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Introduction en francais
Un probEme important de la statistique concernanéahantillon i.i.d, de taille n est de tester si ses
observations viennent d'une distributiorésffiee. Cela signifie qu’il y a une incertitude et nous de-
vons prendre uneétision. Un processusdisionnel en situation d’incertitude est en grande partie
bas sur I'application d’analyse de doees statistiques pougélalution des risques probabilistes de
notre cécision. Dans une situatioRaliste nous avons seulement un ensemble deédsnactuelles
et nous devongétablir 'la connaissance’. La connaissance est ce que nous savons et la communica-
tion de la connaissance est I'information’. Les dées sont seulement I'information brute et non
la connaissance de celles-ci. Les deesdeviennent des informations quand cela devient pertinent
a notre prob#me de écision. Linformation devient ’le fait' quand les doaes peuvent le soutenir.
Enfin le fait devient la connaissance quand il est @ilians I'acbvement eussi du proldme de
décision. Le processugfiechi statistique bassur les donges, construira les metks statistiques
pour la prise de &cision en situation d'incertitude. La statistiquesulte du besoin de placer la
connaissance sur une base sysitique devidence. Ceci a exgguneétude des lois de probabéit
Ainsi, la fonction de densit est un concept fondamental dans la statistique. La vraie fonction de
densié, que nous @&hotonsf(.) est inconnue. Nous appelons cette distribution la 'vrai distribu-
tion’. Un mockle est une famille des distributions et est appklen- speci®’ s'il contient la vrai
distribution; on peuggalement parler du 'vrai méte’ mais cela peuétre fallacieux (induire en
erreur). Les donges sont insuffisantes pour reconstruire chadaiaildde f(.). Alors parfois nous
I'estimons et parfois nous I'approximons. Le secteur d’estimation de @gwsittetre pararatrique
ou nonpararatrique. Le cas nonpardtrique est la construction d’une estimation de la fonction
densié des donees obsees @ le nombre de para@tres est cons@é comme infini. Dans ce

cas-ci I'estimation de la denéitf (.) pour tous les points dans son support impliquerait I'estimation



d’'un nombre infini de paragtres. Historiquement on peut dire que I'estimateur (nonpaisauoie)

de densit le plus ancien utilis est I'histogramme qui @té raffiné pour obtenir les estimateurs lisses
par I'approche d’estimatioa noyaux, voir, Fix and Hodges (1951), Devroye (1985) and Silverman
(1986). Voir la figure 1. L'autre cas est le cas pagdngue, @ nous supposons connue la forme de
la fonction de densi et nous voulons estimer seulement les patees. Dans le cas parainque
nous supposons que les déeas sont grérée a partir des familles parastriques de distributions
connues. L'approche la plus empémyest bae sur les estimateurs de maximum de vraisemblance
I'(EMV) et certaines de ses modifications éréralement ce secteur esé lau probkme de test
d’hypothése. En tant que pro@te naturelle, nous voulons consiér les néthodes pour construire
les pro@dures qui sont efficaces, c'éstdire, asymptotiquement optimales. L&dhie derrére le
EMV garantit cette optimakt Dans le proldime de test d’hypo#ise, nouséfinissons formellement
les hypotlese nulle et alternative au sujet des paraes de la den&tfondamentale. Les quargitde
base dont nous avons besoin dans le test d’hgseatlsont la valeur critique qui fournit le niveau du
test, la puissance du test et la dimension @eHantillon requise pour obtenir une puissance éenn
D’autre part nous pouvons comparer deux gled en concurrence, par exemple une demsii-
male contre une denéitdouble exponentielle. Puisque nous pouvons imaginer plusieurslesod
pour I‘approche dd (.), la question du “choix du made” surgit. Par la choix de méte nous nous
rappelons Ockham (1282-1347) qui @cthé que des 'entits ne doivent pastre multiplisiees au
de la recessi¢, qui est connue sous le nom de rasoir d’'Ockham. Simplement uglenedt un
ensemble dquations, ou de fonctions avec quelques patess ajustables, nous pouvorefidir

un mockle en tant qu’ensemble de probakilibu d’hypotléses statistiques. Le choix de nibel
consistea flectionner un magle mattematique parmi un jeu de mekks potentiels, celui qui se

collera au mieuxa notre grie d’observations. Nous consitns une famille de dengg comme



mockle, dans la quelle les membres diffnt par la valeur des paratres. Notre recherche est de
trouver le vrai modle. Nous disons qu’un métk est vrai si et seulement si une des déssiu’il
contient est la vraie. |l estatessaire de choisir 'ensemble de ralesd avant de commencer. Dans
le mockle de egression ligaire par exemple, le choix de nidd est difficile car nous avond 2
mockle potentiels 0 p est le nombre de variables explicatives qui sont candidekegplication de

la variable Eponse. Le proBme est que des termes swpkntaires ajoutent des parnes ajusta-
bles supptmentaires, et ceux-ci d@loreront I'ajustement. Pour prouver la sensibilitu choix de
mockle, et 'importance de ce concept dans le secteur de recherche, nougoomsideux moeles
pour un ensemble de doees actuel, les comm{& =Bo+B1Xa+€, Po,B1eR; e~AN(0,1)}
et{Y =Bo+P1X1+B2X2+¢, Po,B1,B2€R; €~ A(0,1)}. Nous consiérons une situation de
simulation dans laquelle nous savons que le premieraeagst correct, G-d. nous acceptons que
2 =0. La figure 2 montre que l'inclusion d’une variable explicative avec coefficiert dans les
mockle changent la distribution de I'estimateurf@gle De ce fait I'utilisation du mauvaise metk
(deuxieme moele) nous mnea une mauvaise iBfence poup;, le parangtre qui doitétre dans le
mockle. Dans la ligtrature, les rathodes classiques de choix de raledsont connues sous forme
de test d’ajustement, Pearson (1900), et le test d’hysetielassique, Neyman-Pearson (1933-1938)
pour des modlesa un pararatre, et sa prolongation qui emploie le paradigme de Neyman-Pearson
avec l'estimateur de maximum de vraisemblance pour nous donner éthede de test universel,
le test de rapport de vraisemblance. D’autre part quelquehades &centes dans les @&ies de
choix de moeéle sont le crigre d’'information d’Akaike(AIC), (Akaike, 1973), le critre Baysien
d'information (BIC) (Schwarz, 1978), la technique de validation ceeigjui est asymptotiquement
équivalenf AIC dans le cas paragtrique, et le crire minimum de longueur de description, Bozdo-

gan (2000) qui est asymptotiguemeénjuivalent alBIC. En fait nous savons que le test d’hypétie



classique avec saébrieétendue optimise la quaditde I'ajustement. Ainsi pourquoi y a-t-il besoin
d’autres néthodes de&dect de modle? La éponse est que cettetthode ne se prolonge pas simple-
menta I’hypothese non emktée et puis avec cetteathode nous ne pouvons pas faire une analyse
profonde du prolme du élection de modle dans de situationgelle. Un autre point important
est que la conclusion des @&ies comm@lC ne sont jamais au sujet de lanté ou de la fausset
d’'une hypotkese, mais au sujet de sa proxient la \erité. D’autre part dans le test d’hypeéites
classique on cherchieminimiser les erreurs des typlest |l qui ne sont pas compatibles. Il'y a une
autre objection au raisonnement du test d’hype#s classiques. Il peétre difficile de trouver un
mockle bien specié. Il peut encoré@tre appropé de choisir le meilleur made parmi un ensem-
ble (non speci@&) de moeéles. Notre travail porte sur lagthode de maximum de vraisemblance
et particulerment sur |AIC. Ceci parce que RIC peutétre emplog pour les moéles embiiés

et non embtiés. LAIC adopte le critre de Kullback-Leibler en tant que sa fonction de diver-
gence. Fisher dans son introduction originale dueogitde suffisance, a eXgjue la statistique
devrait Esumer la totalé de I'information appropée fournie par Bchantillon, et le prol@me de
discriminer de l'icee de Kullback-Leibler est de conéigr une mesure de la distance ou de la di-
vergence entre les distributions statistiques en termes de leur mesure d’information. Nous pouvons
également conséater la distance d’Hellinger ou la distance de Matusita de I'affijnibir Bar-Hen

et Daudin (1998). En fait ils onté&ini le rapport de log-vraisemblance comme l'information d’'une
observatiory a distinguer entre deux hypdtbes lgesa la €lection du modle. Il y a beaucoup de
mankgres de éfinir la divergence, mais dans tout le manque d’ajustemesigce sous le nom de
divergence. Dans la lérature il y a quelques autres versions duecetd'Akaike. Dans le mage

de régression ligaire, la statistique la plus populaire pour le choix de éast leC, de Mal-

lows (1973). D'autres crires sont des céte I' AIC. corrigé par Hurvith et Tsai (1989), le ceite



prolongg de I'information EIC par Ishiguro et al (1997), cette approctééaprolonge au choix
de I'estimateur semi-paratrique par Commenges et al. (2007) et ICOMP par Bozdogan (2000).
lls sonta la recherche du choix du poids de langlie du critre, ce qui estd a la parcimonie
du mockle. D’autre part classiquement nous pouvons cé@meides modles formués comme des
distributions de probabikt En fait la &€lection des maogles se fait en deuatapes. Dans la preére
étape nous devons choisir 'ensemble des @fesl La deuxdmeétape de &ection de modle est
bien connue commeévaluation des paragires, ca-d. une fois que I'ensemble des nétes pos-
sibles sont choisis, I'analyse méthatique nous permet dét@rminer le meilleur de ces melés.
Mais que signifie le meilleur? Une bonne technique de choix deche@djuilibrera I'ajustement et
la complexié. L'ajustement est&réralement @termiré par la divergence minimum ou au sens de
la vraisemblance, et la comple&iest gréralement mesée en comptant le nombre de pagins
libres dans le mogle. Pour choisir parmi les metés en concurrence, nous devoisider quel
critere doitétre emplog pourévaluer les mogles, et puis pour faire la meilleure @rence quarda
laguelle moéle est peferable. Comme nous avons dit, nous pouvons cénsida divergence entre
les moakles comme critre de choix de masde. Alors notre recherche sera de trouver le aled
avec la divergence minimum par rapparia vrai dens# qui est parfois comptement inconnue et
parfois inconnue dans le paratre. Un travail inéressant est effedpar Vuong (1989) qui emploi
le critere de Kullback-Leibler pour mesurer la proxigd’un moctle au vrai. Il considre la lim-
ite de la @nalie dans IAIC comme une quanétrégligeable quand la dimension dédhantillon
devient grande. Il y a uneépiode importante pour les test delection de moele, de Cox (1961-
1962)a Vuong (1989). Le test de Vuong comme un test pour choix deetacekt diferent de
test de Cox. Avec le test de Cox chaque ®ledestévalle contre les doréres, caa-d. le moéle

alternatif fournit la puissance. En fait le test de Cox est une modification du test de rapport de
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vraisemblance de Neyman-Pearson. D’autre part le test de Vuong est un test dBsgphatif.
Dans ce cas les tests de nétek sonévalles contre les dor@es et I'un contre I'autre. La d#fence
entre les deux test est importante. Le test de Cox est valable pour desé&sgmtion-embiees
tandis que le test de Vuong s'utilise po@lectionner des madies non-embtees. Il est Bcessaire

de souligner qui I'origine le test de rapport de vraisemblance est un test statistique d’ajustement
entre deux moéles embiiées. Par ce test un mélé relativement plus complexe est congpaun
mockle plus simple. D’autre part les tests classiques d’ajustement gopiefnement emplég par

tous les chercheurs qui ont besoin de l'intétption statistique de leur doees. Historiquement
Pearson (1900) a prop@de premier test d’ajustement qui est connu comme tegdeCet test

de base est devenu une source importante pougveldppement des secteurs principaux en prob-
abilité et statistique. Fisher (1922) aépené la vraisemblance dans le contexte de I'estimation au
point pour un paragtre d'in€ret, mais au commencement la vraisemblance est un outil pour traiter
l'incertitude duea la quantié d’information limie continue dans les doges. C’est la fonction
entiére de vraisemblance qui saisit toute I'information dans les @esinAlors pour chercher un test
d’ajustement la fonction de vraisemblance est un premier candidat.

Notre Objectif

Nous nous concentrons sur leétitie asymptotique pour l&kection de moéle. Nousétudions

la situation sous laquelle les pexures deé&ection de modles sont asymptotiquement optimales
pour choisir un moéle. Notre travail port sur I'irfrence au sujet de I'AIC (un cas de vraisem-
blance gnali®e) d'Akaike (1973), b comme estimateur de divergence de Kullback-Leibler est
intimement relgea I'estimateur de maximum de vraisemblance. Comme une partie de la statistique
inferentielle, dans le contexte de test d’hygsth, la divergence de Kullback-Leibler et le lemme

de Neyman-Pearson sont deux concepts fondamentaux. Tous les deux sont au sujet du rapports de
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vraisemblance. Neyman-Pearson est au sujet du taux d’erreur du test du rapport de vraisemblance
et la divergence de Kullback-Leibler est I'éspnce du rapport de log-vraisemblance. Ce raccorde-
ment pésente une autre intefgation de la divergence de Kullback-Leibler dans la limite de la
perte de puissance du test du rapport de veraisemblance quand la distribution fausse eseemploy
pour une de I'hypotese, ca-d. la divergence de Kullback-Leibler de deux fonctions de distribu-
tion P et Q mesure combien de puissance nous perdons avec la test du rapport de vraisemblance
si nous mouvais ggifiee I'hypottese alternative P comme Q. Nous voulons encore confirmer que
I'estimateur de la divergence de Kullback-Leibler qui est la fonction magen(gt normalise) de
vraisemblance, assymptotiquement pourié une bonne statistique pour le choix de sledPar

ceci nouliminons le partie normalée du test du rapport de vraisemblance qui est une cause qui
l'incapaci€ de I'etude classique de puissance. En fait nous voulémsldppons une approche pour

le test d'ajustement basur des fonctions vraisemblance nornédis (par nombre d’observation) et

de I'AIC normalise quand la dimension de&Ehantillon devient grande.

Notre approche est bas sur I'AIC et la diference de I'AIC pour deux maédes de concurrence en
utilisant I'intervalle de confiance au lieu du test de hygsi comme son double, c’est parce que
I'intervalle de confiance est un ensemble de toutes les hgpethacceptables avec la confianée pr
assigee. L'évaluation d'un intervalle de confiance pour deux &led embtie€es ou non-embitees

en concurrence est concergrdessus, que l'intervalle de confiance conti@mbou pas. En bref

nous consiérons les AIC car une statistique qui nous laisse@s@nter une statistique de test pour
selection de mogle. Cette i@e est diferente de I'ide originale au sujet de 'AIC qui consite

AIC comme criere qui ordonne maxdes. Nous voulons souligner que le choix de #ledhourrait
impliquer une diference entre la simpliétet I'ajustement. 1l y a beaucoup de nizneis de faire

cette diference. Essentiellement cependant, il n'y a aucuathade qui est meilleure que toutes
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les autres dans toutes les conditionsa-@l- pour toutes les athodeml etm?2 , il y a sont des cir-
constances dans lesquella% est meilleur que len2, et d’autres circonstances dans lesquetigs
est meiuex quenl. Il semble qu'il est difficile de comparer lesétinodes, parce qu’il parfois nous
guideraa une conclusion non-admissible. Au lieu de choisir urihode nous pouvons analyser
notre probéme et peciser notre but et les moyens dmliser notre but et d'expliquer finalement
comment un criére fonctionne engalisant notre but. Le domaine du choix de rdlecest tés grand.
Une cagégorisation du prokime de choix de made peugtre consiéree selon que les metks sont
embdtés, en chevauchement ou non efitkm Geréralement deux mades seraient non emie

s'il n'est pas possible de conduire chacun d’eux par les autres I'un ou l'autre au moyen d’un en-
semble exact de restriction parafrique ou en raison d’un processus limiteur. Léfitture sur test
d’hypothese non emblitee aéte imitiee par Cox (1961), Cox (1962) et Atkinson (1970), ce sujet
appligie par Pesaran (1974) et Pesaran et Deaton (1978). L'analyse detemédression non
embdtés aéte consi@ré par Davidson et Mackinnon (1981), Fisher et McAller (1981) et Dastoor
(1983). D’autre part Vuong (1989) a congid le test d’hypothse quand deux metes en concur-
rence sont emlités, chevauchement ou non eritbe. Son approche est lgassur la distribution
asymptotique de la di#frence des fonctions de log-vraisemblance pour deuxeleeden concur-
rence. Shimodaira (1998) et Shimodaira (2001) a c@msicerreur d’echantillonnage deAlC dans

des comparaisons multiples et a construit un ensemble avec de boekempludbt que de choisir un
mockEle simple. Rcemment la distribution asymptotique dallC dans des maxles de &gression

linéaire et la correction de biais du ces statistiques sont disspiar Yanagihara et Ohomoto (2005).
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Chapter 1

Introduction

An important problem in statistics concerning a sampla imfdependent and identically distributed
observations is to test whether these observations come from a specified distribution. It means that
there is a uncertainty and we have to make a decision. Decision making process under uncertainty
is largely based on application of statistical data analysis for probabilistic risk assessment of our
decision. In realistic situation we have only a set of data at hand and we need to build knowledge
from it. Knowledge is what we know and the communication of knowledge is information. The
data are only crude information and not knowledge by themselves. The data becomes information
when it becomes relevant to our decision problem. The information becomes fact when the data
can support it. Finally the fact becomes knowledge when it is used in the successful completion of

decision problem. Then

Data— Information— Facts— Knowledge
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Introduction

The statistical thinking process based on data will construct statistical models for decision making
under uncertainty. Statistics arise from the need to place knowledge on a systematic evidence base.
This required a study of the laws of probability. The level of exactness of statistical models increases
when level of improvements on decision making increases. Thus the probability density function is
a fundamental concept in statistics. The true probability density function, that we dinpie
unknown. The model that we can think of as having given rise to the observation is usually very
complex. A convenient framework is to consider that the observations are realizations of independent
and identical random variables; then the whole model is specified by their common probability
density function,f(.). We call this distribution the true distribution or data generating distribution.

A model is family of distribution and is called well-specified if it contains the true distribution; one
may also speak of “true model” but this may be misleading. The data are insufficient to reconstruct
every detail off(.). Then sometimes we estimate and sometimes we approximate this density.
The density estimation area may be nonparametric or parametric. The nonparametric case is the
construction of an estimate of the density function from the observed data where the number of
parameters is considered as infinite. In this case, estimation of the déqsityver all points in

its support would involve estimation of an infinite number of parameters. Historically we can say
that the oldest used (nonparametric) density estimator is the histogram which has been refined for
obtaining smooth estimators by the kernel approach, see, Fix and Hodges (1951), Devroye (1985)

and Silverman (1986).See Figure 1.
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Figure 1: Histogram and kernel estimator of the same data. As we see these two approachs give us relatively

the same information about the data generating probability.

The other case is the parametric case, where we assume the shape of the density function and we
want only to estimate the parameters. In the parametric case we assume that the data are drawn from
one of the known parametric families of distributions. The most widely used approach for such a
construction is based on Maximum Likelihood Estimat@vi E) and some of its modifications.
Generally this area is related to hypothesis testing problem. As natural property, we want to con-
sider the methods for constructing procedures which are efficient, that is, asymptotically optimal.
The theory behind th®LE guaranties this optimality. In hypothesis testing problem formally we
define the null and alternative hypotheses about the parameters of the underlying density. The basic
guantities that we need in hypothesis testing are the critical value that provides the desired level

the power of test and the sample size required to achieve a given power. On the other hand we may

compare two competing models, for example a normal density against a double exponential density.
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The density approximation methodology is an alternative to kernel density estimation, but com-
putationally as simple as parametric methods. It is based on the mode finding algorithm. Since we
may imagine several models for approachfiig, the “Model Selection” issue arises. By model se-
lection we remember Ockham (1282-1347) who stated that “Entities are not to be multiplied beyond
necessity”, which is known as Ockham'’s razor (Occam’s razor). Simply a model is a set of equations,
or functions with some adjustable parameters, or we may define a model as a sets of probabilistic,
or statistical hypotheses. Model selection is the task of selecting a mathematical model from a set
of potential models, i.e. determining the principle behind a series of observations. Some people
however consider it as an intermediate step in model selection, and say that the model selection is
to select a particular density from a model. We consider a family of densities as a model, where its
members differ by the value of the parameters.

Our search is for the true model. We say a model is true if and only if one of the densities it
contains is true. Itis necessary to choose the set of models before beginning. In the linear regression
model for instance, the model choice is difficult because we hBymtential model wherg is the
number of the explicative variables which are candidate to explanation of the response variable. The
problem is that extra terms add extra adjustable parameters, and these will improve fit; the question
however is “does an extra term added to an equation count as beyond necessity” if the gain in fit is
too small?” If so, what counts as too small? How do we make this trade off between the addition of
new parameters and gain in fit? And what is gained by the trade off? These are some questions in
model selection. To show that the sensitivity of model selection, and the importance of this concept
in research area consider two models for a set of data at hadd, @30+ B1X1 +€, Po,P1 €
R, e~N(0,1)} and{Y = Bo+P1X1+P2X2+¢, Po,B1,P2€R; €~ N(0,1)}. We consider

a simulation situation in which we know the first model is correct model, i.e we accef;tka0.
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Figure 2 shows that including an explanatory variable that have zero coefficient in the model, changes
the distribution of the estimator ¢¥;. Thus using the wrong model (second model) guides us to

wrong inference abou;, the parameter which must be in model.

40
L

30
L

---- quadratic model
— linear model

Density
20
L

10
L

Figure 2: The solid density is much narraower than the dashed density. It shows that including predictors that

have zero coefficient in the model will change the distribution of the estimdie. of

In the literature the classical method of model selection is known as goodness of fit test, Pearson
(1900), and classical hypothesis testing, Neyman-Pearson (1933-1938), for one parameter models,
and its extension which uses the Neyman-Pearson paradigm along with maximum likelihood estima-
tor to give us a general-purpose testing procedure, the likelihood ratio test. On the other hand some
recent methods in model selection criteria are Akaike information CritéAd@), (Akaike, 1973),

the Bayesian information criteriofBIC) (Schwarz, 1978), Cross Validation technique, which is
asymptotically equivalent to th&IC in the parametric case, and Minimum Description Length cri-

terion, Bozdogan (2000) which is asymptotically equivalent toBH@
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As a matter of fact we know that classical hypothesis testing with its extensive theory succeeds
in goodness of fit. So why is there a need for other method of model selection? The answer is that
this method does not extend straightforwardly to non-nested hypothesis and then with this method
we can not make a deep analysis into the problem of model selection in real situations. Another
important point is that the conclusion of the criteria lik&C are never about the truth or falsity
of a hypothesis, but about its closeness to the truth. On the other hand it seems that the rational
behind the classical hypothesis testing is minimization of the kygyeor and the typ# error which
are incompatible. But the actual practice is a trade off between these two errors. There is another
objection to the rationale of classical hypothesis testing. It may be difficult to find a well-specified
model (all models are wrong...). It may still be relevant to choose the best model among a set of
(misspecified) models.

Our focus in this work is on maximum likelihood method and especiallAh This because
AIC can be used for nested and non-nested models. The rationale of model choice is different from
the classical testing approachlC adopts the Kullback-Leibler measures as its discrepancy function.

In fact this statistic is an estimator of the relevant part of Kullback-Leibler (1951) discrepancy.
Fisher, in his original introduction of the criterion of sufficiency, required “that the statistic chosen
should summarize the whole of the relevant information supplied by the sample”, and the Kullback-
Leibler idea problem of discrimination is by considering a measure of the distance or discrepancy
between statistical distributions in terms of their measure of information. We may also consider
the Hellinger or Matusita distance of affinity, see Bar-Hen and Daudin (1998). In fact they defined
the loglikelihood ratio as the information in observation for discriminating between two hypotheses
related to the model selection. There are many ways of defining discrepancy, but in all of them the

lack of fit is referred to as discrepancy. In the literature there are some other versions of Akaike’s

24



Introduction

criterion. In the linear regression model the most popular statistic for model choice is Mallows'’s
Cp (Mallows, 1973). Other criteria are the corrected Akaike’s critedd@; proposed by Hurvith

and Tsai (1989), the extended information crited®l@€ by Ishiguro et al (1997); this approach has
been extended to the choice of semi-parametric estimator by Commenges et al (2007) and ICOMP
by Bozdogan (2000). They are in search of put enough weight on the quality of penalty term of the
criterion which is related to the parsimony of the model.

On the other hand classically we may consider the models formulated as probability distribution.
In fact model selection will be done in two steps. In the first step we must choose the set of models.
The second step of model selection is well known as the estimation of parameters, i.e. once the set
of possible models are selected, the mathematical analysis allows us to determine the 'best’ of these
models. Here, what means that the best? A good model selection technique will balance goodness-
of-fit and complexity. Goodness of fit is generally determined in the minimum discrepancy (like
Chi-square) or likelihood sense and the complexity is generally measured by counting the number of
free parameters in the model. To select among competing models, one must decide which criterion
to use to evaluate the models, and then make the best inference as to which model is preferable. As
we said we may consider the discrepancy between the models as the criterion for model selection.
Then our search will be find a model with minimum discrepancy from the true density which is
sometimes completely unknown and sometimes unknown in parameter.

A kind of search is formulated as the hypothesis testing for model selection. An interesting
work is done by Vuong (1989) who uses the Kullback-Leibler criterion to measure the closeness of
a model to the true one. He considers the penalty teril@ as a negligible quantity when the
sample size gets large. Any way tA&C evaluation of models must agree with the likelihood choice

or ordering of these models when the models have the same numbers of adjustable parameters. There
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is an important period for model selection tests, from Cox to Vuong. The Vuong’s test (1989) as a
model selection test is different of Cox (1961) and Cox (1962) type test. By Cox test each model
is evaluated against the data, i.e. the alternative model provides the power. In fact Cox test is a
modification of Neyman-Pearson maximum likelihood ratio test. On the other hand the Vuong’s test
is a relative hypothesis test. In this kind of test the models are evaluated against the data and each
other. Separation between the Cox’s test and Vuong’s test is important. The Cox testis for non-nested
hypotheses and the Vuong’s test is for non-nested model selection. It is necessary we emphasize that
originally the likelihood ratio test is a statistical test of the goodness of fit test between two nested
models. By this test a relatively more complex model is compared to a simpler model to see if it fits a
particular dataset significantly better. Sometimes we refer to any test for model selection as goodness
of fit test. But the goodness of fit tests as the approaches to model selection have their area and they
are known as a category of model selection approaches. The goodness of fit tests frequently used by
any researcher who need to statistical interpretation of their data and model selection. Historically
for it was in 1900 when Pearson proposed the first test of goodness-of-fit? tiest to solve this
problem. This basic test became a major source for the development of key areas in probability and
statistics. There is no such method for unbind data. Fisher (1922) introduced the likelihood in the
context of estimation. Although the obvious role of the likelihood function is to provide a point
estimate for a parameter of interest, initially the likelihood is a tool for dealing with the uncertainty
due to the limited amount of information contained in the data. It is the entire likelihood function
that captures all the information in the data. Then in searching for an unbind goodness-of-fit test the

likelihood function is a first candidate.
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Introduction 1.1. OUR OBJECTIVE

1.1 Our Objective

Our focus is on asymptotic theory for model selection. We study the situation under which model
selection procedures are asymptotically optimal for selecting a model. We can say, all of things
in our work is inference about th&IC (a kind of penalized likelihood), Akaike (1973), to model
selection, where as an estimator for Kullback-Leibler discrepancy is intimately connected with max-
imum likelihood estimator. As a part of statistical inference, in the hypothesis testing context, the
Kullback-Leibler divergence and the Neyman-Pearson lemma are two fundamental concepts. Both
are about likelihood ratios. The Neyman-Pearson is about error rate of likelihood ratio tests and
Kullback-Leibler divergence is the expected log-likelihood ratio. This connection introduces an-
other interpretation of the Kullback-Leibler divergence in term of the loss of power of the likelihood
ratio test when the wrong distribution is used for one of the hypothesis, i.e. the Kullback-Leibler
divergence from two distribution functioisto Q measures how much power we lose with the like-
lihood ratio test if we mis-specify the alternative hypothdésessQ. We want again to confirm that
the Kullback-Leibler divergence estimator which is the (normalized) maximized likelihood function,
asymptotically could be a good statistic for model selection. By this we eliminate the normalized
part of likelihood ratio test, which is a cause that to inability the classical power study. In fact
we want develop an approach to goodness-of-fit test based on normalized likelihood functions and
normalized AIC’s when the sample size gets large.

Our approach is based &IC and difference ofAIC’s for two competing models using confi-
dence interval instead of hypothesis testing as its dual; it is because the confidence interval is a set of
all acceptable hypotheses with pre-assigned confidence. The evaluation of a confidence interval for

two competing nested or non-nested model is concentrated on whether the confidence interval has
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contained zero or not. In brief we consider i€ as a statistic which let us introduce a test statistic

to model selection. This idea is different from the original idea abouAli@®which considers the

AIC as a criterion which allows to order the models. We want to emphasize that model selection
could involve a trade-off between simplicity and fit. However there are many ways of making this
trade-off. Essentially however, there is no method that is better than all the others under all condi-
tions, i.e. for any methodsl andm2, there are circumstances in whicti is better thanm2, and

there are other circumstances in whioB will do better thammi.

It seems that it is difficult to compare the methods, because it sometimes will guide us to an
invalid conclusion. Instead to choose a method we can analyze our problem and precise our aim and
the means to achieve our aim and finally to explain how a criterion works in achieving our aim. The
area of model selection is very wide. A categorization of model selection problem can be considered
according to whether the models are nested, overlap our non-nested. Generally two models are said
to be non-nested if it is not possible to drive each of them from the other one either by means of an
exact set of parametric restriction or as a result of a limiting process. The literature on non-nested
hypothesis testing in statistics was pioneered by Cox (1961), Cox (1962) and Atkinson (1970), this
subject applied by Pesaran (1974) and Pesaran and Deaton (1978). The analysis of non-nested
regression models considered by Davidson and MacKinnon (1981), Fisher and McAleer (1981) and
Dastoor (1983). Vuong (1989) considered the hypothesis testing when two competing models are
nested, overlap and non-nested. His approach is based on the asymptotic distribution of difference
of log-likelihood functions for two competing models. Shimodaira (1998) and Shimodaira (2001)
has considered the sampling error®™d€ in multiple comparisons and has constructed a set of good
models rather than choosing a single model. Recently the asymptotic distributhd@ afi linear

regression models and the bias correction of this statistics are discussed by Yanagihara and Ohomoto

28



Introduction 1.2. PLAN OF THESIS

(2005).

1.2 Plan of Thesis

In the remainder of this chapter we will bring some definitions, theorems and lemmas which will

be frequently used. Chapter 2 is about theory of models. In chapter 3 we recall the goodness-of-fit
tests as a base to introduce late a new approach and test statistics in goodness of fit test. Chapter 4
contains the assumptions and necessary instruments to develop our ideas in subsequent chapters. In
chapter 5 we will propose a new test based on the likelihood ratio test for an empirical distribution
function and we verify some aspects of this test. Chapter 6 concerns our proposed test when we want
to test whether the unknown true density could be a member of a parametric family. This chapter

is largely related to maximized likelihood function (and th&i€) and its asymptotic distribution,

where we are interested in finding a criterion to achieve a reasonable model in multiple regression
models. A simulation study is done which confirms our idea, see, appendix A. In chapter 7 we will
introduce the difference of expected Kullback-Leibler divergence related to competing models to
verify and a normalized difference &C as an estimator of it. The confidence interval as a dual

of hypothesis testing is constructed to assess which model is better in Kullback-Leibler sense. The
simulation study for logistic regression models confirms our idea in this chapter. We use our idea

about real data when the variable under study is dichotomous. See appendix B.
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Chapter 2

Reminders about models

and some asymptotic results

2.1 Models

The question of choosing a model is of course central in statistics. Usually we are not in the situation
without any knowledge. We have a menu of rival models which could be used to describe the data.
Let M denote a class of these candidate models. Each m@detM is considered as a set of

probability distribution functions for our data, i.e.
G={9(.B): R —R"BEBC R} =(d"())pee

whereg(.,) denotes a probability distribution for observatigrand B represents the parameter
space which can be different across different modgl$Ve note that in this framework that it may

or may not be the case that one of the candidate maglé@is?/ is a correct model.
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Reminders about models
and some asymptotic results

2.1. MODELS

For example in a simple case may be we know that our observationyfagemsity but the true

parameter of density is unknown. In the Figure 3 some of the membgrsdensity is shown. The

guestion is which member of this family is the data generating density.
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Figure 3: Example of some members of Chi squared family. As a step of model selection sometimes we

must select a member of the family of densities.
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As another example consider the normal linear modéd asXf3 + € with usual hypotheses of
normality and independence of the We say this model is the full model. It is a suspected that
some regressors i.e. some columnX@fre not necessary to explainiMgwhich means that the true
values of the coefficients of the coefficient for these regressors are equal to zero, but which ones?
Then the appropriate candidate models are all sub-models of the full model given by zero restrictions

on the parameter vector.

2.2 Model Selection

As a starting point consider observations= (Y1,Y2,...Y,) from a scale and regression model of
the formY = XB + og, where X is a fixech x k matrix, § € R ¥ is a vector of unknown regression
coefficientsg is a scale parameter, aads a vector of errors such thédy, ..., €n) is arandom sample

from a densityf(.). Popular choices fof (.) include the normal, Student’s t, logistic and Cauchy
distrributions. On the other hand distributions on the positive real line include the exponential,
gamma and so on. As a simple class of models consider the ®asith two members ag; =
{N(Wo?);ue R, o?°c Rt} andGe={C(a,b);ac R, bec R*} whereC stands for Cauchy
density. The model selection in the first step is choose betwgemd G, and in the second step is
choosing a member of the selected family in the first step. This two families for some of its members
are shown in Figure 4. Model selection is a classical topic in statistics which concerns a vector of
observationY = (Y, Y2, ...,Y,) with the unknown densit§ (.). The ultimate goal of model selection

is to approachf(.). As we said in the last section there are many possible models, that is sets of
densities indexed by parameters. We denote a modgkas; = {g(.,B) : R — R";BpeBC R} =

(6P(.))pep- If we setf(.) = g(.,[}n) wheref, a function ofY is the estimator o, clearly there is
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a risk which is known as the approximation risk. On the other hand if there is a membersaly

a(y; Bo) which is equal (or near) t6(.) using theg(., ﬁn) will introduce the other type of risk as the

estimation risk.

NORMAL FAMILY CAUCHY FAMILY

0.4

normal density
cauchy density

Figure 4: Two possible densities for data at hand. In a simple case of two candidate models, the model

selection in the first step is choosing between two models and then choosing a member of the selected model.

The discrepancy betweef(.) and g(.,[}n) is known as bias term, which is in fact the mis-
specification risk, and the discrepancy betwgénfo) andg(., Bn), is known as the variance term,

which is a statistical risk, i.e.

Overall Risk=Risk of Modeling-Risk of estimation

or

Overall discrepancy= Bias + Variance
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How we can minimize these two types of risks, is the model selection object. In fact model selection
is the compromise between these two types of risks. Now if wekhanodels asGi, Go, ..., Gk

the model selection is in search of a modgl | = 1,2,...,K which minimizes the discrepancy
betweenf (.) andg(., f%n). In model selection like the classical statistic we want to minimize the bias

and the variance to find the optimal model which has the minimum risk.

2.3 Goal of Model Selection and its means

The goal of model selection depends on the research area. But as a common goal in model selection
we are interested using the selected model in the prediction of the unobserved data. In the Akaike
(1973) framework, a basic assumption is that the domain of unobserved data is the same as the
domain in which the data are sampled, in other words we could think about new data as the data
which re-sampled from observed data. Then there is a connection between model selection and
predictive accuracy which is the expected fit of the unobserved data. But a point about the predictive
accuracy is that its value for observed data is larger than its value for unobserved data. The fit can be
assessed by the method of least squares or by the likelihood function. But the method of least squares
have limitations. The question which arises is whether the likelihood approach applies to all cases?
If the hypothesis is probabilistic, our hypothesis has a likelihood associated and we can choose a
reasonable function of the likelihood as the model selection criterion. This function in the literature

is known as the log-likelihood function. The only problem with the (log)-likelihood function is that

this function depends on the sample size. To solve it, we normalize this function by the sample
size. When we have the€ competing models, in each model there is a vector of parameters. When

we estimate the parameters of each models in fact in Kagtodels we find a member which is
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the best fitting under model. Now we can say that the aim of model selection is to maximize the
predictive accuracy of the best fitting from the competing models. It is clear that when the estimation
of the parameter(s) in likelihood sense in the model is a random variable the normalized maximized
likelihood also is a random variable. This value minus the number of parameter in model divided by
the sample size is a unbiased estimator of the predictive accuracy. This is the Akaike information
criterion, AIC, for model selection, which states that we should choose the model with the lowest

value of this criterion. But this criterion is used as if it were deterministic; we wish to change

emphasize its statistical nature.

2.4 Nested and Non-Nested Models

We will bring the mathematical definition of nested and non-nested models in the next chapters, but
simply we can say that two models are nested if one model can be reduced to the other model by
imposing restriction on certain parameters. Two models are non-nested or completely separated if
one model cannot be reduced to the other model by imposing restrictions on certain parameters. Also

two models can be non-nested in terms of their functional forms and error structures. For example
Y = Bo+B1X1+ BoXo + PaXs+ €
and
Y = Bo+ B1X1 + B2X2 + BsXs + BaXs +u

are two nested models. Discriminating between these two models, can be based on a t-test under
ordinary least squares or a likelihood ratio test under either maximum likelihood or least squares.
On the other hand

Y = Bo+ B1X1 + BoXo+ BaXs+ €
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and

Y = B7+ BaXa+ BaXa + BsXs + PeXe + U

are two non-nested models. Testing such models can be based on model selection tests using differ-

ent concepts as for nested models.

2.5 Probability Metrics

The model selection is related to the distance between probability measures or densities. Determin-
ing whether a sequence of probability measures converges is a task for a statistician or a probabilist.
The quantify that convergence in terms of some probability metric is all of things which we expect
from a probability metric. In the literature there are a host of metrics to quantify the distance between
probability measures. We should notice that some of them are not even metrics in the strict sense.
Selecting a metric depends on our problem. Fortunately we can define a wide range of metrics. We
set(Q, F) as a measurable space amflbe a space of all probability measures (@ ). Then

we consider convergence i, with P andQ as two probability measures @ and two density
function with respect ta-finite dominating measure which could e+ Q)/2. By settingQ = %.

we can consider two distribution functions corresponding to the densities. By this assumption some
measure of distance could be defined on probability measures, on densities or on distribution func-
tions. Some of more important metrics in statistics ar®iscrepancy metric, this metrics is in

[0,1] and is scale-invariant. )2Hellinger distance, which define between two densities function,

its value is in[0,v/2], see, Lecam (1986). )XKullback-Leibler divergence (Relative entropy),
Kullback-Leibler (1951), this criteria is defined on two densities and its value[& #l. The rela-

tive entropy is not a metric, because it is not symmetric and does not satisfy the triangle inequality,

36



Reminders about models
and some asymptotic results 2.6. AKAIKE FRAMEWORK AND HIS THEOREM

but it has many useful properties, including additivity over marginals of product measures, Cover
and Thomas (1991). )4&olmogorov (or Uniform) metric, Kolmogorov (1933), this metric, is a
distance between two distribution functions with valugQ@nl]. This metric is invariant under all
increasing one-to-one transformation on the lingT&tal variation distance, its value is ifD,1].

6) Levy metric, is a distance between two distribution functions and takes val({@1h this mea-

sure is shift invariant but not scale invarianj.Prohkorov (or L evy-Prokhorov) metric, Prokhorov
(1956), this metric is theoretically important because it metricizes weak convergence on any separa-
ble metric space, it assumes valuglnl]. 8) Separationdistance, this distance was advocated by
Aldous and Diaconis (1987) to study Markov chains. However, it is not a metric and@slin9)
Wassersteinmetric, and 10 x? distance is defined on two densities and its value is[0rw], see
Pearson (1900). This distance is not symmetric in its arguments and therefore not a metric. There
are many inequalities between these metrics, but for our object one of the most important relation is
related to the Kullback-Leibler divergence and other metrics. In section 3.4 we will talk about some

of these inequalities.

2.6 Akaike framework and his Theorem

An inferential framework was developed by Hirotugu Akaike (1973) for thinking about how models
are used to make prediction. But the prediction is for future data not for the data at hand (the old
data). Prediction is of fundamental importance in all the science. Prediction accuracy is of obvious
importance. Akaike not only introduced a framework in which predictive accuracy is the goal of
inference, indeed provided a methodology for estimating a model predictive accuracy. Akaike in-

troduced a criterion as Akaike information criteriohlC) for model selection which is expressed
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by a theorem. In fact he answered to the question as Given the data at hand, how is one to estimate
how well a model will do in predicting new data, data that one does not yet have? The Akaike’s
theorem imposes a penalty term for complexity to the likelihood of the old data (goodness of fit) to
describe how much of gain in likelihood there must be to off-set a given loss in simplicity. Naturally
the Akaike’s theorem has assumptions. First he defines the distance between a fitted model and the
truth by using the Kullback-Leibler discrepancy. Second, he assumes that the new data will be drawn
from the same underlying reality that generated the data at hand which has two parts: that the true
function that connects independent to dependent variables is the same across data sets, and that the
distribution that determines how the values of independent variables are selected is also the same.
The Akaike’s criterion is an unbiased estimator for Kullack-Leibler discrepancy, up to additive and
multiplicative constants. This criterion allows to compare both nested and non-nested models as two
important varieties in model selection. An other interpretatioAld is that when this criterion is
applied to the model selection, the number of the parameters of the model that it leads us to choose,

can be viewed as an estimate of the number of parameters of the smallest correct model.

2.7 Complexity in model selection

Complexity is due to the number of parameters and functional form of the model, where the latter

refers to the way in which the parameters are combined in the model equation. Many people believe
that model selection should be based not only on goodness of fit, but must also consider model
complexity. It seems clear that the goodness of fit is a necessary but not sufficient condition in model
selection. An important consideration in model selection is to avoid choosing unnecessarily complex

models because a simple model is more tractable, the stability of parameter estimates is greater and it
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will generalize better to new data sets than a complex model which increase the predictive accuracy
of the model. The complexity of model can be illustrated by considering the range of probability
distributions of observations specified by the model equation that a model can occupy in model
space. As an example consider 4 pointAaB,C andD in Figure 5, where they are modeled by

a constant, a linear, a quadratic and cubic models. This is clear that the more complex model, the
better the fit between the model and the points. This result is about the observed data, but consider
a new data withk = 5. For this observation we have four prediction dependent on our model as
3.25,6,4.75 and 1704 respectively. By inspection it seems that a value about 5 is reasonable. This
example shows that the better fit does not necessarily produce better inference.We show this result by
Figure 5 which indicates that the complexity in mathematical form does not help to model selection.

This is the meaning of Ockham’s razor, see Chapter 1.

o

=~

[

Dependent Variable
ro

P

Indepandsnt Variable

Figure 5: Four models are fitted to the data points, It shows it is not a case that the more complex model fits

better than the simpler models to prediction.
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All models occupy a section of model space. Then a simple model is a small section of this
space and a complex model will occupy a large section of the model space. Myung (2000) in an
example shows that the true model (quadratic model) but also more complex models (model of de-
gree four and a non-linear model) can fit data well, which is why goodness of fit is not a sufficient
condition for model selection. For exampMC, BIC and root mean squared deviatiBMSDare
some criteria for model selection which proposed that adjust for variation in the number of parame-
ters as the complexity among models which was developed by Akaike (1973), Schwarz (1978) and
Friedman et al (1995) respectively. Recently Information-theoretic measure of complexity (ICOMP)
was developed by Bozdogan (1990, 2000). He considered two penalty terms as model complexity
which are related to the covariance matrix of parameter estimates for the model. To show the role
of complexity in model selection, consider a simulation study on regression model as follows. For
nested models computeC, BIC and log-likelihood function. The result of simulation shows by
Figure 6. We see th#&lC andBIC have a minimum when we take three good explanatory variables,
but the log-likelihood increases when the number of unuseful explanatory variables increases. To
compare with usual criterion we also draw fRequared and adjust&isquared.

By these two simple examples we see that the model selection should be based not solely on good-
ness of fit, but must also consider model complexity. It is shown that model selection based only on
the fit to observed data will result in the choice of an unnecessarily complex model that overfits the

data. The effect of over fitting must be properly offset by model selection methods.
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Figure 6: Comparison of some criteria to model selection.
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2.8 Asymptotic theory

Asymptotic theory is a branch of statistics which have developed because of some theorems and
relations in theory of probability. In fact asymptotic theory is concerned with the situation where
the sample size is large or could be large. The most important of these theorems are the Weak
and Strong Law of large numbers and Central limit theorems. By these theorems many problems
in statistics are solvable. But there is a question, whether asymptotic results are useful, i.e. when
using a sample with finite size, are we close enough to the asymptotic results ? Answer to this hard
guestion involves the solution of the more difficult finite sample problem. If we want to defend the
asymptotic theory we can say that this idea give insight into what constitutes a reasonable approach
for the finite sample case. For example by this theory the maximum likelihood estimator becomes
extremely popular, and in any area of science all of people use it without anxiety even for small

sample.
Example 2.1 (A simple example of asymptotic distribution in hypothesis testing)

The asymptotic theory is a set of mathematical results useful in approximating the distribution of
random elements. This random elements in general could be any statistics. To illustrate why this
approximations are useful tools in hypothesis testing we can consider a known and simple case
whereY; ~ A((4,0°) and we are interested in testing the hypothégjs g = o for some specified

value ofy. One way to test is to form the statisti, = @ whenY is a simple average of

n i.i.d random variable¥;i = 1,2,....n. If the true variances? is known thenH, ~ A(0,1). By

this we could construct a rejection region and make a decision apuivVhenao? is an unknown
parameter we form the statistit, = Ma;m) whered is an estimate foo, in this caseH,, ~ th_1

and could thus again construct a rejection region.
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We note however, that whaengets large, the t-student distribution approaches the standard nor-
mal distribution. This suggest that in large samples we would not make a big mistake by ignoring
the fact thato is estimated rather than known a priori. Now consider the situation whesenot
known to be from a normal distribution.

Note that it still holds thatE%(V) = Wp. When# is true we would still expedty, or H, to be
close to zero. It then seems reasonable to continue tblyse H,, as test statistics. The problem
however is that we no longer know the distribution of these two statistics and thus are unable to
construct a test. This is a situation where an approximation to the distributidp isfuseful. It is
known that by central limit theoreid,, will have a limit distribution which is very close to standard
normal distribution\(0, 1), see Figure 7.

On the other han#l, = Hng, now if & be the maximum likelihood estimator forby the weak
law of large numbers we have th%ti 1 then by Slutsky’s theored, asymptotically isA’(0, 1)

and we can construct a rejection region.

2.9 Goodness of Fit Test and

Classical Hypothesis Testing

Hypothesis testing is generally formulated in terms of null and alternative hypotheses, type one and
type two errors and the power of test. If we ask which test is better, the answer is that the test which
has a highest power among all possible tests (for fixed type | error), i.e. an ideal test is uniformly
most powerful test. If we are not able to find a uniformly most powerful test, we turn to the search
of a test with an acceptable power function. In all-purpose goodness of fit tests framework there can

be no optimal test, because there is no specific alternative hypothesis, so it is impossible to define
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the power of the test simply. In goodness of fit test we do not have any clear criteria for choosing
one goodness of fit test procedure over another, i.e. one can propose a goodness of fit test and a
computational method(s). To verify a proposed test we are restricted to verify the power of our test

against a few alternatives. We must notice that these alternatives must be carefully chosen.

0.4
I

gaussian
- t,df=100
-+ t,df=10
t,df=5
t,df=1

dnorm(x)
0.2

0.1

Figure 7: Some members of t-student model with standard normal density as its limit distribution.
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2.10 Reminder on Theorems and Lemmas

The following lemmas and theorems will be used in this work.
Lemma 2.1 (Al) IfY, N Y, and a, a; are constants with g 0, then @Y, + a1 N aY +ag.

Theorem 2.1 (B1) [Central limit theorem(CLT), i.i.d. case (Lindebergly)] LetY,i=1,2,....,n

be i.i.d. with mean p and finite varianc@. Then
LS t-w LA
\/ﬁ i; | 9

The Lindeberg-vy CLT is a special case of Lindeberg-Feller or Lyapunov CLT for not necessarily
identically distributed independent random variables. CLT for dependent variables is also estab-

lished, see Lehmann (1998).

Theorem 2.2 (B2) [Weak law of large numbers]. LetY=1,2,...,n be i.i.d. with mean u and finite

varianceo?. Then

iiiYi L u
Theorem 2.3 (B3) SupposeiYYs, ..., Yy i.i.d. with density {.,0) where® is fixed at some arbitrary
value in the parameter spa& Let¢ is a function of f.,0) and W(Y;0) = ¢(Y,0) — E: {d(Y;0)}
be a measurable function of y for @l and a continuous function &f for almost all y. Suppose
that (i)© is compact, and thatii)1 57", w(Y;;6) converges to zero in probability o®. Then if

(iii ) |¢ (y; 8)| < g(y) for some function g satisfying: {g(Y)} < « then we have

1h P
supl= S W(Yi;8)| — 0
eeg\ni; (Yi;0)]

The history of this theorem come back to definition of stochastically equicontinuous functions for

example Billingsley (p. 55 1968), Billingsley (p. 355 1995) and Andrews (1992). In fact this
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theorem is a combination of two theorems. The first one says that under the assurfiptaors
(iii ) % S 10(Y;;0) is stochastically equicontinuous and tiat{¢(Y;8)} is (equi) continuous. The

second one says that3fs" ; W(Y;; 8) £, 0 theorem B3 is right.

Theorem 2.4 (B4)[Slutsky’s theorem] Let,YY, W, be random vectors or variables. If,\& Y and

Wh £ ¢, for a constant c, then

() Yo +Wh = X +c

(i) WaYs = cY

(i) W,~2Y,, £ ¢~1Y provided c£ 0

Where sometimes we have to consider ¢ as a scaler and sometimes as a vector.

Note that no restrictions are imposed on the possible dependence among the random variables in-

volved.
Theorem 2.5 (B5) If Y N Y, then also Y Ly.
Theorem 2.6 (B6) Y, EN ¢, for a constant c if and only if Y- C.

Theorem 2.7 (B7) [Continuous mapping]. Let gR* — K™ be continuous at every point of a set
Sc ®Xsuch that gY € S) = 1.
(i) If Yo =Y, then g Yn) = g(Y).

(i) 1 Yn 2V, then dYn) 2 g(Y).

The continuous mapping theorem has many important applications that are based on the following

. P . L
simple convergence theorem. Assume thiat— ¢ where c is a constant antf, — W, then we

Yn c

have EN jointly. Now the Slutsky’s theorem is a simple application of the continuous
W, W

mapping theorem.
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Chapter 3

Reminder on Goodness of Fit Tests

3.1 Testing fit to a fixed distribution

The goodness-of-fit (gof) are used for verifying whether or not the experimental data come from the
postulated model. In this direction one must decide if theoretical and experimental distributions are
the same. Then gof is a hypothesis testing problem and the problem is concerned with the choice of

one of these two alternative hypothesis

for a fixed distribution functiorr.
In fact we can put gof tests into two classes. The first class divides the range of the data into
disjoint cells and compares the observed numbers to the expected number under the hypothesized

distribution. Naturally they are useful for discrete case but we can use them in continuous case also.
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The second class of tests are used for continuous distributions. For these types, we compare an
empirical distribution function of the data with a distribution function ungéigr The test statistic for

these tests is based on a measure of correlation between the distributions or based on some measure
of distance between the two distribution functions. A good reference for gof tests is D’Agostino and
Stephens (1986).

The most popular goodness of fit test is due to Pearson (1900). As a new look to this statistic,
for any generalized linear model, the Pearson goodness of fit test is the score test statistic for testing
the postulated model against the saturated model. The relationship between the Pearson statistic and
the residual deviance is therefore the relationship between the score test and the likelihood ratio test

statistics.

3.1.1 Basic Goodness of Fit Test

The most important goodness of fit test goes back at least to Pearson’s Chi-squared test (1900). He
establishes the asympto$ié distribution for a goodness of fit statistic for the multinomial distribu-
tion. It can be useful in both discrete and continuous cases when the data be grouped into classes (or

cells). This statistic is given by
k
npj T -1
= =Dy 12, 1Dk-1
Z np; k—1%k-1

whereOj is the number of observations in c€ll, p; = Py (Y € Cj) then by this definition we have:

Dm=n"Y2(01—npy,...,0m—npm)T =N~ (0,Zn) for m<Kk

= (o)
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—Pipj if i j
Gij =

pi(l—p) ifi=]j

zk11:(6i1>

Pt if i 7 |
ojj =

pipct ifi=]

A well known result in the asymptotic theory of tests of fit says that uriger
X — XE—l

In the continuous case thi&? statistic will not distinguish two different distributions sharing the
same cell probabilities. It is because we look only to the cell frequency which produces a loss of

information that results in lack of power.

3.1.2 Tests on the basis of Functional Distance

A proposed way to improve the Pearson’s statistics is by employing a functional distance to mea-
sure the discrepancy between hypothesized distribij@md the empirical distribution functids,

where for i.i.d. random variablé§, Y, ..., Y, is defined as

o) = 5 5 o (0

The first one of this type is the test statistics which to known as the &r&on Mises type statistics.
Here we reintroduce them and others in brief.

Cranér (1928) and in a more general form Von-Mises(1931) proposed

@ =n [ (Faly) ~Fol)22(y)dy
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for some weight functio as an adequate measure of discrepancy.

The Kolmogorov test (1933) is the easiest and also most natural non-parametric test. It is based
on thelL., norm and computes the distance between an empirical and the theoretical distribution
function under the null hypothesis. Undgf the difference between the empirical and theoretical

distribution functions will be noticeable. This statistic is given by

Dn = v/nsup|Fn(y) — Fo(y)|
YER.

A problem mathematically similar to Kolmogorov's was studied by Smirnov (1939,1941) he has

considered;; andDj where

Dy = vhsup(F(y) — Fo(y))
YER.

D = vnsup(Fo(y) —Fa(y))
yeR

The statistic®p, Dj andD;, are known as Kolmogorov-Smirnov statistics. They have the advantage
of being distribution free. Thus the same p-values can be used to obtain the significance level when
testing it to any continuous distribution.

In search of this property fow? has introduced a simple modification. A modification for

Craner-Von Mises distance is

W2W) =n [ W(R){(Faly) — Foly)2} dFoy)

which was proposed by Smirnov (1936-1937). All the statistics which can be obtained by wéirying
as we said are usually refereed to as statistics of €rafan Mises type, two of them are as follows.

The Cranér-Von Mises’s statistic obtained by? for g(.) = 1,

W2=n [ (Fu(y) - Foly))2dRo(y)

J —00
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and the Anderson-Darling’s statistic (1955) fpft) = (t(1—t))~*

2 (Fay)— Fo(x))2
A=n L Ry (I Foly))

dRo(y)

Consideration of different weight functiong allows the statistician to put special emphasis on
the detection of particular sets of alternatives. Some people prefer employingicvamMises
statistics instead of Kolmogorov-Smirnov statistics; it is because Kolmogorov-Smirnov statistics
accounts only for the largest deviation betwég(t) andF(t), while the other one is a weighted

average of all the deviations betwelgyit) andF (t). Anyway we rejecttj if in each case the value

of the statistic is large.

3.2 Adaptation of tests coming from the fixed-distribution

All the procedures in the last section were based on a distribution obtained from a sample and fixed
distribution. A way to adapt this idea for the parametric case is replacing the fixed distribution by

F(.,0), thatis by a model. Historically it was Pearson who suggested

: —np,(en))
Z np;j ( en

Wherepj(én) denotes the probability undér(.,0), thatY; falls into cell j. At these times, Pearson

did not realize that the estimation of parameters changes the asymptotic distributién lofwas

Fisher who pointed out that B, is the maximum likelihood estimator? has an asymptotig?
distribution. He also pointed out that the estimating parameter from the grouped data instead of the
complete data will cause a loss of information resulting in lack of power. Chernoff and Lehmann
(1954) is a good reference for the parametric case. The choice of cells is an important part of the

search for asymptotic distribution of Pearson’s statistic. Because the distribution of Pearson statistic
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is a consequence of the asymptotic normality of the cell frequencies, then it will be sensitive to
the magnitude of these frequencies. Hence , combining neighboring cells with few observations is
suggested by Cochran (1952).

Adaptation foW2(y) andD, are

W2(w) = [ W(F (B (Foly) ~ F(:B0))2) dF (3.8

and

Dn = v/nsup|Fa(y) — F(y, 6n)|
yER

respectively. Unfortunately in general the nice property exhibitet\By) andD,, of being dis-
tribution free does not carry over to the parametric case. The asymptotic distribution of these two
statistics is due to Darling (1955). He showed that these asymptotic distributions are a function of a

Gaussian process.

3.3 Tests on the basis of Correlation and Regression

Goodness-of-fit tests in this subsection focus on the analysis of the probability plot. We consider
'S as a location scale family of distribution functions i.e. given a probability measgirave

will assume thatF's is the family of distribution functions obtained froky by location or scale
changes. Assume th# is standardized and suppose tNatYs,...Y, is an i.i.d. sample whose

common distribution belongs 'S and has meap and variance? . In fact we want to test that

7o F(y) = Ko(*—F)

Let Y = (Y1), Y2),--, Y(n)) be the corresponding ordered statistics #hd= (W1), W2, ..., Wir))

be an ordered sample with underlying distribution functiGnand letm’ = (mg, my, ...,m,) and
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V = (vij) be, respectively, the mean vector and the covariance matw.df #j is true

W) = G_“7 in distribution i =1.2,...n

Then the plot ofY(1),Y(2), ..., Y(n) against the pointsm,my,...,m, should be approximately linear.

Lack of linearity in this plot suggests that the distributionYpfdoes not belong to the family of
distribution in #y and then we would expect to see some curvature. Checking this linearity is often
done by eye. However, some analytical approaches have been devised to test it. On the other hand
we know that

@ ZhalX —X)?

n-1

is a consistent estimator fof on the other hand

PeLuE = Yn
and
oMV
BLUE = v —Trr

52
are the best linear unbiased estimatopahdo. Hence, under the null hypothes?é‘% should be

52
near to 1.The Shapiro-Wilk (1965) or W-test statistic is a normalized versigﬁéﬁ,

(V1Y)

o= v N T 3 (V2

It is clear thatW, € [0,1] and the small value of this statistic would lead to rejection of the null

hypothesis. According to simulation by Shapiro et al.(1968) it seems that the W-test is one of the
most powerful normality tests against a wide range of alternatives. A weakness of the W-test is that
the procedure may be not consistent for testing fit to non-normal families of distributions and also

computation of this test requires previous computatiomahndV 1.
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The Shapiro-Francia test is based on replacing mstrixby the identity | which defined as

(mfY;)?

W = Tty 50, (% V)2

the computation of which is easier the¥. A further simplification of théA}, was proposed by

Weisberg et al (1975) by replacimgby the vectoM = ®~1( Lﬁ//i), i=1,2,...,n, and® denotes

the standard Gaussian distribution function. This statistic is easier to comput&/than

3.4 Tests on the basis of Likelihood Functions

3.4.1 Berk-Jones’s statistics

Berk and Jones (1979) have defined a test statistic on the basis of hypothesized and empirical distri-

bution function in a fixed poing. Then for fixedy we have

nFa(y) ~ Bin(n,F(y))

_SUy) La(F(Y)  La(Faly))
 LRy)  L(R(Y)

{ Fa(y) }nFn(y){ 1-Fa(y) }n(lan(y))

An(y)

Fo(y) 1-Fo(y)
by defining
logAn(y) = nK(Fa(y) Fo(¥))
where
K (Faly) Foly)) = Fo) (00 2000 + (1 Fn(y) log ;=

the Berk-Jones'’s statistics is given by

R = supn tlogAn(y) = supK (Fa(y), Fo(y)).-
YER YER
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We reject# for large value oR,. Under#j
1 1 L
nR, —loglog(n) + > logloglog(n) — > log(4m) =W

where

F(w)=e %"

Einmahl and McKeague (2003) propose an integral staflgtaefined by

1
Th=2 /0 K(Fa(y), Fo(y)) dFo(y)

Jager et al (2005) introduced a related statistic, the “reversed Berk-Jones statistic” which differs from

the Berk-Jones statistic.

3.4.2 Generalized Linear Models (GLMs) and Deviance

The generalized linear models expresses the means of the response variables as some function of a

linear combination of the explanatory variables

E{Y|X} = Y(Bo+ BX + ... + BuXk)

where the form of the functiolf(.) is known and the parameters of the mofglfi, ..., Bk are not
known. If the functionY{.) is the identity function an has the normal distribution this model is
the simple linear model.

An issue is to evaluate the relevance of our model for our data and how well it fits the data (gof).
The strategy is finding a simple model but with a good fit (the principle of parsimony). GLMs,
McCullagh and Nelder (1989), provide a fairly simple, but widely useful extension of the usual

Normal linear model. Start with the standard linear model meeting the Gauss-Markov conditions
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with p=k+1
Y = XB + ¢
(nx1)  (nxp)(px1) (nx1)
EY)= 6 = XB
(nx1) (X1 (nxp)(px1)

X: Matrix of observed data values.

XB: Linear structure vector.

€. Errorterms.

Y: A variable which is distributed as i.i.d normal random with m&amnd constant varianae.
Generalization

We generalize this with a new “linear predictor” based on the mean of the outcome variable Y which

is no longer required to be normally distributed or even continuous.

EW=n = XB

(nx1) (nx1)  (nxp)(px1)

whereg(.) be an invertible, smooth function of the mean vegter £(Y).

The effect of the explanatory variables is now expressed in the model only through the link from
the linear structureXp, to the linear predictory = &(l), controlled by the form of the link function,
&(.). This link function connects the linear predictor to the mean of the outcome variable not directly
to the expression of the outcome variable itself, so the outcome variable can now take on a variety
of non-normal forms. The link function connects the stochastic component describes some response
variable from a wide variety of forms to all of the standard normal theory supporting the linear

systematic component through the mean function
E(W) =n=Xp

EHEM) =& 1) =& H(XB) =p=E(Y)
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In general we suppose that the stochastic component Y is distributed according to a member of

exponential family with meap as follows

(¥8i —b(6))

9(: 8i,¢) = exp{ =470

- C(yvq))}

where the weighty; is a known constant anfil > 0 is a scale parameter (often it is considered as a
nuisance parameter). The stochastic and systematic components are linked by a fumgtidmiobf

is taken from the inverse the of the canonical liblg). Givenb the functionc is determined by the
requirement the integrates to one. The GLMs are free of the assumption that the residuals have
mean zero and constant variance, but there are more complex stochastic structures. We may consider
the residual as

R=Y & 1(Xp)

but this does not provide the nice distribution theory we get from the standard linear model.
Deviance
The deviance function is a residual function for generalized linear models. This is built in a similar
fashion as the likelihood ratio statistics, comparing the log-likelihood from a proposed model speci-
fication to the maximum log-likelihood possible through the saturated (full or maximal) model. The
saturated model is loosely defined as the model where the number of parameters equals the number
of data points. The resulting difference is multiplied by two and called the summed deviance. In fact
in saturated model there is basically one parameter per observation then we can think of this as the
most general model possible with the maximum number of parameters that can be estimated.
The deviance assesses the goodness of fit for the model by looking at the difference between
two log-likelihood functions. The resulting difference is multiplied by two and called the summed

Deviance. The goodness of fit intuition is derived from the idea that this sum constitutes the summed
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contrast of individual likelihood contributions with the native data contributions to the saturated

model. As we say the point here is to compare the log-likelihood for the proposed (current) model

1(8,0ly) = Z{ylelcp/w, +c(yi,0)}

to the same log-likelihood function with identical data and the same link function, expect that it now
with n coefficients for then data points, i.e. the saturated model log-likelihood function
b(6)

@0 = 5 (P ety 0))

The latter is the highest possible value for the log-likelihood function achievable with the given data,

then
16, oly) > 1(8,0ly)

The deviance function is then given by

D(6.y) =23 18,01 6.0y =2 (@ ~B) — (68) ~b(® o/ -

This statistic under some conditions is asymptotica(ﬂyk. The conditions will be discussed for

each type of response data individually. In fact the distribution of the deviance is approximately
X%—k,v’ wherev is the non-centrality parameter. When tfiis are normal and the link is identity
function and the variance is known the deviance has a egadistribution. Otherwise we will
consider the ratio of mean deviances, which does not involve the scale parameter in the exponential
dispersion family. In general, we use the deviance in goodness-of-fit tests for Poisson and Binomial
GLMs where we can calculate the deviance from the data and there is no unknown parameter. On the
other hand it is noticeable that sometimes the deviance is not informative. For example for Bernoulli
observations the Deviance depends on the sufficient statistics not the individual observation and so

is, of little use for measuring goodness of fit.
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Dependence of degree of freedormtavhen we talk about asymptotic density seems irrelevant.

In fact when we considdd as a known vector with fixed length

~

D(8.y) = ziu (81.0ly) ~1(61.0ly)] = 2,i[yi (8~ 8:) — (b(81) —b(8))](&/wi) * ~ X

if E(é) = 6 and under mild regularity conditions. The proof is given in any statistical standard book
as example Lehmann (1986), but this proof does not generally hold for saturated models because the
length of@ is not fixed and grows with sample size. Clearly a small deviance implies a good fit.

The deviance function depends @rthen simply the unscaled deviance function is defined as
n ~ ~
$D(8,y) =2 Ziwi [i (6 — 6i) — (b(6i) — b(64)]
i=
Example 3.1 (Normal (linear) model)
If Y is distributed according the normal model we have
ov (;6,0) = (2m0%) 2 exp{ —(y— p)?/20°} =

1
exp{(yH—#/2)/0® — > (y?/0®+log(2mo?) }
Now for Y1, Ys, ..., Y, from the A (1, 0%) wherey’s are distinct we have; = 1, ¢ = 02, and

a(0)=¢. b(6)=67/2, cly,$)=—3{y?/0*+log(2m0?)})

for a sample with tail n 5. =y; and éi = then,

the residual sum of squares. This deviance is a function of unknown parasfeter
The unscaled deviance function is given d»%a)(y; ) = 5", (yi — f)? which is residual sum of

squares for the proposed (current) model.

59
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Example 3.2 (Logistic model)
Supposer; ~ Bin(n;,15). Then
n n
log[Tav(yi;m) = $ {yilogm + (n —vi)log(1—Tg
i|:|(| ) i;{l (n —yi)log(1—T1%)}

and

oy ML oy (VinYi) e o, o Vi . N — Vi
D(y; 1) _2I097|_|P:19Y(Yi;ﬁi) —Zi;{y. log +(ni —vi)log o —niﬁ}

If we perform a logistic regressiofy, is a 0— 1 outcome then fon; = 1, Olog0=1 and¢$ = 1, we

have

Dy ) = Z_i{Yi log g + (1 yi)log(1— )}
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Chapter 4

Motivation to Model Selection Tests

4.1 Introduction

This chapter is a motivation to the next three chapters, especially to chapters 6 and 7. Model selection
goes through estimating the performance of different models in order to choose the best one. On the
other hand we know that the statistical models are typically merely approximations to reality and so
most often are wrong; however they may be useful. First because a little of knowledge is better than
nothing, second an assumed parametric model may be close to the true unknown model, so that very
little is lost by the assumed model and we can use the rich literature of parametric statistics, and
third in some applications the parameters for an assumed parametric model can often be interpreted
usefully. Then selection and evaluation of a model is an important step. To do it we turn to the
hypothesis testing for model selection or using some criteria.

Sometimes we consider only the param@as unknown, that is, we have assumed the shape of

the distribution up to the value of an unknown parameter, which allows us to focus on inference for
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Motivation to Model Selection Tests 4.1. INTRODUCTION

this parameter but in many situations one may not have enough confidence that this is so. It means
that sometimes we need to test the shape of the density for instance. Generally in this direction we
require formulation of null and alternative hypothesis. An ideal hypothesis test is the test which
gives the highest power among all possible tests at the fixed level of test (UMP tests). But this type
of tests do not work for non-nested parametric families.

In other situations, a problem concerned withi.d observations is to test whether the observa-
tions have a particular distribution, in other words we want to test whether a particular distribution
fits our data. In some cases these tests are informal. Procedures of this kind are called goodness of
fit tests.

There is a controversy about the connection between hypothesis testing and goodness of fit tests,
because the alternative hypothesis is not very clear for the goodness of fit test. Then one wants to
know how well this method will perform in a decision situation. That is, how do we assess the per-
formance of the test? For answering this essential question we must be able to study the power of the
proposed method against some alternatives. It seems that there is not an overall approach to define
the alternative hypothesis in goodness of fit tests and it depends on the situation. In model selection
we can consider each of the postulated models as the null model. It leads us to consider the null
likelihood function or a function of it as our criterion to define a test. Thus we need to use a metric
to verify the proximity of the postulated model to the true one. This chapter is essentially related
to assumptions, properties of maximum likelihood estimators, maximized likelihood fun&ticn,

and some metrics which are useful to model selection.
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Motivation to Model Selection Tests 4.2. ASSUMPTIONS

4.2 Assumptions

Suppose that the random varialflés a measurable real valued function from a probability measure
space(Q, F,P) into (R, Bg ) where for allI € B; we havepu(l) = Po(X € I) = |, dR as the
probability law ofX, which admits a density = ‘L—F\P wherev is ao-finite measure o , B¢ ) and

Py is absolutely continuous w.r.v. with regard to the Lebesgue’s measure®nSuppose that is
unknown andvi,Ya, ..., Y, be an i.i.d sample, independent¥ofwhereY ~ f(.) and with the same
distribution as Y. We know that the observations can not be infinite but we assumelibedmes
large.

ConsiderP; as a member of the family of all parametric probability measure€nr¥ ) which
is absolutely continuous w.r a o-finite measure o , B ) and admits the density(.;3) = d—z“
with regard to the Lebesgue’s measure®mwhich are measurable infor every3 € B (compact)
and continuous if for everyy € R. ThenPs(Y € I) = [;g(y;B)dn. Always we can choicg = v
if for all B3, Py is absolutely continuous w.r.t. any measgrg v it follows P; andP, are absolutely
continuous w.r.t.%(r] +v) then we can replacg andv by %(n +V). The notationg(Y;p) asserts
thatg(.,.) : Q x B— R * then logf : Q x B — K. Here after sometimes we shay; B) by fg.

If g belongs to a parametric family of densities this family (assumed or postulated family) could
be considered a§ = {g(.,p) : R — R ;B BC R4} = (¢P(.))pes. When we consider a parametric
model we assume that the parameter uniquely determines the probability law related to a member of
G i.e. if we know the parameter then we know the underlying probability law.

Related tof (.) andg(.,3) suppose that the following conditions are satisfied.

(CO) i) f(y) is measurable ity, g(y;B) is measurable in y for eadh € B, ii) g(.,.) underG are

distinct @ is identifiable), iii) and als@(., .) is continuous irf for eachy € %..
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Motivation to Model Selection Tests 4.2. ASSUMPTIONS

(C1)Bis compact.

(C2) i) f(y) andg(y;B), Vy € R are greater than zero and 8y = {y;g(y;B) > 0} the common
support ofg(., ) does not depend db.

(C3) i) g(y,B) is twice continuously differentiable as a functionfbénd also ii) [zlogg(y; B) dyis
twice differentiable under the integral sign with respedd for all y € Sp.

(C3Y g(.,B) is three times differentiable with respectiand the third derivative is continuous with
possibility of differentiating under the integral sign.

(C3)Y" If B, denotes the true value @fthere exists a positive numbeff3,) and a functiorMg, (y)

such that

63

5@m%mmmM&m vy € S, [B—Bi| < c(Bs)
and

T, {Mp, (Y)} <.

(C4) There is a functio® which does not depend dh such thatlogg(y; )| < 3(y) VB € B and
Er(3(Y)) < 0.

If f(.) can be zero then lofy.) can be—c. Then we consider the extendgdi.e X and assume that
{we Q: X(w) =} and{we Q:Y(w) = —»} both lie in  and the random variab¥: Q — R
defined on(Q, ¥, .) is measurable and hence the log likelihood function is a measurable extended

real valued function.
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4.3 Likelihood Function and

Maximum Likelihood Estimator

Fisher (1912, 1922) introduced the likelihood in the context of estimation via the method of maxi-
mum likelihood. The likelihood is a tool for dealing with the uncertainty due to the limited amount
of information contained in the data. The purpose of the likelihood function is to convey information
about unknown quantities (a parameter or unobserved random values or a mixed of both of them).
The information is incomplete, and the likelihood function will express the degree of incomplete-
ness. Officially the likelihood function is defined as below. When a parametric model is available,

we ask what is the best estimate by data at hand. Here the uncertainty is in a way a nuisance.

Definition 4.1 Assuming a statistical model parametrized by a fixed and unkifiowre likelihood

L(B) is the probability of the observed data z considered as a functi@n of

The dataz could include any set of observations. Fisher (1922) noticed that it is the entire likelihood
function that captures all the information contained in the data about a certain parameter not just
its maximizer but in the context of point estimation we are looking for the maximum likelihood
estimator. The likelihood function for an i.i.d. sample with siz@nd with densityf (.) = g(.,B), B €

Bis defined as

_ﬁg(yi B)

and the log-likelihood function is

_ilogg(yi;ﬁ)-
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Our interest is in the weighted or normalized log-likelihood function which is defined as:
1 n
ﬁ i;logg(\ﬁ, B)-

When we write “big Y” the log-likelihood becomes a random function, and every things about it,
including its derivatives, is also random. Each different valu@ afB as a specified point in log-
likelihood function and its derivatives gives a different random variable. Like every other random
variable, they have probability distributions.

An important aspect of likelihood functions in asymptotic theory is finding a root for this kind

of functions which is consistent for the true valueBotUnder (CO0)i,ii) and (C2)ii) we have:

PB*{_ﬁg(YHB*) > _ﬁg(Ya;B)} —1 & noow

for any fixedp # B, wheref, = argmax.g E¢{logg(Y;p)} is the true value of parameter and we

remember that we sét.) = g(.,.), Lehmann (1983). It is because
F’s*{rng B.) > |'ng B} = Ps*{ zlloggY Bs) > ZloggY B)}

120 10
Pe,{= ) logg(¥i;B) — = § logg(Yi;B.) <0
b A 2. 1099(Y:B) ~ £ 5 loga(¥;.) < 0}
By the law of large numbers, the left side tends in probability to

a(Yi;B)
£, {log oVB) B*)}

the log function is strictly convex then by Jensen’s inequality it is less than

a(Y;;B)
* (Y By)

1 <0

thus

Ps*{ leogng,B zlloggY.,B*)<0}—>1 as n— oo
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4.3. LIKELIHOOD FUNCTION AND
Motivation to Model Selection Tests MAXIMUM LIKELIHOOD ESTIMATOR

If we setp = B« + 0 whered is a positive arbitrary value near to 0, it follows that the likelihood
function has a local maximum . By this result, the density of random sample at fue@xceeds
that at any other fixe@ with high probability whem is large. We do not knov, but we can
determine the valuén of B which maximizes the density of the random sample. If this value exists

and is unique, it is the Maximum Likelihood Estimat®iLE). Then,
. n
=argma Yi:B)}
Bn gBGB){iElg( B}

The MLE has many large sample properties which make it popular and attractive for all researcher.
It is asymptotically consistent, efficient and unbiased and the estimates themselves are normally
distributed. Generally, a single number is not enough to represent a function. If the log likelihood
is well approximated by a quadratic function, we need at least the location of its maximum and the
curvature at the maximum. When the size of sample gets large these two quantities become more
acceptable.

We usually find the maximum likelihood estimator as a solution of the score function

Dlogg(Y;B) = 03 1099(¥i:B) =0,

where! is the j-th derivative ofy(., ) with respect t@ andY = (Y1,Yz,...,Y,). If the solution is
denoted b)f%n we have
n ~
0% logg(Yi;Bn) =0.
2
Note that this does notimply thats [ ; logg(Y; B.) = 0. Just the opposite. Infacty ' ; logg(Yi; Bs)
is a random variable and hence doesn’t have a constant value. The second derivative of the log-

likelihood is negative, so if define

0%logg(Y;B)

apop |

1B) = ~E5{C 3 loga(¥;f)} — ~of
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or in other form the information matrix is given by

dlogg(Y;B) dlogg(Y;B)

IB) = Tl 5 o
then a stronger consistency result ﬁaris
Bn 2> B..

For almost every sequence of sample whegélogg(Y;B,)} exists (see White, 1982), the curvature

at f3n isl (ﬁn). Alarge curvature([}n) is associated with strong peak which indicates less uncertainty
aboutp. The quantityl(f&n)is called the observed Fisher information. An important asymptotic
property of normalized Likelihood function is that according to the weak law of large numbers, for

nl gg Iy ‘Zg nl gg I 1

The compactness d@ confident that the supremes @nexists and also sypg of a measurable
function is measurable. This property for parameter space is discussed in White (1994). We note
that the compactness of parameter space is not necessary for consistency of MLE but we need to this
condition for (1). Anyway we seB as a compact set because for use of ULLN also we need this

kind of parameter space.

4.3.1 Correctly Specified and Mis-Specified models

If the data generating densifywas known, then we would know everything. The estimation, infer-
ence and especially the hypothesis testing arise bedaissenknown. Then we postulate a model,
g(.;B) € G, and the question which arises is whetherth®b, ..., Yy is ani.i.d. sample of(.; ) € G.

A fundamental assumption in classical hypothesis testing isftis#iongs to a parametric family
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of densities i.e.f € G. If so, there exist$, which impliesf(.) = g(.;B.). In this case we say the
model is correctly (or well) specified. On the other handife B which impliesf(.) = g(.;B) we
say the model is mis-specified. Fortunately as we will see in the next section in this case there exists
afo € B which minimizes the discrepancy betwegh) andg(.,.).

When the model is correctly specified the statistical inference and specially the asymptotic in-
ference is straightforward; see Wald (1949) for strongly consistendyldt and Cramer (1945)
and Hajek (1970) for asymptotic variance. In the mis-specified case it is hard to decide whom to
give credits for the asymptotic behavior dfLE. Huber (1967) proved consistency MiLE under
some regularity conditions. Akaike (1973) recognized it but provided only heuristics. White (1982)

provided an exact proof..

4.4 Metrics on spaces of probability

Metrization of probability measures i.e. defining a notation of distance is important, since in statistics
one is often concerned about convergence of estimates based on finite samples to the true parameter
which is often a probability measure and a definition of convergence is the notation of a distance.

Two usual metrics are: Total variation (TV) and Hellinger distance (HD). For the probability

spacegQ, F) the TV distance between probability measuPeandQ is defined as:

D™(P,Q) = sUpIP(E) - Q(E)| = 5 [ If ~dld
EcF .

and the HD is defined as:
1
H2P.Q) = 5 [I(v/T—val2du
wherep is any measure that dominates b&hand Q and f andq are the densities d® and Q

respectively with respect to measwree. f = ?TE andq = ?Tﬁ .
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This is easy to see that th¢?(P,Q) is independent ofi and alsof andg. To show it, let
1 = P14+ Q1 and define:
dP dQ

fi=—-— and =—_—.
' dp o diu

It is clear that; dominates botli; andQq, so the derivatives exist. On the other handominate

M. Now

dyg dp dpy dp

/{\/;Tz- \/giﬂzdul

This shows that the invariance of the Hellinger distance to the choice of the dominating measure

./[\ﬁ—\/ﬁ]zdpz/[ deHl_\/deled“:

All of these measures are known as D-divergences or Ali-Silvey distances which defined as bellow.

Definition 4.2 Definition Given any continuous convex function [0, +] — ® U {»}, the D-
divergence between f and q is given byfl,q) = fzq(z)D(%). The TV, HD and KL divergence

are given by choosing @) = 3|u— 1|, D(u) = 3(,/u— 1)? and D(u) = ulog(u) respectively.

Itis clear that the Kullback-Leibler discrepancy is a convex function. This convexity could be easily

verify for the nested models.

Example 4.1 (Convexity of KL for Bernoulli distribution)

Consider the Bernoulli modd@in(1, ) a member of this family i8in(1, ) whereTgp is known.
Then we haveg(Y; ) = ' (1—-m>Y, Y = 0,1 The respective measure for this model is given

[N 1-TH -
by KL{g(.;1);9(.;T0)} = Tolog 2 + (1 — ) log T=2 if we setmy = 0.1,0.2,...0.9
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Figure 8: An example which shows that the convexity of Kulback-Leibler criterion for Bernoulli family and

its minimum which happens ab.
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Example 4.2 (Convexity of KL for Normal distribution)

The KL discrepancy for the Normal model &3((,1), p€ R} is given byw. Forp =1

the KL discrepancy shows in Figure 8.

0.4 0.5
1

KL Discrepancy
0.2 0.3
1

1

0.1

0.0 0.5 1.0 15 2.0

Figure 9: Kullback-Leibler discrepancy for Normal density.

These two examples suggest that in realistic situations when we do not have any knowledge about
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the true density which generates the data we should search for a minimization procedure for the KL

discrepancy. This idea agrees with the distance concept of KL criterion.

4.4.1 Kullback-Leibler Discrepancy (divergence)

An important discrepancy measure in statistics is known as the Kullback-Leibler discrepancy (Kullback-
Leibler distance, although the term "distance” needs to be interpreted because this criterion does not
satisfy some properties of a usual distances). By notation of section 4.4 the Kullback-Leibler dis-
crepancy is defined as:

KL(Q;P) = /flog;dp

There is a relation between three distances as follows
[D™V(P.Q)]? < 2H?(P,Q) < KL(Q;P)

It follows that if theKL discrepancy between a sequence of probabil{iR$ and a fixed probability
P goes to zero, then this convergence should happen for Hellinger and total variation sense.

We set a sample of i.i.d. random variablesras, ..., Y, having pdff = f(.) and a parametric
model: G = (9(.,B)) = (gB(.))BgB The Kullback-Leibler discrepancy (KL criterion) for the data
generating density andg(.;B) € G is defined as

f(y)
a(y:B)

which is a non-negative quantity. By definition, the maye; ) agrees withf(.) the smaller

KL{g(:B): 1)} = [ log X F(y)dy

KL{g(.;B); f(.)} is. Then the closest membernto the f is g(.,Bo) wherefp € B is the minimizer

of KL{g(.;B); f(.)} as defined in 4.3. Under this divergengé,; Bo) is the best approximation tb

under modelg. It is important we notice that when the model is correctly specified we have:
Bo = B.-
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Note that according to the weak law of large numbers, for §aelB we have,
! §n logg(Y:B)} = Z {1 §n logg(Yi:B)} (1)
= . N = .
nI: gg (K] f nI: gg (K]

A natural estimator offp, Knight (1999), is the minimize[ABn of the

f(Y)
a(Yi; B)

KLafgl ) 1()} = 3 5 log
since it can be written as
12 12
ﬁizilon(Yi) - ﬁi;Iogg(Yi;B)
f%n minimizes the second term. We note that this term is the negative normalized log-likelihood func-
tion, then the minimizer oKLy{g(.;B); f(.)} is simply the maximum likelihood estimator. Hence
we can comparé(.) with g(; f%n) an estimate ofy(.; Bo) the best approximation tb underg.
Now consider a random variable whose distribution comes foftne correctly specified case).
Let B, denote the data generating parameterant, ..., Y, i.i.d from the underlying distribution.

The Kullback-Leibler divergence is defined (under (CO0)ii) as

a(Y;Bs)
a(Y;B)

As we see, the KL measure the distance of the model from the true density and is not observable

KL{g(.;B):9(.,Bs)} = g, {log }

becauseg(Y;B.) is unknown. Then an essential question in this case is that how can we use it? This

number is nonnegative because

9YiB)y o g 9B 9(Y;B)
g, {log o B b =% { logg(Y;B*)}z |09%*{9(Y;B*)}>0

with equality if and only iff = (..
Now the Kullback-Leibler divergence is connected with maximum likelihood estimation as be-

low.

12, gYiB) 12 9(Yi;Bs) AN Ao -
—_— ~ = — Y log=——~ —KL{g(.;Bn);9(.; Bsx KL{g(.;Bn);9(.;B«)} <O
nizlogg(Yi;Bn) r”Zloszlg(\(i_sn) {90 Bn);9( B} + KL{G(:: Bn);9( B} <
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Then

a(Yi; B)

= KL{g(:;Bn);g( B} <
9(Y:; Bn) {9(sBn); (B} <

0 < KL{g(+Bn)ig(sB)} < Iiilog
= 3 109(Y;B.) 2, {1o90(Y:B.)} |+ 15 3 0gg(¥: ) 2. {logal P} <

12 a _ 13 o :
\ﬁiglogg(Y.,B*) fg*{logg(Y,B*)}l+§g§|ni;logg(Y.,B) g, {1ogg(Y;B)}|

the first term by (1) and the second term by (1) and thed8rwonverge to zero (a.e.) in probability.

Then
KL{g(Y:Bn);g(Y;B.)} =0 as n—oo
and a.e.
a(Y; ﬁ’n) 1
a(Y;B.)
which implies that
ﬁn 3’ B*-

On the other hand assume thfia G andfo = Po(f) denote the minimizer of th&L{g(.;B); f(.)}.

Now
L S logg(¥i:B) 25 E: {logg(Y:B)} = s {log f(Y)} — s {log 1)
”i; gg(Y;; t{logg(Y;B)} = E¢{log f gg(Y;B)
then under (CO) i,ii) and (C4)
12 oy P f(Y)
argmevfgﬁ ‘leogg(Y., B) — argmax{Z¢{logf(Y)} — E¢{log RAD) 1}

which means that
|3n - BO~

In the next section we will talk about consistency of maximum likelihood estimator.
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4.5 Consistency of Maximum Likelihood

Estimator

The mean theorem about the consistency of maximum likelihood estimator is given in theorem 2.2 of
White (1982) which says that under (C0),(C1) and (C2) the maximum likelihood estiﬁ}aabnost

surely converges tBp the unique minimizer oKL divergence between data generating density and
postulated model. As we saw if the model is correctly specified theﬁsrthe consistent for true
parametei3, which is unique. This later result is the classical consistencilbE. Biernacki

(2004), proved that under (C1), (C2), (C3) and this hypothesis that the

maxZgsupl;(Y;B)| <o, Zgsup/Up;j(Y;B)| <w j=1,2
=12 “peB BeB

where ¢1(Y;B) = Ologg(Y;B), and2(Y;P) is the functionW(Y;p) defined in theorem B3 for
¢(.) =log(.), fin is consistent fof3y iff %z{‘:lW(Yi,fSn) 2,0. The consistency of MLE, Wald
(1949), is strongly related to choice of the parameter sBade general we say that the parameter
spaceB (an open interval) contains an open interkadf which the true parameter valfg is an
interior point. May be we sdB as a finite set. The compactness (closed and bounded) is nearest
property to finiteness. It is often said that compactness is the next best thing to finiteness, because
the more modern definition of compact space says that a space is compact if each of its open covers
has a finite sub covers.

Indeed under (CO0)i,ii) and (C2) and finitenessﬁjﬁn exists, it is unique and consistent w.p.1.
Under (CO0), (C2)ii), (C3) and the condition which consideas a open interval contain an open

interval L of which the true parameter valfg is an interior point, Lehmann (1999), we conclude
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thatO 5 ;logg(Yi; B) = 0 has a unique root 4% which is consistent fop,, that is

Bn — B

Which means thaﬁn is a consistent estimator f@. As a counterexample of the inconsist&fitE

consider Ferguson’s example, see , Lehmann (1998).

Example 4.3

Suppose that

1 1- —
ay:B) = Bél[—lfl](y) + 6([3? (1— hé(B[;') Lo (Y)

wherep € B=[—1,1] &(.) is decreasing and continuous wif0) = 1, 0< d(B) < 1— for 0 <

B < 1, andc(B) = (B—93(B),B+9(B)). Note thatg(y; B) is continuous irf for all y, andg(y;0) =
(L—1y[)1_1,1(y) is the triangular density, whilg(y,1) = %1[,171] (y) is the uniform density.Since a
continuous function on compact $6t1] achieves its maximum on the set, and regularity conditions
is satisfied for this example thusMLE exists. Now ifd(3) — O rapidly enough af — 1 then

Bn 22 1 for every € [0,1] no matter what the true value pf

4.6 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) initially was proposed as an estimate of minus twice the
expected log-likelihood. We notice that the important part of the KL divergenggkgg(Y;B)}

which has an estimator as

r]]-iZ\bgg(Yi; Bn).
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It can be considered as an estimator of the distance between the true density and the model. Now
the stress is OIﬁin because% z{‘zllogg(\ﬁ;fin) provides an overestimate and then the maximized
likelihood function has a positive bias as an estimator of the expected log-likelihood. f!}.ince
corresponds to the empirical distribution, s&y,which introduces the estimator. In fact both of

them depend on the same sample.

Unfortunately wherf ¢ G
10 R 10 .
- i;Iogg(\m Br) # Ei{ i;Iog@l(\fi: Bn)}
and introduce the bias, according to Konishi and Kitagawa (1996) and Bozdogan(2000) we have,

bias— _ilogg(v; B | foau(Bo) 1)y} = Fr(179)+ 02

where as beford is the inverse Fisher information matrix in inner product (Hessian) formJaad

the outer product form of the Fisher information matrix for vedior

0%logg(Y;B)

1= =50

}

and

dlogg(Y;B) alogg(Y;B) 1

TETT om

An estimate for these two information matrices on the base of any estiE}aamd empirical distri-

bution function is given by

~ | 12 6%loga(YiiB) , A _
I—{—ni;a&aﬁsm—& ras_lvzv""p}

and

- |12 alogg(Y;;B) 0logg(Yi;B) , 5 -
J_{niz P . PP r,s—1,2,...,p},
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If feg,tr(171) =tr(lp) = p, wherep = dim(B). (The Information Matrix Equivalence Test,

White (1982)). Asymptotically we have:

p

bias= o+ o(n~?)

which givesbias= ﬁ. Now the criterion based on the bias corrected normalized log-likelihood is
given by

12 A A

=% logg(Yi;Bn) — bias

n iZ\

Akaike (1973) introduced a criterion as

AIC = —Zn{% _ilogg(Yi; Bn) — bias} = Zillogg(Yi; Bn) + 2p,

or

1

Lac=-t510 (YR + P
on ni; ggUE P) -

When there are several competing models, the values of AIC’s are computed. The model with
minimum AIC value is chosen as the best model to fit the data. Wilggis large the fixed penalty
term 2p does not change and we expect tﬁab 0. However for finiten AICis a way of expressing

the parsimony principle.

4.7 Distribution of Maximum Likelihood

Estimator

Here we review the convergence in distribution of maximum likelihood estimators andfatimtye

a vector. In fact under some regularity conditions

V(B —B.) 5 A0, TY(B,))
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here I1(B.) is the Fisher information from a single observation with true derfsity= g(.; B«), and
the regularity conditions argC0) — (C3),(C3)’and(C3)".

If f ¢ G under same regularity conditions as above

V(Bn— Bo) = A0, T71(Bo)I(Bo) I~ 2(Bo))

wherel andJ evaluated aBy are defined as before. Thie!(B)J(Bo)I~1(Bo) is a robust variance,
since it is correct regardless whetHethe true density is correctly specified or not. A proof of this
asymptotic distribution is as follow.

Based onYy,Yz,...,Y, an ii.d. sample we have the likelihood function as iy, g(Yi;B) =
Yt 1logg(Yi; B), expanding the normalized derivative of this likelihood function alfiguit follows

that

10y ,logg(¥i;B) _ }az{Lllogg(\ﬁ;B)‘ L 19751, logg(¥; B) (B— o)
n op n op b=k ™y opop’ 0

at f&n we have

1937, logg(¥i;Bn) _ 19511l00g(¥iB), L 19751 4logg(¥i;B") (B Bo)
n op n op B=Bo ™y opop’ n— R0

or

_ 1ayD,logg(Y;B) 10257 ,logg(Y;B") 5
0= n 15—[3 |B:[30 + n ]bBaB/ (Bn—Po)

where|B" — B| < |B— /. Itis clear that

dlogg(Y;B)

Et{ 3B

}Hp=po =0

and

dlogg(Y;P) alogg(Y;B)

Warf{w aB aB/ }|B:BO

op

Now by the Central Limit Theorem, = 3o we have

Hp=go = J(Bo) = E¢{

12 ¢ 9logg(¥i:B) L
n ”i; B A(0,3(Po))-
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On the other hand

10237 ,logg(Y;B") 1 & 9%logg(¥%i;B") » .  0%logg(¥;B")

0 opp  n&  opp '\ opop w1
Thus from the Taylor expansion we have
_12034l0gg(Yi;Bo) _ 10%logg(¥i;Bh) - -
1/2 i=1 _ _ = _
n 28 n opop  V(Bn—Fo)

and by Slutsky’s theorem

VA(Bn— Bo) = A0, T (Bo)I(Bo) I (o))

if Iisinvertible. Now iff € G, Bo =B« andI(Bo) = J(Bo)
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Chapter 5

Proposed test for Goodness of Fit
Test:
A test based on empirical likelihood

ratio

5.1 Introduction

The method which we want to discuss in this chapter may be viewed as an application of a goodness

of fit measure extended to the likelihood ratio test. When we are in goodness of fit test situation we
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have a null hypothesis which is completely clear and an alternative which is completely vague as

Ho F(y)=Fo(y) Wyey

against
Hy:F(y) £ Fo(y) forsome yeo

whereRy(.) is a known distribution function. Chapter 3 has introduced some goodness of fit test to
this problem. Here we want to introduces an approach which introduce a test statistic using known
likelihood ratio test. This idea is not in favor or against the known goodness of fit tests, but is
an approach which helps us to solve a problem with a different method which works for binned
and unbind data. The likelihood ratio approach has an extensive theory which is a guaranty for
this method of test. In fact this idea is based on the Berk-Jones statistics (1979), see, 3.4.1. More

precisely the Berk-Jones statistics could be defined as a supreme of

Fa(y) (I0g(EXX4)) + (1= Fa(y)) log =2 if 0 < Fo(y) < Fa(y) < 1
K(Fa(y),Fo())) = { 0 if 0 < Fa(y) <Fo(y) <1
0 otherwise.

This is the Kullback-Leibler discrepancy for two Bernoulli distributions. Itis known i@ (y), Fo(y))
behaves a%%%. This last term is half of the Pearson statisticsFgty) which is distributed
asBin(1, Fy(y)) for a fixedy. The theorem 9.1 Knight (1999) shows that when we consider the good-
ness of fit test for multinomial distribution, the Pearggnstatistic is asymptotically equivalent to

the likelihood ratio statistic. Berk-Jones proposed that we caydixd construct a test statistic by

likelihood ratio test for goodness of fit test problem as above.
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5.2 Our objective

In this chapter we are in search of a goodness of fit test for the simple situation #gteres

a known distribution function, if not, as a common approach for goodness of fit test we have to
estimate the unknown parameter(s) at first and then apply the test. Parametric case will change our
situation for model selection from testing for a specified distribution belong to the model to the
more general situation which is testing for a family of distributions (model). Our idea is as follows,
consider a random sample @4,Y>,...,Y,) and a goodness of fit test procedure which introduces

a likelihood ratio test for each fixed which could be between any of twd's. Here we must
emphasis thaf (y) is an unknown distribution function, whereB$z) with fixed z is an unknown
parameter. If we separate the null hypotheds F(y) = Fo(y) Vy € 9 to several null hypotheses

as My, : F(z) = Fo(z) Vz e Z we can construct a likelihood ratio for each one of thgs for

each fixedz, and then construct a test for our essential hypothesis testing problem. Fortunately
this concept is known in statistics. The Union-Intersection test (UIT) is our proposal to solve this
problem. As a test statistic we generalized the logic of the likelihood ratio test. In fact we defined
a weight function asv(z). This weight function permit us to construct different tests. As a simple
choice we considew(z) = C,F,(z) or more complex choice as a complex functionFafz). For

Cn = n~! we verify the level and efficiency of our test. If we &= n—? the typel error of our

test is less than typeerror of Berk-Jones's test. After a brief review of UIT, we will construct the
likelihood ratio test statistic by UIT. The level of test and efficiency for this test will be verified. It

seems that our statistic is comparable by Berk-Jones statistic.
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5.3 Union-Intersection Test

The likelihood ratio test (LRT) method is a commonly used method of hypothesis test construction.
Another method, which is appropriate when the null hypothesis is expressed as an intersection, is
the union-intersection test (UIT). In classical statistics we may write
Hy:0e () 6y
yel
whererl is an arbitrary index set that may be finite or infinite, depending on the problem. By this
notation we have

Hy:0e| )6
yer

Suppose that for each of the testifi, : 6 € ©, against the alternative hypothesig, : 6 € ©7. We
know that the rejection region for the test#y is {y : T,(y) € R,} whereT,(.) is the test statistic.
Thus if any of theHoy is rejected, thertHy must also be rejected, it offers a rejection region for UIT

as

U y: Ty eRy}

yer

As a simple example for UIT we consider a known hypothesis test in elementary statistics.

Example 5.1

LetY,Ys,...,Y, be aii.d. random sample from(y, 62), wherep anda? are unknown parameters.
We want to test that : L= Lo against#; : 1L # Ho, Wherepy is a specified number. As a UIT we

can write

Ho: {M: U< po} N{H: P> o}
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This null hypothesis could be write as intersection of two new null hypothes#f ager: {H: 1L <
Ho} andHou pper: {M: 1> Ho}. Now as the classical approach we will test
HoLower: W< Mo against Hijower: 1> Ho

with rejection regiotw > tLower and

Houpper: W> o against Hiypper: U< Ho
1/ny Yi—Ho

with rejection regioW <tupper Then the rejection region of the UIT of

Ho:{pL:p<po}N{H: > Ho}

against
Hy L u> Wt U{H: u< Ho}

n i — . . .
for t ower = —tu pper Will be express a: 1/n3 iy Yizko > tLower Which is the two sided test.
pp p S//n

5.4 Proposed test based on empirical

likelihood ratio

ConsidelY = (Y1,Yz,...,Ys) as an i.i.d. random sample with unknown distribution funcfigr). We

setFy(.) as a known distribution function. The official goodness of fit test is contain testing

Ho F(y)=Fo(y) Wyey

against

1 F(y) # Foly) forsome ye
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A key for proposing a goodness of fit test is that the distribution fund&i() for a fixedz is an

unknown parameter. It reduces the goodness of fit test to a LRT test as
Hy: F(z)=Fo(z2) Vze 2

against

Hi, F(z) #Fy(z) forsome ze Z.

Our idea is to rewrite this hypothesis testing as the UIT, thus we have

%:mHOZ

2z
against

}[J.:Ule

ez

For eactz we can define a new random variable, see, Berk and Jones (1978), thus we have

1 ifi<z
Y =LY<z} =
0 ifY,>z

fori=1,2,....,n

Now we have a parametric test with a binary variable with valugiri}", i.e.
Yi; ~ Bin(1,F(2))

and
iYiz = nky(2) ~ Bin(n,F(2)).

The likelihood function is given by
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The likelihood ratio test is given by

SURE () Ln(F (2))

M@= @)

_ [Ri@/R(d — Ln(Fa(2))
Mnl2) = £ = L Rl@)

for the large value ok, (z) we reject the null hypothesis. The log likelihood function is given by

l0gh(2) —10g L2/ — i 2 0g( () +n(1— ) ogl ;3

).
The propose test statistics for testifig against# is
Th= / log LM@/P@d(w(z))
R

The reasonable choose wfz) will give us a reasonable test statistic. A choice couldnfe) =

CnFn(2), and a simple one is given I, = n—* which defines our statistics as

Fn(2)

Fo(z

—Fa(2)
-R(2)

To= [ InFu(@)log( 2 2) + (L Fa(2)log( ;o Jd(Fo(2)) =
R

~—

Sl

z log £ )/Fo(yi)
Yied;

whereZ; = [Y;,Yi1] or & = [Y;),Y(i11)]- By this we have

Th= iii{nFn(Yi) |Og( Eggi:) ) + n(l_ Fn(Y')) lOQ(;I.-:L

~—

or

{nFn ) log( F(YG)
Z Fo(Yi))

whereY(;) is the ith ordered statistics and also they are the discontinuity poiftg 9fwhenz € 4.

~—

)41 R ) log( 1
(

It is common used in statistics which consider
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5.4.1 Level of test

Two important aspects of any test is the level and the power of test. The rejection region for the UIT
is given by

U {log LM@/P@ c R}

ez

which defines the level of UIT as

auiT = Py ( U {log LM@/P@ > C) = Py (SUUOQLF”<Z)/F°(Z) > C)-

€z €2

Now we have

n
Th < 1 leup(logL':"(zi)/FOW) — sup(log LF(@/F(2))
NS 2 z

then

Py (Tn > €) < Py (su(log L7@/P@) > ¢) = ayr.
z

5.4.2 Comparison with Berk-Jones’s test

ForC, = n2 the level of our test is less than level of Berk-Jones's test. It is because

11 0 1
Z2 % suplog £LM@)/F@)) < sup = log £LM(@/Fo(@)
nni; Zir( g )_zezqn g )

5.4.3 Bahadur efficiency of proposed test

We defined the test statistic as

Tn:

Sk

z log L™(@)/Fo(z)
Ze4

then

1 1,1 E,
Pr(Tn = 1) = P ([ (1 3 log £74/00) > 1)

11
< Py > mN(maxlog L @/F) > ) =
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1 Z Z 1 n B ax
Prtacl 109 st 7 2 < 5 P A 2, BII: ))))>t} )

ﬂilmax

N Bin(LF(Zmay)
< Pl 195 Pre (X0 00 i 2 >

176 max P, {eXpiﬂ gL E nad)

expy Iogigl': F(ZZ"“T]"":X))

exp(nt)

>exp(nt)} =

>exp(nt)} <

7 T by Mark lt
194] max Esg, { '} (by Markov inequality)=

0 Bin(1,F(zmax)

| 74| [max exp(—nt) f%zrnax{q Bin(L, Fo(zmax)) =
Bin(1,F(Zmax) \n
‘}[1|Fr(nz;1)i) exp(—nt){ %Zmaxm} -

1746] max exp(—nt) {5 BN Fo(zmad) )" < |/ exp(—t)

then

_ 2log|#|

—flogP%(lTn>t) .

we know that

1/nlog LM@/Fo(@) (IogLH1 —logLP®@) =

5(|ogLF<Z>—|ogLF0<Z>)+5(|ogLH<Z>—|ogLF<Z>) (iff) F(2) #£F(2) (under Hiy)

7}” Bin(1,F(2))
nzl BIan()Z)

KL{Bin(1,F(z)),Bin(1,Fo(z))} a.s under Hi,.

Bin(1,F(2))

“Bin1 @) O

1 P
H(IogLF”(Z) —(log£F@) = 7y lo

Thus

% 2|ogLFn<Z>/F0<Z) 2, EKL(BIn(L,F(Y)),Bin(1,Ry(Y)))
—= IogP%(lTn >t) > |nf Es1KL(BIN(1,F(Y)),Bin(1,FR(Y)))
Bahadur (1967) showed that the other part of inequality for all of tests is right, then

ﬂ|ogp%(1Tn>t) 2inf 2,3 KL(BIN(L F (Y)), Bin(L, Fo(Y))).
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(*) Because

1, R@/RO L S log SINLF (Znax))
o n < sup = log ——————%.
n 0 Lzmax < FE}I[Dl n 2 g Bin(1, Fo(Zmax))
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Chapter 6

Proposed Model selection tests based

on likelihood and AIC

6.1 Introduction

The major goal of this chapter is to introduce and develop a methodology of model selection. This
chapter in theory and method is strongly related to the next chapter. In real situation for any inference
about a data set at hand we are interested in selecting a model among a lot of parametric models. In
usual hypothesis testing we suppose tat (Y1,Y2,...,Yn) is a random sample with density.; B)

for somef € B. In simple case we sd&& = By U B, for two disjoint setsBp andB;. We would

like to decide ifp € By or 3 € By, where usuallydim(Bp) < dim(Bs). To use the likelihood for
hypothesis testing, we may use the standard ratio as the supreme of the likelihood under alternative

hypothesis divided on the likelihood under null hypothesis and rejecting the null hypothesis for large
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value of this ratio. On the other hand we may use this principle for testing between two elements of
two different families. The other approach to make a decision as above is likelihood-based interval
inference as the dual of the hypothesis testing. Fortunately both of them work under asymptotic
theory for likelihood function.

The restriction by this approach is clear. This approach works very well for nested models, but
in other cases it does not work. Our idea is somewhat different, not in principle, but in applying the
likelihood function. In fact when we have a data set all hypotheses about the distribution of data are
null hypotheses.

We want to report the likelihood under the null hypothesis as the normalized likelihood under
indicated parameters in the null hypothesis. We can reject the null hypothesis if its likelihood is too
small, then we conclude that there are other hypotheses which are better than our hypothesis. We
will use both of hypothesis testing and confidence interval with other interpretation. As we know the
hypothesis testing is an absolute discrimination. We may consider the relative discrimina®&n as
AIC andBIC depending on the problem. This is a fact that this criteria always choose a model. If
two competing models are very bad, we would like to be able to reject both of them. The confidence
interval inference about the model selection criterion is our idea. Because by the confidence intervals
there is an opportunity to select a set of good choice. This interval will be constructed for expectation
of the log-likelihood. This confidence interval let us take in order the models. This approach has an
interpretation for a confidence interval for Kullback-Leibler discrepancy. The best model will be a
model with greatest lower and upper limit for expectation. A model with this kind of upper and lower
limits is a model with minimum Kullback-Leibler discrepancy. In the real situation, when we have
n observations at hand, before collecting this data we consider some hypotheses like independence

and identically distribution about data, the first question is about the true distribution of this sample.
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This question is on entire population. This question arises because this is the first step to decision
making. This is a question in model selection area. We can assume whether the true density belongs
to the postulated model or not. Whether true model belongs to the specified parametric model,
G, or not there is a member of this family gé,) which is equal or nearly equal t&.). The
difficulty exists yet. To search this member of parametric family we estimate its parameters by
the maximum likelihood approach. Now we have a member in the famig()a,:én). This is the
best choice in the model, based on the data. Now an estimatiéf )ofs g(y; f%n). If our choice
about family was not very bad the likelihood statistic under observed data must be large. Then the
normalized maximized (log)likelihood seems to be a good choice as a criterion to model selection.
Akaike (1973) has said, “assume that the true distribution does not belong to the specified parametric
family”, and introduced his criterion. It means that the normalized maximized log-likelihood for
observed data does not converge to the expected log-likelihood, where expectation is taken under
true density, i.e there is a bias. This last result guides us todked We must emphasize that the
hypothesis testing is an absolute discrimination, andAfiiis a relative discrimination. Then the
classical hypothesis testing is a method and a criterionAlewill answer a different question than
hypothesis testing. Anyway we can consider the normalized maximum log-likelihoodl &rass the
random variables which has a distribution. Before anything we need to formulate the null hypothesis
and some comments on our approach.

The aim of this formulation is to decide whether or mptloes contain the true densitp If the

statistical model is correctly specified, we have,

f(yy=9(y;B.) VyeR® andsome B, B
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then the question which arises could be formulated as a null hypothesis

Ho: f(y)=09(y;B:) VyeR andsome B, €B.

In general,B, is an unknown parameter, in this case a natural way to tegfnhwill be to find

an estimator fo3 which is near td3, and then to build a procedure for testing. In a simple case
B, could be known. Wheif, is unknown the measurability af(y;) in y for every3 € B and
continuity ofg(y; B) in B € B for everyy € R ensures us that for all n there exists a measurable
likelihood estimatof MLE). When the true distribution belongs tp for somef, € B (under#yp),
theMLE is consistent fof, under Wald (1949) conditions, see, 4.5 . Now a question is what would
happen to the maximum likelihood estimator when the model under consideration is not correct
(the model is misspecified)? As we saw in 4.5 it is clear that the maximum likelihood estimator
would not converge t@,, because it does not longer makes sense. When a statistical model is mis-
specified, as we saw in 4.4 the maximum likelihood estimator converges to the minfigiakthe
Kullback- Leibler criterion, instead of the parameter which we consider under null hypothesis (the
true parameter). Then any difference between the postulated gogdgl) and the true densit§(.)

is error due to model misspecification.

The theorems 2.1, 2.2, and 3.2 of White (1982) and in more detail in White (1994) are good
references for study the asymptotic distribution behaviox/ﬁ(ﬁn — Bo). To evaluateH as our
immediate goal, we note that%fz{‘zllogg(Y; B4) has a large value we will conclude that the postu-
lated model in some sense is near to the true distribution. But in realistic @asesnknown, thus
we are going to testingf by a reasonable test statistic which converges to a constant function of
150, logg(Yi:B.).

When we evaluate the likelihood function at its maximizer we can say that the smaller the likeli-
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hood, the worse the goodness of fit. A problem for this kind of fits is that because of transformation
properties of likelihood functions w.r.t. change of variable, in general it is not invariant as a goodness
of fit test. By definition of# as above, we can considef : f ¢ G as the alternative hypothesis,
which shows that there is rfd€ B which permits us to considei(x) = g(y; ). It is clear that this

type of alternative is completely vague.

In the most general way we have

Ho: f(y)=0(y;Bs) VYyeR and some B, B

Hif(y)=9gly)  with g(.)#9(;.)

In other words we want to test the postulated density against different shapes. It is clear that the
alternative hypothesis like that is unuseful. In this chapter we consider only the hypothesis like the

goodness of fit test as

Ho: f(y)=9(y;Bs) Vye®R and some B,cB

Hi:f(y) #9(y:B.)  foratleasta ye R
To evaluate the above hypothesis problem becfuse unknown we estimate it by maximum

likelihood approach and define the normalized maximized likelihood function as the test statistic.
We verify the asymptotic distribution of this statistic where its expectation is consider under dif-
ferent situation. The normalized log-likelihood minus its expectation helps us solving the invariant
problem under some kind of transformation. This statistic is a part of the AIC criterion, then our
theorems in this chapter, asymptotically are valid about AIC. We begin with a simple case when the
B, the parameters involved in the postulated density are known. In this case the asymptotic distribu-

tion of our statistic follows by simple application of the Central limit theorem. It helps us to verify
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whether the data at hand follow a known density. A normal example is considered and the power of
the test is studied by simulation. The result of the simulation shows that our test has a reasonable
power although its power is less than the Kolmogorov-Smirnov test. But | think that this is not a
disagreement, because the model selection involves a trade-off between simplicity and fit. | want
emphasize that in the literature there is no method that is better than all the others under all condi-
tions; on the other hand for any two methods, there are circumstances in which one of them is better
than the other one. It means that every method has a some risk even in well behaved situations. The
important things is that a method must have a reasonable result.

The other part in this chapter is concerned with the realistic situation when we want to know
whether the true density belongs to a parametric family with unknown parameters. Our approach
to point estimation is again the maximum likelihood method. Here we assume that for the param-
eters under study the maximum likelihood estimator exists and it is unique. Biernacki (2004) has
made a test which compares the log-likelihood evaluat&mie of the relative maxima of the log-
likelihood function and its expected value, which is calculated 5§$fthe true parameter. In fact
he proposed a test for testing whether the maximum of his function is a global maximum. On the
other hand he detected if a given solution to likelihood equation is consistent.

To searching the asymptotic distribution of our statistic we consider three situatiab$lémrg(Y; )}
as‘Eg, {logg(Y;B.)}, Z@n{logg(Y;Bn)} and fﬁ*{logg(Y;Bn)}. The second expectation is the esti-
mator for the first one and the third one is related to risk of estimation when the true density belongs
to the G and also is the relevant part of the Kullback-Leibler criterion. On the other hand the first
and third one are the limiting values for our statistic the normalized maximized likelihood in some
sense and the difference of the our statistic from the second one converges to zero. For each situation

we established a theorem which each one shows that the standard value of normalized maximized
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likelihood function asymptotically is distributed according to the normal distribution with mean zero
and certain variance. According to Biernacki (2004) we talk about the variance estimation. For each
theorem we bring an example to show that it works. We verify our theorem under alternative hy-
pothesis. We define the power of test and showed that our test is consistent. It is shown that our
statistics minus its expected normalized loglikelihood urf}leis invariant under orthogonal linear
transformation. Our focus in this chapter is on theorem 6.5. This theorem admits us to propose a
new method to Multiple Regression model selection. The simulation study shows that this theorem

has a good result. The result is given in appendix A.

6.2 Known parameters case

In the first step we consider an i.i.d. random sample of size n and defr{gity We want to test
whether the parametric densigyy; 3,) wheref, is known, is well-specified. In fact this test is a
goodness of fit test. For doing it we need to evaluate the distribution of the test statistic.

In Theorem 1 we will find the asymptotic density of this statistic. This approach to testing for model
selection has the advantage of simplicity. A simulation study to evaluate the performance of our

statistic is done and we compare it with the Kolmogorov-Smirnov statistic.

Theorem 6.1 LetY;, ..., Yy i.i.d. random sample with unknown density. Suppose thagg, {logg(Y;B.)}

exists, andEg, { (logg(Y;B.))?} < o, then

n-Y/2 ,i['ogg(Yi; B.) — Zp. {logg(¥;;B.)}] = N(0, Varg, {logg(Y;B.)})
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Proof : The proof is a direct usage of central limit theorem. We note that

(3 3 1099(Y:6.)} 2, {logg(Y:P)

and
Vary (5 3 099(¥i.)) = £/ar (ogg(¥if.)}
now by CLT
n-Y/? Zl[logg(Y B.) — Tp, {logg(¥;B.)}] = A0, Varg {logg(Y;R.)})
Example 6.1

Suppose tha¥y, Ys, ..., Y, i.i.d. with density f (y) we want to test whether or ndt,Ys, ..., Y, is a
i.i.d. random sample with normal density and parameter vectr as(i,,02), wherep, is given,

it means that under null hypotheds~ A((L.,02). Then

oY1, ..., YniBs) = |_|gY.,,B* (2n0?) "/ exp{— ZZ

by taking logarithm we have

ilogg(\ﬁ;&)gbg(ZmE); ( -0* )2nb2_i( o, )2

whereb = — 1 log 2ro?. We know that

e YKo o
Xn(Y)—Z( o, ) ~ Xn-
ThusZg, {Xn(Y)} = nandVarg {X,(Y)} = 2n. Now by straight application of CLT we have:

N2 %(Y)-n)

NG — N(0,1)
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Now as an application of Theorem 64, {logg(Y,B,)} = — 3 log 2mo3 — 1/2 and¥arg, {logg(Y;B.)} =

% which gives us the same result as above

N 250 b—3{(52) —b+ 3] n2(n-X,(Y)) »
1 - \/é - N(O? l)

2

By symmetry of standard normal distribution the straight CLT and our theorem are the same.

Also
To(ViB.) = 3 logg(¥:B.) = b = ¥a(¥)
n s Mx) — n I; gg Iy Px) — 2n .
In consequence, weighted log-likelihood function has a biggedistribution with expectation and

variance as follows
— 1
o {Ta(YiB.)} =b—3
and

Varg (T(ViB.)} = o

The distribution function off, is given by,

2n(b— n
PTh{Y:B.} <t) = POG(Y) > 2n(b-t) =1 = /on( i ten2dx, bt

(n/2)2"2

which is the survival function for g2 distribution. The integral is an incomplete gamma function.

We reject? if
Tn(V; B*) <t
then the test function is given by
B 1 ifX(Y)>C
oY) =
0 if X (Y)<C
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whereC = 2n(b—t). The level of test is,
o =y (QY)) = Py (Xa(Y) > C)

whereC = xg,n. The power of the test is given by

V(W) =y, (@(Y)) = Py, (%a(Y) > XGin)

Power Simulation:
It is known that ifY1, Y5, ..., Y, are i.i.d. A[(l.,02) and if yo as the possible value ¢f is given the
statistics"_; (Y — Ho)? has the non-centraf distribution with n degrees of freedom angs, — 1o)?

as its non-centrality parameter. By this factdt= 1 we have;
Xa(Y) ~ X2(n,N(k — Ho)?).

For power computation we use the software “R”. We compare the power of our test to the power
of the Kolmogorov-Smirnov test. We consider the data generating density A5(thd), each time
we generate = 5, 30,50 observations of this density.

The size of the simulation im= 10000. We want to test whether or nfotv AL((0.1)t,1), i=
1,2,...,n and t=12..30 (as the alternative hypothesis) We set the pre-assigned levels as
o =0.2,0.1,0.05. The result of the simulation is given in Tables 1.4-3.4 and Figure 9nFob at
any level two tests are nearly equivalent. At 30 andn = 50 the power of Kolmogorov-Smirnov
test is better than our test. For large valug@fl)t i.e. when we are far from of true density the
two tests have almost the same power. As we see the Kolmogorov-Smirnov is more powerful than
our test. But we emphasize that our approach has a reasonable power and on the other hand the
likelihood function is a simple function which any recearcher know it. When we are one unit far

from the true mean the power is about one.
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Table 6.1- Power comparison of the Kolmogorow&aov's test (K-S)
and proposed test (LL) basetil@iihood function for n=5

Normal Mean |  a =02 | a=o01 | a=005 |

| K-S | LL | KS | LL | K-S | LL |

0.1 | 0.2077 0.2050 0.1087 0.1034 0.05570522|
0.2 | 0.2279 0.2200 0.1315 0.1138 0.0656 0.0588
0.3 | 0.2718 0.2500 0.1595 0.1317 0.087 0.0705
0.4 | 0.3269 0.279¢ 0.1951 0.1572 0.1191 0.0880
0.5 | 0.3971 0.3245 0.2571 0.1920 0.1594 0.1124
0.6 | 0.4623 0.3778 0.3145 0.2356 0.2176 0.1447
0.7 | 0.5354 0.4385 0.3892 0.2882 0.2643 0.1857
0.8 | 0.6129 0.5047 0.4614 0.3492 0.3339 0.2360
0.9 | 0.6856 0.5738 0.5413 0.4172 0.4076 0.2953
1.0 | 0.7425 0.6430 0.6125 0.4900 0.4819 0.3627
1.1 | 0.8051 0.7096 0.6822 0.5650 0.5525 0.4363
1.2 | 0.8538 0.7710 0.7567 0.6392 0.6282 0.5137
1.3 | 0.8957 08252 0.8054 0.7096 0.6941 0.5917
1.4 | 0.9243 0.8711 0.8574 0.7786 0.7659 0.6671
1.5 | 0.9446 0.9083 0.8949 0.8293 0.8056 0.7370
1.6 | 0.9694 0.9372 0.9273 0.8758 0.8544 0.7990
1.7 | 0.9790 0.958% 0.9455 0.9128 0.8901 0.8517
1.8 | 0.9879 0.9737 0.9644 0.9411 0.9249 0.8945
1.9 | 0.9910 0.9840 0.9770 0.96[.8 0.9495 0.9277
2.0 | 0.9951] 0.9907 0.9853 0.9761 0.9667 0.9523
2.1 | 0.9969 0.9948 0.9921 0.9857 0.9791 0.9698
2.2 | 0.9984 0.9972 0.9952 0.9918 0.9850 0.9317
2.3 | 0.9995 0.998¢ 0.9972 0.9955 0.9908 0.9393
2.4 | 0.9997 0.9992 0.9980 0.9976 0.9955 0.9940
2.5 | 0.9998 0.9997 0.9995 0.9988 0.9959 0.9968
2.6 | 0.9998 0.999¢ 0.9999 0.9994 0.9980 0.9984
2.7 | 0.9999 0.999¢ 0.9997 0.9997 0.9991 0.9992
2.8 | 1.0000 1.0000 1.0000 1.0000 0.9993 0.9996
2.9 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
3.0 | 1.0000 1.000¢ 1.0000 1.0000 1.0000 1.0000
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Table 6.2- Power comparison of the KolmogoBmirnov's test (K-S)
and proposed test (LL) basedikelihood function for n=30.

Normal Mean | a=02 | a=01 | a = 005 |

| Ks | LL | Ks | LL | Ks | L |

0.1 | 0.2224 0.2117 0.1254 0.1076 0.0666054% |
0.2 | 0.3561 0.2478 0.2261 0.12832 0.1397 0.0702
0.3 | 0.5420 0.3118 0.3849 0.1785 0.2655 0.1012
0.4 | 0.7116 0.4034 0.5717 0.25P4 0.4495 0.15469
0.5 | 0.8512 0.5202 0.7510 0.3574 0.6190 0.2391
0.6 | 0.9361] 0.649% 0.8715 0.4806 0.7846 0.3576
0.7 | 0.9780 0.7727 0.9481 0.6343 0.9012 0.5035
0.8 | 0.9943 0.8720 0.98183 0.7693 0.9573 0.6577
0.9 | 0.9982 0.9387 0.9950 0.8748 0.9874 0.7945
1.0 | 0.9997 0.9755 0.9993 0.9427 0.9970 0.8951
1.1 | 1.0000 0.9920 1.0000 0.9783 0.9993 0.9553
1.2 | 1.0000 0.9978 1.000 0.9983 0.9998 0.9844
1.3 | 1.0000 1.0000 1.0000 0.9983 1.0000 0.9956
1.4 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6.3- Power comparison of the Kolmogorov4®mi's test (K-S)
and proposed test (LL) basedil@iihood function for n=50

Normal a=02 a=01 a = 005
Mean
| Ks | LL | KSs | L | Ks | L |

0.1 | 0.2843 0.2150 0.1649 0.1097 0.0846 53R0|
0.2 | 0.4970 0.2620 0.3298 0.14019 0.2071 0.0763
0.3 | 0.7151 0.3461 0.57730 0.2048 0.4388 0.1193
0.4 | 0.8891] 0.4684 0.7960 0.3079 0.6570 0.1975
0.5 | 0.9674 0.6172 0.9236  0.4531 0.8483 0.3222
0.6 | 0.9934 0.7657 0.9824 0.6236 0.9502 0.4905
0.7 | 0.9994 0.8832 0.9968 0.7843 0.9884 0.6745
0.8 | 0.9998 0.9544 0.9993 0.9014 0.9980 0.8313
0.9 | 1.0000 0.9865 0.9999 0.9655 0.9999 0.9321
1.0 | 1.0000 0.9971 1.0000 0.9910 1.0000 0.9800
1.1 | 1.0000 1.0000 1.0000 0.9983 1.0000 0.9960
1.2 | 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
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Figure 10: Power comparison of Kolmogorov-Smirnov test and normalized log-likelihood test.
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Example 6.2

Suppose, Yo, ..., Yy is an i.i.d.sample with unknown densify.) we want to test whether the expo-

nential density is a good fit t6? Then

Ho: T(y) =9(y;As)-

with

gy;A) = A te MY

we have:

12 ox Y SitYi
ﬁizllogg(Y.,A*) = —logA, — ~

It is known that
n
Yi ~ r(nv)\*)
2,
by CLT,

w2 ZE ) £ g

now we have

1e N Y Yt
ﬁiglogg(Y.,A*) = —logA, — =

then
150 10gg(YiA.) — (~logh, — 1) .

\/% —N(0,1)

On the other hand by Theorem 6.1, fot 1,2, ..., n, we have,

Ty, {logg(Yi;A.)} = —logA, — 1

and

1 ) B }
ﬁﬂ/arx*{logg(\ﬁ,m} =
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which gives the same asymptotic density for normalized log-likelihood function as above.

1
F(mAL

n —nA, (t+logAy)
P(% Zlogg(Yi;A*) <t)=1- / xpteMdx,  t<—logh,
i= 0

WhereX, = ¥, Y, this distribution is the survival function for a gamma distribution. Again we can

consider the integral as an incomplete gamma function. In this case

_ |1 if §3lalogg(YiA) <t
oY) =
0 if 23" logg(Yi;A.) >t

now

o = Eg (AY)) = Py (Xn(Y) > —nA,(t+logA,)) =

1— Py (Xn(Y) < —nA.(t+logA,)), t< —logA,

We may compare this test with a Kolmogorov-Smirnov test or other suitable tests.

6.3 Unknown parameters case

To find a test for model selection we consider a more realistic case, when the parameters of the
postulated model are unknown. We established some theorems under specified and mis-specified
hypotheses to find the test for model selection in different situations. The main part of them are the
differences between normalized maximized log-likelihood @r{tbgg(.,[3)} wherep could bef,

or Bo dependent on specified or mis-specified case respectively, see 4.4.1, and expectation is consid-
ered under different situations. All the theorems apphAlG, because in asymptotic situation the
distribution of normalized maximized log-likelihood aAdC is not different. Here we emphasize

that our focus is oRAIC.
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As a starting point we want to test the null hypothests: f(y) = g(y;B.) for ally € ® and
somep, € B, if we reduce it to#p : f(y) =g(y;Bx) a.e in possible range of for somep, € B,

this null hypothesis is equivalent to testing for:

£i(3 3 1010Y)} = £i( 3 0990}
or

5005 5100 (0} = 5. {1 5 logg¥;B.)}
whereZ; stands for expectation .. ).

We saw that whef, is known, we rejecti for a small value of% St 1logg(Yi;Bs). If By is

unknown we propose the test statistic as
A 1n -
Tn(Y,Bn) = n _zll‘)gg(Y;Bn)
i=
whereY = (Y1, ...,Yn). As we saw in 4.4.1 this is the bias estimator for the important part of KL di-

vergence and then an estimator for discrepancy (distance) between the true density and the postulated

model. The test function for this type hypothesis is given by

1 if To(Y,Bn) < Kn

oY) =
0 if Ta(Y,Bn) > K

Note that according to the weak law of large numbers, for aciB we have,
LS ogg¥ip)} & £ (2 S loga¥i®) (1
n i; n i;
Intheorem 6.2, by (1), convergenceﬁafto B, and conditions (C0)-(C4), we will show th(Y, [f’;n)
is a consistent estimator fdiﬁ*{(% S 1logg(Yi;Bs)}. It is noticeable that all the theorems in this

chapter are useful to construct the confidence interval for expectation part thatlagg(VYi;B))

where in the theorems we replace fhby B, eitherfsn in argument or in expectation.
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Theorem 6.2 Suppose thatjY..., Y, i.i.d with unknown density (f). Let G = {g(.,

is a parametric family of assumed densities fé.Mf Hy holds, under conditions (C0)-(C4) and (1)

we have:
oY) - 25,05 3 loga¥if)
Proof :
| Zlogg (Yi: Bn) — ZloggY B =
| ZloggY Bn) — ZloggY Bn)) + Ep, ( ZloggY Bn))
<3 ZloggY Bn) — ZloggY B+ 15, ( ZloggY B))
<§g§| n2 logg(Y;;B) — leoggY B+, ( ZloggY )

By (C4) |logg(y; B)| < M(y) On the other hand by (1) we have

iiilogg(\ﬁ;ﬁ) - fﬁ*(iiilogg(\ﬁ; B) =0

Now under conditions (C0) and (C1) by theor®&3 the first term in (2) converges to zero. For the

second term in (2)

leogg (Yi;B))l
Zlogg (Y Bx))l

Zlogg (Yi; B))I

(3 5,10000%:B)— £ 3 1090(Y:B.)) = 1 5 %, (2Ioga(¥; ) Bn —B.)+ ()

by (C3) Zg, (Clogg(Yi; B)) exists and is equal to zero, this completes the proof.l.

Theorem 6.3 Under conditiongCO) — (C3) suppose thad < Varg, {logg(Y,B,)} < », we have:

M:

7

Proof :

S

[Iogg( :Bn) — g, (logg(¥i; B.))] =

s
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1.0 ALY .. o ) B
%Zl[logg(\ﬁyﬁn) logg(Y;; Bs) +logg(Vi; By) ,EB*(IOgg(YI,B*))}

f Zlogg (¥i; Bn) —logg(¥i; B.)] + Zlogg (Yi; Bs) — g, (logg(Yi; By )]

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has
a normal distribution with average and variance equal to zeraléanrg {logg(Y,B.)} respectively.
For the first term, by Taylor's expansion we have

n

1 A ]
%i;[logg(\ﬁ,ﬁn) logg(Yi; B+)]

f 21 —B.)Ologg(¥i; B.) +0p(Bn— B.)] =
ﬁ(ﬁn—mﬁi;moggwi;s*)ﬂmop(érB*> (3)
we know that under regularity conditio80) — (C3)#
VB —B.) = NO LR (4)
and by WLLN
53 Dloggl¥;B.) - £, (Tlogg(Y:p) -

by Slutsky’s theorem

NG

D\I—\

ZDlogg Yi;B.) =

thus
A 1N T
V(B —B.) _Zlﬂlogg(Yi; B.)—0. (5
=
On the other hand

\mop(ﬁn —By) = Op(\m(én -By)
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TEST FUNCTION

by (4) v(Bn—Bs) = Op(1) then

V/NOp(Bn — B.) = 0p(Op(1)) = 0p(1) (6)

by (5) and (6)

VAo ~B.) | 3 D10ga(Y:.) + Viop(B—B.) %0

Now applying the Slutsky’s theorem. H.

6.4 Test function

As we saw we rejectj if
_ A 10 -
Ta(Y,Bn) = ﬁi;bgg(Yi;Bn) < Kpn

then the test function is given by

The level of test is defined by
tn = s (@Y)) = Py (Ta(Y, Bn) < Kn) = 0l

Now we have
VN(Kn — Eg, (logg(Y;B.)))

— Zg, <0
\/Varg, (logg(:B.)

where the standard valdg, is related to asymptotic distribution éfzi”:l logg(Yi; ﬁn) under The-

orem 6.3, and this is the-quantile of the standard normal distribution. Then

Kn = %5, {1090(Y;B.)} + Za/ Varg, (logg(Y; B.))/n
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We consider the alternative hypothesis as
H; P BeB suchthat f(y)=g(y;B)

which means thatf : f(.) € G. Itis a statistical agnostic which does not change our results consid-

erably. In this case we saw that there exists

Bo = arg En%xzﬂl{logg(Y; B)} such that Bn z, Bo.
S

6.5 Variance estimation

We need to estimat@’arg, {logg(Y,B,)} By theorem 6.3 we have,

L 'n— I i;An - I i Px
7 2i-1[10gg(Yi; Bn) — Zg, (logg(¥i B))]imo’l)
\/ Varg, logg(Y,B,)

Biernacki (2004) has introduced two natural consistent estimatorB#og, logg(Y, B.) which are

V(Bn) = Varg, {logg(Y:Bn)}

and

Vi) = & 5 logt¥if)? - (1 5 loagt¥ifh)

1= i=
In proposition 1 he has shown that under consistencﬁndioth ofv(fin) anan(f%n) converge to
Varg,{logg(Y,Bo)} in probability.

Now we consider these two estimators. It is clear that

v(Bn) 24
Varg, {logg(Y,B.)}
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and also

Va(Bn) 24
Varg, {logg(Y.B.)}

By Slutsky’s theorem we have:
i 3Lalloga(¥; ) - F, {logg(¥iB.)}]/\/Varg, {logg(Y.B.)}
\/V(Bo)/Varg, {loga(Y,B.)}

1 sn : Bn) — I
Vvn z|=1[|099(YI' Bn) _ ZB*{Iogg<YI, B*)H £> N(Ov 1)
v(Bn)

We have the same result Mﬁ(ﬁn) as,

L mol i;An - I iy Px
Jn 2i=1(logg(Yi; Bn) Afﬁ*{ogg(Y B} £ (0.1)
Via(Bn)

Example 6.3

Supposery,Ys,..., Yy is an i.i.d. sample with unknown densify(.). We want to test whethefr(.)
is a member of the normal family. Formally we want to test thgt Y ~ N(ptk,og) wherey, is

unknown and3 is known. The MLE ofy, ispn =Y = 51, Y;. Now

%08, ) = (2 ¥2(0F) H2exp( (11 )2)

é Op
and
1 1 1
cn2 2 Y
logg(¥i; 0, fn) = — 5 log 2r— 5 logag — 27%(% — )

the weighted log-likelihood function is,

1o 20 55

ﬁiglogg(\f.,co,w) =b— 202

whereb= —1log2n—3logo3 andd2 =1 5" , (Y — ln)2 theMLE of the population variance (which

has assumed as a known). Now

52
Op 2
X= N2 ~Xn-1

0
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by CLT we know that

and then

As we see% Elelogg(Yi;og, fln) only depends o@? which is an ancillary statistic fou, the un-

known parameter. By direct usage of the CLT, and the Lemma Al we have,

2311 logg(Y;; 05, fn) — (b— %) £ a0(0,1)

On the other hand, far=1,2,...,n

%, (logg(¥; 03, 14.)) :b—%

and

1 o2 ) — L
—Van, {logg(Y;; g5, )} = -

which indicate we do not need to variance estimation. Now by Theorem 6.3,

isn logg(Yi;03,fn) — (b—13)

But for a large n we consider~ n— 1, and these two results are the same.

£ 2((0,2)

Here 2
~ : - 6-n
3 37 1l0gg(¥;; 03, fn) — T {logg(¥i 08, w)} 2™ 203

\/% Vary, {logg(Y;; 03, i) } 2

Then the gof in this example reduce to a comparison between the sample and population variance.

With the preassigned level test we have

0gg(Y:; 03, fin) — Ey, {logg(¥;; 03, 1) _Kn—b+ 2
|/ 1¥an, {logg(¥; 03, 1)} 3

1¢n
Fyi (@Y)) = Py { 122!
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thus

1 1
Kn=-Z — - =
n g 2n+b >

In this example we are able to easily compute the power function. It is because under any density

for Y’s 2 has a asymptotic normal density. In fact
V(83— 0f) = (0,1 - o)

wherepy = £y (Y), 02 = Var, (Y), 0 < pgt = £y, (Y — p1)* < w0 andf > of.

Now

VA[(b—Kpn)203 — }} P{Z>ﬁ[(%+2u/z\/;)20%—0%]}

V' -0 V' -0

Theorem 6.4 Under Theorem 6.3

Yn=P{Z >

7 [logg(¥;; Bn) — %5, (I0gg(¥i; Ba))] = (0, Var, {logg(Y,B.)})-

M:

Proof :
% ii[logg(Yi; ﬁn) - fﬁnUOgg(Yi; f&n))] =

%3, (109g(¥;; Bn)) — Ep, (Iogg(¥;; B.))]

M:

10 . ) 1
ﬁi;UOgg(Yan) 5. (10gg(¥:By))] — f

By Theorem 6.3

1 R .. L
i 2, 1099 Br) = %, (I0gg(¥i: B.))] = (0, Varg, {logg(Y.B.)}h). - (7)

and

=}

(%5, (1ogg(Yi; Bn)) — Zg, (Iogg(¥;; B.)] =

[(Bn— B.) Ep, (Dlogg(¥i, B.)) +0p(Bn — B.)] =

M: }‘I—\

7
\m(én—mﬁ_;z&(mogg(vi,s*))+op<ﬁ((én—m) ©)
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The first term clearly is zero and the second term by (6) converges to zero; now by Slutsky’s theorem

for (7) and (8) the result holds. M
Example 6.4

Supposeér1, Y, ..., Yy is an i.i.d. sample with unknown densify.). We want to check that whether
f(.) is a member of the normal family. Formally we want to test that Y ~ A (., 03) where,

is unknown ancb(z) is known. TheMLE of , is given by, =Y = % Sta.Yi

003, 1) = (2 ¥2(0B) V2 expl— 5 (1 1)2)

0o
and
1 1 1
o2y 2 PRY:
|099(Y|,007Un)——§|092T[—§|0900—2Ty(2)(Y|—Un) }-
Now
r]Iogg(Y'ch fin) nIoan nIogcr2 ! n(Y fin)?
i»00, =5 5 0 7 2 i~
i; ! 2 2 203;1 '
and

{n logg(Y:; 02, fin)} = — 2 log 21— 2 lo 2L n(Yf” 2= _Diogon—Dio 2_N-1
Fu{ 3 1009(¥ii00, o)} = — 51092510905 — 555 5 (¥i—fn)” = —3 log2r-— 310906 — =

and also

- n
i 03, )} = 5 Mogaz— L Syv_pyr— " n_ o, n-1
flln{i;|ogg(\(.,oo7uq)}— 51092 - logag 20(%i;(\f. fn)°} = Iong[ Iogoo 5

now by Theorem 6.4 we have

3 10601 )~ 4, (099(Y: )] = 555 5 (¥~ = £ 2010, Vary {logg(Y.f, )

or
507 2La(Yi— )2+ 2t

£oa00,1
NG N(0,1)
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After simplification we have
62 n-1

X ol
203 2n

1
2n

which by symmetry property of normal density has the same result as the example 6.3 using Theorem
6.3.
In the next example without any information on the variance of the log-likelihood function we

are able to compute the critical value of the test.
Example 6.5

LetYy,Ys,..., Yy i.i.d. according to the normal distributioR (L., 02). Supposegy, = ag,, o, > 0 and

a= 0& is known. We wish to test that whethér~ A((ac,,0?). Then we have

0%:0.) = (21) /2(02) 2 exp{— 5 (Y —a0.)%}
and
150 (Y'o)——}Io o Lloga?— 1S (Y, —aco,)?}
ni;ggl,*—zg Zg*ZnGEi;' *
In this case
6n_%[—a\7+ (a¥)2+4Y7
and
én:%[—a\?— (@¥)2+4Y7

where¥ = 25" ¥ andY2 =15 V2 We have

@¥)2+4v2 L 62(a? + 2)2.

Then,6n, — 3[—a%0, — \/02(a2+2)?] < 0, then this estimator is not consistent.
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On the other hand@y, P, o, which is a consistent estimator for. Here the Theorem 6.3 is not

directly applicable, because,

1 1 1
To{logg(Y;0.)} = —5log2n— 5 logo? — >

which is depending oo, .

On the other hand we can write

10 _ 1 1, , Y2 av a?
ﬁiZilogg(Y,cr*)7—§I092rr—élogcy*—2—03+0—*—E
and then
10 . 1 1, ., Y2 av a2
ﬁi;mgg(\(nycn)——§|09m—§|090n—76%+a—5
and
a1 1 ., 1
Z5,11099(Y;6.)} = —5log2n— 5 log6;, — 5
We have,
Var, {logy(¥;0,)} = 3 Vara, {(~ ) =

Now by theorem 6.4,

2 31{l0gg(¥i;8n) — F,{logg(Y;6n)} £

1 N(0,1)
2n
where
L 5 A Y2 &Y & 1
ﬁi;*{logg(Yl,crn)—Eon{logg(Y,cyn)}__ZT‘%jL(AT_ijLE

n

The level of test is given by,

7 C — %5,{logg(Y;6n)}

Then

C= —4/2\/1/2n—%IOQM— %Iogéﬁ—%
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Theorem 6.5 Under Theorem 6.3

\% ii[loggm Bn) — Ep, (10gg(¥i; Bn))] = N0, Varg, {logg(Y,B.)})-

Proof : By Taylor expansion we have

n

i=ilogg(\fi; B.) = iilogg(\ﬁ; Bn)+(én8*)i=§1D|099(Yi; én)JF;(BnB*)Zi; [2logg(¥i, Bn) +0p(1) =
iilogg(\ﬁ; B.) = iilogg(\ﬁ; Br) + %(Bn - B*)zii [?logg(¥;, Bn) +0p(1)
it is known that undes
Var{Ologg(Y.B) = E¢{(Dlogg(Y,B))*}} = —E{0?logg(Y.B)}.
Now we replace the second sum in the right hand side by its population analogue which is
nvar;{Ologg(Y,p)

then

ii'ogg(“? B.) = ii'ogg(\ﬁ: Bn) — %n(ﬁn — B.)2Var{0logg(Y,B)} +0p(1)
Ef{iibgg(Yi; B} = ff{iibgg(Yi; Ba)} - %zf{n(fgn —B.)2ar¢{Dlogg(Y,)}} + 0p(1) =
Ly {iilogg(Yi; B} — % +0p(1) (9)
Under 7 we have
Zﬁ*{iilogg(\ﬁ; B} = fﬁ*{iibgg(Yi; B)} — % +0p(1).

or

4. 1080% )}~ . (3 10981Y:n)) = 5 + (L.
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In Theorem 6.3 we have

logg(Y;; Bn) — g, (10gg(Yi; B.))] = AL(0, Varg, {logg(Y,B.)}).

M:

7

i logg(¥i; Bn) — Eg, {1099(¥i: Bn) } — { Ep. {l0gg(¥i; B.) } — Eg, (logg(¥i; Bn)) }] = A(0, Varg, {logg(Y,B.)}).

or

| =

%iﬂoqgm;mfﬁ {10gg(¥:Pr)} + = + 0p( )] £ A(0. Varg, {logg(Y.B.)}).

n
Then the theorem holds N

Example 6.6

Supposer1, Yz, ..., Yy is an i.i.d. sample with unknown densify.). We want to test thatfp : Y ~
A (W, 02) wherey, ando? are unknown. Th#ILE of the parameters are given py= Y= % St.Y

andd2 = 151 (Y, —Y)2 respectively.

000 ) = (21 H2(02) 2 expl— 3 (" Hy2)

Ok
and
1 1 1

a2 Ay k PN B RY
then

n Ao o n

i;Iogg(\ﬁ:fwn):”IOQZTrﬁlogo -3
now

n o n n n ., n
Z:p*,og{iglogg(Yi;oﬁa “n)} = Zp*yog{_é |092T[— E |OgO'% - E} =
n n . n
—log2r— EZu*,c;{logcrﬁ} — 5
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But

. n—1 2
%, o2{l0gGh} =log2+ W(—~)+log

n
whereW is the digamma function,see, Hurvich and Tsai (1989).

L PN L a2 o n_ s> n 52
_Z'OQQ(Y-Gn»Hn) - Ep*‘oé{lzilogg(Yvo-nvpﬂ)} = 75 Iogcn+ Ezp*,cg{logon} =
1= 1=

n 2 n-1 2 o
E{Iogﬁ + W(?) +logo; —logGy}.

by Theorem 6.5 we have

=15{log % +W("51) +logo? —logdi}}
v — N(0,1).
2

We can use this result to construct a confidence interval.

Example 6.7

Consider the linear model &= XB, + ¢ as usual, where ~ A((0,021). We have:

L v X)T(Y - XB.).

n n n
log [ 9(Yi; B.,07) = — log 2n— - loga —
ﬂ ! 2 2 202

TheMLE of the parameters are given By = (XTX)~1XTY and62 = w respectively.

And
Iogﬁg(Y; Bn, 62) = —g log 2r— g log62 — Z%Z(Y — XBn)T(Y — XBn).
. n
Then
élogg(\ﬁ;ﬁn,aﬁ) _ _g'OQZT[—gIogaZ_g
now

n a0 A n n ., n
Fp. 021 2 1000(¥: 87 B} = By g2 ~5100 21 510957 - 5} =
n n . n
~3 log 2rt— EZjﬁ*’cg{logcyn} —5

120



Proposed Model selection tests based on likelihood and AIC 6.5. VARIANCE ESTIMATION

But

2

n— o
J)—Hogﬁ

Tp, 2{10987} = log 2+ W(—

whereW is the digamma function,see, Hurvich and Tsai (1989).

n o A n o A n ., n A
i;bgg(Yi;oﬁa Bn) — fg*,oz{i;ogg(vi;oﬁ,sn)} = —510067+ 5 Ey, 52{l0g07} =

n 2 n-— A
S{log -+ W(Tp) +loga? —log6?}.

by Theorem 6.5 we have

L Mog2 +W(2P) +logo? —logb2}}
oeEmh 2 L a0,

S

We can use this result to construct a confidence interval.

1-a=P(L<ac?<U)=p(logL < loga? < logu) =

n—

Fa{3log? + ¥(25) +logL —logR}) _

2

S

n_ —

(311007 +W(%?) +logo? —loga}}  {3{logd +w(*

2

-2) +logu —Iogéﬁ}})

53
53

Then
Jr{3{log +W("5?) +logL —logd7}}

= —La

2

53

2
and
n

J{3{log? +W("%) +logU —logd7}}

V3

Z

niQ

now we have

L= exp{fZ%\fo Iog% +w(n;2p) +log62}

and

n-p

2
— exp(Zav/2—log S + W
U = exp(Zy V2 0g —+W(—;

) +log?}
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Example 6.8

Consider the candidate linear modeNas: X + € as usual, where ~ A’(0,0?1). Assume that the
true model isY = XB; + & whereg; ~ A[(0,0?1), % (nx p) is the design matrix an(B{,0?)" is

the parameter vector. Clearly
l0g[19(Y:B.2) = — Mlog2r— Mloga? — = (v — XB)T (Y — XB)
gﬂg,, =—5log 51090"— 5 >

Then

n B ! B
862 — —Mogan Mogaz — LY = XBu) (Y = Xpn)
3 1099(:Pn. &) = —3 log 21— 51093, — 5 &3

- . CXP)T (Y XB . :
wheref, = (XTX)"1XTY and&? = w are theML estimator of the parameters in the

candidate model. We notice that heféas the covariance matrix agl andd? is an estimator for
Var{e}.

On the other hand

(Y = XBn)T (Y —XBn)

Ef{gllogg(\(i;@n,éﬁ) = —g log 2rt— ggf{bgaﬁ _ %{ff{ > 1=
n R AT v ,
Zr{ 3 1099(%:Bn. 6F) = ~Slog2-— 2% {loga} - %{Zf{ (¥ XBn)cE(Y Xfon) %t%}}'

We know that

HGn 2
o2 "X
then
not,
SN A 1Y
Also
Y = XB)T(Y — XP Y = XB)T(Y = XBp) 02
ff{ ( Bn)az( Bn) } _ ff{ ( Bn)o_z( Bn) 6-7t2}
n t n
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but &2 and[A3n are independent, thus

(Y = XB)T (Y = XPn) n np
‘Z = = =
i 5 S P2 " nop-2)
and
n
f a2y N _n N np
ff{logﬂg(Y.,Bn,c)_ 2Iong[ 2ff{logon} 2 p-2)
Now
S 10g(Y;: i, 62) — ¢ {log [9(Y;: fn.82) = — " logé? — 0+ " floge?) + S P
i; aalYi; bn, f gﬂg isbPn, =73 gao, > > £11090p, 2n—p-2)

By Theorem 6.5 we have

{-51log62 — 5+ §E:{logd2} + 3 LB~
2 n 21"%2 n 2 (n—p-2) i’N(Ql)

Bl

1

2

As we see in last example

. 2
E¢{log6?} = log2+ W(%)) +log %

then

~ — 2
%{—glogoﬁ—2+2{I092+W(¥)+Iog%}+%$} £ 500

1

2

6.6 Distribution of T, under #;

and Power of Test

6.6.1 Distribution of Test Statistic T, under #;

For power computations we need to know the asymptotic distributi®m(¥t f&n) = % yitq1logg(Y;; f&n)

underH;, where the generating densify¢Z G as we saw in 3.5.1 in this ca§a(Y;|§n) does not
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converge toE; {logg(Y, ﬁn)}. This alternative hypothesis is a “figurative alternative” because it is
completely vague. Following sections 4.3 and 4.4.1 the maximum likelihood estimator in this case
estimates the valugy that makesy(Y;Bo) as close (in KL sense) tb(.) as ang(Y;B) can get. As

we saw before

Og(Y;Bo)

Bn o Bo, VN(Bn—Bo) is Op(1) and 0= D {logy(Y; B pg, = Ed vy oY Bo)

}

indeed (1) is right and we have the same theorems as theorems 6.2, 6. BHuhder ;.

Theorem 6.6 (Theorem 2’) Suppose that1YY>...,Y, i.i.d with unknown density (f). Let G =
{9(.,B);B € BC R} is a parametric family of assumed densities fés.f #4 holds, under condi-

tions (C0)-(C4) and (1) we have:

oY) 2 £1(3 3 10g9(%; o)} = 1 (ogai¥ifo).
Proof :

53 109 ) (5 3 0ga(¥: o) -

1
n<

iilogg(\ﬁ;fﬁn) - Zf(i.imgg(Yi;én)) + Zf(i_ilogg(\ﬁ; [}n)) — Ex( logg(Y;; Bo))|

= Mj

s|§_ilogg<vi;fan>—zf@_iloggm:f&nnua(ﬁ_iloggm:fﬂn))— (2 S Togg(¥;: o))

3

<sup|leoggY.,B —E(= Zlogng,B NIFIE (2 Z|099Y|1|3n —ff(i,zlogg(\ﬁ;ﬁo))l (2)

BeB

By (C4) |logg(y; B)| < 9(y) On the other hand by (1) we have
L I Yi; E LS I Yi; 0
ﬁi;()gg( iB) — f(ﬁi;()gg( iB)) —

now under conditions (C0) and (C1) by TheorB&ithe first term in (2') converges to zero.

For second term in (2')
it Z'Ogg (Yi:Bn) — = leogg (¥i;Bo)} zlzf (Ologg(Y:; Bo))] (Bn — Bo) + 0p(Bn — Bo)
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by (C3) Z: (Ologg(Yi; Bo)) exists and is equal to zero, this complete the proof.l

Theorem 6.7 (Theorem 3’) Under conditions (C0)-(C3) suppose tHak Vars{logf(X,0")} <

o, we have:

[logg(¥i; Bn) — Ei (logg(¥i; Bo))] = A(0, Var {logg(Y, Bo) }).

M:

7
Proof :
% i_il[logg(\ﬁ; Bn) — Z1 (logg(¥;; Bo))] =
\% _i[logg(Yi; Bn) — logg(Y;; Bo) + logg(¥;: Bo) — Es (logg(Yi; Bo))] =
f Z logg(¥i; Bn) — logg(Y;; Bo)] + Z logg(¥i; Bo) — ¢ (logg(¥i; Bo)]

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has
a normal distribution with average and variance equal to zeradléand {logg(Y, o) } respectively.
For the first term, by Taylor's expansion we have

n

1 A z _
N ;Uogg(\ﬁ, Bn) —logg(Yi; Bo)] =

\/ Zi — Bo)logg(Y;; Bo) + 0p(Bn — Bo)] =
ﬁ(fsn—rswﬁ_;Dlogg(Yi;BoHﬁop(ﬁn—Bo) 3)
we know that under regularity conditions (C0)-(C3)”
V(B —Bo) = N0, T H(Bo)I(Bo) I H(Bo)).  (4)

By WLLN

iizlﬂlogg(Yi;Bo) 2, £¢(Ologg(Y;By)) =0
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from these two last convergences by Slutsky’s theorem we have
~ 1 n 7
VN(Bn—Bo) = ZlD logg(Yi; Bo) — 0
n.£
i=
which also implies
~ 1 n
V(B — Bo) - ZD logg(Yi;Bo) = 0.  (5)
i=

On the other hand

Vnop(Bn — Bo) = 0p(v/N(Bn — Bo))
by (4") v/A(Bn— Bo) = Op(1) then
VNp(Bn—Bo) = 0p(Op(1) =0p(1)  (8)

by (5) and (6)
V(B —Bo) 5 Dlogg(¥;: o) + vios(Pr — o) %0

Now applying the Slutsky’s theorem. B

Theorem 6.8 (Theorem 4°):

Under theoren® we have

=}

[logg(¥i; Bn) — E+ (logg(¥i; Bn))] = A(0, Var {logg(Y, Bo) }).-

Els

Proof :

\% ii“Ogg(Yi; Bn) — 4 (10gg(¥;Bn))] =

=}

3 10000Y; ) — E1(0g(¥i )] - 5 %5, loga(¥;Pr)) ~ £ 109X o))

5~

By theorem 3’

logg(¥;; Bn) — Er (logg(¥:; Bo))] = A(0, Vars{logg(Y,Bo)}). (7))

M:

1
Va2
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and

S

|5, (1ogg(¥;; Bn)) — E1 (logg(¥;; Bo)] =

E

[(Bn— Bo) E¢ (Ulogg(Yi, Bo)) + 0p(Bn — Bo)] =

M:

1
Nar
~ 10 ~
V(B —Bo) - Zl £ (Ologg(¥i, Bo)) +0p(vN((Bn—PBo)) (8
i=
the first term clearly is zero and the second term by (6’) converges to zero, now by Slutsky’s theorem

for (7’) and (8') the result holds. N

6.6.2 Power of Test

Before talking about power we proof a useful lemma.d(k,y) = |[x—y|| = (TK ;(x —yi)?)Y/?
denotes the Euclidean distance function®h, a sequence of the random variab¥gsis said to
converge in probability to th¥ if for everye’ > 0, P (||Ya—Y|| > €’) — 0, Van der Vaart (1998) and

Lehmann (1998). This is denoted Hy, — Y|| 2 0 or as beforer, 2 Y.

X X
Lemma 6.1 LetU, = and U = where X is a random variable and.\a Yo then for

Yn YO
everye >0

Un 2 U

Proof : The convergence in probability is equivalent to individual convergence in probability of the

vector elements. TriviallyX 2, X then
p{IlU—Ugl| > €72} = p{(X = X)?*+ (Ya = Y0)? > &} = p{(Yn— Y0)* > £}

now by the fact that the quadratic function is continuous the right-hand side converges to zero by the
continuous mapping theorem. Then

Un HUO [ |
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Now by Lemma 1 and continuous mapping theorengidg ﬁn) EN logg(Y;Bo) which implies
that Iogg(Y;Bn) EN logg(Y;Po). In general we can split the random variable ¢94;.) into its
positive and negative parts which means thatgldg.) = {logg(Y;;.)}* — {logg(Y;.)}~ where

{logg(Y;.)}™ = maxlogg(Y;.),0}, {logg(Y;.)}~ = max{—logg(Y;.),0} and
E¢{logg(Y;.)} = E{logg(Y;.)} " — Er{logg(Y;.)} .

Assume that log(Y; ) is non-negative for all n,
| {logg(Y; Bn)} — Er{logg(Y;Bo)}| =
| /Ow{P(Iogg(Y; Bn)) >y —P(logg(Y:Bo)) > y}dy| =
| /Os{P(Iogg(Y; Bn)) > y—P(logg(Y:Bo)) > y}dyl <
| IP(099(Y:f) ¥}  Pillog(v: o)) > y}ldy— 0
because the interval of integration is bounded. Then by convergence in mean
Z{logg(Y;Bn)} — E1{logg(Y:PBo)}.

for general result we can consider the positive and negative part g(Yo@n). On the other hand

by continuous mapping theoreftogg(Y; Bn)}2 = {logg(Y;Bo)}2. And again

£:{(logg(Y;Bn))?} — E¢{(logg(Y;Bo))?}

now
Var¢{logg(Y;Bn)} — Vare{logg(¥;:Bo)}.
thus we can approximate

Varg {% ilogg(Yi; Bo)}
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by

'Varf{% ilogg(Yi; [3”)}.

By the Portmanteau theorem for identity function

E,; {109g(Y; Bn)} — s {logg(Y; o) }

where expectation unde#; indicates that expectation is taken under the density which is specified
in #H;. On the other hand by the continuous mapping theo{tm_t)g(Y;an)}2 N {logg(Y;Bo)}>.

and again
Varyg 13 loga(Yin)) — Va3 1000060}

Now by (C4) the uniform integrability of log(g; B) we have

45, {1099(Y: Bn)} = a4 {logg(Y; o)}
and
1g PR 1 .
Vara{l{ﬁiglogg(%,ﬁn)} = ‘Vary{l{ﬁi;bgg(\ﬁ, Bo)}-
Then the asymptotic density of interest could be changed to asymptotic density of

150 10gg(Yi;Bn) — Er{L 3" l0gg(Y;B.)}
\/Var {3 logg(¥;B.)}

which is more realistic in theory.

The power of the test for level, is defined by

Yo =i (@(Y)) = Pr (Ta(Y,Bn) < Kn).

Now

y :P<1/nzi”=1[logg(Yi;Gn)—ff(logg(Yi;Bo))] _ _Kn—Zs(logg(¥;Po)) >:
" V/Var (logg(Y:Bo))/n Vv Vare(logg(Y;Bo))/n
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V(1/n314[logg(¥i; Bn) — Ei (logg(¥i; Bo))] Vi Zg, (logg(Y: B.)) — 1 (logg(Y: o))}
P< V/Var(1ogg(Y: Bo)) Wt v ari (logg(Y: fo)) ) ?
wherew = %, then
- vn{%Eg, (logg(Y;B.)) — Er(logg(Y;Bo))}
Y= (D{WZ“” - V/Var(logg(Y: o)) }

From the last equality we can see that the power of the test mainly depends on the difference in
expectations of the log- density functions undgrand #;.

It seems that in practice we need to compute the power function as below

yn:q,{wza L V%, (logg(Y:B,) — ff(logg(Y;Bn))}}.
\/‘Varf (logg(Y;Bn))

or
" {Wzan , V{Z, (099(Y: Br)) — 1 (logg(¥i )} }

\/'Varf (logg(Y; Bn))

6.7 Consistency of Test

By the definition ofMLE we know that

n

zllogg (¥i; Bn) >supn logg(Yi;B) —op(1)
BeB

then
Zlogg Y;; Bn) > Zlogg Yi;Bo) —0p(1) — E¢{logg(Y;Bo)} —0p(1)

and

1 {1og0(Y: o)} ~ £, 1098(Y;B.)} < 3 Iogal¥if) — 2, {1ogg(Y: )} + 0p(1) <

n

sup{ logg(Yi;B) — Eg{logg(Y;B)}} +0p(1)

BeB i=
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The right side of the last inequality under conditions (C0) and (C1) and (1) by TheB8eanverges

to zero. By this we conclude that

Zg,{logg(Y;B.)} — E¢{logg(Y;Bo)} >0

Then the right side of (9) goes towhenn — o and its left side converges in distribution; it follows
thaty, — 1 asn — co. Thus this test is consistent. On the other hand from the power function and the
last inequality we see that when the difference gets large which means that when the hypothesized
density under#; is far from the hypothesized density und#g in expectation the power function

naturally gets large.

6.7.1 Power computation

For power computation we need the bootstrap estimatioBgoflogg(Y;B,)}, Es(logg(Y:Bo))},
Var{logg(Y;Bo))}, Varg, {logg(Y;B.))} and alsoVar¢ {logg(Y;PRo))} -

Algorithm 1 Bootstrap estimation ofg, {logg(Y;B.)} andVarg {logg(Y;B.))}.

Select the p.d.fy(.,B) € G, and the sample size n.

EstimateB3 by the maximum likelihood approach, séﬁ,

Generate a sequencelofandom sampl&fl(j) ,Y2<j), ...,Yn(j), j=1,2,...,bfrom a distribution with
p.d.f. g(yifn)

EstimateB{5°* by maximizings™ ; logg(y'” . Bn), j = 1,2,...,b

Compute

g, {logg(Y;B.)} = Feoar{logg(Y'); B(j)Boot)} =
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and

12 1 d j)Booty &1
Varg, {logg(Y;B.))} b—z leogg ;B Zﬁ

n .
leogg ;B2
Algorithm 2 Bootstrap estimation of;{logg(Y;Bo)} and¥ar¢{logg(Y;Bo))}-

Generate a sequencelofandom sampl&f (’*), LY j=1,2,...,bfrom original sample.

Estimatef;gj*)B by maximizingzi”:l IOgg(yi(j*), B)

Compute

b n . N
%. Iogg(Y(J*);BgJ*)BOOt)

E¢{logg(Y;Po)} =~ Eaoar{logg(Y"); UBOY Y =

and

Var {logg(Y:o))} = ;=
1=

= ogg( > 5 2. logal¥, ) pirIBeoy 2

HM"
Sk
I_ s
:
UJ
8.
MU

6.7.2 Invariance

Our test statistic in general is not invariant under transformation because a single distribution is
being used to compute this gof test statistic. But it is not necessarily a defect. Here we consider an

example for our test statistiG(Y; ﬁn) and then verify the general case.

Example 6.9

Supposert, Yo, ..., Yy is an i.i.d. sample with exponential density~ exp(A,) then
gyh) =A te MY

and

1 ox Y it i
ﬁiglogg(\f.,x*) = —logA, — -~
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TheMLE for A, is A, = ¥ then

1 S Iogg(Y'fx )—E {} S logg(Yi; A )—Iog&
nI; [EEASS f nIZ\ [REASS ’)‘\*
We consider a transformation ¥s= T2. ThenJ = |2T| and
W(th,) = A, le ™ T
and
i< logw(Ti;AT) = —logAt — Z. 1T ’ +=Ylog2T,  where XT:} S T2
l I
”i; Zl ”i;
this shows that our test statistic is not invariant.
LS logw(Ti; A7) zw{l S logw(Ti;A,)} = log AR (log 2T, — Ey(log 2T)))
= A7) — = A )Y = log ot 4 = - ,
ni; I ni; I }\T ni; ! !
whenn gets large the second term on the right is negligible by WLLN. We conclude that
10 2 12 12 2 10
— > log f(Yi;A) = E¢{ = > logg(Vi;A)} ~ = | TiAT)—Eu{=S | TiA,
3 2,100 f(YiA) — Er{1 5 10ga(¥ih)} = 5 1ogw(TiAr) ~ Eu(7 5 logw(Tid)}

Then the terni, (Y, [En) — EW{% yit1logg(Ti;A.)} is asymptotically invariant under the one to one
transformation.
Now if Y1,Y2,...Yy be i.i.d. with common density (.) and assumed densit(.; ) andW =

ki(Y1,...,Yn),i = 1,2,...,nthe joint density of\g,Ws, ..., W, is given byg(k—1; B)|det(J)| whered is
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Jacobian matrix of

k:]_(Y]_7 ...7Yn)

kZ(Y]_’ ...7Yn)
H(Y:]_7 ...7Yn) ==

kn(Y]_7 ...7Yn)

wherek;’s are real-valued continuous functionsHfis a one-to-one function with invers¢—1 the

-1
Jacobian matrix of is n x n matrix ((a‘ﬁl(wla---awn)) = (aki(Y17---~Yn)> and Jacobian ofl
nxn

Wi i nxn

defined to be the determinant of this matrix. Then log-likelihood functiomfor.., W, is given by
h(W;B) = h(H*(W); B)|detJ)|

and

1 1 1 1
Hh(w; B) = H|ogh(wl, o Whi B) = H|ogh(k1—1(w1,...,wn),...,k,;l(wl,...,Wn);m +- log|det(J)|
1 1
= ~logh(W, ... Wh;B) +  log| detd)|
Jis not depending of8 then

1 1
sup—logh(W, ...,Wh; B) = sup-logg(Ys, ..., Yn; B)
peg N peB N

and
1 N 1 -1 -1 A 1
- logh(W, ..., Wh; Bn) = - logg(ky “(WA, ... Wh), ..., Ky~ (WA, ..., \Wh); Bn) + - log|J|
1 ~ 1
= —10gg(Ys, .., Yo Bn) + - log| detJ)|
whereﬁn = t(f&n) is MLE w.r.t. transformed data.

En{logh(Wi, ..., Wh; B) } = En{logg(Y1, .., Yn; B) +log|detJ)[} =
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[ - (5. toaot¥; )} dex)| [ oty Bicye. -+ g det) )
now

%Iogh(Wl, vy Wh; En) — %Eh{logh(wl, WhiB)} =
iiibgg(Yﬂén)_//---/{iii|099(Yi;B)}Jilﬂlg()’iiﬁ)dyln-dyn-i-ibgdet(s])|—ifh{|og|det(\])}.

For alinear transformation likg = 3" ; &jX;, j=1,...,n,thenthe Jacobian of the transformation
is the determinant of the matriéa”) and two last terms in the right of equality vanish. If this

transformation is also orthogonal we haeetJ)| = 1 then for,

%Iogh(Wl, s Wh; [gn) — %fh{logh(wl, o Whi Be) } = iizllogg(Yi; [:’;n) — fﬁ*{% i;Iogg(\(i; B.)}

i Ogg |1B I Ogg IuB*

is invariant under orthogonal linear transformation.
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Chapter 7

Test For Model Selection based on
difference of AIC'’s:
application to tracking interval for

AEKL

7.1 Introduction

Usually a statistical process is to drive a model from theory and then use statistical methods to
estimate its parameter(s). In regression models for instance, the goal is to determine whether or not

an “independent” variable or a set of “independent” variables, has a statistically significant effect
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upon a dependent variable. In this circumstance the questions which arise are what are the methods
and how they work for model selection. The analysis of models has followed two approaches in the
literature; the hypothesis testing and the model selection criteria. If we find by a method, a positive
effect of independent variable(s) on a dependent variable, we will confirm our model. Sometimes
we choosee a model which is at least not falsified. Clearly this approach is different of classical
hypothesis testing. Two models may be nested or non-nested, and in the latter case they may overlap
or not. The nested models are frequently studied in both theoretical and applied statistics. On the
other hand the non-nested models are less discussed. Historically a serious studies on non-nested
models can be found in a period from Cox (1961), Cox (1962) to Vuong (1989). In search of
similarities and differences between Cox’s test and Vuong's test we may say that the Vuong'’s test
is a development of the Cox test. As a classical usage of these two tests the Cox’s test is a test
about non-nested hypothesis where the emphasis of Vuong'’s test is on non-nested models. Both
tests are a generalization of the likelihood ratio tests (LRT) under different sense. In Cox’s test
the difference between the log-likelihood ratio and its expected value under the null hypothesis is
considered. The Cox’s test says that a true model must be able to predict the performance of the
specific alternatives , i.e. a true null should not distort the actual performance of the alternative
model. The idea is to compare the true performance of the alternative model with the expected
performance of the alternative model under the null hypothesis. We may make any decision about
two competing models. The important points is that when we reject a hypothesis, there is no means
that it is rejected in favor of the specific alternative. For example the rejection of both models implies
that neither model could predict the results of the other model. Then we conclude that both models
are mis-specified. May be a solution to this difficulty is to use a model selection approach which

chooses the model which is closest to the true model. We must notice that the other difficulty with
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Cox’s test is calculating the expected value of the log-likelihood ratio under the null hypothesis.
Another candidate in a similar situation is Vuong’s test. In Vuong viewpoint, the best model is the
model which maximizes the relevant part of KL risk. The null hypothesis of Vuong’s test is the
expectation under the true model of the log-likelihood ratio of the two candidate models are equal to
zero, which means that two candidate models are equivalent. This expectation however is unknown.
But Vuong’s test works, because the decision making procedure by Vuong’s test does not depend on

this unknown quantity.

7.2 Objective

The problem of model selection by model selection criterion is that it produces a deterministic out-
come, defined by the ranking of the values of the criterion, and it does not take account the prob-
abilistic nature of the result. On the other hand the differences in the criterion values may not be
statistically sufficient because the deterministic model selection criterion approach would consider
a model better than another model while in fact they may be considered as statistically equivalent.
This is a reason why Vuong (1989) considered a probabilistic framework. On the other hand the log-
likelihoods used in the Vuong's test are affected if the number of coefficients in the two models is
different and therefore the test must be corrected for the degrees of freedom. For a relative solution to
these two problems we focus on interval estimation for normalized difference of a model selection
criteria of two competing models as the dual of the hypotheses testing problem when the models
are non-nested. Our attention is on Akaike Information CritefiaIC), see 4.5.1, and expected
Kullback-Leibler (‘£KL), see 4.4.1. The Akaike criterion is often used as the measure of model

accuracy. In fact this statistic considers the lack of fit measure and the parsimony as a principal of
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model selection. From decision theory we realize that comparison could be based on some function
of the likelihood ratio of nested or non-nested models. Thus it makes sense that we consider some
condition on this kind of function. A possible function of this ratio could be the log function, the
expectation of this function define the especial loss function which is known as the Kullback-Leibler.
It was Akaike (1973) who introduced the expected value over the data of the Kullback-Leibler loss
as the risk function on which model selection can be made. In searching for the estimator for this
risk we notice that the difference &iC’s for two models detect the changes when we must choice
the best model. It is noticeable that the normalized differen@d @k is an estimator for the differ-

ence ofEKL'’s for two models. By these means we want to construct a confidence interval about the
expected Kullback-Leibler risks difference, where the expectation is taken under the unknown true
density. After tracking this interval we are in a decision making situation. If this interval contains
zero, we will conclude that the two models are equivalent in Kullback-Leibler sense related to the
true density.

In this chapter we will bring some necessary definition and by two theorems and corollary we
will argue that we can achieve a Vuong-like test under other considerations which are useful for
tracking an interval. A simulation study shows that the confidence interval has a good interpretation
in model selection where the models are logistic models in regression context. We use this approach
of model selection for real data to verify the relation between body-mass index and depression in

elderly people; see appendsx
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7.3 Non-Nested Models comparison

Many models comparisons are performed among models that are not nested. In the literature a
method for comparing the non-nested regression models come back to Hotelling (1940), Kendall and
Stuart (1967) and Pesaran (1978). Consider two families of parametric densi_f;les(aﬁ(.))BeB =

{a9(y;B);BeB)}, K= (h(.))yer ={h(y;y);yel} and ani.i.d. random sample from the true density
f(.).

Definition 7.1 (Non-Nested models)Two models; and X are strictly non-nested ifff N X = @.

This definition may be generalized by Kullback-Leibler divergence term between two models. Fol-

lowing 4.3 and in mis-specified case we set

Bo =argmaxEs{logg(Y;B)} and yo=argmaxZs{logh(Y;y)}

such that iff ¢ G, Bn = Bo and if f & %, % — Yo wherep, and§, are their maximum likelinood

estimators undey(.,.) andh(.,.) respectively, and

B. =argmaxZg{logg(Y;B)} and vy, =argmaxZEn{logh(Y;y)}

which are the true values ifandy underg and X (when one at time they are the correctly specified
models) respectively. As we saw if the true dendify) belongs to thes the MLE of B converges

to B, and if the true density (.) belongs to thex the MLE of y converges tg,. Define

Bon = argmax Zn{logg(Y:;B)} and yog = argmaxZg{logh(Y;y)}

If h(.,.) be the true densit@on = Bo(y,) and ifg(.,.) is the true densityog = Yo(B,).
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Definition 7.2 (Non-Nested models in KL senseWe say two models are non-nested if and only if

KL{h(Y,V.(Bo));9(Y,Bo)} #0 and KL{g(Y,B.(Yo));h(Y,Yo)} #0. VB.€B and Vy, el

The KL distance from the true density.) for densitiegy(., Bo) andh(.,yo) are given by

KL{g(.,Bo); f(.)} = Ee{log f(Y)} — E{logg(Y,Bo)}

and
KL{h(.,Y0), f(.)} = E¢{log{ f(Y)} — E¢{logh(Y,yo)}

Since the first term in both of KL(.,.)’s is unknown the KL(.,.) can not be estimated directly, but it
can be noticed that when two models are compared, the first term of KL(.,.) remains constant, so
that minimization of the criterion only depends on the second terms. To compare these two models

we notice thakKL{g(.,Bo); f(.)} = KL{h(.,yo); f(.)} if and only

Z:{logg(Y;Bo)} = Es{logh(Y;yo)}

Then two models are equally close in KL sense to the true dehéipyif the last equality is true.
This lead us to model selection criterion in a hypothesis testing framework, see, Vuong (1989). The

null hypothesis is given by;

a(Y;Bo)

Hy : Es{log h(Y:y0) } =

which meaning that two models are equivalent. The alternatives could be

B a(Y;Bo)
Hy = E¢{log h(Y:y0) +>0

or

a(Y;Bo)
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The first alternative hypothesis meaning tigats better thenX” and the second alternative hy-
pothesis meaning thak_ is better then;. Consequently when we rejegf in favor of 7, we say,
G is less misspecified thaf{ and when we rejecty in favor of 7, we say,X is less misspecified

thang.

7.3.1 Motivation to Confidence Interval construction

In model selection context, selection the null hypothesis is not easy and on the other hand we faced
with many alternatives and sometimes with infinite number of alternatives. Generally in hypothesis
testing when we decide about null hypothesis we do not add more and more alternative hypothesis, in
fact in hypothesis testing we select the one best alternative to compare against. Confidence intervals
are equivalent to encapsulating the results of many hypothesis tests. They explicitly show the region
where we are likely to find the true answer. In this section we want to show how we can construct
a pivot to building a confidence interval for difference of expected Kullbak-Leibler risks for two
models related to the true density. We do it in two parts. In the first part we consider the statistic
T, as in chapter 6 but here for standardized ratio of two non-nested mpdelsh,say,S,. Taylor
expansion of numerator &, guides us to Vuong's theorem (1989). In a second part our focus is
on regression context in the spirit of conditional Kullback-Leibler criterion for reduced models, (for
reduced models, see, Commenges et al. (2007)). In Theorem 7.1 and in the spirit of Vuong’s theorem
we find the asymptotic distribution of a statistic which is a little different figyny considering the
expected Kullback-Leibler in a regression context instead of simple averdgéafumerator of5,.

In Theorem 7.2 using Theorem 7.1, we find the asymptotic distribution of a difference of normalized
AIC criterion, say,Dn(gf‘n,hVn). The last result is a basis to construct a confidence interval for

difference of expected Kullback-Leibler of two models related to true density,zsag,f‘",h%),
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which helps us to choose betwegandh.

Under Theorem 6.6 we have

iilogg(\ﬁ, Bn) = E¢{logg(Y,Bo)}
and similarly
zllogh ) = 1 {logh(Y,yo)}
then we expect that

20 0 A0 = 5 o8 G5 )

By this result we chois the left-hand side of the last relation as the test statistic. To do a test we need

to know the distribution of this test statistic. As the classical approach we consider

RoPallooRi) a0 i)
\/(Varf{ Z| 1{Iog his; }}

S =

or

Aoallog Bbe) — [ (F 5 alloo B ) — i Talloo S i) — i 5 (oo iy )

 Vari 25 aflog el

By Taylor expansion the last two terms in the numerator are negligible because

£i{ = Z{l 9 £i{ Z{

a%-mfz&i_iDlogg(Yi,Bo» (=0l (3 3 DloghtY. o)} +05(1) £-0.

Thus

15 {logfd } {357 {log §iEa 1}

S =
J Vari (3571 {log fra )
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On the other hand

Var(3 00 ) - 3 war e o 25 5 cowog Pl s S

Now

g(¥i.Bn), 18 g(Y,Bn) 18 g(Y%.B)
vari{log s gt =5 3 oy - (5 2 009

Then

qu 1{log hYI, 5:) ff{'og?&lgg))}}

Yth Yi, B Yi-,f”n a(y; ﬁn) '
\/ 33l a{log Bl )2 — (157 1 {log B4 112+ 2 5 Sicy Covi flog §iin) log Bt }

The covariance term is a part 8f and needs to computation, but it is reasonable if we expect

that
g(¥;,Bn) | 9(Yi,Bn) g(¥,Bo) , 9(Yi,Po)
covi{lo ,lo Covi{lo ,lo
f{ gh( I7 n) g (Yj7 n)}ﬂ f{ gh(YnVO) gh(Yjayo)}
Yi B g
and use this fact thaﬁ%;(Y—y0 and ¢ ) are independent. Now if we consider the covariance term

as negligible (which in Vuong’s theorem (1989) disappears) by Vuong'’s theorem (1g8B#as

asymptotically the standard normal density. Thus

 Eshaflog 35 } Er {130, {log@ityy £ 00)

J STi{log@iblyz _ (15n  (1og 9112

S, is different from Vuong's statistics in expectation term.

7.3.2 Confidence Interval forAEKL

Let Zn = (Z1,22,...,Zn), With Z = (Y;,%);i = 1,2,...,n; (Y, € R4 X € R™M) is a sample of inde-
pendent identically distributed random variables with common true unknown density (generating

or true model)fyx(.,.) = f(.,.), and with conditional density of givenX as fv\x( .). Consider
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av|x (Y[X,B) andhyx (Y[X,y) as two non-nested models (postulated or candidate models). Follow-
ing 4.4.1 we considey andyp as the minimizer of KL criterion. It is known that the maximum
likelihood estimator:én andy, are consistent fog andyp respectively. For the reduced model, the

KL criterion for these two models is given by

KL{gyx (-]-,Bo); fyx (-;-) } = Ee{log fyx (Y[X)} — E¢{loggyx (Y|X,Bo) }

and
KL{hyx ([, Yo); fyix (-;-) } = Ex {log{ fy|x (Y|X)} — E¢ {loghyx (Y|X,Yo) }-

where in both of them the first part is irrelevant (because for all postulated models this term is fixed)
and the second part is the relevant part for our goal. In both of allbweriteria the relevant parts

are the quantity of interest, but can not be estimated, because they depend on ufkrdaike

(1973) found that the expectation of the relevant part can be estimated. Denote the fitted models by

Ovx (Y[X, f%n) andhy x (Y|X,¥n). The conditional KL criterion for the relevant parts, say, CKLs are

CKlgn = E{loggyx (Y|X, Bn) [ Zn}-

and

CKLnn = Et{loghyx (Y|X,¥n)[Zn}-

The expected CKL, safKLg, is given by

E1{CKLgn} = EKLgn = Er {loggy|x (Y|X,Bn)}
and similarly forCKLy

E+{CKLnn} = EKLhn = Es{loghyx (Y[X,¥n)}
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Following sections 4.4.1 and 4.5.1 there is a asymptotic relation abidutand its estimator. In
fact based on Taylor's expansion efnff{% z{‘zlloggwx(Yi\xi,fin)} aboutpy if n(f}n — BO)(fsn —
Bo)T is uniformly integrable, we have:

R 1 _ _
—E¢{loggy|x (Y|X,Bn)} = —E¢{loggyx (Y[X,Bo)} + %tr(l ) 4o(n
and
R 18 0 1.1 —1
~E{10g9x(YIX,Bn)} = ~Er{7 3 10gGyx (%X, P} + Ttr(1723) +o(n™)
1=
By these we conclude that
18 A 1 -1 -1
—E¢{loggyx(Y|X,Bo)} = _ff{ﬁ_ZIOQQY\X(YiMth)} +optr79) +o(n™).
=

Theorem 7.1 Under assumption A6, Vuong (1989), (For F-almost all (y,x), the functag(y|x)|?)
and|logg(y|x)|2 are dominated by true (distribution function) k-integrable functions independent

of parameters in postulated models) we have

g n
\f Z| 1{|Og h Y|‘>>2 5 {ZKLg,n - fKLh,n}}

= A(0,1)
a(y; n a(Yi n
J 31 {log fhiebany2 — (150 {log B )2
Proof : Vuong (1989) has shown that
1%,8n Gy x (Y1X,Bo)
f{zl 1log h\\(fll);(: Sn —E {IOghY‘\XYil)(VOO)}} L
9IXBo) - N(oa 1)
\/Vari{log iuEoy
Then
(Yi]%,%n Ovjx (Yi[%Bn) Ovjx (Yi1%Bn) 9 x (Yil%i,Bo)
\[Zu 1{log Y&g — E{l ghv‘\); Y% 3n) }Jrff{'OghY‘s(yw} Zt{log hYI‘); Y\xyOO o, 9\[(0 0
\/‘Varf{log h:((‘f)(( 58 }
Yi Yi

Now by lemma 6.1 (see 6.6.2), if we sgf = Xi andUg = Xi thenU, 2, Ug and
Bn Bo
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o X X » o o
similarly for V,, = andVy = whereV, — Vp. They implies the convergence in distri-
B Bo

bution forU, andV,,. Now by continuous mapping theorem I@(gﬁ7><;7[§>n) EN logg(Yi, Xi,Bo) and
logg(X, f;n) 2, logg(Xi, Bo) thus logy(Y; |xi,f5n) 2, logg(Yi|Xi, Bo) which implies that log(Y;| X, f%n) EN
logg(Yi|Xi,Bo). In general fori = 1,2, ...,n; we can split the random variable Iggyi|X,.) into its
positive and negative parts which means thaglagX;,.) = {logg(Yi|X%;,.)}™ — {logg(Yi|%;,.)}~
where{logg(Yi[X,.)}" = max{logg(¥i[X..),0}, {logg(Yi|X;,.)} ~ = max{ —logg(Yi|X..),0} and

i {logg(YiX,.)} = ¢ {logg(¥iX;,.)} " — Er{logg(¥iX;,.)} .
Assume that log(Y; \Xi,f%n) is non-negative for alh and using (C4) for conditional density,
£ {logg(¥i[%.Bn)} — Z1 {logg(¥[X.B")}| =
||} {PAog £ (Y[, Bn)) > n —Pllog (¥ Bo)) > n}dn| =
| [ (Paog £/, ) > n — Pog (/X Bo)) > n}dn| <
) 1P{0og %1% ) > n) P0G (Y], Bo)) > n) cn —0
because the interval of integration is bounded. Then by convergence in mean
Zi{log f (Y{Xi.Bn)} — 1 {log f(¥[X;. Bo) }.
Similarly

E¢{logg(¥i|Xi,¥n)} — Er{logg(Yi|Xi,Yo)}

which implies that

hyx (Y[X, Yo) }
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7.3. NON-NESTED MODELS COMPARISON
Now we have

1 (¥ %.Bn) O jx (% 1. fn)
Vi 2k {109 sy — Er{log v 1 .

= A((0,1).
\/’Varf{log 9(vX, BO)} O3

h(Y[X,yo)

If we use the variance estimator we have

n Yi 1%, Bn
L5 {log 8¥PXB) gz (jog Brx ()

RO X, 5 Py (%) ) £ a00.0)
J ST {log @UPbnlyz (15 | foq i) )2
Then
1B
I 311 {log B e — { £ {CKLgn} — Er{CKLna}} , £ 0.)
J 514 {log Lo %} (L3574 {log gi.Enly 2
and thus
i[%,Bn)
Jn2t 00 R — (PKban - ZKU)} L o
J ST {log @UPebly2 (150 | (o0 AX.bn) )2

Theorem 7.2 Under Theorem 7.1 let

Y 1 1
Dn (g, h¥) = n"*| SAICn — SAIChn

and

Bn(gfn, hin) = EKLo(gP; 1) — EKLn(h; 1)
where AlGn = —£ 51L410gg(Yi|X;, Bn) + . AlGhn = — 1571 logh(Yi |, §i) + T0a ) et
EKLa(gh, f) = £ {Iog }andeLn(hVn f) = £ {log vy

} under Theorem 7.1 we have

/2 [Dn@f‘n, W) — (g, h%] L 20(0.09)

wherea? is ©/ar {log L ;.

h(Y

proof : We know thaDp (g, hn) = —n—1 [Z. 1{log & Y >}} + B8 thus
Din(gfn, i) — An(gfn, hin) = {log 211143 Pn) (%1%, ) } EKLn(gP; £) + EKLo(; ) 4 P9
9 Zi h Y|X| ’ ’

n
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where

p=tr(lgtdy) +0(n™)

and

a=tr(I; 1) +0(n™,

see, 4.5.1. When the model is well speciffedndq are the number of parameters in densitjesd

h respectively. Then

nt/2 Dn(gén7h§/n) An(glgn7h§/n):| — |:\[ zi{log h(iiz Bn)) {EKLg,n* ZKLh’n}} + p;\fnq

Now using Theorem 7.1, this fact th% for large n is negligible and symmetric property of normal

distribution we have

/2 [Dn(g@n,h%) —An(g@n’h%)} LA0w?). m
Corollary 1: Under Theorem 7.2, & — a)% confidence interval fah, (g, hin) is given by
{D”(gén’ b)Y —n 227, 560 . Da(gPr, W)+ 227, p,

where as before

&= \/ 3 oo ity LI 5 3 floa el LIS

7.4 Logistic Regression:

The Logistic regression model, Cox (1970), has become a widely accepted method of analysis of
binary (dichotomous) data. There are similarities and differences between linear and logistic regres-

sion. As we saw in 3.4.2 by generalizing the linear models we achieve a wide range of models to
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describe the data. This generalization exactly introduces a new linear predictor based on the mean of
the outcome variabl¢ which does no longer have to be normally distributed or even continuous. In
fact in logistic models we havé ~ Bin(1,15) and& () = n = XB whereg be an invertible, smooth
function of the mean vectqr= Z£(Y). The explanatory variabl¥ is in model through the logit link
functionn = log({Z5), which is known as the log-odds transformationlagit. A model for the
log-odds is called a logit or logistic regression model. It is seen that the logit transformation yields a
linear relationship for the logit model. In this case the logit link is commonly used but the other link

like probit and the complementary legog is available. For multiple logistic regression we have
T
|09(m) =Xp

and then

exp(Xp)

- 1+expXB)’
It is clear that the derivatives of likelihood function with respect to the parameters are not linear in
parameters then maximum likelihood estimatords given by the iterative procedure like Newton-

Raphson algorithm which gives
B+ = B+ (X" diag{r" (1 —1")}x) XT(v )

with start OLS solution fop at iterationt = 0 asp©.
In the model selection context usually the measures of goodness of fit are based on the residuals.
In fact we determine whether the fitted model’s residual variation is small, displays no systematic

tendency and follows the variability postulated by the model. In logistic regression

exp(X)

= ————.
1+exp(XB)
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Two usual measures of goodness of fit test for logistic regression are Pearson Chi-square and the
likelihood ratio (Deviance). These statistics have bothxthdistribution and lack of fit occurs when

the values of these statistics are large. Hosmer and Lemesho (1989) discuss two methods of grouping
based on the ranked estimated probabilities that form groups of equal numbers of subjects (deciles
of risk ) or use fixed cut points on ti, 1] interval. Tsiatis (1980) proposed an approach based on
fixed groups in the covariate space that yields a score test for fit.

Sometimes it is interesting that we categorize some explanatory variables in the regression mod-
els. For categorizing the cutpoint must be meaningful in the research area. This introduces some
regressors in our model. We consider the Body-Mass InB®K ) as an important explanatory vari-
able which effects the depression; some people consider three categoBbH fas poor (desirable),
average and high (morbidly obese). Introducing a logistic model for modeling binary response as

depressionY) acording toBMI(X; ), age(X,) and gende(Xs3). The logit is given by

Y =Bo+B1Xe + BaXo 4+ BsXz + PaXox X3+ €

A categorization oBMI could be done by terciles. We note that in the logistic scale the linear model
is not nested in the tercile model. The terciles will introduce two regressors in the mosiglasd

X12. See table 7.1.

Table 7.1- Introduced regressors by terciles.

Category for BMI| Xq1 | Xi12

BMI e Tersile 1 1 0

BMI € Tersile 2 0 1

BMI ¢ Tersile 3 0 0
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Now the model is

Y = Bo+ Br1Xa1+ Br2Xi2 + BaXo + BaXa + PaXox X3+ €

whereX;1 and Xz, are the 0- 1 regressors. This model describes three parallel regression planes

which can differ in their intercept. See table 7.2.

Table 7.2- Three parallel regression models generated by terciles.

Category for BMI Regression Mode

BMI € Tersile 1| Y = (Bo+ B11) + B2Xo + BaXa + PaXox X3+ €
BMI € Tersile2| Y = (B0+B12) +BzX2+BgX3+B4X2*X3+E

BMI € Tersile 3 Y = Bo+ B2Xo + BaXz + BaXox X3+ €

Bo is an intercept for person with BMI in tercile 3. Here a BMI in tercile 3 serves as a baseline
category or reference group with which the other depression categories are compared. If age and
gender distributions are the same for the three groups, we could compare the mean of the three
groups.

We also consider the quadratic model as
Y = Bo+ B1Xe + BaXZ + BaXa + BaXs + BsXo * X3 + €.

It is clear that the linear model in logistic scale is nested in quadratic model. The logistic curve for
this three models are shown in figure 11. A simple analysis of linear, tercile and quadratic models in
logistic scale are given at the end of this section. As the likelihoodd@dcomparison of models

as we talked in B the likelihood function increases when the number of parameters in the model
increases. The linear case has five parameters while both the tercile and quadratic models have six
parameters. But foAIC is a little different, theAlC’s are ordered according to where the models are

nested or non-nested. The results for this three models is given in table 7.3.
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Figure 11: Logistic curves for linear, tercile and quadratic models in logistic scale.

Table 7.3- Maximized likelihood values and AIC's for linear, tercile and quadratic models in

logistic scale

Model | Likelihood AIC

Linear -1346.25| 2702.5
Tercile -1345.60| 2703.2

Quadratic| -1342.93| 2697.9

A simple analysis of our real data is given in table 7.4-7.6. A deeper analysis of this section is pre-

153



Test For Model Selection based on difference of AIC’s:

application to tracking interval for AEKL 7.4. LOGISTIC REGRESSION:

sented in appendix B.

Table 7.4- Estimated coefficients for linear, tercile and quadratic models.

Linear model in Logistic scale
Coef ficients| Estimate| StdError | Z—value | P(Z > |Z])
Bo | -4.48569| 1.02396 -4.381| 1.18e-05
B1 | -0.02952| 0.01362 -2.167 | 0.030232
B2 | 0.04303| 0.01212 3.551| 0.000384
Bs | 3.09190| 1.16200 2.661| 0.007794
B4 | -0.03922| 0.01526 -2.269| 0.010189
Tercile model in Logistic scale
Coefficients| Estimate| StdError | Z—value | P(Z > |7|)
Bo | -5.32560| 0.91920 -5.794 | 6.88e-09
B11 | 0.31106| 0.12699 2.450| 0.01430
B12 | 0.14375| 0.12889 1.115 0.26473
B2 | 0.04255| 0.01211 3.515 0.00044
Bs | 3.04914| 1.16188 2.624 0.00868
B4 | -0.03875| 0.01526 -2.539 0.01110
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Quadratic model in Logistic scale
Coefficients| Estimate| StdError | Z—value | P(Z > |2])
Bo | -1.360874| 1.546192 -0.880 | 0.378780
B1 | -0.269327| 0.089172 -3.020 | 0.002525
B2 | 0.004672| 0.001701 2.746| 0.006031
B3 | 0.041546| 0.012136 3.423| 0.000619
B4 | 3.051574| 1.161999 2.626| 0.008636
Bs | -0.039072| 0.015263 -2.560 | 0.010472
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Chapter 8

Conclusion and perspective

The purpose of this research is to clarify some facts and provide a simple test to model selection
which is a relatively new branch of mathematical statistics. The aim of statistical modeling is to
identify the model that most closely approximates the underlying process. As a part of model se-
lection, in chapter 5 we are in search of a goodness of fit test for the simple situationyhere

is a known distribution function; when there are unknown parameters, we have to first to estimate
and then plug-in it into the test statistic. For example in a simple normal case with mean and vari-
ance as unknown parameters, we can estimate these parameters by their known estimators as sample
mean and sample variance respectively and obtain a goodness of fit test for normality. Our idea
is considering a random sample of sizand a goodness of fit test procedure which introduces a
likelihood ratio test for each fixed value in the variable space. The known Union-Intersection test
(UIT) is our proposal to solve this problem. The level of test and efficiency for this test has been
verified. It seems that our statistic is comparable to the Berk-Jones statistic. As a further work we

may consider more complex weight function in the definition of the proposed statistic, and compare
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the new statistics with other goodness of fit tests. On the other hand from a statistical standpoint, the
observed data are tainted with sampling error. Consequently, when we fit a model to the data, the
model performance reflects the population pattern and also the patterns due to sampling error. Such
patterns will be specific to the particular sample and will not repeat themselves in other samples.
A complex model with many parameters tends to capture these sample patterns more easily than a
simple model with few parameters. Then, the complex model yields a better fit to the data, but it
may not be because of its ability to more accurately approximate the underlying process but rather
because of its ability to capitalize on sampling error. Therefore, choosing a model based solely on
its fit, without appropriately filtering out the effects due to sampling error, will result in choosing

an overly complex model that generalizes poorly to other data from the same underlying process.
Consequently model selection should not be based on a model’s ability to fit particular sample data
but instead should be based on its ability to capture the characteristics of the population. There are
actually some different tests for model selection and consequently some different questions can be
asked about them. Each of the tests has advantages and disadvantages in their domain of usage. In
almost all of the tests and criteria for model selection the maximum likelihood estimator and max-
imized likelihood function have an essential role. With a careful attention there are two separate
functions over the parameter space. The first is the probability density for maximum likelihood es-
timator over the parameter space, and the second one is the likelihood function, which defines the
probability of the data in any particular point in the parameter space. As we see both are defined on
the parameter space but each has a different meaning. The i.i.d. assumption allows to obtain normal
asymptotic distributions for both the maximum likelihood estimator and the log-likelihood of the
observed data. This knowledge is a starting point to define a simple model selection criterion as the

normalized maximized likelihood function. This works for some known cases when the distribution
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of data is normal. But its disadvantage is that using the data at hand for estimation and evaluation.
On the other hand the maximized log-likelihood increases when the number of useless parameters in
amodel increases. This leads to select the more complex model. Akaike solved these two difficulties
by his assumption about domain of data and by parsimony quantityAlhetroduced by Akaike
considers the parsimony principle to reduce the bias term in model selection. The main goal of this
statistic is to estimate twice the relevant part of the Kullback-Leibler divergence. But this is an un-
usual quantity to estimate, because it depends on the number of observations. In fact we encounter
the same difficulty as for estimating a sum in a population by a sum in the sample; in this case we
know that the error of estimation grows when the sample size increases. The normalization idea is
useful to solve this problem, and allows us to define a criterion for model selection. In fact in chapter

6 and related appendix (appendix A) we want to show that the normality diltbis and that the
constructed confidence interval by normalizZe reflects the fact about models. When we do not
know the correct model the average of limits of these types of confidence intervals give us an idea
about the number of parameters in the model. On the other hand these types of confidence intervals
show us that th&lC is not an increasing function of the number of parameters in the model. In fact
complexity in model is good for reduction of bias, while simplicity of model reduces the tendency

to over-fit. On the other hand the best trade-off between unknown bias and unknown variance is
the aim of model selection. But how to achieve this trade off? This is the main question in model
selection. In chapter 6 and appendix A we are about the reduction of bias. With the assumption
that the future observations are in the same domain as the observed data it seems that the bias is
generally more important than the variance. In chapter 6 and appendix A we are about the reduction
of bias. With the assumption that the future observations are in the same domain as the observed

data it seems that the bias is generally more important than the variance. As the first step in model
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selection we are in search of a admissible bond for the average of confidence interval limits to select
the best model under parsimony. This admissible set of models must be contain all models which
are near to the selected modelANC. Consider some models wikhk+ 1, ...k, ...,k+1 explanatory
variables. Assume that the model wihexplanatory variables is the selected modeldg. On

the other hand by our simulation we see that for intermediate sample size there is an intersection
between some of the confidence intervals for models yithk, explanatory variables and that for
selected model. We say two models are near to each other if their average confidence interval limits
have intersection. We set these kind of models in the admissible set. Now our search for the best
model will be in this set. This chapter needs to be developed by further work with other models for
finding the admissible line which enables us to select the set of candidate models. After it, we may
use a classical variable selection approach to select the best model between the condidate models or
we may use the approach developed in chapter 7 to compare the models . Anyway the result of this
chapter is a basis for chapter 7.

In chapter 7 and appendix B we improve our idea by constructing a tracking confidence interval
for a difference of expected Kullback-Leibler risks for two candidate models. The proposed confi-
dence interval contains the difference of Kullbak-Leibler risks with a fixed probability. This interval
has another interpretation for the useAdC’s. In fact we are not in a situation to detect the best
model but we are in search for a model which has the relatively less risk compared to other models.
It is because all the models are mis-specified. For constructing the confidence interval we need to
estimate the variance of a normalized differencal@’s; a good estimation would take into account
the covariance between two maximized log-likelihoods, but it seems that finding this covariance is
difficult and is an open problem. Another open problem arises in a situation where we have many

competing models. It is because in a real situation we have a sample ofaizemany competing
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models to fit to the data at hand. We may propose a two-stage approach where in the first stage we
choose the best two models by means of maximized likelihood function and then return to the pro-
posed approach to choose the best one. But a good search could be done by a generalized approach.
On the other hand we assumed that our sample are independent and identically distributed, a nice
generalization would relax this assumption to extend this approach. In this work we have applied
our results to normal regression models and logistic regression. But the theory is general and could
be applied to the other types of regression models like Poisson regression for counting response
variable and log-normal model as a standard approach to the analysis of skewed response variable,
see Finney(1941) and Bradu and Mundlak (1970) may be of interest. Here we consider the model
selection for one dimensional random variables a generalization could be dopelifoensional

random variables.
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Model selection: Application to the Multiple Regression Model

SUMMARY

Some key wordsAkaike criterion, Confidence interval, Kullback-Leibler, Model selection, Multiple

regression, Variable selection.

10.1 Introduction

Model selection is estimating the performance of different models in order to choose the best one.
It proceeds in two steps. The first step is to select a model (as the family of hypotheses or family of
densities) between competing models and second step is to select a particular hypothesis or density
from the model. The first step is sometimes a hard step, it needs to some background. For example
in regression survey may be we start with linear models and then complicate (if necessary) the model
by allowing to the facts about population under study. In literature the selection problem is where
the rival models come from a nested hierarchyk-afegree polynomials. If there is no background,

that is required is that the models share the common goal of predicting the same data. The second
step is estimation of parameters from the observed data. On the other hand the statistical models
are typically merely approximations to reality and so sometimes a wrong model is fit to the obser-
vations, but in practice we do it for some reasons. First because a little of knowledge is better than
nothing, second an assumed parametric model may be close to the true unknown model, so that very

little is lost by assumed model and we can use the rich literature of parametric statistics, and third



in some statistical subjects the estimated parameters for an assumed parametric model can often be
interpreted usefully.

In practic when we collect the data, there are many unobserved data from population under study
and also future observatons. As a aim of model selection may be we are in search of the model to
find the functional value of the unobserved response or to use the model to prediction of future. How
we can confident that the postulated model is accurate? Thus selection and evaluation of a model is
an important step in any research. For example in fitting curve context adding new terms add extra
adjustable coefficients (parameters) and these will improve fit to some degree. The problem is when
we add new term we gain in fit, but if this gain is small how do we make this trade-off between
addition a new term and gain in fit? And which value of gain is small or too small? So we turn to
the hypothesis testing or ordering the models by model selection criteria. The first one introduce an
absolute discrimination and second one is a relative discrimination.

Instead of the classical hypothesis testing approach to cover the analysis of the non-nested models
may be we consider the hypothesis testing to model selection. But the hypothesis testing is a de-
terministic approach. Generally in curve fitting area in which the dependent random vaftisble

a function of the explanatory variable(s) the means for detect the fit is least square or likelihood
approaches. The least square approach has a limitation when the error term is not normal. Then
it is reasonable if we take the likelihood or equivalently the log-likelihood function as a measure
of fit. As the goal of the fitting curve we want use the fitted model to predict the future. In the
Akaike framework, the base assumption is that the new data are the re-sampled from the past (the
data at hand). This is an advantage for Akaike (1973) Information criteffD, as the estimator

for relevant part of the Kullback-Leibler discrepancy. In this direction fit is defined in terms of dis-

crepancy from the true density, or the closeness to the true density. When we are in search of the



best model there is not a reason for separate the hypotheses as the null and alternative hypotheses,
i.e. all of hypotheses are the null hypothesis. This is a point which indicates that may be in Akaike
framework we consider a function of the maximized log-likelihood as the test statistic. On the other
hand because the conclusionAdfC is not never about the truth or falsity of a hypothesis, but about

its closeness to the truth, we take this logic for our idea and use the confidence interval as a set of
acceptable hypotheses. Consider a sample of i.i.d. random variableyi,Ys,...,Y,) which fol-

lows a linear regression model. It means tat sz;l BiXij +&i; & ~N(O, 0?);, i=12..n.

The vectorsX; = (X1, Xi2,...Xip,)" of covariate values, and the vec®r = (B1,,B2,,-.-,Bp,) " Of
regression coefficients is to be estimated. In this case our parameter veéter (§],02)". Then

we have,

Y =XBi+&, &~N(002). (1)

We refer to(1) as the true model. Consider the postulated models as
Y=XB+g, e~A(0,0%). (2

The postulated models are defer in ranks of design matdges The standard approach in model
selection is fitting postulated models to the observations and then determine which of them is the
best approximation to the true model.

Formally by notation in classical statistics we want to test the null hypott¥sisf (y) = g(y; Bx)

for all y € ® and someB, € B, if we reduce it to# : f(y) =g(y;Bx) a.e in possible range of

for somef, € B this null hypothesis is equivalent to testing for,

£i(5 3100100} {1 5 logg¥X B} (3

A known measure of discrepancy between the true and the postulated models is the Kullback-Leibler



criterion. In literature Shimodaira (1998,2001) has extended the Linhart’s test (1988) with different
concept as Cox (1962) by definition its confidence set at a given significance level. He consider a set
of postulated models g (j)|j € M} and for eaclj € M consider a statistical test. We propose an
other criterion which takes in order the models with property as minimum average confidence inter-
val for expected Kullback-Leibler criterion. In fact in this approach we consider the null hypothesis
asH) Y = X,ij)jBJrs(j), el) ~ 2A((0,6%1), | e Z (an integer set) and construct a confidence
interval for negative expectedlC and we decide for which postulated model the limits of intervals

are minimum. For simplicity consider two non-nested postulated models as

Y =X B+e®, &M~ ag(0,0%),

and
a3 Y =X y+el) )~ ag(0,02)

We noted that by these hypotheses we are not in the situation to decide which model is the correct
model, but we want to know which model is better. Now the search for the best model, in the first step
will be the search between all of non-nested models widmd| explanatory variable, separately,
and then comparing the average of interval limits for two postulated models.

As the decision we choice the model with minimum of the average of interval limits. By notation
in literature this process is the variable subset selection of the multiple regression. All of investi-
gation is to selecting a best subset of predictors. Many different definition of best can be found in
the literature. The forward selection method for subset selection is common in statistic, it checked
for improvement in the partial F-values aR8. The usual statistics to verify that whether or not the
proposed model is significant aR8 (adjusted), the residual mean square, and Mall@y's

For example, the forward selection includes additional variables in the model based on maximizing



the increment tdR? from step to step, but in a conditional sense. By these criteria, a best model
can be identified for fixed value of explanatory variables (a specified subset with k element) but
there is no general method for selecting an overall best model. As an other investigation to model
choice may be we consider the information estimator for true density and postulated model with
some explanatory variables as Akaike (1973). Akaike has used his criterion for selecting among the
competing models. In fact he select a model with minimum lack of fit in care of parsimony. In our
approach and in information context we want to consider all of modelskngttplanatory variables

by constructing a confidence interval for respected sub-class of models. In search of best model we
consider the minimum average of the confidence interval limits, where the minimization procedure
is taken on classes of all sub sets koe 1,2, ....K explanatory variables. After making decision
about the number of the explanatory variable in the model we can investigate the best model in the
interest subset of explanatory variables. In other word we want to check that a modekwjthex-
planatory variables is enough or not. To answer to this question we consider a measure of goodness
as average of confidence intervals for subset With j variables. This kind of model selection is a

overall type search.

10.2 Expected Kullback-Leibler Criteria and AIC

More generally, letZ, = (Z1,25,...,Zy), with Z = (Y;,X);i = 1,2,...,n; (Y, € R4, X € ™) be a
sample of independent identically distributed random variables with common true unknown den-
sity (generating modelj\‘(yx(., .) = fY(.,.) and with conditional density of given X as fyix(--)-

Considerg?(.) = gvjx (Y|X,B) as postulated model and ¢&f as the minimizer of KL criterion. It



is known that the maximum likelihood estimaﬁr is consistent fof3y. For reduced model, (see,

Commenges et al(2007)) the KL criterion is given by

KL{gyx (-]-,Bo); fyx (-,-)} = E¢{log fyx (Y[X)} — E¢{loggyx (Y|X,Bo) }

where the first part is irrelevant and second part is relevant part for our goal.
As the more complicated distance may be we consider the Hellinger or Matusita distance of affinity,
see, Bar-Hen and Daudin (1998) for asymptotic distribution of this statistic.
In regression context we have the variance as a parameter to estimate, but our focus is on the re-
gression coefficients and for simplicity we eliminate the variance estimator in notation. Fortunately
the variance and coefficients estimators are independent and there is not difficulty to search for the
asymptotic distribution of statistics which contain both of them at the same time. In &hows-
terion the relevant part is quantity of interest, but can not be estimated, because they depend on
unknownf.
Denote the fitted models gy x (Y| X, Bn). The conditional KL criterion for relevant part,'say’ CKLs
is

CKlgn = Er{loggyx (Y|X.Bn)| Zn}.

The expected CKL, safKLyn' is given by

£1{CKLgn} = EKLgn = Er{loggyx (Y|X, Bn)}

Z+{CKLgn} is a consistent estimator fak{loggyx (Y|X,Bo). Using the empirical distribution
function for expecte@KLgn, then its sample analogueis ! loggyx (Yi[ X, ﬁn) which minimizes
an estimator oKL{gyx (-|-,B); fyjx(-,.)}

Model selection based on Kullback-Leibler discrepar€y)( is developed by inference about rele-

vant part of theKL divergence. It was Akaike (1973) which introduced an estimator for relevant part



as Akaike Information Criteria, (AIC). Originally The AIC is defined as
AIC = 219" 1 2p

whereLgﬁn is the maximized log-likelihood function for postulated model. As noted by Hurvich and
Tsai (1989) when the dimension of the postulated model, increase in comparison to n, the sample
size, AIC becomes strongly biased which leads to over fitting problem. They have proposed a biased
corrected estimator of AIC in linear regression context. In fact they shown that in this case the
corrected AIC is

CAIC = nloga? + "N+ P)
n—-p—2

AIC is the unbiased estimator ferEKL . Now constructing a confidence interval fetrEKL .
make sense, because this confidence interval will be a confidence intervB(AdC). We saw
that the postulated models are different in design matrices, then they have the different CAIC. By

construction the confidence interval faAIC) we will be able to sort the postulated models.

10.3 Hypothesis Testing

If we write the null hypothesig{ by notation in (3) this hypothesis is equivalentig: KL(gP+; f) =
0 we propose the test statistic ,réls(gB*; f) then we rejecty if KL(gB*; f) > Cwhich is equivalent
to Ta(Y, Bn) = iy logg(Yi|X, Bn) < Kn. This is the bias estimator for the KL (relevant part of KL)

divergence and then a biased estimator for distance between the true and the postulated model. The

biased term is given in Konishi and Kitagawa (1996) and Bozdogan (2000) as follows,

bias= 'Zf{% _ilOQQ(Yixhﬁn) - /Rlogg(ym, Bn) () dy} = %tr(l’lJ) +0(n?)



wherel is the inverse Fisher information matrix in inner product (Hessian) formJaadhe outer
product form of the Fisher information matrix for vecfar
In specified caser (I~1J) = p the number of parameter in postulated model. The test function for

this type hypothesis is given by

1 if To(Y,Bn) < Kn
oY) =
0 if Ta(Y,Bn) > K

Under some regularity conditions and this fact that

iiilogg(\ﬁ;ﬁ)}ﬂff{iiilogg(\fi;ﬁ)} @)

this test statistic is consistent or asymptotically unbiasedsf({r% yit1logg(Yi;Bs)}

Theorem 1 : Suppose thaty, ..., Yy i.i.d with unknown densityf (.). Let G = {g(.,B);BeBC
R} is a parametric family of assumed densitiesYs. If #o holds, under conditions (C0)-(C4) and
(4) we have:

oY) L 13 5 1090(Y:B.)}

To make a decision abouip we need to know the distribution of the test statistic under null
hypothesis. In theorem 2 we handle an asymptotic density of our statistics.

Theorem 2: Under regularity conditions

ilogg (%1% Br) — 2 {logg(% [ f)}] > (0, Vare {logg(¥|X:.B.)}).

%\

proofs are given in Chapter 6, see Theorems 6.2 and 6.5.



Corollary 1:
—A8I€ _ ZKLgn

_ £ 2((0,2).
\/%q/arf{logg(Yi\N,B*)}

It is because, by theorem 2

(p—3AIC) — EKLgy
\/%fVarf{Iogg(Yi\N,B*)}

Zn = £, A((0,1).

which implys that

B —5C — EKLgn N
\/%’Varf{logg(YiIXhB*)} \/¥ars{logg(¥i|, B.)}

Slo

L a0(0,1).

We assumed tha’ar {logg(Y;| X, B«) } < e, using Slutsky’s theorem faf, and n —
|/ §7ar {logg(¥ %, B.)}

0 show that the corollary is true. As an estimator féar¢ {logg(Yi| X, B.)} we use the estimator as

1Z{|099<Y|X. Bn) 12— Zlogg Y[, Bn) }2.

See Biernacki (2004)and using Slutsky’s theorem.
Using theorem 2 we can achieve a confidence intervaElSt g, or ¢ (AIC) as follows

2511 {logg(¥i|X;, Bn) — EKLgn}
Vv Var¢{logg(Y[X,B.)})

p{-22 < <Zypt=1-

which give us g1 —a)% confidence interval foEKLg, as

(9. ) 174225V loga(Y1X,B)} ). (TaV) 1222/ Vare {logatY . B.) )|

or for —EKLg as

(P52 oz VareflogatY B ) (5522 2z Vars flogatY . B )|

Corollary 1 help us to construct a confidence intervaH@&KLy, as

KAzf 02z, 5,/ Var  {logg(Y|X. B*)}> : (Azlr? 11225, [War (logg(Y|X. B*)}ﬂ



10.4 Simulation

10.4.1 exploration of our result

To explore and apply the corollary 1, we consider two simulation studies. Figure 1 shows the result of
simulation study of normality for standardized AIC. We generafediBervations from a bivariate
uniform density each one dr-/3,/3]. We consider the logistic linear regression and find the pre-
cisely estimate ofEKLy, and Var¢{logg(Yi|X,B.)} which are respectivelgVEKLg,n = —0.40879

and ‘lv/arf{logg(Yim,B*)} = 0.31518. For sample size n=1000 and b=1000 iterations, we achieve
1000 values for AIC in logistic regression. To confirm that our quarfityis asymptotically stan-

dard normal we draw the histogram of observed AIC’s and its cumulative distribution function to

comparison with standard normal density. These figures are agreement with normalig; of

Logistic regression Logistic regression

100 150 200
probability
|

50

00 02 04 06 08 10

Standardaized AIC Standardaized AIC

standard Normal standard Normal

100 150 200

probability

50

00 02 04 06 08 10

Figure 1. Comparison of histograms and cumulative distribution functions of observed AIC’s and standard

normal density
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10.4.2 Application to The Multiple Regression Model.

As an illustration of this approach we consider the model choice in multiple regression. Consider

the regression model as (2), i.e.
Ynx1 = Xnx poxl + Enx1

Suppose there is a suspects that some regressors are unusefull for explarenghe true value
of the coefficients of these regressors are zero but we do not know which of the coefficients. Then
the appropriate candidate models are all submodels of the regression equation. To formulate this, let

ue {0,1}P, thatisuis ap x 1 vecor of ones and zeros. Then we can define the submodels as

{B:Bj=0 if uj=0;j=1,...,p}.

By yhis notation the full model is correspondingue-= (1,...,1) and the set of all candidate models
is given by

M ={M,:ue {0,1}"}.
To illustrate our approach we considered i.i.d sample of size {Y0f;, X2, X3). As a true model
we setY = 0.5+ X; + 1.25X3. By this knowledge we want to construct a confidence interval for
—EKL. In fact we expect that average of the uppers and lowers limits of confidence interval of
—EKL for the models with two explanatory variable be less than same things for the models with
one explanatory variable. Our simulation study for n=10000 observations shows that the average
confidence interval for models witiXy, Xo} and {X2, X3} is in the left of the average confidence
interval for models with{X;}, {X2} and{X3} as explanatory variables. This average interval for
models with one and two explanatory variables wgr€®38521.66645 and (1.512821.54030
respectively. The length of these intervals a@7936 and @2748. For intercept model theEKL

was 1935429. This result confirms that best model to apply is the model with two explanatory
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variables, see table 1. For another true modef as0.5+ X; + 1.25X, + 2.5X4 we consider the

subclasses a%{xl,xz,xs}, {X1, X3, %4}, {Xz,Xa,X4}}, {{XLXz}, {X1, X3}, { X1, X4}, { X2, X3},

{X2,%X4}, {Xg,x4}} and{{xl}, {X2},{ X3}, {X4}} and construct the average intervals for each one,

the result wag1.7899561.817359, (2.0145632.04203§ and(2.2831592.351173 respectively.

The lengths of these intervals ar®27403, 0027473 and @68014. For intercept model theEKL

was 2522105. This result again confirms that the model must be a model with three explanatory

variables, see table 2. The result for relatively small sample size is a little different. For example

for n =100 observations the result for regression model with four explanatory variables is given in

table 3. The intervales are overlap and length of average of interval limits are increased.

Table 1- The average of interval limits for AIC’s and its length for regression model.

(case with three explanatory variables, n=10000)

True Model:Y = 0.5+ X3 +1.25X3

classof explanatoryvariables averageof interval limits| length of interval
{{Xl},{XZ}{Xg}} (1.63851, 1.66645 0.02794
{{xl,xz}{xz,xa,}} (1.51282, 1.54030 0.02748

Table 2- The average of interval limits for AIC’s and its length for regression model.

(case with four explanatory variables, n=10000)

True Model:Y = 0.5+ X1 + 1.25X, + 2.5X4

classof explanatoryvariables averageof interval limits

length ofinterval

{{X]_},{Xg},{)(o,},{ﬁ}} (2.283159, 2.351173

{{X1,X2}’{xlyx3}a{X17x4},{Xz,xs},{X2,X4},{X3,X4}} (2.014563, 2.042036

{{xl,xz,xa},{xl,xa,x4},{xz,x3,x4}} (1.789956, 1.817359

0.068014

0.027473

0.027403
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Table 3- The average of interval limits for AIC’s and its length for regression model.

(case with four explanatory variables, n=100)

True Model:Y = 0.5+ X1 +1.25X, + 2.5X4

classof explanatoryvariables average of interval limits| length of interval

{{xl},{xz},m}7{x4}} (1.973091, 2.642405 0.669314
{{Xl,XZ},{XLXs},{X17X4},{Xz,x3},{X2,X4},{X3,X4}} (1.865973, 2.153741 0.287766
{{xl,xz,xg},{xl,x3,><4},{x2,x3,x4}} (1.641730, 1.923548 0.281818
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Example 1:As a consequence of theorem 2 consider the linear model described in (2). The

log-likelihood for this model is given by

L v xp)T(Y - xp).

n n n
log [ 9(Y;|%B,0?) = — = log2n— - loga? —
i'] ' 2 2 20

The MLE of the parameterf ando are given byB, = (XTX)~1XTY and 62 = (Y=XBn) (Y —XPn)

n

respectively. Under model (1) we have
%1 {log[190MIXB.0%)} = — Mlog 2 Moga? - 55 (X.B. — XB)T (X.B. — XB)
f gﬂg. : = —5log2n—7logo®— 5 5 (X.B. — . — XB).

The expected maximized log-likelihood is

~Slog2n- S 10ga? - 222 = 52 (B~ XBn) X~ Xfo).
It is known that
f{“gi}fi ) 1}(n_”;_2>

and
zf{g%gow* X" 6B~ X)) = S {02 b Xﬁn);g(m* 2, me E* 2)
Now

n n n > n(n+ p)

.;ZKLg,n = —5log2n— S Ei{logdn} — 2n—p-2)°
On the other hand

E¢{log6?} = LP( p) 02

2
whereW is the digamma function,see, Hurvich and Tsai (1989)

By theorem 2 we have

515 Iogzo*+”lP(?p) DlogdZ — 5+

L A(0,2).

1
2
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We can use this result to construct a confidence interval.

log2 +W("52) +logL — log8Z — 1+ n”;pz}

1-a=P(L<02<U)=p(logL < logao? < logU) = p{ =

n

loga +W("5") +loga? —logd3 — 1+ ;=P5  logZ +W("5P) +logU —logd3 — 1+ 258,
<

2 2
n n
Then
log 2 +W(";2) +logL — log3 — 1+ "2,
2 _72%
n
and
logZ +W("5P) +logU —logd3 — 1+ 5P,
2 Z%
n
now we have
B 2 2 n—-p R n+p
L =exp{ Zg\/; Iogﬁ W(?)+Iogan+1 m}

and

_ 2 1og? - w("=P) 1 1oge2 41— TP
U_exp{Zg\/; Iogn W( 5 ) +1og6y+1 n—pr}
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Conclusion
The purpose of this research is to clarify some facts and provide a simple test to model selection
which is relatively new branch of mathematical statistics. The aim of statistical modeling is to
identify the model that most closely approximates the underlying process. On the other hand from
a statistical standpoint, observed data are tainted with sampling error. Consequently, when we fit a
model to the data, the model’'s performance reflects population pattern and also the patterns due to
sampling error. Such patterns will be specific to the particular sample and will not repeat themselves
in other samples. A complex model with many parameters tends to capture these sample patterns
more easily than a simple model with few parameters. Then, the complex model yields a better fit
to the data, it is not because of its ability to more accurately approximate the underlying process
but rather because of its ability to capitalize on sampling error. Therefore, choosing a model based
solely on its fit, without appropriately filtering out the effects due to sampling error, will result in
choosing an overly complex model that generalizes poorly to other data from the same underlying
process. Consequently model selection should not be based on a model’s ability to fit particular
sample data but instead should be based on its ability to capture the characteristics of the population.
There are actually some different tests to model selection and consequently some different questions
can be asked about them. Each of tests have advantages and disadvantage in their domain of usage.
In almost all of the tests and criteria to model selection the maximum likelihood estimator and
maximized likelihood function have a essential role. With a careful attention there are two separate
functions over parameter space. The firstis the probability density for maximum likelihood estimator
over the parameter space, and the second one is the likelihood function, which defined the probability
of the data in any particular point in parameter space. As we see both are defined on parameter space

but each has a different meaning. They are related by normality assumption which also determines
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the stochastic behavior of the log-likelihood of the observed data. This knowledge is a starting
point to define a simple model selection criterion as normalized maximized likelihood function.
This works for some known case when the distribution of data is normal. But its disadvantage is
that using the data at hand for estimation and evaluation. On the other hand increases when the
number of useless parameters in a model increases. This leads to select the more complex model.
Akaike solved these two difficulties by his assumption about domain of data and by parsimony
quantity. TheAlC introduced by Akaike consider the parsimony principal to reduce the bias term

in model selection. The main goal of this statistics is to estimate two times the relevant part of
the Kullback-Leibler divergence. But this is an unusual quantity to estimate, because it depends
to the number of observations. In fact we encounter the same difficulty as for estimating a sum
in a population by a sum in the sample, in this case we know that the error of estimation grows
when the sample size increases. The normalization idea is useful to solve this problem. This is
the criterion which we use to clear the fundamental problem in model selection. In fact we want
to show that the normality of thalC’s and that the constructed confidence interval by normalized
AIC reflects the fact about models. When we do not know the correct model the average of limits of
these types of confidence interval give us an idea about the number of parameters in the model. On
the other hand these types of confidence intervals show s @is not a increasing function of the
number of parameters in the model. Actually we are in search of a distinguished line between the
values of the average of confidence interval limits to select the best model under parsimony. In fact
complexity in model is good for reduction of bias, and that simplicity of model reduces the tendency
to over fit. On the other hand the best trade off between unknown bias and unknown variance is
the model selection criterion aims. But how to do it trade off? This is the main question in model

selection. Here we are about the reduction of bias. With this hypothesis that the future observations
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are in the same domain as observed data it seems that the bias is more important than variance.
Actually as the first step in model selection we are in search of a admissible bond for the average of
confidence interval limits to select the best model under parsimony. This admissible set of models
must be contain all models which are near to the selected moddlbhyConsider some models with
k,k+1,...k«,...k+ | explanatory variables. Assume that the model witlexplanatory variables is

the selected model b41C. On the other hand by our simulation it seems that for intermediate sample
size there is the intersection between some of the confidence intervales for modeisnith
explanatory variables and that for selected model. We say two models are neer to each other if there
average confidence interval limits has intersection. We set these kind of models in the admissible
set. Now our search will be in this set. This chapter needs to be developed by further work with
other models for finding the admissible line which enable us to select the set of candidate models.
This work needsbe developed by further work with other models for finding the distinguished line

which enable us to select the set of simpler candidate models.
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Inference about differences of AIC: application to the choice of variable coding in logistic

regression

SUMMARY

We propose a better use of Akaike information criterion (AIC), focussing on two issues: inference
(one must not forget that AIC is a statistic) and interpretation (the exact value of AIC has no direct
interpretation while we are interested in quantifying the risks when using particular models). We
propose a statistic, a normalisation of a difference of Akaike criteria, which estimates the difference
of expected Kullback-Leibler risks between maximum likelihood estimators of the distribution in

two different models. The variability of this statistic can be estimated so that an interval can be con-
structed which contains the true difference of expected Kullback-Leibler risks with a pre-specified
probability. A simulation study shows that the method works and it is illustrated using a study of the

relationship between body-mass index and depression in elderly people.

Some key wordsAkaike criterion, depression, Kullback-Leibler, logistic regression, model choice.

10.5 Introduction

Since its proposal by Akaike (1973), Akaike information criterion (AIC) has had a huge impact on
so-called “model choice”, in particular in the application of statistical methods; see the presentation
of deLeuwe (1992). It is often used in its original simple form, precisely because of its simplicity.
Many variants of the criterion have been proposed. We may cite in particular the EIC (Konishi and

Kitagawa, 1996; Shibata, 1997) which makes use of the bootstrap; the approach has been extended
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to the choice of semiparametric estimators by Liquet, Sakarovitch and Commenges (2004) and Com-
menges et al. (2007). One concern with AIC is that it is felt that it does not put enough weight on the
guality of parsimony of the model, and other criteria have been proposed such as the BIC (Schwartz,
1978) or approaches based on complexity (Bozdogan, 2000).

Our aim is to propose a better use of AIC, keeping here in the framework of parametric models.
We will focus essentially on two issues which have been rather neglected in theoretical develop-
ments. The first is that of inference: it is generally forgotten that AIC is a statistic and as such has a
distribution. AIC is commonly used to select the “best” model on the basis of a sample; however if
another sample of the same size was available we might find that another model has a smaller AIC.
So we should pay attention to the differences of AIC between different models and be able to esti-
mate the variability of these differences. Such a study can be based on the results of Vuong (1989).
However Vuong (1989) placed himself in an asymptotic context in which the Akaike correction is
negligible.

The other issue is the interpretation of differences of AIC. Indeed, the value of AIC has no
intrinsic meaning; in particular AIC is not invariant to a one-to-one transformation of the random
variables. Investigators commonly display big numbers, only the last digit of which are used to
decide which is the smallest. We recall that a normalized difference of AIC is an estimate of a
difference of Kullback-Leibler risks and thus, is interpretable. We give some examples of values of
such differences to help develop an intuition of what a large or a small difference is.

In section 2 we present the relevant Kullback-Leibler risk and we show that the normalized
difference of AIC is an estimate of the difference of risks; moreover we propose a so-called “tracking
interval” which should contain the difference of risks with a given probability; we also give insight in

the interpretation of the differences of risks. This general approach may change the use of AIC since
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we do not pretend to detect the “best” model but identify which estimators are acceptable on the basis
of the available data. For illustrating this general approach we apply it to the problem of choosing

between different codings of an explanatory variable in logistic regression. Section 3 presents a
simulation study which allows in particular to assess the properties of the proposed tracking interval.
In section 4 we present an illustration on real data: this is a study of the effect of body-mass index

(BMI) on depression using data from the Paquid study. Section 5 is a short conclusion.

10.6 Theory about inference of differences of AIC criteria
10.6.1 Estimating a difference of Kullback-Leibler divergences

Consider a sample of independently identically distributed (iid) random varl‘Kb:IcesYi ,i=1...n)
having probability density function (pdf)= f(.). Let us consider two modelgg) = (gB(.))BeB, BcC
adPand(h) = (hY(.))yer, c O%
Definition 10.1 (i) (g) and (h) are non-overlapping ifg) N (h) = ©; (ii) (g) is nested in(h) if
(9) c (h); (iii) (g) is well specified if there is a valug. € B such that § = f; otherwise it is
mis-specified.

The loglikelihood loss o relatively tof for observatiorY is Iog%. Akaike (1973) grounds
this choice of a loss function by arguing that all information for discriminating between distributions
is contained in the likelihood ratio (Blackwell, 1953) so that the loss should be a function of it, and
showing that the logarithm is the best function to choose. The expectation of this loss podesk,
is the Kullback-Leibler divergence (Kullback, 1968) betwefrand f: KL (g®, f) = E|log %].
We have KL(gP, f) > 0 and KL(g?, f) = 0 implies thag® = f, that isB = B.. The Kullback-Leibler
divergence is often intuitively interpreted as a distance between the two pdf (or more generally

between the two probability measures) but this is not mathematically a distance; in particular the
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Kullback-Leibler divergence is not symmetric. It may be felt that this is a drawback, and in particular
it makes any graphical representation perilous. However this feature may also have a deep meaning
in our particular problem: there is no symmetry betwéethe true pdf, andf, a possible pdf. So
we shall take on the fact that the Kullback-Leibler divergence is an expected loss (with resplect to
and not a distance. We assume that there is a \B@eB which minimizes KL(g?, f). If the model
is well specified3o = B,; if the model is mis-specified Klgfo, f) > 0.
Since the main interest of a model is to approécit is of obvious interest to estimafly. We
have that

KL (0P, f) = E[log f(Y)] — Es [loggP(Y)].

The first term on the right-hand sith f) = E¢[log f (Y)] is the entropy off and cannot be estimated
directly sincef is unknown; however, it does not depend on the parampteos on(g). The second
term on the right-hand can not be directly computed because of the expectationf yhdarever,

replacingf by its empirical estimate we obtain the estimator
n p
-nt leoggB(Yi) =Ly,

i=

whereL%E is the loglikelihood based on the samﬂe Thus, the maximum likelihood estimator
ﬁn minimizes a natural estimator of K§®, f). Moreover it can be shown thé‘;1 is a consistent
estimator of3o.

Now if we consider two or more models, there is the problem of choosing between them. A
natural way is to choosgg) against(h) if KL (gf, f) < KL (h¥, f); we shall say in that case that
(g) is closerto f than (h) (avoiding to qualify(g) as“better” which may be misleading in this
context). There are two problems: (i) we can not estimatédRy, f) because the entropy dfcan

not be correctly estimated; (ifJo andyp are unknown. The two problems are solved by noting
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that we can estimate the difference of Kullback-Leibler divergences(giLf) — KL (hYo, f) by

4, gfn g
—n LT L),

This result may not be completely satisfactory in practica i§ not very large because the
distribution we will use isg‘}’n rather tharg®. In consequence a more relevant criterion for model

choice is E [log )
E[ gan(

Y)] that we call the expected Kullback-Leibler risk (or simply Kullback-Leibler

risk) and that we denote by EKQB", f). This is the point of view introduced by Akaike (1973).
He also showed tha{rlL%i5 " overestimated E[Ioggf3n (Y)] (because of the maximisation procedure)

and proposed a criterion correcting for the number of parameters of the model:
AIC(gf) = —2.8" 1 2p.
Akaike’s approach was revisited by Linhart and Zucchini (1986) who showed that:

EKL (", f) = KL (g™, f) + %n‘lTr(Ig‘ng) +o(n Y, (10.1)

d%loggP(Y dloggP(y aloggP (Y : . -
?T%U|BO] andJy = E¢{] 096%( Vg, 090%( Vg,]T}. This can be nicely inter-

wherelg = —E¢]|
preted by saying that the risk EI(gf‘", f) is the sum of the mis-specification risk Kgo, f) plus the
statistical risk%n‘lTr(Ig‘ng). Note in passing that ifg) is well specified we have KigP, f) =0
andlg = Jy, and thus EKI(gP, f) = £ +o(n~1).

We also have:
EKL (¢, f) = —n—ng—i” +H(f)+ %Tr(gng) +op(n™Y). (10.2)

Here we have essentially estimateg[lEggPo(Y)] by n~1L9" but because of the overestima-
tion bias, the facto% in the last term disappears; thus the tﬁ'ﬂft(lgfl\]g) is the sum of two equal
terms, the statistical error and the estimation bias of the mis-specification risk (of course the mis-

specification risk is estimated up to the constidrf)). Akaike criterion follows from (10.2) by
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multiplying by 2n, deleting the constant teri(f) and replacing 'I(rlgl\]g) by p; in fact the cor-
rection p arises only if the model is well-specified (in which cage- Jg) but Linhart and Zucchini

(1986) argue that it can be used even if the model is not well-specified. Using (10.2) we obtain:
_ Bn ¥n _ _ B L0 _
—n HLET - L [Tr(1g 1) — Tr(1y 2an)]} = A(gP, h¥) + op(n7?),

whereA(gh, hin) = EKL (gfr, f) — EKL(h¥, f). It is possible to estimate the matricks Jg, In

and J,, by plugging the estimatorén and ¥y, into the expression of these matrices, and thus an
estimator ofA(gf‘”,hVn) is obtained. A simpler estimator aﬁ(gf‘n,h%) is obtained by using the
Akaike approximation 'I'(|19*1J9) ~p

B9 1 3 g 15y gPn y
D(g".hi) = S HAIC(g™) ~AIC ()] = —nHLE" LY — (p—q)).

We will prefer estimatOIng3n to h¥n if this “estimate” is negative, meaning that the estimate of the
expected loss incurred in usilgén in place off is less than that incurred in usimh.

Thus, in contrast with AICD(gﬁ", hV") has an interpretation since it tracks the quantity of main
interesTA(an, hVn) with pretty good accuracy. Moreover it has important invariance properties.
Lemma 1 (Invariance properties) BothA(gé’n, h¥) and D(gﬁn, h¥n) are invariant under reparametriza-
tion, one-to-one transformation of the observed variables and change of the reference probability.

The proof is straightforward. It can be noted that AIC itself is invariant under reparametrization
but neither under one-to-one transformation of the observed variables nor change of the reference

probability.

10.6.2 Tracking interval for a difference of Kullback-Leibler divergences

In practice the epidemiologists or biostatisticians choose the model which has the best AIC. However

itis important to know with which confidence we can infer the sign of the difference of the EKL from
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the difference of the AIC. Moreover the statislthﬁgén, h¥n) estimates the difference of the expected
losses which is of interegter seand should be interpreted. We are in a context of model choice
or rather of estimator choice. The question is not to find the true model, because all the models are
more or less mis-specified; it is not even to choose the closest model, but the best estimator based on
the available sample. The good choice does not depend only on the models but also on the quantity
of information (here essentially) available in the sample.

We focus on the case whego + h¥. This is necessarily the case if the models do not overlap
and may also be often the case even if the models overlap or are nested. Using Theorem 3.3 of
Vuong (1989), which is valid under conditions clearly stated by this author, we obtain that in that
case:

nl/Z[D(gB“,hV“) _A(gfﬁnm\?n” D, 5;\[(0’(‘03)7

B . .
wherew? = var [Iog %yg (Y)] . A natural estimator oy’ is

)
2 n BnY 2
_ nfl |O gA ( |)
l 2,9 (v,

From this we can compute the tracking inter(@), Bn), whereA, = D(gf‘n, h¥n) — 7 /o~ /20,

n

Bn (Y,
ot

andB, = D(gf‘”,h%) +zq/2n‘1/2(bn, where 1- ®(z,/5) = a/2 and® is the cdf of the standard

normal variable. This interval has the property:
Pt[An < A(gh, h) < By — 1-a,

wherePs represents the probability with density

We can also judge whether the values within the intervals correspond to large or small expected
losses, according to the hint given by Commenges et al. (2007). This paper established a link
between the value of K{g, f) and the relative error made in evaluating the typical set whose prob-

ability is underestimated usirgyrather thanf, and used this to qualify KL values of 16, 102,
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1073, 10* as “large”, “moderate”, “small” and “negligible” respectively. As an example the KL
divergence of a double exponential relative to a normal distribution with same mean and variance is
of order 101 what may be called a “large” value. We may also measure on this scale the magnitude
of the Akaike correction ofp—q)/n: for instance if we compare two models with-q= 1 and

we haven = 100 or withp—q =5 and we haven = 500 the Akaike correction is 1@ in both

cases, a value qualified as “moderate”; as a matter of fact Akaike correction is rarely negligible in
epidemiological studies. As already noted we can give an interpretation of EKL from (10.1) as the
sum of the mis-specification risk KgBO, f) and the estimation risk, approximated py2n. For a

well specified model the risk is abopf 2n; for instance it is 102 if p= 10 andn = 500.

10.6.3 Extension to regression models

All that has been said can be extended to regression méglele) = (9$|x(-|-))BeB and (hyx) =

(h¥\x(-|-))ver- This can be done as in Vuong (1989) by directly defining the Kullback-Leibler di-

vergence in term of conditional densities: (gf;lx, fyjx) = Et[log fpx(Y\X;]’ where the expecta-
9

x (Y

tion is taken for the true distribution of the couptfeX. However this approach has the draw-
back of requiring a new definition of the Kullback-Leibler divergence . The so-called reduced
model approach (Commenges et al., 2007) is more satisfactory. Consider a sample of iid couples
of variables(Yi,X),i = 1,...,n having joint pdff, f(y,x) = fy;x(y|x) fx(x). Consider the model

(9) = (d®(., .))geg Such thagP(y,x) = gﬁlx(y|x) fx (x) ; the model is called “reduced” becaukg.)

is assumed known. The Kullback-Leibler divergence is:
KL (6P, ) = Et[log fyx (Y|X)] - Er loggh) (¥, X)],

that is the term infx (.) disappears (so that we do not need to know it in fact) and we get the same

definition as in Vuong (1989) using only the conventional Kullback-Leibler divergence .
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10.7 Application to logistic regression: a simulation study

As an illustration of this general procedure we will apply it to the problem of choice of the coding
of an explanatory variable in logistic regression. We considered iid samples of siz&iples
(Yi,X},%,),i = 1,...,n from the following distribution (which plays the role of the true distribution
f). The conditional distribution of; given (x;,x;) was logistic with logitfyx (1/X},X;)] = 0.5+
X + 24, where fy)x (1x,X5) = P.(Y; = 1|x,X,), P. stands for the true probability; the marginal
distributions of(xil, xiz) were bivariate normal with zero expectation and variance equal to the identity
matrix. We considered modég)) specified by Iog[ge‘x(1|xil7xi2)] = Bo + B1X; + B2xX,, which was
well specified and the (mis)-specified mode) defined as Iog[h‘f,‘x(llxil,xiz)] =Yo+ TP VX, +
y3xi2, Wherexi1| were dummy variables indicating in which categorj@s‘ell; the categories were
defined using terciles of the observed distributiorxgfand this was represented by two dummy
variables:}; indicating whethex fell in the first tercile or notx , indicating whethexi fell in the
second tercile or not.

Since model (g) is well specified we know tigde = f, that the mis-specification error Kgo, f)
is zero and that '(tgl‘]g) = p. As for model (h) we must compute the quantities of interest
by simulation. We can compute that in the logistic regressionl tkderm of the matrixJ, is

Efx(Y — %)Zxk] , and that thd,k term of the matrixly is E¢[x We estimated

&%
(1+6%0)2 X

Yo by fitting model (h) on a simulated data set with= 10°. Our precise estimatg was thus

O [ &0

n for n=10°. We used it to precisely estimafg and |, asl, = 10°51° i

-] and
Jh=105529 i (¥ — ﬂ%)zxL]. We estimated K(h, ) by 1075 5% IogifM We also
1+e%0 ' = hY‘X(Y|x1 )

computed a precise estimate @f, &, by the empirical variance of Ioh%% computed on
x (Y, %5)

10° replicas. Thus we can compute a precise estimate of(B&Lf) and EKuan, ) by replac-

30



ing the terms on right-hand of (10.1) by their estimates. Becéglses well specified we obtain
immediately EKh(gﬁ“, f)~ 2—3;1; a precise estimate of El(gf”n, f) — EKL(h¥, f) is thus given by

A= 2 —KL(ho, f)— LTr(i, 1dh). We find first that Ki(ho, f) ~ 7.28 103, a value approaching

the “moderate magnitude”. We found 3.998 and 3.999 for the values(fgr}i) for n=250 and

n = 1000 respectively. These values are very closg t04 (that would obtain if(h) was well-
specified) so, in the following we will use this approximation. Using this approximation we can
computeA = —L — KL (h¥, f) and obtainA = —9.28 102 for n = 250 andA = —7.78 10°3 for

n = 1000. We also findo? = 1.44 10°2. We can then compute the standard errobaisn—/2(,

and find 759 102 and 379 102 for n = 250 andn = 1000 respectively. We see at once that there
is more chance that the tracking interval does not contain zem<$0t 000 than fon = 250.

We generated 1000 replications from the above modei 8250 andh = 1000. For each repli-
cation we computed the maximum likelihood estimates and the AIC. We computed the histogram
of D(gf‘n, hV”) (see Figure 1): its shape is approximately in accordance with the asymptotic normal
distribution for both sample sizes; the empirical mean was0 102 and—7.67 102 for n = 250
andn = 1000 respectively, close to the values/of The empirical variance dD (not shown) was
in agreement with the theoretical variance computed fé@mThe mean of the estimated variances
@ was 188 1072 and 154 1072 for n = 250 andn = 1000 respectively, also reasonably close to
the &?. The proportion of replicas for which was outside thed5 tracking interval was.045 and
0.053 forn = 250 andn = 1000 respectively. The proportion of replicas for which zero was outside

of the tracking interval was.097 and (614 forn = 250 andn = 1000 respectively, and in all cases

(g) was prefered tgh). These results are summarized in Table 1.
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10.8 Choice of the best coding of age in a study of depression
10.8.1 The Paquid study

The application is based on the Paquid research programme (Letenneur et al., 1999), a prospective
cohort study of mental and physical aging that evaluates social environment and health status. The
target population consists of subjects aged 65 years and older living at home in southwestern France.
The baseline variables registered included socio-demographic factors, medical history and psycho-
metric tests. In particular the CESD scale for depression was completed. Here we illustrate the
method of the paper by examining possible models of association of depression and BMI. As is con-
ventional, depression was considered as a binary trait coded by a dichotomized version of the CESD
(using the thresholds 17 and 23 for men and women respectively). We worked with the sample of
the first visit of the Paquid study and we excluded the subjects who were diagnosed demented at that
visit: the sample size was 3484. We fitted logistic regression models for explaining depression from
BMI, age and gender. We entered age, gender and their interaction as explanatory variables. As for
BMI which was the factor of main interest, we tried a linear (in the logistic scale) model and then
we challenged the linear model by trying a categorization of BMI in terciles and a quadratic model.
Both the tercile and the quadratic models have six parameters while the linear model has five. Note
that the linear model is not nested in the tercile model while it is in the quadratic model.

The values of AIC, and the statistic and tracking intervals (taking as reference the linear model)
are given in Table 2. The tercile model had a larger AIC than the linear model but the point estimate
(D) of the difference of risks was lower than1Da level that we have qualified “negligible”, and
zero was well inside the tracking interval. So from the point of view of Kullback-Leibler risk there

was no evidence than one model is better than the other. When it comes to comparing the linear
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and the quadratic model, because the first is nested in the second, we can use the likelihood ratio
test: the null hypothesis is that the best distribution is in the linear sub-model. The hypothesis was
strongly rejectedf < 0.01). We tend to conclude that the shape of the effect is not linear and that
we may approach it better with a quadratic term. The point estimate of the difference of risks was
0.0007, a value which approaches the d@evel that we qualified to be a small (but not negligible)
difference. The tracking interval was-0.0001; 00022 which includes zero, so we are not really

sure to incur a smaller risk with the quadratic model. However we can correct the lower bound of the
interval by the following argument. Kfg) c (h) we have that KiigP, f) > KL (h%, f). Thus from
equation (10.1), using the approximatior{l'grng) ~ pwe obtainA(gf*n,hVn) > —2—1n(p— q). Inour

case we obtaim(gﬁ",h%) > —1.4 104, Thus the maximum increased risk in using the quadratic
model is negligible. It may seem paradoxical (in view of the likelihood ratio test) that we can not
assert with high probability that the estimator based on the quadratic model is better than that based
on the linear model, but we must remember that the asymptotic law of the likelihood ratio we use is
not the same as in the likelihood ratio test. The likelihood ratio test tells us that the quadratic model
is closerthan the linear model from the true distribution but it is still possible that we incur a larger
risk when using the quadratic model estimator because of the increased statistical risk; however from
the tracking interval we see that we are exposed to a negligible additional expected Kullback-Leibler
risk when using the quadratic model while it is likely that it is in fact smaller. In conclusion, in
this application there is no reason to prefer the tercile model to the linear model but there are some
reasons to prefer the quadratic model to the linear model. Figure 1 shows the shape of the effect
of BMI with the quadratic model, taking as reference the median BMI (equal to 24.2). This is a U-
shaped curve yielding the lower risks of depression for medium values of the BMI, somewhat shifted

however toward large BMI. Of course the epidemiological interpretation of this result is delicate and
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the apparent effect that we have detected is the consequence of complex biological and psychological
mechanisms that we do not attempt to explore here. Several other studies have found links between

BMI and depression; see for instance Rantanen et al. (2000).

10.9 Discussion

We have proposed a statistic which tracks the difference of expected Kullback-Leibler risks between
maximum likelihood estimators in two different models. Moreover we have an estimator of the
variance of this statistic and we can construct a “tracking intervied"fine we can do more than
simply choosing the estimator which has the lowest AIC. We can estimate the difference of risks.
This difference of risk has the same meaning in different problems and we may become accustomed
to considering differences of 18, 103, 10~* as moderate, small and negligible respectively, as we
are accustomed to interpret correlation coefficients or odds-ratios for instance.

A more complex and related problem occurs if we try a large number of models. In that case
we have a family of estimatog%ln, .. ,gBKK”. We may first compute the AIC of trd@k”; let us call
gEOKO” the estimator with the smallest AIC. For the other estimators we may corﬁ)QgE@,gEo"O”).
Of course tth(gEk”,gEOkO”) are correlated and a confidence interval has to take into account this
correlation as well as the multiple testing issue (Edwards and Hsu, 1983; Hsu, 1984). Shimodaira
(2001) has proposed an interesting approach to this problem, leading to define a set of admissible

models.
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Table 8.1: Simulation study: choice between tercile and linear model for the explanatory variable in

a logistic regression model

n A D 6P Coverage rate  Power
250 | —9.28103 -95010°% 188102 0.955 Q197
1000 | —7.7810°3% —7.6710°% 154102 0.947 0514

Table 8.2: Application: comparison of the linear, tercile and quadratic models for the effect of BMI

on depressionD and the tracking interval for the difference of Kullback-Leibler risks are with

respect to the linear model.

Model | # parameters Likelihood  AIC D Tracking interval

Linear 5 —134625 27025 - -

Tercile 6 —134560 27032 —-0.0001 [—0.0009;00007
guadratic 6 —134293 26979 0.0007 [-0.0001;000272
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Figure 8.1: Histogram of the values Bf(which estimates the difference of Kullback-Leibler risks
between the tercile and the linear models) in the simulation: upper figer&50, lower figure,

n=1000.
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Figure 8.2: Estimated “effect” of the BMI on depression in the quadratic model: odds-ratios with
respect to the probability at the median of BMI (24.2); the dots have for abscissas the observed

BMI values.
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