P. Aagaard and J. L. Andersen, A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture, The Journal of Physiology, vol.169, issue.Suppl, pp.613-636, 2001.
DOI : 10.1111/j.1469-7793.2001.t01-1-00613.x

T. R. Ackland and B. A. Blanksby, Inertial characteristics of adolescent male body segments, Journal of Biomechanics, vol.21, issue.4, pp.319-346, 1988.
DOI : 10.1016/0021-9290(88)90261-8

T. Alkjaer and E. B. Simonsen, Comparison of inverse dynamics calculated by two- and three-dimensional models during walking, Gait & Posture, vol.13, issue.2, pp.73-80, 2001.
DOI : 10.1016/S0966-6362(00)00099-0

W. J. Anderst and S. Tashman, A method to estimate in vivo dynamic articular surface interaction, Journal of Biomechanics, vol.36, issue.9, pp.1291-1300, 2003.
DOI : 10.1016/S0021-9290(03)00157-X

T. P. Andriacchi and A. B. Strickland, Gait analysis as a tool to asses joint kinetics, Proceedings of NATO. Advanced Study Institute Biomechanics of Normal and Pathological Articulating Joints, 1983.

G. A. Arangio and C. Chen, Thigh Muscle Size and Strength After Anterior Cruciate Ligament Reconstruction and Rehabilitation, Journal of Orthopaedic & Sports Physical Therapy, vol.26, issue.5, pp.238-281, 1997.
DOI : 10.2519/jospt.1997.26.5.238

A. S. Arnold and S. Salinas, Accuracy of Muscle Moment Arms Estimated from MRI-Based Musculoskeletal Models of the Lower Extremity, Computer Aided Surgery, vol.15, issue.5, pp.108-127, 2000.
DOI : 10.1016/0021-9290(88)90135-2

D. S. Asakawa and S. S. Blemker, THREE-DIMENSIONAL MUSCLE-TENDON GEOMETRY AFTER RECTUS FEMORIS TENDON TRANSFER, The Journal of Bone and Joint Surgery-American Volume, vol.86, issue.2, pp.348-54, 2004.
DOI : 10.2106/00004623-200402000-00019

T. Asano and M. Akagi, In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique, Clinical Orthopaedics and Related Research, vol.388, issue.388, pp.157-66, 2001.
DOI : 10.1097/00003086-200107000-00023

A. Baca, Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values, Journal of Biomechanics, vol.29, issue.4, pp.563-570, 1996.
DOI : 10.1016/0021-9290(95)00033-X

A. J. Baliunas and D. E. Hurwitz, Increased knee joint loads during walking are present in subjects with knee osteoarthritis, Osteoarthritis and Cartilage, vol.10, issue.7, pp.573-582, 2002.
DOI : 10.1053/joca.2002.0797

S. A. Banks and W. A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy, IEEE Transactions on Biomedical Engineering, vol.43, issue.6, pp.638-687, 1996.
DOI : 10.1109/10.495283

J. T. Barter, Estimation of the mass of body segments. Ohio, 1957.

P. Barthez, Introduction -La Formation de l'image Radiographique -Rappel sur les Rayons X -La Formation des Rayons X, 2005.

T. Bauer, Reconstruction tridimensionnelle de l'articulation du genou par stéréoradiographie: De l'apprentissage in vitro à l'application clinique dans le cas de la gonarthrose. Laboratoire de biomécanique, 2002.

M. Begon and T. Monnet, Effects of movement for estimating the hip joint centre, Gait & Posture, vol.25, issue.3, pp.353-362, 2007.
DOI : 10.1016/j.gaitpost.2006.04.010

URL : https://hal.archives-ouvertes.fr/hal-00240709

M. Behr and P. J. Arnoux, Tonic Finite Element Model of the Lower Limb, Journal of Biomechanical Engineering, vol.128, issue.2, pp.223-231, 2006.
DOI : 10.1115/1.2165700

A. L. Bell and D. R. Pedersen, A comparison of the accuracy of several hip center location prediction methods, Journal of Biomechanics, vol.23, issue.6, pp.617-638, 1990.
DOI : 10.1016/0021-9290(90)90054-7

D. L. Benoit and D. K. Ramsey, Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo, Gait & Posture, vol.24, issue.2, pp.152-64, 2006.
DOI : 10.1016/j.gaitpost.2005.04.012

T. F. Besier and D. L. Sturnieks, Repeatability of gait data using a functional hip joint centre and a mean helical knee axis, Journal of Biomechanics, vol.36, issue.8, pp.1159-68, 2003.
DOI : 10.1016/S0021-9290(03)00087-3

I. Black and S. J. Lee, Calibration and validation of the "ADAL3D-F-COP- MZ"split-belt instrumented treadmill, 2006.

S. S. Blemker and D. S. Asakawa, Image-based musculoskeletal modeling: Applications, advances, and future opportunities, Journal of Magnetic Resonance Imaging, vol.36, issue.2, pp.441-51, 2007.
DOI : 10.1002/jmri.20805

S. S. Blemker and S. L. Delp, Three-Dimensional Representation of Complex Muscle Architectures and Geometries, Annals of Biomedical Engineering, vol.17, issue.9, pp.661-73, 2005.
DOI : 10.1007/s10439-005-1433-7

K. Bothner and G. Alderink, Body segment parameter models: the effet on hip moments in children and adults

W. Braune and O. Fischer, The center of gravity of the human body as related to the German infantryman. Leipzig, available from Defense document center, 1889.

W. Braune and O. Fischer, Bestimmung der Trägheitsmoments des menschlichen Körpers und seiner Glieder, Abh. d. Math. Phys. Cl. d. K. Sächs. Gesell. d. Wiss., Leipzig, vol.18, issue.8, pp.409-492, 1892.

A. Cappozzo and F. Catani, Position and orientation in space of bones during movement: experimental artefacts, Clinical Biomechanics, vol.11, issue.2, pp.90-100, 1996.
DOI : 10.1016/0268-0033(95)00046-1

A. Cappozzo and T. Leo, A general computing method for the analysis of human locomotion, Journal of Biomechanics, vol.8, issue.5, pp.307-327, 1975.
DOI : 10.1016/0021-9290(75)90083-4

R. F. Chandler and C. E. Clauser, Investigation of inertial properties of the human body, 1975.

C. K. Cheng and H. H. Chen, Segment inertial properties of Chinese adults determined from magnetic resonance imaging, Clinical Biomechanics, vol.15, issue.8, pp.15-559, 2000.
DOI : 10.1016/S0268-0033(00)00016-4

L. Cheze, Comparison of different calculations of three-dimensional joint kinematics from video-based system data, Journal of Biomechanics, vol.33, issue.12, pp.1695-1704, 2000.
DOI : 10.1016/S0021-9290(00)00146-9

J. P. Clarys, M. J. Marfell, and -. , Anatomical segmentation in humans and the prediction of segmental masses from intra-segmental anthropometry, Hum Biol, vol.58, issue.5, pp.771-82, 1986.

C. E. Clauser and J. T. Mcconville, Weight, volume, and center of mass of segments of the human body. Ohio, Aerospace Medical Research Laboratory: 1-101. clinique-des-lilas.com, 1969.

F. Cordier and N. Magnenat-thalmann, Comparison of two techniques for organ reconstruction using Visible Human Dataset, Second Visible Human Project Conference, 1998.

R. B. Davis and S. Ounpuu, A gait analysis data collection and reduction technique, Human Movement Science, vol.10, issue.5, pp.575-87, 1991.
DOI : 10.1016/0167-9457(91)90046-Z

P. De-leva, Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters, Journal of Biomechanics, vol.29, issue.9, pp.1223-1253, 1996.
DOI : 10.1016/0021-9290(95)00178-6

P. De-leva, Joint center longitudinal positions computed from a selected subset of Chandler's data, Journal of Biomechanics, vol.29, issue.9, pp.1231-1234, 1996.
DOI : 10.1016/0021-9290(96)00021-8

D. Croce, U. , and A. Leardini, Human movement analysis using stereophotogrammetry, Gait & Posture, vol.21, issue.2, pp.226-263, 2005.
DOI : 10.1016/j.gaitpost.2004.05.003

L. Dellanini and D. Hawkins, An investigation of the interactions between lower-limb bone morphology, limb inertial properties and limb dynamics, Journal of Biomechanics, vol.36, issue.7, pp.913-922, 2003.
DOI : 10.1016/S0021-9290(03)00076-9

W. T. Dempster, Space requirements for the seated operator, 1955.

D. A. Dennis and R. D. Komistek, In Vivo Fluoroscopic Analysis Of Fixed-Bearing Total Knee Replacements, Clinical Orthopaedics and Related Research, vol.410, issue.410, pp.114-144, 2003.
DOI : 10.1097/01.blo.0000062385.79828.72

D. A. Dennis and M. R. Mahfouz, In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics, Journal of Biomechanics, vol.38, issue.2, pp.241-53, 2005.
DOI : 10.1016/j.jbiomech.2004.02.042

N. Doriot, Modélisation dynamique du membre inférieur pour l'estimation des forces articulaires et musculaires mises en jeu pendant la phase d'appui de la marche, p.108, 2001.

J. Dubousset and G. Charpak, [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system], Bull Acad Natl Med, vol.189, issue.2, pp.287-97, 2005.

G. Ducher and D. Courteix, Bone geometry in response to long-term tennis playing and its relationship with muscle volume: A quantitative magnetic resonance imaging study in tennis players, Bone, vol.37, issue.4, pp.457-66, 2005.
DOI : 10.1016/j.bone.2005.05.014

URL : https://hal.archives-ouvertes.fr/hal-00088586

R. Dumas and R. Aissaoui, A 3D Generic Inverse Dynamic Method using Wrench Notation and Quaternion Algebra, Computer Methods in Biomechanics and Biomedical Engineering, vol.16, issue.3, pp.159-66, 2004.
DOI : 10.1007/BF02441745

R. Dumas and R. Aissaoui, Personalized Body Segment Parameters From Biplanar Low-Dose Radiography, IEEE Transactions on Biomedical Engineering, vol.52, issue.10, pp.1756-1763, 2005.
DOI : 10.1109/TBME.2005.855711

R. Dumas and L. Cheze, Adjustments to McConville et al. and Young et al. body segment inertial parameters, Journal of Biomechanics, vol.40, issue.3, 2006.
DOI : 10.1016/j.jbiomech.2006.02.013

J. L. Durkin and J. J. Dowling, Analysis of Body Segment Parameter Differences Between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models, Journal of Biomechanical Engineering, vol.125, issue.4, pp.515-537, 2003.
DOI : 10.1115/1.1590359

J. L. Durkin and J. J. Dowling, The measurement of body segment inertial parameters using dual energy X-ray absorptiometry, Journal of Biomechanics, vol.35, issue.12, pp.1575-80, 2002.
DOI : 10.1016/S0021-9290(02)00227-0

C. M. Eng and G. D. Abrams, Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI), Journal of Biomechanics, vol.40, issue.14, 2007.
DOI : 10.1016/j.jbiomech.2007.04.005

W. S. Erdmann and T. Gos, Density of trunk tissues of young and medium age people, Journal of Biomechanics, vol.23, issue.9, pp.945-952, 1990.
DOI : 10.1016/0021-9290(90)90360-F

M. A. Freeman and V. Pinskerova, The movement of the normal tibio-femoral joint, Journal of Biomechanics, vol.38, issue.2, pp.197-208, 2005.
DOI : 10.1016/j.jbiomech.2004.02.006

B. J. Fregly and H. A. Rahman, Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics with Single-Plane Fluoroscopy, Journal of Biomechanical Engineering, vol.127, issue.4, pp.692-701, 2005.
DOI : 10.1115/1.1933949

F. Dupré, A. , and M. Tremblay, Étude de fidélité d'un système d'analyse 3D des mouvements du genou, ACFAS, 2004.

F. Gabrielli and C. Azmy, Analyse de la cinématique de la rotule in vitro et in vivo, p.48, 2004.

S. Ganjikia and N. Duval, Three-dimensional knee analyzer validation by simple fluoroscopic study, The Knee, vol.7, issue.4, pp.221-231, 2000.
DOI : 10.1016/S0968-0160(00)00063-6

K. J. Ganley and C. M. Powers, The use of dual energy X-ray absorptiometry in determining subject-specific anthropometric measures for kinetic analysis during gait, Gait and Posture, vol.13, pp.271-272, 2001.

K. J. Ganley and C. M. Powers, Anthropometric parameters in children: a comparison of values obtained from dual energy x-ray absorptiometry and cadaver-based estimates, Gait & Posture, vol.19, issue.2, pp.133-173, 2004.
DOI : 10.1016/S0966-6362(03)00038-9

K. J. Ganley and C. M. Powers, Determination of lower extremity anthropometric parameters using dual energy X-ray absorptiometry: the influence on net joint moments during gait, Clinical Biomechanics, vol.19, issue.1, pp.50-56, 2004.
DOI : 10.1016/j.clinbiomech.2003.08.002

U. Glitsch and W. Baumann, The three-dimensional determination of internal loads in the lower extremity, Journal of Biomechanics, vol.30, issue.11-12, pp.11-12, 1997.
DOI : 10.1016/S0021-9290(97)00089-4

H. Goujon, Analyse de la marche de l'amputé fémoral. Laboratoire de biomécanique, p.213, 2006.

H. Goujon and C. Cadilhac, Mise au point d'un outil d'analyse tridimensionnelle de la marche: application à l'amputé fémoral, 2003.

M. A. Gray, An analytic study of man's inertial properties, 1963.

C. S. Gregersen and M. L. Hull, Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions, Journal of Biomechanics, vol.36, issue.6, pp.803-816, 2003.
DOI : 10.1016/S0021-9290(03)00014-9

E. S. Grood and W. J. Suntay, A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee, Journal of Biomechanical Engineering, vol.105, issue.2, pp.136-180, 1983.
DOI : 10.1115/1.3138397

E. Growney and D. Meglan, Repeated measures of adult normal walking using a video tracking system, Gait & Posture, vol.6, issue.2, pp.147-162, 1997.
DOI : 10.1016/S0966-6362(97)01114-4

N. Hagemeister and G. Parent, A reproducible method for studying three-dimensional knee kinematics, Journal of Biomechanics, vol.38, issue.9, pp.1926-1957, 2005.
DOI : 10.1016/j.jbiomech.2005.05.013

N. Hagemeister and L. Yahia, In vivo reproducibility of a new non-invasive diagnostic tool for three-dimensional knee evaluation, The Knee, vol.6, issue.3, pp.175-181, 1999.
DOI : 10.1016/S0968-0160(99)00004-6

E. P. Hanavan, A mathematical model of the human body, 1964.
DOI : 10.1037/e400822004-001

H. Hatze, A mathematical model for the computational determination of parameter values of anthropomorphic segments, Journal of Biomechanics, vol.13, issue.10, pp.833-876, 1980.
DOI : 10.1016/0021-9290(80)90171-2

H. J. Hermens and B. Freriks, Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology, vol.10, issue.5, pp.361-374, 2000.
DOI : 10.1016/S1050-6411(00)00027-4

J. P. Holden and S. J. Stanhope, The effect of variation in knee center location estimates on net knee joint moments, Gait & Posture, vol.7, issue.1, pp.1-6, 1998.
DOI : 10.1016/S0966-6362(97)00026-X

K. R. Holzbaur and S. L. Delp, Moment-generating capacity of upper limb muscles in healthy adults, Journal of Biomechanics, vol.40, issue.11, pp.2442-2451, 2007.
DOI : 10.1016/j.jbiomech.2006.11.013

K. R. Holzbaur and W. M. Murray, Upper limb muscle volumes in adult subjects, Journal of Biomechanics, vol.40, issue.4, pp.742-751, 2007.
DOI : 10.1016/j.jbiomech.2006.11.011

J. Houck and H. J. Yack, Validity and comparisons of tibiofemoral orientations and displacement using a femoral tracking device during early to mid stance of walking, Gait & Posture, vol.19, issue.1, 2003.
DOI : 10.1016/S0966-6362(03)00033-X

J. M. Jasiewicz and J. Treleaven, Wireless orientation sensors: Their suitability to measure head movement for neck pain assessment, Manual Therapy, vol.12, issue.4, 2006.
DOI : 10.1016/j.math.2006.07.005

R. Jensen, Estimation of the biomechanical properties of three body types using a photogrammetric method, Journal of Biomechanics, vol.11, issue.8-9, pp.349-358, 1978.
DOI : 10.1016/0021-9290(78)90069-6

E. Jolivet, Modélisation biomécanique de la hanche dans le risque de fracture du fémur proximal, p.178, 2007.

E. Jolivet and E. Daguet, (accepté)Volumic patient specific reconstruction of muscular system based on a reduced dataset of medical images, Comput Methods Biomech Biomed Engin

M. P. Kadaba and H. K. Ramakrishnan, Measurement of lower extremity kinematics during level walking, Journal of Orthopaedic Research, vol.15, issue.3, pp.383-92, 1990.
DOI : 10.1002/jor.1100080310

M. P. Kadaba and H. K. Ramakrishnan, Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait, Journal of Orthopaedic Research, vol.65, issue.6, pp.849-60, 1989.
DOI : 10.1002/jor.1100070611

P. Kamina, Précis d'anatomie clinique, 2003.

I. Kanisawa and A. Z. Banks, Weight-bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions, Knee Surgery, Sports Traumatology, Arthroscopy, vol.7, issue.1, pp.16-22, 2003.
DOI : 10.1016/0021-9290(94)E0036-3

K. R. Kaufman and C. Hughes, Gait characteristics of patients with knee osteoarthritis, Journal of Biomechanics, vol.34, issue.7, pp.907-922, 2001.
DOI : 10.1016/S0021-9290(01)00036-7

H. Kawakami and N. Sugano, Gait analysis system for assessment of dynamic loading axis of the knee, Gait & Posture, vol.21, issue.1, pp.125-155, 2005.
DOI : 10.1016/j.gaitpost.2004.01.002

T. L. Kelly and N. Berger, DXA body composition: theory and practice, Applied Radiation and Isotopes, vol.49, issue.5-6, pp.511-513, 1998.
DOI : 10.1016/S0969-8043(97)00226-1

R. N. Kirkwood and E. G. Culham, Radiographic and non-invasive determination of the hip joint center location: effect on hip joint moments, Clinical Biomechanics, vol.14, issue.4, pp.227-262, 1999.
DOI : 10.1016/S0268-0033(98)00073-4

R. M. Kiss and L. Kocsis, Joint kinematics and spatial???temporal parameters of gait measured by an ultrasound-based system, Medical Engineering & Physics, vol.26, issue.7, pp.611-631, 2004.
DOI : 10.1016/j.medengphy.2004.04.002

Z. Knoll and L. Kocsis, Gait patterns before and after anterior cruciate ligament reconstruction, Knee Surgery, Sports Traumatology, Arthroscopy, vol.12, issue.1, pp.7-14, 2004.
DOI : 10.1007/s00167-003-0440-1

C. L. Koerhuis and J. C. Winters, Neck mobility measurement by means of the ???Flock of Birds??? electromagnetic tracking system, Clinical Biomechanics, vol.18, issue.1, pp.14-22, 2003.
DOI : 10.1016/S0268-0033(02)00146-8

R. D. Komistek and T. R. Kane, Knee mechanics: a review of past and present techniques to determine in vivo loads, Journal of Biomechanics, vol.38, issue.2, pp.215-243, 2005.
DOI : 10.1016/j.jbiomech.2004.02.041

Y. Konishi and K. Ikeda, Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair, Scandinavian Journal of Medicine & Science in Sports, vol.52, issue.6, 2007.
DOI : 10.1111/j.1600-0838.2006.00619.x

B. Krabbe and R. Farkas, Influence of inertia on intersegment moments of the lower extremity joints, Journal of Biomechanics, vol.30, issue.5, pp.517-526, 1997.
DOI : 10.1016/S0021-9290(96)00186-8

T. Krosshaug and A. Nakamae, Estimating 3D joint kinematics from video sequences of running and cutting maneuvers???assessing the accuracy of simple visual inspection, Gait & Posture, vol.26, issue.3, 2006.
DOI : 10.1016/j.gaitpost.2006.10.010

D. Labbe and N. Hagemeister, Evaluation of the intra-and inter-observer reproducibility of a method for studying three-dimensional knee kinematics, Ninth international symposium on the 3D analysis of human movement, 2006.

A. Lafaye, Analyse quantitative et modélisation des muscles du membre inférieur. Laboratoire de biomécanique. Paris, Ecole Nationale Supérieure d'Arts et Métiers, 2007.

R. Lampe and S. Grassl, MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy, Brain and Development, vol.28, issue.8, pp.500-506, 2006.
DOI : 10.1016/j.braindev.2006.02.009

J. L. Lanovaz and H. M. Clayton, Sensitivity of forelimb swing phase inverse dynamics to inertial parameter errors, Equine Veterinary Journal, vol.12, issue.Suppl. 2, pp.27-31, 2001.
DOI : 10.1111/j.2042-3306.2001.tb05353.x

S. Laporte, Reconstruction 3D du squelette humain pour la biomécanique par radiographie biplane à dose minimale d'irradiation. Laboratoire de Biomécanique, pp.111-116, 2002.

S. Laporte and W. Skalli, A Biplanar Reconstruction Method Based on 2D and 3D Contours: Application to the Distal Femur, Computer Methods in Biomechanics and Biomedical Engineering, vol.17, issue.1, pp.1-6, 2003.
DOI : 10.1016/S0169-2607(98)00107-2

P. Lass and S. Kaalund, Muscle coordination following rupture of the anterior cruciate ligament: Electromyographic studies of 14 patients, Acta Orthopaedica Scandinavica, vol.214, issue.2, pp.9-14, 1991.
DOI : 10.3109/17453679108993083

A. Leardini and A. Cappozzo, Validation of a functional method for the estimation of hip joint centre location, Journal of Biomechanics, vol.32, issue.1, pp.99-103, 1999.
DOI : 10.1016/S0021-9290(98)00148-1

J. Liu and T. E. Lockhart, Comparison of 3D joint moments using local and global inverse dynamics approaches among three different age groups, Gait & Posture, vol.23, issue.4, pp.480-485, 2006.
DOI : 10.1016/j.gaitpost.2005.06.011

D. G. Lloyd and T. F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, Journal of Biomechanics, vol.36, issue.6, pp.765-76, 2003.
DOI : 10.1016/S0021-9290(03)00010-1

Y. Makihara and A. Nishino, Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles, Knee Surgery, Sports Traumatology, Arthroscopy, vol.23, issue.4, pp.310-317, 2006.
DOI : 10.1007/s00167-005-0701-2

K. Manal and I. Mcclay, Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study, Gait & Posture, vol.11, issue.1, pp.38-45, 2000.
DOI : 10.1016/S0966-6362(99)00042-9

F. Marin, Contribution biomécanique à l'étude de l'articulation fémoro-tibiale pendant la marche in vivo, 2000.

P. E. Martin and M. Mungiole, The use of magnetic resonance imaging for measuring segment inertial properties, Journal of Biomechanics, vol.22, issue.4, pp.367-76, 1989.
DOI : 10.1016/0021-9290(89)90051-1

S. T. Mccaw and P. Devita, Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques, Journal of Biomechanics, vol.28, issue.8, pp.985-993, 1995.
DOI : 10.1016/0021-9290(94)00151-S

A. Mcpherson and J. Karrholm, Imaging knee position using MRI, RSA/CT and 3D digitisation, Journal of Biomechanics, vol.38, issue.2, pp.263-271, 2005.
DOI : 10.1016/j.jbiomech.2004.02.007

V. Metzler and A. Arampatzis, Influence of 2D and 3D body segment models on energy calculations during kinematic analysis of running, European Journal of Applied Physiology, vol.86, issue.4, pp.337-378, 2002.
DOI : 10.1007/s00421-001-0539-3

R. P. Mikosz and T. P. Andriacchi, Model analysis of factors influencing the prediction of muscle forces at the knee, Journal of Orthopaedic Research, vol.8, issue.2, pp.205-219, 1988.
DOI : 10.1002/jor.1100060207

B. Mirtich, Fast and Accurate Computation of Polyhedral Mass Properties, Journal of Graphics Tools, vol.4, issue.10, pp.31-50, 1996.
DOI : 10.1080/10867651.1996.10487458

C. I. Morse and H. Degens, The validity of estimating quadriceps volume from single MRI cross-sections in young men, European Journal of Applied Physiology, vol.20, issue.3, pp.267-74, 2007.
DOI : 10.1007/s00421-007-0429-4

C. I. Morse and J. M. Thom, Changes in triceps surae muscle architecture with sarcopenia, Acta Physiologica Scandinavica, vol.9, issue.3, pp.291-299, 2005.
DOI : 10.1007/BF00243511

M. Mungiole and P. E. Martin, Estimating segment inertial properties: Comparison of magnetic resonance imaging with existing methods, Journal of Biomechanics, vol.23, issue.10, pp.1039-1085, 1990.
DOI : 10.1016/0021-9290(90)90319-X

A. Nagano and K. G. Gerritsen, A sensitivity analysis of the calculation of mechanical output through inverse dynamics: a computer simulation study, Journal of Biomechanics, vol.33, issue.10, pp.1313-1321, 2000.
DOI : 10.1016/S0021-9290(00)00086-5

R. R. Neptune and S. A. Kautz, Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking, Journal of Biomechanics, vol.34, issue.11, pp.1387-98, 2001.
DOI : 10.1016/S0021-9290(01)00105-1

M. Nissan, Review of some basic assumptions in knee biomechanics, Journal of Biomechanics, vol.13, issue.4, pp.375-81, 1980.
DOI : 10.1016/0021-9290(80)90018-4

L. Nodé-langlois, Analyses tridimensionnelles des déviations angulaires des axes du membre inférieur, en pré per et postopératoire, 2003.

J. Norton and N. Donaldson, 3D whole body scanning to determine mass properties of legs, Journal of Biomechanics, vol.35, issue.1, pp.81-87, 2002.
DOI : 10.1016/S0021-9290(01)00161-0

Y. Otake and N. Suzuki, Four-dimensional model of the lower extremity after total hip arthroplasty, Journal of Biomechanics, vol.38, issue.12, pp.2397-405, 2005.
DOI : 10.1016/j.jbiomech.2004.10.023

A. Papadonikolakis and L. Cooper, Compensatory mechanisms in anterior cruciate ligament deficiency, Knee Surgery, Sports Traumatology, Arthroscopy, vol.11, issue.4, pp.235-278, 2003.
DOI : 10.1007/s00167-003-0367-6

D. J. Pearsall and P. A. Costigan, The effect of segment parameter error on gait analysis results, Gait & Posture, vol.9, issue.3, pp.173-83, 1999.
DOI : 10.1016/S0966-6362(99)00011-9

D. J. Pearsall and J. G. Reid, The Study of Human Body Segment Parameters in Biomechanics, Sports Medicine, vol.18, issue.2, pp.126-166, 1994.
DOI : 10.2165/00007256-199418020-00005

J. Perry, Gait Analysis. Normal and Pathological Function, 1992.

S. J. Piazza and A. Erdemir, Assessment of the functional method of hip joint center location subject to reduced range of hip motion, Journal of Biomechanics, vol.37, issue.3, pp.349-56, 2004.
DOI : 10.1016/S0021-9290(03)00288-4

S. J. Piazza and N. Okita, Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation, Journal of Biomechanics, vol.34, issue.7, pp.967-73, 2001.
DOI : 10.1016/S0021-9290(01)00052-5

A. Pinti and P. Hédoux, Comparaison à partir d'IRM de caractéristiques biomécaniques de membres inférieurs sains et patholgiques, Journal Européen des Systèmes Automatisés, vol.34, pp.6-7, 2000.

V. Pomero, Modélisation géométrique et mécanique des muscles du tronc, p.109, 2001.

V. Pomero and J. M. Vital, Muscular modelling: relationship between postural default and spine overloading, Stud Health Technol Inform, vol.88, 2002.

G. Rao and D. Amarantini, Influence of body segments??? parameters estimation models on inverse dynamics solutions during gait, Journal of Biomechanics, vol.39, issue.8, pp.1531-1537, 2006.
DOI : 10.1016/j.jbiomech.2005.04.014

URL : https://hal.archives-ouvertes.fr/hal-00091846

C. Reinschmidt and A. J. Van-den-bogert, Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers, Gait & Posture, vol.6, issue.2, pp.98-109, 1997.
DOI : 10.1016/S0966-6362(97)01110-7

K. S. Rudolph and M. J. Axe, Dynamic stability in the anterior cruciate ligament deficient knee, Knee Surgery, Sports Traumatology, Arthroscopy, vol.9, issue.2, pp.62-71, 2001.
DOI : 10.1007/s001670000166

M. Sangeux and F. Marin, Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging, Clinical Biomechanics, vol.21, issue.9, pp.984-91, 2006.
DOI : 10.1016/j.clinbiomech.2006.05.006

W. R. Santschi and J. Dubois, Moments of inertia and centers of gravity of the living human body, pp.1-62, 1963.

O. Sarfati and Z. Ladin, A video-based system for the estimation of the inertial properties of body segments, Journal of Biomechanics, vol.26, issue.8, pp.1011-1016, 1993.
DOI : 10.1016/0021-9290(93)90061-I

M. Sati and J. A. De-guise, Improving in vivo knee kinematic measurements: application to prosthetic ligament analysis, The Knee, vol.3, issue.4, pp.179-190, 1996.
DOI : 10.1016/S0968-0160(96)00209-8

B. Schlatterer, Evaluation in vivo de la reconstruction 3D biplanaire avec le système EOS pour analyser le positionnement des implants dans les prothèses totales du genou, p.20, 2006.

G. K. Seidel and D. M. Marchinda, Hip joint center location from palpable bony landmarks???A cadaver study, Journal of Biomechanics, vol.28, issue.8, pp.995-1003, 1995.
DOI : 10.1016/0021-9290(94)00149-X

L. Seoud, Contribution à la définition et à la programmation des repères tibiaux, p.19, 2005.

V. Sholukha and A. Leardini, Double-step registration of in vivo stereophotogrammetry with both in vitro 6-DOFs electrogoniometry and CT medical imaging, Journal of Biomechanics, vol.39, issue.11, pp.2087-95, 2006.
DOI : 10.1016/j.jbiomech.2005.06.014

M. P. Silva and J. A. Ambrosio, Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data, Gait & Posture, vol.19, issue.1, pp.35-49, 2004.
DOI : 10.1016/S0966-6362(03)00013-4

R. A. Siston and S. L. Delp, Evaluation of a new algorithm to determine the hip joint center, Journal of Biomechanics, vol.39, issue.1, pp.125-155, 2006.
DOI : 10.1016/j.jbiomech.2004.10.032

W. Skalli and F. Lavaste, Quantification of Three-Dimensional Vertebral Rotations in Scoliosis: What Are the True Values?, Spine, vol.20, issue.5, pp.546-53, 1995.
DOI : 10.1097/00007632-199503010-00008

I. Soderkvist and P. A. Wedin, Determining the movements of the skeleton using well-configured markers, Journal of Biomechanics, vol.26, issue.12, pp.1473-1480, 1993.
DOI : 10.1016/0021-9290(93)90098-Y

R. Stagni and S. Fantozzi, Propagation of anatomical landmark misplacement to knee kinematics: Performance of single and double calibration, Gait & Posture, vol.24, issue.2, pp.137-178, 2006.
DOI : 10.1016/j.gaitpost.2006.08.001

R. Stagni and A. Leardini, Effects of hip joint centre mislocation on gait analysis results, Journal of Biomechanics, vol.33, issue.11, pp.1479-87, 2000.
DOI : 10.1016/S0021-9290(00)00093-2

I. Südhoff and J. De-guise, Modélisation géométrique et mécanique personnalisée de membre inférieur, Examen doctoral, p.42, 2005.

I. Südhoff and J. De-guise, Paramètres inertiels personnalisés: détermination, validation et impact sur la cinétique de la marche, p.66, 2007.

I. Südhoff and J. A. De-guise, Intégration de la géométrie osseuse personnalisée à l'analyse du mouvement, 2007.

I. Sudhoff and S. Van-driessche, Comparing three attachment systems used to determine knee kinematics during gait, Gait & Posture, vol.25, issue.4, pp.533-576, 2007.
DOI : 10.1016/j.gaitpost.2006.06.002

S. Tashman and W. Anderst, In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency, Journal of Biomechanical Engineering, vol.125, issue.2, pp.238-283, 2003.
DOI : 10.1115/1.1559896

M. J. Tingart and M. Apreleva, Magnetic Resonance Imaging in Quantitative Analysis of Rotator Cuff Muscle Volume, Clinical Orthopaedics and Related Research, vol.415, issue.415, pp.104-114, 2003.
DOI : 10.1097/01.blo.0000092969.12414.e1

M. Van-de-putte, Méthode reproductible pour l'évaluation fonctionnelle du genou, p.99, 2002.

S. Van-sint-jan and P. Salvia, Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling, Journal of Biomechanics, vol.35, issue.11, pp.1475-84, 2002.
DOI : 10.1016/S0021-9290(02)00074-X

C. L. Vaughan, Are joint torques the Holy Grail of human gait analysis?, Human Movement Science, vol.15, issue.3, pp.423-466, 1996.
DOI : 10.1016/0167-9457(96)00009-7

S. Véron, Interprétation des déplacements dans l'espace, p.88, 1995.

S. Vieilledent, Comparaison de systèmes d'analyse du mouvement 3D. F. Institut National du Sport et de l'Education Physique. Paris, Laboratoire Mouvement action et performance, Institut National du sport et de l'éducation physique, p.52, 2002.

K. E. Webster and J. E. Wittwer, Gait Patterns After Anterior Cruciate Ligament Reconstruction Are Related to Graft Type, American Journal of Sports Medicine, vol.33, issue.2, pp.247-54, 2005.
DOI : 10.1177/0363546504266483

C. Wei and R. K. Jensen, The application of segment axial density profiles to a human body inertia model, Journal of Biomechanics, vol.28, issue.1, pp.103-111, 1995.
DOI : 10.1016/0021-9290(95)80012-3

A. P. Weinbach, Contour Maps, center of gravity, moment of inertia, and surface area of the human body, Human Biology, vol.10, pp.356-371, 1938.

D. R. White and H. Q. Woodard, Average soft-tissue and bone models for use in radiation dosimetry, The British Journal of Radiology, vol.60, issue.717, pp.907-920, 1987.
DOI : 10.1259/0007-1285-60-717-907

C. E. Whittsett, Some dynamic response characteristics of weightless man. U.S Air Force Institute for Technology, 1962.

G. N. Williams and T. S. Buchanan, Quadriceps Weakness, Atrophy, and Activation Failure in Predicted Noncopers After Anterior Cruciate Ligament Injury, American Journal of Sports Medicine, vol.33, issue.3, pp.402-409, 2005.
DOI : 10.1177/0363546504268042

G. N. Williams and L. Snyder-mackler, Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers, Journal of Biomechanics, vol.38, issue.4, pp.685-93, 2005.
DOI : 10.1016/j.jbiomech.2004.04.004

D. Winter, Biomechanics and motor control of human movement, 1990.
DOI : 10.1002/9780470549148

D. Winter, Biomechanics and motor control of human movement, 2005.
DOI : 10.1002/9780470549148

C. T. Wooley, Segment Masses, centers of mass and local moments of inertia for an anthropometric model of man Development of skylab experiment T- 013, Crew/Vehicle disturbances, 1972.

G. Wu and S. Siegler, ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion???part I: ankle, hip, and spine, Journal of Biomechanics, vol.35, issue.4, pp.543-551, 2002.
DOI : 10.1016/S0021-9290(01)00222-6

M. R. Yeadon, The simulation of aerial movement???II. A mathematical inertia model of the human body, Journal of Biomechanics, vol.23, issue.1, pp.67-74, 1990.
DOI : 10.1016/0021-9290(90)90370-I

B. M. You and P. Siy, In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: Application to knee kinematics, IEEE Transactions on Medical Imaging, vol.20, issue.6, pp.514-539, 2001.
DOI : 10.1109/42.929617

F. E. Zajac and R. R. Neptune, Biomechanics and muscle coordination of human walking, Gait & Posture, vol.17, issue.1, pp.1-17, 2003.
DOI : 10.1016/S0966-6362(02)00069-3

M. Zani, GUIDE D'ACHAT Les capteurs d'accélération, p.746, 2002.

V. M. Zatsiorsky, Chapter 5, Joint torques and forces: the inverse problem of dynamics. Kinetics of human motion. H. kinetics, pp.265-347, 2002.

V. M. Zatsiorsky, Human kinetics, 2002.

V. M. Zatsiorsky, V. M. Seluyanov, and K. Kobayashi, The mass and inertia characteristics of the main segmentss of the human body, Biomechanics VIII: proceedings of the eighth International Congress of Biomechanics. Matsui Hideji and, pp.1152-1159, 1983.

N. Zheng and G. S. Fleisig, An analytical model of the knee for estimation of internal forces during exercise, Journal of Biomechanics, vol.31, issue.10, pp.963-970, 1998.
DOI : 10.1016/S0021-9290(98)00056-6

Z. Zheng and X. Zheng, A new method to determine inertial parameters of the segments of the human body, Beijing Asian Games Scientific Congress. Articles et communications Publications, 1990.

I. Südhoff, S. Van-driessche, J. A. De-guise, S. Laporte, and W. Skalli, Comparing three attachment systems used to determine knee kinematics during gait, Gait&Posture, pp.533-576, 2007.

A. Fuentes, N. Hagemeister, I. Südhoff, J. Fernandes, P. Ranger et al., A. de Guise, New 3D biomedical and imaging technologies to evaluate the effect of anterior cruciate ligament reconstrucstions: preliminary results, Clinical Journal of Sports Medicine, vol.17, p.165, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00095798

I. Südhoff, W. Skalli, A. Fuentes, and J. A. De-guise, Patient specific body segment parameters: impact on kinetics, Journal of Biomechanics, 2007.

I. Südhoff, J. De-guise, A. Fuentes, H. Goujon, and W. Skalli, Integrating patient specific bone geometry to gait analysis: impact on kinetics

I. Südhoff, J. De-guise, A. Nordez, E. Jolivet, D. Bonneau et al., 3D patient specific geometry of the muscles involved in the knee motion from selected MRI images Communications scientifiques internationales avec comité de lecture

I. Südhoff, S. Van-driessche, S. Laporte, J. A. De-guise, and W. Skalli, Comparing three attachment systems used to determine knee kinematics during gait, Gait & Posture, vol.25, issue.4, 2005.
DOI : 10.1016/j.gaitpost.2006.06.002

B. Schlatterer, I. Südhoff, X. Bonnet, and W. Skalli, Analyse 3D par radiographie biplanaire des alignements osseux et prothétiques lors de la pose d'une PTG: estimation des incertitudes concernant les repères, 2006.

I. Südhoff, J. A. De-guise, G. Parent, A. Fuentes, H. Goujon et al., Intégration de la géométrie osseuse personnalisée à l'analyse du mouvement, p.29, 2007.

I. Südhoff, W. Skalli, A. Fuentes, and J. A. De-guise, A PATIENT SPECIFIC MODEL FOR GAIT ANALYSIS, Journal of Biomechanics, vol.40, p.346, 2007.
DOI : 10.1016/S0021-9290(07)70341-X

I. Südhoff, J. A. De-guise, A. Fuentes, and W. Skalli, Combining stereoradiography and gait analysis to determine the centre of the femoral head: impact on kinetics, XVI annual meeting of ESMAC, p78, Athènes, Grèce, 27-29 septembre Autres communications Modélisation géométrique et mécanique personnalisée de l'appareil locomoteur, Séminaire modélisation, 2006.

I. Südhoff, W. Skalli, R. Aissaoui, and J. A. De-guise, Modélisation géométrique et mécanique personnalisée de l'appareil locomoteur, pp.17-2006

I. Südhoff, W. Skalli, and J. A. De-guise, Membre inférieur : référentiels utilisés, Séminaire Biospace/LIO/LBM, 2006.

I. Südhoff, W. Skalli, and J. A. De-guise, Modélisation géométrique et mécanique personnalisée du membre inférieur, séminaire LBM-Hôpital Henri Mondor, pp.24-2006

I. Südhoff, W. Skalli, J. A. De-guise, E. Couplage, and . Vicon, Intégration de données personnalisées à l'analyse de la marche, séminaire LBM-LIO, pp.22-2006

A. Fuentes, N. Hagemeister, L. Requiao, I. Südhoff, J. Fernandes et al., Nouvelles techniques d'imagerie et d'évaluation morpho fonctionnelle en 3D au service des patients présentant des troubles de l'appareil locomoteur, 9e congrès annuel des étudiants, stagiaires et résidents du Centre de recherche du CHUM, affiche 62, 2006.

S. Ganjikia, Three-dimensional knee analyzer validation by simple fluoroscopic study, The Knee, vol.7, issue.4, pp.221-231, 2000.
DOI : 10.1016/S0968-0160(00)00063-6

I. Südhoff, V. D. Freeman, M. A. , V. Pinskerova, and B. M. , Comparing three attachment sytems used to determine knee kinematics during gait. soumis à la revue Gait&Posture The movement of the normal tibio-femoral joint In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics, J Biomech IEEE Trans Med Imaging, vol.38, issue.26, pp.20-514, 2001.

S. T. Mccaw and P. Devita, Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques, Journal of Biomechanics, vol.28, issue.8, pp.28-985, 1995.
DOI : 10.1016/0021-9290(94)00151-S

M. P. Silva and J. A. Ambrosio, Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data, Gait & Posture, vol.19, issue.1, pp.35-49, 2004.
DOI : 10.1016/S0966-6362(03)00013-4

C. L. Vaughan, Are joint torques the Holy Grail of human gait analysis ? Human Movement Science, pp.423-466, 1996.

D. Winter, F. E. Zajac, R. R. Neptune, and S. A. Kautz, Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee, Gait Posture Ann Biomed Eng Maloine, vol.17, issue.11, pp.1-17, 2003.

S. D. Laporte and T. F. Besier, Ecole Nationale Supérieure d'Arts et Métiers Ligaments and Ligamentoplasties An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo The three-dimensional determination of internal loads in the lower extremity, 16. Pomero, V., et al., A proprioception based regulation model to estimate the trunk muscle forces, pp.765-7611, 1996.

S. C. Chan and B. B. Seedhom, The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis, ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 1989-1996 (vols 203-210), vol.209, issue.18, pp.331-339, 1995.
DOI : 10.1243/PIME_PROC_1995_209_313_02

A. Nagano, K. G. Gerritsen, S. Fukashiro-ganley, K. J. , and C. M. Powers, A sensitivity analysis of the calculation of mechanical output through inverse dynamics: a computer simulation study, Journal of Biomechanics, vol.33, issue.10, pp.1313-1321, 2000.
DOI : 10.1016/S0021-9290(00)00086-5

F. Marin, Contribution biomécanique à l'étude de l'articulation fémoro-tibiale pendant la marche in vivo, Ecole Nationale Supérieure d'Arts et Métiers, 1921.

D. J. Pearsall and P. A. Costigan, The effect of segment parameter error on gait analysis results Südhoff, I., DGA 1005 -lectures dirigées : Paramètres inertiels personnalisés : détermination, validation et impact sur la cinétique de la marche Joint torques and forces: the inverse problem of dynamics Review of some basic assumptions in knee biomechanics, Kinetics of human motion, H. kinetics, pp.173-83, 1980.

J. P. Holden, S. J. Stanhope-kirkwood, R. N. , E. G. Culham, and P. Costigan, The effect of variation in knee center location estimates on net knee joint moments, Gait & Posture, vol.7, issue.1, pp.1-6, 1998.
DOI : 10.1016/S0966-6362(97)00026-X

R. Stagni, Effects of hip joint centre mislocation on gait analysis results Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking Predictions of knee and ankle moments of force in walking from EMG and kinematic data, 1387-98. 29. Pomero, V., Modélisation géométrique et mécanique des muscles du tronc Thèse de doctorat, Ecole Nationale Supérieure d'Arts et Métiers, pp.33-1479, 1985.

D. Amarantini and L. Martin, A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions, J Biomech J Electromyogr Kinesiol, vol.37, issue.154, pp.1393-404, 2004.

C. A. Doorenbosch and J. Harlaar, A clinically applicable EMG???force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics, vol.18, issue.2, pp.78-81, 2003.
DOI : 10.1016/S0268-0033(02)00183-3

K. G. Gerritsen, Intrinsic Muscle Properties Facilitate Locomotor Control???A Computer Simulation Study, Motor Control, vol.2, issue.3, pp.206-226, 1998.
DOI : 10.1123/mcj.2.3.206

R. D. Komistek, Knee mechanics: a review of past and present techniques to determine in vivo loads Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb, J Biomech Gait Posture J Neurophysiol, vol.38, issue.39, pp.215-243, 2002.

V. Pomero, A three-dimensional kinematic and dynamic model of the lower limb Reliability of a practicable EMG-moment model for antagonist moment prediction Generation of human bipedal locomotion by a bio-mimetic neuromusculo-skeletal model A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance, Muscular modelling: relationship between postural default and spine overloading. Stud Health Technol Inform. 45. Taga, G., A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints, pp.321-326, 1989.

R. 1. Clarys, J. P. , M. J. Marfell, and -. , Anatomical segmentation in humans and the prediction of segmental masses from intra-segmental anthropometry, Hum Biol, vol.58, issue.5, pp.771-82, 1986.

R. Dumas, Guide d'utilisation du logiciel JAMBEX et des fonctions MATLAB pour le calcul des paramètres inertiels personnalisés du membre inférieur, 2004.

E. Le-système and . Permet-de-localiser-rapidement-le, CTF par et les marqueurs placés sur le bassin et nous permet ainsi d'évaluer la précision de détermination du CTF avec une référence fiable. Notre étude préliminaire fait ressortir la nécessité de valider la méthode de détermination fonctionnelle du CTF sur un plus grand nombre de sujets, et ce avec : -différents mouvements de circumduction, flexion-abduction d'amplitude différente -différentes configurations de marqueurs

M. Begon and T. Monnet, Effects of movement for estimating the hip joint centre, Gait & Posture, vol.25, issue.3, pp.353-362, 2007.
DOI : 10.1016/j.gaitpost.2006.04.010

URL : https://hal.archives-ouvertes.fr/hal-00240709

A. Leardini and A. Cappozzo, Validation of a functional method for the estimation of hip joint centre location, Journal of Biomechanics, vol.32, issue.1, pp.99-103, 1999.
DOI : 10.1016/S0021-9290(98)00148-1

S. J. Piazza and A. Erdemir, Assessment of the functional method of hip joint center location subject to reduced range of hip motion, Journal of Biomechanics, vol.37, issue.3, pp.349-56, 2004.
DOI : 10.1016/S0021-9290(03)00288-4

S. J. Piazza and N. Okita, Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation, Journal of Biomechanics, vol.34, issue.7, pp.967-73, 2001.
DOI : 10.1016/S0021-9290(01)00052-5

I. Soderkvist and P. A. Wedin, Determining the movements of the skeleton using well-configured markers, Journal of Biomechanics, vol.26, issue.12, pp.1473-1480, 1993.
DOI : 10.1016/0021-9290(93)90098-Y

. Se-placer-environ-au-tiers-inférieur-de-la-cuisse, Remonter les coupes pour trouver les LH dans l'ordre indiqué à titre indicatif ci-dessous. Pour chaque LH

D. Se-placer-au-tiers-inférieur-de-la-cuisse, . St, . Gra, . Vl+vi, . Bfl et al., Descendre les coupes pour trouver les LB dans l'ordre suivant (à titre indicatif

. Sauvegarder-le-fichier, mat contenant les limites hautes et basses Utiliser la fonction excel_coupes, lui fournir le fichier .mat. Ce programme fournit un fichier xls contenant le numéro des coupes à contourer pour chaque muscle