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Résumé

La gestion du trafic aérien (air-traffic management, ATM) consiste en une com-
posante prédictive (planification du trafic) et en une composante adaptative
(contrôle du trafic). Le but de la composante prédictive est de trouver un
équilibre entre la demande de l’espace et la capacité disponible. Une fois que les
avions ont decollé, la composante adaptative doit les guider en toute sécurité vers
leurs destinations. Des incertitudes, telles que rétards ou défaillances techniques,
créent des phénomènes d’écarts entre la composante prédictive et adaptative.
Cela entraine des problèmes de sécurité ainsi qu’une utilisation sous-optimale
de capacité. Même si les causes majeures des incertitudes sont connues (incer-
titude de demande, incertitude de capacité, incertitude de gestion de flux), les
mécanismes perturbateurs restent inconnus.

L’approche de cette thèse est d’analyser des données d’écoulement de trafic
afin d’engendrer de nouvelles hypothèses sur les mécanismes qui causent des
écarts entre la composante prédictive et adaptative dans l’ATM. C’est un pre-
mier pas pragmatique dans l’analyse d’un phénomène physique. Il est fondé sur
le calcul des probabilités et plus précisément sur l’interprétation fréquentiste des
probabilités. On utilise des techniques d’analyse de données multi-variées et des
processus ponctuels stochastiques afin d’inférer de nouvelles connaissances sur
le phénomène.

Nos résultats principaux sont:

(i) des écarts systématiques existent dans tous les secteurs evalués. Leur taille
peut être caracterisée par des distributions de Poisson et on constate une
tendance systématique à supprimer le trafic sur des niveaux élevés de
planification. C’est un résultat contre-intuitif car l’on s’attend à ce que
les différents facteurs d’incertitude s’annullent en moyenne. Ensuite on
montre que des perturbations aléatoires d’un processus d’arrivée causent
des écarts systématiques dans deux classes de plan de vol. On conclut que
même si toutes les incertitudes contrôlables étaient éliminées, des écarts
systématiques entre le nombre planifié et observé de vols apparaisseraient.
Ce résultat est utile pour la planification tactique des flux. De nouvelles
contraintes pour le problème de l’allocation de créneaux peuvent être for-
mulées en identifiant des plans de vol qui sont robustes aux perturbations
aléatoires.

(ii) on montre que les écarts se propagent uniquement le long des routes
aériennes. Aucune propagation non-attendue n’est identifiée. Cela in-
dique que les controlleurs aériens n’utilisent pas systématiquement le re-
routage pour compenser les écarts. On remarque également des proba-
bilités de queue élevées et on propose deux (nouveaux) modèles de séries
chronologiques qui décrivent les caractéristiques du processus de pertur-
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bation des plans de vol. Cela indique que les perturbations sont d’une
nature hétérogène et non-indépendante. Le résultat est empirique et on
affirme que le comportement observé est du à des dépendances entre les
avions intervenant sur un long-terme.

Comme travaux futurs on propose de continuer l’identification des ordon-
nancements de vol qui absorbent l’impact des incertitudes non-contrôlables et
de développer des modèles statistiques qui expliquent les échantillons long-terme
de congestion. Ceci constitue une base pour la quantifiaction de l’impact des
décisions locales sur la performance globale du réseau de transport.
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Abstract

Air-traffic management (ATM) consists of a predictive component (traffic plan-
ning) and an adaptive component (traffic control). The aim of the predictive
component is to balance airspace demand with available capacity. The adap-
tive component has to guide aircraft safely to their destinations, once they are
in the air. Uncertainties (e.g delay from connecting flights, technical failure)
create the phenomenon of gaps between the predictive and the adaptive com-
ponent. This causes safety problems and non-optimally used capacity. While
the main sources of uncertainties are identified (demand uncertainties, capacity
uncertainties, flow control uncertainties) the mechanisms of how they affect the
components of air-traffic management remain unknown.

Our approach is to analyze past flight data to generate hypotheses about
the mechanisms that lead to gaps between the predictive and the adaptive com-
ponent in ATM. This is a pragmatic first step in the analysis of a physical
phenomenon. It is based on probability theory and more precisely on a frequen-
tist interpretation of uncertainty. We use multivariate data analysis techniques
and stochastic Point processes to infer new knowledge about the phenomenon.

Our main results are

(i) there are systematic gaps in each sector evaluated. The size of these gaps
can be characterized by Poisson distributions and there is a systematic
shift to suppress traffic at high planned levels. This is counter-intuitive
because one expects that the different uncertainty factors cancel out in
average. We then prove that random disturbances of an arrival process
cause systematic gaps in two classes of flight schedules. We conclude
that even if all controllable uncertainties in flow planning were eliminated,
systematic gaps between the number of planned and realized traffic would
remain. This result is useful in tactical flow planning. New constraints in
the slot-allocation procedure can be found by identifying classes of flight
schedules that are robust to random disturbance.

(ii) we show that gaps propagate exclusively on flight routes. No unexpected
propagation is identified. This is evidence that no systematic re-routing is
initiated by controllers to absorb gaps. We also identify high tail probabil-
ities and two time-series models which describe the second-order charac-
teristics of the process that disturbs the flight schedules. This is evidence
that the disturbances are heterogeneous and not independent. This re-
sult is empirical and we conjecture that the observed behavior is due to
aggregation and long-range dependence at the sector level.

As future work we propose to continue the identification of classes of flight
schedules that absorb the impact of uncontrollable disturbances and to develop
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statistical models that explain long-term congestion patterns. This is a basis to
quantify the impact of local decisions on the performance of the global sector
network.
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Chapter 1

Introduction

Air transportation is an area in which safety has the highest priorities. Every
accident has a world-wide amplitude and questions the reliability of the actors of
the air transportation industry: the constructors (the Concorde accident, 2000),
the control system (lake Constance, 2002) or the airline companies (Charm el
Cheikh, 2004). The today’s standard in air transportation is based on strict
security rules. The definition of these rules and the control of their applica-
tion is under the responsibility of the International Civil Aviation Organization
(ICAO). Other requirements in air transportation include the respect of the
environment and cost-efficiency [ICAO, 2005], [EUROCONTROL, 2006]. All
requirements concern every actor and have to be re-evaluated permanently due
to a dynamically growing market. Eurocontrol, the European Organization for
the Safety of Air Navigation, develops strategies to meet these requirements. Its
research center accommodates the departments applied (short-, medium-, long-
term) and innovative research. The latters mission is to undertake experimental
studies as candidates for further investigation in one of the applied branches.
Examples are models for complex systems and for uncertainty in traffic flow
management [EUROCONTROL, 2005].

1.1 Uncertainties in Air-Traffic Flow Manage-

ment

In this thesis we consider air transportation as a system consisting of several
components such as airports, airlines and traffic flow management. These com-
ponents have different objectives; for example airlines wish to optimize their
fleet-schedules and airports the runway capacities; but they share the same re-
source: the airspace. The airspace is a network of sectors and routes. Sectors
are geographical regions and routes connect sectors. Figure 1.1 shows the sec-
tor - and route network above central Europe. The yellow routes are directed
from north to south and the brown routes in the opposite direction. One can
see a high route density and major axes between London-Frankfurt and Berlin-

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: Sector and route network (central Europe).

Paris. Currently more than 1500 sectors and more than 50.000 routes build
the transportation network, serving more than 22.000 daily flights to take place
[EUROCONTROL, 2006].

Components of traffic management

The goal of the air traffic management component (ATM) is to achieve safe,
orderly, and economic flows of traffic [EUROCONTROL, 1997]. It consists of
the two sub-components flow planning and flow control. Flow planning takes
place before take-off and flow control during the flight. Figure 1.2 shows the
scope of flow planning. It is a long-term process, ranging from research on
new sector- and route designs (strategic phase) over the analysis of flow pat-
terns (pre-tactical phase) until the daily schedule of departure slots to avoid
congestion (tactical phase). The mission of flow planning is to balance airspace
demand with available capacity. It is a centralized service which has to antici-
pate the future evolution of the network. For this reason, we call it the predictive
component in traffic management.

Example: Computer Aided Slot Allocation (CASA). On a daily basis, depar-
ture slots are distributed amongst aircraft to respect sector capacities. Capacity
is defined as the maximum number of aircraft that are allowed to enter a sector
during one hour. The procedure is that airlines submit flight plans at least two
hours before the intended take-off time to the flow-planning center. A flight
plan is a sequence (S1, t1), ..., (Sn, tn) of sectors Si and of estimated entry time
points ti, following the pre-defined routes. Based on this information, take-off
times t′1 ≥ t1 of aircraft are calculated that (i) respect all sector capacities and
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Figure 1.2: Flow planning process

(ii) minimize the total delay of the individual aircraft.

Once an aircraft is in the air, traffic controllers guide it from origin to des-
tination. Each sector is directly supervised by two controllers, one in charge
of conflict detection, and the other in charge of conflict resolution. Minimum
distances between aircraft have to be kept. This is achieved by re-routing and
speed adjustments. Behind this direct control of aircraft, an organizational ef-
fort can be found. Sectors belong to flow centers. There are currently 75 flow
centers in the European airspace. In each flow center, flow managers analyze
the traffic flows and make traffic predictions. They combine several information
sources for this: radar data, weather forecast, abnormal events at airports, and
so on. Based on their prediction of the real traffic situation they can initiate
several actions. For example they can divide sectors into smaller units to an-
swer to high traffic peaks, they can coordinate re-routing of whole flows with
other flow managers or they can declare temporal capacity constraints to the
flow planning center. The difference to flow planning is that flow control adapts
its behavior to the real traffic situation. For this reason we call it the adaptive
component in traffic management.

Example: Dynamic CASA. A flow manager predicts an unusual traffic peak
in one of his sectors for the afternoon because a storm will lead pilots to avoid
a neighboring sector. He calls the flow managers from the neighboring centers
by telephone to find a way to re-route the aircraft over the network. Two hours
before the beginning of the storm, he communicates a temporary capacity lim-
itation for his sectors to the flow planning center.

The link between flow planning and flow control in the pre-tactical and tac-
tical phase is shown in Figure 1.3. Flow planning has to guarantee that sector
capacities are never exceeded. This is done by re-routing and slot allocation.
Re-routing is currently a manual procedure while slot allocation is done auto-
matically. And flow control has to provide capacities that allow for an efficient
usage of the airspace. This is done by declaration of appropriate capacities and
by re-sectorizations; both are inputs to the flow planning component.
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Figure 1.3: Link between flow planning and flow control in tactical and pre-
tactical phase

Current limitations

A main limitation of flow planning is that trajectory and speed of aircraft are
assumed to be known in advance. In reality, uncertainty about the behavior
of airspace users, e.g. passenger delays, controller and pilots behavior or about
weather conditions disturb the flight plans. For example in the year 2004, 17.7
% of the flights departed- and 18.5 % arrived more than 15 min behind their
schedule [EUROCONTROL, 2006].

Uncertainties

[Ball et al., 2005] classify the major sources of uncertainty as

• Demand uncertainty: flights fail to meet planned departure, arrival or en-
route travel times. Contributing factors are mechanical problems, board-
ing passengers or weather conditions.

• Capacity uncertainty: airport and airspace throughput levels vary. Con-
tributing factors are weather conditions and changes in flight sequences
that disturb scheduled departure or arrival spacing.

• Flow control uncertainty: actions are taken by the traffic controllers in
response to demand and capacity uncertainty. Examples are re-routing,
re-sectorization and temporary capacity limitations. The human element
of decision making adds another layer of uncertainty to the whole system.

Example: Reactionary Delay. Reactionary delay is caused by late arrival of
an aircraft or the crew from connecting flights. This delay is propagated through
the whole sector network because (i) aircraft generally fly the same route several
times a day and (ii) connecting flights generally have to wait for delayed flights.
Reactionary delay is the largest single delay factor in the European airspace.
In 2004, it accounted for 39.5 % of all delayed flights. Its portion is increasing
during the last years. Currently, it is not known how the local decisions of
airlines, airport or ATM affect this delay propagation [EUROCONTROL, 2006].
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Figure 1.4: Consequences of uncertainties on sector level

Gaps between planned and realized traffic

Figure 1.4 shows the consequences of uncertainties in flow planning on a sector
level. During flow planning, the initial demand is transformed into regulated
demand such that all sector capacities are satisfied (top and middle). Uncer-
tainties that have not been taken into account in the regulation translate into
gaps between the planned number and the realized number of aircraft arriv-
ing at sectors (bottom). This leads to safety problems and non-optimally used
capacity. For example during the last years, situations in which the actual de-
mand is more than 10 % greater than the capacity occurred in 10 % the time
[EUROCONTROL, 2006].

As a whole, the components of airspace build a socio-technical system. Con-
trollers and pilots frequently make decisions based on uncertain or incomplete
information. The nature of these uncertainties and its impact on the flow
management process is currently badly understood [EUROCONTROL, 2002],
[EUROCONTROL, 2006]. Interdisciplinary research is done towards a better
understanding of the impact of uncertainty on flow management. The aim is to
close the gap between the predictive and adaptive components of flow manage-
ment. This is a basis for a safe, efficient and sustainable usage of the resource
‘airspace’.



16 CHAPTER 1. INTRODUCTION

1.2 Data Analysis and Uncertainty

One scientific view of the world is that nature makes no arbitrary choices. Ran-
domness is the result of incomplete or erroneous information. For example in
mechanics, the trajectory of objects can be described exactly from basic prin-
ciples. Uncertainty in the observations of the objects and the environmental
conditions is often called ‘measurement error’. The other view states that it
is impossible to obtain complete information about an object. For example
living organisms may behave differently under identical conditions. Assuming
deterministic behavior is unrealistic, and any model of the individuals behavior
has to include a stochastic part. This type of uncertainty is called ‘intrinsic
uncertainty’ [Lindsey, 2003]. In both cases, measurement errors and intrinsic
uncertainty lead to variation in observed variables that asks to be understood
and to be quantified.

Example: Random walk. Figure 1.5 shows a sample trajectory of the model

yt = yt−1 + εt

where ε is a random variable with zero mean, and values εt, εs are uncorrelated
for t 6= s. It shows oscillatory behavior, increasing in the beginning, falling
down in the second third and increasing then, again. One could be tempted to
model the trajectory as a deterministic function of time subject to measurement
errors. This assumption would lead to wrong physical interpretations.

Formalisms

Several formalisms to model uncertainty have been developed. The most widely
known is probability theory [Kolmogoroff, 1933]. Others are the theory of fuzzy
sets [Zadeh, 1965] and possibility theory [Zadeh, 1978]. As to date, probability
theory is the formalism with the best understood foundations.

Interpretation(s) of probability

Probability theory is an axiomatic theory, allowing to deduce probabilistic state-
ments from previously stated premises. There is universal agreement on this
[Cox and Snell, 1981], [Chatterjee, 2003], [Saporta, 2006]. For example, we will
proof in chapter 4 that when the arrival process at a sector entry is a randomly
disturbed Poisson process, the average size of gaps is > 0 for low traffic densi-
ties and < 0 for high traffic densities. Concerning the meaning of ‘probability’,
there is less agreement. A study of the philosophy of probability theory shows
a controversial discussion about the interpretation of ‘probability’ [Chatterjee,
2003], [Lindsey, 2003], [Cox, 2006]. Two schools of thought are

• Frequentist. Probability is defined as limiting proportion of times that an
event would occur in repetitions of a random experiment under identical
conditions. For example, the probability of missing a departure slot can be
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Figure 1.5: Sample trajectory of a random walk.

defined as the ratio between the number of flights with missed departure
slots and the total number of flights. Note that this definition assumes
that all aircraft and all conditions at take-off are considered as identical
(e.g. the time-of-day has no impact on the event).

• Bayesian. Probability is defined as an individual degree of belief that
an event will occur. Thus, probability is not an objective property of
the outside world, but an internal state of an individual. For example, the
behavior of traffic controllers during the accident at lake Constance cannot
be assessed based on limiting proportions because it is a singular event.
As a consequence this probability may differ between different observers.

The frequentist view has dominated probability theory during the last century.
It is underlying a large part of statistical procedures, for example the logic
of hypothesis tests. Often, the computational complexities of the procedures
are low [Hand et al., 2001]. Bayesian probability (or more generally ‘subjective
probability’) exists since the same time, but it has been primarily of theoretical
interest. During the last years, due to increase in computational power, it has
seen a revival. Both schools - frequentist and Bayesian - are based on the
axioms of probability theory. They use the same probability calculus to derive
results. It is the conclusions that may differ. On the other hand, for simple
hypotheses and large data sets, the conclusions tend to be the same [Bartlett,
1975], [Hand et al., 2001].
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1.3 Methodology

Before controlling uncertainty it is necessary to understand its underlying mech-
anisms. For example, airlines use the cancellation of flights as a strategy to avoid
high departure delays [Mukherjee et al., 2005]. Or reactionary delays propagate
through the whole sector network. Currently, no theory exists that explains the
relationship between the predictive and the adaptive components of air-traffic
management [EUROCONTROL, 2002], [EUROCONTROL, 2006]. Therefore,
the approach in this thesis is to analyze past flight data to gain insight into
this relationship. We consider the data as being generated by an unknown
mechanism M . Input to this mechanism is a vector of variables X = PLN
representing the planned traffic. Output is a vector of variables Y = REAL
representing the real traffic. The phenomenon of gaps between planned and real
traffic is caused by the interplay of all uncertainty factors in the system airspace.

Although this diagram represents the history of statistics, the principles
to reach conclusions from data are still a source for controversial discussion
[Chatterjee, 2003], [Lindsey, 2003], [Cox, 2006]. The naive position that em-
pirical observation is a basis for scientific theories and that these are derived
through an induction principle can still not be completely refuted but it is ar-
gued that modern epistemological theories lead to more insight in the nature of
scientific discovery [Chalmers, 1982]. Also, the emergence of computing power
led to ‘algorithmic approaches’ in the analysis of data [Breiman, 2001]. But
these are nowadays criticized to be built on an ’unscientific basis’ that lead to
uninterpretable results [Cox, 2001], [Efron, 2001], [Saporta, 2006]. The approach
in this thesis is pragmatic. It is a statistical analysis of available data.

Possible approaches

The following distinctions in analyzing data are currently made:

(i) exploratory vs. inferential: In an exploratory analysis one makes state-
ments about the data under study. In an inferential analysis one general-
izes beyond the observed data and makes statements about the mechanism
that generated the data.

(ii) prediction vs. explanation: Prediction is the ability to generate the values
of the vector Y for any values of the vector X. Explanation is to gain
insight into the relationship M(X,Y).
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(iii) mechanistic vs. empirical model: Formal inferences in an analysis of data
are based on the assumption that a ‘model’ has generated the observed
data and not on the data itself. Several authors distinguish between ‘mech-
anistic’ and ‘empirical’ models [Cox, 1990], [Diggle, 1990], [Lindsey, 2003].
A mechanistic model makes assumptions about the logic of the generat-
ing mechanism. For example, traffic flow theories, e.g. [Gartner et al.,
2002], [Gazis, 2002], build models of vehicle behavior since the 1950’s.
They are originally formulated for highway traffic, but air traffic flow plan-
ning is sometimes inspired by them. Macroscopic fluid models [Sridhar,
2003], [Menon et al., 2004], [Bayen et al., 2006] and Wardrop equilibria
and generalizations (e.g. ‘a flow pattern is in equilibrium if no individual
decision makers on the network can change it to a less costly strategy or
route’ ) [Altman and Wynter, 2004] are concepts to better understand fun-
damental properties of transportation systems with interacting users. An
empirical model makes no assumption about the logic of the generating
mechanism. It ‘mimics’ the relationship between input and output vari-
ables. Example are algorithmic approaches, such as neural networks and
support vector machines [Breiman, 2001] or, depending on how they are
justified, time-series models [Diggle, 1990]. Empirical models are typically
used for prediction tasks [Cox and Wermuth, 1998], [Cox, 2001].

Position of the thesis

Given the complex structure of air-traffic management, modeling approaches can
be criticized: there is currently not enough knowledge about the behavior of the
actors in flow management to justify a mechanistic model. On the other hand,
data-driven models with a large number of parameters are difficult to interpret.
The position of this thesis is a step before modeling: we analyze past flight data
in order to generate hypotheses about the behavior of the actors in ATM. This
is an exploratory analysis. The results lead to a deeper understanding of the
impact of uncertainties in flow planning and are useful in the construction of a
realistic model of traffic flows. A recurring question in this thesis is the role of
algorithms in the analysis of data.
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1.4 Thesis Outline

Air-traffic management consists of a predictive component (flow planning) and
an adaptive component (flow control). The aim of the predictive component
is to balance airspace demand with available capacity. This takes place before
take-off. Once an aircraft is in the air, the adaptive component has to guide
aircraft safely to their destinations. Uncertainties (e.g delay from connecting
flights, technical failure) lead to the phenomenon of gaps between the predic-
tive and the adaptive component. For example in the year 2004, 17.7 % of the
flights departed- and 18.5 % arrived more than 15 min behind their schedule
[EUROCONTROL, 2006]. This causes safety problems and non-optimally used
capacity. While the main sources of uncertainties are identified (demand un-
certainties, capacity uncertainties, flow control uncertainties) the mechanisms
of how they affect the components of air-traffic management remains unknown
[EUROCONTROL, 2002], [Ball et al., 2005].

Main objectives

This thesis addresses the following two questions

1. are there systematic gaps between the number of planned and realized
aircraft entering flight sectors?

2. how can this knowledge be used to improve current flow planning ?

If gaps occur at random, they are an unavoidable characteristic of flow planning.
If not, understanding their mechanisms is a basis to control their occurrence.
This is useful in tactical and pre-tactical flow planning. It leads to new con-
straints in the slot allocation procedure. More generally, it is the basis to close
the gaps between the predictive and adaptive component in air-traffic manage-
ment.

Approach

We analyze past flight data to better understand how uncertainties affect the
components of flow management. We consider the data as being generated by
an unknown mechanism M . Input to this mechanism is a vector of variables
X = PLN representing the planned traffic. Output is a vector of variables
Y = REAL representing the real traffic (radar data). The purpose of the
analysis is to generate hypotheses about the mechanism M(X,Y) that lead to
gaps between the predictive and adaptive components in air-traffic management.
A permanent question is the role of algorithms in such an analysis of data.

Thesis structure

In the next section we summarize background from random vectors and statis-
tical inference and give three examples of the analysis of multivariate data. We
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then describe the data underlying our analysis. Our contributions are split into
two parts: in an exploratory data analysis we analyze the phenomenon of gaps
on a macroscopic level. We characterize the uncertainty about the size of the
gaps, their occurrence over time and how they propagate through the sector
network. One conclusion of this analysis is that gaps do occur systematically.
To interpret this result we analyze the phenomenon probabilistically. In par-
ticular we analyze the impact of random disturbances on flight schedules. The
two parts are independent from another and contain introductions and related
works separately. The conclusions of our research are presented in the last part.
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Chapter 2

Background and Data
Description

A general way to analyze dependencies between random variables is to look at
their joint distribution. For example the joint distribution of gaps in time-slots
t and t + 1 is a 2 × 2 table containing the probabilities of all combinations of
occurrences of gaps. In reality, a relationship may be simpler, for example the
probability of a gap may be proportional to the probability that a gap occurred
immediately before; in such cases, the joint distribution can be summarized
in a compact form: P (gapt) = kP (gapt−1). Joint distributions — either in
exhaustive or in compact form — are thus functions of outcomes of events,
involving parameters. Such parameters can be estimated from observations.
Based on this, the validity of the assumptions about the dependencies can be
verified, for example by testing in the above case the hypothesis that k 6= 0. In
this chapter we review elements of the analysis of multivariate data. We first
summarize the main properties of random vectors. Next, we outline the role
of the likelihood function in data analysis. Then we present three techniques
to detect dependencies in multivariate data, illustrated by examples from the
literature. Finally we describe the data underlying our analysis.

2.1 Random vectors

We introduce basic notions of vectors of discrete random variables. The reason
is that our analysis is primarily concerned with counting the number of aircraft
in different sectors and time-intervals. All concepts can be generalized to non-
discrete random variables.

Let Ω ⊆ N be a countable set of outcomes of a random experiment and A ⊆ Ω
an event. Let P : P(Ω) 7→ [0, 1] be a probability on P(Ω). Let X = (X1, ..., Xn)
be a vector of discrete random variables Xi : Ω 7→ Ei ⊆ N, i = 1, ..., n.

23
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Definition For a discrete random vector X,

PX(x1, ..., xn) = P (X1 = x1 ∩ ... ∩ Xn = xn)

is the joint probability distribution of X.

Properties:

• ∑

x1,...,xn
PX(x1, ..., xn) = 1

• when the domains Ei are finite, the distribution is represented by a table.

Example: First-order Markov Chain. The table below shows the joint prob-
ability distribution of the two random variables Xt−1, Xt, where Xt = 1 is the
event ‘a gap occurs in time-slot t’. It contains 4 parameters, one for each com-
bination of the outcome of the events ‘gap occurs in time slot t’ and t+1. In the
general case, all cell probabilities are unknown. Only the constraint that they
sum to unity eliminates one parameter.

P
P

P
P

P
P

PP
Xt−1

Xt 0 1

0 0 1 - (p+kp)
1 p kp

To come back to the example in the introduction, the distribution contains
a parameter, k, translating the assumption that the probability of a gap is pro-
portional to the previous occurrence probability. Another assumption in this
example is that the event ‘no gap - no gap’ never occurs. This is unrealistic but
illustrates the further discussion.

Definition Let X be a discrete random vector. The probability distribution
of the i-th component

PXi
(xi) =

∑

{x1,...,xn}\{xi}
PX(x1, ..., xn)

is the i-th marginal distribution of X.

In the example above PXt
(xt = 0) = p and PXt

(xt = 1) = 1 − p.

Definition Let X,Y be two discrete random variables.

PY |X(y | x) := P (Y = y | X = x) =
PXY (x, y)

PX (x)
, ∀x : PX (x) > 0

is the conditional distribution of Y given X , and it is undefined if PX(x) = 0.

In the example above P (Xt = 0 | Xt−1 = 0) = 0 and P (Xt = 1 | Xt−1 = 0) =
1. Note that the marginal and the conditional distributions differ substantially.
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Independence

The intuition behind independence between random variables is that the distri-
bution of one variable is unaffected by knowledge of the values of other variables.
We will define independence between two variables and its generalization to sev-
eral variables.

Definition Two random variables X,Y are independent if

PX,Y (x, y) = PX (x)PY (y), ∀x, y

Example: Poisson process. In a Poisson process, the number of arrivals in
distinct intervals are independent Poisson variables. Let N(ai, bi) be the number
of arrivals in the interval (ai, bi] ⊂ R with ai < bi ≤ ai+1. Then

P (N(ai, bi) = ni, i = 1, ..., k) =
k

∏

i=1

P (N(ai, bi) = ni)

=

k
∏

i=1

λ(bi − ai)
ni

ni!
e−λ(bi−ai), ∀k

Definition Two random variables X,Y are conditionally independent given
a random vector Z = (Z1, ..., Zn) when

P (X | Y, Z) = P (X | Z)

Example: First-order Markov Process. In a first order Markov process, the
state of the process at time Xt+1 is independent of the past Xt−2, ..., X1, given
the present state Xt:

P (Xt | Xt−1, Xt−2, ..., X1) = P (Xt | Xt−1)

The joint distribution becomes

PX(x1, ..., xn) = PX1(x1)

n
∏

i=2

P (Xi | Xi−1)

Correlation

Expressing dependencies between random variables by their joint distribution
is not always practical: there are too many parameters to determine and to
interpret. A special case of dependency between two random variables is linear
correlation. It expresses the idea that a value above average of one variable is
associated with a value above average of the other variable. Linear correlation
is often used as an approximate description of the real relationship between two
variables [Cox and Wermuth, 1998]. For a vector X = (X1, ..., Xn) of random
variables, the correlation is a n × n matrix of pairwise linear correlations.
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Definition The mean vector and covariance matrix of a random vector
X = (X1, ..., Xn) are

E(X) = µx =











E(X1)
E(X2)

...
E(Xn)











and

ΣX = E[(X− µx)(X − µx)′] =







σ2
1 cov(X1, X2) . . . cov(X1, Xn)
...

... . . .
...

. . . σ2
n







The correlation matrix is defined by

ρX = D−1/2ΣXD−1/2 = [ρij ]

for i, j = 1, 2, . . . , m where D is the diagonal matrix in which the ith diagonal
element is the variance of the ith component:

D = diag[σ2
1 , σ

2
2 , . . . , σ

2
n]



2.2. LIKELIHOOD 27

2.2 Likelihood

Based on a probabilistic model, statistical inference allows to quantify uncer-
tainty about the existence of structure in observations. For example one can
assume a relationship between two variables X, Y . An estimation of the strength
of the relationship may result in a value near 0. Based on a hypothesis test, one
may reject the hypothesis that the relationship exists in reality.

Likelihood function

Given a probabilistic model with parameters θ ∈ R
p and observations D =

(y1, ..., yn) the likelihood

Lθ(D) = PX(y1, ..., yn | θ) (2.1)

is the joint probability of the observations given the parameters θ. The value
θ̂ which maximizes 2.1 is called the maximum likelihood estimate. Knowledge
of independence or conditional independence between the observations can be
used to factorize this joint distribution into a product form.

Example: Poisson process (continuation). Let D = (y1, ..., yn), where yi is
the number of arrivals in unit-time interval i, be observations of a realization of
a Poisson process with rate λ. The likelihood of the observations is:

Lλ(D) =

n
∏

i=1

P (N(i, i + 1) = yi)

=

n
∏

i=1

λyi

yi!
e−λ

Taking the logarithm on both sides leads to

lλ(D) =

n
∑

i=1

yilog(λ) − λ − log(yi!)

Solving ∂l
∂λ = 0 gives λ̂ =

∑

ni/n, the sample mean. Note that this calculation
is a special case of λi = f(Xi), the Poisson regression model, that we will use
in chapter 3.3.

The likelihood is a central concept in statistical inference. For example in
hypothesis tests, the assumed model (the null hypothesis) is rejected, if the
probability of the observed data is less than the significance level. There is
also an approach to base inference uniquely on the likelihood (”a model that
makes the observed data more probable is more likely to have generated the
data”) [Edwards, 1972], [Pawitan, 2001], [Lindsey, 2003]. This direct likelihood
approach is criticized to be of predictive value rather than of explanatory value
and an open question in statistical inference is which additional arguments are
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necessary to derive useful information from the likelihood [Cox, 2006]. As seen in
the example above, likelihood is also used in estimation of parameters, where the
‘best’ parameter of a model is defined as the one that maximizes the likelihood.
This leads to consistent estimators. But they can be biased and inappropriate
for small sample sizes [Saporta, 2006].

Parameter estimation

When no closed-form solution for the maximum of 2.1 exists, numerical algo-
rithms can be used. A general form of the optimization problem is

min f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., m ∪ {∅} (2.2)

where x = (x1, ..., xn) ∈ R
n are decision variables, f0 : R

n 7→ R is the objective
function and fi : R

n 7→ R are (optional) constraints. For example, f0 corre-
sponds to the negative likelihood function, x to the model parameters, and the
fi to constraints on model parameters, such as non-negativity.

The following problem classes are known [Boyd and Vandenberghe, 2004]

Linear and convex problems

(the fi are convex functions)
Optimal solutions to problem 2.2 are obtained by

• gradient descent, Newton (for unconstrained problems).

• Simplex algorithm, interior point methods.

The complexity of linear optimization problems is polynomial in n, m. For some
unconstrained and convex problems, polynomial algorithms exist.

Non-linear problems

(the fi are non-convex functions)
The worst case complexity of problem 2.2 grows exponentially with problem
size n, m. One reason is that the optimal solutions no more lie on the edges of
the feasible region, as is the case with linear problems. Two general approaches
are

• local optimization (meta-heuristics) [Aarts and Lenstra, 1997]. A local
optimum is found.

• global optimization [Liberti and Maculan, 2006]. The global optimum is
found. These problems are more interesting from a theoretical point of
view. Solutions are restricted to problems with a small number of vari-
ables.
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2.3 Examples from Multivariate Data Analysis

We give three examples from the analysis of multivariate data. We distinguish
asymmetric relationships, where a variable X has impact on another variable
Y from symmetric relationships, where two variables X, Y mutually depend on
themselves.

Open-loop systems

For an asymmetric relationship between two processes Xt, Yt, a family of models
is

Yt =
∞
∑

k=−∞
φkXt−k + εt (2.3)

where εt is some stochastic error. Equation 2.3 is sometimes called ‘trans-
fer function model’ or ‘open loop linear system’. Techniques to identify a lin-
ear transfer function between stationary processes include cross-correlation and
cross-spectrum. To eliminate spurious correlations that are caused by serial
correlation in the individual processes, different forms of pre-whitening are pro-
posed in literature [Kendall, 1989], [Diggle, 1990]. A whitening procedure has
an impact on the interpretation of the parameters [Diggle, 1990]. Inclusion of
several processes on the right side Xjt, 1 ≤ j ≤ n is in principle possible but
raises problems with the interpretation of parameters.

For example [Majumdar et al., 2005] analyze the factors that affect con-
trollers workload in a sector. Examples of such factors are the number of air-
craft in cruise profile or the number of entries in neighboring sectors. They
believe that these factors have the same effect in every sector, but that different
sectors have different characteristics due to local, unobserved events (e.g. work-
ing environment). In essence, their model is an open-loop system taking into
account possible differences between sectors. They identify a number of signif-
icant factors with a potential impact on workload. Their validation is mainly
based on predictive accuracy of the model, so they can only conclude that they
found factors that are useful to predict controllers workload. In an analysis
of data with similar characteristics (daily repeating patterns, dependency on
external events) [Giot, 2001] model their process initially as an auto-regressive
time series. Then, they analyze the impact from external covariates and find
significant changes in the auto-regressive components. Thus the interpretation
of the initial model is revised.

Multivariate time-series

A family of models for symmetric relationships between processes is based on
the following idea:

Xt = φ11Xt−1 + φ12Yt−1

Yt = φ21Yt−1 + φ22Xt−1

(2.4)
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Figure 2.1: Example for an undirected graphical model. X1 is conditionally
independent of X4 given X2 and X3. In normal theory, the partial correlation
ρ1,4|2,3 would equal 0 under such conditions.

They mutually depend on themselves. The standard stochastic model includes
additive noise εti

, i ∈ {x, y} which has zero mean, is uncorrelated over time
but may be correlated between the components εtx

and εty
(There are other

formalisms which express this instantaneous dependency explicitly, discussed
in [Greene, 2002]). In matrix notation, such systems can be written as Yt =
∑∞

j=1 φjYt−j + εt where Yt−i are k-dimensional vectors and φi are k × k ma-
trices of parameters to be estimated. Model families of this type are discussed
in time-series literature. The above corresponds to vector-autoregressive pro-
cesses (VAR). Vector moving average (VMA) and vector autoregressive moving
average (VARMA) models are defined similarly e.g. [Box and F.Jenkins, 1970],
[Kendall, 1989]. Identification techniques include correlation - and partial cor-
relation matrix functions for stationary processes.

Graphical models

Dependency structures based on conditional independence can be described by
graphs G = (V, E), where a random variable Xi is associated to each ver-
tex i ∈ V . The absence of an edge between two vertices i, j means that
the variables Xi, Xj are conditionally independent given the others, denoted
by Xi ⊥ Xj | Z. Graphical models are discussed from several perspectives,
e.g. [Edwards, 1972], [Whittaker, 1990] for statistical - or [Pearl, 1988] for
probabilistic questions. Techniques to identify graphical dependency structures
in data include partial correlation and partial coherence analysis [Brillinger,
1996],[Cox and Wermuth, 1998]. For example, when the variables are jointly
normally distributed, conditional independence between X and Y given Z is
equivalent to ρX,Y |Z = 0, the partial correlation coefficient [Whittaker, 1990],
[Lauritzen, 1996]. For example, Figure 2.1 shows an undirected graphical model
with four nodes. X1 ⊥ X4 | {X2, X3} is equivalent to ρ1,4|2,3 = 0. Similar re-
sults exist for directed graphs (representing asymmetric relationships) and for
discrete variables [Edwards, 1972], [Cox and Wermuth, 1998].

For example, [Brillinger and Villa, 1997] analyze dependencies in a system
of Point processes. A node in their graph corresponds to a stationary Point
process. Dependency between processes are measured via coherency and par-



2.4. DATA DESCRIPTION 31

tial coherency function. They infer that dependency between two processes
exists, even after removing the linear impact from a third one. However, they
speculate that some of the significant dependencies are due to a time trend
(non-stationarity).

2.4 Data Description

We analyze data from two sources. The first source is the flow planning process,
creating daily flight schedules that satisfy the sector capacity constraints. The
second source is radar data which updates the flight schedules with the real
flown trajectories. While the first source is deterministic (it is the outcome of
the slot allocation algorithm), the radar data contains implicitly the impact of
all uncertainty factors on the flights. Eurocontrol stores both data types in a
centralized data base which is updated daily. In this section we explain general
characteristics of the data - its format, its temporal- and geographical dimension
and its quality -, necessary for data selection and pre-processing.

Format and type

Flight data is either trajectory-based or sector-based. In trajectory based data,
sequences (Si, ti) of sectors and entry-times exist for every aircraft. In sector
based data, the number of aircraft entering a sector in a given time interval
exists for every sector. Both data types are numerical; the trajectory-based
data are real numbers and the sector-based are natural numbers.

Trajectory profiles

A flight plan has the form

(S1, t1), ..., (Sn, tn)

where Si are sectors and ti are the entry times in the sectors. S1 is the departure
airport and t1 is the time of the runway access.

For every flight, three flight profiles are available

1. Filed profile. This is the initial flight plan that is submitted by the airlines
to the control center.

2. Regulated profile. This is the profile with possibly delayed departure time
t′1 ≥ t1.

3. Current profile. This is the real flown profile. It is based on radar infor-
mation. A field (Si, ti) of the regulated profile is updated if its difference
with the real position of the aircraft is greater than 200 NM or longer than
5 minutes.
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Figure 2.2: Central European Upper Airspace.

Sector profiles

For a sector S, the number of flights that enter it in a time interval t = (ts, te]
is called the sector profile. It is obtained from the flight profiles by aggregation

XS
t =

N
∑

i=1

in
∑

j=1

IS(Sij
)IT (tij

)

where N is the number of flights, IS(Si) = 1 iff Si = S and IT (ti) = 1
iff ti ∈ t. As with the three flight profiles, three sector profiles (filed profile,
regulated profile and current profile) exist for every sector.

Period

Air-traffic demand is growing yearly. The top part of Figure 2.3 shows the
numbers of million flights per year since 1990. For example in 2005, 9.2 million
flights were controlled in Europe. This is an increase of 3.9. % relative to the
previous year. Traffic growth is forecast to continue at an annual rate of 3 %
to 4 %. The monthly traffic demand can be seen in the bottom part of Figure
2.3. From January until May, traffic demand is increasing. The summer months
(June-September) are stable, followed by a decrease until December. The daily
averages fall between 22.000 in winter- and 28.000 flights in summer. Finally,
two distinct demand types exist: week-day (Mon-Thu) and week-end (Fri-Sun)
[EUROCONTROL, 2006].
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Figure 2.3: Traffic Evolution. Yearly trend (top). Monthly seasons (bottom).
Source: EUROCONTROL

We select data of 75 week days (Mon-Thu) in the summer period 13.5.-
29.9.2004. We assume similar traffic conditions (number of flights, network
topology, controllers) for each of these days.

Geographic area

Figure 2.2 shows the geographical area of our study. The area covers the upper
airspace between London, Zurich and Berlin. The control of this area is shared
between 31 elementary sectors belonging to 9 flow centers. The average traversal
time of a sector in this region is 7 minutes. The reason to analyze sectors in
this area is that the area has the highest risk of congestion.

Quality

As a consequence of the huge amount of data (> 20000 flight plans per day)
and the partly manual processing, errors in the flight plans are unavoidable.
For example flight plans with ‘leaks’ in the route sequences exist or stored flight
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plans may be inaccurate due to last-minute modifications. There is a whole
service, the Initial Flight Plan Processing Unit (IFPU) that is responsible for
the quality of flight plan data. However, about 5 % of the total flight plans
have to be considered inaccurate. We use the data extraction functionality
of the certified COSAAC tool (Common Simulator to Assess ATFM Concepts
[EUROCONTROL, 2004]) to further minimize the amount of inconsistent data,
assuming that controllers discern obvious inaccuracies in advance, as well.



Chapter 3

Results of Exploratory
Analysis

There are many reasons why aircraft deviate from their flight plans: pilots
wait for delayed connecting flights or take shortcuts to recover departure de-
lays. Air-traffic controllers solve conflicts by speed- and route adjustments of
aircraft. Finally, weather conditions force pilots to avoid certain sectors or have
an impact on the speed of aircraft. Deviations from flight plans lead to gaps
between the number of planned and realized entries at sectors. This leads to
safety problems and sub-optimally used capacity.

In this chapter we analyze the following questions:

• do gaps between the number of planned and realized aircraft occur sys-
tematically?

• or are they compensated by the behavior of traffic controllers and pilots?

If they occur at random, they are an unavoidable characteristic of the flow
planning system. If not, understanding their mechanisms can help to control
the occurrence of gaps.

Description of gaps between planned and realized traffic

The approach is to analyze past flight data to describe the gaps: their occur-
rence, their magnitude and their propagation through the sector network. We
explore and summarize regularities in the data. Such an activity has several
names: exploratory data analysis [Tukey, 1977], analyse des données [Saporta,
2006] or data mining [Hand et al., 2001]; the main characteristics is that we do
not make assumptions about the phenomenon.

35
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Methodology

For a single sector we consider {yt}, t = 0, 1, 2, ... as a sequence of observations
(e.g. the number of aircraft) in time slot t. Two standard approaches to analyze
such sequences are time-series analysis [Kendall, 1989], [Diggle, 1990], and sig-
nal processing [Mallat, 2000]. In a first step, both try to identify patterns, for
example periodicity (e.g. daily repetitions), time-trends (e.g. yearly increase)
or edges (sharp increases in gradient). The main techniques are smoothing,
correlation- and frequency analysis.

For m sectors, observations in slot t are represented as m-dimensional vec-
tors {yt}, t = 0, 1, 2, .... We are interested in the question ’if there is a gap in
sector S at time t, how does it affect the other sectors at time t + k? Such
situations can be seen as open-loop or multivariate systems. The identification
techniques are mostly generalizations of the univariate case: correlation matri-
ces and cross-spectral densities.

Descriptive data analysis is subjective and one should always ask why a given
series shows a particular pattern. For example a linear trend on a small time-
scale can appear as part of an oscillation effect when the time horizon is widened
[Kendall, 1989]. [Diggle, 1990] identifies other limitations of pure data-driven
approaches to time series analysis.

Formalization

We analyze the relationship between the two components ‘planned traffic’ and
‘realized traffic’. More formally, we analyze the relationship between the two
processes

{PLNt : t ∈ N} (deterministic) (3.1)

{REALt : t ∈ N} (stochastic) (3.2)

The first process (3.1) is the process of flow planning, mapping demand on avail-
able departure slots. This process has been described in the introduction; it is
based on flight plans and sector capacities. The second one (3.2) is stochastic,
mapping the outcome of a planning onto the number of real arrivals.

Given N observations of planned and realized traffic in p sectors

D = {(reali,plni)}N
i=1, reali,plni ∈ N

m

we answer two questions: (i) do gaps between planned and realized traffic occur
systematically? and (ii) how do the gaps propagate through the system?

Related work

[Wanke et al., 2003] and [Wanke et al., 2005] analyze the aggregate effect of un-
certainties in sector demand in the U.S. airspace. They identify binomial- and
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Poisson distributed counts of aircraft entering flight sectors. They also identify
major factors with an influence on these distributions. They conclude that un-
certainty is increasing with a higher prediction horizon. This can be partially
explained by ‘pop-up’ flights, not yet having submitted their flight plans.

[Robelin et al., 2006] analyze radar data to identify real traffic flows in the
U.S. airspace. They define a flow as a cluster of aircraft with similar trajectory
properties. A trajectory is a high-dimensional vector of geographical compo-
nents. They use k-means, principal component analysis and syntactic matching
to identify the clusters. Even after enhancing the data set with additional fea-
tures (e.g. aircraft type), they conclude that none of the algorithms provides
satisfactory results for practical purposes.

[Hansen and Wei, 1999] analyze empirically the daily variation in flight de-
lays. They build a non-linear regression model relating average flight time
with external variables (e.g. demand, weather, origin) and interactions between
them. Their aggregate approach allows them to assume independence between
daily observations. They conclude that a capacity expansion that had taken
place in the past lead to an average decrease of delays, particularly under low
visibility conditions. However, they relative their observation by pointing out
that the capacity expansion may have caused an increase in demand, causing
higher delays again.

Plan of the chapter

The analysis consists of three parts parts, a validation and an interpretation.

First we propose three definitions of gaps between planned and realized sec-
tor entries. Each one offers insight in the characteristics of the phenomenon.
We describe their main properties and fit parametric distributions. Then we
analyze gaps in a single sector. We show that their occurrence is time-invariant
and that their relationship with traffic density is non-linear. In the third part
we analyze how gaps propagate through the sector network. We estimate corre-
lations between gaps in different sectors and different times and conclude that
no unexpected correlations are identified. We validate the results on different
time-scales and on randomly chosen sectors. Finally, we interpret the results
and give the main conclusions.
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3.1 Summary of Results

Uncertainty of gaps

We give three different definitions of gaps between the number of planned and
realized aircraft in a flight sector. The marginal distributions of direct definitions
of gaps have higher probabilities in the tails and close to the center than normal
and log-normal distributions. Defining gaps as a function of planned traffic
leads to Poisson distributions. These results characterize the uncertainty about
the size of gaps.

Systematic gaps between planned and realized

For low traffic densities, systematically more aircraft than planned arrive. For
high traffic densities, the inverse is true. This relationship can equally well be
characterized by a logarithmic, square-root or reciprocal function of planned
traffic. We conclude that systematic gaps between the number of planned and
realized traffic exist.

Propagation of gaps

We analyze how gaps between planned and realized traffic propagate through
the network of flight sectors. We first develop bounds of the variability of
coefficients of the sample correlation matrix function as a function of the sample
size and the dimension of the problem. Applied to the most congested part of the
network shows that significant correlations appear on two levels: (i) locally, that
is between a sector and its direct neighbors and (ii) globally on ‘traffic highways’,
that is between sectors that are connected through a flight route with high traffic
densities. From those pairs of sectors that are correlated, 84 % have exactly one
significant coefficient and there are never more than 4 significant coefficients.
Moreover, all correlations are positive and their time-lags correspond to the
average traversal times. No unexpected correlations have been found. This is
evidence that no systematic re-routing is initiated by air-traffic controllers.
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3.2 Uncertainty of Gaps

Gaps are differences between the number of planned and realized entries into a
flight sector. Three possible definitions are

GAPt =







REALt − PLNt absolute definition
REALt/PLNt relative definition
f(REALt, PLNt,X) functional definition

All three definitions give insight in the phenomenon. For example absolute and
relative gaps describe directly how the phenomenon appears to an observer.
The functional definition models the joint distribution of REAL and PLN . X
is a vector describing the environment in which the variables are observed, for
example the time of the day. It gives insight into how gaps are generated by
the flow planning component.

In this section we describe the marginal distributions PGAPi
of all three defi-

nitions. Unlike conditional distributions P (Xt | Xt−1, Xt−2, ...), marginal distri-
butions cannot completely specify a process. Moreover, observations x1, x2, ..., xn

of a stochastic process are usually not independent. Sampling its marginal dis-
tributions can be biased. On the other hand, marginal distributions summarize
the global variation of the process. Sometimes they also provide insight in its
dependency structure [Baccelli, 2002], [Cappé et al., 2002]. When not stated
otherwise, we report results from sampling marginal distributions of a single
long realization of the stationary process GAPt.

The upper panel of Figure 3.1 shows a time plot of 4 successive week-days
of traffic. The round circles on the y = 0 line mark the beginning of a new day.
The number of arrivals is counted in 15 minutes time intervals. One day con-
sists of 96 intervals. The range of the variables is [0,15]. The dotted line is the
planned traffic. The bold line is the realized traffic, shifted by 10. Their shapes
are similar. Daily repeating patterns are visible. A typical daily pattern can be
described as ‘few traffic in the night, irregular pattern during the day (7-19h)’.
In some sectors, peaks at noon and in the afternoon arise, but this is not the
general case [Guerreau, 2000]. For example, some sectors have peak hours due
to the arrival of over-Atlantic flights, other sectors lie close to airport and have
constant densities over the day. In the middle panel the absolute definition of
gaps PLNt −REALt is plotted over time. It fluctuates around 0. The variance
looks constant during the day (7-19h) and during the night. In the lowest panel,
the relative definition of gaps GAPt = REALt/PLNt is plotted. Apart from
two high peaks in the first day, the series fluctuates around the value 1. Here
the variance during the day (7-19h) appears to be smaller than during the night.

Figure 3.2 shows the sample autocorrelation function of the series GAPt =
REALt − PLNt (top) and GAPt = REALt/PLNt (bottom)
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Figure 3.1: Time plots of 4 successive week-days of traffic. Top: realized traffic
REAL (dotted) and planned traffic PLN, shifted by 10 (bold). Middle: REAL-
PLN. Bottom: REAL/PLN.
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Figure 3.2: Sample autocorrelation functions for gaps of 4 successive days
(n=384). Top: absolute gaps GAPt = REALt − PLNt . Bottom: relative
gaps GAPt = REALt/PLNt .

ρ̂(k) =

∑N−k
i=1 (xi − µ̂)(xi+k − µ̂)

∑N
i=1(xi − µ̂)2

, 0 ≤ k ≤ 96

of one day. µ̂ = 1
N

∑N
i=1 xi. The horizontal lines delimit the 95 % confidence

interval for the autocorrelation of an i.i.d. process. No meaningful significant
coefficients appear in both plots.

Absolute

Figure 3.3 shows the histogram of the marginal distribution of absolute gaps
GAPt = REALt−PLNt during the day (7-19h). It is a symmetric distribution.
Its mean and standard deviation are 1.2 and 3.2 respectively. Superposed is a
normal distribution with density

pr(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Except from a peak at GAPt = 0 the distribution fits the data accurately.
Table 3.1 shows descriptive statistics for five randomly selected sectors. They
all have first four moments that characterize a Gaussian distribution: mean ∼ 0,
standard deviation ∼ 3, skewness ∼ 0 and kurtosis ∼ 3. System-wide, the means
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Figure 3.3: Histogram of absolute gaps GAPt = REALt − PLNt (7-19h).

of all 31 distributions lie in the range [-1.3,1.0]. Their standard deviations lie
in [1.9,3.7], skewness in [-0.1, 0.1] and kurtosis in [2.9, 3.4] (last row). Figure
3.4 shows the q-q plot where the distributions of all 31 sectors are superposed.
The data has been standardized, so the diagonal is the 45-degree line. The plot
indicates that the tails of the sample distributions have higher probability than
those of a Gaussian distribution.

Relative

The left part of Figure 3.5 shows the histogram of the marginal distribution
of GAPt = REALt/PLNt during the day (7-19h). It is antisymmetric to the
right with mean=1.3, sd=0.69 and skewness=3.1. Superposed is a log-normal
distribution with density

pr(x) =
e−(lnx−µ)2/(2σ2)

σx
√

2π

Its density around the center is too small. One can summarize the distribu-
tion as follows:

≤ −50 % -25 % ±10% + 25 % ≥ 50%
0.04 0.25 0.17 0.3 0.24

In 4 % of the cases, REALt is less than 50 % of PLNt. In 25 % of the cases,
it is around 25 % of it. Situations in which REALt is ±10% of PLNt occurs



3.2. UNCERTAINTY OF GAPS 43

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

normal q−q plot abs

( 7 − 19 h)
theor. quantiles

sa
m

pl
e 

qu
an

tile
s

Figure 3.4: q-q plots for absolute gaps of 31 sectors (7-19h).

Sector N µ sd skew kurt min max
EUF 3675 0.08 3 0.01 3.2 -12 11

CLEU 3675 -0.23 2.2 -0.01 3.2 -9 8
KOH 3675 0.89 3.2 0.02 3 -10 12
HVL 3675 0.19 3 0.00 3.1 -15 11
EUY 3675 0.27 3.2 0.04 3.4 -14 13

all [-1.3,1.0] [1.9,3.7] [-0.1, 0.1] [2.9, 3.4] [-18,-9] [8,15]

Table 3.1: Marginal distribution of absolute gaps GAPt = REALt − PLNt

(7-19h). 5 randomly selected sectors. Last row: all 31 sectors.

in 17 % of the cases. In 30 % of the cases, REALt is 25 % higher than PLNt.
The remaining cases account for 24 % of the distribution.

The right part shows their logarithm GAPt = log(REALt/PLNt). This
distribution is unsymmetrical, as well. It has mean=0.16, sd=0.52 and skew-
ness=0.25. However, a Gaussian distribution is superposed. It fits the data
accurately, even if its density around the center is too small. Table 3.2 shows
descriptive statistics for this representation of relative gaps. Half of them are
negatively skewed. All of them have a kurtosis higher than a Gaussian distribu-
tion. In all 31 sectors, skewness lies in the interval [-0.24,0.46] and kurtosis in
[3.9,6.2] (last row). The q-q plot for all 31 sectors can be seen in Figure 3.6. Two
features appear: the tails contain more density than Gaussian distributions and
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Figure 3.5: Histograms of relative gaps GAPt = REALt/PLNt (left) and of
their logarithm (right).

Sector N µ sd skew kurt min max
SLNHIGH 3675 0.02 0.48 -0.02 4.8 -2.4 2.4

LNH 3675 -0.17 0.5 -0.28 4.5 -2.9 2.2
HAHI 3675 -0.10 0.48 -0.21 5.4 -2.8 2.8
EUY 3675 0.038 0.46 0.10 4.6 -2.6 2.4
AGL4 3675 0.15 0.61 0.46 4.9 -2.4 3.1

all [-0.17, 0.16] [0.39,0.66] [-0.24,0.46] [3.9,6.2] [-3.0,-1.6] [1.8,3.2]

Table 3.2: Marginal distribution of relative gaps GAPt = log(REALt − PLNt)
(7-19h) on 5 randomly selected sectors. Last row: all 31 sectors.

the density around the center is higher than for Gaussian distributions. Both
features explain the high kurtosis.

Functional

Figure 3.7 shows two histograms of the variables REALt. On the left, it is
conditioned on the time-of-day t: P (REALt|t). In the example, the time-slot
corresponds to 16h−16h15. This corresponds to sampling the distribution from
different daily realizations. The values can thus be assumed to be independent
from each other. On the right, it is conditioned on the planned traffic PLNt:
P (REALt|PLNt). In the example PLNt = 4. Both distributions are right
skewed. The variables are positive (including 0) and discrete. Superposed are
Poisson (green) and binomial distributions (red).
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Figure 3.6: q-q plots for relative gaps of 31 sectors (7-19h).

The Poisson distribution has mass

Pλ(Y = k) =
λke−λ

k!

with parameter λ. Its first two moments are

E(Y ) = λ

V(Y ) = λ

The binomial distribution has mass

Pn,p(Y = k) =

(

n

k

)

pk(1 − p)(n−k)

with mean and variance

E(Y ) = np

V(Y ) = np(1 − p)

where p is the probability of occurrence, k is the number of occurrences
and n is the number of trials. Given N observations (y1, ..., yN ), the maximum
likelihood estimator for p is:

p̂ =

∑N
i=1 yi

Nn
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Figure 3.7: Number of real arrivals (REALt) conditioned on time of day (left)
and on number of planned entries (PLNt) (right).

Distribution Cond. χ2

Poisson t 75%
Binomial t 67%
Poisson PLN 76 %
Binomial PLN 17 %
Poisson PLN > 3 95 %
Poisson PLN ≤ 3 64 %

Table 3.3: Goodness-of-fit of Poisson and Binomial distributions.

We use

n = max(y1, ..., yN )

for estimation.

A system-wide comparison is summarized in table 3.3. We selected randomly
100 sectors and conditions and evaluated the goodness-of-fit of a Poisson and of
a binomial distribution with a χ2 test. Conditioned on time-of day, a Poisson
distribution is accepted in 75 % of the cases and a binomial distribution in 67
%. Conditioned on planned traffic, 76 % of the distributions can be seen as
Poisson and 17 % as binomial. When planned traffic > 3, Poisson distributions
are accepted in 95 % of the cases. For PLN ≤ 3, 64 % of the distributions can
be characterized by Poisson distributions.

To conclude, we analyzed three definitions for gaps between the number of
planned and realized sector entries. Absolute gaps (GAPt = REALt − PLNt)
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fluctuate around 0 throughout the day. Their variance is higher during the day
(7-19h) than during the night. No serial correlations have been found. The
marginal distributions during the day are symmetric with standard deviations
lying in [1.6, 3.2]. The probability of their tails is slightly higher than in Gaus-
sian distributions. Relative gaps (GAPt = REALt/PLNt) fluctuate around 1
throughout the day. The variance is lower during the day (7-19h) than during
the night. No serial correlations have been found, neither. The marginal distri-
butions are skewed to the right (skewness lies in [0.8, 1.6]). The distributions
of their logarithms have higher probability in the tails and around the cen-
ter than a Gaussian distribution. As a consequence, log-normal distributions
are no candidates for relative gaps. Two simple examples of functional gaps
(GAPt = f(REALt, PLNt)) are the real traffic conditioned on time-of-day and
on planned traffic. These variables take on positive and discrete values. Their
distributions are right skewed, too. They can be characterized with Poisson
distributions.
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3.3 Occurrence of Gaps

In this section we analyze in more detail the realized traffic in a single sector.
We characterize it (i) as a function of time and (ii) as a function of planned
traffic.

Function of time

A typical daily pattern is shown in Figure 3.8: few traffic in the morning and
night; peak hours around noon and in the late afternoon. We assume that

REALi ∼ Poisson(µi)

are independent random variables, a non-homogeneous Poisson process, and let
its rate vary as a fourth-order polynomial function of time

log(µt) =

4
∑

i=0

αit
i

Given N observations real = (real1, , ..., realN ), the parameters αi are esti-
mated by maximizing the likelihood

l(α | real) =
N

∑

i=1

(realilog(µi) − µi)

The first derivative results in non-linear equations in the αi’s, which can be
solved with a Newton procedure. This likelihood is a concave function, lead-
ing to unique parameter estimates [Cameron and Trivedi, 1998]. Care has to
be taken with the statistical properties of these estimates. Consistency and
asymptotic normality can be derived by various convergence assumptions of the
covariates [Fahrmeir and Tutz, 2001]. These are usually fulfilled in i.i.d. data,
but violated for trending regressors. Moreover, these assumptions are more re-
strictive in the case of dependent data since it usually contains less information
than i.i.d data. Stationarity and ergodicity of the covariate process are often as-
sumed, but weaker conditions exist for special cases [Fahrmeir and Tutz, 2001].
As a consequence, we will not make formal inferences about estimated parame-
ters. We will only compare relative goodness-of-fit of various models.

The fitted polynomial is the bold line in Figure 3.8. It captures the low
traffic density during night and the two daily peaks. But such a time-trend can-
not be justified physically. Moreover, wrong time trend models imply spurious
correlation in the residuals [Diggle, 1990]. This is an example of the limitations
of a pure data-driven approach. Note that there are many possibilities to model
time effects, for example with harmonic curves or with seasonal models.
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Figure 3.8: Arrivals in fifteen minutes intervals with t4 time-trend (bold).

Function of planned traffic

We are more interested in the relationship f between the number of planned and
real arrivals. In other words, we are looking for a trend that is not a function
of time but a function of planned traffic:

E(REALt) = f(PLN−∞, ..., PLN∞)

The variables on the right side have an impact on the variables on the left
side. Such an asymmetric relationship between several processes is called ‘trans-
fer function model’ or ‘open-loop system’ e.g. [Kendall, 1989], [Diggle, 1990].
Main tools for the identification of a linear transfer function between stationary
processes are cross-correlation and cross-spectrum. One class of non-stationary
models for which standard techniques can be applied are series with polynomial
time trends. Such trends can be removed by differencing the series, which re-
sults in a stationary series e.g. [Kendall, 1989]. These tools are not applicable
in our case because we cannot justify a polynomial time-trend.

Figure 3.9 shows the scatterplot of PLNt against REALt on a 15 min
timescale. The range of both variables is [0,15]. The sample conditional mean
is

µ̂(REALt|PLNt = k) =
1

nk

∑

PLNi=k

reali

where nk is the number of observations with PLNt = k. As a function of k, it
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Figure 3.9: Scatterplot of PLNt against REALt (15 min). x axis: number of
planned entries, y axis: number of real entries. Bold line: sample means.

has a logarithm-like shape (bold line). The quartiles

{x : P (PLNt ≤ x) = p, pi ∈ {0.25, 0.5, 0.75}}

are plotted by the red triangles on the level y = 0. The sample mean is above
the diagonal until the 50% quartile, and falling below it, then. In particular at
PLNt = 0, the mean is > 0.

Three simple descriptions of this relationship are f(x) ∈ {log(x),
√

x, 1 −
1/x}. Since the variable REALt is a count, we assume

log(µt) = αf(PLNt) + β

with α, β ∈ R. Note that the model using the logarithmic trend can also be
written as the power of α. The predicted mean values of the three models are
superposed in Figure 3.10. They all describe accurately the sample means.

To validate this result on a system-level, we fit every candidate model to
30 randomly selected sectors and days. Table 3.4 shows mean values and stan-
dard deviations of deviance D and AIC of every model. The first two models
are baseline models; the homogeneous Poisson process and a non-homogeneous
Poisson process with rate log(µt) = αPLNt + β. Average deviance (AIC) are
213.5 (527.0) and 140.5 (434.5) on 95 and 94 degrees of freedom. Models 3-5 are
the candidates for the observed trend in Figure 3.10: log(µt) = αlog(PLNt)+β,
log(µt) = α

√
PLNt + β and log(µt) = α(1− 1/PLNt) + β. Their deviances are
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Figure 3.10: Relationship between number of planned arrivals PLN (x-axis) and
average number of real arrivals REAL (y axis) in 15 minutes time intervals.

all ∼ 117 (425), so the baseline models are inappropriate. The last model is the

polynomial time trend log(µt) =
∑4

i=0 αit
i. Its average deviance is 118.6 on 91

d.f. The use of more parameters is reflected in an AIC of 442.4, which is higher
than the AIC for the candidate models. The variation of the statistics over all
30 sectors lies in the range ±10%. Thus, independently of sector and day, the
three candidate models all explain a large part of the variation in the data.

To summarize, the process REALt, t = 1, 2, ... varies over time. We de-
scribed this variation as a non-homogeneous Poisson process with rate as a
function of time and as a function of planned traffic. As a function of time we
used a polynomial that captures the night/day traffic variations. As a function
of planned traffic we first looked at the sample conditional mean of realized
traffic given planned traffic. We then compared the goodness-of-fit of three
candidate functions for this relationship. All models describe equally well the
variation in the data. But these findings are empirical. We found ways to accu-
rately describe the data. The question is not whether one description predicts
better than another. We should explain why the data shows this behavior before
drawing further conclusions.
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Model µ(D) σ(D) µ(AIC) σ(AIC) d.f.
1 213.5 41.2 527.0 53.9 95

PLN 140.5 17.9 434.5 40.8 94
log(PLN) 118.2 17.7 428.0 32.0 94
sqrt(PLN) 117.1 20.3 422.2 35.0 94
1 − 1/PLN 117.9 14.9 419.3 34.5 94

∑4
i=0 ti 118.6 18.4 442.5 27.1 91

Table 3.4: Goodness-of-fit of different trend models.

3.4 Propagation of Gaps

Obviously, a gap between planned and real number of entries in a sector S at
time t propagates to its neighboring sectors at time t+1, because aircraft cannot
stand still. On the other hand, pilots and air traffic controllers can compensate
gaps by re-routing or speed adjustments of aircraft. In this section we analyze
how such gaps propagate in reality through the airspace. Are there systematic
movements of gaps or do controllers compensate them successfully?

We consider Zt = [Z1t, Z2t, ..., Zmt]
′, t ∈ Z as a random process where Zit

represents the gaps between planned and realized traffic in sector i in time-slot
t. Our aim is to study the correlation structure of the process. This is the first
step in every analysis of multiple time series [Kendall, 1989] or more generally
in graphical modeling. Here, recent similar work can be found in the analysis
of gene-network structures where interactions between a large number of genes
are sought [Brillinger and Villa, 1997], [Schäfer and Strimmer, 2005]. More for-
mally, we are concerned with the problem of inference about high-dimensional
random matrices. We will address the problem of sample size, dependencies
between coefficients and spurious correlations.

This section contains two results: first, we derive three bounds for the vari-
ability of the coefficients of the correlation matrix. The approaches are ana-
lytical (based on central limit theorem) and numerical (bootstrap technique).
Secondly, we identify patterns in the correlation structure of the most congested
part of the airspace. We show evidence that no systematic re-routing takes place
in the sector network.

Visualization

Before analyzing the correlations, we visualized the propagation of gaps between
planned and realized traffic in a movie (Figure 3.11). For all sectors, the series
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GAPt, t = 1, 2, ... is visualized with the colors

GAPt =







green REALt < 90% of PLNt

yellow REALt <> ±10% of PLNt

red REALt > 110% of PLNt

In the visualization no eye-striking propagation patterns are visible. We con-
clude that a more detailed analysis is necessary.

Inference for correlation matrices

In this part we define the correlation matrix between multiple time series and its
sample version. We then discuss general problems of inference before deriving
bounds for the variability of the sample coefficients.

Let Zt = [Z1t, Z2t, ..., Zmt]
′, t ∈ Z be an m-dimensional jointly stationary

vector process with mean vector

E(Zt) = µ =











µ1

µ2

...
µm











and cross-covariances between Zi,t and Zj,s that are functions of the time dif-
ference (s − t) for all i, j = 1, ..., m. Its covariance matrix function is

Γ(k) = Cov{Zt, Zt+k} = E[(Zt − µ)(Zt+k − µ)′]

= E







Z1t − µ1

...
Zmt − µm






[Z1t − µ1, Z2t − µ2, ..., Zmt − µm]

=







γ11(k) γ12(k) . . . γ1m(k)
...

... . . .
...

γm1(k) γm2(k) . . . γmm(k)






= Cov{Zt−k,Zt}

where

γij(k) = E[(Zit − µi)(Zj,t+k − µj)] = E[(Zi,t−k − µi)(Zj,t − µj)]

For i = j, γii(k) is the autocovariance function for the ith component process
Zi. Else, it is is the cross-covariance function between components Zi and Zj .

The correlation matrix function is defined by

ρ(k) = D−1/2Γ(k)D−1/2 = [ρij(k)]

for i, j = 1, 2, . . . , m where D is the diagonal matrix in which the ith diagonal
element is the variance of the ith process:

D = diag[γ11(0), γ22(0), . . . , γmm(0)]
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Figure 3.11: 30 minutes evolution of traffic. Congestion appears ‘randomly’.
Red: over-delivery, green: under-delivery, yellow: no difference between planned
and executed traffic
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For example, the off-diagonal elements of ρ(k)

ρij(k) =
γij(k)

[γii(0)γjj(0)]1/2

represent the cross-correlation functions between the processes Zi and Zj .
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Estimation

The standard estimators of covariance and correlation matrices are sample-
covariance and sample-correlation. The sample covariance matrix has elements

γ̂ij(k) =
1

n − k

n−k
∑

t=1

(Zit − Z̄i)(Zj,t+k − Z̄j)

where

Z̄i =
1

n

n
∑

t=1

Zit

are the component-wise sample means. The sample correlations are then

ρ̂ij(k) =
γ̂ij(k)

[γ̂ii(0)γ̂jj(0)]1/2

These estimators are asymptotically normally distributed [Kendall, 1989].
Modifications exist to address issues of bias and positive definiteness [Kendall,
1989]. [Ledoit and Wolf, 2004] and [Schäfer and Strimmer, 2005] recently stud-
ied the estimation of high-dimensional covariance matrices. They propose James-
Stein estimators to minimize further mean squared error and to obtain positive
definite and invertible matrices. A disadvantage of their approach is that the
sample properties of their estimators are not known.

Sample Variability

Our objective is to decide whether the coefficients of the correlation matrix dif-
fer significantly from 0. For this, the variance of the sample correlations has to
be known. For large sample size n the variance of a single sample correlation
coefficient under the hypothesis that the true correlation is 0 is 1√

n−1
[Saporta,

2006]. The elements of a sample covariance matrix are not independent of each
other. Thus, sequential tests are not appropriate. As far as the sample covari-
ance matrix is concerned, exact distributions and tests, e.g. the identity with
a given matrix, are available [Anderson, 1958]. These results generally require
assumptions of normality of the parent variables because, even with indepen-
dent observations and large sample sizes, fourth-order moments determine the
relationship between the elements of the sample covariance matrix since a frac-
tion of the estimates comes from a single vector observation — which has some
unknown joint distribution. When observations are dependent, the situation
gets more complicated. In large samples and for stationary time-series, a result
from Bartlett is then usually used [Kendall et al., 1983]. It can be used to show
that when the series Zi(t), Zj(t) are uncorrelated,

V [ρ̂ij(k)] =
1

n − k

∞
∑

s=−∞
ρii(s)ρjj(s) (3.3)
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and

Cov[ρ̂ij (k), ρ̂ij(k + l)] =
1

n − k

∞
∑

s=−∞
ρii(s)ρjj (s + l) (3.4)

This means that even for large n (and under the assumption of normality),
the variance and covariance of the sample correlations depend on all correla-
tions of the original process. Thus it is impossible to estimate these quantities
directly from a finite sample. In practice, approximations are usually used, for
example by assuming that the individual series correspond to white noise (for
example after pre-whitening).

In what follows, we derive bounds for V [ρ̂ij(k)]. These can be used as a
heuristic in the analysis of the correlation matrix. We use Bartlett’s formula to
compute realistic variances taking into account serial correlation between ob-
servations. Then we use a re-sampling approach to estimate the real sample
variability.

To account for dependencies between successive observations, we calculate
the variance inflation for several dependency structures compared to indepen-
dent observations due to Bartlett’s formula 3.3. The dependency structures are
the following:

ρii(s) = ρjj(s) =

{

ρmax s < lmax

0 else

Under this structure, equation 3.3 becomes

V (ρ̂ij(k)) <
1

n − k

∞
∑

s=−∞
ρ2

ii(s) =
1

n − k
(1 + 2lmaxρ2

max)

The table below shows nV (ρ̂ij(1)) for different values of ρmax and lmax:

P
P

P
P

P
P

PP
lmax

ρmax 0.01 0.05 0.1 0.2

10 1.002 1.05 1.20 1.8
75 1.015 1.375 2.50 7.0
100 1.02 1.50 3.00 9.0
150 1.03 1.75 4.00 13.0

We can expect 30 - 70 % increase of variance with respect to independent real-
izations.

Finally, we evaluate V (ρ̂ij) non-parametrically, with a block-bootstrap
[Bühlmann, 2002]. We select the block-size = 288 (corresponding to 1 day)
and re-estimate ρ̂ij(1) 200 times based on independently drawn samples with
replacement. The results are shown below:
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n 288 2*288 10* 288
s.e(ρ̂ij) 0.12 0.08 0.04
ŝ.e(ρ̂ij) 0.14 0.1 0.05

where the first line is the standard error obtained from Bartlett’s formula under
the assumption of white noise and the second line the bootstrap estimation of
the standard error. It shows an increase of 10 %, so if the true dependency
structure can be modeled by a stationary time series, then the dependencies are
very weak.

To summarize, we computed two bounds for the variation of the sample
coefficients in a large dimensional correlation matrix. The first bound took into
account the serial dependencies between observations, but assumes stationary
generating mechanisms. The second one released the assumptions by a re-
sampling technique, resulting in a numerical value giving few analytical insight
in the problem. In the context of our problem — 31 processes, 36 time-slots,
91 days of data — we summarize (i) that the large sample size decreases the
standard errors to values close to 0 and (ii) the bounds give similar values
between [0.1,0.2]. We conclude that correlations below 0.2 should be interpreted
with suspicion and remind that the interesting part in the analysis of auto-
and cross-correlations is the discovery of ‘global patterns’ rather than of single
significant coefficients [Diggle, 1990].
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Results

We analyzed correlations between 31 sectors in the Central European Airspace,
covering London, Zurich and Berlin.

More formally, we consider the 31 dimensional vector of random processes
GAPt = PLNt −REALt, t ∈ R, where the ith component GAPi,t = PLNi,t −
REALi,t represents the gaps between the planned and realized number of en-
tries in sector i. The process is observed in 5 minutes time intervals, leading
to 288 samples per day. In total, 91 week-days are available (Mon-Thu) in the
summer period 13.5.- 29.9.2004. The data takes the form {gapd

t }N
d=1, 1 ≤ t ≤

288, N = 91.

The correlation matrix function for all 31 sectors was estimated up to lag
k = 36, corresponding to 3 hours. This corresponds to d=31* 36=116 compo-
nents to be estimated.

Figure 3.12 visualizes the results. An arrow between two sectors (i, j) rep-
resents a significant correlation at at least one lag k. Positive and negative lags
have opposite arrows. Local correlations (from one sector to a direct neighbor)
are drawn in red. They reproduce almost the route network. For example, in
the central flow (Frankfurt-London), they are bi-directional, whereas in the flow
from Zurich to London, they are mono-directional. Non-local correlations (from
one sector to a sector beyond the direct neighborhood) are plotted in green.
They reproduce only routes with high traffic densities. No correlations between
two sectors that are not connected by a route are found.

We now analyze in more detail the sector LNH and two of its neighbors,
NIH and RHHI (light Grey region in Figure 3.12). The arrow between LNH
and NIH is bi-directional, so there is correlation on positive and on negative
lags. No arrow is plotted between LNH-RHHI and NIH-RHHI. Figure (3.13)
shows the estimated correlation matrix function of these three sectors. The
diagonal elements correspond to the autocorrelations. All three show no signif-
icant correlations. The off-diagonal elements display the cross-correlations for
positive lags in the upper diagonal ρ(GAPit, GAPj,t+k) and negative lags in the
lower diagonal ρ(GAPit, GAPj,t+k). The coefficients at lag 1 and -2 between
LNH and NIH are the only significant correlations.

For more insight into non-local correlation, we analyze the two dark Grey
sectors EXH and EUY in Figure 3.12. They are separated by the two sectors
EUF and EXE. Figure 3.14 shows the correlation matrix function between EXH
and EUY. Again, the pattern of autocorrelation in the diagonal elements shows
a decay, starting from a negative value. But none of them are significant. The
only significant correlation is at lag -5, corresponding to the average traversal
time.
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Figure 3.12: Visualization of the cross-correlation matrix.
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Figure 3.13: Cross-correlation matrix between sectors LNH, NIH and RHHI
(local neighbors, light gray area).
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Figure 3.14: Cross-correlation matrix between sectors EXH and EUY (non-local
neighbors, dark Grey area).
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Figure 3.15: Scatterplots of gaps in one sector against time-lagged gaps in other
sectors.

We expect that gaps above average in one sector lead at least approximately
to gaps above or below average in another sector. For this reason we use lin-
ear correlation as measure of dependency. Correlation expresses dependency in
average between two random variables X and Y : for fixed X = x, the average
E(Y ) is a function of x. Linear correlation is the special case when this depen-
dency is approximately linear. Figure 3.15 shows 4 scatter plots of variables in
the system. In each panel the bold line is the sample mean. It is reasonably
linear. No other functional form of dependency is visible, neither. The two
upper ones have significant coefficients of linear correlation. The two lower ones
have not. Thus, linear correlation as a measure for dependence seems justified,
even if the dependency between the variables is visibly weak.

Figure 3.16 summarizes the significant correlations of the full 31×31 correla-
tion matrix function All correlation coefficients are positive. Local correlations
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Figure 3.16: Summaries of coefficients of the complete cross-correlation matrix.

are on average 0.19 and have a maximum of 0.34 (top left) The non-local cor-
relations are on average 0.16 and have a maximum of 0.24 (top right). Local
correlations occur between lags -4 and 3 (bottom left). This lies in the range of
expectation since the traversal time for one sector lies between 6 and 10 min-
utes. Figure 3.17 shows the strength of correlation as a function of lag for local
correlations. On the x-axis, the lag is plotted. On the y axis, the corresponding
correlations. The highest correlations occur at lags [-2,2]. Correlations on lags
-3 and 3 occur between sectors ‘CLW-DELHI’, ‘DELHI-RHHI’,‘EUY-EUF’ and
‘AZMP4-SLNHIGH’ which are all huge sectors. The only unexpected high cor-
relation (0.22) between ‘SALH-SOHI’ on lag 3 can be disregarded, because of
the sample variance of the coefficients. The correlation at lag -4 has strength
0.12 and can can be disregarded for the same reason. Non-local correlation co-
efficients occur up to lag 6, corresponding to the average traversal time (bottom
right).

From those neighbors of sectors that are correlated, 77 % have exactly one
significant coefficient, 19 % have two and 4 % three or four (Figure 3.18, top).
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Figure 3.17: Strength of correlation as a function of lag (local correlation).
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Figure 3.18: Distribution of the number of significant coefficients between cor-
related sectors.

For non-local correlated sectors, 91 % have exactly one and 9 % have two sig-
nificant coefficients (Figure 3.18, bottom). This suggests that the correlation
structure in the system (i) does not appear to contain spurious correlations and
(ii) has an intuitive explanation.
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3.5 Validation

Aggregation

Figure 3.19 shows the relationship between PLNt and REALt on three different
time-scales (5 min, 15min, 60 min). On all scales the relationship is logarithm-
like.

Generalization

Figure 3.20 shows the relationship between PLNt and REALt for 12 sectors
from Central Upper Airspace (15 min. time-scale). They all show the same
logarithm-like shape. The fluctuations at the end of the intervals can be ex-
plained by few underlying data. For all the 31 sectors, 68 % of the asymptotes
lie in the interval (8, 10]. Since we are working with 15 minutes intervals, this
corresponds to hourly workloads between 36 and 40 aircraft. This is roughly the
declared capacity of many sectors. 26 % lie below and 6 % above this interval
In 63 % of the cases, the points, where PLN = REAL lie between 6 ≤ PLN <
8. In 35 % of the cases, these points are below 6. Only in one case, the point
where PLN equals REAL lies above 8.
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Figure 3.19: Scatterplots of PLNt against REALt on three different timescales
5 min (top), 15 min (middle) and 60 min (bottom).
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Figure 3.20: Plot of sample means in randomly chosen sectors.
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3.6 Interpretation

Uncertainty

We analyzed three definitions of gaps between the number of planned and real-
ized entries in a sector.

We observed that the planned and the realized traffic patterns are similar
and that they repeat on a daily basis. We also noted that the patterns are
sector-specific: some sectors have clear peaks twice a day, others have constant
traffic densities. This is known by ATM experts: sectors close to airports have
constant workload, others are affected by trans-Atlantic jet streams and have
a peak in the early morning. Thus, the traffic pattern of a sector depends on
different parameters. In contrast to this, absolute PLNt −REALt and relative
PLNt/REALt gaps fluctuate around 0 and 1 and have constant variance during
the day and during the night. This suggests that the phenomenon of gaps is
time-invariant (stationary during the day (7-19h)). In particular, no peak hours
of gaps exist.

We then analyzed the marginal distributions of the three definitions during
the day (7-19h).

1. REALt − PLNt (absolute definition)
Absolute gaps are symmetrically distributed with µ ∼ 0 and sd ∼ 3. This
means that roughly the same number of aircraft than planned arrives at
sector entries. It also means that in 96 % of the cases, ±6 of the planned
aircraft arrive. The tail probabilities are slightly higher than for Gaussian
distributions. Gaussian distributions can be expected when uncertainty
factors are independent from each other.

2. REALt/PLNt (relative definition)
Relative gaps are distributed asymmetrically around µ ∼ 1. One reason is
that the variable is positive by definition and that the mean is close to 0, so
it is ‘cut-off’ on the negative values. The logarithm disagrees clearly with
a Gaussian distribution: the tails and the center contain higher proba-
bilities than Gaussian distributions. Thus, the original variable is not
log-normal distributed, which would be the case if the uncertainty factors
were independent but with multiplicative effect. Possible interpretations
are heterogeneity (different types of behavior) and dependence between
uncertainty factors in the data.

3. REALt = f(PLNt, t) (functional definition)
Gaps as a function of time or planned traffic are distributed asymmetri-
cally. Poisson distributions accurately characterize this representation of
gaps. This gives an idea of the variation of the number of arrivals in a
sector because mean and variance are the same for a Poisson distribution.
The Poisson distribution can be derived analytically from counting the
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number of events in larger time intervals when the probability of occur-
rence of events are constant and independent over time, characterizing ‘to-
tal randomness’. Moreover, Poisson distributions are the limiting distribu-
tions when several Point processes are superposed [Cox and Isham, 1980].
But one cannot deduce from an observed Poisson distribution that the
probability of events is constant and independent [Daley and Vere-Jones,
1988]. Moreover distributions with similar shape exist (e.g. negative bi-
nomial distribution), implying different physical interpretations. To con-
clude, it is not enough information to unambiguously draw conclusions
about the underlying mechanism of the phenomenon [Daley and Vere-Jones,
1988]. This point will be investigated in more detail in the next chapter.

Occurrence

We described the variation in the arrival process as a non-homogeneous Poisson
process with rate as a function of time and as a function of planned traffic.
As a function of time we used a polynomial that captures the night/day traf-
fic variations. As a function of planned traffic we first looked at the sample
conditional mean of realized traffic given planned traffic. We then compared
the goodness-of-fit of three candidate functions for this relationship. All models
describe equally well the variation in the data. But these findings are empirical.
and we should explain why the data shows this behavior before drawing further
conclusions.

Propagation

We showed that propagation between gaps occurs on two levels: (i) locally, that
is between a sector and its direct neighbors and (ii) globally on ‘traffic highways’,
that is between two sectors that are connected through a flight route with high
traffic densities. No unexpected correlations are found. This is evidence that
controllers do not systematically re-route traffic flows to absorb gaps.

Conclusion

We conclude that gaps between the number of planned and realized traffic (i)
occur systematically (ii) that their size can be described by Poisson distributions
and (iii) that they propagate through the airspace in an expected way. These
findings are empirical. We found an accurate description of the data and its
variation. But the question is not whether one description ‘performs better’ than
another. The question is why the data shows these characteristics. An analysis
of the mechanisms that lead to gaps between planned and realized traffic has to
be done.
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Chapter 4

Results of Probabilistic
Analysis

We analyze the phenomenon of gaps between the number of planned and the
number of real entries into flight sectors. The approach in the previous chapter
was exploratory: we did not make assumptions about the phenomenon because
we wanted to identify unexpected characteristics of it. And it was macroscopic:
we analyzed the number of aircraft entering sectors in given time intervals be-
cause it corresponds directly to the definition of gaps. We concluded that gaps
between the number of planned and realized aircraft do occur systematically,
that they propagate in an expected way through the system, and that the uncer-
tainty about the size of these gaps can be characterized by Poisson distributions.

In this chapter we analyze the reasons for this. This time, the approach is
probabilistic: we make assumptions about the behavior of users of the system.
And it is microscopic: we analyze the sector-entry times of aircraft and events
that disturb them. This serves to interpret the results of the first part.

Mechanisms of gaps between planned and realized traffic

Our starting point is that the flow planning procedure assigned departure slots
to every aircraft. This means that the initial flight plans (S1, t1), ..., (Sn, tn)
have been regulated into (S1, t

′
1), ..., (Sn, t′n), t′1 ≥ t1 with possibly delayed de-

parture times t′1. Since slot allocation takes place at least two hours before the
intended take-off time, the air-traffic controllers can anticipate the amount of
traffic in their sectors over time.

Figure 4.1 shows three events that disturb the flow planning

• Cancellation and rerouting: some of the scheduled flights are canceled or
rerouted to other sectors.

73
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Figure 4.1: Events at a sector entry.

• Delay: aircraft arrive too early or too late at the sector. Delay occurs
either at the departure airport or during the flight.

• Pop-up: rerouted aircraft from other sectors or aircraft without submitted
flight plans arrive.

It is natural to think that random events deviate flights from their flight
plans. For example, weather conditions or unpredictable events (e.g. passenger
delay or technical failure) constantly affect the system. One likes to assume that
such event do not disturb the flow planning systematically. In average, their
effects should be canceled out.

On the other hand there are mechanisms that systematically disturb the
flight plans. For example, airlines use the cancellation of flights as a strategy
to avoid high departure delays [Mukherjee et al., 2005]. Or departure delays
are often caused by delayed connecting flights, which can propagate over the
whole network [EUROCONTROL, 2002]. Moreover, there are different depar-
ture strategies, five minutes before- or ten minutes after the scheduled departure
slot [EUROCONTROL, 2002].

In this part of the thesis we analyze conditions for the systematic occurrence
of gaps between the number of planned and realized aircraft. We restrict this
general question to an analysis of the the question ‘What is the impact of random
disturbances on the flow planning?’. If gaps are exclusively caused by random
disturbances, they are a natural, and unavoidable characteristic of the system.
If not, non-random forces apply to the system and the occurrence of gaps might
be controllable.
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Methodology

We are working with stochastic Point processes subject to random disturbances.
We derive characteristics of the relationship between such processes. Compared
to the first part of the thesis, we formulate more precise hypotheses. This allows
us to make deductions about the phenomenon.

Formalization

More formally, we analyze the model:

τ ′
i = τi + εi , i ∈ N (4.1)

with

τ ′
i : observed arrival time of aircraft i (∈ R)

τi : planned arrival time of aircraft i (∈ R)

εi : disturbance of aircraft i (a continuous random variable)

to answer two questions: (i) what is the relationship between the processes {τ ′
i}

and {τi} when the disturbances εi occur completely at random ? And (ii) how
do these disturbances look like in reality?

Related work

[Wanke et al., 2004] decompose sector demand uncertainties into the same three
categories ‘cancellation, delay and pop-up’ as above. They further subdivide the
‘delay’ component into ‘routing/altitude, departure time and flight progress’.
They analyze the distributions of all components, conditionally to external,
discrete variables. For example the probability of a pop-up depends on the
time-of-day, the day-of-week and of the prediction horizon. More complex dis-
tribution models, for example for re-routing, are developed, too. They identify
that pop-ups can be described by geometric distribution functions. The same
result can be found in [Boghadi, 2002]. The other components do not allow for
substantial conclusions.

[Tu et al., 2007] analyze delay distribution of departures. They identify
Gaussian mixture distributions with three components for the individual ran-
dom variables εi. This can be interpreted with the take-off behavior: either
five minutes before, exactly at, or ten minutes after the scheduled departure
slot. The result is in harmony with [Constans et al., 2004] who conclude that
Gaussian distributions alone are no accurate models for the delays.

[Mukherjee et al., 2005] propose an analytic model for the probability of can-
cellation at congested airports. Their assumption is that airlines cancel flights
when the expected delays exceed a threshold. This is modeled as a maximum
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flow problem, where the flows are constrained by the initial demand and the
threshold. The probability of cancellation is then the ratio between the maxi-
mum flow and the initial demand.

In the same paper, [Mukherjee et al., 2005] describe an analytic model for
the en-route delay that is caused by capacity limitations of the arrival airport.
Such delay is materialized by air-holdings. They assume a non-homogeneous
Poisson process as arrival process and an Erlang distributed runway usage time.
Given the hourly demand and capacity profiles, they model the probabilities
Pn(t) of having n aircraft in the system at time t, for n = 0, 1, 2, .... They val-
idate their models in a simulation game with decision makers from the airline
industry and conclude that it can be used as a decision tool in the strategic slot
allocation procedure.

Chapter outline

The chapter contains two parts. In each part we analyze one aspect of model
(4.1). In the first part we consider the disturbances {ε1, ..., εn} as purely random.
We show that systematic gaps between planned and realized traffic occur for
three classes of flight schedules {τi}. In the second part we analyze past flight
data to reveal the dependency structure of the process {ε1, ..., εn}. We identify
similarities with time-series models.
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4.1 Summary of Results

Complete random disturbances cause gaps

We assume that {ε1, ..., εn} are independently and identically distributed ran-
dom variables. We analyze the conditional expectation between the two pro-
cesses {τ ′

i} and {τi}. When {τi} is a Poisson process, this expectation is a linear
function. When no hypothesis about the arrival process is made, it is non-linear.
In both cases, significant differences with the sample data exist. We conclude
(i) that gaps between planned and realized traffic have to be expected, (ii) that
a logarithm-like shape of the gap-function has to be expected and and (iii) that
the disturbances are not independently and identically distributed in reality.

Real disturbances do not occur at random

We analyze past flight data of disturbances {ε1, ..., εn} and show that depen-
dencies between successive terms exist in reality. We identify similarities with
two linear time-series models. The result is empirical and we give two ideas for
further analysis before interpretation.
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4.2 Consequences of Independence Assumptions

In this section we analyze the effect of complete random disturbances on flight
schedules. For this, we consider the random disturbances {ε1, ..., εn} as indepen-
dently and identically distributed random variables. We derive analytically and
experimentally the relationship between the processes {τi} and {τ ′

i} under this
condition. From this we conclude that (i) systematic gaps between the number
of planned and realized traffic are to be expected and (ii) that the disturbances
εi do not occur at random in reality.

Point processes

A sector S has several entry points E1..., EnS
. For each entry point Ek, a

set of aircraft {1, ..., ik} is planned to enter at times {t1, ..., tik
}. No more

than one aircraft is planned to enter an entry point at a time. Such series
of events can be modeled as orderly Point processes [Cox and Isham, 1980],
[Daley and Vere-Jones, 1988]. They are continuous time, discrete state space
stochastic processes. An orderly point process in time can be uniquely character-
ized by the joint distribution of the times between successive events-, the number
of events in larger time intervals or by its intensity. An elementary example is
the Poisson process, where inter-event times are independently exponentially-
and the number of events are independently Poisson distributed. The intensity
of a Poisson process is constant. A hierarchy of processes with increasing com-
plexity can be found in theory [Cox and Isham, 1980], [Daley and Vere-Jones,
1988] and in applications [Snyder and Miller, 1991], [Lindsey, 2004].

Operations on Point processes

Three types of events disturb the planned schedules: cancellation, delay and
pop-up. These three events transform the planned process {τi}, 1 ≤ i ≤ n into
the observed process {τ ′

j}, 1 ≤ j ≤ m. This can be formalized by the following
operations

• {τ1, ..., τn} → {τt1 , ..., τtm
}, m ≤ n (thinning)

some of the events in the planned process are deleted

• {τ1, ..., τn} → {τ1 + ε1, ..., τn + εn} (random translation)
individual events are shifted to new locations

• {τ11 , ..., τ1n1
}, ..., {τk1 , ..., τknk

} → ⋃k
i=1{τi1 , ..., τini

} (superposition)
k separate processes are merged

These are standard operations on Point processes [Cox and Isham, 1980],
[Daley and Vere-Jones, 1988], [Snyder and Miller, 1991]. Two categories of re-
sults exist. The first includes properties of the transformed process, while the
second covers limiting results. In general, independence assumptions of the
operations underlie these results. Cases of dependent thinning can be found in
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[Cox and Isham, 1980] and of dependent random translation in [Snyder and Miller,
1991].

Plan of the section

We first introduce basic notions of point processes and some known results. We
then present our results; analytical and experimental. The section closes with
interpretation of the results.
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Definition A temporal point process is a random process whose realizations
consist of events P = {τi}, τi ∈ R, i ∈ Z.

Definition Let A ⊆ R.

N(A) = card({τ | τ ∈ A, τ ∈ P})
is the number of points in A of a point process P.

Definition Let A + t = {x + t : x ∈ A}. A point process is stationary if

P (N(Ai); i = 1, ..., k) = P (N(Ai + t); i = 1, ..., k), ∀t, ∀k = 1, 2, ...

where Ai ⊆ BR, the Borel tribe on R.

Definition A point process is orderly if

P (N(t, t + δ) > 1) = o(δ), ∀t ∈ R

Definition The rate of a point process is

ρt = limδ→0+

E(N(t, t + δ))

δ

Definition Let P and P’ be two Point processes.

E(N(.)′ | N(.) = k) =

∞
∑

l=0

l · P (N(.)′ = l | N(.) = k)

is called the conditional expectation of process P’ given P.

Proposition 4.2.1 (Thinning) Let P be a stationary, orderly point process
with rate λ. Let p be the probability that a point in P is deleted. Then the
resulting point process has rate pλ.

Proposition 4.2.2 (Random Translation) Let P be a stationary, orderly
point process with rate λ. Let P ′ = {τi + εi} be a random translation with inde-
pendently, identically distributed random variables εi. Then P’ has unchanged
rate λ.

Proposition 4.2.3 (Superposition) Let P1, ..., Pk be k independent station-
ary and orderly point process with rates λ1, ..., λk. Then the superposition P =
P1 + ... + Pk has rate

λP =

k
∑

i=1

λi

The three propositions are classical results and their proof ideas can be found
in [Cox and Isham, 1980] or [Snyder and Miller, 1991].
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Analytical results

We have results on the impact of random translation on a Poisson arrival process.

Proposition 4.2.4 (Poisson arrival process) Let P = {τi} be a Poisson
process with rate λ. Let P ′ = {τi + εi} be a random translation of P with
disturbances εi that are (i) independently and (ii) identically distributed with
mean µ and variance σ2.

Then the conditional expectation of P’ given P is linear in P.

Proof: (sketch) We derive the conditional distribution of the number of
arrivals in the disturbed process given the number of arrivals in the planned
process and take its expectation:

E(N(.)′|N(.) = k) = kpS + λ(T − b)pR (4.2)

where pS is the probability of points remaining in the interval (a, b] and pR is
the probability that points in (b,T] enter the interval (see Figure 4.3 for the
idea and below for the whole proof).

Bounds

We give bounds for the probabilities pS and pR. Let Uab ∼ Unif(a, b) and ε
with E(ε) = 0, V (ε) = σ2 be two independent random variables.

1. From Tchebycheff’s inequality follows:

pS = P (Uab + ε ∈ [a, b]) ≥ 2

3
− 4σ2

(b − a)2

For example P (Ua,a+5+ε ∈ [a, a+5]) ≥ 0.1 for σ2 > 3 and P (Ua,a+10+ε ∈
[a, a + 10]) ≥ 0.1 for σ2 > 15.

2. From Cramer’s inequality follows:

pR = P (UbT + ε ≤ b) ≤ 1

4

(T − b)2 + 12σ2

(T − b)2 + 3σ2

For example P (Ub,b+60 + ε ≤ b) ≤ 0.26 for σ2 ∈ {0, .., 20}

2

Proposition 4.2.4 states that systematic gaps between the planned and the
realized number of arrivals exist when the only force on the flight schedules
is that the arrival times are randomly disturbed. Such gaps would be linear
in the number of planned traffic, when the arrival process is Poisson, This is
illustrated in the left part of Figure 4.2. It shows the conditional expectation of
the disturbed process given the planned process for different values of σ2, the
standard deviation of the disturbance of an aircraft (dotted lines). The sample
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Figure 4.2: Consequences of independence assumption of disturbances εi =
τ ′
i − τi. Left: Poisson process. Right: Flight plans.

Figure 4.3: Relationship between randomly disturbed Point processes. Left: a
planned arrival at time τi is translated randomly to τi + εi. Right: the number
of arrivals in interval (0,b] after random translation.
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means are plotted in bold. Clearly, such linear functions do not correspond to
the sample data. Either the Poisson assumption is wrong, the disturbances εi

are not identically and independently distributed in reality or other forces than
random translation act on the system.

Proof of proposition 4.2.4

Figure 4.3 shows the idea. The planned arrival time τi of an aircraft is disturbed
by some εi, translating the process P into the process P ′ (left). For the proof,
we are interested in the counting process N ′

b of the randomly translated process
P ′, dependent on the initial process P . For this we need to know the number
Sb of aircraft remaining in (0,b] and those Rb that arrive additionally (right).

Let:

1. P = {τi} a Poisson process with rate λ (the planned schedule)

2. P ′ = {τi + εi} a random translation of P (εi are i.i.d. random variables
with mean µ and variance σ2, independent of τi).

3. Nab, N ′
ab: number of arrivals in P, P ′ in (a, b].

4. Sab = card({τi + εi ∈ (a, b] | τi ∈ (a, b]}): number of arrivals remaining in
(a, b]

5. Rab = card({τi + εi ∈ (a, b] | τi ≥ b}): number of arrivals entering (a, b]
from the right.

6. Uab: a uniformly distributed random variable in (a, b] (the planned arrival
time of an aircraft).

Probability distribution

We derive E(N ′
ab|Nab = k) as a function of k and σ2. Since N ′

ab = N ′
0b − N ′

0a

we only need to derive P (N ′
b | Nb).

P (N ′
b = n | Nb = k) = P (Sb + Rb = n | Nb = k)

=

n
∑

l=0

P (Sb = l, Rb = n − l | Nb = k)

since Sb and Rb are independent

=
n

∑

l=0

P (Sb = l | Nb = k)P (Rb = n − l | Nb = k)



84 CHAPTER 4. RESULTS OF PROBABILISTIC ANALYSIS

and Rb is independent of Nb

=

n
∑

l=0

P (Sb = l | Nb = k)P (Rb = n − l)

=
n

∑

l=0

P (Sb = l | Nb = k)
∞
∑

j=0

P (Rb = n − l | NbT = j)P (NbT = j)

Let pS = P (Ub + ε ∈ (0, b]), pR = P (UbT + ε ∈ (0, b]). Then

=

min(n,k)
∑

l=0

(

k

l

)

pl
S(1 − pS)k−l

∞
∑

j=n−l

(

j

n − l

)

pn−l
R (1 − pR)j−n+l λ

j(T − b)je−λ(T−b)

j!

=

min(n,k)
∑

l=0

(

k

l

)

pl
S(1 − pS)k−l [λ(T − b)pR]n−le−λ(T−b)pR

(n − l)!
(4.3)

This is the sum of a binomial(pS, k) and a Poisson(λ(T − b)pR) variable. It
follows:

E(N ′
b | Nb = k) = kpS + λ(T − b)pR (4.4)

Notes

• There is no dedicated point 0 in the aircraft application. It is possible, that
points ‘leave’ the interval (0, b] to the left or ‘arrive’ from the left (before
midnight). This would lead to 2λpR in (4.3), when the intervals are of
equal length (and to λ(Tλ − b)pλ + µ(a − Tµ)pµ, when the processes and
intervals are different). In both cases, the linearity in k of the conditional
expectation (4.4) remains.

• The variance of the distribution (4.3) is kpSqS + λpR (the variables are
independent). Thus, the distribution is not Poisson. But for high k and
low pS it can be approximated by a Poisson distribution.

• The impact from random rerouting is a simple extension of the results.
It corresponds to thinning (cancellations, rerouting) and superposition
(arrival of rerouted aircraft), which are linear operations, as shown in
propositions 4.2.1 and 4.2.3.
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Noise Agreement ≥ 90% Agreement ≤ 30% Disagreement hd
Gauss 17 % 25 % 74 %
GM 25 % 25 % 78 %

Table 4.1: Simulation results of 12 randomly selected sectors.

Experimental results

We have two results on the impact of random translation on the real flight
schedules.

Distribution of the disturbances Figure 4.4 shows the histogram of the
disturbances εi (black). On the left side, a Gaussian distribution is super-
posed. It is too dispersed and too flat. On the right side, a Gaussian mixture
distribution f(ε) =

∑3
k=1 πkΦk(ε) with 3 components is superposed (green).

Its parameters are estimated with maximum likelihood, using the expectation-
maximization algorithm (EM) [Dempster et al., 1977]. Visibly, the uncertainty
around εi can be characterized by a Gaussian mixture distribution with 3 compo-
nents. This result is in harmony with background knowledge about the take-off
behavior of pilots and with results reported in [Tu et al., 2007]. We do not
deepen this result because of the (yet) unknown dependency structure of the
process.

Simulation To analyze the impact of random translation on the real flight
plans we simulate the model τ ′

i = τi + εi, where {τi} is the planned arrival
process and εi are independently and identically distributed random variables.
We assume Gaussian and Gaussian mixture distributions in two separate simula-
tions. The hypothesis is that the disturbances are independently and identically
distributed.

The right part of Figure 4.2 shows a typical result. It displays the conditional
expectation of the simulated process (y-axis) given the planned process (x-axis).
The red curve is the simulation result, where the εi are drawn from Gaussian
mixture distributions. The parameters of the distribution are estimated from
τ ′
i − τi by maximum likelihood. Sample size is n = 3000. The black curve

shows the sample means. The simulation result has a logarithm-like shape. It
is similar to the sample means. Agreement between the two profiles is tested
with H0 : µsi

= µi, ∀i, where µsi
is the simulated mean value of the number

of arrivals under the condition that i have been planned. µi is this quantity
observed in the data. In the case of Figure 4.2, the hypothesis is rejected in 9
of the 10 cases (5 % level, two-sided). Moreover, the disagreement is larger for
high traffic densities (PLN ≥ 4).

The general situation is summarized in table 4.1. Simulations of Gaussian
and Gaussian mixture random translations are run on twelve randomly selected
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Figure 4.4: Empirical distribution of the disturbances εi = τ ′
i − τi (black) and

fitted candidates. Left: Gaussian distribution. Right: Gaussian mixture (red)
The green distributions are three identified Gaussian components.

sectors. The results of the t-tests are classified by two criteria: agreement
≥ 90% and agreement ≤ 30%. Both, for the Gaussian and the Gaussian mix-
ture distributions, ≈ 75% of the sectors have disagreement and 25 % have strong
disagreement with the sample data (first and second column). Moreover, the
disagreement occurs mainly (≈ 70%) in situations with high traffic densities
(third column).
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Interpretation

Both, the theoretical and the experimental results state that there are system-
atic gaps between planned and realized traffic, when the only force on the system
is that pilots randomly arrive too late or too early at a sector.

When the arrival process is Poisson, they can be described by a linear func-
tion of the traffic density, no matter how the distributions of the random distur-
bances look like. This is intuitive since the two processes become independent
for large σ2, and the gaps between them are then described by a horizontal line
through pRλ. The linearity in this model can be explained by the fact that all
terms enter the distribution in additive and constant ways.

When the arrival process is the empirical flight plan, the gap function be-
comes non-linear. Thus the non-linearity of the observed gaps is partly due to
the structure of the arrival process. This is evidence that the Poisson hypoth-
esis is wrong. But still, simulated and observed curves differ significantly from
another. This means that either the independence- or the identity assumption
are wrong, as well.

We conclude (i) that gaps between planned and realized traffic have to be
expected, even when disturbances occur completely at random, (ii) that the
logarithm-like shape of the observed gaps is partly due to the structure of the
planned arrival process. And (iii), that either the disturbances are not inde-
pendently and identically distributed in reality or other forces than random
translation act on the system.
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4.3 Dependency Structure of Disturbances

We have shown that systematic gaps between the number of planned and real-
ized aircraft exist, even when the disturbances of aircraft occur completely at
random. We also concluded that either the disturbances are not independently
and identically distributed in reality or other forces than random translation act
on the system. In this section we report our results on the dependency structure
of the disturbances {ε1, ..., εn}.

Flow structure

Typically, aircraft from different parts of the airspace arrive at an en-route sec-
tor. For example, aircraft A has crossed a congested region. Or aircraft B
started at a congested airport. Both will be deviated from their flight plans. In
general, there are many aircraft types and many types of uncertainty.

One way to proceed is to analyze sub-processes {εc1 , ..., εcn
} where c is a

particular traffic condition. For example [Wanke et al., 2004] analyze delay dis-
tributions under several traffic conditions. The aggregation of such results can
be analyzed asymptotically [Cox and Isham, 1980] or experimentally in Monte-
Carlo simulations. The advantage of this approach is that it results in a realistic
physical model of the arrival flows. The disadvantages are that many variables
have to be considered and that interaction between individual processes has
to be considered separately. Such interactions are important, because they
are, beside others, induced by the air-traffic controllers. Currently, modeling
the human component in air-traffic flow planning is an open research question
[Wanke et al., 2005].

Another way to proceed is to describe the sequences {ε1, ..., εn} directly.
This summarizes the impact of all uncertainty components on the planned ar-
rival time of an aircraft. Presented in a compact form, it gives insight in the
uncertainty in flow planning. The disadvantage is that no causal interpreta-
tion can be expected from this analysis. For example, correlation between the
the disturbances of successive flights A and B from flows under different traffic
conditions does not imply that delay of aircraft A causes delay of aircraft B.
However, it can be assumed that unsystematic effects disappear with a suffi-
ciently large amount of data.

We have results for the second approach; dependency patterns in the auto-
correlation function that occur in every en-route sector.

Exponentially and polynomially decaying autocorrelation

The correlogram, the plot of the estimated autocorrelation between xt and
xt−k against k is a standard tool for describing linear properties of a sin-
gle series. In many cases, a decaying pattern of coefficients can be observed



4.3. DEPENDENCY STRUCTURE OF DISTURBANCES 89

[Granger and Ding, 1996].

A class of models with exponentially decaying autocorrelation are auto-
regressive models

yt =

∞
∑

i=1

φiyt−i + at

A special case is the first-order autoregressive model AR(1)

yt = φyt−1 + at

where yt is a zero mean process and ai are i.i.d random variables with mean
µ = 0 and variance σ2.

Its variance is

E(y2
t ) = φ2E(y2

t−1) + E(a2
t ) + 2φE(yt−1at)

=
σ2

1 − φ2

= γ(0)

because at is independent from yt−k by definition. This implies that

1 − φ2 > 0 or |φ| < 1

because a variance has to be strictly positive. The covariance at lag k is

E(ytyt−k) = φE(yt−1yt−k) + E(atyt−k)

= φγ(k − 1)

Dividing by γ(0) leads to the autocorrelation function

ρ(k) = φρ(k − 1)

= φk

The exponentially decaying autocorrelation is a typical characteristic of Markov
processes [Cox and Miller, 1977] and more generally of many stationary ARMA
processes [Granger and Ding, 1996]. This is because of the carry-over effect:
when yt is highly correlated with yt−1, then it is also correlated with yt−k.

There are several classes of models with non-exponentially decaying autocor-
relation. For example, processes with linear mean show slowly declining sample
autocorrelations. Other classes are ‘long memory models’ [Granger and Ding,
1996]. Their autocorrelations decline at a slower rate than ARMA models. Ex-
amples are fractionally integrated models and certain non-linear models
[Granger and Ding, 1996].
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Figure 4.5: Time plot of the disturbances εi.

Dependency structure of disturbances

Figure 4.5 shows the time plot of the disturbances εi. The mean seems to in-
crease and decrease in periods of 30 units. No global time trend is visible. The
variance is constant over time.

The upper part of Figure 4.6 shows sample autocorrelation and partial au-
tocorrelation of the disturbances εi. Autocorrelations start at ≈ 0.1 and decay
slowly until lag 40. The partial autocorrelations decay until lag 15. Interpreta-
tion is difficult, non-stationarity in the mean may cause spurious coefficients.

The lower part of Figure 4.6 shows sample autocorrelation and partial au-
tocorrelation of the first difference of the disturbances ∇εi = εi − εi−1. A
single peak of -0.49 at lag 1 of the acf and an exponentially decaying pattern
in the pacf can be seen. This is the characteristics of an IMA(1,1) process:
εi = ai + (εi−1 − θai−1) with ai i.i.d. random variables. An interpretation is
that random events (e.g. weather conditions at departure airport) cause a delay
ai of aircraft i and (very weakly) of its successor i − 1.

But there is no justification to difference the data because no linear trend
and no random walk can be assumed a priori. A possible explanation is an
autoregressive dependency close to 1. To analyze this we pose the ARMA(1,1)
model:

εi = φεi−1 + θai−1 + ai (4.5)

with ai i.i.d. random variables. For φ = 1, the special case IMA(1,1)

∇εi = θai−1 + ai (4.6)
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Figure 4.6: Sample autocorrelation and partial autocorrelation plots. Left: εi.
Right: ∇εi = εi − εi−1
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arises.

The autocovariance function of the ARMA(1,1) is

γ(k) = φγ(k − 1), k ≥ 2

It behaves like that of an AR(1) scheme after the first lag. The IMA(1,1)
is non-stationary; the autocovariance is not a function of the lag k. There
are results that show that it decays polynomially in the lag k [Kendall et al.,
1983]. ARMA(1,1) and IMA(1,1) models are applied in industrial control,
where the impact of random disturbances on the production scheme is stud-
ied [Box and F.Jenkins, 1970]. Our analysis is exploratory; we do not have a
priori arguments for neither of the models. However, a direct interpretation for
model 4.5 is that a delayed aircraft is followed by a delayed aircraft. Moreover,
external events disturb i and its successor. On the other hand, due to duality
results, an ARMA(1,1) model represents a large class of processes. Interpreta-
tion can become ambiguous [Kendall, 1989].

Table 4.2 compares the fit of an IMA(1,1) model with an ARMA(1,1) model
to our data. The parameters are obtained by exact maximum likelihood estima-
tion. In the ARMA model, the AR parameter φ is close to 1 but significantly
different from it. The MA-parameter θ is -0.88. There is also a mean value µ
estimated (not shown). The variance of the unexplained part ai is 18.12 min.
For the IMA model, the MA parameter is -0.94. No mean is included in the
model. The estimated variance of the unexplained series ai is 18.242 min. The
AIC of the ARMA model is lower than for the IMA model, despite the larger
number of parameters. Table 4.3 compares the AIC for eight randomly selected
sectors. The ARMA has always a lower AIC than the IMA (last column). But
the main argument against the IMA model is that differencing does not make
sense physically. Table 4.4 shows the maximum likelihood estimates of the eight
ARMA models. The autoregressive component is always close to 1 but never
significantly equal to 1. The moving average component is always negative and
always < −0.8. Coming back to the autocorrelation in the upper panel of Figure
4.6, we plot the theoretical (dotted) and the simulated (bold) autocorrelation
function of the estimated ARMA model. The global pattern of decay is cap-
tured by both whence a step at lag 23 and a peak at lag 37 may need some
more interpretation. Figures 4.8 and 4.9 show diagnostic plots for the ARMA
model. The residuals contain no trend and no autocorrelation. The normality
assumption, however, cannot be justified. Table 4.4 contains the parameter es-
timations for eight randomly selected sectors. The autoregressive parameter is
always close to 1 and the moving-average parameter is always negative.

To better understand this result we look at sequences of correlated devia-
tions. A simple pattern would be that long sequences of correlated disturbances
exist. This could be interpreted by events at departure airports that affect sev-
eral aircraft (e.g. runway congestion). Figure 4.7 shows the distribution of the
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Name Model φ θ σ2 AIC
ARMA εi = φεi−1 + θai−1 + ai 0.96 (0.005) -0.88 (0.007) 18.11 291884.4
IMA εi = εi−1 + θai−1 + ai 1 -0.94 (0.004) 18.24 292110.1

Table 4.2: Comparison ARMA(1,1) and IMA(1,1).
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Figure 4.7: Distribution of the lengths of sequences with correlated arrivals.

lengths of correlated sequences. There are rarely more than two successively
correlated arrivals and never more than 6. Thus the arrival patterns are hetero-
geneous. This is the same for sectors with only one arrival route and for more
complex sectors. This has to be analyzed in more detail.

We conclude that the disturbances εi are not independent in reality. Their
dependencies show similar second-order characteristics than IMA(1,1) and
ARMA(1,1) models. However, these findings are empirical and both models
cannot be justified a priori.

4.4 Interpretation

The analysis of consequences of independence assumptions (section 4.3) shows
that systematic gaps between planned and observed counting processes are to be
expected, when disturbances occur completely at random. When the planned
process is Poisson, these gaps can be described by a linear function of the count-
ing process, no matter how the distributions of the random disturbances look
like. This is intuitive since the two processes become independent for large σ2,
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Sector ARMA IMA ARMA − IMA
LUE 362352.6 362517.2 -164.7
CLW 327350.0 327566.1 -216.1
EXN 298291.4 298376.9 -85.5
EUY 369497.8 369636.7 -138.9
LUW 355430.6 355586.6 -156.0
KOH 311295.4 311500.8 -205.4
NIH 402112.7 402317.4 -204.8
LNH 327560.6 327738.7 -178.0

Table 4.3: AIC for ARMA(1,1), IMA(1,1) and their difference for eight randomly
selected sectors.

Sector φ θ µ σ2 loglik AIC
LUE 0.98 (0.003) -0.92 (0.005) 0.9 (29.4) 1359967 -171041.9 342091.7
CLW 0.95 (0.005) -0.88 (0.007) 62.2 (14.6) 813595 -154553.4 309114.9
EXN 0.97 (0.003) -0.92 (0.006) 196.3 (21.8) 766710 -141918.0 283844.0
EUY 0.98 (0.002) -0.93 (0.004) 204.0 (21.1) 781522 -176817.1 353642.2
LUW 0.97 (0.003) -0.91 (0.005) 150.7 (27.6) 151341 -166914.3 333836.5
KOH 0.96 (0.005) -0.88 (0.007) 89.5 (21.2) 1181206 -145938.2 291884.4
NIH 0.97 (0.003) -0.90 (0.005) 102.1 (21.0) 1034263 -188931.2 377870.5
LNH 0.96 (0.004) -0.88 (0.006) 69.8 (22.2) 1061602 -150761.3 301530.5

Table 4.4: Validation ARMA(1,1) for eight randomly selected sectors.

and the gaps between them are then described by a horizontal line through pRλ.
The linearity in this model can be explained by the fact that all terms enter the
distribution in additive and constant ways. When the planned process is the
empirical flight schedule, the gap function becomes non-linear. Thus the non-
linearity of the observed gaps is partly due to the structure of the arrival process.

The data analysis (section 4.3) shows that dependencies between the distur-
bances of successive flights exist in reality. We identified two linear time-series
models with similar second order structure. However, an arrival flow consists of
aircraft from different origins and of different types. Moreover, the correlation
structure shows that the correlation last up to ≈ 2h. A possible interpretation
is that delayed aircraft keep their delay on their way back. All this suggests
that the data consists of superpositions of different processes. This has to be
analyzed in more detail before justifying a data generating mechanism.
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Chapter 5

Conclusions and Future
Work

Uncertainties are ubiquitous in air traffic-management. While their sources
are widely known (demand-, capacity-, and flow control uncertainties), their
impact on its components is less well understood. In this thesis we analyzed
past radar data in order to better understand the mechanisms that lead to gaps
between the predictive and the adaptive components in air-traffic management.
The analysis is exploratory with the purpose of gaining insight in the causal
mechanisms that lead to gaps. In particular, we did not build a model but we
analyzed aspects of the phenomenon. We believe that the results are useful in
understanding the impact of uncertainties in current flow planning. Based on
this, a realistic model can be built to optimize the network resources.

5.1 Summary of contributions

This thesis contributes to the field of ‘uncertainties in air traffic flow planning’
and to the discussion about the role of algorithms in an analysis of data. Our
contributions have been presented at national and international conferences in
the domains ‘operations research’ and ’transportation systems’ [Gwiggner et al.,
2004], [Gwiggner, 2004], [Gwiggner and Lanckriet, 2004], [Gwiggner et al., 2005],
[Gwiggner and Duong, 2006], [Foll and Gwiggner, 2006] and submitted to an in-
ternational journal [Gwiggner, 2007]. They are divided into three parts.

Gaps between predictive and adaptive component The main discoveries
are that there are systematic gaps in every sector of the airspace and that the
size of these gaps can be characterized by Poisson distributions. In average
more than planned aircraft arrive when few are planned and less when many
are planned. This is counter-intuitive because one expects that the different
uncertainty factors cancel out in average [Gwiggner and Duong, 2006]. We then
analyze the hypothesis that the observed gaps are due to random disturbances

97



98 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

on flight schedules. Based on stochastic Point processes we prove that pure
random disturbances of the planned entry times cause systematic gaps in three
classes of flight schedules. But we also show that the observed gaps are only
partly explainable by pure random disturbances [Gwiggner, 2007]. From this
we conclude (i) that even if all controllable uncertainties in flow planning were
eliminated, systematic gaps between the number of planned and realized traffic
would remain and (ii) that the disturbances are not independent in reality. This
result is useful in tactical flow planning. New constraints in the slot-allocation
procedure can be found by identifying classes of flight schedules that are robust
to random disturbance.

Propagation of uncertainties We have two results concerning the propa-
gation of uncertainties through the sector network: Firstly, an analysis of the
sample correlation matrix function of the most congested part of the airspace
suggests that gaps propagate exclusively on flight routes. The higher the traf-
fic density is, the longer the propagation takes place. No unexpected corre-
lation is identified. This is evidence that no systematic re-routing is initiated
by controllers to absorb gaps [Gwiggner et al., 2004], [Gwiggner et al., 2007].
Secondly, gaps of flights show time dependencies up to 2h. Moreover, the prob-
abilities in the tails and around the center of the distributions of gaps are higher
than for standard distributions. We identify three time-series models with sim-
ilar second-order characteristics. This is evidence for heterogeneous behavior
of flights and that reactionary delays have an impact on the workload at en-
route sectors. But the result is empirical and we conjecture that it is due to
aggregation and long-range dependence at the en-route sector level.

Algorithms in data analysis Recently an algorithmic approach to ana-
lyze high-dimensional data sets became popular [Breiman, 2001], [Hastie et al.,
2003]. Compared to traditional statistical techniques, it contributes to the pre-
diction problem but it is criticized to lead to uninterpretable results [Cox, 2001],
[Efron, 2001], [Saporta, 2006]. We experience some of the well-known limitations
of data-driven approaches e.g. the problem of trend-removal or the ambiguity of
second-order characteristics in time-series models and conclude that when the
purpose of an analysis is interpretation, the priority is ‘to ask the right ques-
tions’ and not to apply sophisticated prediction algorithms [Gwiggner, 2005].
This thesis contributes a concrete example to the discussion of the role of algo-
rithms in an analysis of data.

5.2 Perspectives

The main results of the thesis are (i) that even if all controllable disturbances in
flow planning were eliminated, systematic gaps between the number of planned
and realized traffic would remain and (ii) that the disturbances are not inde-
pendent in reality. This motivates future work in the following directions:
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Statistical model of gaps: Tails in marginal distributions and long-range
dependencies (sections 3.2 and 4.3) are signs that real traffic consists of hetero-
geneous groups and that reactionary delays have an impact on en-route sector
workload. As next step we propose to further dis-aggregate the data to isolate
the different groups and to analyze the phenomenon of delay-propagation (re-
actionary delay) in more detail. This is the basis to quantify the impact of local
decisions (e.g. at airports or in flow management centers) on the performance of
the global sector network. Similar phenomena can be observed in the analysis
of telecommunication networks [Baccelli, 2002], [Cappé et al., 2002].

Robust flow optimization: We identified two classes of schedules in which
random disturbances cause systematic gaps (section 4.2). We propose to con-
tinue this theoretical analysis in order to identify classes of flight schedules that
absorb the impact of uncontrollable random disturbances. Inspirations can be
found in the thesis of [Ferchaud, 2006] and in percolation theory (‘how do flows
propagate in a stochastic medium?’ ) [Grimmett, 1999], [Amor et al., 2006].
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O. Cappé, E. Moulines, J-C. Pesquet, A. Petropulu, and Z. Yang. Long-range
dependence and heavy-tail modeling for teletraffic data. IEEE Signal Pro-
cessing Magazine, 19(3):14–27, 2002.

A.F. Chalmers. What is this thing called science ? An assesment of the nature
and status of science and its methods. University of Queensland Press, 1982.

S. K. Chatterjee. Statistical Thought. A Perspective and History. Oxford Uni-
versity Press, 2003.

S. Constans, E. Faouzi, O. Goldschmidt, and R. Fondacci. Optimal flight level
assignment: introducing uncertainty. Proceeding of the 4th INO Workshop,
2004.

D.R. Cox. Role of models in statistical analysis. Statistical Science, 5:169–174,
1990.

D.R. Cox. Reply to: L. Breiman. Two cultures in statistical modelling. With
discussion. Statistical Science, 16-3, 2001.

D.R. Cox. Principles of Statistical Inference. Cambridge University Press, 2006.

D.R. Cox and V. Isham. Point Processes. Chapman and Hall, 1980.

D.R. Cox and H.D. Miller. The theory of stochastic processes. Chapman and
Hall/CRC, 1977.

D.R. Cox and E.J. Snell. Applied Statistics - Principles and Examples. Chapman
and Hall/CRC, 1981.

D.R. Cox and N. Wermuth. Multivariate Dependencies. Models, Analysis and
Interpretation. Chapman and Hall/ CRC, 1998.

D.J. Daley and D. Vere-Jones. An Introduction to the theory of Point Processes.
Springer, 1988.



BIBLIOGRAPHY 103

A.P. Dempster, N.M Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society.
Series B, 39:1–22, 1977.

P.J. Diggle. Time Series: A Biostatistical Introduction. Oxford University Press,
1990.

A. W. F. Edwards. Likelihood. Cambridge University Press, New York, 1972.

B. Efron. Reply to: L. Breiman. Two cultures in statistical modelling. With
discussion. Statistical Science, 16-3, 2001.

EUROCONTROL. Revised Convention. EUROCONTROL, 1997.

EUROCONTROL. Independent Report for the Improvement of ATFM. Euro-
control, 2002.

EUROCONTROL. Cosaac User Manual. Release 3.9.3. Technical report, EEC,
2004.

EUROCONTROL. EEC Activity Report 2005. EUROCONTROL, 2005.

EUROCONTROL. Performance Review Report 2005. EUROCONTROL, Brus-
sels, Belgium, 2006.

L. Fahrmeir and G. Tutz. Multivariate statistical modelling based on generalized
linear models. 2nd edition. Springer, New York, 2001.

F. Ferchaud. Etude des zones d’absorption pour la gestion de flux du trafic
aérien. PhD Thesis. Université de Bordeaux, 2006.
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J. Schäfer and K. Strimmer. A shrinkage approach to large-scale covariance
matrix estimation and implications for functional genomics. Statistical Ap-
plications in Genetics and Molecular Biology, 4-1, 2005.



106 BIBLIOGRAPHY

D.L. Snyder and M.I. Miller. Random Point Processes in Time and Space, 2nd
ed. Springer-Verlag, New York, 1991.

B. Sridhar. An aggregate dynamic stochastic model for an air traffic system.
In Fifth International Air Traffic Management R&D Seminar ATM-2003,
Budapest, Hungary, 2003.

Y. Tu, M.O. Ball, and W. Jank. Estimating flight departure delay distributions-
a statistical approach with long-term trend and short-term pattern. In Forth-
coming: Journal of the American Statistical Association, 2007.

J.W. Tukey. Exploratory data analysis. Addison-Wesley, Massachusetts, 1977.

C. Wanke, M.B. Callaham, D.P. Greenbaum, and A.J. Masalonis. Measuring
uncertainty in airspace demand predictions for traffic flow management ap-
plications. AIAA Guidance, Navigation and Control Conference. Austin, TX,
USA., 2003.

C. Wanke, S. Mulgund, D. Greenbaum, and L. Song. Modeling traffic predic-
tion uncertainty for traffic management decision support. AIAA Guidance,
Navigation and Control Conference. Providence RI, 2004.

C. Wanke, L. Song, S. Zobell, D. Greenbaum, and S. Mulgund. Probabilistic
congestion management. Proceedings of the 6th Europe-USA ATM Seminar.
Baltimore. US., 2005.

J. Whittaker. Graphical Models in Applied Mathematical Multivariate Statistics.
Wiley, New York, 1990.

L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

L. Zadeh. Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets and
Systems, 1:3–28, 1978.


	Remerciements
	Résumé
	Abstract
	Table of Contents
	Notation
	Introduction
	Uncertainties in Air-Traffic Flow Management
	Components of traffic management
	Current limitations
	Uncertainties
	Gaps between planned and realized traffic

	Data Analysis and Uncertainty
	Formalisms
	Interpretation(s) of probability

	Methodology
	Possible approaches
	Position of the thesis

	Thesis Outline
	Main objectives
	Approach
	Thesis structure


	Background and Data Description
	Random vectors
	Independence
	Correlation

	Likelihood
	Likelihood function
	Parameter estimation

	Examples from Multivariate Data Analysis
	Open-loop systems
	Multivariate time-series
	Graphical models

	Data Description
	Format and type
	Period
	Geographic area
	Quality


	Results of Exploratory Analysis
	Description of gaps
	Methodology
	Formalization
	Related work
	Plan of the chapter

	Summary of Results
	Uncertainty of gaps
	Systematic gaps between planned and realized
	Propagation of gaps

	Uncertainty of Gaps
	Absolute
	Relative
	Functional

	Occurrence of Gaps
	Function of time
	Function of planned traffic

	Propagation of Gaps
	Visualization
	Inference for correlation matrices
	Results

	Validation
	Aggregation
	Generalization

	Interpretation
	Uncertainty
	Occurrence
	Propagation
	Conclusion


	Results of Probabilistic Analysis
	Mechanisms of gaps
	Methodology
	Formalization
	Related work
	Chapter outline

	Summary of Results
	Complete random disturbances cause gaps
	Real disturbances do not occur at random

	Consequences of Independence Assumptions
	Point processes
	Operations on Point processes
	Analytical results
	Proof of proposition 4.2.4
	Experimental results
	Interpretation

	Dependency Structure of Disturbances
	Flow structure
	Shapes of decaying autocorrelation
	Dependency structure of disturbances

	Interpretation

	Conclusions and Future Work
	Summary of contributions
	Perspectives

	Bibliography

