radio range since the network must stay connected, which leads to the optimal
neighborhood size estimate of O(log N). This in turn leads to a radio range in O(

√
log N

N),
hence a network diameter in hop number being O(

√
N

log N), and to the estimation of the
maximum per node capacity. If we just require the existence of a giant component
instead of a connected network (or if we assume that nodes are optimally placed), the
log N factor can be dropped in the formulas. Indeed, the condition to have a giant
component is that the average neighborhood size is greater than 2, and we can therefore
consider in our study that it is no longer O(log N), but rather O(1). Similarly, the
Gupta and Kumar scaling property in presence of variable tra�c density implies that
the optimal neighbor size in presence of tra�c λ bits per square area unit per time unit
is O(1

λ).
Therefore, neighborhood management in wireless networks has a signi�cant impact

40 Scalability Optimizations for Massive Wireless Networks

on network performance. For instance, one of the key issues of ad hoc networking is the
lack of bandwidth, which implies the need to reduce the number of packet retransmissions
when routing towards a destination. In the �rst part of this chapter, we examine
how to tune neighbor management to optimize this relaying. We discuss how a local
neighborhood optimization in a shortest path routing protocol like OLSR can lead to
global network performance which is asymptotically optimal, in the absence of QoS
mechanisms such as the one introduced in Chapter 2. However, the overhead generated
by the neighbor management protocol will have an impact on the neighborhood itself.
In the second part of this chapter, we aim to show how a link state routing protocol
can ful�ll the Gupta and Kumar scaling property, in the context of slotted time ad hoc
networks.

3.1 Neighborhood Management Optimization

In this section we describe how we model the di�erent aspects of ad hoc networks, and
we discuss how neighborhood management can be optimized with OLSR.

3.1.1 Modeling Massively Dense Ad Hoc Networks

We consider the following model, which was �rst introduced in [63]: time is slotted
and the mobile nodes are all synchronized, i.e., transmissions occur at the beginning
of slots and according to an ALOHA-like protocol (i.e, nodes select at random their
transmission slots). We consider an area of arbitrary size A (we will ignore border
e�ect). N transmitters are uniformly distributed. We call λ the density of transmitters
per slot and per area unit, and f the rate of packet transmissions per slot and per node.
In this model we will assume that the distribution of active transmitters per slot and
area unit is a Poisson process.

In order to justify this assumption, note that we have a uniform distribution of nodes
and that nodes use an ALOHA-like multiple access scheme. Therefore the number and
positions of transmitters at beginning of slots vary with time and changes from slot to
slot like a random process. The resulting distribution of transmitters should therefore
be exactly identi�ed as a Bernoulli distribution over a uniform distribution. However,
this kind of distributions are known to quickly converge to a Poisson distribution when
N → ∞ and fN/A → λ. Thus we decided to directly work with this approximation,
which turns out to be very accurate in practice.

Let X be a node at a random position. We will again ignore border e�ects and assume
that all nodes transmit at the same nominal power. The reception signal at distance
r is then P (r) = r−α with α > 2. Typically α ranges form 2.5 to 4. Notice that the
expression of quantity P (r) does not involve any fading factor. Fading is an alteration
of the signal which is due to factors other than the distance (obstacles, co-interferences
with echoes, and so on). Fading is generally modeled via the introduction of a non-zero

3.1 Neighborhood Management Optimization 41

factor that varies randomly with time and node location. We will also show how to
address the fading issue more thoroughly in the following.

Let W be the signal intensity received by node X at a random slot. The quantity
W is then a random variable since the number and location of transmitters is random
and varies with the slot. Let w(x) be its density function. If we consider A to be
in�nite, we can use [63] to compute the Laplace transformation of w(x). We have
w̃(θ) =

∫
w(x)e−xθdx satisfying the following identity, which takes into account the

independent Poisson contributions of all nodes in the in�nite area A:

w̃(θ) = exp(
∫ 2π

0

∫ ∞

0
λ(e−θr−α − 1)rdrdφ)

= exp(2πλ

∫ ∞

0
(e−θr−α − 1)rdr) .

Then, using standard algebra we get (with a change of variable u = θr−α in the above
integral):

w̃(θ) = exp(−λπΓ(1− 2
α

)θ2/α) . (3.1)

Note that if instead of an area, the node location map was a line (for instance a
sequence of mobiles nodes on a road) we would then have:

w̃(θ) = exp(−λΓ(1− 1
α

)θ1/α) . (3.2)

And similarly, if the location map was a volume (for instance a network formed by
aircrafts), we would instead have:

w̃(θ) = exp(−4
3
λπΓ(1− 3

α
)θ3/α) . (3.3)

In the following, we will restrict ourselves to the case where nodes are located on a 2D
map.

Neighbor Model

A node is considered to be a neighbor with another node if the probability of successfully
receiving hellos from each other is greater than a certain threshold p0. For example we
can take p0 = 1/3. This can be achieved by keeping track of the hello receival success
rate per neighbor, as it is done in the �advanced neighbor sensing� of OLSR, and by
appropriately tuning the hysteresis threshold (cf. Section 1.3.2).

We will assume that a packet can be successfully decoded if its signal-over-noise ratio
is greater than a given threshold K. Typically K = 10. Therefore a node will correctly
receive a packet from another node at distance r with probability P (W < r−α/K). Since
hello packets are never retransmitted, the hello success rate from a node at distance r is

42 Scalability Optimizations for Massive Wireless Networks

exactly P (W < r−α/K). Therefore nodes at distance r are neighbors as long as P (W <
r−α/K) > p0. This is equivalent to r < r(λ), where r(λ) is the critical radius such that∫ r(λ)−α/K
0 w(x)dx = p0. In fact quantity λ is a parameter which is easy to handle since
by simple algebra it comes that r(λ) = λ−1/2r(1) (see this chapter's appendix). The
surface covered by the radius r(λ) is then the neighborhood area σ(λ) = σ(1)

λ .
We will now compute σ(1). We remind that factor λ is now omitted (λ = 1). For

simpli�cation purposes, we set C = πΓ(1− 2
α) and γ = 2

α . By application of the reverse
Laplace transformation we get:

P (W < x) =
1

2iπ

∫ +i∞

−i∞

w̃(θ)
θ

eθxdθ. (3.4)

Expanding w̃(θ) =
∑

n
(−C)n

n! θnγ , it comes:

P (W < x) =
1

2iπ

∑
n

(−C)n

n!

∫ +i∞

−i∞
θnγ−1eθxdθ. (3.5)

Then by bending the integration path towards the negative axis we get:

1
2iπ

∫ +i∞

−i∞
θnγ−1eθxdθ =

sin(πnγ)
π

∫ ∞

0
θnγ−1e−θxdθ

=
sin(πnγ)

π
Γ(nγ)x−nγ .

Figure 3.1 shows the plot of P (W < x) versus x for α = 2.5 and λ = 1. Let x0 denote
the value such that P (W < x0) = p0, therefore r(1) = (x0K)−1/α.

Notice that if p0 = 1/3, then x0 ≈ 20, r(1) = (x0K)−1/α ≈ 0.12. And then that
σ(1) = πr(1)2 ≈ 0.045.

Modelization of Fading

The propagation of radio waves in presence of random obstacles experiences random
fading. Usually, modelization of fading consists in the introduction of a random factor
F modeling signal attenuation at distance r: r−α. For example log F is uniform on
[−v, v]. In this case we have a new expression of w̃(θ):

w̃(θ) = exp(−πλΓ(1− 2
α

)φ(− 2
α

)θ2/α), (3.6)

with φ(s) = E(F−s), the Dirichlet transform of the fading.
Therefore, to compute P (W < x), the only change in (3.5) involves a tuning of

parameter C. When fading is uniform on [−v, v] we have φ(s) = sinh(sv)
sv .

3.1 Neighborhood Management Optimization 43

Figure 3.1: Quantity P (W < x) versus x for α = 2.5, no fading.

3.1.2 Minimizing the Number of Retransmissions

In this section we estimate the best threshold on p0 to consider a neighbor node to really
be in the neighborhood. The objective is to minimize the number of retransmissions of
a packet when routed to its destination. By retransmission we mean the retransmission
due to multihoping as well as the retransmissions due to packet collisions. We assume
that each slot is used by unicast packets (re)transmitted à la ALOHA until they are
correctly received by the next node.

Therefore, we want to optimize the neighborhood by excluding from it �bad� neighbor
nodes that feature a too low probability of successful one hop packet transmission. They
might be too far or behind an obstacle: in any case the link is not reliable enough
and the number of retransmissions needed for a correct reception is not worth the hop
distance. In other words, we want the best possible ratio of hop distance over number
of retransmissions.

For this end we tune the parameter p0. The optimal value does not depend on λ
but it depends on factor α, as we see below. If the probability of successful transmission
is p0 then the average number of retransmissions for one hop is 1

p0
. And thus we have

to optimize the quantity p0r(λ), i.e., rP (W < r−α/K). All computations done for
α = 2.5 (see Figures 3.2 and 3.3) we get

√
λr(λ) ≈ 0.089 and we see that the optimum

is p0 ≈ 0.75. So roughly, if a node logically excludes from its neighborhood any neighbor
from which it successfully receives less than 75% of the hellos actually sent by this
neighbor, we ensure a simple optimization of the overall number of retransmissions, on a
network-wide level. In Figure 3.4 we depict the optimal threshold p0 for di�erent values

44 Scalability Optimizations for Massive Wireless Networks

Figure 3.2: Quantity p0r versus r for α = 2.5, no fading.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Probability of success p0

di
st

an
ce

radio range r
average distance travelled per (re)transmission rp0

Figure 3.3: Reception range r and quantity p0r versus p0 for α = 2.5, no fading.

of α. For example, we have p0 ≈ 0.66 when α = 4. For the rest of this chapter, we will
use α = 2.5 for the numerical examples, thus considering the most pessimistic case.

3.2 Scalability of Routing Protocols 45

2 2.5 3 3.5 4 4.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a

pr
ob

ab
ili

ty

optimal threshold p0

Figure 3.4: Optimal threshold p0 versus α.

Under the Aloha-like MAC protocol considered and in conjunction with the analysis
in [64] about the curvature of shortest paths in wireless networks, minimizing the number
of retransmissions will result in routes with minimum average delay. This is justi�ed
because the paths will actually circumvent areas with heavy tra�c. In fact, a shortest
path protocol, such as OLSR can provide routes that are optimal (in a macroscopic scale)
with respect to average delay, by appropriately tuning the neighborhood management.
This kind of behavior veri�es the experiential evidence in [87], where it was observed that
it is di�cult to improve the performance of OLSR using average delay based routing.
This observation provides additional motivation for more elaborate delay estimations,
such as the ones we proposed in Chapter 2, in order to further improve the performance
and meet the QoS requirements of multimedia applications.

3.2 Scalability of Routing Protocols

Gupta and Kumar have shown in [58] that when the size of the network N increases, the
neighborhood size is O(log N) and the number of hops increases at least in O(

√
N

log N).
This means that the average neighborhood size tends to be constant when the network
size increases. Our model in the previous section con�rms this property since it states
that when the nodes are distributed over an in�nite plane, the average tra�c generated
inside the neighborhood radius is equal to λσ(λ) = σ(1), a constant that we determined.

The neighborhood size depends on the tra�c control generated by each node: the

46 Scalability Optimizations for Massive Wireless Networks

bigger is the amount of control tra�c, the smaller is the neighborhood size. Therefore,
performance may vary with the use of di�erent protocols, yielding di�erent control tra�c
patterns. In this section we study more precisely the scaling properties of OLSR. An
analysis which also looks into the widely used over the Internet OSPF link state routing
protocol [86] can be found in [1].

3.2.1 OLSR Scalability

We will consider that the network is uniformly distributed with density ν over an area
of �nite size A. The total number of nodes in the network is N = νA. If λ is the
tra�c density in the network, then the average number of neighbors per node is M =
σ(λ)ν = σ(1) ν

λ . The aim here is to derive the tra�c density generated by the protocol
control packets. Generally, there are two sources of control tra�c: neighbor sensing on
one hand, and topology discovery on the other hand.

Neighbor sensing consists in each node periodically transmitting a Hello message
containing the list of neighbors heard by the node. By comparing their lists the nodes
can determine the set of neighbors with which they have symmetric links. Let h be the
rate (per slot) at which nodes refresh their neighbor information base and let B be the
maximum number of node identi�ers that a slot can contain. Let the slot duration be
b seconds, which we assume to be very small. For a network with the capacity of Wi�
(1-11 Mbps) we have B = 105b. For instance, an OLSR node generates Hellos every 2
sec, i.e., h = b

2 . If the neighbor list exceeds B then the node generates several Hellos
per update period and distributes the neighbor list among these several Hellos. The
node must generate dM

B e Hellos per Hello period. Therefore the Hellos lead to a tra�c
density of hνdM

B e. Omitting the fractional part, we get:

λ = hν
M

B
, (3.7)

if the Hellos are the only source of control tra�c. Since M = σ(1) ν
λ we get:

σ(1)
M

= h
M

B
. (3.8)

In fact this is only an upper bound because the network size might be smaller than σ(1).
Therefore, taking into account only the Hello control tra�c, the maximum manageable
neighborhood size is

√
Bσ(1)/h ≈ 71. This applies to any protocol that uses such Hellos.

In topology discovery, an OLSR node periodically:

1. transmits TCs with rate τ = b/5. A TC contains the list of neighbors having
selected the node as MPR (its MPR selectors),

2. retransmits received TCs only once (and with large jitter), and such only when
the node has been selected as MPR by the neighbor from which it �rst received
the TC.

3.2 Scalability of Routing Protocols 47

Let Mr be the average number of MPRs selected by a node with neighborhood size M .
Since the network model we consider is equivalent to a unit disk graph when we �x the
neighbor threshold p0, it comes from [66] that Mr ≤ (9π2M)1/3. Simulations show that
Mr ∼ βM1/3 when M → ∞ with β ≈ 5 (see Figure 3.5). Simulations were performed
up to M = 6, 000, 000.

Figure 3.5: Average MPR set of a node versus neighborhood size.

In [18] it is proven that an MPR �ooding costs on average MrN/M retransmissions.
Therefore we get the following tra�c density identity:

λ = hνdM
B
e+ τν

NMr

M
dMr

B
e. (3.9)

In the following, we drop the ceil factor:

λ = hν
M

B
+ τν

N

M

M2
r

B
. (3.10)

Using M = σ(1) ν
λ , we have the identity:

σ(1)B
M

= hM + τ(Mr)2
N

M
. (3.11)

This outlines a direct relation between the total size of the network N , and the average
neighborhood size M . Notice that when N increases, M decreases. This corresponds
to the fact that as more and more nodes are concentrated in a single radio range,
interferences and collisions make more and more links perform too badly to be considered
valid. Therefore more and more nodes that are theoretically directly reachable (because
physically within radio range) are not considered neighbors, and hence, M decreases.
The absolute minimum for M is 2, below which the network does not have a signi�cant

48 Scalability Optimizations for Massive Wireless Networks

connected component. If a single fully connected network is wished for, this threshold
is raised to M = log N .

Furthermore, the limit M = 2 (which in turn implies Mr = 2 in the worst case)
yields a maximum network size for OLSR of:

Nmax = (
σ(1)B

4
− h)

1
τ

, (3.12)

which gives Nmax = 3, 000.
On the other hand, when the network size decreases, it reaches a level where N = M .

Below this level the network is only one hop (fully meshed), and the control tra�c
does not saturate the neighborhood. This corresponds to the maximum manageable
neighborhood size. From (3.11) we get that the maximum manageable neighborhood
size for OLSR is N = 35. Having an average neighborhood size as big as possible is
important in that it reduces the average number of hops needed to go from a given
source to a given destination. This way the amount of retransmissions network-wide
(hence the overhead) is reduced.

We also model a slight variation of OLSR called F-OLSR, for full-OLSR. In F-OLSR
the TCs contain the list of all the adjacent links, and not just MPRs. Therefore every
node has the knowledge of the complete link state of the network instead of its restriction
to MPR links. The TCs are still forwarded via MPR nodes. The identity for F-OLSR
is then:

σ(1)B
M

= hM + τMrN. (3.13)

It then comes that the maximum manageable neighborhood size for F-OLSR is at N =
27.

With Figure 3.6 we show the respective neighborhood size versus network size for
the two versions of OLSR.

As the network size increases, both types of approaches feature slowly decreasing
(towards 0) neighborhood size. Therefore, they fail to reach the Gupta and Kumar
scalability: if the network size grows to be too big, it will break down by not being able
to create signi�cant connectivity. This is due to the fact that the topology information
that each node in the network has to (re)transmit tends to increase linearly with the
size of the network. This in turn yields an upper bound on the maximal size of the
network, which we have computed to be of about 3, 000. One way to work around
this problem is to establish a hierarchical protocol that takes advantage of the scaling
properties of node clustering and super-clustering. This technique greatly reduces the
transit of topology information between clusters, but complexity remains in adequately
distinguishing and forming di�erent clusters. This is especially di�cult in an inherently
decentralized and mobile environment like ad hoc networks. However, OLSR just
needs minor modi�cations in order to reach the Gupta and Kumar scalability. In the
following section we describe the �Fish Eye� strategy [56]. With this strategy the overall
incompressible overhead induced by periodical topology updating tends to be constant

3.2 Scalability of Routing Protocols 49

50

40

30

20

10

0
200150100500

Figure 3.6: Neighbourhood size versus the network size, α = 2.5, no fading, respectively
for F-OLSR (bottom) and OLSR (top).

instead of linearly increasing with the network size. Of course this doesn't come without
a cost, i.e., less accurate information about the link status of remote nodes. However,
this cost is not expensive: it does not degrade the delivery reliability and it does not
introduce additional overhead in form of longer paths (see [36]).

3.2.2 Fish Eye OLSR

The principle of the Fish Eye strategy is that TC information from remote nodes is less
frequently received, and the more remote, the less frequent. Inside the OLSR framework,
nodes send TC packets with variable TTL count and VTime. The TTL limit is the
maximum number of hops a packet can be relayed before being discarded and the VTime
is the maximum time for which the information carried by this packet is considered
valid. A node transmitting a packet with low TTL value ensures that the packet will
be forwarded only inside the vicinity of this node, and not further. Conversely, a large
TTL value (the maximum value is 255) ensures that the packet will be forwarded in the
entire network.

Each node uses a decreasing function f(D) ≤ 1 to determine the fraction of the TCs
which are generated with a TTL larger than D (D is an integer indicating the number of
hops away that the TC may reach). When no Fish Eye strategy is employed, f(D) = 1

50 Scalability Optimizations for Massive Wireless Networks

for any value of D. We can assume that
∑∞

D=1 Df(D) < ∞ . This is indeed always
the case, since f(D) = 0 for all D ≥ 255. Of course, information that is received less
frequently should not age as rapidly as frequently received information. This can be
achieved by adequately tuning the VTime �eld in the TC packets.

Let us consider a node at the center of a circular network: N nodes uniformly
dispatched on a disk. M is the average number of neighbors of the central node. In
this case, the central node has 3M two hop neighbors, and (D2 − (D − 1)2)M D-hop
neighbors, for D ≤ b

√
N/Mc (it comes that 2

√
N/M is the diameter of the network).

The frequency of TCs received by the central node from D-hop neighbors is f(D)τ .
Therefore the frequency at which the central node relays TCs is

τMr

b
√

N/Mc∑

D=1

(D2 − (D − 1)2)f(D).

We will call φ(x) =
∑b√xc

D=1 (D2 − (D − 1)2)f(D). It then comes that the control tra�c
of the central node equals to

h
Mr

B
+ τφ(

N

M
)
M2

r

B
,

and we get the following general identity:

σ(1)B
M

= hM + τφ(
N

M
)(Mr)2 . (3.14)

When N →∞ with φ(∞) = 4 we get an average neighborhood size converging towards
M → 18.

Figure 3.7 shows an example for function φ: φ(x) = 4x
3+x . Figure 3.8 shows the

neighbor size evolution with respect to this function φ and compares it to basic OLSR.

Figure 3.7: Example of function φ used for Fish Eye strategy.

3.2 Scalability of Routing Protocols 51

Figure 3.8: Neighborhood size versus the network size, α = 2.5, no fading, respectively
for OLSR (bottom) and OLSR with Fish Eye (top).

3.2.3 Useful Capacity

In this section we estimate the useful capacity with the OLSR protocol, as well as with
Fish Eye OLSR. This quantity corresponds to the total capacity in the network available
for data transfer, taking into account the protocol overhead. We denote ρ the average
quantity of data tra�c generated by each node. We assume that on average, the network
diameter in number of hops is `

√
N/M , where ` denotes a linear factor that depends on

the actual shape of the network area A. Therefore each packet must be retransmitted
`
√

N/M

p0
times. This leads to an average tra�c density generated by each node (including

control tra�c and retransmissions) of:

λ1 = h
M

B
+ τ(Mr)2

N

MB
+

ρ`

p0

√
N/M, for OLSR,

λ1 = h
M

B
+ τ

(Mr)2

B
φ(

N

M
) +

ρ`

p0

√
N/M, for Fish Eye OLSR.

Therefore, using the identity λ1 = σ(1)
M we get an expression of ρ as a function of N and

M . Clearly, for a given �xed N , ρ is maximized when M is minimized, the minimal value
being M = 2. This yields Figure 3.9, which displays the overall maximum capacity Nρ
versus network size for basic OLSR and for Fish Eye OLSR (we took `

p0
= 1). Notice

that basic OLSR with default tuning collapses at N > 3000, while Fish Eye OLSR
features an overall capacity that keeps growing in

√
N .

52 Scalability Optimizations for Massive Wireless Networks

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

1000

N

Figure 3.9: Maximum overall capacity versus the network size, α = 2.5, no fading,
respectively for OLSR (bottom) and OLSR with Fish eye (top).

3.3 Conclusion

In this chapter, we evaluated the scalability properties of ad hoc networks and
routing protocols. We discussed how a local neighborhood optimization in a shortest
path routing protocol like OLSR can lead to global network performance which is
asymptotically optimal with respect to packet relaying. On the other hand, we showed
that the nature of the routing algorithm in use impacts essentially on the maximum
manageable neighborhood size, via the control tra�c it induces, limiting the maximum
number of manageable neighbors. As a result, there is a limit to the number of
nodes in the network above which there is no signi�cant connected component, due
to incompressible topology update control tra�c. We have computed this limit to be
3,000 nodes for OLSR. In fact, none of the popular ad hoc routing solutions ([37], [91],
etc.) really scales. However, we described how link state routing can attain the famous
theoretical scaling bounds outlined by Gupta and Kumar with the enhancement of Fish
Eye strategies, which can be very simply incorporated into the OLSR framework. An
interesting direction for further research consists in taking into account the mobility of
the nodes and evaluating the performance of the Fish Eye technique in this context. In
fact, it is possible to characterize the frequency at which TC messages must be sent at
a given distance as a function of the nodes' maximum speed.

Appendix: Factor λ in r(λ) 53

Appendix: Factor λ in r(λ)

By de�nition
∫ r(λ)−α/K
0 w(x)dx = p0. Using the reverse Laplace transformation we

have w(x) = 1
2iπ

∫ +i∞
−i∞ w̃(θ)eθxdθ. Inserting this expression in the �rst equation and

commuting integral signs, since
∫ r(λ)−α/K
0 eθxdx = eθr(λ)−α/K−1

θ , yields:

1
2iπ

∫ +i∞

−i∞

eθr(λ)−α/K − 1
θ

w̃(θ)dθ = p0.

The change of variable λα/2θ = θ′ makes λ disappear from the w̃(θ) expression:

1
2iπ

∫ +i∞

−i∞

eθ′(r(λ)
√

λ)−α/K − 1
θ′

w̃(λα/2θ′)dθ′ = p0.

Since w̃(λα/2θ′) is independent from λ and r(λ) appears multiplied by
√

λ, we get that
r(λ) is simply proportional to 1/

√
λ: r(λ) = r(1)/

√
λ.

54 Scalability Optimizations for Massive Wireless Networks

Chapter 4

Multicast Scaling Properties in
Large Ad Hoc Networks

In this chapter we continue the study of scaling properties and routing protocols in
massive ad hoc networks in the context of multicast, i.e., one to many, communication.
Multicast o�ers an elegant way to establish group communication between users by
using the concept of multicast groups, which are de�ned by their corresponding address.
Interested clients can join and leave those groups in order to send and/or receive
data from other group members. Moreover, the mechanisms which enable multicast
communication ensure that an e�cient strategy is used to deliver the data packets to
all the members simultaneously. Therefore, multicast communication is adequate for a
large class of applications, such as video-conferences, multi-player games, streaming
applications etc. The previously described requirements make multicast routing an
important and di�cult challenge in the Internet, and even more so in ad hoc networks.
In fact, mainly due to the dynamic nature of the routes, multicast protocols developed
for wired networks cannot operate in the harsher mobile environment. This creates a
need for protocols which are specially adapted to ad hoc networks. However, although
the capacity of mobile ad hoc networks has been a very active research area since the
seminal paper of Gupta and Kumar [58], the speci�c impact of multicast routing has
not attracted too much attention, with the exception of [104]. We aim in this thesis
to investigate the multicast capacity of wireless networks, and to propose a protocol
solution taking into account these information theoretic considerations.

One of the advantages of multicast routing is that it reduces the total bandwidth
required to communicate with all group destinations, since some links can be common to
several destinations. In wired networks, the gain of multicast communication has been
studied in [17, 33, 92], by estimating the ratio of the number of links in a multicast tree
to n destinations over the average unicast hop distance between two random nodes. The
resulting normalized multicast cost has been found experimentally to scale in n0.8. The
gain of multicast is re�ected by how far the normalized multicast cost deviates from linear

56 Multicast Scaling Properties in Large Ad Hoc Networks

growth. Except from evaluating the protocol performance, such analytical cost estimates
can also be useful for the e�cient management and accounting of multicast services in the
network [95]. However, the topology of mobile ad hoc networks is signi�cantly di�erent
and one would expect a much di�erent scaling law too. Indeed the average unicast hop
distance in wired networks is usually of the order log N , where N is the total number of
nodes in the network, while in ad hoc networks the average distance grows proportionally
to

√
N/ log N , since the optimal neighbor degree increases in O(log N) when the capacity

increases.
In this chapter, we establish performance bounds on the expected size of multicast

trees as a function of the number of multicast destinations n, both via analytical
methods and via simulation. In random mobile ad hoc networks, the gain of multicast
communication compared to unicast is signi�cantly larger than in wired networks. We
show that a scaling law in O(

√
n) holds for the normalized multicast cost and, based on

the analysis, we propose a protocol to be used in conjunction with the unicast routing
protocol OLSR. We also show that the performance of the protocol is signi�cantly
better than MPR �ooding, i.e., the optimized broadcast mechanism which is already
implemented in OLSR, for a vast scale of group sizes. These results can provide
further motivation in supporting multicasting in mobile networks, besides the advantages
of group-oriented communication. The implications of this scaling law consist in a
signi�cant increase of the total capacity of the network for data delivery, while the total
amount of generated data will actually decrease (compared to the case where each node
transmits data to one single destination), and both are proportional to

√
N

log N .

The remainder of this chapter is organized as follows. In Section 4.1 we present
the network model and provide analytical results on the scaling law of the normalized
multicast cost. The impact of multicasting in the capacity of the network is discussed
and we present measurements on multicast scaling derived from simulations in generated
graph models of wireless ad hoc networks. In Section 4.2, we introduce MOST, a new
multicast protocol for ad hoc networks, which is based on the previous analysis. We
evaluate the performance of the protocol through simulations, which we compare to the
analytical results, and we overview how the protocol was implemented for use in real
network environments.

4.1 Asymptotic Multicast Properties in Ad Hoc Networks

4.1.1 Multicast Cost Scaling Law

In this section we will quantify the cost of multicast communication versus the average
unicast cost. We assume that nodes have a complete knowledge of the network topology.
In order to optimize the control tra�c we will see in a further section how we can
somewhat relax this hypothesis in the use of the OLSR link state routing protocol.

4.1 Asymptotic Multicast Properties in Ad Hoc Networks 57

Model Description

We assume that N nodes forming a massively dense ad hoc network are distributed
according to a Poisson process in an area of arbitrary size A, following the model of
Section 3.1.1. In this case, i.e., when N is large, routes can be considered as continuous
lines between nodes, and the number of retransmissions needed for a packet to reach its
destination is Θ

(
d
r

)
, where r is the typical radio range and d is the Euclidean distance

from the source to the destination [64, 24]. Hence, we can represent a massively dense
ad hoc network with an Euclidean graph, in which the edge costs are proportional to hop
distances between nodes. The result of Gupta and Kumar [58] states that the maximum
bandwidth is attained when the radio range is r = k

√
log N

N , where k is a constant which
depends on signal propagation and medium access control. A source and a multicast
group of size n are chosen uniformly at random among the N nodes. We assume here
that n ¿ N . As a result, the n+1 multicast nodes are distributed in the area according
to a Poisson process of intensity n+1

A .
An optimal multicast tree is a Steiner tree, i.e., a tree of minimal cost connecting

all of the multicast nodes via an arbitrary subset of the remaining nodes that are not in
the multicast group. Therefore, the problem of �nding the optimal tree is NP-complete,
even in Euclidean graphs, although in this case there is a polynomial time approximation
scheme [22]. Note that since we assumed here that n ¿ N , the wireless multicast
advantage only provides an asymptotically marginal improvement. In case the number
of clients n becomes signi�cant with respect to the total number of nodes N in the
network, the wireless environment would permit to further reduce the total number of
retransmissions in order to reach all group destinations. This is made possible by using
a connected dominated set (as is the case with MPR �ooding), or other algorithms
specially adapted to the wireless environment (see [106] for optimized algorithms taking
also into account energy e�ciency). However, although some experimental results are
provided in the simulations section, we do not consider this case analytically when
n ¿ N . In any case, the upper bounds we present remain valid.

Since the problem of �nding the optimal tree is intractable, we will use an
approximation. We consider the two more common cases of minimum spanning trees
and shortest path trees.

Minimum Spanning Trees

First, we consider multicast trees corresponding to minimum spanning trees on the n+1
multicast nodes. In a minimum spanning tree branching is constrained only to multicast
nodes, and the computation can be performed in polynomial time. On the other hand, in
Steiner trees, branching can occur on any node (or any point in the plane in the Euclidean
case). In metric graphs, the cost of a minimum spanning tree is within twice the cost of
an optimal Steiner tree [105]. However, it can be shown that the Euclidean minimum
spanning tree is not longer than 2√

3
times the optimal Euclidean Steiner tree [43]. Hence,

58 Multicast Scaling Properties in Large Ad Hoc Networks

SteinerMST

Figure 4.1: Comparison of a Minimum Spanning Tree (MST) with an optimal Steiner
tree in an Euclidean graph.

in the case of massively dense ad hoc networks, minimum spanning trees yield results
which are very close to the optimal. In Figure 4.1 we depict an example of a minimum
spanning tree as well as a Steiner tree, in an Euclidean graph of 4 nodes. The red nodes
in this example would be the clients that must be covered by the multicast tree. As we
can see, the possibility of using the blue non-multicast node in the Steiner tree o�ers a
length improvement of

√
3

2 , which corresponds in this particular case to the worst case
bound.

To proceed we will compute the expected path length (in meters) of a minimum
spanning tree on n + 1 points in an area A. We denote this length L(n + 1).

From the analysis in [27, 98], in the 2−dimensional case, it comes that an upper
bound, for the average path length (in meters) of a minimum spanning tree is

L(n + 1) ≤ γn

√
A

n + 1
∼ γ

√
An. (4.1)

where γ is a constant that depends on the shape of the network domain. For a disk or
a square we can set γ = 1√

2
.

We now de�ne the normalized multicast cost R(n) for a multicast group of size n as

R(n) =
multicast cost

average unicast cost ,

where the costs are expressed in number of hops. In other words the multicast cost is
the number of links in the multicast tree, and the average unicast cost is the average
route length from a random source in the multicast group to a random destination in
the multicast group.

We base our analysis on the observation that routes can be considered as continuous
lines between nodes, and the number of hops needed for a packet to reach its destination
is Θ

(
d
r

)
, where r is the optimal radio range as stated by Gupta and Kumar.

The expected path length of the multicast tree in number of hops is Θ
(

L(n+1)
r

)
, while

4.1 Asymptotic Multicast Properties in Ad Hoc Networks 59

the average unicast cost is Θ
(

L(2)
r

)
. This implies that, for the normalized multicast

cost, it holds
R(n) ' L(n + 1)

L(2)
. (4.2)

Quantity L(2) is highly dependent on the shape of the network domain, but is of
order

√A when the network domain shape stays within some reasonable model. In all
rigor we have L(2) = β

√A. For the disk we have β = 128
45π3/2 ≈ 0.51, for the square it

becomes β = 1
15(2 +

√
2 + 5 log(1 +

√
2)) ≈ 0.52.

Combining (4.1), (4.2), we get

R(n) ≤ γn

β
√

n + 1
= O(

√
n). (4.3)

Hence, we obtain the multicast scaling law R(n) = O(
√

n). It comes that the gain of
multicast over unicast, which is re�ected by how far R(n) deviates from linear growth,
is also O(

√
n). This result is in contrast with similar comparisons in wired networks

[17, 33, 92] where the gain of multicast communication is signi�cantly smaller. In that
case, the multicast cost scales, according to experimental studies, following a power law
with exponent between .8 and .9.

More generally, we can show, using the same approach, that for a network spanning
on a domain in dimension D

R(n) = O
(
n1− 1

D

)
.

In [98] it is shown that the length of minimum spanning trees on points randomly
placed in a hypercube is O

(
n1− 1

D

)
, even when the point distribution is not uniform,

with some mild constraints. This implies that the multicast scaling law still holds when
the multicast nodes are not distributed uniformly among the nodes of the network.

Shortest Path Trees

A popular approach in building multicast trees in wired networks consists in pruning
shortest path trees rooted at the source node. In this case, we cannot prove worst case
bounds on the total cost of shortest paths trees, compared to the cost of optimal Steiner
trees. However, in practice, shortest path trees achieve a satisfactory performance.
Moreover, shortest path trees minimize the maximum path length from the source to
any destination. In the currently considered model of mobile ad hoc networks, when
n ¿ N , a shortest path tree is equivalent to n unicasts, since the expected number of
branching nodes is very small. Hence for a small number of destination nodes, the gain
of multicast communication is negligible.

On the other hand, when n → N , the total number of hops in the tree also tends
to N , since we consider a tree spanning on almost all the nodes. The average unicast

60 Multicast Scaling Properties in Large Ad Hoc Networks

distance in hops is O
(

1
r

)
, where the radio range r = α

√
log N

N . Hence, the normalized
multicast cost tends to

R(N) = O(Nr) = O(
√

N log N).

This is the expected behavior for any method used to construct a tree spanning on
all the nodes of an ad hoc network with unit cost links. Consequently, for large multicast
group sizes we still expect to observe a multicast scaling law of the form R(n) = O(n

1
2
+ε),

for any ε > 0. In Section 4.1.3, we study the normalized multicast cost of shortest path
trees experimentally.

4.1.2 Capacity of Multicast Communication

In this section we investigate the impact of the multicast cost scaling law in the capacity
of the network, when nodes communicate with multicast. We are interested in the order
of magnitude of the maximum attainable bandwidth. We show that similar bounds to
the ones described in [104] can be obtained without the need of particularly complex
additional routing mechanisms.

In presence of tra�c density of λ bits per time unit per square area unit, the typical
radius of correct reception r decays in O

(
1√
λ

)
[58, 64]. If C is the capacity generated by

each node, the density of tra�c generated per square area unit is Θ(CN). The maximum
bandwidth attainable for unicast tra�c is C = O

(
1√

N log N

)
.

We have shown that each multicast packet in a group of size n ¿ N will be
retransmitted Θ(

√
n1

r) times. This yields a tra�c density (including retransmissions)
λ = Θ(CN

√
n1

r). Therefore

r = O

(
1√
λ

)
= O

(√
r

CN
√

n

)

⇒ C = O

(
1

rN
√

n

)
.

As a result, the maximum rate at which a node can transmit multicast data is
O

(
1√

nN log N

)
and it is obtained for the minimum r = O

(√
log N

N

)
1. In this case,

the total rate at which data is received by the n destinations in the multicast group is
O

(√
n

N log N

)
.

When all nodes in the network communicate in unicast (each node with one single
destination), the total capacity of the network increases with network size in O

(√
N

log N

)
.

1As discussed in Chapter 3, the log N factors can be dropped if we assume optimally placed nodes,
or if we relax the network connectivity requirement to the existence of a giant component.

4.1 Asymptotic Multicast Properties in Ad Hoc Networks 61

However, when there are O(N) nodes in the network acting as multicast sources in
groups of size n (e.g. in teleconferences between n users), the total rate at which data
is transmitted in the network is O

(√
N

n log N

)
. Similarly, the total rate at which data

is received is O
(√

nN
log N

)
. Hence, compared to unicast tra�c, multicast tra�c results

in an increase by a factor O (
√

n) of the capacity of the network (and per node) for
receiving data, although the total distinct data transmitted will in fact decrease by the
same factor.

4.1.3 Numerical Results

Comparison with Unicast

In this section, we present simulations that verify the theoretical results on generated
graph models of mobile ad hoc networks. We measure the normalized multicast cost
R(n) for various sources and multicast groups, and take the average for each group size
n. The results are plotted in log log scale, and compared to a line which corresponds to
the predicted asymptotic growth. The graphs are generated by placing nodes randomly
in a square for 2−D networks and in a cube for 3−D networks, and then connecting the
nodes which are in a distance smaller than the critical radius for connectivity r, such
that the average number of neighbors for each node is log N .

In Figure 4.2, we present results corresponding to minimum spanning trees. The
algorithm used to construct the minimum spanning trees will be presented in the
following section, when we describe a protocol which can achieve these performance
estimates. The measured cost is compared to the function n

√
2√

n+1
, obtained from (4.3) by

setting γ = 1√
2
and β = 1/2, which corresponds to the approximate case where we do

not consider border e�ects.
Figure 4.3 depicts measurements of the normalized cost of shortest path trees. The

multicast cost R(n) is compared to function 2
√

n (where the constant 2 was chosen
empirically). Observe that the cost is always higher than in minimum spanning trees,
although the plot grows linearly with a slope close to 0.5 for large n.

In the case of 3−dimensional ad hoc networks, for both minimum spanning trees and
shortest path trees, the normalized multicast cost scales in O(n

2
3).

Comparison with MPR Flooding

In this section we compare the multicast overlay trees with MPR �ooding, i.e., the
optimized broadcast mechanism which is already implemented in OLSR and takes
advantage of multi-point relay nodes (cf. Section 1.3.2). The performance of MPR
�ooding was already discussed in Section 3.2.1, while detailed performance studies can be
found in [76, 65]. This comparison is of interest because, although using overlay multicast

62 Multicast Scaling Properties in Large Ad Hoc Networks

 1

 10

 100

 1 10 100 1000

"average R(n)"
sqrt(2)*n/sqrt(n+1)

(a) 2-D network with 1000 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
sqrt(2)*n/sqrt(n+1)

(b) 2-D network with 1500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
sqrt(2)*n/sqrt(n+1)

(c) 2-D network with 3000 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
sqrt(2)*n/sqrt(n+1)

(d) 2-D network with 4500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2**0.333*n/(n+1)**0.333

(e) 3-D network with 1500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2**0.333*n/(n+1)**0.333

(f) 3-D network with 3000 nodes

Figure 4.2: Multicast cost R(n) versus multicast group size n.

4.1 Asymptotic Multicast Properties in Ad Hoc Networks 63

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*sqrt(n)

(a) 2-D network with 1000 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*sqrt(n)

(b) 2-D network with 1500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*sqrt(n)

(c) 2-D network with 3000 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*sqrt(n)

(d) 2-D network with 4500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*n**0.666

(e) 3-D network with 1500 nodes

 1

 10

 100

 1 10 100 1000

"average R(n)"
2*n**0.666

(f) 3-D network with 3000 nodes

Figure 4.3: Shortest path tree cost R(n) versus multicast group size n.

64 Multicast Scaling Properties in Large Ad Hoc Networks

 10

 100

 1000

 10000

 1 10 100 1000 10000

"Total multicast cost 1"
496

(a) Network with 1043 nodes

 10

 100

 1000

 10000

 1 10 100 1000 10000

"Total multicast cost 2"
1026

(b) Network with 2062 nodes

Figure 4.4: Total number of multicast retransmissions versus group size n, compared
with the number of retransmissions using MPR �ooding (straight lines).

trees achieves signi�cant performance gains, this would happen at the cost of some
extra protocol complexity, which could be avoided by using the existent MPR �ooding
technique. Hence, it is important to identify in which situations such a compromise is
justi�ed.

We perform simulations in ad hoc networks generated in the same manner as in
the previous section. We measure the total multicast cost, i.e., the total number of
forwarding retransmissions needed to reach all the group destinations, for various sources
and multicast groups, and take the average for each group size n. These measurements
are compared with the average number of retransmissions that are generated using MPR
�ooding, initiated from the same source nodes as before. In this case, the number of
retransmissions is independent of multicast groups and their size. The algorithm used

4.2 Speci�cation and Simulation of MOST Protocol 65

 10

 100

 1000

 10000

 1 10 100 1000 10000

"Total multicast cost 3"
429

Figure 4.5: Total number of multicast retransmissions versus group size n, compared
with the number of retransmissions using MPR �ooding in a denser network (with 1025
nodes).

for the selection of MPR nodes is the greedy algorithm described in [76, 65].
In Figure 4.4, we present results obtained from simulations in two sparse networks of

di�erent sizes where the critical radius for connectivity r, is such that the average number
of neighbors for each node is log N . In this case, the number of retransmissions in MPR
�ooding corresponds to approximatively half the nodes in the network and is depicted
by the straight lines in the graphs. However, multicasting performs better in almost the
entire range of possible group sizes, except for multicast groups that constitute a large
portion of the network.

In Figure 4.5, we repeat the simulations in a denser graph where the average node
degree is twice the number of neighbors corresponding to the critical connectivity limit.
Suggestively, the average node degree in Figure 4.5 is approximatively 14, while in
Figure 4.4a it is approximatively 7. Note that this does not in�uence the comparative
advantage of multicast over the same range of group sizes as in sparse graphs.

4.2 Speci�cation and Simulation of MOST Protocol

In this section, we present the Multicast Overlay Spanning Tree (MOST) protocol, in
which we take into consideration the previously derived results. As discussed earlier,
multicast protocols proposed for wired networks are not adapted to ad hoc networks,
because of the frequent changes in tree structure due to the dynamic network topology,
in addition to the group membership changes. Hence, multicast ad hoc routing is a
challenging research domain, and many possible approaches have been proposed in

66 Multicast Scaling Properties in Large Ad Hoc Networks

the research literature [39]. Multicast ad hoc protocols can be classi�ed according
to the underlying routing structure to tree-based protocols and mesh-based protocols.
The routing structure can be either group shared, or source dependent. Some tree-
based protocols are MAODV [94] which is an extension to the unicast routing protocol
AODV [91] based on a group shared tree, MOLSR [75] which is an extension to
OLSR unicast routing protocol based on a Dijkstra tree, and Adaptive Demand-driven
Multicast Routing Protocol (ADMR) [69]. A protocol which is based on overlay trees
is AMRoute [80]. As an example of mesh-based routing protocols we mention On-
Demand Multicast Routing Protocol (ODMRP) [77] and Core-Assisted Mesh Protocol
(CAMP) [54].

In contrast to these solutions, we propose a protocol aiming at achieving the
theoretical capacity bounds derived in the previous section, being based on overlay
group shared trees. In the next section, we describe the algorithms used by the protocol
in order to maintain the multicast overlay spanning trees.

4.2.1 Overlay Tree Construction

As we saw previously, it is more e�cient to consider minimum spanning trees. We
discuss here Algorithm 1, which achieves the multicast cost R(n) = O(

√
n) calculated

in Section 4.1.1. The algorithm does not require any more information than what is
provided by a link state unicast routing protocol, like OLSR.

Algorithm 1 Basic Minimum Spanning Tree Algorithm

Input : Network graph.

Output: Overlay tree.

1. Find shortest paths between all pairs of multicast nodes.

2. Build complete graph on multicast nodes with costs cij = {length of shortest path
between i and j}.

3. Build minimum spanning tree on the complete graph, rooted at the source node.

The construction of the minimum spanning tree (step 3) can be implemented
using Prim's algorithm [40]. The resulting tree is an overlay multicast tree, since it
consists only of multicast nodes and its links are in fact tunnels in the actual network.
Multicasting is achieved when each node forwards multicast packets to its successors
in the overlay tree. It must be noted that in a fully distributed protocol, each node
must be able to compute the same minimum spanning tree independently from the
others. Therefore, we impose an ordering to the multicast nodes based on their IP
addresses when executing Prim's algorithm. The computed minimum spanning tree will
be directed and rooted to the node with the smallest IP address. However, this fact

4.2 Speci�cation and Simulation of MOST Protocol 67

has no practical importance in the protocol's operation, where the tree will be treated
as a shared tree with no root. Step 1 corresponds to n Dijkstra algorithm iterations.
Therefore, the total complexity is O(n(M + N log N)), where n is the multicast group
size, N and M are the number of nodes and edges in the network, respectively. The
algorithm's expected complexity can be improved because it is not necessary in practice
to compute all shortest paths from each node to all other nodes to build the minimum
spanning tree.

We propose Algorithm 2 as a faster alternative to compute minimum spanning
overlay trees. The algorithm is essentially equivalent to Algorithm 1, but the shortest
paths are calculated in conjunction with the minimum spanning tree. Hence, it is not
necessary to compute shortest paths between all pairs of multicast nodes. In fact,
according to tests in wireless network topologies, this algorithm has an average running
time comparable to a Dijkstra algorithm, even when the number of clients increases.

We denote G(V, E, w) the network graph, where V is the node set, E is the edge set,
and each edge e is associated with a cost w(e). We also denote S the set of multicast
nodes. The array d associates each node with a distance to the multicast overlay tree,
i.e., d[v] corresponds to the minimum distance of node v to the multicast nodes that are
already part of the tree. This distance is initialized to 0 for the root node and to ∞ for
all other nodes. The array π associates each node with a predecessor multicast node.
When this table has been computed, it contains the information needed to represent the
overlay tree, since each multicast node will be associated with another multicast node
(except from the root). The predecessors of the other nodes in the graph need only be
maintained during the computations.

The algorithm manages a set F of multicast nodes that have not been covered yet by
the tree, and a min-priority queue Q which includes all nodes, with the priority attribute
being equal to their distance d. In each iteration the algorithm chooses a node with the
smallest distance to the overlay tree (step 6), and checks whether it is a multicast node
(step 7). In this case, the node's distance is updated to 0 (because the node is added
to the overlay tree) and it is removed from the set F . Afterwards, for each chosen
node, steps 11−15 check its adjacent nodes on whether their distance can be improved,
and update the predecessors appropriately, similarly to Dijkstra's algorithm. However,
in this case there are two important di�erences: the overlay predecessors can only be
multicast nodes, hence steps 14−15 perform an additional check; moreover, previously
extracted non-multicast nodes might be re-inserted in the priority queue in case their
distance to the tree has improved due to the addition of new overlay nodes (therefore, the
algorithm's worst case complexity remains the same as in Algorithm 1). The iteration
ends when multicast nodes have been covered, hence the improvement in the average
case complexity. For simplicity, we did not include the code based on the IP address
ordering of the nodes. For instance, the root node here will correspond to the smallest
IP address, and the priority queue will take the IP address ordering into consideration.

Due to the fact that the distance between two nodes in number of hops is
proportional to the Euclidean distance, the resulting multicast tree can be considered

68 Multicast Scaling Properties in Large Ad Hoc Networks

Algorithm 2 E�cient Minimum Spanning Tree Algorithm

Input : Weighted Graph G(V, E,w), Multicast Node Set S, Root Node s.

Output: Predecessor Table π.

1. for all (v ∈ V) { d[v] ←∞; pred[v] ← NIL; }

2. d[s] ← 0;

3. Q ← V ;

4. F ← S;

5. while (F 6= ∅) {
6. u ←EXTRACT-MIN(Q);

7. if (u ∈ S) {

8. d[u] ← 0;

9. DEL(F, u);}

10. for each (v ∈ adj[u]) {

11. if (d[v] > d[u] + w(u, v)) {

12. d[v] ← d[u] + w(u, v);

13. if(v /∈ Q) { INSERT(Q, v); }

14. if (u ∈ S) π[v] ← u;

15. else π[v] ← π[u]; } } }

as an approximation of the Euclidean minimum spanning tree on the multicast nodes.
The advantage of this approach is that only the multicast nodes need to participate

in the construction of the multicast tree, while the other nodes serve merely as relays
and are not necessarily aware of the multicast communication. This fact facilitates
the development of a peer to peer protocol which can be run only by the participating
multicast nodes, hence it could be downloaded dynamically by a node whenever it decides
to join a multicast communication. However, a practical implementation of a protocol
using this approach must still face the di�culties introduced by the nodes' mobility. The
protocol should provide a mechanism for nodes to communicate reliably among them
their participation in the multicast communication. In the following section, we discuss
how these problems are treated in the MOST protocol that we propose.

4.2 Speci�cation and Simulation of MOST Protocol 69

4.2.2 Speci�cation of MOST Protocol

We now present a new distributed multicast routing protocol based on group shared
trees. The protocol must be used in conjunction with a link state protocol, hence we
choose to develop an extension to OLSR.

In a fully distributed spanning tree design, the tree computation is performed
independently by each group member. To proceed to the correct computation of the
overlay tree, multicast nodes need to know the membership of their multicast group.
Therefore, when a node wants to join or leave a group, it broadcasts a Join or Leave
message to the entire network, via the optimized MPR-�ooding mechanism used in
OLSR. Join messages are sent periodically according to the Join_Interval, which is set
by default to be equal to the TC message interval, i.e., 5 seconds. The total protocol
overhead is limited in these messages, independently of the number of groups and sources.
In fact, MOST is well suited for managing numerous groups of small size, with arbitrary
sources. Each group member must compute periodically the multicast tree to discover
and maintain its overlay neighbors. In order to compute the multicast tree, the node
needs information about network topology which is delivered by OLSR. The overlay
neighbor set is a subset of clients sharing the same tree with that member, which are
linked to it via unicast tunnels. The distance between overlay neighbors can be of one
or several hops. Each client receives/retransmits multicast data from/to its overlay
neighbors. The computed tree is a group shared tree, hence it must always be the same
for all the clients. However, because of changes in the network topology and group
membership, there is no guarantee that all clients hold the same tree. Consequently, to
avoid loops there is a need to maintain a duplicate table in each client node. Moreover,
some redundancy is introduced in data forwarding after tree updates to avoid packet
losses.

Managing Join and Leave Messages

The Join message contains the multicast group(s) address(es) that the sender has joined.
The message format is the OLSR message format described in Section 1.3.2. The sender's
address is included in the Originator �eld of the message header. The Join message
content format is depicted in Figure 4.6.

Each multicast node maintains a membership table with the members of all the
groups it belongs to. Upon receipt of a new Join message, each concerned node adds
the new client to its membership table. The entries in the membership table are also
associated with an expiration time, which is determined by the VTime �eld in the Join
message header. After this time period the entries are removed, unless another Join
message is received, in which case the expiration time is updated.

When a node wants to leave a group, it broadcasts a Leave message to the entire
network but keeps acting as a group member if it receives data for a prede�ned transition
period. Beyond this period, received packets are not retransmitted. Leave messages

70 Multicast Scaling Properties in Large Ad Hoc Networks

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| MULTICAST GROUP ADDRESS |
+-+
| MULTICAST GROUP ADDRESS |
+-+
: (etc.) :

Figure 4.6: Join message content format.

follow the same format as Join messages, hence the message contains the group addresses
that the originator wishes to leave.

We note that in case there is a multicast node failure or disconnection from the
network, this event will be accounted for in the OLSR topology table. Therefore, other
multicast nodes will act accordingly, as if the problematic node had left all multicast
groups, and the multicast communication will not be a�ected.

Tree Computation and Maintenance

For each group, each client computes periodically the corresponding overlay tree,
according to its membership table. Therefore, the client needs to maintain a table
with its overlay neighbors. The update period is set by default to the Hello interval,
i.e., 2 seconds, which has been found empirically to provide optimal performance. If a
new node joins the group or a client leaves the group, the tree is updated immediately.
Whenever the overlay neighbors change after an update, the client considers both new,
as well as older overlay neighbors for a transition period of 1 second, that is half the
update period. The transition period is introduced to make it possible for all the clients
to take into account tree changes, and to improve the packet delivery ratio. After that
period, only new neighbors are considered. Finally, in order to be able to perform the
overlay tree construction according to the previously described algorithm, nodes switch
to full-OLSR mode and start advertizing their complete neighbor set whenever they
join a multicast group. The reason for that is that it must be possible to compute the
distance between each pair of group members.

Transmission and Forwarding of Data Packets

Unlike common multicast protocols where data packets are transmitted in a broadcast
mode, in MOST data packets are encapsulated in unicast packets before being forwarded
to the overlay tunnels. Unicast transmissions present important additional bene�ts
when the subnetwork layer in use is IEEE 802.11, as is the case in most actual wireless
networks. Firstly, the packet delivery ratio is signi�cantly improved, since packets are

4.2 Speci�cation and Simulation of MOST Protocol 71

retransmitted in case of collisions, while this is not the case for broadcast (or multicast)
packets (cf. Section 2.1). Secondly, in most 802.11 variants (including b and g), the
broadcast frames are transmitted by default at a lower rate than unicast frames. For
instance, when 802.11b operates at a unicast data rate of 11 Mbps, the default broadcast
rate is 2 Mbps, and most wireless card drivers do not o�er the possibility to change it.
Therefore, unicast tunnels can actually increase the available bandwidth.

When a client receives a multicast data packet2, it checks whether the packet has
already been received. If this is the case, the duplicate packet is dropped. Otherwise,
the client forwards the packet to each of its overlay neighbors, except the one from which
the packet was received. Source nodes act also as multicast group members, hence they
simply send their data in unicast to their overlay neighbors.

4.2.3 Implementation Overview

In this section we outline our complete implementation of the MOST protocol for Linux.
An overview of the architecture is depicted in Figure 4.7. The implementation consists
of two modules: MDFP and OOLSR.

MDFP (Multicast Data Forwarding Protocol) is a forwarding protocol that enables
point to multipoint data transfer. Multicast packets are captured and encapsulated in
order to be forwarded inside a multicast tree. This module was developed for use with
the MOLSR multicast protocol [12], and we adapted it to also support MOST. OOLSR
(Object oriented OLSR) is INRIA's implementation of the OLSR protocol in C ++ [13].
The core of MOST was implemented as an extension inside this module.

The OOLSR module with MOST extension is in charge of sending and processing
Join and Leave messages, as well as computing and maintaining the overlay multicast
tree, based on the network topology. The MDFP module is in charge of the actual
forwarding of multicast data packets in the overlay tree. For this purpose, it performs
encapsulation and decapsulation of data packets, and maintains a table in order to detect
duplicate packet receptions.

As shown in Figure 4.7, the two modules constantly exchange information. The
OOLSR daemon provides MDFP with up to date overlay neighbors information, which
is all that is needed to perform the transmission and forwarding of multicast data. Con-
versely, MDFP communicates to the OOLSR daemon the group membership information
concerning the node's OLSR interfaces. In fact, multicast client applications update the
interfaces' IGMP information (cf. Internet Group Management Protocol [47]), and this
information is interpreted by MDFP. Incoming multicast data packets are captured
by the net�lter module in the kernel, following predetermined rules (such as IP in IP
encapsulation and a predetermined UDP port number). MDFP decapsulates the packets
and passes them to the client applications, while it re-encapsulates them in order to
forward them to the overlay neighbors. Similarly, data transmitted by a local multicast

2In fact all packets are received in unicast, so we refer here to the encapsulated multicast content.

72 Multicast Scaling Properties in Large Ad Hoc Networks

IGMP

Kernel

Multicast data

Incoming encapsulated packets

Outgoing encapsulated packets

membership

OOLSR + MOST
daemon

Group

membership
Group

Multicast data
Multicast

client
Multicast

source

(netfilter)
packet filter
Multicast

Neighbors
Overlay

info

MDFP

Figure 4.7: Overview of multicast implementation.

source is also captured by net�lter and processed by MDFP.
Finally, we note that the OOLSR module (including the MOST extension) can be

loaded as a plugin in ns-2, hence the simulator shares the same source code as the real
implementation.

4.2.4 Simulation Results

In this section we perform ns-2 simulations in various scenarios aiming mainly to verify
the theoretical analysis, as well as to evaluate the protocol performance in a mobile
ad hoc network environment. In Table 4.1, we summarize the parameters that are
common for all our simulations.

Table 4.1: Common simulation parameters.

MAC Protocol IEEE 802.11b
MAC Rate 11Mb
Propagation model Two ray ground
Transmission range 250m
Packet size 1200 bytes
Tra�c type CBR
Number of iterations 5

4.2 Speci�cation and Simulation of MOST Protocol 73

Comparison of Multicast and Unicast Performance

In Section 4.1.1 we performed an analytical comparison of multicast performance
compared to unicast. We now repeat the comparison using ns-2 simulations of a fully
functional protocol. We measure the average multicast cost for various group sizes,
by counting the total number of times each packet is relayed to reach all destinations,
using MOST. The unicast cost is determined in the same manner, by repeating the same
simulations and considering OLSR unicast transmissions between each source-client pair.

The simulation environment consists of a randomly generated topology of 100 wireless
nodes forming an ad hoc network, in an area of 1500m×1500m. We consider group sizes
ranging from 5 to 20 nodes (not including the source). Multicast groups and sources
are chosen at random. The source node sends to the group CBR tra�c of 64kbps, with
packets of 1200 bytes, for 150 seconds of simulated time. To obtain reliable results,
simulations are conducted several times with 5 di�erent seeds. The mean results are
depicted in Figure 4.8.

 0

 20

 40

 60

 80

 100

 120

 4 6 8 10 12 14 16 18 20

av
er

ag
e

pa
ck

et
 fo

rw
ar

di
ng

number of clients

multicast
n*unicast

(a) Average packet retransmissions.

 2

 2.5

 3

 3.5

 6 8 10 12 14 16 18 20

th
e

ga
in

 in
 a

ve
ra

ge
 p

ac
ke

t t
ra

ns
m

is
si

on

number of clients

(b) Gain of multicast routing.

Figure 4.8: Comparison of multicast versus unicast to all destinations.

74 Multicast Scaling Properties in Large Ad Hoc Networks

The analysis in Section 4.1.1 allows us to compute an upper bound on the number of
multicast packet retransmissions as a function of the number of group clients n. Namely,
it comes from (4.3) that an upper bound for this parameter is:

√
2n × du, where du is

the average unicast distance between two nodes in hops. In Figure 4.9, we compare
the average number of retransmissions measured through simulations to the theoretical
bound. Although the analysis is performed in an asymptotic setting, we notice that the
upper bound is also valid in these simulations.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 4 6 8 10 12 14 16 18 20

av
er

ag
e

pa
ck

et
 fo

rw
ar

di
ng

number of clients

multicast
theory

Figure 4.9: Simulation results vs theoretical upper bound.

Multicast Performance versus Throughput and Group size

Simulations are conducted to determine the maximum source rate that maintains an
acceptable delivery ratio in a multicast group. By acceptable we mean that its value
is higher than 95%. We consider static topologies again since the goal is to �nd the
saturation point of the network. We consider a 200 wireless nodes network in a 1800m×
1800m area, with one multicast group. We vary the number of clients as well as the
source bit rate and we measure the packet delivery ratio, as shown in Figure 4.2.4. We
notice that the source node can transmit with a rate of up to 200kbps with a delivery
ratio higher than 99%. From a 250kbps rate, the performance remains good for small
groups but it decreases for large group sizes.

We also run other simulations by �xing the number of clients to 10 and varying the
number of active multicast groups in a 300 nodes network. In each group a source is
transmitting CBR tra�c with a rate of 64kbps. As shown in Figure 4.2.4 we notice that
the delivery ratio is very high until network saturation, with 8 groups of 10 clients.

4.2 Speci�cation and Simulation of MOST Protocol 75

 86

 88

 90

 92

 94

 96

 98

 100

 5 10 15 20 25 30

de
liv

er
y

ra
tio

number of clients

64kb
150kb
200kb
250kb

Figure 4.10: Delivery ratio vs group size for di�erent source rates.

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

de
liv

er
y

ra
tio

number of groups

Figure 4.11: Delivery ratio (%) vs number of groups in the network.

Multicast Performance with Mobility

To evaluate the protocol performance with mobility, we consider a scenario consisting of
a randomly generated topology of 200 wireless nodes in an area of 1850m× 1850m, and
one multicast group in which an arbitrary source node sends a CBR tra�c of 64kbps for
300 seconds. We run simulations in which we vary the group members, the number of
clients (from 5 to 20 nodes, not including the source) and the maximum mobility speed
(from 1m/s to 10m/s). The mobility model is the Random Way-point model with a
pause time of 10 seconds: nodes choose a random point in the network area and move
to it with a constant speed chosen at random between 1m/s and the maximum de�ned
value; after they reach their destination, they remain idle for a period equal to the pause

76 Multicast Scaling Properties in Large Ad Hoc Networks

interval and then the same procedure is repeated. Moreover, we consider the following
OLSR parameters: a Hello interval of 1 second and TC interval of 5 seconds; we note that
the performance of MOST with mobility can be improved by using smaller intervals, at
the cost of higher OLSR control message overhead. The simulations are again repeated
several times with 5 di�erent seeds. We measure the multicast packet delivery ratio
and the tra�c load caused by duplicate packets, and we depict the obtained results in
Figures 4.12 and 4.13.

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25

de
liv

er
y

ra
tio

number of clients

1ms
5ms

10ms

Figure 4.12: Delivery ratio (%) vs group size with di�erent mobility speeds.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

tr
af

fic
 lo

ad
 d

ue
 to

 d
up

lic
at

e
pa

ck
et

s

number of clients

1ms
5ms

10ms

Figure 4.13: Duplicate tra�c load (%) vs group size with di�erent mobility speeds.

As we can see, by varying the speed from 1m/s, 5m/s and up to 10m/s, the delivery
ratio remains acceptable, i.e., higher than 95 % for all groups of up to 20 clients. On
the other hand, tra�c load due to duplicate packets is higher when the mobility speed

4.3 Conclusion 77

or the group size increase. This can be explained by the fact that any change in the
topology due to mobility can a�ect the shared tree. In fact, each client is aware of
these changes since it uses the OLSR protocol, and when it recalculates the overlay
tree it enters a transition period, during which old and new overlay tree neighbors are
maintained. A compromise can be found between the overhead due to duplicate packets
and packet delivery ratio by setting a suitable transition period length. We notice that
the duplicate tra�c load in the network remains small compared to the total tra�c load
(10% in the worst case), hence the important advantage of improving the packet delivery
ratio comes only with a modest performance cost.

4.3 Conclusion

In this chapter, we established performance estimates for multicast routing versus unicast
in massively dense ad hoc networks. We showed that multicasting can reduce the overall
network load by a factor O (

√
n), for n multicast group members. Consequently, the total

capacity of the network for data delivery is signi�cantly increased. Although we used
geometric arguments to justify this behavior analytically, we also proposed a protocol
which uses only the information provided by a link state routing protocol. The Multicast
Overlay Spanning Tree routing protocol was implemented as an extension to OLSR.
The protocol is fully distributed, in the sense that each group member computes and
maintains the shared multicast tree independently. Being based on overlay trees, it
guarantees robustness, while it achieves good performance since OLSR provides topology
information allowing to construct an optimal multicast overlay tree. Finally, MOST was
tested via ns-2 simulations, and it was shown to achieve the theoretical performance
estimates. MOST has also been tested in real network environments, hence we intend
to provide measurement studies of the protocol performance in future work.

78 Multicast Scaling Properties in Large Ad Hoc Networks

Chapter 5

Analysis of Tra�c Autocorrelations
in Large Networks

For the performance evaluation of network algorithms and protocols, data packet arrivals
are usually modelled as Poisson processes, as was also the case in the previous chapters.
This classic model is attractive due to its unique properties that make the analysis
tractable. Moreover, its use can be justi�ed intuitively by the law of large numbers
and it has been applied successfully for years in telephone networks. However, recent
studies [90] show that it is not su�cient for the characterization of data tra�c. In fact,
tra�c in the Internet displays in many cases long term dependencies, which contradict
the memory-less Poisson property. A possible cause of this discrepancy may come from
the protocols that are in use in the Internet. In this chapter, we investigate the impact
of di�erent widely used protocols, namely of layer 2 protocols such as Ethernet [84] or
IEEE 802.11 [14], and mainly of the layer 4 TCP protocol (cf. [61]). We are able to
gain more insight by extending the asymptotic analysis of IEEE 802.11 in Chapter 2
and, for the case of TCP, considering massive network topologies and a large number of
concurrent tra�cs.

By de�nition, a stationary process has long term dependencies when its autocor-
relation function is non-summable. More precisely, let I(t) be the intensity of tra�c
at time t, and C(x) the covariance of I(t) and I(t + x) when t varies. Function C(x)
corresponds to the autocovariance of the tra�c intensity and does not depend on t
because the process is stationary:

C(x) = E[I(t)I(t + x)]− (E[I(t)])2.

We will say that the tra�c has long term dependencies when C(x) ∼ Bx−β , with
0 < β < 1.

One of the many undesirable e�ects of long term dependencies stands in the loss
rates in the bu�ers. Long term dependent tra�cs generate loss rates that are inverse
power functions of the bu�er size, contrary to the exponential function of the bu�er size

80 Analysis of Tra�c Autocorrelations in Large Networks

in Poisson models. Consequently, increasing the bu�er sizes is prohibitively expensive
to signi�cantly reduce the packet loss rate.

The rest of this chapter is organized as follows. In Section 5.1, we utilize the delay
analysis from Chapter 2 to derive analytical results about the tra�c characteristics. The
similarities between IEEE 802.11 and Ethernet permit to apply the analysis in wired
scenarios too. We also discuss some implications on TCP performance. In Section 5.2,
we aim to characterize the autocorrelations in TCP tra�c. We present a model for multi-
user TCP and we summarize the analytic derivation of TCP performance. We then use
the fact that, according to the previous analysis, the remaining space in the bu�er tends
to be exponentially distributed in order to derive a simpli�ed model of a single TCP
connection with �xed packet loss probability. Based on this model, we characterize
the autocorrelation function of a single TCP connection via an estimate of the second
eigenvalue of the Markov transition matrix. We investigate the autocorrelation function
of several independent TCP connections with heavy tailed round-trip delays. We argue
that heavy tailed round trip delays result in heavy tailed tra�c autocorrelations and
we present a comparison between analytic and simulated results. We already saw
such a heavy tailed delay distribution in a wireless setting in Chapter 2. Moreover,
measures performed in the Internet in [29] also point to a heavy-tailed round-trip delay
distribution.

5.1 Autocorrelations Due to MAC Protocols

In this section, we investigate the impact of MAC layer channel access mechanisms on
the tra�c characteristics. For this purpose we will consider a model similar to the one
introduced in Chapter 2 for wireless nodes. Therefore, we consider again a bu�er �lled
by incoming messages, with a single server that performs the multiple access protocol.
Here, we also consider that the bu�er is saturated by incoming data, i.e., it always has a
packet to transmit to the shared channel. We depict the model in Figure 5.1. The MAC
protocol in use can be either IEEE 802.11 or Ethernet (IEEE 802.3). We will calculate
the autocorrelation of the tra�c actually transmitted by the bu�er's server. Therefore,
we do not take into account tra�c which is subject to collisions or failed transmissions.

In Chapter 2, we showed that the service times in such a bu�er are distributed
according to a power law, with its shape being determined by the packet collision
probability. The mechanism which is essentially the cause for this distribution is the
binary exponential back-o� procedure, which is in use in IEEE 802.11 to permit the
simultaneous use of the channel by multiple sources. This mechanism is also present
in Ethernet, hence our analysis will be generalized to that case too. In fact, as we
mentioned before, the IEEE 802.11 protocol was conceived as a wireless Ethernet. 802.3
and 802.11 converge on the same logical link control sublayer (de�ned in 802.2), so they
have the same interface to the network layer. Moreover, the two protocols share some
similarities in the MAC sublayer as well.

5.1 Autocorrelations Due to MAC Protocols 81

MAC

Saturated MAC Buffer

Figure 5.1: Bu�er �lled with incoming tra�c accessing a MAC channel.

Ethernet uses the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) mechanism. A station only transmits when the medium is idle and
if a collision is detected the transmission is interrupted. Collisions can be detected
by looking at the power or pulse width of the received signal and comparing it to the
transmitted signal. Hence, a station must listen to the cable while it is transmitting.
When two stations transmit simultaneously, they will both detect the collision almost
immediately and terminate the transmission of the already damaged frames, hence
saving time and bandwidth (this is not the case in IEEE 802.11, where collision
detection could not be used because of the hidden and exposed terminal problems).
After a collision the stations use the binary exponential back-o� mechanism which we
described in Section 2.1 (referring to 802.11) to randomize their access to the channel
and avoid further collisions. In Ethernet the minimum contention window size is 1 slot,
while the maximum is 1024 slots.

Therefore, the service delay analysis from Section 2.2.1 can also be adapted to this
case, to show that the complementary cumulative distribution of service times decays
as a power law with exponent B > 0. If we use the same notation for the service delay
probability generating function β(z), we have the expansion of the complex function
β(z) around z = 1 of the form (cf. Theorem 1 in Chapter 2):

β(z) =
{

1 + (1− z)v(1− z) + C(1− z)B + O((1− z)B+1), B /∈ Z
1 + (1− z)v(1− z) + C(1− z)B log 1

1−z + O((1− z)B+1), B ∈ Z (5.1)

where v(1− z) is an analytic function and C is a constant.
The constant B depends on the collision probability of packets when trying to access

the channel. Since, the operation of Ethernet is similar to 802.11 with the addition of

82 Analysis of Tra�c Autocorrelations in Large Networks

collision detection, but the back-o� mechanism is identical, we use the same formula as in
Section 2.2.1, although a slight modi�cation must be made in the analysis to account for
the premature ending of a packet transmission when a collision is detected1. However,
the result will not di�er qualitatively. In both protocol cases, we have B = − log2 p,
where p is the packet collision probability. Moreover, we take here into consideration
the case of integer B.

We note that instead of the total amount of tra�c going through the bu�er, we can
also model the inter-arrival process of an individual connection, when a protocol using
an acknowledgement mechanism is used (such as TCP). Hence, we comment brie�y on
this case too whenever possible. In this scenario, before each transmission of a new
packet the sender must wait for an acknowledgement receipt.2 Therefore, instead of
considering the service time to evaluate packet inter-arrivals, we must use an estimate
for the delay of the packet to reach its destination plus the acknowledgment delay. This
can be accounted for since we have analyzed the packet delays including queuing also.
We can adjust our study to this scenario by setting B = 1 − log2 p. In a wireless
multi-hop setting, p is the highest collision probability experienced in the packet's route
(cf. Section 2.2.1).

5.1.1 Throughput Analysis

At �rst, we calculate the expected cumulative throughput in the described scenario. We
denote h(n) the cumulative throughput at time n, i.e., the total number of packets sent
after n time units.

Let Si be the service time experienced by packet i. We have the probability that the
number of packets sent is larger than a number k:

P (h(n) > k) = P (S1 + S2 + . . . + Sk+1 ≤ n). (5.2)

In order to compute this probability, we de�ne the bivariate generating function
H(z, u) =

∑
k,nP (h(n) > k)ukzn, where z marks the time and u marks the number

of packets sent. If all service times are independent and distributed according to the
generating function β(z) =

∑
nP (S = n)zn, we have:

H(z, u) =
∑

ku
k∑

nP (S1 + S2 + . . . + Sk+1 ≤ n)zn

=
∑

ku
k(β(z))k+1 1

1− z

=
β(z)
1− z

1
1− uβ(z)

. (5.3)

1In case of Ethernet, the generating function zL in (2.2), corresponding to the packet transmission
length, can be substituted with an analytic function, namely with a polynomial q(z) of degree at most L.

2We can assume here for simplicity that one packet is sent at a time. The TCP protocol will be
described in more detail in a following section, where we will also model its sliding window mechanism.

5.1 Autocorrelations Due to MAC Protocols 83

We can compute the average cumulative throughput at time n as follows:

E[h(n)] =
∑

kP (h(n) > k)
= [zn]H(z, 1)

= [zn]
β(z)
1− z

1
1− β(z)

, (5.4)

where [zn] f(z) stands for the coe�cient of zn in the generating function f(z).
Based on (5.1), we now consider the expansion of H(z, 1) around z = 1, to deduce

the asymptotic behavior of E(h(n)) when n →∞. Clearly, we have

H(z, 1) =
1

1− z

1
1− β(z)

(1 + O(1− z)). (5.5)

We consider three di�erent cases according to the value of B.

1. B > 1.

To simplify the computation, we assume �rst that B /∈ Z:

H(z, 1) =
1

−(1− z)2v(0)− C(1− z)B+1 + O((1− z)B+2)
(1 + O(1− z))

=
1

−(1− z)2v(0)
(
1 + C

v(0)(1− z)B−1 + O((1− z)B)
)(1 + O(1− z)),

and using the fact that 1
1−x = 1 + x + O(x2), when x → 0:

H(z, 1) =
1

−(1− z)2v(0)

(
1− C

v(0)
(1− z)B−1 + O((1− z)B)

)

=
1

−(1− z)2v(0)
+

C

v(0)2
(1− z)B−3 + O((1− z)B−2).

Therefore, with Flajolet-Odlyzko singularity analysis we can deduce the behavior
of E(h(n)) when n →∞:

E(h(n)) =
n

−v(0)
+

C

v(0)2Γ(3−B)
n2−B + O(n1−B)

=
n

−v(0)
(1 + o(1)). (5.6)

Note that −v(0) corresponds to the mean value of the service time. In case B ∈ Z,
the �nal asymptotic result remains unchanged.

84 Analysis of Tra�c Autocorrelations in Large Networks

2. B = 1.

H(z, 1) =
1

−C(1− z)2 log 1
1−z + O((1− z)2)

(1 + O(1− z))

=
1

−C(1− z)2 log 1
1−z

(
1 + O(log−1 1

1− z
)
)

=
1

−C(1− z)2 log 1
1−z

+ O

(
(1− z)−2 log−2 1

1− z

)
.

Therefore (cf. [51], Chapter V I),

E[h(n)] =
n

−C log n

∑
j≥1

C∗
j

(log n)j
+ O(n log−3 n)

=
(1− γ)n
C log2 n

+ O(n log−3 n)

=
(1− γ)

C

n

log2 n
(1 + o(1)), (5.7)

where C∗
k = dk

dsk
1

Γ(s)

∣∣∣
s=2

, and γ is Euler's constant.

3. B < 1

H(z, 1) =
1

−C(1− z)B+1 + O((1− z)2)
(1 + O(1− z))

=
1

−C(1− z)B+1
+ O((1− z)−2B).

Therefore,

E[h(n)] =
nB

−Γ(B + 1)C
+ O(n2B−1) =

nB

−Γ(B + 1)C
(1 + o(1)). (5.8)

This analysis veri�es the expected result that the throughput is inversely proportional
to the average service time, when the latter is �nite. Interestingly enough, we can also
compute the cumulative throughput behavior even in cases where the average service
time tends to in�nity (when B ≤ 1). As a side note, we mention that this case refers to
collision probabilities of at least 25% for the saturated bu�er, and 12.5% if we consider
the individual throughput of a TCP connection. In practice the average delays will
not be in�nite because of the limit in the number of retransmissions. However, the
throughput will still su�er a signi�cant decrease in these cases.

In Figures 5.2, 5.3 and 5.4, we verify the theoretical results with measurements which
are obtained by simulating the packet inter-arrival process with Matlab. We present
one simulation for each of the three cases concerning the possible values of B. In the
graphs, we can clearly notice that, as the value of B decreases, there are increasingly
longer periods during which no packets are transmitted, hence resulting in the sub-linear
growth of the cumulative throughput.

5.1 Autocorrelations Due to MAC Protocols 85

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000

8000

10000

12000

time units n

cumul. throughput
C*n

Figure 5.2: Linear cumulative throughput evolution versus time n when B = 1.5.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

1000

time units n

cumul. throughput

n/log2(n)

Figure 5.3: Cumulative throughput in n
log2 n

versus time n in the limit case of B = 1.

86 Analysis of Tra�c Autocorrelations in Large Networks

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

20

40

60

80

100

120

time units n

cumul. throughput

nB

Figure 5.4: Cumulative throughput in nB versus time n when B = 0.5.

5.1.2 Autocorrelation Analysis

Based on the above, we can now evaluate the autocorrelation of the tra�c. Let I(t) be
the tra�c intensity at time t, i.e., the number of packets emitted at time t. Since we
consider a single source I(t) can be either 0 or 1. The autocovariance function of the
tra�c intensity is:

C(x) = E[I(t)I(t + x)]−E[I(t)]2

= E[I(t + x)|I(t) = 1] · P (I(t) = 1)−E[I(t)]2

=
∑

t1P (I(t + x) = 1|I(t) = 1) · P (I(t) = 1)−E[I(t)]2

= E[I(t)] · (P (I(t + x) = 1|I(t) = 1)−E[I(t)]
)
. (5.9)

From the throughput analysis it comes that, in stationary state, E[I(t)] = 1
−v(0) ,

when B > 1, while E[I(t)] = 0, when B ≤ 1. Therefore the autocovariance is also
C(x) = 0 when B ≤ 1, although the convergence is very slow, hence we will discuss this
case too.

We have:

P (I(t + x) = 1|I(t) = 1) =
∑

k≥1P (S1 + S2 + . . . + Sk = x),

where Si is the service time of packet i emitted after time t.

5.1 Autocorrelations Due to MAC Protocols 87

We de�ne again a bivariate generating function

i(z, u) =
∑

k,xP (I(t + x) = 1|I(t) = 1)ukzx, (5.10)

where z marks the time and u marks the number of packets sent. Based on the previous
assumptions on service delays:

i(z, u) =
∑

k≥1u
k∑

xP (S1 + S2 + . . . + Sk = n)zx

=
∑

k≥1u
k(β(z))k

=
β(z)

1− uβ(z)
= (z − 1)H(z, u). (5.11)

We have:
P (I(t + x) = 1|I(t) = 1) = [zx]i(z, 1) = [zx](z − 1)H(z, 1).

Hence we obtain the asymptotic behavior using the previous results and the
expansion of i(z, 1) around z = 1.

We consider again the di�erent possible values of B.

1. B > 1.
Again, to alleviate the analysis, we �rst assume that B /∈ Z.

i(z, 1) =
1

−(1− z)v(0)
+

C

v(0)2
(1− z)B−2 + O((1− z)B−1)).

When x →∞,

P (I(t + x) = 1|I(t) = 1) =
1

−v(0)
+

C

v(0)2Γ(2−B)
x1−B + O(x−B).

Therefore the autocovariance decreases according to the following:

C(x) =
C

−v(0)3Γ(2−B)
x1−B + O(x−B), (5.12)

and the tra�c has long term dependencies when 1 < B ≤ 2, i.e., when the variance
of the service times is in�nite. In case B ∈ Z, in the asymptotic estimate there
will be only a slight change in the constants, which will not involve the Gamma
function.

2. B = 1.
i(z, 1) =

1
−C(1− z) log 1

1−z

+ O((1− z)−1 log−2 1
1− z

),

and
P (I(t + x) = 1|I(t) = 1) =

(1− γ)
C

1
log2 x

(1 + o(1)). (5.13)

88 Analysis of Tra�c Autocorrelations in Large Networks

3. B < 1.
i(z, 1) =

1
−C(1− z)B

+ O((1− z)−2B−1).

Therefore,
P (I(t + x) = 1|I(t) = 1) =

xB−1

−Γ(B)C
(1 + o(1)). (5.14)

In the two latter cases, the obtained result corresponds to the asymptotic behavior
of the tra�c autocorrelation at time t, provided that there was a packet transmission.
Interestingly enough, the decrease is very slow in the limit case when B = 1, due to the
fact that the throughput decreases also at a very slow rate.

We note here the undesirable e�ect on TCP throughput when the delay variance
tends to become large, because of the way the protocol detects lost packets. The
detection occurs after a time-out according to a round trip delay estimate. Even though
this time-out accounts for the delay variance, it cannot give reliable results when the
variance tends to in�nity. From the analysis, it comes that this can happen for collision
rates as low as 6.25% in multi-hop wireless environments. In other words, TCP intensi�es
the e�ects of the delay variations, which we identi�ed in Chapter 2. Under this simple
model, we can think of an optimization for TCP performance which consists in excluding
the links with high collision probabilities, as it was done in Chapter 3 using link hysteresis
strategies.

We verify the theoretical results using Matlab simulations, as in the previous section.
Instead of measuring directly the autocorrelation tra�c of the packet arrival process,
we consider the aggregated variance, which is a quantity that is used to determine the
stronger property of whether a process is self-similar in [78]. Let X be the stationary
stochastic process representing the number of packets that are sent in a time unit. Let
Xm, for m = 1, 2, 3 . . ., be the stationary process obtained by averaging the original series
X over non-overlapping blocks of size m. This corresponds to counting the number of
packets sent in increasing intervals of size m. After measuring Xm for a large range
of intervals m, we compute the aggregated variance var(Xm). In the case of long term
dependent processes, the decrease rate of the aggregated variance var(Xm) versus m
corresponds to the decrease rate of the auto-correlation function (i.e., var(Xm) ∼ m−b,
with 0 < b < 1). On the other hand, when the autocorrelation function decreases more
rapidly, the aggregated variance decreases like the reciprocal of the sample mean (i.e.,
var(Xm) ∼ m−1). These properties permit us to compare the measurements with the
theoretical bounds. Therefore, we present in Figures 5.5, 5.6, 5.7 the curves that we
obtained from simulations for di�erent values of B, following the three possible ranges
of the analysis, all resulting in long term dependencies.

We note that the theoretical analysis veri�es the experimental evidence concerning
Ethernet tra�c in [78], and justi�es the ON/OFF source model also introduced in
the same paper, since we make a link between the exponential back-o� mechanism
in Ethernet and long term dependencies (see also [53] for more experimental evidence
demonstrating the impact of the exponential back-o� in tra�c autocorrelations).

5.1 Autocorrelations Due to MAC Protocols 89

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

interval size m

variance

m−1

m(1−B)

Figure 5.5: Aggregated variance in m1−B versus measure interval m, when B = 1.5.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

interval size m

variance

m−1

C/log2(m)

Figure 5.6: Aggregated variance in 1
log2 m

versus measure interval m, in the limit case of
B = 1.

90 Analysis of Tra�c Autocorrelations in Large Networks

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

interval size m

variance

m−1

m−B

Figure 5.7: Aggregated variance in m−B versus measure interval m, when B = 0.5.

5.2 Autocorrelations in TCP Tra�c

In this section, we analyze the impact of higher layer protocols, namely TCP, in the
tra�c autocorrelations. This impact of the higher layer protocols is expected to be more
noticeable in larger time scales. On the other hand, in smaller time scales, it is the lower
protocols that play the most important role. We will focus here on the larger time scale
and separate the analysis from the previous section, in order to be able to characterize
the autocorrelation function of TCP tra�c in a more general setting.

5.2.1 TCP Protocol Overview and Models

The dynamic window based protocol TCP [61] is widely used over the Internet, and
carries more than 90% of the overall tra�c. The reason of the success of TCP is mainly
based on its highly dynamic nature, that makes it able to adapt itself to any kind
of network capacity, from a few bits to several gigabits per second. TCP was formally
de�ned in RFC 793 [44]. Some clari�cations and bug �xes are detailed in RFC 1122 [45].
Extensions are given in RFC 1323 [62].

In TCP, packets are transmitted in sequence and must be acknowledged by the
end-user. A packet is considered to be lost when the acknowledgement does not arrive
within the estimated round trip delay, or when duplicate acknowledgements for the
same packet are received (this occurs when packets are lost but subsequent packets with

5.2 Autocorrelations in TCP Tra�c 91

larger sequence numbers are transmitted successfully). A packet loss is considered as a
congestion event.

In order to cope with the round trip delay, several packets are transmitted in advance
without waiting for acknowledgement. The set of unacknowledged packets is called the
window and its size varies in order to handle congestion.

(i) when no packet is lost in a window (successful window), the next window size is
incremented by 1 unit: W ← W + 1.

(ii) when a packet loss occurs (failed window), packet retransmission starts from this
packet, but with a window size halved: W ← bW/2c.

Our description constitutes a simpli�cation of the complex operation of the TCP
protocol, but it provides a su�ciently accurate abstraction of the algorithms used in
TCP today. The complete reference of TCP operations can be found in the RFCs (for
instance RFC 2581 [20], RFC 2582 [52] in addition to the RFCs cited previously). The
protocol also includes more mechanisms to make the operation more e�cient, such as
self-clocking and slow start. The latter feature makes TCP more reactive in network
condition changes.

Self-clocking The server synchronizes the transmission of its new packets with the
acknowledgement returns, leading to a self-clocking of packet transmissions. Packets
can be acknowledged in batch.

Slow start In the slow start phase the window size doubles at each full successful
window, until it reaches a prede�ned threshold. TCP enters the slow start phase after
a packet transmission time-out.

Multi-user TCP

In this section, we describe a model for multiple TCP �ows which constitutes the initial
basis for our analysis. A detailed description and analysis of this model can be found
in [19, 7]. However, here we give only the most relevant results.

We consider a large number N of parallel TCP connections towards a bottleneck
router with a �nite bu�er of capacity B connected to a slow network interface with
service rate µ (see Figure 5.8). In particular, the network is divided into a local loop
with relatively low speed and a backbone with high throughput, hence we assume that
all congestion occurs in the bottleneck bu�er.

We assume that the transmitted �les are in�nite. We also assume that all packets in a
TCP window arrive in a single batch. The round trip time (RTT) has a �xed component

92 Analysis of Tra�c Autocorrelations in Large Networks

R(t)

B

µ

Ν

Figure 5.8: N TCP connections towards the same bottleneck bu�er.

B
µ (the maximum sojourn time in the bu�er) and a random exponential delay of mean
N
λ , assumed to be much smaller than B

µ .
In such a model the bu�er is expected to be full most of the time. Indeed, if we call

R(t) the available room in the bu�er at time t, we have R(t) = O(1) when N →∞. This
result is derived from the analysis in [19, 7], where it is shown that, when the system is
stationary, the probability that the available room on top of the bu�er R(t) exceeds x
has the expression:

P (R(t) ≥ x) → exp(−ax),

for some constant a > 0, which corresponds to the probability of the bu�er being full.
This observation is used in the following section to derive a simpli�ed model where

there is a �xed packet loss probability a and moreover the losses are independent.
We denote w(y) the density function of the TCP window size distribution when the

system is in steady state. When a → 0 and the round trip delay is large, we have
w(y) =

√
ag(

√
ay) + O(a), where g(y) satis�es the di�erential equation:

yg(y) + g′(y) = 4yg(2y).

This equation can be explicitly solved and the solution is depicted in Figure 5.9. In
passing, note that the TCP window sizes vary greatly although all connections share the
same bottleneck bu�er. In this case, we have the asymptotic estimate for parameter a:

√
a = (1 + O(

√
a))

g∗(2)
B
N + µ

λ

,

with g∗(2) =
∫∞
0 yg(y)dy ' 1.3098.

5.2 Autocorrelations in TCP Tra�c 93

0

0.2

0.4

0.6

0.8

1 2 3 4
y

Figure 5.9: Limiting function g(x) of the window size distribution.

Fixed Loss Probability Model

We now derive a simpli�ed model of a single TCP connection, in order to analyze the
autocorrelation function of TCP tra�c. We assume that the packet loss probability is
constant and equal to a, and that the losses are independent. This is justi�ed by the
previous model where a is constant. For simplicity, we turn to a discrete time model,
where the unit is the RTT (we assume that we collect all bu�er changes within one
RTT), which does not vary much in the considered time scale since it is composed of a
large �xed delay and a much smaller random processing time3. Hence, we can model
the window size adaptation with a Markov chain. A similar model has been studied via
simulation in [48].

We study the behavior of a TCP connection transferring an in�nite �le, during the
congestion avoidance phase4. If there is a packet loss in a window transmission, the
retransmission of packets resumes from the �rst lost packet but with a window size
divided by two: W = bW/2c, otherwise the window size increases by one: W = W + 1.
We note that whether there are more losses or not after the �rst loss in a window is of
no importance in the validity of our model.

3We note that in contrast to the results of the previous section, we take here the weakest assumption
with regards to tra�c autocorrelations. The reason is to model a more general context, and to show in
the following section that, even in this case, TCP tra�c can generate long term dependencies.

4Although most of Internet connections are short-lived, the majority of tra�c is carried by persistent
connections, which correspond to this case.

94 Analysis of Tra�c Autocorrelations in Large Networks

(1−a) (1−a)W

W / 2 W+1WW−1

W−1

1−(1−a)W

Figure 5.10: Marcovian TCP model.

We deduce the following probabilities for a ¿ 1:

Pr(no loss in a window) = (1− a)W ≈ e−aW (5.15)
Pr(loss in a window) = 1− (1− a)W ≈ 1− e−aW (5.16)

We now de�ne the TCP discrete time Markov chain. The states are the window sizes
and the transition probabilities can be calculated from (5.15) and (5.16). The resulting
Markov chain is depicted in Figure 5.10. In reality, the receiver announces a maximum
window size, which means that the Markov chain is �nite. As the tendency in the
Internet is towards increasing this value, we will ignore it in the analysis. We suppose
that it corresponds to a very large window size, which is never reached in practice.

We denote πi the stationary probability of state i. In steady state, the following
equations hold when a ¿ 1:

π1 = aπ1 + (1− e−2a)π2 + (1− e−3a)π3 (5.17)
πk = e−a(k−1)πk−1 + (1− e−a(2k+1))π2k+1 + (1− e−a2k)π2k, k ≥ 2 (5.18)

Let P be the transition matrix of the TCP Markov chain. It is easy to see that P is
stochastic, irreducible and aperiodic. Thus, according to the Perron-Frobenius theorem,
its dominant eigenvalue is 1 with corresponding right eigenvector π, which gives the
stationary distribution of the Markov chain. We can also deduce that lim

n→∞Pn = π · 1,
where 1 is a line vector of ones.

The matrix P is of the following form:

P =




1− e−a 1− e−2a 1− e−3a 0 · · ·
e−a 0 0 1− e−4a

0 e−2a 0 0
0 e−3a 0

0 e−4a · · ·
...




(5.19)

5.2 Autocorrelations in TCP Tra�c 95

If the initial distribution of windows is π(0), then after n RTT's: π(n) = Pnπ(0).
From the spectral decomposition of the matrix, we get that the convergence rate is
exponential:

‖π(n)− π‖ = O(ρn), (5.20)

for every ρ such that |λ2| < ρ < 1, where λ2 is the second largest eigenvalue of P.

5.2.2 Autocorrelation Function of a Single TCP Connection

Analysis under the Fixed Loss Probability Model

The tra�c intensity I(t) at time t is a function of the present window size W (t) and the
round trip time, which we denote as D:

I(t) =
W (t)

D
packets/second. (5.21)

We calculate the tra�c autocovariance function C(x) at time t:

C(x) = cov[I(t), I(t + x)] = E[I(t)I(t + x)]− (E[I(t)])2. (5.22)

As we are dealing with a stationary process, C(x) does not depend on time t, so we can
�x t = 0. If we express the time in RTT multiples n, the �rst term of (5.22) becomes:

E[I(t)I(t + nD)] = E[I(0)I(nD)] =
1

D2
E[W (0)W (nD)]. (5.23)

We continue by supposing that the initial window size is k and averaging on all k:

E[I(0)I(nD)] =
1

D2 E
k
[E(W (nD)k|W (0) = k)]

=
1

D2

∑

k

kE(W (nD)|W (0) = k)π(0)k, (5.24)

where π(n)i is the probability of the window being of size i after n RTT's.
We want to calculate the autocovariance of a system that has reached equilibrium,

so we can assume that the initial distribution π(0) is the stationary distribution π:

E[I(0)I(nD)] =
1

D2

∑

k

kE(W (nD)|W (0) = k)πk

=
1

D2

∑

k

k
∑

l

l (Pn1k)lπk, (5.25)

where 1k is a column vector with all entries being 0 except for entry k which is 1.

96 Analysis of Tra�c Autocorrelations in Large Networks

If we de�ne p as a column vector such that pi = iπi, and u as a line vector such
that ui = i, then:

E[I(0)I(nD)] =
1

D2

∑

l

l (Pnp)l =
1

D2
u(Pnp). (5.26)

For n →∞ we have:
1

D2
u(lim

n→∞Pnp) =
1

D2

∑

l

l
(

lim
n→∞Pnp

)
l
=

1
D2

∑

l

l (π · 1 · p)l

=
1

D2

∑

l

l(πl

∑

k

kπk) = (E[I(0)])2. (5.27)

Combining (5.22), (5.26) and (5.27) we get the autocovariance function:
C(nD) = E[I(0)I(nD)]− (E[I(0)])2

=
1

D2
u

(
Pnp− lim

n→∞Pnp
)

. (5.28)

From the spectral decomposition of P, as in (5.20), we conclude that the autocovari-
ance function decreases exponentially with rate O(ρn) for all ρ such that |λ2| < ρ < 1.
By normalizing we obtain the autocorrelation function, which is also O(ρn). The next
step in our analysis is to calculate numerically the eigenvalues of P for a large scale of
error rates. The calculations are performed with Matlab, by �xing a maximal window
size of 1000 packets, thus truncating the matrix P. The probability of reaching the
maximum window size is close to 0 for the error rates we consider, so ignoring larger
values does not a�ect signi�cantly our results. In the equivalent continuous model of
TCP, we scaled window sizes by a factor 1√

a
to obtain the limit distribution. We expect

to �nd a similar factor in the autocovariance function. This observation leads us to
approximate the spectral gap of the TCP Markov chain by expression C

√
a, where C is

a constant. In Figure 5.11, we compare the calculated spectral gap values, for di�erent
error rates a, and the values corresponding to the proposed approximation for C = 1.6.
In all our calculations, the second eigenvalue is real, of multiplicity 1, which means
that the autocovariance is O(λ2

n). More precisely, we have the following �rst order
approximation:

C(nD) =
A

D2
λ2

n ≈ A

D2
e−C

√
an, (5.29)

where A is another constant.
Observe that a very small error rate results in a second eigenvalue close to 1, meaning

that the autocorrelation function decreases very slowly (although exponentially).

Simulations of a Single TCP Connection

To verify that our simpli�ed model can predict the autocorrelation of a real TCP
connection, we conducted a number of simulations with the network simulator ns-2 [46].

5.2 Autocorrelations in TCP Tra�c 97

10
−4

10
−3

10
−2

10
−2

10
−1

a

1−lambda2
C*sqrt(a)

Figure 5.11: Spectral gap of the TCP Markov chain for di�erent error rates a.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

(a)

"correlation1.tr"
exp(-sqrt(2*0.05)*x)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

(b)

"correlation2.tr"
exp(-sqrt(2*0.005)*x)

Figure 5.12: TCP tra�c autocorrelations for error rates (a) a = 0.05, (b) a = 0.005.
The time unit is the RTT.

In the simulations, the RTT is mainly caused by the link delays and the error rate is
constant and due to a loss agent. By measuring the number of packets transmitted
during an interval equal to the RTT, we obtain the tra�c intensity I(t). We then
calculate the covariance of I(t) and I(t + x) when t varies and we normalize to obtain
the tra�c autocorrelation.

We present the results for two models with di�erent error rates, compared to the
calculations of the previous section. The duration of these simulations is 1000 seconds
of simulated time, and we start making measurements after waiting for the system to
stabilize for 100 seconds. In Figure 5.12 we draw the autocorrelation for error rates
a = 0.05 and a = 0.005. The time unit is the round trip delay, which in this case is
equal to 100ms.

The oscillations are due to the �nite duration of the simulations.

98 Analysis of Tra�c Autocorrelations in Large Networks

C(x)

Ν

Figure 5.13: Several TCP connections sharing the same link.

5.2.3 Long Term Dependencies in Multi-user TCP

In this section we will show that long term dependencies can arise from heavy tailed
round trip delays. In the �rst subsection we show that a link shared by several TCP
connections with round trip times with a heavy tailed distribution generates long term
dependence. In the second subsection we provide simulations to compare with the
theoretical results.

The remaining question is to �gure out whether or not the round trip delays are heavy
tailed. Recently it has been discovered that the internet topology contains numerous
heavy tailed features. Among them are the router degree, router reachability degree and
the length of paths inside the internet [30, 33, 17]. In [29] there is evidence that the
RTT distribution is also heavy tailed, i.e., the RTT complementary cumulative density
function P (RTT > x) corresponds to a power law with exponent approximately 1.5.
Equivalently, the rank of the RTTs follows a power law of exponent 2/3. Furthermore,
in Chapter 2 we showed that the delay distribution in a wireless setting can also be
expressed with a power law.

Autocorrelation of Several TCP Connections with Heavy Tailed Round Trip
Delays

We consider that the link is shared by several TCP connections with di�erent round trip
delays, so that the round trip delays distribution is heavy tailed (see Figure 5.13). To
simplify, we assume there is an in�nite sequence of TCP connections and the connection
with sequence number i has a round trip time equal to Di = Diβ for β > 0 and D �xed,
while the error rate a remains the same. Of course the analysis can also be carried out
with all parameters varying. In fact, a similar results about the tra�c autocorrelation as
the one we outline here can be obtained if we consider heavy-tailed error probabilities.

Since the TCP connections are assumed to be independent, the autocovariance

5.2 Autocorrelations in TCP Tra�c 99

function of the aggregated tra�c is equal to the sum of the autocovariance functions of
the individual connections:

C(x) =
∞∑

i=1

Ci(x). (5.30)

It comes from (5.29) and the RTT distribution that:

C(x) ≈ A

D2

∞∑

i=1

i−2β exp(−C
x

D
i−β). (5.31)

Function C(x) is a harmonic sum generated from function exp(−C x
D). The

asymptotic analysis of such sums can be easily performed with the use of the Mellin
transform [49]. In particular, we need to determine the de�nition domain and the
singularity set of the Mellin transform C∗(s) of function C(x), de�ned for appropriate
complex numbers s by:

C∗(s) =
∫ ∞

0
xs−1C(x)dx. (5.32)

From (5.31) we obtain (cf. [49]):

C∗(s) =
A

D2

(
C

D

)−s

ζ((2− s)β) Γ(s), (5.33)

where ζ(s) =
∑∞

i=1 i−s is Euler's zeta function and Γ(s) is Euler's Gamma function
(Γ(s) =

∫∞
0 xs−1e−xdx).

The function C∗(s) converges for all s such that Γ(s) and ζ((2 − s)β) converge.
Quantity ζ((2− s)β) has a simple pole at s = 2− 1

β . Therefore C∗(s) is de�ned on the
strip 0 < <(s) < 2 − 1

β . The classical results on the Mellin transform state that there
exist B and ε > 0 such that:

C(x) = Bx
1
β
−2(1 + O(x−ε)), (5.34)

when x →∞ [49]. This implies that the tra�c autocorrelation function decays following
a power law with exponent 1

β −2, and there are long term dependencies when 1
2 ≤ β ≤ 1.

However, if the number of TCP connections is �nite, we expect to observe a heavy
tailed behavior for a �nite time scale, which is a multiple of the largest RTT in the
system. In the next section, we will see that, even for a small number of connections,
this upper bound can be quite large.

Simulations of Several TCP Connections

We have simulated with ns-2 the case of many TCP connections with heavy tailed
RTT's sharing the same link. The simulation models 50 clients downloading very large

100 Analysis of Tra�c Autocorrelations in Large Networks

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

(a)

"50c_0.8_5000.tr"
x**(-0.75)

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

(b)

"50c_1_5000.tr"
x**(-1)

Figure 5.14: Tra�c autocorrelations of 50 TCP connections with heavy tailed RTT
distributions (a) Di = 40i0.8, (b) Di = 40i. The time unit is 500ms.

�les from di�erent servers. The tra�c of all connections traverses a shared link of
capacity 100 Mbps. Each client is connected to the shared link via a slow link at 10
Mbps and, at the other end, each server is connected via a private link at 1 Gbps. The
�xed propagation delays in these private links are chosen to follow a power law. The
tra�c measurements are made on the shared link in intervals of 500 ms. The packet
loss rate is a = 0.001 for each connection. Here, the bu�er losses which we described in
Section 5.2.1 are emulated by a loss agent for simplicity. The packet size is 1KB and
the maximum window size is 1000 packets.

In Figure 5.14 we draw the autocorrelation functions in log-log scale. The dashed
line shows the theoretical power law decrease. The RTT distributions are of the form
Di = 40iβ , with β = 0.8 in (a) and β = 1 in (b). According to the theoretical analysis,
the expected power law exponents for the tra�c autocorrelations are 1

β −2, that is −0.75
and −1, respectively.

The duration of the simulations is 5000s and the measurements start after a
stabilization period of 100s.

The �uctuations in Figure 5.14 are due to the �nite duration of the simulations and
the fact that there are RTT's which are larger than the time unit. However, for an exact
characterization of the autocorrelations in a �ner time scale, one must also consider
lower layer protocols as described in the previous section.

5.3 Conclusion

In this chapter, we showed that the power law distribution in service times of packets
going through bu�ers accessing IEEE 802.11 or ethernet MAC channels generates
heavy tailed tra�c autocorrelation functions. Moreover, we showed via analytic means

5.3 Conclusion 101

that TCP tra�c from a single connection cannot generate long term dependencies.
However, several connections with heavy tailed round trip delays can generate long term
dependencies. We argue that such a distribution is plausible in the Internet, as well as in
large wireless networks. Finally, although the analysis was performed in the asymptotic
case where the number N of parallel TCP �ows tends to in�nity, the simulations of the
system show a good agreement with the analytical results, even when the number N is
rather small. In future work, it is interesting to consider a more detailed continuous time
model, which would permit to observe di�erent properties in tra�c autocorrelations in
di�erent time scales, resulting in multi-fractal characteristics in Internet tra�c.

102 Analysis of Tra�c Autocorrelations in Large Networks

Chapter 6

Replicated Server Placement with
QoS Constraints

Since communication networks and in particular the Internet have become a widely
accepted medium for distributing data and all kinds of services, providers strive to
satisfy user QoS requirements in a cost e�ective manner. A possible solution to achieve
these requirements with existing protocols and networks consists in placing data servers
in appropriate locations according to quality of service constraints. Therefore, the
subject we study in this chapter is situated at the top of the protocol stack. We show
how QoS information obtained from lower layers can be used to improve the quality
of telecommunication services, as well as their organization. Within this framework,
we concentrate on the problem of placing replicated data servers in various parts of
the network so that the overall cost (i.e., cost of opening the servers and transferring
the data) is minimized, while satisfying user requirements that concern constraints on
the round-trip delay of data requests. We formulate this network planning problem in
a general manner, so that the algorithms we provide can be useful in many di�erent
contexts and applications, for instance in the placement of web proxies (which can
also act as multicast proxies), in distributed �le systems, in distributed databases, etc.
Except from the round trip delay, we can consider other kinds of QoS requirements
which can be expressed as an additive metric optimization problem, as for example the
over-delay ratio, that we discussed in Chapter 2. Hence, our approach can be used in
the context of wireless mesh networks, to counter the adverse e�ects of wireless links on
delay sensitive applications.

The problem of replicated server placement has been addressed in the past in several
papers. Krishnan et. al. [74] developed polynomial optimal solutions to place a given
number of servers in a tree network to minimize the average retrieval cost of all clients.
Li et. al. [79] investigated the placement of a limited number of Web proxies in a tree so
that the overall latency for accessing the Web server is minimized. In [71] two objectives
were studied: minimization of the overall access cost by all clients to access the Web site

104 Replicated Server Placement with QoS Constraints

and minimization of the longest delay for any client to access the Web site. The problem
was reduced to the placement of proxies in a set of trees whose root nodes are replicas
of the server. Jia et. al. [70] took the read and update operations into consideration.
Qiu et. al. [93] also assumed a restricted number of replicas and no restriction on the
number of requests served by each replica. A client could be served by a single replica
and the cost for placing a replica was also ignored. The objective was to minimize the
total cost for all clients to access the server replicas, while the cost of a request was
de�ned as the delay, hop count or the economic cost of the path between two nodes.
They compared several heuristic solutions and found that a greedy algorithm had the
best performance. Chen et. al. [31],[32] tackled the replica placement problem from an
other angle: minimizing the number of replicas while meeting clients' latency constraints
and servers' capacity constraints by self organizing these replicas into a dissemination
tree with small delay and bandwidth consumption for update dissemination. In [68] the
authors considered the problem of placing a set of mirrors only at certain locations such
that the maximum distance from a client to its closest mirror (server replica), based on
round trip time, is minimized. They assumed no cost for placing a mirror and showed
that placing mirrors beyond a certain number o�ered little performance gain. Sayal et.
al. [96] presented a number of selection algorithms to access replicated Web servers. The
algorithms found the closest replicated server for a client based on di�erent metrics such
as hop counts, round trip time and the HTTP request latency. In [102] the objective
was to minimize the amount of resources, storage and update, required to achieve a
certain level of service. They assumed that all servers in the network are organized into
a tree structure rooted at the origin server. The construction of a distribution tree for
a given set of replicas with the objective of minimizing the total communication cost
of consistency management has been studied in [100]. Tang et. al. [101] presented a
theoretical study on geographical replication of dynamic Web contents with the objective
of minimizing the consistency management costs in terms of update transfers and object
reconstruction. Cohen and Shenker [38] de�ned replication strategies in decentralized
unstructured systems. They assumed each node had capacity ρ, which was the number of
copies the node could hold and R was the total capacity of the system. Their replication
strategy was a mapping from the query rate distribution to the fraction of the total
system capacity allotted to each item.

In this chapter we approach the problem of replicated server placement with QoS
constraints from a system administrator's perspective. Our contributions are the
following. In contrast to most of the papers addressing similar problems, instead
of heuristics, we provide a solution with provable performance guarantees for any
possible network topology and client distribution. Also, rather than attempting to
optimize metrics related to communication delays, we impose upper bounds on the
delay requirements of data requests and attempt to minimize the operating cost of
server placement, while respecting the delay bounds. Therefore, our approach can be
adapted to di�erent kinds of delay requirements. Moreover, in the optimization we take
into account the multiplicity of server types that may be available at a site. As will
be seen, the problem is NP-hard and therefore an optimal solution is not likely to be

6.1 Problem Formulation 105

found. We present a pseudopolynomial approximation algorithm and a polynomial time
algorithm that provide guaranteed approximation factors with respect to the optimal
for the problem at hand.

The rest of the chapter is organized as follows. In Section 6.1, we formulate the
problem in details and we decompose it into three subproblems that can be solved
independently. In Section 6.2, we present a pseudopolynomial time approximation
algorithm. In Section 6.3, we provide a polynomial time algorithm with approximation
factor close to the best possible (unless NP⊆DTIME(nO(log log n))). The performance of
the algorithm in simulated networks is studied in Section 6.4.

6.1 Problem Formulation

Let G(V,E) represent a network with node set V , and link set E. Let also H be a subset
of V . We are interested in placing servers at some of the nodes in H, that will serve
requests originated by any of the nodes in V . We assume that the servers contain the
same information and hence any node may obtain the requested information by accessing
any of the servers.

With link (i, j) there is an associated delay dij . Requests should be obtained in a
timely fashion, and hence there is a bound D on the time interval between the issuing
of the request and the reception of the reply. We refer to this bound as the �round-
trip delay bound�. Note that the processing time of a request at the server can be
incorporated in this model by replacing D with D − dp, where dp is an upper bound
on the request processing time at the server. The absolute delay values associated with
each link are appropriate for wired networks, but it can be argued that they do not o�er
complete information for wireless links. In fact, in a wireless environment, even when
the topology remains stable, the quality of the links may vary signi�cantly. Therefore,
in our problem formulation it is possible to substitute the constant link delay values
with other additive metrics, as for example worst case estimates for the parameters used
in Section 2.2.2 characterizing the delay distribution. In the remainder of the chapter,
we will refer to absolute round trip delay bounds and we present optimized algorithms
for this particular case, however it is possible to incorporate the algorithms presented in
Section 2.3 in order to vary the QoS requirements.

The load in requests per second originated by node i ∈ V is gi. To transfer an
amount of x requests per second, it is required to reserve bandwidth αx on the links
traversed by the requests. The transfer of server replies corresponding to the x requests
back to the requesting node, requires the reservation of βx units of bandwidth on the
links traversed by the replies.

The cost of transferring 1 unit of bandwidth on link (i, j) is eij . Hence the cost of
transferring x requests per second on link (i, j) is αeijx while the cost of transferring the
replies to these requests is βeijx. A node i can split its load gi to a number of servers

106 Replicated Server Placement with QoS Constraints

and routes as long as the delay bound D between the issuing of the request and the
reception of the reply is satis�ed. At each node j ∈ H there is a set Sj of server types
that can be selected. Server type s, 1 ≤ s ≤ Kj , (Kj = |Sj |) costs fs

j units and can
process up to U s

j requests per second.
Our objective is to determine,

1. the locations (subset of the nodes in H) where the servers will be placed,

2. the amount of tra�c (in requests per unit of time) that will be routed by each
node to each of the selected locations,

3. the routes through which the node tra�c will be routed to each of the selected
locations,

4. the type of servers and the number of each type that should be opened at each
location,

so that,

1. the round-trip delay bound for each request is satis�ed,

2. the total cost of using the servers and utilizing the link bandwidth is minimized.

Notice that in the current setup we do not consider link capacities. In e�ect we
assume that the network links have enough bandwidth to carry the requested load by
the network nodes. Since we consider link costs, this is a reasonable assumption, because
any capacity that is required can be provided by the ISP, which in case of bandwidth
saturation can either add more capacity, or charge an extra cost for the use of that link.
Furthermore, in an environment where the server requests on a given link are a small
portion of the total amount of information that can be supported by the network this
assumption is of no consequence. However, in the case where bottleneck links could
emerge we need to take special care to apply excessive costs to these links in order to
avoid the concentration of too much tra�c. The general problem where link capacities
are also included, is a subject of further research.

6.1.1 Optimization Problem Formulation

A feasible solution to the problem consists of the following:

• A set of locations F ⊆ H where the servers will be placed.

• A subset of server types Gj ⊆ Sj that should be opened at location j ∈ F.

6.1 Problem Formulation 107

• The number ns
j of server types s ∈ Gj that should be opened at location j ∈ F .

• A set of round-trip routes Rij between node i ∈ V and facility j ∈ F . A round-trip
route, denoted rij = (prij , qrij), consists of two simple paths, prij and qrij . Path
prij originates at node i and ends at server location j, and is used for transferring
requests. Path qrij originates at server location j and ends at node i, and is used
for transferring replies.

• The amount of requests per unit of time, xrij , accommodated on round-trip route
rij .

The constraints of the problem are the following:

• The request load of each node should be satis�ed. That is,
∑

j∈F

∑

r∈Rij

xr = gi, i ∈ V. (6.1)

• The round-trip delay of each round-trip route should be at most D. That is,
∑

l∈p

dl +
∑

l∈q

dl ≤ D, for r = (p, q) ∈ R, (6.2)

where R is the set of all round-trip routes, R = ∪i∈V ∪j∈F Rij , and the summation
is over all links of the corresponding paths.

• The total server capacity at server location j ∈ H should be at least as large as
the request rate arriving at location j. That is,

∑

i∈V

∑

r∈Rij

xr ≤
∑

s∈Gj

ns
jU

s
j , j ∈ H. (6.3)

The objective cost function to be minimized is
∑

j∈F

∑

s∈Gj

ns
jf

s
j +

∑

l∈E

el(α
∑

r=(p,q)∈R
l∈p

xr + β
∑

r=(p,q)∈R
l∈q

xr). (6.4)

The �rst term in (6.4) corresponds to the cost of opening the servers, while the second
term corresponds to the cost of reserving bandwidth on the network links in order to
satisfy the node requests. The term involving the factor α corresponds to the bandwidth
reserved on a link for transmission of node requests, while the term involving the factor
β corresponds to the bandwidth reserved on the same link for transmitting replies.

From now on we assume that the node loads gi, i ∈ V, are nonnegative integers and
that splitting of these loads to a number of server locations may occur in integer units.
In practice this is not a major restriction, since usually the load is measured in multiples
of a basic unit.

We summarize the basic notations in Table 6.1.

108 Replicated Server Placement with QoS Constraints

Table 6.1: Notation table.

dij , eij delay and cost of link (i, j) F ⊆ H set of locations
x requests/s Gj ⊆ Sj , set of server types opened at j in F
gi load originated by node i ns

j number of server types s ∈ Gj at j ∈ F

rij =
(
prij , qrij

)
round-trip route Rij round-trip routes between i in V and j in F

D delay bound of rij R = ∪i∈V ∪j∈F Rij

H ⊆ V, set of possible server locations xrij
requests/s at rij

Sj set of possible server types at j ∈ H fs
j cost of server s at j ∈ H

Us
j requests/s processed by server s at j ∈ H fj (y) min server cost at location j for load y

6.1.2 Problem Decomposition

In this section we decompose the problem de�ned in Section 6.1.1 into three subproblems
which can be solved independently. As will be seen all three problems are NP-hard.

For a round-trip route r = (p, q), de�ne the cost Cr = α
∑

l∈p el+β
∑

l∈q el. Consider
a feasible solution, π, for the optimization problem.

We can rewrite the second term in (6.4) as follows.

∑

l∈E

el


α

∑

r=(p,q)∈R
l∈p

xr + β
∑

r=(p,q)∈R
l∈q

xr


 =

∑

i∈V

∑

j∈F

∑

r∈Rij

Crxr. (6.5)

Let r∗ij be a minimum-cost round-trip route between node i and server location j,
satisfying the round-trip delay D. Consider the feasible solution that uses the same
server locations, the same servers at each location, but assigns all the request load from
node i to server location j on the round-trip route r∗ij , i.e., it assigns on r∗ij the load

xij =
∑

r∈Rij

xr.

It follows from (6.4) and (6.5) that the new solution has cost smaller than or equal
to the cost of solution π. Hence it su�ces to restrict attention to solutions that assign
all the load from node i to server location j, on the round-trip route r∗ij . In this case,
setting cij = Cr∗ij , the term in (6.4) becomes

∑
i∈V

∑
j∈F cijxij .

Consider now the �rst term in (6.4). Let fj(y) be the minimum cost server type
assignment at location j, under the assumption that the request load at that location is
y. By de�nition, the feasible solution that assigns this minimum cost server assignment
at location j for request load yj =

∑
i∈V

∑
r∈Rij

xr, is at least as good as π. Hence, we
may replace this term with

∑
j∈F fj (yj) .

6.1 Problem Formulation 109

8

s

w

u

j

v s

wu

j

v

1 1 2 2
server types: , , ,f U f U

s

wu

j

v

suc
svc

juc
jwc

swc

jvc

(a) (b) (c)

suc swc jwcjvc

2 servers of

type 1
1 server of

 type 2
Possible locations sf y

y

jf y

y

Figure 6.1: a) A graph with �ve clients, V = {s, u, v, w, i}, two possible locations H = {s, j}
and two types of servers for each location. b) The modi�ed graph where each link represents the
round-trip minimum cost routes, satisfying the delay constraint between a client and a possible
location. Cost functions fs (s) and fj (y) of the possible locations. c) The resulting graph.
Servers have been placed at the appropriate locations.

For our purposes, it is important to observe that the function fj(y) de�ned in the
previous paragraph is subadditive, i.e., it satis�es the inequality

fj(y1) + fj(y2) ≥ fj(y1 + y2) for all y1 ≥ 0, y2 ≥ 0. (6.6)

To see this, note that if S(y1), S(y2) is the set of servers achieving the optimal costs
fj(y1), fj(y2) respectively, then the set of servers S(y1)∪S(y2) provides a feasible solution
for request load y1 + y2, with cost fj(y1) + fj(y2). Since fj(y1 + y2) is by de�nition the
minimum cost server assignment with request load y1 + y2, (6.6) follows.

From the discussion above it follows that we need to solve the following problems.
Problem 1. Given a graph, �nd a round-trip route with minimum cost, satisfying the
round-trip delay bound for any node i ∈ V and server location j ∈ H. This determines
cij , i ∈ V, j ∈ H.

Problem 2. Given a set of server types Sj and a required load y at node j ∈ H, �nd the
optimal selection of server types and the number of servers ns

j(y) of each type s so that
the load y is accommodated. That is, determine ns

j(y) so that
∑

s∈Gj
ns

j(y)U s
j ≥ y and

fj(y) =
∑

s∈Gj
ns

j(y)fs
j is minimal.

Problem 3. Given non-decreasing subadditive functions fj(y), costs cij , integer node
loads gi ≥ 0, i ∈ V , solve

min
∑

j∈H

fj(y) +
∑

i∈V

∑

j∈H

cijxij

subject to:
∑

j∈H

xij = gi, i ∈ V,
∑

i∈V

xij = y, j ∈ H, xij ≥ 0.

A graphical representation of the problem is depicted in Figure 6.1.

110 Replicated Server Placement with QoS Constraints

The decision problems associated to Problems 1 and 2 are NP-hard. Indeed, when
β = 0, the associated decision problem to Problem 1 is reduced to the Shortest Weight-
Constrained Path problem which is known to be NP-hard [55]. Also, the associated
decision problem to Problem 2 amounts to the Unbounded Knapsack Problem which
is NP-hard [72]. However for both problems pseudopolynomial algorithms exist (see
Section 6.2) and, as will be discussed in Section 6.3, fully polynomial time approximation
algorithms can be developed. Regarding Problem 3, there is an extensive work in the
literature under various assumptions on the function fj(y) and on the costs cij ([35],
[73], [23], [67], [89], [34], [59]). Most of the work is concentrated on the case of �metric�
costs, i.e., it is assumed that costs satisfy the inequality cij + cjk ≥ cik. However, this
inequality does not hold in our case. Moreover, fi(y) is assumed computable at unit
cost while in our case fi(y) cannot be computed in polynomial time (unless P = NP).

In the next section, by combining algorithms for the three problems discussed above,
we provide a pseudopolynomial time approximation algorithm for the problem addressed
in this thesis. The algorithm for Problem 3 is based on the algorithm proposed in [59]
and uses the fact that fj(y) is a subadditive step function. In Section 6.3 we modify
the algorithm in order to obtain a polynomial time algorithm with approximation factor
close to the best possible (unless NP⊆DTIME(nO(log log n))).

6.2 Pseudopolynomial Algorithm

In this section we discuss pseudopolynomial algorithms for each of the Problems 1, 2
and 3. By combining these algorithms we get a pseudopolynomial algorithm for the
problem at hand.

6.2.1 Pseudopolynomial Algorithm for Problem 1

This problem is a multi-metric optimization problem as the one described in Sec-
tion 2.3.2. Therefore, it can also be solved using dynamic programming. In fact,
in case we consider over-delay ratio requirements, the second algorithm presented in
Section 2.3.2 can be used in this context. However, the adaptation to general link costs
(instead of the hop count for the �rst metric) makes it also pseudopolynomial.

We will now discuss the �xed delay case in more detail.
Let Fij(d) be the value of the minimum cost (forward) path from node i to j with

delay at most d, and Bij(d) the value of the minimum cost (backward) path from node
j to i with delay at most d. Here, for the computation of forward and backward paths
the link costs are taken as αeij , βeij respectively. Then it can be easily seen that,

cij = min
0≤d≤D

{Fij(d) + Bij(D − d)} (6.7)

Based on (6.7), cij can be determined provided Fij(d) and Bij(d) are known. There

6.2 Pseudopolynomial Algorithm 111

are fully polynomial time, generally complex, algorithms for computing these quantities.
In this section we will concentrate on e�cient pseudopolynomial algorithms that work
well in practice [97],[85]. We provide the discussion for Fij(d), since the same holds for
Bij(d). The algorithms in [97],[85] are based on the fact that Fij(d) is a right continuous
non-increasing step function with a �nite number of jumps. Hence, in order to compute
Fij(d) one needs only to compute its jumps, which in several practical networks are not
many. Another useful feature of these algorithms is that in one run they compute Fij(d)
from a given node j ∈ H to all other nodes in V .

Let Kf
ij be the number of jump points of Fij(d) and Kb

ij be the number of jump
points of Bij(d). Let df

ij(k), 1 ≤ k ≤ Kf
ij , i ∈ V be the jump points of Fij(d) such that

df
ij(k − 1) < df

ij(k) ≤ D, k = 2, ..., Kf
ij . Similarly, let db

ij(k), 1 ≤ k ≤ Kb
ij , i ∈ V be the

jump points of Bij(d). The optimal round-trip costs cij , j ∈ H, i ∈ V can be computed
using Algorithm 3. The jumps in steps 2 and 3 can be computed using the algorithm
in [97]. The �for� loop in step 6 implements the minimization required by (6.7), taking
into account that Fij(d) and Bij(d) are step functions.

Algorithm 3 Algorithm for �nding the minimum cost round-trip route

Input: Graph G with link costs and delays, round-trip delay bound D.

Output: The array c with the costs of the round-trip routes.

1. For any node j in H do

2. Compute jump points of Fij(d), df
ij(k), 1 ≤ k ≤ Kf

ij , i ∈ V

3. Compute jump points of Bij(d), db
ij(k), 1 ≤ k ≤ Kb

ij , i ∈ V

4. For i ∈ V do

5. cij = ∞

6. For k = 1 to Kf
ij do

7. Let db
ij be the largest jump point of Bij(d) not exceeding D− df

ij(k)

8. cij ← min
{

cij , Fij(d
f
ij(k)) + Bij(db

ij)
}

We now discuss the complexity of Algorithm 3. For the purposes of complexity
analysis, in the rest of the chapter we will assume that in the worst case H = V .
Using the algorithm and the analysis presented in [97] it can be proved that the
worst case running time for the computation of the jump points for all nodes in H is
O (|V |D (|V | log |V |+ |E| log |V |)) . The running time of the minimum operation (line 8)

112 Replicated Server Placement with QoS Constraints

is O
(
|V |2 D

)
. Thus the running time of this algorithm is dominated by the time needed

to compute the jump points.

6.2.2 Pseudopolynomial Algorithm for Problem 2

We restate Problem 2 in its generic form, to simplify notation.
Problem 2 (generic form). Given a set of server types S, server capacities U s,

server costs f s > 0 and a required load y, �nd the optimal selection of server types G
and the number of servers of each type so that the load is satis�ed. That is, determine
ns(y) so that

∑
s∈G ns(y)U s ≥ y and f(y) =

∑
s∈G ns(y)f s is minimal.

Problem 2 is similar to the Unbounded Knapsack Problem (UKP) [72]. The
di�erence is that in UKP the inequality constraint is reversed and maximization of
the cost

∑
s∈Gj

ns(y)fs is sought. A pseudopolynomial algorithm for Problem 2 can be
developed in a manner analogous to the one used for UKP, using dynamic programming.
Speci�cally, number the servers from 1 to |S| and de�ne A(f, i) to be the largest load
achievable by using some among the �rst i servers so that their total cost is f . The
entries of the table A(f, i) can be computed in order of increasing i and f using the
dynamic programming equation

A(f, i + 1) = min{A(f, i), U i+1 + A(f − f i+1, i + 1)}, (6.8)

with A(f, 0) = 0 for all f , A(f, i) = −∞ if f < 0, and A(0, i) = 0 for all 0 ≤ i ≤ K. The
optimal server selection cost is then determined as f(y) = min{f | A(f, K) ≥ y}. By
keeping appropriate structures one can also determine the server types and the number
of servers of each type for achieving the optimal solution.

The function f(y) has properties similar to those of Fij(d) and Bij(d). Speci�cally, it
is a right continuous non-decreasing step function. Moreover, based on (6.8) and using
an approach similar to [21], an e�cient pseudopolynomial algorithm can be developed
for �nding the jump points of f(y). Again, an important property in our case is that in
one run of the algorithm, all jump points of f(x), for integer x ≤ y, can be determined.
The running time of this approach can be bounded by O (|S| y), where |S| is the number
of server types.

6.2.3 Pseudopolynomial Algorithm for Problem 3

In [59] a polynomial time algorithm is provided for Problem 3 for the case of concave
facility cost functions. It is assumed that the cost fj(y) of placing servers at node j ∈ H
to accommodate load y can be computed at unit cost and that all nodes have unit
loads. It is shown that the proposed algorithm achieves an approximation factor of ln |V |
compared to the optimal. In our case we have arbitrary integer node loads gi while the
functions fj(y) are subadditive and can be computed exactly only in pseudopolynomial

6.2 Pseudopolynomial Algorithm 113

time. As observed in [82] the assumption of unit loads can be removed by considering
a modi�ed network where node i is replaced with gi nodes each having the same costs
to nodes in H as node i has. However, now the algorithm becomes pseudopolynomial
(even assuming unit costs for computing fj(y)) since the number of nodes in the modi�ed
network can be as large as |V | gmax, where gmax = maxi∈V {gi}.

The approximability proof for general costs cij in [59] carries over without modi�ca-
tion if fj(y) are subadditive rather than concave functions. Hence the approximability
factor in our case becomes ln (|V | gmax).

To our knowledge, the algorithm in [59] is the only one proposed in the literature,
that can provide performance guarantees in terms of approximability to the optimal for
general costs cij . Moreover, its worst case running time is among the best of the proposed
algorithms. Hence, we will use the algorithm in [59] as the basis for our development.
We present it below (Algorithm 4) adapted to our situation. For the moment we assume
that fj(y) can be computed exactly.

The algorithm performs a number of iterations. At each iteration a node j∗ in H
is selected and the load of some of the nodes in V is assigned to j∗. Let matrix ψ(i, j)
represent the total load from node i assigned to server location j at the beginning of
an iteration (i.e., the beginning of the while loop at step 3). Hence the load of node i
remaining to be assigned is r(i) = gi −

∑
j∈H ψ(i, j).

A node such that r(i) > 0 is called unassigned. For server location j ∈ H consider the
unassigned nodes arranged in non-decreasing order of their costs cisj , i.e., ci1j ≤ ci2,j ≤
.... ≤ cimj . Let Rj(n) =

∑n
s=1 r(is), 1 ≤ n ≤ m, and nj(k) = max {n : Rj(n) ≤ k}.

De�ne also lj(k) = k −Rj(nj(k)).
The variable loadj holds the total load assigned to node j ∈ H at the beginning

of an iteration. In step 5, the most economical (cost per unit of assigned load) load
assignment for each of the server locations is computed. In steps 7 and 8, the server
location with the minimum economical assignment is selected and the associated load is
placed on this location. In steps 9 to 13, updating of the remaining loads of the nodes
that will place their load on the selected server location is taking place.

The average running time of this algorithm can be improved by taking advantage
of the fact that in this case fj(y) is a step function. Speci�cally, in the this chapter's
appendix it is shown that in order to compute the minimum in step 5, one needs to do
the computation only for values of k such that loadj + k is a jump point of fj(y), or
k = Rj(n) for some n.

In the appendix, we also show that with the use of appropriate data structures and
assuming unit cost for computing fj(y), the running time of Algorithm 4 is

O(|V |3 g2
max). (6.9)

Letting |S| be the maximum number of server types in any of the server locations,

114 Replicated Server Placement with QoS Constraints

Algorithm 4 Generic algorithm for solving Problem 3

Input : Graph G, the array c with the costs of the routes and the Knapsack list.

Output: Locations and types of servers, routes and load assigned from each client to
the selected locations.

1. For j ∈ H set loadj = 0

2. For i ∈ V set ψ(i, j) = 0

3. While there is an unassigned node do

4. For j ∈ H do

5. t(j) = mink

fj(loadj+k)−fj(loadj)+
Pnj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1j

k

6. k(j) = arg mink

fj(loadj+k)−fj(loadj)+
Pnj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1j

k

7. Let j∗ = arg minj∈H {t(j)} , k∗ = k (j∗)

8. Set loadj∗ ← loadj∗ + k∗

9. For 1 ≤ s ≤ nj∗(k∗) do

10. ψ(is, j∗) ← ψ(is, j∗) + r(is)

11. r(is) = 0

12. ψ(inj∗ (k∗)+1, j
∗) = lj∗(k∗)

13. r(inj∗ (k∗)+1) ← r(i + 1)− lj∗(k∗)

taking into account that the maximum load on any facility is |V | gmax and that we
may need to compute at most |V | functions fj(y), we conclude that the worst case
computation time of the complete algorithm is

O
(
|V |D (|V | log |V |+ |E| log |V |) + |S| |V |2 gmax + |V |3 g2

max

)
. (6.10)

The term |V |D (|V | log |V |+ |E| log |V |) corresponds to the computation of cij . The
term |S| |V |2 gmax corresponds to the cost of computing fj(|V | gmax), j ∈ H. Note that
as mentioned in Section 6.2.2, for each j ∈ H, computing fj(|V | gmax) also computes all
the jump points of fj(y), y ≤ |V | gmax. As a result, when implementing Algorithm 4,
fj(y) can be computed at unit cost. Hence the third term in (6.10) represents the worst
case computation time for running Algorithm 4. As mentioned in Section 6.2.3 the

6.3 Polynomial Algorithm 115

approximability factor of this algorithm is ln (|V | gmax).
As will be seen in Section 6.4 the proposed algorithm works well in practice.

However, since (6.10) involves the input parameters D and gmax, the proposed algorithm
is pseudopolynomial. It is theoretically important to know whether there exists a
polynomial time algorithm that can provide a guaranteed approximation factor with
respect to the optimal. In the next section we will show that this can be done based on
the algorithm presented above.

6.3 Polynomial Algorithm

In this section, by generalizing the approach in [59] we provide a polynomial time
approximation algorithm for arbitrary integer node loads and non-decreasing subadditive
functions that are not necessarily computable exactly in polynomial time. Note that a
concave function is also subadditive and hence our results carry over to concave functions.
However, as will be seen, for concave functions the approximation constants can be made
smaller.

The approach we follow is to provide polynomial time approximation algorithms for
each of Problems 1, 2 and 3. By combining these algorithms, we get a polynomial time
algorithm for the problem at hand with guaranteed performance factor compared to the
optimal.

In the previous section the costs cij and the functions fj(y) were computed exactly
using pseudopolynomial algorithms for Problems 1 and 2 respectively. The use of
polynomial time approximation algorithms for these problems provides only approximate
values for cij and fj(y). That is, we can only ensure that for any ε > 0, we provide in
polynomial time values cij and f j(y) (for �xed y) such that cij ≤ cij ≤ (1 + ε)cij

and fj(y) ≤ f j(y) ≤ (1 + ε)fj(y), y ≥ 0. Replacing cij and fj(y) with cij and
f j(y) in Problem 3 and providing an a-approximate solution for the resulting instance,
provides also an (1+ε)a- approximate solution for the original problem. This important
observation was used in [82] and we present it here in the next lemma.

Lemma 1 Consider the problems

min
x∈A

g(x), A ⊆ Rn, (6.11)

min
x∈A

g(x), A ⊆ Rn, (6.12)

where g(x) ≥ 0. If for x ∈ A,

g(x) ≤g(x) ≤bg(x), (6.13)

then an a−approximate solution for problem (6.12), a ≥ 1, is a ba-approximate solution
for (6.11).

116 Replicated Server Placement with QoS Constraints

Proof: See Appendix.
Using Lemma 1 we can proceed as follows.

• Compute in polynomial time approximate values cij ,

• Compute in polynomial time approximate values f(y) (for a given y ≥ 0),

• Provide an approximation algorithm for Problem 3, based on Algorithm 4, using
the approximate values cij , f(y).

Di�culties arise in the approach outlined above for the following reasons. First, to
compute the minimum in step 5 of Algorithm 4, f(y) must be computed for all values of
y in the worst case, and the number of these computations is bounded by |V | gmax, i.e.,
it is not polynomial in the input size, even if f(y) is computable at unit cost. Second, the
amount of load assigned to a node in H at each iteration of the �for� loop at step 9 can
be 1 in the worst case and hence the number of iterations of the while loop may be again
|V | gmax in the worst case. Third, while f(y) is subadditive, it cannot be guaranteed
that f(y) is subadditive as well, and hence the approximation factor with respect to
the optimal cannot be guaranteed a priori. Hence, the straightforward application of
Algorithm 4 will result in pseudopolynomial worst case running time and will not provide
us with guaranteed performance bounds. As will be seen, however, we can modify the
approach so that the resulting algorithm runs in polynomial time at the cost of a small
increase in the approximation factor.

6.3.1 Polynomial Algorithms for Problems 1 and 2

A fully polynomial time approximation algorithm for the problem of �nding the
minimum constrained path from a source to a given destination was developed by
Hassin [60]. An improvement of this algorithm was presented in [81]. The approach
in [81] consists in de�ning a test procedure, which is used iteratively to �nd upper and
lower bounds for the restricted shortest path. The latter algorithm can be modi�ed in
order to develop a fully polynomial time approximation algorithm for Problem 1, that
is �nding a constrained round trip path. The adaptation consists in considering bounds
for round trip paths and modifying Algorithm SPPP in [81], which constitutes the test
procedure mentioned before. The details on the adaptation can be found in the technical
report [10]. The resulting algorithm runs in t = O(|E||V |(log log |V | + 1/ε)) for each
pair of (client, server) nodes.

A fully polynomial time approximation algorithm for Problem 2 can be developed
by paralleling the approach for the UKP [72, Section 8.5]. The resulting algorithm has
a worst case running time of T = O(1

ε2 |S| log |S|), where |S| is the number of server
types.

6.3 Polynomial Algorithm 117

6.3.2 Polynomial Algorithm for Problem 3

We now address the main problem of Section 6.3, i.e., the development of a polynomial
algorithm for Problem 3, using the approximate costs cij and f j(y). We intend to use
Algorithm 4 as the basis for the development. Assume for the moment that cij and
fj(y) are computable exactly. As was mentioned above the fact that the node loads are
general nonnegative integers in our case, renders the algorithm pseudopolynomial even
under this assumption. However, if the functions fj(y) are concave, then the algorithm
becomes polynomial. This is due to the fact that for concave functions Algorithm 4 can
assign all the load of each node to a single server. This is shown in the next lemma.
Recall that a function f(y) de�ned for integer y is called concave if for all y in its domain
of de�nition it holds, f(y + 1)− f(y) ≤ f(y)− f(y − 1).

Lemma 2 If the functions fi(y) are concave and Algorithm 4 is applied, then the load
of each node in V can be assigned to a single server.

Proof: See Appendix.
Lemma 2 implies that when cij and fj(y) are computable in polynomial time and

fj(y) are concave, the algorithm runs in polynomial time. Indeed, if t is the worst case
computation time needed to compute ε−approximate cij , i, j ∈ V, according to the
algorithm used to solve Problem 1, then the time needed to compute the |V |2 values of
cij is O(|V |2 t). Next, using the cij as input to Algorithm 4, letting T be the worst case
computation time needed to compute ε−approximate f j(y) according to the algorithm
used to solve Problem 2 and following a similar reasoning as in the proof of (6.9), it can
be seen that the worst case running time of the Algorithm 4 is O(|V |3 T)). Hence the
computation time for the whole algorithm is O(|V |3 T + |V |2 t) and the approximation
factor is (1 + ε) log (|V | gmax). Since as discussed in Section 6.3.1 both t and T are
polynomial for given ε, the resulting algorithm is also polynomial.

We now return to the problem at hand. In our case, cij and fj(y) are not computable
in polynomial time and, moreover, fi(y) is subadditive rather than concave. Hence
the results above cannot be applied directly to obtain a polynomial time algorithm.
Regarding cij , as discussed in Section 6.3 we replace cij with polynomially computable
approximations cij . This takes time O(V 2t). Dealing with fj(y) requires more care
since, as it is also discussed in 6.3, simply approximating fj(y) for each y results in
pseudopolynomial time algorithm and in no approximation factor guarantees. The
approach we follow is to construct in polynomial time a concave function f̃j(y), such
that for any y in its domain of de�nition f̃j(y) is computed in polynomial time and,

fj(y) ≤ f̃j(y) ≤ afj(y). (6.14)

Then, by applying Lemmas 1 and 2 we get a polynomial time algorithm. To proceed we
need some de�nitions.

118 Replicated Server Placement with QoS Constraints

(y)

(y)

cost

capacity

φ

y
1

y
2

y
3

y
4

y
5

y
6

φ
2

Figure 6.2: A subadditive step function φ(y) with its jump points y1, ..., y6 and its upper
hull φ2(y).

Consider a nonnegative function φ : {0, 1, . . . , W} → Q+ (Q+ is the set of
nonnegative rationals) and let A be the convex hull of the set of points S =
{(y, φ(y)), y = 0, 1, . . . ,W} ∪ {(0, 0), (W, 0)}. Recall that the convex hull of a set of
points S is the smallest convex set that includes these points. In two dimensions it is a
convex polygon. The vertices of the polygon correspond to a subset of S, of the form
S′ = {(yk, φ(yk)), k = 1, ..., K} ∪ {(0, 0), (W, 0)} where yk ∈ {0, 1, . . . ,W}, y1 = 0, yK =
W , and yk < yk+1 for all k, 1 ≤ k ≤ K − 1.

Consider the piecewise linear function φ2(y) with break points the set S′, i.e., for
yk ≤ y < yk+1, φ2(y) is de�ned as,

φ2(y) = φ(yk) +
φ(yk+1)− φ(yk)

yk+1 − yk
(y − yk). (6.15)

The function φ2(y) is concave. We call φ2(y), the �upper hull� of φ(y). An example
of a subadditive step function and its upper hull is depicted in Figure 6.2. If φ(y)
is non-decreasing, then φ2(y) is also non-decreasing. By construction it holds for all
y ∈ {0, 1, ..., W},

φ(y) ≤ φ2(y). (6.16)

As the next lemma shows, if the function φ(y) is subadditive and non-decreasing,
then it also holds that its upper hull is at most 2φ(y).

Lemma 3 If a function φ : {0, 1, . . . ,W} → Q is subadditive and non-decreasing, then
it holds for its upper hull φ2(y), φ2(y) ≤ 2φ(y).

Proof: See Appendix.

6.3 Polynomial Algorithm 119

Consider now the subadditive function f(y) of interest in our case (we drop the index
j for simplicity). As a consequence of the approximate solution to Problem 3, for a given
ε > 0 and a given y ∈ {0, 1, ..., W}, W = |V | gmax, we can construct in polynomial time
a non-decreasing function f (y) such that

f(y) ≤ f(y) ≤ (1 + ε)f(y). (6.17)

Let f2(y) be the upper hull of f(y). By (6.17), f2(y) is smaller than or equal to the
upper hull of (1+ ε)f(y), which in turn by Lemma 3 is smaller than 2(1+ ε)f(y) (notice
that (1 + ε)f(y) is subadditive). Hence we will have

f(y) ≤ f2(y) ≤ 2(1 + ε)f(y). (6.18)

Since f2(y) is concave, if we replace cij with cij and f(y) with f2(y), we can
provide an approximate solution to Problem 2 with approximation factor log (|V | gmax).
From (6.18) and Lemma 1 we will then have a solution to our original problem with
approximation factor 2(1 + ε) log |V gmax|.

The problem that remains to be solved is the construction of the upper hull
of f(y) in polynomial time. There are at most W ′ = W + 2 points in the set{
(y, f(y)), y = 0, 1, . . . , W

} ∪ {(0, 0), (W, 0)} and the upper hull of the points in this
set can be constructed (i.e., its break points can be determined) in time W ′ log W ′ [42].
However, in our case W = |V | gmax and hence the straightforward construction of the
upper hull requires pseudopolynomial construction time. To address the latter problem,
we construct �rst a non-decreasing step function f̂1(y) with polynomial number of jump
points (y is a jump point of f̂1(y) if f̂1(y− 1) 6= f̂1(y)) that is a good approximation to
f(y), and then we construct the upper hull of f̂1(y). Since f̂1(y) has polynomial number
of jump points its upper hull will also have polynomial number of break points and can
be constructed in polynomial time.

Algorithm 5
Input : Algorithm for computing f(y), ε > 0.

Output: The sequence, f̂k, k = 0, 1, ..., K.

1. f̂0 = 0, f̂1 = f(1), y1 = 1, k = 2,

2. f̂k = (1 + ε)f(yk−1)

3. If f̂k > f(W), set yk = W, K = k and stop. Else,

4. Determine yk such that f(yk − 1) ≤ f̂k ≤ f(yk)

5. k = k + 1, go to step 2.

120 Replicated Server Placement with QoS Constraints

We have by de�nition f(0) = 0, f(1) = f(1) > 0. Consider the sequence of integers
f̂0 = 0, f̂k, k = 1, ...,K, generated by Algorithm 5. The sequence f̂k, k = 0, 1, ..., K
can be used to construct a step function that is a good approximation to f(y). This is
shown in the next lemma.

Lemma 4 a) In Algorithm 5, K = O
(

1
ε log f(W)

f1

)
.

b)The worst case running time of Algorithm 5 is O
(
T log(W)1

ε log f(W)

f1

)
, where T

is the worst case time (over all y, 1 ≤ y ≤ W) needed to compute f(y).
c) Consider the step function de�ned as follows: if yk ≤ y < yk+1 for some k,

1 ≤ k ≤ K − 1, then f̂(y) = f̂k, and f̂(W) = f̂K . It holds,

f̂(y) ≤ f(y) ≤ (1 + ε)f̂(y) (6.19)

Proof: See Appendix.
Based on (6.19), we can use f̃(y) = (1 + ε)f̂(y) as a function to approximate f(y).

This is shown in the next lemma.

Lemma 5 Let ε0 > 0, ε > 0 be given. Let f(y) be the optimal solution to Problem 2
and assume that we compute for a given y the approximate function f(y) so that

f(y) ≤ f(y) ≤ (1 + ε0) f(y). (6.20)

a) For the purposes of computing the step function f̂(y) satisfying (6.19), f(y) may
be assumed non-decreasing.

b) It holds for f̃(y) = (1 + ε)f̂(y)

f(y) ≤ f̃(y) ≤ (1 + (ε + ε0 + εε0)) f(y), (6.21)

c) The number of jump points of f̂(y), hence of f̃(y), is O
(

1
ε log (|V | gmax)

)
and the

running time of Algorithm 5 is O
(

1
ε T (log (|V | gmax))

2
)
, where T is the worst case time

(over all y, 1 ≤ y ≤ W) needed to compute f(y).

Proof: See Appendix.
From the discussion above we have polynomial time Algorithm 6 for computing the

server locations.
In the algorithm, for simplicity, we pick a single ε for all the approximations. If

needed, a separate ε can be used for each of the approximations.
Let |S| = maxj∈H {|Sj |} . Recall that φj(y), j ∈ H are non-decreasing piecewise

linear functions with at most K number of break points, where K = O(log (|V | gmax)/ε) .

6.3 Polynomial Algorithm 121

Algorithm 6 Polynomial Time Algorithm For Calculating Server Locations
Input : Polynomial Algorithm for Problem 1, Algorithms 4 and 5, ε > 0.

Output: Locations and types of servers, routes and load assigned from each client to
the selected locations.

1. For i ∈ V, j ∈ H, compute cij so that cij ≤ cij ≤ (1 + ε)cij , i ∈ V, j ∈ H.

2. For j ∈ H, construct the step functions f̂j(y), from f j(y) according to Algorithm 5,
using as subroutine the algorithm for computing, for a given y > 0, f j(y) such
that fj(y) ≤ f j(y) ≤ (1 + ε)fj(y).

3. Construct the upper hull of f̃j(y) = (1 + ε)f̂j(y). Let φj(y) be this upper hull.

4. Use Algorithm 4 to solve Problem 3, where cij is replaced by cij and fj(y) is
replaced by φj(y).

In fact, the computation of φj(y) in step 3 of Algorithm 6 amounts to storing the break
points of φj(y). Hence it takes time O(log K), in the worst case, to compute φj(y) for
a given y and according to the discussion in Section 6.3.2 it takes time O(|V |3 log K) to
execute Algorithm 4 using φj(y).

Taking into account the previous discussion, the worst case running times of each
step are:

1. O(|V |2t) = O(|E||V |3(log log |V |+ 1/ε))

2. O(|V | 1
ε T (log (|V | gmax))

2) = O(1
ε3
|V | |S| log |S| (log (|V | gmax))

2)

3. O(K log K) = O(1
ε log (|V | gmax) log (log (|V | gmax) /ε))

4. O(|V |3 log K) = O
(
|V |3 log(log (|V | gmax)/ε)

)

The resulting algorithm has a guaranteed performance ratio of 2(1+ε)2 log (|V | gmax)
and its worst case running time is dominated by steps 1 and 2:

O(|E||V |3(log log |V |+ 1/ε) +
1
ε3
|V | |S| log |S| (log (|V | gmax))

2).

Note that since in Algorithm 6 the functions φj(y) are concave by construction, by
Lemma 2 the algorithm assigns all the load of each node i ∈ V to a single server node
in H.

122 Replicated Server Placement with QoS Constraints

6.4 Numerical Results

In this section we evaluate the proposed algorithm using sample topologies following the
power law model, i.e., where the node degrees follow a power law distribution (such a
distribution has been observed in the Internet). These topologies are taken from the
BRITE package [83] by using the Router Barabasi-Albert Model. We used random
parameters for the network, rather than speci�c application parameters in order to test
the overall performance of the algorithm under general conditions. For each network
the delay dl of a link is picked randomly with a uniform distribution among the integers
[1, 100] and the cost is generated in such a manner that it is correlated to its delay.
Thus, for each link l a parameter bl is generated randomly among the integers [1, 5].
The cost of link l is then bl (101− dl). Hence the link cost is a decreasing function of its
delay. We assume that the the same server types can be placed in each of the locations.
For our simulations we use 4 di�erent server types with capacities and costs equal to
{(100, 3000) (150, 3500) (250, 4000) (350, 5000)} respectively. We set the factors α = 0.1
and β = 0.2 and assume the load in requests per unit of time originated by each node is
randomly chosen among the integers [1, 100]. We also assume H = V , i.e., servers may
be placed in any of the nodes.

We are not aware of other approaches in the literature addressing the form of the
problem examined in this thesis. Hence direct comparison of our proposal to other
algorithms cannot be made. However, since there are several proposals that concentrate
on metrics related to optimizing the delays of requests in some manner, we examine the
performance of the latter algorithms in case operating costs were involved. Speci�cally,
we run two sets of experiments which di�er in the manner the round-trip routes for
requests are selected.

In the �rst experiment ten di�erent power law network topologies are generated
with |V | = 100 nodes and |E| = 970 edges. We run the algorithm for 6 di�erent delay
constraints D = {100, 200, 400, 500, 600, 800}.

MinDelay: This manner of selecting routes has been employed in [93] and [96]
where all requests from client node i to server node j are send over the minimal delay
round-trip route. Hence in this algorithm the minimum delay round-trip routes are
selected without considering the route cost. A route thus selected is rejected if its delay
is larger than the speci�ed constraint.

MinCost:. This is the algorithm proposed in the current work. That is, the round-
trip routes are selected so that they are of minimum cost among those that they satisfy
the delay constraint.

Once the round-trip routes from any client node i to any node server j are selected
using either the MinDelay or MinCost approach, the parameters cij are determined. We
then employ the proposed algorithm to �nd a solution to Problem 3. For the simulations
we used the pseudopolynomial algorithm since it works su�ciently well for the selected
instances and its implementation is considerably simpler than the polynomial algorithm.

6.4 Numerical Results 123

Table 6.2: Average total cost for di�erent delay constraints.
D 100 200 400 500 600 800

MinCost 178638 127591 118069 115734 114504 113878
MinDelay 197832 188928 182178 182178 182178 182178

In Table 6.2 we present the average total cost of using the servers and utilizing the
link bandwidth. We make the following observations. The cost for both algorithms
decreases as the delay constraint increases and levels o� after certain value of the delay
constraint. This is explained as follows. For smaller delay constraints, several locations
are becoming unreachable by the nodes. Hence the options of directing the node load to
the various locations are reduced and as result the overall cost of the solution increases.
The leveling-o� of the computed cost is due to the fact that as the delay constraints
become looser, all the minimum cost round-trip routes are selected by algorithm MinCost
and all the minimum delay round-tip routes by algorithm MinDelay. We also observe
in Table 6.2 that the total cost of algorithm MinCost is always smaller than MinDelay,
as expected, and the signi�cance is becoming more pronounced for larger delays. This
behavior is again due to the manner in which routes are selected by the two algorithms for
a given delay constraint. For strict delay constraints, both algorithms choose mainly the
permissible minimum delay round-trip routes and hence they have similar performance.
For looser constraints, the fact that MinCost picks the minimum cost round-trip routes
that satisfy the delay constraint instead of simply the minimum delay route (as MinDelay
does) allows it to reduce the routing cost.

Finally experiments were run for networks of various sizes in order to assert the
performance of the proposed algorithm in terms of running time. We generated power
law directed networks for |V | = {20, 50, 100, 150}, ratio r = |E| / |V | equal to 3 and
two delay constraints D = {100, 500}. For each |V | and r we generated ten di�erent
networks and for each experiment the link cost and delay, the server types, as well as
the load of the nodes were generated according to the methods previously described.

The experiments were run on a Pentium PC IV, 1.7GHz, 785MB RAM. In Figure 6.3
we present the average running time (in seconds) of the proposed algorithm. We make the
following observations. For a �xed number of nodes and edges we observe a small increase
of the running time due to the delay constraint. This can be explained by the increase
of iterations induced by the algorithm responsible for the evaluation of the minimum
cost round trip routes (Algorithm 3). For �xed delay constraint the running time of the
algorithm increases signi�cantly when the number of nodes and edges increases. We also
run experiments with a delay constraint equal to 800. The performance of the algorithm
was similar with the performance results of D = 500 and therefore are not presented
here. It is worth noting that the performance of the algorithm depends mainly on the
number of nodes and edges and not on delay constraints. Although pseudopolynomial,
tests with a wide variety of networks show that the algorithm has fairly satisfactory
performance. Note that we have assumed H = V , that is, servers may be placed in

124 Replicated Server Placement with QoS Constraints

Average Running Time of MinCost Algorithm

0

10

20

30

40

50

60

0
 20
 40
 60
 80
 100
 120
 140
 160

Nodes

A
v

e
ra

g
e

 R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

D100

D500

Figure 6.3: Average running time in power law networks, D = {100, 500}.

any of the nodes. In practical systems servers are placed in speci�c locations, that is
H ⊂ V . In such cases the running time of the algorithm must decrease. Indeed, we run
an experiment for a network with |V | = 100 nodes, ratio equal to 3, constraint D = 500
and ten possible server locations, that is |H| = 10, which are randomly chosen among
the set of nodes V . The running time and the overall cost were found equal to 3.5 sec
and 269722 respectively. By assuming H = V and repeating the latter experiment we
observe a) an increase of the running time of 15.9sec, b) a decrease of the overall cost
of 120467 and �nally the placement of servers in 17 di�erent nodes.

6.5 Conclusion

We presented a pseudopolynomial approximation algorithm and a polynomial time
algorithm for the NP-hard problem of replicated server placement with QoS constraints,
in a general network context. The pseudopolynomial algorithm works well in several
practical instances and is simpler than the polynomial time algorithm. The polynomial
time algorithm is signi�cant from a theoretical point of view and can be useful to employ
if the problem instance renders the pseudopolynomial time algorithm very slow.

In this work we did not consider link capacities. It is an interesting open problem
to incorporate the latter constraint into the problem. Another problem of interest is to
consider the case where not all the database is replicated to each of the servers. Finally,
it would be possible to adapt our algorithms speci�cally in order to provide proxy-based
multicast services, taking also into consideration QoS guarantees.

Appendix: Proofs of the Lemmas 125

Appendix: Proofs of the Lemmas

Running Time of Algorithm 4

In this section we show how the average time of Algorithm 4 can be improved, we present
the worst case running time of Algorithm 4 and provide proofs of the lemmas.

Step Function fj (y)

In this section it is shown that the average running time of Algorithm 4 can be improved
by taking advantage of the fact that in this case fj(y) is a step function. For simplicity
we drop the index j. Assume the unassigned nodes arranged in non-decreasing order of
their costs c1 ≤ c2 ≤ ... ≤ cm. Let l be the load already assigned. We then have to
compute

min
k

f(l + k)− f(l) +
∑k

i=1 ciyi + yck+1

k
.

Let

Yk =
k∑

i=1

yi, Ck =
k∑

i=1

ciyi, k = Yk + y, 0 ≤ y ≤ gk+1,

and

t(y) =
f(l + k)− f(l) +

∑k
i=1 ciyi + yck+1

k
=

=
f(l + Yk + y)− f(l) + Ck + ck+1y

Yk + y
=

=
f(l + Yk + y)− f(l) + Ck − ck+1Yk

Yk + y
+ ck+1. (6.22)

Assume that f(z) is a step function

f(z) = fm, if zm ≤ z < zm+1, m = 1, 2, ...,

where z0 = 0, f(0) = 0.We call zm the point of the mth jump of the function f(z).

Assume that y ≥ 0 can take maximum value yk+1
max, i.e., yk+1

max is the maximum
remaining load of the node connected through link k + 1.

For the rest of the discussion, Figure 6.4 will be helpful
Let mk+1 be the index of the last point before l+Yk at which a jump of the function

f(z) occurs,
mk+1 = max {m : zm ≤ l + Yk} .

126 Replicated Server Placement with QoS Constraints

)(zf

1
z

2
z

3
z0z

4
z

5
z

6
z

7
z

kl Y
1w 2

w 3
w 4w

1

1ky

2

1ky

3

1ky

4

1ky

1

max

ky

: points that need

to be checked

Figure 6.4: Points that need to be considered when checking ck+1.

Also, let wk+1
m be the mth point after l + Yk at which a jump of f(z) occurs,

wk+1
m = zmk+1+m, m = 1, 2,,

and
yk+1

m = wk+1
m − l − Yk.

Observe from (6.22) the following:
If

f(l + Yk)− f(l) + Ck − ck+1Yk < 0,

then t(y) < ck+1 for any y, 1 ≤ y ≤ yk+1
1 and the algorithm must stop. Note that this

cannot happen when we examine c1 and hence the algorithm always gives some output
before it stops.

If on the other hand

f(l + Yk)− f(l) + Ck − ck+1Yk ≥ 0,

then the minimum is achieved at min
{

yk+1
1 − 1, ymax

}
. Moreover, in this case it holds

(since f(z) is increasing),

f(l + Yk + yk+1
m)− f(l) + Ck − ck+1Yk ≥ 0, for all m,

which implies that the minimum in the interval
[
yk+1

m , yk+1
m+1 − 1

]
is achieved at

min
{

yk+1
m+1 − 1, ymax

}
.

Appendix: Proofs of the Lemmas 127

The above discussion implies that when we need to �nd the minimum value of t(y),
we need only check its values at the points

y = yk+1
m − 1, where yk+1

m − 1 ≤ ymax, and y = ymax.

Running time

We discuss below an implementation of Algorithm 4 and present its complexity. Let
|V | and |H| be the number of client and server locations respectively. We assume for
simplicity that gmax = 1. As discussed in Section 6.2.3, the general case can be treated
by considering a modi�ed network with at most |V | gmax nodes. We also assume unit
cost for compute fj(k). All references to steps below, concern Algorithm 4.

The implementation is the following.

1. We construct |H| doubly linked lists, one per server location, where each list, Lj ,
j ∈ H, holds cij , for all i ∈ V that are connected to j, in increasing order. Since
each sorting takes time O(|V | log |V |), the time to construct the |H| linked lists is
O(|H| |V | log |V |).

2. We also create a matrix M(i, j), i ∈ V , j ∈ H, where M(i, j) holds the address of
link (i, j) in the list Lj . If link (i, j) does not exist in Lj , then we set M(i, j) to
null. This takes time O(|H| |V |). The matrix M(i, j) is used to erase e�ciently an
element from Lj (see line 3b).

3. In the while loop (step 3) the following operations are performed.

(a) The t(j) for each server location j ∈ H are computed (step 5). For this,
we need to scan through the list Lj , which takes O(|V |) time (since each Lj

contains at most |V | elements). Hence to compute all t(j), j ∈ H and the
minimum of these t(j) (step 7), takes time O (|H| |V |).

(b) The updating of server and client location loads (steps 9-13) takes O(1) time.
However, whenever the remaining load of a node becomes 0 (step 11), the
node must be removed from further consideration. Hence, it must be removed
from all linked lists Lj , j ∈ H. Therefore, for each of the k∗ client locations,
say location i, we check �rst if the link (i, j) exists in the list Lj ,, i.e., check
whether M(i, j) is non null. If so, M(i, j) contains the address of link (i, j) in
Lj ; using this address we remove link (i, j) from Lj and we set M(i, j) to null.
This takes time O(k∗ |H|). Note that we can dispense with the matrix M(i, j)
altogether and search through the whole list Lj in order to remove the link
(i, j). This will increase the complexity of this operation to O(k∗ |V | |H|) but
will also eliminate the space needed to store the matrix M(i, j). The overall
complexity of the algorithm will not be a�ected.

128 Replicated Server Placement with QoS Constraints

Regarding the overall complexity, we have the following.

• Line 1 is executed outside the while loop and hence takes time O(|H| |V | log |V |).
• Line 3a is executed inside the while loop. Since in the worst case only one client

location may be removed at each iteration, this step may be executed a most |V |
times. Hence the total complexity of this operation is O(|H| |V |2).

• If kn is the number of customers allocated to a facility at iteration n, and it takes
m iterations for the algorithm to end, we have k1 + k2 + k3 + .. + km = |V |. Hence
line 3b is executed in time

O(k1 |H|) + O(k2 |H|) + ... + O(km |H|) = O(|H| |V |).

From the above we conclude that the whole algorithm executes in worst case time,

O
(
|H| |V | log (|V |) + |H| |V |2

)
= O

(
|H| |V |2

)
,

which is dominated by the time to compute t(j) in step 5.
For general loads, replacing |V | with |V | gmax, the complexity becomes

O
(
|H| |V |2 g2

max

)
. Since in our setup |H| can be as large as |V |, the overall

complexity of the algorithm is O(|V |3 g2
max).

Proof of Lemma 1

Lemma 1: Consider the problems

min
x∈A

g(x), A ⊆ Rn, (6.23)

min
x∈A

g(x), A ⊆ Rn, (6.24)

where g(x) ≥ 0. If for x ∈ A,
g(x) ≤g(x) ≤bg(x), (6.25)

then an a−approximate solution for problem (6.24), a ≥ 1, is a ba-approximate solution
for (6.23).
Proof: Let x∗, x∗ be the optimal solutions to (6.23), (6.24) respectively. Let also y be
an a-approximate solution for problem (6.24), i.e.,

g(x∗) ≤ g(y) ≤ag(x∗). (6.26)

Since x∗ is optimal for problem (6.24), it holds

g(x∗)≤g(x∗) ≤ bg(x∗) by (6.25). (6.27)

Appendix: Proofs of the Lemmas 129

Then

g(x∗) ≤ g(y) since x∗solves (6.23)
≤ g(y) by (6.25)
≤ ag(x∗) by (6.26)
≤ abg(x∗) by (6.27).

Hence y is a ab solution to (6.23).

Proof of Lemma 2

Lemma 2: If the functions fi(y) are concave and Algorithm 4 is applied, then the load
of each node in V can be assigned to a single server.
Proof: Assume that at the beginning of the tth iteration of the while loop in
Algorithm 4 (step 3) the load of any assigned node, has been actually assigned to a single
server. We will show that the same is true at the beginning of the t+1th iteration. The
result will follow by induction.

It su�ces to show that the minimum in step 5 is achieved when all the load of each
unassigned node is assigned to a single server. To simplify notation, let c1 ≤ c2 ≤ ... ≤ cm

be the unassigned nodes connected to node j, and let l be the load assigned to node j at
the tth iteration. For simplicity, we drop the index j from the notation. We then have
to compute

min
k

f(l + k)− f(l) +
∑n(k)

i=1 cigi + l(k)cn(k)+1

k
. (6.28)

Let Y =
∑n

i=1 gi and k = Y + y, 0 ≤ y ≤ gn+1. It su�ces to show that the minimum of

s(y) =
f(l + Y + y)− f(l) +

∑n
i=1 cigi + ycn+1

Y + y
, 0 ≤ y ≤ gn+1,

is achieved either at y = 0 or at y = gn+1. Indeed this implies that the minimum in
(6.28) is achieved when k =

∑j
i=1 gi for some j, 1 ≤ j ≤ m, i.e., that all the node loads

are assigned to a single server.
Let us rewrite

s(y) =
f(l + Y + y)− f(l) +

∑n
i=1 cigi + cn+1y

Y + y

=
f(l + Y + y)− f(l) +

∑n
i=1 (ci − cn+1) gi

Y + y
+ cn+1

=
φ(Y + y)

Y + y
+ cn+1,

where φ(x) = f(l + x)− f(l) +
∑n

i=1 (ci − cn+1) gi.

130 Replicated Server Placement with QoS Constraints

Notice that φ(x) is concave. Suppose that a minimum of s(y) occurs at y = y0, such
that 0 < y0 < gn+1. By the de�nition of y0 and the fact that y0 > 0, we have

φ(Y + y0)
Y + y0

≤ φ(Y + y0 − 1)
Y + y0 − 1

or
φ(Y + y0)− φ(Y + y0 − 1) ≤ φ(Y + y0)

Y + y0
.

Hence, using the concavity of φ(x),

φ(Y + y0 + 1)− φ(Y + y0) ≤ φ(Y + y0)
Y + y0

,

and
φ(Y + y0 + 1)

Y + y0 + 1
≤ φ(Y + y0)

Y + y0
.

Therefore y0 + 1 is a minimum too. Similarly, using the fact that y0 < gn+1 we
conclude that y0 − 1 is also a minimum.

This implies by induction that φ(Y +y)
Y +y is constant for 0 ≤ y ≤ gn+1 and hence the

same holds for s(y). We conclude that either the minimum is achieved at y = 0 or at
y = gn+1, or s(y) is a constant for 0 ≤ y ≤ gn+1. In the latter case we can pick y = gn+1

as the minimizing point.

Proof of Lemma 3

Lemma 3: If a function φ : {0, 1, . . . , W} → Q is subadditive and non-decreasing, then
it holds for its upper hull φ2(y), φ2(y) ≤ 2φ(y).
Proof: For y = 0 and y = W we have by de�nition φ2(y) = φ(y). Let now y be an
integer such that yk < y ≤ yk+1. Consider two cases:

1. yk+1 − yk < y. Then

φ2(y) ≤ φ (yk+1) by (6.15)
≤ φ (yk + y) since φ is non-decreasing
≤ φ (yk) + φ(y) by subadditivity
≤ 2φ(y) since φ is non-decreasing.

2. yk+1 − yk ≥ y. Since φ2(y) is piecewise linear and yk, yk+1 are consecutive break
points, it holds for any z, yk ≤ z < yk+1,

φ2(yk+1)− φ2(yk)
yk+1 − yk

=
φ2(yk+1)− φ2(z)

yk+1 − z
.

Appendix: Proofs of the Lemmas 131

Since φ2(yk) = φ(yk), k = 1, ...,K,

φ(yk+1)− φ(yk)
yk+1 − yk

=
φ(yk+1)− φ2(z)

yk+1 − z

≤ φ(yk+1)− φ(z)
yk+1 − z

by (6.16)

≤ φ(yk+1 − z)
yk+1 − z

by subadditivity. (6.29)

Now set z = yk+1−y. Since yk ≤ z < yk+1 by hypothesis, using the last inequality
we have,

φ2(y) = φ(yk) +
φ(yk+1)− φ(yk)

yk+1 − yk
(y − yk)

≤ φ(yk) +
φ(y)

y
(y − yk) by (6.29)

≤ φ (yk) + φ(y)
≤ 2φ(y) since φ is non-decreasing.

This completes the proof.

Proof of Lemma 4

Lemma 4: a) In Algorithm 5, K = O
(

1
ε log f(W)

f1

)
.

b)The worst case running time of Algorithm 5 is O
(
T log(W)1

ε log f(W)

f1

)
, where T

is the worst case time (over all y, 1 ≤ y ≤ W) needed to compute f(y).
c) Consider the step function de�ned as follows: if yk ≤ y < yk+1 for some k,

1 ≤ k ≤ K − 1, then f̂(y) = f̂k, and f̂(W) = f̂K . It holds,

f̂(y) ≤ f(y) ≤ (1 + ε)f̂(y). (6.30)

Proof: a) According to steps 2 and 4 it holds,

f(yk − 1) ≤ (1 + ε1)f(yk−1) ≤ f(yk). (6.31)

Since f(y) is non-decreasing and f(1) > 0 (hence f(y) > 0, y ≥ 1), inequality (6.31)
implies that yk−1 < yk. Moreover, (1 + ε)f̂k−1 ≤ (1 + ε)f(yk−1) = f̂k.This implies that
(1 + ε)k−1 f̂1 ≤ f̂k. Hence the algorithm stops in O

(
log1+ε

f(W)

f1

)
= O

(
log f(W)

f1
/ε

)

steps.
b) Since f(y) is non-decreasing, we can use binary search in [1,W] to �nd each

yk. Hence the determination of each yk takes O(T log W) computations and the total
running time is O(TK log W).

132 Replicated Server Placement with QoS Constraints

c) For yk ≤ y < yk+1, taking into account (6.31) we have

f(y) ≤ f(yk+1 − 1) since f(y) is non-decreasing
≤ (1 + ε)f(yk) = (1 + ε)f̂(y).

By de�nition, f̂(y) = f(yk). Taking also into account that f(yk) ≤ f(y), (6.30) follows.

Proof of Lemma 5

Lemma 5: Let ε0 > 0, ε > 0 be given. Let f(y) be the optimal solution to Problem 2
and assume that we compute for a given y the approximate function f(y) so that

f(y) ≤ f(y) ≤ (1 + ε0) f(y). (6.32)

a) For the purposes of computing the step function f̂(y) satisfying (6.30), f(y) may
be assumed non-decreasing.

b) It holds for f̃(y) = (1 + ε)f̂(y)

f(y) ≤ f̃(y) ≤ (1 + (ε + ε0 + εε0)) f(y). (6.33)

c) The number of jump points of f̂(y), hence of f̃(y), is O
(

1
ε log (|V | gmax)

)
and the

running time of Algorithm 5 is O
(

1
ε T (log (|V | gmax))

2
)
, where T is the worst case time

(over all y, 1 ≤ y ≤ W) needed to compute f(y).
Proof: a) To see that for the purposes of constructing f(y) we can assume without
loss of generality that f(y) is non-decreasing, proceed as follows. If at some point during
the computations for the construction of f(y) we obtain for y1 < y2, f(y1) > f(y2), then
we can replace f(y2) with f1(y2) = f(y1) without violating (6.32). Indeed,

f(y2) ≤ f(y2) by (6.32)
< f(y1) = f1(y2), by assumption,

and

f1(y2) = f(y1)
≤ (1 + ε0) f(y1) by (6.32)
≤ (1 + ε0) f(y2) since f(y) is increasing.

b) Let yk ≤ y ≤ yk+1 − 1. We then have

f(y) ≤ f(y) by (6.32)
≤ (1 + ε)f̂(y) by (6.30)
= f̃(y). (6.34)

Appendix: Proofs of the Lemmas 133

On the other hand,

f(y) ≥ 1
1 + ε0

f(y) by (6.32)

≥ 1
1 + ε0

f̂(y) by (6.30)

=
f̃(y)

(1 + ε0) (1 + ε)
. (6.35)

From (6.34), (6.35), we obtain (6.33).
c) Since f(y) is subadditive, it holds f(W)/f(1) ≤ W . The result then follows from

Lemma 4 a) and b).

134 Replicated Server Placement with QoS Constraints

Conclusions and Perspectives

In this thesis, we were concerned with the analytical modeling and performance
evaluation of large mobile ad hoc networks. We considered protocols of all layers
starting from the MAC layer. In each case, we modeled and analyzed the studied
protocols, with the ultimate goal to propose new algorithms or protocols to improve the
system's performance. We presented simulations and numerical results to support our
contributions, as well as a complete implementation in the case of the MOST protocol.
We give a summary of our main results and their context in the following table.

New Results
Chapter Layer Studied Protocols Modeling/Analysis Algorithms/Protocols

2 2 IEEE 802.11 One-hop, multi-hop delay − Asymptotically optimal
interaction with: distribution in power law delay based routing
OLSR − Cross-layer delay

estimation protocol

3 3 OLSR − Neighborhood model in Fish-Eye OLSR
massive ad hoc networks

− Protocol scalability

4 − Multicast scaling properties − MOST protocol
− Multicast capacity − E�cient MST algorithm

5 4 TCP − Throughput analysis
interaction with: − Tra�c autocorrelations:
Ethernet, 802.11 long-term dependencies

due to heavy-tailed delays

6 5 Internet services Pseudopolynomial,
interaction with: polynomial algorithms for
QoS information replicated server placement
from lower layers with QoS constraints

136 Conclusions and Perspectives

The models we considered involve a very large number of nodes and account for infor-
mation theoretic considerations, such as the Gupta and Kumar result. Throughout the
thesis, we took the approach of evaluating the protocols performance in an asymptotic
setting. Interestingly enough, in numerous cases, the asymptotic considerations permit
the polynomial treatment of otherwise NP-hard problems. Consequently, we were able
to provide asymptotically optimal optimizations in Chapters 2, 3 and 4.

In the chapters examining the higher (transport and application) layers, our results
can be considered in a more general setting, and can be applied in wired networks as
well. However, in these cases, we commented on the relevance and possible implications
of previously derived results, concerning lower layer protocols, in a wireless environment.
Therefore, we obtained more complete models involving the entire system's behavior.

As possible directions for future work concerning the topics studied in this thesis, we
outline here some ideas already discussed in the chapter conclusions:

• to combine the delay routing protocol with a mechanism providing dynamic
delay control and admission control, in order to account for the impact of new
connections in the network,

• to evaluate the performance of Fish Eye OLSR with mobility,

• to provide real network measurements concerning the performance of MOST,

• to characterize the autocorrelations of TCP tra�c in di�erent time scales, and
thus to explain the multi-fractal nature of Internet tra�c in particular cases,

• to generalize the replicated server placement algorithms in order to include link
capacities, partially replicated databases and multicast services.

Additionally, we discuss some more general directions for further research:

• It would be interesting to establish a link between bandwidth and delay quality of
service requirements in the context of wireless multi-hop networks. This would
permit an adaptation of bandwidth-QoS routing solutions for delay sensitive
applications as well. Such a link can be established using the notion of equivalent
bandwidth. This notion refers to the e�ective bandwidth satisfying a given QoS
constraint, such as the over-delay ratio which we considered in Chapter 2. In this
particular case the equivalent bandwidth on a given path would correspond to the
capacity of the network in transferring packets which satisfy this delay constraint.
The delay distribution analysis we provided in the context of multi-hop IEEE
802.11 networks, actually allows the complete characterization of this capacity.

• In the same context, it would be bene�cial to provide a more complete model of the
performance of the TCP protocol, in conjunction with the delay and bandwidth
analyses of the IEEE 802.11 MAC. As we saw, the delay variations resulting from

Conclusions and Perspectives 137

the analysis of the MAC mechanisms are detrimental to TCP performance. In fact,
signi�cant e�orts have been devoted in the research community to adapt the TCP
protocol to wireless multi-hop networks, however there is still a need for detailed
analytical models considering the interaction of the di�erent protocols with regards
to the system's performance. Based on these models and the equivalent bandwidth
calculations, it would be possible for instance to optimize routing with regards to
TCP performance.

• Finally, an important topic is the introduction of QoS mechanisms for multicast
communications in wireless networks. The MOST protocol which is based on
overlay multicast trees and unicast tunnels provides an excellent basis for this
goal. The next step would be to incorporate QoS routing possibilities, and to adapt
unicast admission control mechanisms for the construction of the overlay multicast
trees. This is an interesting and challenging problem from an algorithmic, as well
as a protocol design point of view.

138 Conclusions and Perspectives

List of Figures

1.1 Layers and protocols considered in the context of this work. 6

1.2 Generic OLSR packet format. 11

1.3 Di�usion of a message using pure �ooding and MPR �ooding. 12

2.1 Example of medium occupancy in a successful unicast transmission using
the DCF channel access mechanism. 18

2.2 Binary exponential back-o�. 18

2.3 Coe�cients of β(z). 21

2.4 Coe�cients of w(z). 22

2.5 Topology 1. 28

2.6 Analytic service time distribution. 28

2.7 Measured service time distribution. 29

2.8 Measured node delay distribution. 29

2.9 Topology 2. 30

2.10 Comparison between end-to-end delay distribution and the corresponding
power law. 31

2.11 Comparison between the end-to-end distribution and the convolution of
single hop distributions. 32

2.12 Delay estimation protocol framework. 34

3.1 Quantity P (W < x) versus x for α = 2.5, no fading. 43

3.2 Quantity p0r versus r for α = 2.5, no fading. 44

3.3 Reception range r and quantity p0r versus p0 for α = 2.5, no fading. . . 44

3.4 Optimal threshold p0 versus α. 45

140 LIST OF FIGURES

3.5 Average MPR set of a node versus neighborhood size. 47

3.6 Neighbourhood size versus the network size, α = 2.5, no fading,
respectively for F-OLSR (bottom) and OLSR (top). 49

3.7 Example of function φ used for Fish Eye strategy. 50

3.8 Neighborhood size versus the network size, α = 2.5, no fading, respec-
tively for OLSR (bottom) and OLSR with Fish Eye (top). 51

3.9 Maximum overall capacity versus the network size, α = 2.5, no fading,
respectively for OLSR (bottom) and OLSR with Fish eye (top). 52

4.1 Comparison of a Minimum Spanning Tree (MST) with an optimal Steiner
tree in an Euclidean graph. 58

4.2 Multicast cost R(n) versus multicast group size n. 62

4.3 Shortest path tree cost R(n) versus multicast group size n. 63

4.4 Total number of multicast retransmissions versus group size n, compared
with the number of retransmissions using MPR �ooding (straight lines). 64

4.5 Total number of multicast retransmissions versus group size n, compared
with the number of retransmissions using MPR �ooding in a denser
network (with 1025 nodes). 65

4.6 Join message content format. 70

4.7 Overview of multicast implementation. 72

4.8 Comparison of multicast versus unicast to all destinations. 73

4.9 Simulation results vs theoretical upper bound. 74

4.10 Delivery ratio vs group size for di�erent source rates. 75

4.11 Delivery ratio (%) vs number of groups in the network. 75

4.12 Delivery ratio (%) vs group size with di�erent mobility speeds. 76

4.13 Duplicate tra�c load (%) vs group size with di�erent mobility speeds. . 76

5.1 Bu�er �lled with incoming tra�c accessing a MAC channel. 81

5.2 Linear cumulative throughput evolution versus time n when B = 1.5. . . 85

5.3 Cumulative throughput in n
log2 n

versus time n in the limit case of B = 1. 85

5.4 Cumulative throughput in nB versus time n when B = 0.5. 86

5.5 Aggregated variance in m1−B versus measure interval m, when B = 1.5. 89

LIST OF FIGURES 141

5.6 Aggregated variance in 1
log2 m

versus measure interval m, in the limit case
of B = 1. 89

5.7 Aggregated variance in m−B versus measure interval m, when B = 0.5. . 90
5.8 N TCP connections towards the same bottleneck bu�er. 92
5.9 Limiting function g(x) of the window size distribution. 93
5.10 Marcovian TCP model. 94
5.11 Spectral gap of the TCP Markov chain for di�erent error rates a. 97
5.12 TCP tra�c autocorrelations for error rates (a) a = 0.05, (b) a = 0.005.

The time unit is the RTT. 97
5.13 Several TCP connections sharing the same link. 98
5.14 Tra�c autocorrelations of 50 TCP connections with heavy tailed RTT

distributions (a) Di = 40i0.8, (b) Di = 40i. The time unit is 500ms. . . . 100

6.1 a) A graph with �ve clients, V = {s, u, v, w, i}, two possible locations H = {s, j}
and two types of servers for each location. b) The modi�ed graph where each link
represents the round-trip minimum cost routes, satisfying the delay constraint
between a client and a possible location. Cost functions fs (s) and fj (y) of
the possible locations. c) The resulting graph. Servers have been placed at the
appropriate locations. 109

6.2 A subadditive step function φ(y) with its jump points y1, ..., y6 and its
upper hull φ2(y). 118

6.3 Average running time in power law networks, D = {100, 500}. 124
6.4 Points that need to be considered when checking ck+1. 126

142 LIST OF FIGURES

List of Tables

2.1 Delay requirements for voice tra�c. 15
2.2 Simulation Settings. 27
2.3 Measured parameters. 28
2.4 Collision probabilities for each hop of the path. 30

4.1 Common simulation parameters. 72

6.1 Notation table. 108
6.2 Average total cost for di�erent delay constraints. 123

Bibliography

Publications

Journals

[1] C. Adjih, E. Baccelli, T. Clausen, P. Jacquet, and G. Rodolakis. Fish eye OLSR
scaling properties. IEEE Journal of Communication and Networks (JCN), Special
Issue on Mobile Ad Hoc Wireless Networks, 2004.

[2] G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server placement with
QoS constraints. IEEE Transactions on Parallel and Distributed Systems, 17(10),
2006.

Conferences

[3] P. Jacquet, A. Meraihi Naimi, and G. Rodolakis. Routing on asymptotic delays in
IEEE 802.11 wireless ad hoc networks. In First Workshop on Resource Allocation
in Wireless NETworks, 2005.

[4] P. Jacquet and G. Rodolakis. Multicast scaling properties in massively dense ad hoc
networks. In SANSO, 2005.

[5] G. Rodolakis and P. Jacquet. An analytical evaluation of autocorrelations in TCP
tra�c. In AINTEC, 2005.

[6] G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server placement
with QoS constraints. In 3rd International Workshop on QoS in Multiservice IP
Networks, Catania, Italy, 2005.

Reports

[7] C. Adjih, P. Jacquet, G. Rodolakis, and N. Vvedenskaya. Performance of multiple
TCP �ows: an analytical approach, INRIA research report RR-5417. 2004.

146 BIBLIOGRAPHY

[8] P. Jacquet, A. Meraihi Naimi, and G. Rodolakis. Asymptotic delay analysis for
cross-layer delay based routing in ad hoc networks, under submission.

[9] G. Rodolakis, A. Meraihi Naimi, and A. Laouiti. Multicast overlay spanning tree
protocol for ad hoc networks, under submission.

[10] G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server placement with
QoS constraints. Technical Report,
http://users.auth.gr/leonid/public/TechReplicated.pdf.

References

[11] Bluetooth Speci�cations, http://www.bluetooth.com/dev/speci�cations.asp.

[12] MDFP, http://hipercom.inria.fr/smolsr-molsr/.

[13] OOLSR, http://hipercom.inria.fr/oolsr/.

[14] IEEE 802.11 Standard, Wireless LAN Medium Access Control and Physical layer
Speci�cations, 1997.

[15] IEEE 802.16 Standard, Recommended Practice for Local and Metropolitan Area
Networks: Coexistence of Fixed Broadband Wireless Access Systems, 2004.

[16] IEEE 802.16e Standard, Recommended Practice for Local and Metropolitan Area
Networks � Part 16: Air Interface for Fixed Broadband Wireless Access Systems,
2005.

[17] C. Adjih, L. Georgiadis, P. Jacquet, and W. Szpankowski. Is the Internet fractal:
The multicast power law revisited. In SODA, 2002.

[18] C. Adjih, P. Jacquet, and L. Viennot. Computing connected dominating set with
multipoint relays, INRIA research report RR-4597, 2002.

[19] C. Adjih, P. Jacquet, and N. Vvedenskaya. Performance evaluation of a single queue
under multi-user TCP/IP version 2, INRIA research report RR-4478, 2002.

[20] M. Allman, V. Paxson, and W. Stevens. TCP congestion control, RFC 2581, 1999.

[21] R. Andonov and S. Rajopadhye. A sparse knapsack algo-tech-cuit and its synthesis.
In International Conference on Application Speci�c Array Processors ASPA '94.
IEEE, 1994.

[22] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753�782, 1998.

BIBLIOGRAPHY 147

[23] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit. Local search
heuristics for k-median and facility location problems. In In Proceedings of the 33rd
ACM Symposium on Theory of Computing, pages 21�29, 2001.

[24] F. Baccelli, K. Tchoumatchenko, and S. Zuyev. Markov paths on the Poisson-
Delaunay graph with applications to routing in mobile networks. Adv. Appl. Probab.,
32(1):1�18, 2000.

[25] H. Badis and K. Al Agha. Quality of service for ad hoc optimized link state routing
protocol (QOLSR), internet draft, 2006.

[26] H. Badis, A. Munaretto, K. Al Agha, and G. Pujolle. Optimal path selection in a
link state QoS routing protocol. In IEEE VTC, May 2004.

[27] D. Bertsimas and G. Van Ryzin. An asymptotic determination of the minimum
spanning tree and minimum matching constants in geometrical probability.
Operations Research Letters, 9:223�231, 1990.

[28] G. Bianchi. Perfomance analysis of the IEEE802.11 distributed coordination
function. IEEE journal on selected areas in Communcations, 18(3), 2000.

[29] A. Broido, E. Basic, and K.C. Cla�y. Invariance of the Internet RTT spectrum.
global RTT analysis, http://www.caida.org/ broido/rtt/rtt.html, 2002.

[30] T. Bu and D. Towsley. On distinguishing between Internet power law topology
generators. In INFOCOM, 2002.

[31] Y. Chen, R. Katz, and J. Kubiatowicz. Dynamic replica placement for scalable
content delivery. In First International Workshop on Peer-to-Peer Systems, pages
306�318, 2002.

[32] Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic scalable and e�cient
content distribution network. In First International Conference on Pervasive
Computing, 2002.

[33] J. C.-I. Chuang and M. A. Sirbu. Pricing multicast communication: A cost-based
approach. Telecommunication Systems, 17(3):281�297, 2001.

[34] F. Chudak and D. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1�25,
2003.

[35] F. Chudak and D. Williamson. Improved approximation algorithms for
capacitated facility location problems. In Integer Programming and Combinatorial
Optimization, 1999.

[36] T. Clausen. Combining temporal and spatial partial topology for manet routing -
merging OLSR and FSR. In WPMC, 2003.

148 BIBLIOGRAPHY

[37] T. Clausen and P. Jacquet (editors). Optimized link state routing protocol (OLSR).
RFC 3626, October 2003. Network Working Group.

[38] E. Cohen and S. Shenker. Replictation strategies in unstructured peer-to-peer
networks. ACM SIGCOMM, 2002.

[39] C. Cordeiro, H. Gossain, and D. Agrawal. Multicast over wireless mobile ad hoc
networks: present and future directions. IEEE Network, Vol. 17, Issue: 1, 2003.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press, 2001.

[41] S. Corson and J. Macker. Mobile ad hoc networking (MANET): Routing protocol
performance issues and evaluation considerations, RFC 2501, 1999.

[42] M. de Berg, O. Schwarzkoph, M. Van Kreveld, and M. Overmars. Computional
Geometry: Algorithms and Applications. Springer-Verlag, 2000.

[43] D. Z. Du and F. K. Hwang. A proof of Gilbert-Pollak's conjecture on the steiner
ratio. Algorithmica, 45:121�135, 1992.

[44] J. Postel (ed.). Transmission control protocol, RFC 793, 1981.

[45] R. Braden (ed.). Requirements for Internet hosts - communication layers, RFC
1122, 1989.

[46] K. Fall and K. Varadhan. The ns manual,
http://www.isi.edu/nsnam/doc/ns_doc.pdf.

[47] W. Fenner. Internet Group Management Protocol, Version 2, RFC 2236, 1997.

[48] D.R. Figueiredo, B. Liu, V. Misra, and D. Towsley. On the autocorrelation structure
of TCP tra�c. 2002.

[49] P. Flajolet, X. Gourdon, and P. Dumas. Mellin transforms and asymptotics:
Harmonic sums. Theoretical Computer Science, 144:3�58, 1995.

[50] P. Flajolet and A. M. Odlyzko. Singularity analysis of generating functions. SIAM
J. Discrete Math., 3:216�240, 1990.

[51] P. Flajolet and R. Sedgewick. Analytic combinatorics,
http://algo.inria.fr/�ajolet/publications/books.html.

[52] S. Floyd and T. Henderson. The NewReno modi�cation to TCP's fast recovery
algorithm, RFC 2582, 1999.

[53] K Fukuda, H Takayasu, and M Takayasu. Origin of critical behavior in ethernet
tra�c. Physica A, Elsevier, 2000.

BIBLIOGRAPHY 149

[54] J. Garcia-Luna-Aceves and E. L. Madruga. The core-assisted mesh protocol.
Journal on Selected Areas in Communications, 17(8):1380�1294, August 1999.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory on NP-Completeness. W. H. FREEMAN AND COMPANY, 1979.

[56] M. Gerla, X. Hong, and G. Pei. Fisheye state routing protocol (FSR) for ad hoc
networks, internet draft (expired), 2002.

[57] R. Guerin and A. Orda. QoS-based routing in networks with inaccurate information:
Theory and algorithms. IEEE/ACM Transactions on Networking, 7(3):350�364,
june 1999.

[58] P. Gupta and P. R. Kumar. Capacity of wireless networks. IEEE Transactions on
Information Theory, IT-46(2):388�404, 2000.

[59] M. T. Hajiaghavi, M. Mahdian, and V. S. Mirrokni. The facility location problem
with general cost functions. Networks, 42(1):42�47, 2003.

[60] R. Hassin. Approximation schemes for the restricted shortest path problem.
Mathematics of Operations Research, 17(1):36�42, 1992.

[61] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM, 1988.

[62] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance,
RFC 1323, 1992.

[63] P. Jacquet. Eléments de théorie analytique de l'information, modélisation et
évaluation de performances, INRIA research report RR-3505, 1998.

[64] P. Jacquet. Geometry of information propagation in massively dense ad hoc
networks. In MobiHoc, 2004.

[65] P. Jacquet, A. Laouiti, P. Minet, and L. Viennot. Performance analysis of OLSR
multipoint relay �ooding in two ad hoc wireless network models. RSRCP, Special
issue on Mobility and Internet, December 2001.

[66] P. Jacquet, A. Laouiti, P. Minet, and L. Viennot. Performance evaluation of
multipoint relaying in mobile ad hoc networks. In Networking, Pisa, 2002.

[67] K. Jain and V. Vazirani. Approximation algorithms for the metric facility location
and k-median problems using the primal-dual schema and the lagrangian relaxation.
Journal of the ACM, 48:274�296, 2001.

[68] S. Jamin, C. Jiu, A. Kurc, D. Raz, and Y. Shavitt. Constrained mirror placement
on the Internet. In IEEE INFOCOM, pages 31�40, April 2001.

[69] J. Jetcheva and D. B. Johnson. Adaptive demand-driven multicast routing in multi-
hop wireless ad hoc networks. In Proceedings of the Second Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2001), 2001.

150 BIBLIOGRAPHY

[70] X. Jia, X. Hu D. Li, W. Wu, and D. Du. Placement of web-server proxies with
consideration of read and update operations on the Internet. The Computer Journal,
46(4), 2003.

[71] X. Jia, D. Li, X. Hu, and D. Du. Optimal placement of web proxies for replicated
web servers in the Internet. The Computer Journal, 44(5):329�339, 2001.

[72] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag,
2004.

[73] M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a local search heuristic
for facility location problems. Journal of Algorithms, 37:146�188, 2000.

[74] R. Krishnan, D. Raz, and Y. Shavitt. The cache location problem. IEEE/ACM
Transactions on Networking, 8(5):568�582, October 2000.

[75] A. Laouiti, P. Jacquet, P. Minet, L. Viennot, T. Clausen, and C. Adjih. Multicast
Optimized Link State Routing, INRIA research report RR-4721, 2003.

[76] A. Laouiti, A. Qayyum, and L. Viennot. Multipoint relaying: An e�cient technique
for �ooding in mobile wireless networks. In 35th Annual Hawaii International
Conference on System Sciences (HICSS'2001). IEEE Computer Society, 2001.

[77] S. Lee, W. Su, and M. Gerla. On demand multicast routing protocol in multihop
wireless mobile networks. ACM/Baltzer Mobile Networks and Applications, special
issue on Multipoint Communication in Wireless Mobile Networks, 2000.

[78] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-
similar nature of ethernet tra�c (extended version). IEEE/ACM Transactions on
Networking, 2(1):1�15, february 1994.

[79] B. Li, M. Golin, G. Italiano, and X. Deng. On the optimal placement of web proxies
in the Internet. In IEEE INFOCOM, 1999.

[80] M. Liu, R. R. Talpade, A. McAuley, and E. Bommaiah. AMRoute: Adhoc Multicast
Routing Protocol. UMD TechReport 99-8.

[81] D. H. Lorenz and D. Raz. A simple e�cient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28(5):213�221, June 2001.

[82] M. Mahdian, E. Markakis, A. Saberi, and V. Varizani. Greedy facility location
algorithms analyzed using dual �tting with factor-revealing LP. Journal of the
ACM, 50(6):795�824, 2003.

[83] A. Median, A. Lakhina, I. Matta, and J. Byers. BRITE: Universal Topology
Generation from a User's Perspective. Computer Science Department Boston
University, 2001.

BIBLIOGRAPHY 151

[84] R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(5):395�405, july 1976.

[85] P. Van Mieghem, H. de Neve, and F. Kuipers. Hop-by-hop quality of service routing.
Computer Networks, 37:407�423, 2001.

[86] J. Moy. OSPF version 2, RFC 2328, 1998.

[87] A. Meraihi Naimi. Délai et routage dans les réseaux ad hoc 802.11, Thèse de
Doctorat - Université de Versailles Saint-Quentin-En-Yvelines, 2005.

[88] D. Q. Nguyen and P. Minet. QoS support and OLSR routing in a mobile ad hoc
netowrk. In ICN'06.

[89] M. Pal, I. Tardos, and T. Wexler. Facility location with nonuniform hard capacities.
In IEEE Symposium on Foundations of Computer Science, page 329, October 14-17,
2001.

[90] K. Park and W. Willinger. Self-similar tra�cs. Wiley, 2000.

[91] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector
(AODV) routing, RFC 3561, 2003.

[92] G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of multicast trees:
Comments on the Chuang-Sirbu scaling law. In SIGCOMM, pages 41�51, 1999.

[93] L. Qiu, V. Padmanabhan, and G. Voelker. On the placement of web server replicas.
In IEEE INFOCOM, pages 1587�1596, April 2001.

[94] E. Royer and C. Perkins. Multicast Ad hoc On-Demand Distance Vector (MAODV)
Routing, IETF, Intemet Draft: draft- ietf-manet-maodv-00.txt, 2000.

[95] H. Sallay and O. Festor. A highly distributed dynamic IP multicast accounting
and management framework. In IFIP/IEEE Eighth International Symposium on
Integrated Network Management, 2003.

[96] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection algorithms
for replicated web servers. In Workshop on Internet Server Performance, Madison,
Wisconsin, 1998.

[97] S. Siachalou and L. Georgiadis. E�cient QoS routing. Computer Networks, 43:351�
367, 2003.

[98] M. Steele. Growth rates of euclidean minimal spanning trees with power weighted
edges. Annals of Probability, 16:1767�1787, 1988.

[99] A. S. Tanenbaum. Computer Networks, Fourth Edition. Prentice Hall, 2003.

152 BIBLIOGRAPHY

[100] X. Tang and S. T. Chanson. The minimal cost distribution tree problem of
recursive expiration-based consistency management. IEEE Transactions on Parallel
and Distributed Systems, 15(3):214�227, March 2004.

[101] X. Tang and S. T. Chanson. Minimal cost replication of dynamic web contents
under �at update delivery. IEEE Transactions on Parallel and Distributed Systems,
15(5):431�439, May 2004.

[102] X. Tang and J. Xu. On replica placement for QoS-aware content distribution. In
IEEE INFOCOM, 2004.

[103] O. Tickoo and B. Sikdar. Queueing analysis and delay mitigation in IEEE 802.11
random access MAC based wireless networks. In IEEE INFOCOM, 2004.

[104] S. Toumpis and A. J. Goldsmith. Performance bounds for large wireless networks
with mobile nodes and multicast tra�c. In Inter. Workshop on Wireless Ad Hoc
Networks, Oulu, Finland, 2004.

[105] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[106] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the construction of
energy-e�cient broadcast and multicast trees in wireless networks. In INFOCOM,
pages 585�594, 2000.

[107] H. Zhai and Y. Fang. Performance of wireless LANs based on IEEE 802.11 MAC
protocol. In IEEE PIMRC, 2003.

