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Introduction en français

Un probl̀eme important de la statistique concernant unéchantillon i.i.d, de taille n est de tester si ses

observations viennent d’une distribution spécifiée. Cela signifie qu’il y a une incertitude et nous de-

vons prendre une décision. Un processus décisionnel en situation d’incertitude est en grande partie

baśe sur l’application d’analyse de données statistiques pour l’évalution des risques probabilistes de

notre d́ecision. Dans une situation réaliste nous avons seulement un ensemble de données actuelles

et nous devonśetablir ’la connaissance’. La connaissance est ce que nous savons et la communica-

tion de la connaissance est ’l’information’. Les données sont seulement l’information brute et non

la connaissance de celles-ci. Les données deviennent des informations quand cela devient pertinent

à notre probl̀eme de d́ecision. L’information devient ’le fait’ quand les données peuvent le soutenir.

Enfin le fait devient la connaissance quand il est utilisé dans l’ach̀evement ŕeussi du probĺeme de

décision. Le processus réfléchi statistique basé sur les donńees, construira les modèles statistiques

pour la prise de d́ecision en situation d’incertitude. La statistique résulte du besoin de placer la

connaissance sur une base systématique d’́evidence. Ceci a exigé uneétude des lois de probabilité.

Ainsi, la fonction de densité est un concept fondamental dans la statistique. La vraie fonction de

densit́e, que nous d́enotonsf (.) est inconnue. Nous appelons cette distribution la ’vrai distribu-

tion’. Un mod̀ele est une famille des distributions et est appelé ’bien- specifíe’ s’il contient la vrai

distribution; on peut́egalement parler du ’vrai modéle’ mais cela peut̂etre fallacieux (induire en

erreur). Les donńees sont insuffisantes pour reconstruire chaque détail de f (.). Alors parfois nous

l’estimons et parfois nous l’approximons. Le secteur d’estimation de densité peutêtre paraḿetrique

ou nonparaḿetrique. Le cas nonparamétrique est la construction d’une estimation de la fonction

densit́e des donńees observ́ees òu le nombre de param̀etres est consid́eŕe comme infini. Dans ce

cas-ci l’estimation de la densité, f (.) pour tous les points dans son support impliquerait l’estimation
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d’un nombre infini de param̀etres. Historiquement on peut dire que l’estimateur (nonparamétrique)

de densit́e le plus ancien utiliśe est l’histogramme qui áet́e raffińe pour obtenir les estimateurs lisses

par l’approche d’estimatioǹa noyaux, voir, Fix and Hodges (1951), Devroye (1985) and Silverman

(1986). Voir la figure 1. L’autre cas est le cas paramétrique, òu nous supposons connue la forme de

la fonction de densité et nous voulons estimer seulement les paramètres. Dans le cas paramétrique

nous supposons que les données sont ǵeńeŕee à partir des familles param̀etriques de distributions

connues. L’approche la plus employée est baśee sur les estimateurs de maximum de vraisemblance

l’ (EMV) et certaines de ses modifications. Géńeralement ce secteur est lié au probl̀eme de test

d’hypoth́ese. En tant que propriét́e naturelle, nous voulons considérer les ḿethodes pour construire

les proćedures qui sont efficaces, c’est-à-dire, asymptotiquement optimales. La théorie derrìere le

EMV garantit cette optimalité. Dans le problème de test d’hypoth́ese, nous d́efinissons formellement

les hypoth̀ese nulle et alternative au sujet des paramètres de la densité fondamentale. Les quantités de

base dont nous avons besoin dans le test d’hypothèse sont la valeur critique qui fournit le niveau du

test, la puissance du test et la dimension de l’échantillon requise pour obtenir une puissance donnée.

D’autre part nous pouvons comparer deux modèles en concurrence, par exemple une densité nor-

male contre une densité double exponentielle. Puisque nous pouvons imaginer plusieurs modèles

pour l‘approche def (.), la question du “choix du modèle” surgit. Par la choix de modèle nous nous

rappelons Ockham (1282-1347) qui a déclaŕe que des ’entit́es ne doivent paŝetre multiplisit́ees au

de la ńecessit́e, qui est connue sous le nom de rasoir d’Ockham. Simplement un modèle est un

ensemble d’́equations, ou de fonctions avec quelques paramètres ajustables, nous pouvons définir

un mod̀ele en tant qu’ensemble de probabilité, ou d’hypoth̀eses statistiques. Le choix de modèle

consisteà śelectionner un mod̀ele math́ematique parmi un jeu de modèles potentiels, celui qui se

collera au mieux̀a notre śerie d’observations. Nous considérons une famille de densités comme

7



mod̀ele, dans la quelle les membres diffèrent par la valeur des paramètres. Notre recherche est de

trouver le vrai mod̀ele. Nous disons qu’un modéle est vrai si et seulement si une des densités qu’il

contient est la vraie. Il est nécessaire de choisir l’ensemble de modèles avant de commencer. Dans

le mod̀ele de ŕegression lińeaire par exemple, le choix de modèle est difficile car nous avons 2p

mod́ele potentiels òu p est le nombre de variables explicatives qui sont candidatesà l’explication de

la variable ŕeponse. Le problème est que des termes supplémentaires ajoutent des paramètres ajusta-

bles suppĺementaires, et ceux-ci amélioreront l’ajustement. Pour prouver la sensibilité du choix de

mod̀ele, et l’importance de ce concept dans le secteur de recherche, nous considérons deux mod̀eles

pour un ensemble de données actuel, les comme{Y = β0 +β1X1 + ε, β0,β1 ∈ R ; ε∼N (0,1)}

et{Y = β0+β1X1+β2X2
1 +ε, β0,β1,β2 ∈ R ; ε∼N (0,1)}. Nous consid́erons une situation de

simulation dans laquelle nous savons que le premier modèle est correct, c.-à-d. nous acceptons que

β2 = 0. La figure 2 montre que l’inclusion d’une variable explicative avec coefficient zéro dans les

mod́ele changent la distribution de l‘estimateur deβ1. De ce fait l’utilisation du mauvaise modèle

(deuxìeme mod̀ele) nous m̀eneà une mauvaise inférence pourβ1, le param̀etre qui doitêtre dans le

mod̀ele. Dans la litt́erature, les ḿethodes classiques de choix de modèle sont connues sous forme

de test d’ajustement, Pearson (1900), et le test d’hypothèse classique, Neyman-Pearson (1933-1938)

pour des mod̀elesà un param̀etre, et sa prolongation qui emploie le paradigme de Neyman-Pearson

avec l’estimateur de maximum de vraisemblance pour nous donner une méthode de test universel,

le test de rapport de vraisemblance. D’autre part quelques méthodes ŕecentes dans les critères de

choix de mod̀ele sont le crit̀ere d’information d’Akaike(AIC), (Akaike, 1973), le crit́ere Baýesien

d’information(BIC) (Schwarz, 1978), la technique de validation croisée qui est asymptotiquement

équivalent̀aAIC dans le cas param̀etrique, et le crit̀ere minimum de longueur de description, Bozdo-

gan (2000) qui est asymptotiquementéquivalent auBIC. En fait nous savons que le test d’hypothèse
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classique avec sa théorieétendue optimise la qualité de l’ajustement. Ainsi pourquoi y a-t-il besoin

d’autres ḿethodes de śelect de mod̀ele? La ŕeponse est que cette méthode ne se prolonge pas simple-

mentà l’hypoth́ese non emboı̂tée et puis avec cette méthode nous ne pouvons pas faire une analyse

profonde du probl̀eme du śelection de mod̀ele dans de situations réelle. Un autre point important

est que la conclusion des critéres commeAIC ne sont jamais au sujet de la vérité ou de la fausseté

d’une hypoth̀ese, mais au sujet de sa proximité à la v́erité. D’autre part dans le test d’hypothèses

classique on cherchèa minimiser les erreurs des typesI et II qui ne sont pas compatibles. Il y a une

autre objection au raisonnement du test d’hypothèses classiques. Il peutêtre difficile de trouver un

mod̀ele bien specifíe. Il peut encorêetre appropríe de choisir le meilleur mod̀ele parmi un ensem-

ble (non specifíe) de mod̀eles. Notre travail porte sur la ḿethode de maximum de vraisemblance

et particulìerment sur l’AIC. Ceci parce que l’AIC peut être emploýe pour les mod̀eles embôıtés

et non embôıtés. L’AIC adopte le crit̀ere de Kullback-Leibler en tant que sa fonction de diver-

gence. Fisher dans son introduction originale du critère de suffisance, a exigé que la statistique

devrait ŕesumer la totalit́e de l’information appropriée fournie par l’́echantillon, et le probléme de

discriminer de l’id́ee de Kullback-Leibler est de considérer une mesure de la distance ou de la di-

vergence entre les distributions statistiques en termes de leur mesure d’information. Nous pouvons

également consid́erer la distance d’Hellinger ou la distance de Matusita de l’affinité, voir Bar-Hen

et Daudin (1998). En fait ils ont défini le rapport de log-vraisemblance comme l’information d’une

observationy à distinguer entre deux hypothéses líeesà la śelection du mod̀ele. Il y a beaucoup de

manìeres de d́efinir la divergence, mais dans tout le manque d’ajustement désigńe sous le nom de

divergence. Dans la littérature il y a quelques autres versions du critère d’Akaike. Dans le mod̀ele

de ŕegression lińeaire, la statistique la plus populaire pour le choix de modèle est leCp de Mal-

lows (1973). D’autres critères sont des critère l’ AICc corrigé par Hurvith et Tsai (1989), le critère
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prolonǵe de l’information EIC par Ishiguro et al (1997), cette approche aét́e prolonǵee au choix

de l’estimateur semi-paraḿetrique par Commenges et al. (2007) et ICOMP par Bozdogan (2000).

Ils sont à la recherche du choix du poids de la pénalit́e du crit̀ere, ce qui est lié à la parcimonie

du mod́ele. D’autre part classiquement nous pouvons considérer les mod̀eles formuĺes comme des

distributions de probabilité. En fait la śelection des mod́eles se fait en deux́etapes. Dans la premiére

étape nous devons choisir l’ensemble des modèles. La deuxìemeétape de śelection de mod́ele est

bien connue comme l’évaluation des param̀etres, c.-̀a-d. une fois que l’ensemble des modèles pos-

sibles sont choisis, l’analyse mathématique nous permet de déterminer le meilleur de ces modèles.

Mais que signifie le meilleur? Une bonne technique de choix de modèleéquilibrera l’ajustement et

la complexit́e. L’ajustement est ǵeńeralement d́etermińe par la divergence minimum ou au sens de

la vraisemblance, et la complexité est ǵeńeralement mesurée en comptant le nombre de paramètres

libres dans le mod̀ele. Pour choisir parmi les modèles en concurrence, nous devons décider quel

critère doitêtre emploýe pourévaluer les mod̀eles, et puis pour faire la meilleure inférence quant̀a

laquelle mod̀ele est pŕeférable. Comme nous avons dit, nous pouvons considérer la divergence entre

les mod̀eles comme crit̀ere de choix de mod̀ele. Alors notre recherche sera de trouver le modèle

avec la divergence minimum par rapportà la vrai densit́e qui est parfois complétement inconnue et

parfois inconnue dans le paramètre. Un travail int́eressant est effectué par Vuong (1989) qui emploi

le critère de Kullback-Leibler pour mesurer la proximité d’un mod́ele au vrai. Il consid̀ere la lim-

ite de la ṕenalit́e dans l’AIC comme une quantité ńegligeable quand la dimension de l’échantillon

devient grande. Il y a une période importante pour les test de sélection de mod̀ele, de Cox (1961-

1962) à Vuong (1989). Le test de Vuong comme un test pour choix de modèle est diff́erent de

test de Cox. Avec le test de Cox chaque modèle estévalúe contre les donńees, c.̀a-d. le mod́ele

alternatif fournit la puissance. En fait le test de Cox est une modification du test de rapport de
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vraisemblance de Neyman-Pearson. D’autre part le test de Vuong est un test d’hypothèse relatif.

Dans ce cas les tests de modèles sont́evalúes contre les données et l’un contre l’autre. La différence

entre les deux test est importante. Le test de Cox est valable pour des hypothèses non-emboı̂tées

tandis que le test de Vuong s’utilise pour sélectionner des modèles non-embôıtées. Il est ńecessaire

de souligner qu’̀a l’origine le test de rapport de vraisemblance est un test statistique d’ajustement

entre deux mod̀eles embôıtées. Par ce test un modèle relativement plus complexe est comparé à un

mod̀ele plus simple. D’autre part les tests classiques d’ajustement sont fréquenement employés par

tous les chercheurs qui ont besoin de l’interprétation statistique de leur données. Historiquement

Pearson (1900) a proposé le premier test d’ajustement qui est connu comme test deχ2. Cet test

de base est devenu une source importante pour le développement des secteurs principaux en prob-

abilité et statistique. Fisher (1922) a présent́e la vraisemblance dans le contexte de l’estimation au

point pour un param̀etre d’int́er̂et, mais au commencement la vraisemblance est un outil pour traiter

l’incertitude dueà la quantit́e d’information limit́ee continue dans les données. C’est la fonction

entìere de vraisemblance qui saisit toute l’information dans les données. Alors pour chercher un test

d’ajustement la fonction de vraisemblance est un premier candidat.

Notre Objectif

Nous nous concentrons sur la théorie asymptotique pour la sélection de mod̀ele. Nousétudions

la situation sous laquelle les procèdures de śelection de mod̀eles sont asymptotiquement optimales

pour choisir un mod̀ele. Notre travail port sur l’inf́erence au sujet de l’AIC (un cas de vraisem-

blance p̀enaliśee) d’Akaike (1973), òu comme estimateur de divergence de Kullback-Leibler est

intimement relíeeà l’estimateur de maximum de vraisemblance. Comme une partie de la statistique

inférentielle, dans le contexte de test d’hypothèse, la divergence de Kullback-Leibler et le lemme

de Neyman-Pearson sont deux concepts fondamentaux. Tous les deux sont au sujet du rapports de
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vraisemblance. Neyman-Pearson est au sujet du taux d’erreur du test du rapport de vraisemblance

et la divergence de Kullback-Leibler est l’espérance du rapport de log-vraisemblance. Ce raccorde-

ment pŕesente une autre interprétation de la divergence de Kullback-Leibler dans la limite de la

perte de puissance du test du rapport de veraisemblance quand la distribution fausse est employée

pour une de l’hypoth̀ese, c.-̀a-d. la divergence de Kullback-Leibler de deux fonctions de distribu-

tion P et Q mesure combien de puissance nous perdons avec la test du rapport de vraisemblance

si nous mouvais sṕecifiée l’hypoth̀ese alternative P comme Q. Nous voulons encore confirmer que

l’estimateur de la divergence de Kullback-Leibler qui est la fonction maximisée (et normaliśee) de

vraisemblance, assymptotiquement pourraitêtre une bonne statistique pour le choix de modèle. Par

ceci nouśeliminons le partie normalisée du test du rapport de vraisemblance qui est une cause quià

l’incapacit́e de l’́etude classique de puissance. En fait nous voulons développons une approche pour

le test d’ajustement basé sur des fonctions vraisemblance normalisées (par nombre d’observation) et

de l’AIC normaliśee quand la dimension de l’échantillon devient grande.

Notre approche est basée sur l’AIC et la diff́erence de l’AIC pour deux modèles de concurrence en

utilisant l’intervalle de confiance au lieu du test de hypothèse comme son double, c’est parce que

l’intervalle de confiance est un ensemble de toutes les hypothèses acceptables avec la confiance pré

assigńee. L’évaluation d’un intervalle de confiance pour deux modèles embôıtées ou non-emboı̂tées

en concurrence est concentrée dessus, que l’intervalle de confiance contiant zéro ou pas. En bref

nous consid́erons les AIC car une statistique qui nous laissent présenter une statistique de test pour

selection de mod̀ele. Cette id́ee est diff́erente de l’id́ee originale au sujet de l’AIC qui considére

AIC comme crit̀ere qui ordonne mod̀eles. Nous voulons souligner que le choix de modèle pourrait

impliquer une diff́erence entre la simplicité et l’ajustement. Il y a beaucoup de manières de faire

cette diff́erence. Essentiellement cependant, il n’y a aucune méthode qui est meilleure que toutes
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les autres dans toutes les conditions, c.-à-d. pour toutes les ḿethodem1 etm2 , il y a sont des cir-

constances dans lesquellesm1 est meilleur que lem2, et d’autres circonstances dans lesquellesm2

est meiuex quem1. Il semble qu’il est difficile de comparer les méthodes, parce qu’il parfois nous

guideraà une conclusion non-admissible. Au lieu de choisir une méthode nous pouvons analyser

notre probl̀eme et pŕeciser notre but et les moyens de réaliser notre but et d’expliquer finalement

comment un crit̀ere fonctionne en réalisant notre but. Le domaine du choix de modèle est tr̀es grand.

Une cat́egorisation du problème de choix de modèle peut̂etre consid́eŕee selon que les modèles sont

embôıtés, en chevauchement ou non emboı̂tés. Ǵeńeralement deux modèles seraient non emboı̂té

s’il n’est pas possible de conduire chacun d’eux par les autres l’un ou l’autre au moyen d’un en-

semble exact de restriction paramétrique ou en raison d’un processus limiteur. La littérature sur test

d’hypoth́ese non emboı̂tée aét́e imitiée par Cox (1961), Cox (1962) et Atkinson (1970), ce sujet

appliqúe par Pesaran (1974) et Pesaran et Deaton (1978). L’analyse des modèles ŕegression non

embôıtés aét́e consid́eŕe par Davidson et Mackinnon (1981), Fisher et McAller (1981) et Dastoor

(1983). D’autre part Vuong (1989) a considéŕe le test d’hypoth̀ese quand deux modèles en concur-

rence sont emboı̂tés, chevauchement ou non emboı̂tée. Son approche est basée sur la distribution

asymptotique de la différence des fonctions de log-vraisemblance pour deux modèles en concur-

rence. Shimodaira (1998) et Shimodaira (2001) a considéŕe l‘erreur d’echantillonnage de l’AIC dans

des comparaisons multiples et a construit un ensemble avec de bons modéle plut̂ot que de choisir un

mod́ele simple. Ŕecemment la distribution asymptotique de l’AIC dans des mod̀eles de ŕegression

linéaire et la correction de biais du ces statistiques sont discutées par Yanagihara et Ohomoto (2005).
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Chapter 1

Introduction

An important problem in statistics concerning a sample ofn independent and identically distributed

observations is to test whether these observations come from a specified distribution. It means that

there is a uncertainty and we have to make a decision. Decision making process under uncertainty

is largely based on application of statistical data analysis for probabilistic risk assessment of our

decision. In realistic situation we have only a set of data at hand and we need to build knowledge

from it. Knowledge is what we know and the communication of knowledge is information. The

data are only crude information and not knowledge by themselves. The data becomes information

when it becomes relevant to our decision problem. The information becomes fact when the data

can support it. Finally the fact becomes knowledge when it is used in the successful completion of

decision problem. Then

Data→ Information→ Facts→ Knowledge
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The statistical thinking process based on data will construct statistical models for decision making

under uncertainty. Statistics arise from the need to place knowledge on a systematic evidence base.

This required a study of the laws of probability. The level of exactness of statistical models increases

when level of improvements on decision making increases. Thus the probability density function is

a fundamental concept in statistics. The true probability density function, that we denotef (.) is

unknown. The model that we can think of as having given rise to the observation is usually very

complex. A convenient framework is to consider that the observations are realizations of independent

and identical random variables; then the whole model is specified by their common probability

density function,f (.). We call this distribution the true distribution or data generating distribution.

A model is family of distribution and is called well-specified if it contains the true distribution; one

may also speak of “true model” but this may be misleading. The data are insufficient to reconstruct

every detail of f (.). Then sometimes we estimate and sometimes we approximate this density.

The density estimation area may be nonparametric or parametric. The nonparametric case is the

construction of an estimate of the density function from the observed data where the number of

parameters is considered as infinite. In this case, estimation of the densityf (.) over all points in

its support would involve estimation of an infinite number of parameters. Historically we can say

that the oldest used (nonparametric) density estimator is the histogram which has been refined for

obtaining smooth estimators by the kernel approach, see, Fix and Hodges (1951), Devroye (1985)

and Silverman (1986).See Figure 1.
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Figure 1: Histogram and kernel estimator of the same data. As we see these two approachs give us relatively

the same information about the data generating probability.

The other case is the parametric case, where we assume the shape of the density function and we

want only to estimate the parameters. In the parametric case we assume that the data are drawn from

one of the known parametric families of distributions. The most widely used approach for such a

construction is based on Maximum Likelihood Estimators(MLE) and some of its modifications.

Generally this area is related to hypothesis testing problem. As natural property, we want to con-

sider the methods for constructing procedures which are efficient, that is, asymptotically optimal.

The theory behind theMLE guaranties this optimality. In hypothesis testing problem formally we

define the null and alternative hypotheses about the parameters of the underlying density. The basic

quantities that we need in hypothesis testing are the critical value that provides the desired levelα,

the power of test and the sample size required to achieve a given power. On the other hand we may

compare two competing models, for example a normal density against a double exponential density.
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The density approximation methodology is an alternative to kernel density estimation, but com-

putationally as simple as parametric methods. It is based on the mode finding algorithm. Since we

may imagine several models for approachingf (.), the “Model Selection” issue arises. By model se-

lection we remember Ockham (1282-1347) who stated that “Entities are not to be multiplied beyond

necessity”, which is known as Ockham’s razor (Occam’s razor). Simply a model is a set of equations,

or functions with some adjustable parameters, or we may define a model as a sets of probabilistic,

or statistical hypotheses. Model selection is the task of selecting a mathematical model from a set

of potential models, i.e. determining the principle behind a series of observations. Some people

however consider it as an intermediate step in model selection, and say that the model selection is

to select a particular density from a model. We consider a family of densities as a model, where its

members differ by the value of the parameters.

Our search is for the true model. We say a model is true if and only if one of the densities it

contains is true. It is necessary to choose the set of models before beginning. In the linear regression

model for instance, the model choice is difficult because we have 2p potential model wherep is the

number of the explicative variables which are candidate to explanation of the response variable. The

problem is that extra terms add extra adjustable parameters, and these will improve fit; the question

however is “does an extra term added to an equation count as beyond necessity” if the gain in fit is

too small?” If so, what counts as too small? How do we make this trade off between the addition of

new parameters and gain in fit? And what is gained by the trade off? These are some questions in

model selection. To show that the sensitivity of model selection, and the importance of this concept

in research area consider two models for a set of data at hand, as{Y = β0 + β1X1 + ε, β0,β1 ∈

R ; ε∼N (0,1)} and{Y = β0 +β1X1 +β2X2
1 + ε, β0,β1,β2 ∈ R ; ε∼N (0,1)}. We consider

a simulation situation in which we know the first model is correct model, i.e we accept thatβ2 = 0.

22



Introduction

Figure 2 shows that including an explanatory variable that have zero coefficient in the model, changes

the distribution of the estimator ofβ1. Thus using the wrong model (second model) guides us to

wrong inference aboutβ1, the parameter which must be in model.
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Figure 2: The solid density is much narraower than the dashed density. It shows that including predictors that

have zero coefficient in the model will change the distribution of the estimate ofβ1.

In the literature the classical method of model selection is known as goodness of fit test, Pearson

(1900), and classical hypothesis testing, Neyman-Pearson (1933-1938), for one parameter models,

and its extension which uses the Neyman-Pearson paradigm along with maximum likelihood estima-

tor to give us a general-purpose testing procedure, the likelihood ratio test. On the other hand some

recent methods in model selection criteria are Akaike information Criterion(AIC), (Akaike, 1973),

the Bayesian information criterion(BIC) (Schwarz, 1978), Cross Validation technique, which is

asymptotically equivalent to theAIC in the parametric case, and Minimum Description Length cri-

terion, Bozdogan (2000) which is asymptotically equivalent to theBIC.
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As a matter of fact we know that classical hypothesis testing with its extensive theory succeeds

in goodness of fit. So why is there a need for other method of model selection? The answer is that

this method does not extend straightforwardly to non-nested hypothesis and then with this method

we can not make a deep analysis into the problem of model selection in real situations. Another

important point is that the conclusion of the criteria likeAIC are never about the truth or falsity

of a hypothesis, but about its closeness to the truth. On the other hand it seems that the rational

behind the classical hypothesis testing is minimization of the typeI error and the typeII error which

are incompatible. But the actual practice is a trade off between these two errors. There is another

objection to the rationale of classical hypothesis testing. It may be difficult to find a well-specified

model (all models are wrong...). It may still be relevant to choose the best model among a set of

(misspecified) models.

Our focus in this work is on maximum likelihood method and especially onAIC. This because

AIC can be used for nested and non-nested models. The rationale of model choice is different from

the classical testing approach.AIC adopts the Kullback-Leibler measures as its discrepancy function.

In fact this statistic is an estimator of the relevant part of Kullback-Leibler (1951) discrepancy.

Fisher, in his original introduction of the criterion of sufficiency, required “that the statistic chosen

should summarize the whole of the relevant information supplied by the sample”, and the Kullback-

Leibler idea problem of discrimination is by considering a measure of the distance or discrepancy

between statistical distributions in terms of their measure of information. We may also consider

the Hellinger or Matusita distance of affinity, see Bar-Hen and Daudin (1998). In fact they defined

the loglikelihood ratio as the information in observation for discriminating between two hypotheses

related to the model selection. There are many ways of defining discrepancy, but in all of them the

lack of fit is referred to as discrepancy. In the literature there are some other versions of Akaike’s
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criterion. In the linear regression model the most popular statistic for model choice is Mallows’s

Cp (Mallows, 1973). Other criteria are the corrected Akaike’s criterionAICc proposed by Hurvith

and Tsai (1989), the extended information criterionEIC by Ishiguro et al (1997); this approach has

been extended to the choice of semi-parametric estimator by Commenges et al (2007) and ICOMP

by Bozdogan (2000). They are in search of put enough weight on the quality of penalty term of the

criterion which is related to the parsimony of the model.

On the other hand classically we may consider the models formulated as probability distribution.

In fact model selection will be done in two steps. In the first step we must choose the set of models.

The second step of model selection is well known as the estimation of parameters, i.e. once the set

of possible models are selected, the mathematical analysis allows us to determine the ’best’ of these

models. Here, what means that the best? A good model selection technique will balance goodness-

of-fit and complexity. Goodness of fit is generally determined in the minimum discrepancy (like

Chi-square) or likelihood sense and the complexity is generally measured by counting the number of

free parameters in the model. To select among competing models, one must decide which criterion

to use to evaluate the models, and then make the best inference as to which model is preferable. As

we said we may consider the discrepancy between the models as the criterion for model selection.

Then our search will be find a model with minimum discrepancy from the true density which is

sometimes completely unknown and sometimes unknown in parameter.

A kind of search is formulated as the hypothesis testing for model selection. An interesting

work is done by Vuong (1989) who uses the Kullback-Leibler criterion to measure the closeness of

a model to the true one. He considers the penalty term inAIC as a negligible quantity when the

sample size gets large. Any way theAIC evaluation of models must agree with the likelihood choice

or ordering of these models when the models have the same numbers of adjustable parameters. There
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is an important period for model selection tests, from Cox to Vuong. The Vuong’s test (1989) as a

model selection test is different of Cox (1961) and Cox (1962) type test. By Cox test each model

is evaluated against the data, i.e. the alternative model provides the power. In fact Cox test is a

modification of Neyman-Pearson maximum likelihood ratio test. On the other hand the Vuong’s test

is a relative hypothesis test. In this kind of test the models are evaluated against the data and each

other. Separation between the Cox’s test and Vuong’s test is important. The Cox test is for non-nested

hypotheses and the Vuong’s test is for non-nested model selection. It is necessary we emphasize that

originally the likelihood ratio test is a statistical test of the goodness of fit test between two nested

models. By this test a relatively more complex model is compared to a simpler model to see if it fits a

particular dataset significantly better. Sometimes we refer to any test for model selection as goodness

of fit test. But the goodness of fit tests as the approaches to model selection have their area and they

are known as a category of model selection approaches. The goodness of fit tests frequently used by

any researcher who need to statistical interpretation of their data and model selection. Historically

for it was in 1900 when Pearson proposed the first test of goodness-of-fit, theχ2 test to solve this

problem. This basic test became a major source for the development of key areas in probability and

statistics. There is no such method for unbind data. Fisher (1922) introduced the likelihood in the

context of estimation. Although the obvious role of the likelihood function is to provide a point

estimate for a parameter of interest, initially the likelihood is a tool for dealing with the uncertainty

due to the limited amount of information contained in the data. It is the entire likelihood function

that captures all the information in the data. Then in searching for an unbind goodness-of-fit test the

likelihood function is a first candidate.
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Introduction 1.1. OUR OBJECTIVE

1.1 Our Objective

Our focus is on asymptotic theory for model selection. We study the situation under which model

selection procedures are asymptotically optimal for selecting a model. We can say, all of things

in our work is inference about theAIC (a kind of penalized likelihood), Akaike (1973), to model

selection, where as an estimator for Kullback-Leibler discrepancy is intimately connected with max-

imum likelihood estimator. As a part of statistical inference, in the hypothesis testing context, the

Kullback-Leibler divergence and the Neyman-Pearson lemma are two fundamental concepts. Both

are about likelihood ratios. The Neyman-Pearson is about error rate of likelihood ratio tests and

Kullback-Leibler divergence is the expected log-likelihood ratio. This connection introduces an-

other interpretation of the Kullback-Leibler divergence in term of the loss of power of the likelihood

ratio test when the wrong distribution is used for one of the hypothesis, i.e. the Kullback-Leibler

divergence from two distribution functionsP to Q measures how much power we lose with the like-

lihood ratio test if we mis-specify the alternative hypothesisP asQ. We want again to confirm that

the Kullback-Leibler divergence estimator which is the (normalized) maximized likelihood function,

asymptotically could be a good statistic for model selection. By this we eliminate the normalized

part of likelihood ratio test, which is a cause that to inability the classical power study. In fact

we want develop an approach to goodness-of-fit test based on normalized likelihood functions and

normalized AIC’s when the sample size gets large.

Our approach is based onAIC and difference ofAIC’s for two competing models using confi-

dence interval instead of hypothesis testing as its dual; it is because the confidence interval is a set of

all acceptable hypotheses with pre-assigned confidence. The evaluation of a confidence interval for

two competing nested or non-nested model is concentrated on whether the confidence interval has
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contained zero or not. In brief we consider theAIC as a statistic which let us introduce a test statistic

to model selection. This idea is different from the original idea about theAIC which considers the

AIC as a criterion which allows to order the models. We want to emphasize that model selection

could involve a trade-off between simplicity and fit. However there are many ways of making this

trade-off. Essentially however, there is no method that is better than all the others under all condi-

tions, i.e. for any methodsm1 andm2, there are circumstances in whichm1 is better thanm2, and

there are other circumstances in whichm2 will do better thanm1.

It seems that it is difficult to compare the methods, because it sometimes will guide us to an

invalid conclusion. Instead to choose a method we can analyze our problem and precise our aim and

the means to achieve our aim and finally to explain how a criterion works in achieving our aim. The

area of model selection is very wide. A categorization of model selection problem can be considered

according to whether the models are nested, overlap our non-nested. Generally two models are said

to be non-nested if it is not possible to drive each of them from the other one either by means of an

exact set of parametric restriction or as a result of a limiting process. The literature on non-nested

hypothesis testing in statistics was pioneered by Cox (1961), Cox (1962) and Atkinson (1970), this

subject applied by Pesaran (1974) and Pesaran and Deaton (1978). The analysis of non-nested

regression models considered by Davidson and MacKinnon (1981), Fisher and McAleer (1981) and

Dastoor (1983). Vuong (1989) considered the hypothesis testing when two competing models are

nested, overlap and non-nested. His approach is based on the asymptotic distribution of difference

of log-likelihood functions for two competing models. Shimodaira (1998) and Shimodaira (2001)

has considered the sampling error ofAIC in multiple comparisons and has constructed a set of good

models rather than choosing a single model. Recently the asymptotic distribution ofAIC in linear

regression models and the bias correction of this statistics are discussed by Yanagihara and Ohomoto
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Introduction 1.2. PLAN OF THESIS

(2005).

1.2 Plan of Thesis

In the remainder of this chapter we will bring some definitions, theorems and lemmas which will

be frequently used. Chapter 2 is about theory of models. In chapter 3 we recall the goodness-of-fit

tests as a base to introduce late a new approach and test statistics in goodness of fit test. Chapter 4

contains the assumptions and necessary instruments to develop our ideas in subsequent chapters. In

chapter 5 we will propose a new test based on the likelihood ratio test for an empirical distribution

function and we verify some aspects of this test. Chapter 6 concerns our proposed test when we want

to test whether the unknown true density could be a member of a parametric family. This chapter

is largely related to maximized likelihood function (and thenAIC) and its asymptotic distribution,

where we are interested in finding a criterion to achieve a reasonable model in multiple regression

models. A simulation study is done which confirms our idea, see, appendix A. In chapter 7 we will

introduce the difference of expected Kullback-Leibler divergence related to competing models to

verify and a normalized difference ofAIC as an estimator of it. The confidence interval as a dual

of hypothesis testing is constructed to assess which model is better in Kullback-Leibler sense. The

simulation study for logistic regression models confirms our idea in this chapter. We use our idea

about real data when the variable under study is dichotomous. See appendix B.
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Chapter 2

Reminders about models

and some asymptotic results

2.1 Models

The question of choosing a model is of course central in statistics. Usually we are not in the situation

without any knowledge. We have a menu of rival models which could be used to describe the data.

Let M denote a class of these candidate models. Each modelG ∈ M is considered as a set of

probability distribution functions for our data, i.e.

G = {g(.,β) : R → R +;β ∈ B⊆ R d}= (gβ(.))β∈B

whereg(.,β) denotes a probability distribution for observationY andB represents the parameter

space which can be different across different modelsG . We note that in this framework that it may

or may not be the case that one of the candidate modelsG in M is a correct model.
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Reminders about models
and some asymptotic results 2.1. MODELS

For example in a simple case may be we know that our observation has aχ2 density but the true

parameter of density is unknown. In the Figure 3 some of the members ofχ2 density is shown. The

question is which member of this family is the data generating density.
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Figure 3: Example of some members of Chi squared family. As a step of model selection sometimes we

must select a member of the family of densities.
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Reminders about models
and some asymptotic results 2.2. MODEL SELECTION

As another example consider the normal linear model asY = Xβ + ε with usual hypotheses of

normality and independence of theε. We say this model is the full model. It is a suspected that

some regressors i.e. some columns ofX are not necessary to explainingY, which means that the true

values of the coefficients of the coefficient for these regressors are equal to zero, but which ones?

Then the appropriate candidate models are all sub-models of the full model given by zero restrictions

on the parameter vector.

2.2 Model Selection

As a starting point consider observationsȲ = (Y1,Y2, ...Yn) from a scale and regression model of

the formY = Xβ + σε, where X is a fixedn× k matrix, β ∈ R k is a vector of unknown regression

coefficients,σ is a scale parameter, andε is a vector of errors such that(ε1, ...,εn) is a random sample

from a densityf (.). Popular choices forf (.) include the normal, Student’s t, logistic and Cauchy

distrributions. On the other hand distributions on the positive real line include the exponential,

gamma and so on. As a simple class of models consider the classM with two members asG1 =

{N (µ,σ2);µ∈ R , σ2 ∈ R +} andG2 = {C (a,b);a∈ R , b∈ R +} whereC stands for Cauchy

density. The model selection in the first step is choose betweenG1 andG2 and in the second step is

choosing a member of the selected family in the first step. This two families for some of its members

are shown in Figure 4. Model selection is a classical topic in statistics which concerns a vector of

observation̄Y = (Y1,Y2, ...,Yn) with the unknown densityf (.). The ultimate goal of model selection

is to approachf (.). As we said in the last section there are many possible models, that is sets of

densities indexed by parameters. We denote a model asG = G = {g(.,β) : R →R +;β∈B⊆R d}=

(gβ(.))β∈B. If we set f (.) = g(., β̂n) whereβ̂n a function ofȲ is the estimator ofβ, clearly there is
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a risk which is known as the approximation risk. On the other hand if there is a member ofG , say

g(y;β0) which is equal (or near) tof (.) using theg(., β̂n) will introduce the other type of risk as the

estimation risk.
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Figure 4: Two possible densities for data at hand. In a simple case of two candidate models, the model

selection in the first step is choosing between two models and then choosing a member of the selected model.

The discrepancy betweenf (.) and g(., β̂n) is known as bias term, which is in fact the mis-

specification risk, and the discrepancy betweeng(y;β0) andg(., β̂n), is known as the variance term,

which is a statistical risk, i.e.

Overall Risk= Risk o f Modeling+Risk o f estimation

or

Overall discrepancy= Bias + Variance
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How we can minimize these two types of risks, is the model selection object. In fact model selection

is the compromise between these two types of risks. Now if we hadK models asG1,G2, ...,GK

the model selection is in search of a modelG j , j = 1,2, ...,K which minimizes the discrepancy

betweenf (.) andg(., β̂n). In model selection like the classical statistic we want to minimize the bias

and the variance to find the optimal model which has the minimum risk.

2.3 Goal of Model Selection and its means

The goal of model selection depends on the research area. But as a common goal in model selection

we are interested using the selected model in the prediction of the unobserved data. In the Akaike

(1973) framework, a basic assumption is that the domain of unobserved data is the same as the

domain in which the data are sampled, in other words we could think about new data as the data

which re-sampled from observed data. Then there is a connection between model selection and

predictive accuracy which is the expected fit of the unobserved data. But a point about the predictive

accuracy is that its value for observed data is larger than its value for unobserved data. The fit can be

assessed by the method of least squares or by the likelihood function. But the method of least squares

have limitations. The question which arises is whether the likelihood approach applies to all cases?

If the hypothesis is probabilistic, our hypothesis has a likelihood associated and we can choose a

reasonable function of the likelihood as the model selection criterion. This function in the literature

is known as the log-likelihood function. The only problem with the (log)-likelihood function is that

this function depends on the sample size. To solve it, we normalize this function by the sample

size. When we have theK competing models, in each model there is a vector of parameters. When

we estimate the parameters of each models in fact in eachK models we find a member which is
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the best fitting under model. Now we can say that the aim of model selection is to maximize the

predictive accuracy of the best fitting from the competing models. It is clear that when the estimation

of the parameter(s) in likelihood sense in the model is a random variable the normalized maximized

likelihood also is a random variable. This value minus the number of parameter in model divided by

the sample size is a unbiased estimator of the predictive accuracy. This is the Akaike information

criterion,AIC, for model selection, which states that we should choose the model with the lowest

value of this criterion. But this criterion is used as if it were deterministic; we wish to change

emphasize its statistical nature.

2.4 Nested and Non-Nested Models

We will bring the mathematical definition of nested and non-nested models in the next chapters, but

simply we can say that two models are nested if one model can be reduced to the other model by

imposing restriction on certain parameters. Two models are non-nested or completely separated if

one model cannot be reduced to the other model by imposing restrictions on certain parameters. Also

two models can be non-nested in terms of their functional forms and error structures. For example

Y = β0 +β1X1 +β2X2 +β3X3 + ε

and

Y = β0 +β1X1 +β2X2 +β3X3 +β4X4 +u

are two nested models. Discriminating between these two models, can be based on a t-test under

ordinary least squares or a likelihood ratio test under either maximum likelihood or least squares.

On the other hand

Y = β0 +β1X1 +β2X2 +β3X3 + ε
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and

Y = β7 +β3X3 +β4X4 +β5X5 +β6X6 +u

are two non-nested models. Testing such models can be based on model selection tests using differ-

ent concepts as for nested models.

2.5 Probability Metrics

The model selection is related to the distance between probability measures or densities. Determin-

ing whether a sequence of probability measures converges is a task for a statistician or a probabilist.

The quantify that convergence in terms of some probability metric is all of things which we expect

from a probability metric. In the literature there are a host of metrics to quantify the distance between

probability measures. We should notice that some of them are not even metrics in the strict sense.

Selecting a metric depends on our problem. Fortunately we can define a wide range of metrics. We

set(Ω,F ) as a measurable space andM be a space of all probability measures on(Ω,F ). Then

we consider convergence inM , with P andQ as two probability measures onΩ and two density

function with respect toσ-finite dominating measure which could be(P+Q)/2. By settingΩ = R .

we can consider two distribution functions corresponding to the densities. By this assumption some

measure of distance could be defined on probability measures, on densities or on distribution func-

tions. Some of more important metrics in statistics are 1) Discrepancymetric, this metrics is in

[0,1] and is scale-invariant. 2) Hellinger distance, which define between two densities function,

its value is in[0,
√

2], see, Lecam (1986). 3) Kullback-Leibler divergence (Relative entropy),

Kullback-Leibler (1951), this criteria is defined on two densities and its value is in[0,∞]. The rela-

tive entropy is not a metric, because it is not symmetric and does not satisfy the triangle inequality,
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but it has many useful properties, including additivity over marginals of product measures, Cover

and Thomas (1991). 4) Kolmogorov (or Uniform) metric, Kolmogorov (1933), this metric, is a

distance between two distribution functions with value in[0,1]. This metric is invariant under all

increasing one-to-one transformation on the line. 5) Total variation distance, its value is in[0,1].

6) Lèvy metric, is a distance between two distribution functions and takes value in[0,1], this mea-

sure is shift invariant but not scale invariant. 7) Prohkorov (or L èvy-Prokhorov) metric, Prokhorov

(1956), this metric is theoretically important because it metricizes weak convergence on any separa-

ble metric space, it assumes value in[0,1]. 8) Separationdistance, this distance was advocated by

Aldous and Diaconis (1987) to study Markov chains. However, it is not a metric and is in[0,1] 9)

Wassersteinmetric, and 10) χ2 distance, is defined on two densities and its value is on[0,∞], see

Pearson (1900). This distance is not symmetric in its arguments and therefore not a metric. There

are many inequalities between these metrics, but for our object one of the most important relation is

related to the Kullback-Leibler divergence and other metrics. In section 3.4 we will talk about some

of these inequalities.

2.6 Akaike framework and his Theorem

An inferential framework was developed by Hirotugu Akaike (1973) for thinking about how models

are used to make prediction. But the prediction is for future data not for the data at hand (the old

data). Prediction is of fundamental importance in all the science. Prediction accuracy is of obvious

importance. Akaike not only introduced a framework in which predictive accuracy is the goal of

inference, indeed provided a methodology for estimating a model predictive accuracy. Akaike in-

troduced a criterion as Akaike information criterion (AIC) for model selection which is expressed
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by a theorem. In fact he answered to the question as Given the data at hand, how is one to estimate

how well a model will do in predicting new data, data that one does not yet have? The Akaike’s

theorem imposes a penalty term for complexity to the likelihood of the old data (goodness of fit) to

describe how much of gain in likelihood there must be to off-set a given loss in simplicity. Naturally

the Akaike’s theorem has assumptions. First he defines the distance between a fitted model and the

truth by using the Kullback-Leibler discrepancy. Second, he assumes that the new data will be drawn

from the same underlying reality that generated the data at hand which has two parts: that the true

function that connects independent to dependent variables is the same across data sets, and that the

distribution that determines how the values of independent variables are selected is also the same.

The Akaike’s criterion is an unbiased estimator for Kullack-Leibler discrepancy, up to additive and

multiplicative constants. This criterion allows to compare both nested and non-nested models as two

important varieties in model selection. An other interpretation ofAIC is that when this criterion is

applied to the model selection, the number of the parameters of the model that it leads us to choose,

can be viewed as an estimate of the number of parameters of the smallest correct model.

2.7 Complexity in model selection

Complexity is due to the number of parameters and functional form of the model, where the latter

refers to the way in which the parameters are combined in the model equation. Many people believe

that model selection should be based not only on goodness of fit, but must also consider model

complexity. It seems clear that the goodness of fit is a necessary but not sufficient condition in model

selection. An important consideration in model selection is to avoid choosing unnecessarily complex

models because a simple model is more tractable, the stability of parameter estimates is greater and it
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will generalize better to new data sets than a complex model which increase the predictive accuracy

of the model. The complexity of model can be illustrated by considering the range of probability

distributions of observations specified by the model equation that a model can occupy in model

space. As an example consider 4 points asA,B,C andD in Figure 5, where they are modeled by

a constant, a linear, a quadratic and cubic models. This is clear that the more complex model, the

better the fit between the model and the points. This result is about the observed data, but consider

a new data withx = 5. For this observation we have four prediction dependent on our model as

3.25,6,4.75 and 17.04 respectively. By inspection it seems that a value about 5 is reasonable. This

example shows that the better fit does not necessarily produce better inference.We show this result by

Figure 5 which indicates that the complexity in mathematical form does not help to model selection.

This is the meaning of Ockham’s razor, see Chapter 1.

  

Figure 5: Four models are fitted to the data points, It shows it is not a case that the more complex model fits

better than the simpler models to prediction.
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All models occupy a section of model space. Then a simple model is a small section of this

space and a complex model will occupy a large section of the model space. Myung (2000) in an

example shows that the true model (quadratic model) but also more complex models (model of de-

gree four and a non-linear model) can fit data well, which is why goodness of fit is not a sufficient

condition for model selection. For exampleAIC, BIC and root mean squared deviationRMSDare

some criteria for model selection which proposed that adjust for variation in the number of parame-

ters as the complexity among models which was developed by Akaike (1973), Schwarz (1978) and

Friedman et al (1995) respectively. Recently Information-theoretic measure of complexity (ICOMP)

was developed by Bozdogan (1990, 2000). He considered two penalty terms as model complexity

which are related to the covariance matrix of parameter estimates for the model. To show the role

of complexity in model selection, consider a simulation study on regression model as follows. For

nested models computeAIC, BIC and log-likelihood function. The result of simulation shows by

Figure 6. We see thatAIC andBIC have a minimum when we take three good explanatory variables,

but the log-likelihood increases when the number of unuseful explanatory variables increases. To

compare with usual criterion we also draw theRsquared and adjustedRsquared.

By these two simple examples we see that the model selection should be based not solely on good-

ness of fit, but must also consider model complexity. It is shown that model selection based only on

the fit to observed data will result in the choice of an unnecessarily complex model that overfits the

data. The effect of over fitting must be properly offset by model selection methods.

40



Reminders about models
and some asymptotic results 2.7. COMPLEXITY IN MODEL SELECTION

0 2 4 6 8 10 12 14

-3
-2

-1
0

1
2

3

variables number

log-likelihood
AIC
BIC
R squared
adjusted R squared

Figure 6: Comparison of some criteria to model selection.
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2.8 Asymptotic theory

Asymptotic theory is a branch of statistics which have developed because of some theorems and

relations in theory of probability. In fact asymptotic theory is concerned with the situation where

the sample size is large or could be large. The most important of these theorems are the Weak

and Strong Law of large numbers and Central limit theorems. By these theorems many problems

in statistics are solvable. But there is a question, whether asymptotic results are useful, i.e. when

using a sample with finite size, are we close enough to the asymptotic results ? Answer to this hard

question involves the solution of the more difficult finite sample problem. If we want to defend the

asymptotic theory we can say that this idea give insight into what constitutes a reasonable approach

for the finite sample case. For example by this theory the maximum likelihood estimator becomes

extremely popular, and in any area of science all of people use it without anxiety even for small

sample.

Example 2.1 (A simple example of asymptotic distribution in hypothesis testing)

The asymptotic theory is a set of mathematical results useful in approximating the distribution of

random elements. This random elements in general could be any statistics. To illustrate why this

approximations are useful tools in hypothesis testing we can consider a known and simple case

whereYi ∼ N (µ,σ2) and we are interested in testing the hypothesisH0 : µ = µ0 for some specified

value ofµ0. One way to test is to form the statisticHn =
√

n(Y−µ0)
σ whenY is a simple average of

n i.i.d random variablesYi ; i = 1,2, ...,n. If the true varianceσ2 is known thenHn ∼ N (0,1). By

this we could construct a rejection region and make a decision aboutH0. Whenσ2 is an unknown

parameter we form the statisticHn =
√

n(Y−µ0)
σ̂ whereσ̂ is an estimate forσ, in this caseHn ∼ tn−1

and could thus again construct a rejection region.
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We note however, that whenn gets large, the t-student distribution approaches the standard nor-

mal distribution. This suggest that in large samples we would not make a big mistake by ignoring

the fact thatσ is estimated rather than known a priori. Now consider the situation whereYi is not

known to be from a normal distribution.

Note that it still holds thatEH0
(Y) = µ0. WhenH0 is true we would still expectHn or Hn to be

close to zero. It then seems reasonable to continue to useHn or Hn as test statistics. The problem

however is that we no longer know the distribution of these two statistics and thus are unable to

construct a test. This is a situation where an approximation to the distribution ofHn is useful. It is

known that by central limit theoremHn will have a limit distribution which is very close to standard

normal distributionN (0,1), see Figure 7.

On the other handHn = Hn
σ
σ̂ , now if σ̂ be the maximum likelihood estimator forσ by the weak

law of large numbers we have thatσ
σ̂

P−→ 1 then by Slutsky’s theoremHn asymptotically isN (0,1)

and we can construct a rejection region.

2.9 Goodness of Fit Test and

Classical Hypothesis Testing

Hypothesis testing is generally formulated in terms of null and alternative hypotheses, type one and

type two errors and the power of test. If we ask which test is better, the answer is that the test which

has a highest power among all possible tests (for fixed type I error), i.e. an ideal test is uniformly

most powerful test. If we are not able to find a uniformly most powerful test, we turn to the search

of a test with an acceptable power function. In all-purpose goodness of fit tests framework there can

be no optimal test, because there is no specific alternative hypothesis, so it is impossible to define
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the power of the test simply. In goodness of fit test we do not have any clear criteria for choosing

one goodness of fit test procedure over another, i.e. one can propose a goodness of fit test and a

computational method(s). To verify a proposed test we are restricted to verify the power of our test

against a few alternatives. We must notice that these alternatives must be carefully chosen.
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Figure 7: Some members of t-student model with standard normal density as its limit distribution.
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2.10 Reminder on Theorems and Lemmas

The following lemmas and theorems will be used in this work.

Lemma 2.1 (A1) If Yn
L−→Y, and a1,a2 are constants with a2 6= 0, then a2Yn +a1

L−→ a2Y +a1.

Theorem 2.1 (B1) [Central limit theorem(CLT), i.i.d. case (Lindeberg-Lévy)] Let Yi , i = 1,2, ...,n

be i.i.d. with mean µ and finite varianceσ2. Then

1√
n

n

∑
i=1

(Yi −µ) L−→N (0,σ2)

The Lindeberg-Ĺevy CLT is a special case of Lindeberg-Feller or Lyapunov CLT for not necessarily

identically distributed independent random variables. CLT for dependent variables is also estab-

lished, see Lehmann (1998).

Theorem 2.2 (B2) [Weak law of large numbers]. Let Yi , i = 1,2, ...,n be i.i.d. with mean µ and finite

varianceσ2. Then

1
n

n

∑
i=1

Yi
P−→ µ

Theorem 2.3 (B3) Suppose Y1,Y2, ...,Yn i.i.d. with density f(.,θ) whereθ is fixed at some arbitrary

value in the parameter spaceΘ. Letϕ is a function of f(.,θ) and W(Y;θ) = ϕ(Y,θ)−E f {ϕ(Y;θ)}

be a measurable function of y for allθ, and a continuous function ofθ for almost all y. Suppose

that (i)Θ is compact, and that(ii)1
n ∑n

i=1w(Yi ;θ) converges to zero in probability onΘ. Then if

(iii )|ϕ(y;θ)|< g(y) for some function g satisfyingE f {g(Y)}< ∞ then we have

sup
θ∈Θ

|1
n

n

∑
i=1

W(Yi ;θ)| P−→ 0

The history of this theorem come back to definition of stochastically equicontinuous functions for

example Billingsley (p. 55 1968), Billingsley (p. 355 1995) and Andrews (1992). In fact this
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theorem is a combination of two theorems. The first one says that under the assumptions(i) and

(iii ) 1
n ∑n

i=1 ϕ(Yi ;θ) is stochastically equicontinuous and thatE f {ϕ(Y;θ)} is (equi) continuous. The

second one says that if1
n ∑n

i=1W(Yi ;θ) P−→ 0 theorem B3 is right.

Theorem 2.4 (B4)[Slutsky’s theorem] Let Yn,Y,Wn be random vectors or variables. If Yn
L−→Y and

Wn
L−→ c, for a constant c, then

(i) Yn +Wn
L−→ X +c

(ii) WnYn
L−→ cY

(iii) W −1
n Yn

L−→ c−1Y provided c6= 0

Where sometimes we have to consider c as a scaler and sometimes as a vector.

Note that no restrictions are imposed on the possible dependence among the random variables in-

volved.

Theorem 2.5 (B5) If Yn
P−→Y, then also Yn

L−→Y.

Theorem 2.6 (B6) Yn
P−→ c, for a constant c if and only if Yn

L−→ c.

Theorem 2.7 (B7) [Continuous mapping]. Let g: R k → R m be continuous at every point of a set

S⊂ R k such that p(Y ∈ S) = 1.

(i) If Yn
L−→Y, then g(Yn)

L−→ g(Y).

(ii) If Yn
P−→Y, then g(Yn)

P−→ g(Y).

The continuous mapping theorem has many important applications that are based on the following

simple convergence theorem. Assume thatYn
P−→ c where c is a constant andWn

L−→W, then we

have

Yn

Wn

 L−→

 c

W

 jointly. Now the Slutsky’s theorem is a simple application of the continuous

mapping theorem.
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Chapter 3

Reminder on Goodness of Fit Tests

3.1 Testing fit to a fixed distribution

The goodness-of-fit (gof) are used for verifying whether or not the experimental data come from the

postulated model. In this direction one must decide if theoretical and experimental distributions are

the same. Then gof is a hypothesis testing problem and the problem is concerned with the choice of

one of these two alternative hypothesis

H0 : F(y) = F0(y) ∀y

H1 : F(y) 6= F0(y)

for a fixed distribution functionF0.

In fact we can put gof tests into two classes. The first class divides the range of the data into

disjoint cells and compares the observed numbers to the expected number under the hypothesized

distribution. Naturally they are useful for discrete case but we can use them in continuous case also.
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The second class of tests are used for continuous distributions. For these types, we compare an

empirical distribution function of the data with a distribution function underH0. The test statistic for

these tests is based on a measure of correlation between the distributions or based on some measure

of distance between the two distribution functions. A good reference for gof tests is D’Agostino and

Stephens (1986).

The most popular goodness of fit test is due to Pearson (1900). As a new look to this statistic,

for any generalized linear model, the Pearson goodness of fit test is the score test statistic for testing

the postulated model against the saturated model. The relationship between the Pearson statistic and

the residual deviance is therefore the relationship between the score test and the likelihood ratio test

statistics.

3.1.1 Basic Goodness of Fit Test

The most important goodness of fit test goes back at least to Pearson’s Chi-squared test (1900). He

establishes the asymptoticχ2 distribution for a goodness of fit statistic for the multinomial distribu-

tion. It can be useful in both discrete and continuous cases when the data be grouped into classes (or

cells). This statistic is given by

X 2 =
k

∑
j=1

(O j −npj)2

npj
= DT

k−1Σ−1
k−1Dk−1

whereO j is the number of observations in cellCj , p j = PH0
(Y ∈Cj) then by this definition we have:

Dm = n−1/2(O1−np1, ...,Om−npm)T L−→ N∼ (0,Σm) f or m≤ k

Σm =
(

σi j

)
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σi j =


−pi p j if i 6= j

pi(1− pi) if i = j

Σ−1
k−1 =

(
δi j

)

δi j =


p−1

k if i 6= j

p−1
i + p−1

k if i = j

A well known result in the asymptotic theory of tests of fit says that underH0

χ2 L−→ χ2
k−1

In the continuous case theX 2 statistic will not distinguish two different distributions sharing the

same cell probabilities. It is because we look only to the cell frequency which produces a loss of

information that results in lack of power.

3.1.2 Tests on the basis of Functional Distance

A proposed way to improve the Pearson’s statistics is by employing a functional distance to mea-

sure the discrepancy between hypothesized distributionF0 and the empirical distribution functionFn

where for i.i.d. random variablesY1,Y2, ...,Yn is defined as

Fn(y) =
1
n

n

∑
i=1

I(−∞,y](Yi).

The first one of this type is the test statistics which to known as the Cramér-Von Mises type statistics.

Here we reintroduce them and others in brief.

Craḿer (1928) and in a more general form Von-Mises(1931) proposed

ω2
n = n

∫ ∞

−∞
(Fn(y)−F0(y))2ζ(y)dy
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for some weight functionζ as an adequate measure of discrepancy.

The Kolmogorov test (1933) is the easiest and also most natural non-parametric test. It is based

on theL∞ norm and computes the distance between an empirical and the theoretical distribution

function under the null hypothesis. UnderH1 the difference between the empirical and theoretical

distribution functions will be noticeable. This statistic is given by

Dn =
√

nsup
y∈R

|Fn(y)−F0(y)|

A problem mathematically similar to Kolmogorov’s was studied by Smirnov (1939,1941) he has

consideredD+
n andD−

n where

D+
n =

√
nsup

y∈R
(Fn(y)−F0(y))

D−
n =

√
nsup

y∈R
(F0(y)−Fn(y))

The statisticsDn,D+
n andD−

n are known as Kolmogorov-Smirnov statistics. They have the advantage

of being distribution free. Thus the same p-values can be used to obtain the significance level when

testing it to any continuous distribution.

In search of this property forω2
n has introduced a simple modification. A modification for

Craḿer-Von Mises distance is

W2
n (ψ) = n

∫ ∞

−∞
ψ(F0(y)){(Fn(y)−F0(y))2}dF0(y)

which was proposed by Smirnov (1936-1937). All the statistics which can be obtained by varyingψ

as we said are usually refereed to as statistics of Cramér-Von Mises type, two of them are as follows.

The Craḿer-Von Mises’s statistic obtained byW2
n for ψ(.) = 1,

W2
n = n

∫ ∞

−∞
(Fn(y)−F0(y))2dF0(y)
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and the Anderson-Darling’s statistic (1955) forψ(t) = (t(1− t))−1,

A2
n = n

∫ ∞

−∞

(Fn(y)−F0(x))2

F0(y)(1−F0(y))
dF0(y)

Consideration of different weight functionsψ allows the statistician to put special emphasis on

the detection of particular sets of alternatives. Some people prefer employing Cramér-Von Mises

statistics instead of Kolmogorov-Smirnov statistics; it is because Kolmogorov-Smirnov statistics

accounts only for the largest deviation betweenFn(t) andF(t), while the other one is a weighted

average of all the deviations betweenFn(t) andF(t). Anyway we rejectH0 if in each case the value

of the statistic is large.

3.2 Adaptation of tests coming from the fixed-distribution

All the procedures in the last section were based on a distribution obtained from a sample and fixed

distribution. A way to adapt this idea for the parametric case is replacing the fixed distribution by

F(.,θ), that is by a model. Historically it was Pearson who suggested

X̂ 2 =
k

∑
j=1

(O j −npj(θ̂n))2

npj(θ̂n)

wherep j(θ̂n) denotes the probability underF(.,θ), thatY1 falls into cell j. At these times, Pearson

did not realize that the estimation of parameters changes the asymptotic distribution ofX̂ 2. It was

Fisher who pointed out that if̂θn is the maximum likelihood estimator̂X 2 has an asymptoticχ2

distribution. He also pointed out that the estimating parameter from the grouped data instead of the

complete data will cause a loss of information resulting in lack of power. Chernoff and Lehmann

(1954) is a good reference for the parametric case. The choice of cells is an important part of the

search for asymptotic distribution of Pearson’s statistic. Because the distribution of Pearson statistic
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is a consequence of the asymptotic normality of the cell frequencies, then it will be sensitive to

the magnitude of these frequencies. Hence , combining neighboring cells with few observations is

suggested by Cochran (1952).

Adaptation forW2
n (ψ) andD̂n are

Ŵ2
n (ψ) = n

∫ ∞

−∞
ψ(F(y, θ̂n)){(Fn(y)−F(y, θ̂n))2}dF(y, θ̂n)

and

Dn =
√

nsup
y∈R

|Fn(y)−F(y, θ̂n)|

respectively. Unfortunately in general the nice property exhibited byW2
n (ψ) andDn of being dis-

tribution free does not carry over to the parametric case. The asymptotic distribution of these two

statistics is due to Darling (1955). He showed that these asymptotic distributions are a function of a

Gaussian process.

3.3 Tests on the basis of Correlation and Regression

Goodness-of-fit tests in this subsection focus on the analysis of the probability plot. We consider

F ls as a location scale family of distribution functions i.e. given a probability measureK0, we

will assume thatF ls is the family of distribution functions obtained fromK0 by location or scale

changes. Assume thatK0 is standardized and suppose thatY1,Y2, ...Yn is an i.i.d. sample whose

common distribution belongs toF ls and has meanµ and varianceσ2 . In fact we want to test that

H0 : F(y) = K0(
y−µ

σ
)

Let Yr = (Y(1),Y(2), ...,Y(n)) be the corresponding ordered statistics andWr = (W(1),W(2), ...,W(n))

be an ordered sample with underlying distribution functionK0 and letm′ = (m1,m2, ...,mn) and
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V = (vi j ) be, respectively, the mean vector and the covariance matrix ofWr . If H0 is true

W(i) =
Y(i)−µ

σ
, in distribution, i = 1,2, ...,n

Then the plot ofY(1),Y(2), ...,Y(n) against the pointsm1,m2, ...,mn should be approximately linear.

Lack of linearity in this plot suggests that the distribution ofYi does not belong to the family of

distribution inH0 and then we would expect to see some curvature. Checking this linearity is often

done by eye. However, some analytical approaches have been devised to test it. On the other hand

we know that

S2
n = ∑n

i=1(Xi − X̄)2

n−1

is a consistent estimator forσ2 on the other hand

µ̂BLUE = Yn

and

σ̂BLUE =
m′V−1Yr

m′V−1m

are the best linear unbiased estimator ofµ andσ. Hence, under the null hypothesis,
σ̂2

BLUE
S2

n
should be

near to 1.The Shapiro-Wilk (1965) or W-test statistic is a normalized version of
σ̂2

BLUE
S2

n
,

Wn =
(m′V−1Yr)2

(m′V−1V−1m)∑n
i=1(Yi −Ȳ)2

It is clear thatWn ∈ [0,1] and the small value of this statistic would lead to rejection of the null

hypothesis. According to simulation by Shapiro et al.(1968) it seems that the W-test is one of the

most powerful normality tests against a wide range of alternatives. A weakness of the W-test is that

the procedure may be not consistent for testing fit to non-normal families of distributions and also

computation of this test requires previous computation ofm andV−1.
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The Shapiro-Francia test is based on replacing matrixV−1 by the identity I which defined as

W′
n =

(m′Yr)2

(m′m)∑n
i=1(Yi −Ȳ)2

the computation of which is easier thanWn. A further simplification of theW′
n was proposed by

Weisberg et al (1975) by replacingmby the vectorM = Φ−1( i−3/8
n+1/4), i = 1,2, ...,n, andΦ denotes

the standard Gaussian distribution function. This statistic is easier to compute thanW′
n

3.4 Tests on the basis of Likelihood Functions

3.4.1 Berk-Jones’s statistics

Berk and Jones (1979) have defined a test statistic on the basis of hypothesized and empirical distri-

bution function in a fixed pointy. Then for fixedy we have

nFn(y)∼ Bin(n,F(y))

λn(y) =
supF(y) Ln(F(y))

Ln(F0(y))
=

Ln(Fn(y))
Ln(F0(y))

=

{Fn(y)
F0(y)

}nFn(y){1−Fn(y)
1−F0(y)

}n(1−Fn(y))

by defining

logλn(y) = nK(Fn(y),F0(y))

where

K(Fn(y),F0(y)) = Fn(y)(log(
Fn(y)
F0(y)

))+(1−Fn(y)) log
1−Fn(y)
1−F0(y)

the Berk-Jones’s statistics is given by

Rn = sup
y∈R

n−1 logλn(y) = sup
y∈R

K(Fn(y),F0(y)).
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We rejectH0 for large value ofRn. UnderH0

nRn− log log(n)+
1
2

log log log(n)− 1
2

log(4π) L−→W

where

F(w) = e−4e−y

Einmahl and McKeague (2003) propose an integral statisticTn defined by

Tn = 2
∫ 1

0
K(Fn(y),F0(y))dF0(y)

Jager et al (2005) introduced a related statistic, the “reversed Berk-Jones statistic” which differs from

the Berk-Jones statistic.

3.4.2 Generalized Linear Models (GLMs) and Deviance

The generalized linear models expresses the means of the response variables as some function of a

linear combination of the explanatory variables

E{Y|X}= ϒ(β0 +β1X1 + ...+βkXk)

where the form of the functionϒ(.) is known and the parameters of the modelβ0,β1, ...,βk are not

known. If the functionϒ(.) is the identity function andY has the normal distribution this model is

the simple linear model.

An issue is to evaluate the relevance of our model for our data and how well it fits the data (gof).

The strategy is finding a simple model but with a good fit (the principle of parsimony). GLMs,

McCullagh and Nelder (1989), provide a fairly simple, but widely useful extension of the usual

Normal linear model. Start with the standard linear model meeting the Gauss-Markov conditions
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with p = k+1

Y
(n×1)

= Xβ
(n×p)(p×1)

+ ε
(n×1)

E(Y)
(n×1)

= θ
(n×1)

= Xβ
(n×p)(p×1)

X: Matrix of observed data values.

Xβ : Linear structure vector.

ε: Error terms .

Y: A variable which is distributed as i.i.d normal random with meanθ and constant varianceσ2.

Generalization

We generalize this with a new “linear predictor” based on the mean of the outcome variable Y which

is no longer required to be normally distributed or even continuous.

ξ(µ)
(n×1)

= η
(n×1)

= Xβ
(n×p)(p×1)

whereξ(.) be an invertible, smooth function of the mean vectorµ= E(Y).

The effect of the explanatory variables is now expressed in the model only through the link from

the linear structure,Xβ, to the linear predictor,η = ξ(µ), controlled by the form of the link function,

ξ(.). This link function connects the linear predictor to the mean of the outcome variable not directly

to the expression of the outcome variable itself, so the outcome variable can now take on a variety

of non-normal forms. The link function connects the stochastic component describes some response

variable from a wide variety of forms to all of the standard normal theory supporting the linear

systematic component through the mean function

ξ(µ) = η = Xβ

ξ−1(ξ(µ)) = ξ−1(η) = ξ−1(Xβ) = µ= E(Y)
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In general we suppose that the stochastic component Y is distributed according to a member of

exponential family with meanµ as follows

g(y;θi ,ϕ) = exp{ (yθi −b(θi))
ϕ/wi

−c(y,ϕ)}

where the weightwi is a known constant andϕ > 0 is a scale parameter (often it is considered as a

nuisance parameter). The stochastic and systematic components are linked by a function ofη which

is taken from the inverse the of the canonical link,b(θ). Givenb the functionc is determined by the

requirement theg integrates to one. The GLMs are free of the assumption that the residuals have

mean zero and constant variance, but there are more complex stochastic structures. We may consider

the residual as

R= Y−ξ−1(Xβ)

but this does not provide the nice distribution theory we get from the standard linear model.

Deviance

The deviance function is a residual function for generalized linear models. This is built in a similar

fashion as the likelihood ratio statistics, comparing the log-likelihood from a proposed model speci-

fication to the maximum log-likelihood possible through the saturated (full or maximal) model. The

saturated model is loosely defined as the model where the number of parameters equals the number

of data points. The resulting difference is multiplied by two and called the summed deviance. In fact

in saturated model there is basically one parameter per observation then we can think of this as the

most general model possible with the maximum number of parameters that can be estimated.

The deviance assesses the goodness of fit for the model by looking at the difference between

two log-likelihood functions. The resulting difference is multiplied by two and called the summed

Deviance. The goodness of fit intuition is derived from the idea that this sum constitutes the summed
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contrast of individual likelihood contributions with the native data contributions to the saturated

model. As we say the point here is to compare the log-likelihood for the proposed (current) model

l(θ̂,ϕ|y) =
n

∑
i=1
{yi θ̂i −b(θ̂i)

ϕ/wi
+c(yi ,ϕ)}

to the same log-likelihood function with identical data and the same link function, expect that it now

with n coefficients for then data points, i.e. the saturated model log-likelihood function

l(
∼
θ,ϕ|y) =

n

∑
i=1
{yi

∼
θi −b(

∼
θi)

ϕ/wi
+c(yi ,ϕ)}.

The latter is the highest possible value for the log-likelihood function achievable with the given data,

then

l(
∼
θ,ϕ|y)≥ l(θ̂,ϕ|y)

The deviance function is then given by

D(θ,y) = 2
n

∑
i=1

[l(
∼
θi ,ϕ|y)− l(θ̂i ,ϕ|y)] = 2

n

∑
i=1

[yi(
∼
θi − θ̂i)− (b(

∼
θi)−b(θ̂i)](ϕ/wi)−1.

This statistic under some conditions is asymptoticallyχ2
n−k. The conditions will be discussed for

each type of response data individually. In fact the distribution of the deviance is approximately

χ2
n−k,ν, whereν is the non-centrality parameter. When theYi ’s are normal and the link is identity

function and the variance is known the deviance has a exactχ2 distribution. Otherwise we will

consider the ratio of mean deviances, which does not involve the scale parameter in the exponential

dispersion family. In general, we use the deviance in goodness-of-fit tests for Poisson and Binomial

GLMs where we can calculate the deviance from the data and there is no unknown parameter. On the

other hand it is noticeable that sometimes the deviance is not informative. For example for Bernoulli

observations the Deviance depends on the sufficient statistics not the individual observation and so

is, of little use for measuring goodness of fit.
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Dependence of degree of freedom ton when we talk about asymptotic density seems irrelevant.

In fact when we considerθ as a known vector with fixed lengthk

D(θ,y) = 2
n

∑
i=1

[l(
∼
θi ,ϕ|y)− l(θi ,ϕ|y)] = 2

n

∑
i=1

[yi(
∼
θi −θi)− (b(

∼
θi)−b(θi)](ϕ/wi)−1 ∼ χ2

k

if E(θ̂) = θ and under mild regularity conditions. The proof is given in any statistical standard book

as example Lehmann (1986), but this proof does not generally hold for saturated models because the

length ofθ is not fixed and grows with sample size. Clearly a small deviance implies a good fit.

The deviance function depends onϕ then simply the unscaled deviance function is defined as

ϕD(θ,y) = 2
n

∑
i=1

wi [yi(
∼
θi −θi)− (b(

∼
θi)−b(θi)]

Example 3.1 (Normal (linear) model)

If Y is distributed according the normal model we have

gY(y;θ,ϕ) = (2πσ2)−1/2exp{−(y−µ)2/2σ2}=

exp{(yµ−µ2/2)/σ2− 1
2
(y2/σ2 + log(2πσ2)}

Now for Y1,Y2, ...,Yn from theN (µi ,σ2) whereµi ’s are distinct we haveθi = µi , ϕ = σ2, and

a(ϕ) = ϕ, b(θi) = θ2
i /2, c(y,ϕ) =−1

2{y
2/σ2 + log(2πσ2)})

for a sample with tail n
∼
θi = yi and θ̂i = µ̂i then ,

D(y; µ̂) =
n

∑
i=1

(yi − µ̂i)2

σ2

the residual sum of squares. This deviance is a function of unknown parameterσ2.

The unscaled deviance function is given byσ2D(y; µ̂) = ∑n
i=1(yi − µ̂i)2 which is residual sum of

squares for the proposed (current) model.
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Example 3.2 (Logistic model)

SupposeYi ∼ Bin(ni ,πi). Then

log
n

∏
i=1

gY(yi ;πi) =
n

∑
i=1
{yi logπi +(ni −yi) log(1−πi)}

and

D(y; µ̂) = 2log
∏n

i=1gY(yi ;yi)
∏n

i=1gY(yi ; π̂i)
= 2

n

∑
i=1
{yi log

yi

ni π̂i
+(ni −yi) log

ni −yi

ni −ni π̂i
}

If we perform a logistic regression,yi is a 0−1 outcome then forni = 1, 0 log0= 1 andϕ = 1, we

have

D(y; µ̂) =−2
n

∑
i=1
{yi logπ̂i +(1−yi) log(1− π̂i)}
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Chapter 4

Motivation to Model Selection Tests

4.1 Introduction

This chapter is a motivation to the next three chapters, especially to chapters 6 and 7. Model selection

goes through estimating the performance of different models in order to choose the best one. On the

other hand we know that the statistical models are typically merely approximations to reality and so

most often are wrong; however they may be useful. First because a little of knowledge is better than

nothing, second an assumed parametric model may be close to the true unknown model, so that very

little is lost by the assumed model and we can use the rich literature of parametric statistics, and

third in some applications the parameters for an assumed parametric model can often be interpreted

usefully. Then selection and evaluation of a model is an important step. To do it we turn to the

hypothesis testing for model selection or using some criteria.

Sometimes we consider only the parameterβ as unknown, that is, we have assumed the shape of

the distribution up to the value of an unknown parameter, which allows us to focus on inference for
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this parameter but in many situations one may not have enough confidence that this is so. It means

that sometimes we need to test the shape of the density for instance. Generally in this direction we

require formulation of null and alternative hypothesis. An ideal hypothesis test is the test which

gives the highest power among all possible tests at the fixed level of test (UMP tests). But this type

of tests do not work for non-nested parametric families.

In other situations, a problem concerned withn i.i.d observations is to test whether the observa-

tions have a particular distribution, in other words we want to test whether a particular distribution

fits our data. In some cases these tests are informal. Procedures of this kind are called goodness of

fit tests.

There is a controversy about the connection between hypothesis testing and goodness of fit tests,

because the alternative hypothesis is not very clear for the goodness of fit test. Then one wants to

know how well this method will perform in a decision situation. That is, how do we assess the per-

formance of the test? For answering this essential question we must be able to study the power of the

proposed method against some alternatives. It seems that there is not an overall approach to define

the alternative hypothesis in goodness of fit tests and it depends on the situation. In model selection

we can consider each of the postulated models as the null model. It leads us to consider the null

likelihood function or a function of it as our criterion to define a test. Thus we need to use a metric

to verify the proximity of the postulated model to the true one. This chapter is essentially related

to assumptions, properties of maximum likelihood estimators, maximized likelihood function,AIC

and some metrics which are useful to model selection.
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4.2 Assumptions

Suppose that the random variableY is a measurable real valued function from a probability measure

space(Ω,F ,P0) into (R ,BR ) where for allI ∈ BR we haveµ(I ) = P0(X ∈ I ) =
∫

I dP0 as the

probability law ofX, which admits a densityf ≡ dP0
dν whereν is aσ-finite measure on(R ,BR ) and

P0 is absolutely continuous w.r.t.ν with regard to the Lebesgue’s measure onR . Suppose thatf is

unknown andY1,Y2, ...,Yn be an i.i.d sample, independent ofY whereY ∼ f (.) and with the same

distribution as Y. We know that the observations can not be infinite but we assume thatn becomes

large.

ConsiderPβ as a member of the family of all parametric probability measures on(Ω,F ) which

is absolutely continuous w.r.t.η a σ-finite measure on(R ,BR ) and admits the densityg(.;β) =
dPβ
dη

with regard to the Lebesgue’s measure onR which are measurable iny for everyβ ∈ B (compact)

and continuous inβ for everyy∈ R . ThenPβ(Y ∈ I ) =
∫

I g(y;β)dη. Always we can choiceη = ν

if for all β, Pβ is absolutely continuous w.r.t. any measureη 6= ν it follows Pβ andP0 are absolutely

continuous w.r.t.1
2(η + ν) then we can replaceη andν by 1

2(η + ν). The notationg(Y;β) asserts

thatg(., .) : Ω×B→ R + then logf : Ω×B→ R . Here after sometimes we showg(.;β) by fβ.

If g belongs to a parametric family of densities this family (assumed or postulated family) could

be considered asG = {g(.,β) : R →R +;β∈B⊆R d}= (gβ(.))β∈B. When we consider a parametric

model we assume that the parameter uniquely determines the probability law related to a member of

G i.e. if we know the parameter then we know the underlying probability law.

Related tof (.) andg(.,β) suppose that the following conditions are satisfied.

(C0) i) f (y) is measurable iny, g(y;β) is measurable in y for eachβ ∈ B, ii) g(., .) underG are

distinct (β is identifiable), iii) and alsog(., .) is continuous inβ for eachy∈ R .
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(C1)B is compact.

(C2) i) f (y) andg(y;β), ∀y ∈ R are greater than zero and ii)Sβ = {y;g(y;β) > 0} the common

support ofg(.,β) does not depend onβ .

(C3) i) g(y,β) is twice continuously differentiable as a function ofβ and also ii)
∫

R logg(y;β) dy is

twice differentiable under the integral sign with respect toβ for all y∈ Sβ.

(C3)′ g(.,β) is three times differentiable with respect toβ and the third derivative is continuous with

possibility of differentiating under the integral sign.

(C3)′′ If β? denotes the true value ofβ there exists a positive numberc(β?) and a functionMβ?
(y)

such that

| ∂3

∂β3 logg(y;β)| ≤Mβ?
(y) ∀y∈ Sβ, |β−β?|< c(β?)

and

Eβ?
{Mβ?

(Y)}< ∞.

(C4) There is a functionϑ which does not depend onβ, such that| logg(y;β)| ≤ ϑ(y) ∀β ∈ B and

E f (ϑ(Y)) < ∞.

If f (.) can be zero then logf (.) can be−∞. Then we consider the extendedR i.e R and assume that

{ω ∈Ω : X(ω) = ∞} and{ω ∈Ω : Y(ω) =−∞} both lie inF and the random variableY : Ω→ R

defined on(Ω,F , .) is measurable and hence the log likelihood function is a measurable extended

real valued function.
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MAXIMUM LIKELIHOOD ESTIMATOR

4.3 Likelihood Function and

Maximum Likelihood Estimator

Fisher (1912, 1922) introduced the likelihood in the context of estimation via the method of maxi-

mum likelihood. The likelihood is a tool for dealing with the uncertainty due to the limited amount

of information contained in the data. The purpose of the likelihood function is to convey information

about unknown quantities (a parameter or unobserved random values or a mixed of both of them).

The information is incomplete, and the likelihood function will express the degree of incomplete-

ness. Officially the likelihood function is defined as below. When a parametric model is available,

we ask what is the best estimate by data at hand. Here the uncertainty is in a way a nuisance.

Definition 4.1 Assuming a statistical model parametrized by a fixed and unknownβ, the likelihood

L(β) is the probability of the observed data z considered as a function ofβ.

The datazcould include any set of observations. Fisher (1922) noticed that it is the entire likelihood

function that captures all the information contained in the data about a certain parameter not just

its maximizer but in the context of point estimation we are looking for the maximum likelihood

estimator. The likelihood function for an i.i.d. sample with sizen and with densityf (.) = g(.,β), β∈

B is defined as

n

∏
i=1

g(yi ;β)

and the log-likelihood function is

n

∑
i=1

logg(yi ;β).
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Our interest is in the weighted or normalized log-likelihood function which is defined as:

1
n

n

∑
i=1

logg(Yi ;β).

When we write “big Y” the log-likelihood becomes a random function, and every things about it,

including its derivatives, is also random. Each different value ofβ ∈ B as a specified point in log-

likelihood function and its derivatives gives a different random variable. Like every other random

variable, they have probability distributions.

An important aspect of likelihood functions in asymptotic theory is finding a root for this kind

of functions which is consistent for the true value ofβ. Under (C0)i,ii) and (C2)ii) we have:

Pβ?
{

n

∏
i=1

g(Yi ;β?) >
n

∏
i=1

g(Yi ;β)}→ 1 as n→ ∞

for any fixedβ 6= β? whereβ? = argmaxβ∈B E f {logg(Y;β)} is the true value of parameter and we

remember that we setf (.) = g(., .), Lehmann (1983). It is because

Pβ?
{

n

∏
i=1

g(Yi ;β?) >
n

∏
i=1

g(Yi ;β)}= Pβ?
{1

n

n

∑
i=1

logg(Yi ;β?) >
1
n

n

∑
i=1

logg(Yi ;β)}=

Pβ?
{1

n

n

∑
i=1

logg(Yi ;β)− 1
n

n

∑
i=1

logg(Yi ;β?) < 0}

By the law of large numbers, the left side tends in probability to

Eβ?
{log

g(Yi ;β)
g(Yi ;β?)

}

the log function is strictly convex then by Jensen’s inequality it is less than

logEβ?
{ g(Yi ;β)

g(Yi ;β?)
}< 0

thus

Pβ?
{1

n

n

∑
i=1

logg(Yi ;β)− 1
n

n

∑
i=1

logg(Yi ;β?) < 0}→ 1 as n→ ∞
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If we setβ = β? + δ whereδ is a positive arbitrary value near to 0, it follows that the likelihood

function has a local maximum atβ?. By this result, the density of random sample at trueβ? exceeds

that at any other fixedβ with high probability whenn is large. We do not knowβ? but we can

determine the valuêβn of β which maximizes the density of the random sample. If this value exists

and is unique, it is the Maximum Likelihood Estimator(MLE). Then ,

β̂n = argmax
β∈B

{
n

∏
i=1

g(Yi ;β)}.

TheMLE has many large sample properties which make it popular and attractive for all researcher.

It is asymptotically consistent, efficient and unbiased and the estimates themselves are normally

distributed. Generally, a single number is not enough to represent a function. If the log likelihood

is well approximated by a quadratic function, we need at least the location of its maximum and the

curvature at the maximum. When the size of sample gets large these two quantities become more

acceptable.

We usually find the maximum likelihood estimator as a solution of the score function

∇ logg(Y;β) = ∇
n

∑
i=1

logg(Yi ;β) = 0,

where∇ j is the j-th derivative ofg(.,β) with respect toβ andY = (Y1,Y2, ...,Yn). If the solution is

denoted bŷβn we have

∇
n

∑
i=1

logg(Yi ; β̂n) = 0.

Note that this does not imply that∇∑n
i=1 logg(Yi ;β?)= 0. Just the opposite. In fact∇∑n

i=1 logg(Yi ;β?)

is a random variable and hence doesn’t have a constant value. The second derivative of the log-

likelihood is negative, so if define

I(β) =−Eg{∇2
n

∑
i=1

logg(Yi ;β)}=−Eg{
∂2 logg(Y;β)

∂β∂β′
}
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or in other form the information matrix is given by

J(β) = Eg{
∂ logg(Y;β)

∂β
∂ logg(Y;β)

∂β′
}

then a stronger consistency result forβ̂n is

β̂n
a.s−→ β?.

For almost every sequence of sample whereEg{logg(Y;β?)} exists (see White, 1982), the curvature

at β̂n is I(β̂n). A large curvatureI(β̂n) is associated with strong peak which indicates less uncertainty

aboutβ. The quantityI(β̂n)is called the observed Fisher information. An important asymptotic

property of normalized Likelihood function is that according to the weak law of large numbers, for

eachβ ∈ B we have,

1
n

n

∑
i=1

logg(Yi ;β)} P−→ Eg{
1
n

n

∑
i=1

logg(Yi ;β)} (1)

The compactness ofB confident that the supremes onβ exists and also supβ∈B of a measurable

function is measurable. This property for parameter space is discussed in White (1994). We note

that the compactness of parameter space is not necessary for consistency of MLE but we need to this

condition for (1). Anyway we setB as a compact set because for use of ULLN also we need this

kind of parameter space.

4.3.1 Correctly Specified and Mis-Specified models

If the data generating densityf was known, then we would know everything. The estimation, infer-

ence and especially the hypothesis testing arise becausef is unknown. Then we postulate a model,

g(.;β)∈G , and the question which arises is whether theY1,Y2, ...,Yn is an i.i.d. sample ofg(.;β)∈G .

A fundamental assumption in classical hypothesis testing is thatf belongs to a parametric family

68



Motivation to Model Selection Tests 4.4. METRICS ON SPACES OF PROBABILITY

of densities i.e.f ∈ G . If so, there existsβ? which implies f (.) = g(.;β?). In this case we say the

model is correctly (or well) specified. On the other hand if@β ∈ B which implies f (.) = g(.;β) we

say the model is mis-specified. Fortunately as we will see in the next section in this case there exists

a β0 ∈ B which minimizes the discrepancy betweenf (.) andg(., .).

When the model is correctly specified the statistical inference and specially the asymptotic in-

ference is straightforward; see Wald (1949) for strongly consistency ofMLE and Cramer (1945)

and Hajek (1970) for asymptotic variance. In the mis-specified case it is hard to decide whom to

give credits for the asymptotic behavior ofMLE. Huber (1967) proved consistency ofMLE under

some regularity conditions. Akaike (1973) recognized it but provided only heuristics. White (1982)

provided an exact proof..

4.4 Metrics on spaces of probability

Metrization of probability measures i.e. defining a notation of distance is important, since in statistics

one is often concerned about convergence of estimates based on finite samples to the true parameter

which is often a probability measure and a definition of convergence is the notation of a distance.

Two usual metrics are: Total variation (TV) and Hellinger distance (HD). For the probability

space(Ω,F ) the TV distance between probability measuresP andQ is defined as:

DTV(P,Q) = sup
E∈F

|P(E)−Q(E)|= 1
2

∫
| f −q|dµ

and the HD is defined as:

H2(P,Q) =
1
2

∫
[(
√

f −√q]2dµ

whereµ is any measure that dominates bothP and Q and f and q are the densities ofP and Q

respectively with respect to measureµ i.e. f = dP
dµ andq = dQ

dµ .
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This is easy to see that theH2(P,Q) is independent ofµ and also f and q. To show it, let

µ1 = P1 +Q1 and define:

f1 =
dP1

dµ1
and q1 =

dQ1

dµ1
.

It is clear thatµ1 dominates bothP1 andQ1, so the derivatives exist. On the other handµ dominate

µ1. Now ∫
[
√

f −√q]2dµ=
∫ [√

dP
dµ1

dµ1

dµ
−

√
dQ
dµ1

dµ1

dµ

]2

dµ=

∫ [√
dP
dµ1

−

√
dQ
dµ1

]2

dµ1

This shows that the invariance of the Hellinger distance to the choice of the dominating measureµ.

All of these measures are known as D-divergences or Ali-Silvey distances which defined as bellow.

Definition 4.2 Definition Given any continuous convex function D: [0,+∞] → R ∪ {∞}, the D-

divergence between f and q is given by ID( f ,q) =
∫

zq(z)D( f (z)
q(z) ). The TV, HD and KL divergence

are given by choosing D(u) = 1
2|u−1|, D(u) = 1

2(
√

u−1)2 and D(u) = ulog(u) respectively.

It is clear that the Kullback-Leibler discrepancy is a convex function. This convexity could be easily

verify for the nested models.

Example 4.1 (Convexity of KL for Bernoulli distribution)

Consider the Bernoulli modelBin(1,π) a member of this family isBin(1,π0) whereπ0 is known.

Then we haveg(Y;π) = πY(1−π)1−Y, Y = 0,1. The respective measure for this model is given

by KL{g(.;π);g(.;π0)}= π0 log π0
π +(1−π0) log 1−π0

1−π if we setπ0 = 0.1,0.2, ...0.9
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Figure 8: An example which shows that the convexity of Kulback-Leibler criterion for Bernoulli family and

its minimum which happens atπ0.
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Example 4.2 (Convexity of KL for Normal distribution)

The KL discrepancy for the Normal model as{N (µ,1), µ∈ R } is given by (µ−µ0)2

2 . For µ0 = 1

the KL discrepancy shows in Figure 8.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K
L 

 D
is

cr
ep

an
cy

Figure 9: Kullback-Leibler discrepancy for Normal density.

These two examples suggest that in realistic situations when we do not have any knowledge about
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the true density which generates the data we should search for a minimization procedure for the KL

discrepancy. This idea agrees with the distance concept of KL criterion.

4.4.1 Kullback-Leibler Discrepancy (divergence)

An important discrepancy measure in statistics is known as the Kullback-Leibler discrepancy (Kullback-

Leibler distance, although the term ”distance” needs to be interpreted because this criterion does not

satisfy some properties of a usual distances). By notation of section 4.4 the Kullback-Leibler dis-

crepancy is defined as:

KL(Q;P) =
∫

f log
f
q

dµ

There is a relation between three distances as follows

[DTV(P,Q)]2 ≤ 2H2(P,Q)≤ KL(Q;P)

It follows that if theKL discrepancy between a sequence of probabilities{Pn} and a fixed probability

P goes to zero, then this convergence should happen for Hellinger and total variation sense.

We set a sample of i.i.d. random variables asY1,Y2, ...,Yn having pdf f = f (.) and a parametric

model: G = (g(.,β)) = (gβ(.))β∈B The Kullback-Leibler discrepancy (KL criterion) for the data

generating densityf andg(.;β) ∈ G is defined as

KL{g(.;β); f (.)}=
∫

log
f (y)

g(y;β)
f (y)dy

which is a non-negative quantity. By definition, the moreg(.;β) agrees withf (.) the smaller

KL{g(.;β); f (.)} is. Then the closest member inG to the f is g(.,β0) whereβ0 ∈ B is the minimizer

of KL{g(.;β); f (.)} as defined in 4.3. Under this divergence,g(.;β0) is the best approximation tof

under modelG . It is important we notice that when the model is correctly specified we have:

β0 = β?.
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Note that according to the weak law of large numbers, for eachβ ∈ B we have,

1
n

n

∑
i=1

logg(Yi ;β)} P−→ E f {
1
n

n

∑
i=1

logg(Yi ;β)} (1)

A natural estimator ofβ0, Knight (1999), is the minimizer̂βn of the

KLn{g(.;β); f (.)}=
1
n

n

∑
i=1

log
f (Yi)

g(Yi ;β)

since it can be written as

1
n

n

∑
i=1

log f (Yi)−
1
n

n

∑
i=1

logg(Yi ;β)

β̂n minimizes the second term. We note that this term is the negative normalized log-likelihood func-

tion, then the minimizer ofKLn{g(.;β); f (.)} is simply the maximum likelihood estimator. Hence

we can comparef (.) with g(.; β̂n) an estimate ofg(.;β0) the best approximation tof underG .

Now consider a random variable whose distribution comes fromG (the correctly specified case).

Let β? denote the data generating parameter andY1,Y2, ...,Yn i.i.d from the underlying distribution.

The Kullback-Leibler divergence is defined (under (C0)ii) as

KL{g(.;β);g(.,β?)}= Eβ?
{log

g(Y;β?)
g(Y;β)

}.

As we see, the KL measure the distance of the model from the true density and is not observable

becauseg(Y;β?) is unknown. Then an essential question in this case is that how can we use it? This

number is nonnegative because

Eβ?
{log

g(Y;β?)
g(Y;β)

}= Eβ?
{− log

g(Y;β)
g(Y;β?)

} ≥ − logEβ?
{ g(Y;β)

g(Y;β?)
}> 0

with equality if and only ifβ = β?.

Now the Kullback-Leibler divergence is connected with maximum likelihood estimation as be-

low.

1
n

n

∑
i=1

log
g(Yi ;β?)

g(Yi ; β̂n)
=

1
n

n

∑
i=1

log
g(Yi ;β?)

g(Yi ; β̂n)
−KL{g(.; β̂n);g(.;β?)}+KL{g(.; β̂n);g(.;β?)} ≤ 0
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Then

0≤ KL{g(.; β̂n);g(.;β?)} ≤ |
1
n

n

∑
i=1

log
g(Yi ;β?)

g(Yi ; β̂n)
−KL{g(.; β̂n);g(.;β?)}| ≤

|1
n

n

∑
i=1

logg(Yi ;β?)−Eβ?
{logg(Y;β?)}|+ |

1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
{logg(Y; β̂n)}| ≤

|1
n

n

∑
i=1

logg(Yi ;β?)−Eβ?
{logg(Y;β?)}|+sup

β∈B
|1
n

n

∑
i=1

logg(Yi ;β)−Eβ?
{logg(Y;β)}|

the first term by (1) and the second term by (1) and theoremB3 converge to zero (a.e.) in probability.

Then

KL{g(Y; β̂n);g(Y;β?)}→ 0 as n→ ∞

and a.e.

g(Y; β̂n)
g(Y;β?)

→ 1

which implies that

β̂n
P−→ β?.

On the other hand assume thatf 6∈ G andβ0 = β0( f ) denote the minimizer of theKL{g(.;β); f (.)}.

Now

1
n

n

∑
i=1

logg(Yi ;β) a.s.−−→ E f {logg(Y;β)}= E f {log f (Y)}−E f {log
f (Y)

g(Y;β)
}

then under (C0) i,ii) and (C4)

argmaxβ
1
n

n

∑
i=1

logg(Yi ;β) P−→ argmaxβ{E f {log f (Y)}−E f {log
f (Y)

g(Y;β)
}}

which means that

β̂n
P−→ β0.

In the next section we will talk about consistency of maximum likelihood estimator.
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4.5 Consistency of Maximum Likelihood

Estimator

The mean theorem about the consistency of maximum likelihood estimator is given in theorem 2.2 of

White (1982) which says that under (C0),(C1) and (C2) the maximum likelihood estimatorβ̂n almost

surely converges toβ0 the unique minimizer ofKL divergence between data generating density and

postulated model. As we saw if the model is correctly specified then theβ̂n is consistent for true

parameterβ? which is unique. This later result is the classical consistency ofMLE. Biernacki

(2004), proved that under (C1), (C2), (C3) and this hypothesis that the

max
j=1,2

Egsup
β∈B

|ϕ j(Y;β)|< ∞, Egsup
β∈B

|∇ϕ j(Y;β)|< ∞ j = 1,2

whereϕ1(Y;β) = ∇ logg(Y;β), and ϕ2(Y;β) is the functionW(Y;β) defined in theorem B3 for

ϕ(.) = log(.), β̂n is consistent forβ0 iff 1
n ∑n

i=1W(Yi , β̂n)
P−→ 0. The consistency of MLE, Wald

(1949), is strongly related to choice of the parameter spaceB. In general we say that the parameter

spaceB (an open interval) contains an open intervalL of which the true parameter valueβ? is an

interior point. May be we setB as a finite set. The compactness (closed and bounded) is nearest

property to finiteness. It is often said that compactness is the next best thing to finiteness, because

the more modern definition of compact space says that a space is compact if each of its open covers

has a finite sub covers.

Indeed under (C0)i,ii) and (C2) and finiteness ofB, β̂n exists, it is unique and consistent w.p.1.

Under (C0), (C2)ii), (C3) and the condition which considerB as a open interval contain an open

intervalL of which the true parameter valueβ? is an interior point, Lehmann (1999), we conclude
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that∇∑n
i=1 logg(Yi ;β) = 0 has a unique root aŝβn which is consistent forβ?, that is

β̂n
P−→ β?.

Which means that̂βn is a consistent estimator forβ?. As a counterexample of the inconsistentMLE

consider Ferguson’s example, see , Lehmann (1998).

Example 4.3

Suppose that

g(y;β) = β
1
2

1[−1,1](y) +
1−β
δ(β)

(
1− |y−β|

δ(β)

)
1c(β)(y)

whereβ ∈ B = [−1,1] δ(.) is decreasing and continuous withδ(0) = 1, 0< δ(β) ≤ 1−β for 0 <

β < 1, andc(β) ≡ (β− δ(β),β + δ(β)). Note thatg(y;β) is continuous inβ for all y, andg(y;0) =

(1−|y|)1[−1,1](y) is the triangular density, whileg(y,1) = 1
21[−1,1](y) is the uniform density.Since a

continuous function on compact set[0,1] achieves its maximum on the set, and regularity conditions

is satisfied for this example thus aMLE exists. Now ifδ(β) → 0 rapidly enough asβ → 1 then

β̂n
a.s.−−→ 1 for everyβ ∈ [0,1] no matter what the true value ofβ.

4.6 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) initially was proposed as an estimate of minus twice the

expected log-likelihood. We notice that the important part of the KL divergence isE f {logg(Y;β)}

which has an estimator as

1
n

n

∑
i=1

logg(Yi ; β̂n).
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It can be considered as an estimator of the distance between the true density and the model. Now

the stress is on̂βn because1
n ∑n

i=1 logg(Yi ; β̂n) provides an overestimate and then the maximized

likelihood function has a positive bias as an estimator of the expected log-likelihood. Sinceβ̂n

corresponds to the empirical distribution, say,Fn which introduces the estimator. In fact both of

them depend on the same sample.

Unfortunately whenf 6∈ G

1
n

n

∑
i=1

logg(Yi ; β̂n) 9 E f {
1
n

n

∑
i=1

logg(Yi ; β̂n)}

and introduce the bias, according to Konishi and Kitagawa (1996) and Bozdogan(2000) we have,

bias= E f {
1
n

n

∑
i=1

logg(Yi ; β̂n)−
∫

R
logg(y; β̂n) f (y)dy}=

1
n

tr(I−1J)+O(n−2)

where as beforeI is the inverse Fisher information matrix in inner product (Hessian) form, andJ is

the outer product form of the Fisher information matrix for vectorβ

I =−E f {
∂2 logg(Y;β)

∂β∂β′
}

and

J = E f {
∂ logg(Y;β)

∂β
∂ logg(Y;β)

∂β′
}.

An estimate for these two information matrices on the base of any estimatorβ̄n and empirical distri-

bution function is given by

Î =

{
−1

n

n

∑
i=1

∂2 logg(Yi ;β)
∂βr∂βs

|β = β̂, r,s= 1,2, ..., p

}

and

Ĵ =

{
1
n

n

∑
i=1

∂ logg(Yi ;β)
∂βr

∂ logg(Yi ;β)
∂βs

|β = β̂, r,s= 1,2, ..., p

}
.
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If f ∈ G , tr(I−1J) = tr(Ip) = p, where p = dim(B). (The Information Matrix Equivalence Test,

White (1982)). Asymptotically we have:

bias=
p
n

+O(n−2)

which givesb̂ias= p
n . Now the criterion based on the bias corrected normalized log-likelihood is

given by

1
n

n

∑
i=1

logg(Yi ; β̂n)− b̂ias

Akaike (1973) introduced a criterion as

AIC =−2n{1
n

n

∑
i=1

logg(Yi ; β̂n)− b̂ias}=−2
n

∑
i=1

logg(Yi ; β̂n)+2p,

or

1
2n

AIC =−1
n

n

∑
i=1

logg(Yi ; β̂n)+
p
n
.

When there are several competing models, the values of AIC’s are computed. The model with

minimum AIC value is chosen as the best model to fit the data. Whenn gets large the fixed penalty

term 2p does not change and we expect thatp
n → 0. However for finiten AIC is a way of expressing

the parsimony principle.

4.7 Distribution of Maximum Likelihood

Estimator

Here we review the convergence in distribution of maximum likelihood estimators and allowβ to be

a vector. In fact under some regularity conditions

√
n(β̂n−β?)

L−→N (0,I−1(β?))
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hereI1(β?) is the Fisher information from a single observation with true densityf (.) = g(.;β?), and

the regularity conditions are(C0)− (C3),(C3)′and(C3)′′.

If f 6∈ G under same regularity conditions as above

√
n(β̂n−β0)

L−→N (0,I−1(β0)J(β0)I−1(β0))

whereI andJ evaluated atβ0 are defined as before. TheI−1(β0)J(β0)I−1(β0) is a robust variance,

since it is correct regardless whetherf the true density is correctly specified or not. A proof of this

asymptotic distribution is as follow.

Based onY1,Y2, ...,Yn an i.i.d. sample we have the likelihood function as log∏n
i=1g(Yi ;β) =

∑n
i=1 logg(Yi ;β), expanding the normalized derivative of this likelihood function aboutβ0, It follows

that

1
n

∂∑n
i=1 logg(Yi ;β)

∂β
=

1
n

∂∑n
i=1 logg(Yi ;β)

∂β
|β=β0

+
1
n

∂2 ∑n
i=1 logg(Yi ;β†)

∂β∂β′
(β−β0)

at β̂n we have

1
n

∂∑n
i=1 logg(Yi ; β̂n)

∂β
=

1
n

∂∑n
i=1 logg(Yi ;β)

∂β
|β=β0

+
1
n

∂2 ∑n
i=1 logg(Yi ;β†)

∂β∂β′
(β̂n−β0)

or

0 =
1
n

∂∑n
i=1 logg(Yi ;β)

∂β
|β=β0

+
1
n

∂2 ∑n
i=1 logg(Yi ;β†)

∂β∂β′
(β̂n−β0)

where|β†−β| ≤ |β− β̂n|. It is clear that

E f {
∂ logg(Y;β)

∂β
}|β=β0

= 0

and

V ar f {
∂ logg(Y;β)

∂β
}|β=β0

= J(β0) = E f {
∂ logg(Y;β)

∂β
∂ logg(Y;β)

∂β′
}|β=β0

.

Now by the Central Limit Theorem, atβ = β0 we have

n−1/2
n

∑
i=1

∂ logg(Yi ;β)
∂β

L−→N (0,J(β0)).
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ESTIMATOR

On the other hand

1
n

∂2 ∑n
i=1 logg(Yi ;β†)

∂β∂β′
=

1
n

n

∑
i=1

∂2 logg(Yi ;β†)
∂β∂β′

P−→ E f {
∂2 logg(Yi ;β†)

∂β∂β′
}|β=β0

=−I (β0).

Thus from the Taylor expansion we have

n−1/2 ∂∑n
i=1 logg(Yi ;β0)

∂θ
=−1

n
∂2 logg(Yi ;β†)

∂β∂β′
√

n(β̂n−β0)

and by Slutsky’s theorem

√
n(β̂n−β0)

L−→N (0,I−1(β0)J(β0)I−1(β0))

if I is invertible. Now if f ∈ G , β0 = β? andI (β0) = J(β0)
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Chapter 5

Proposed test for Goodness of Fit

Test:

A test based on empirical likelihood

ratio

5.1 Introduction

The method which we want to discuss in this chapter may be viewed as an application of a goodness

of fit measure extended to the likelihood ratio test. When we are in goodness of fit test situation we
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have a null hypothesis which is completely clear and an alternative which is completely vague as

H0 : F(y) = F0(y) ∀y∈ Y

against

H1 : F(y) 6= F0(y) for some y∈ Y

whereF0(.) is a known distribution function. Chapter 3 has introduced some goodness of fit test to

this problem. Here we want to introduces an approach which introduce a test statistic using known

likelihood ratio test. This idea is not in favor or against the known goodness of fit tests, but is

an approach which helps us to solve a problem with a different method which works for binned

and unbind data. The likelihood ratio approach has an extensive theory which is a guaranty for

this method of test. In fact this idea is based on the Berk-Jones statistics (1979), see, 3.4.1. More

precisely the Berk-Jones statistics could be defined as a supreme of

K(Fn(y),F0(y))) =



Fn(y)(log(Fn(y)
F0(y) ))+(1−Fn(y)) log 1−Fn(y)

1−F0(y) if 0 < F0(y) < Fn(y) < 1

0 if 0≤ Fn(y)≤ F0(y)≤ 1

∞ otherwise.

This is the Kullback-Leibler discrepancy for two Bernoulli distributions. It is known thatK(Fn(y),F0(y))

behaves as12
(Fn(y)−F0(y))2

F0(y)(1−Fn(y)) . This last term is half of the Pearson statistics forFn(y) which is distributed

asBin(1,F0(y)) for a fixedy. The theorem 9.1 Knight (1999) shows that when we consider the good-

ness of fit test for multinomial distribution, the Pearsonχ2 statistic is asymptotically equivalent to

the likelihood ratio statistic. Berk-Jones proposed that we can fixy and construct a test statistic by

likelihood ratio test for goodness of fit test problem as above.
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5.2 Our objective

In this chapter we are in search of a goodness of fit test for the simple situation whereF0(.) is

a known distribution function, if not, as a common approach for goodness of fit test we have to

estimate the unknown parameter(s) at first and then apply the test. Parametric case will change our

situation for model selection from testing for a specified distribution belong to the model to the

more general situation which is testing for a family of distributions (model). Our idea is as follows,

consider a random sample as(Y1,Y2, ...,Yn) and a goodness of fit test procedure which introduces

a likelihood ratio test for each fixedz which could be between any of twoY’s. Here we must

emphasis thatF(y) is an unknown distribution function, whereasF(z) with fixed z is an unknown

parameter. If we separate the null hypothesisH0 : F(y) = F0(y) ∀y∈ Y to several null hypotheses

as H0z : F(z) = F0(z) ∀z∈ Z we can construct a likelihood ratio for each one of theH ′
0zs for

each fixedz, and then construct a test for our essential hypothesis testing problem. Fortunately

this concept is known in statistics. The Union-Intersection test (UIT) is our proposal to solve this

problem. As a test statistic we generalized the logic of the likelihood ratio test. In fact we defined

a weight function asw(z). This weight function permit us to construct different tests. As a simple

choice we considerw(z) = CnFn(z) or more complex choice as a complex function ofFn(z). For

Cn = n−1 we verify the level and efficiency of our test. If we setCn = n−2 the typeI error of our

test is less than typeI error of Berk-Jones’s test. After a brief review of UIT, we will construct the

likelihood ratio test statistic by UIT. The level of test and efficiency for this test will be verified. It

seems that our statistic is comparable by Berk-Jones statistic.
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5.3 Union-Intersection Test

The likelihood ratio test (LRT) method is a commonly used method of hypothesis test construction.

Another method, which is appropriate when the null hypothesis is expressed as an intersection, is

the union-intersection test (UIT). In classical statistics we may write

H0 : θ ∈
⋂
γ∈Γ

Θγ

whereΓ is an arbitrary index set that may be finite or infinite, depending on the problem. By this

notation we have

H1 : θ ∈
⋃
γ∈Γ

Θc
γ

Suppose that for each of the testingH0γ : θ ∈Θγ against the alternative hypothesisH1γ : θ ∈Θc
γ. We

know that the rejection region for the test ofH0γ is {y : Tγ(y) ∈ Rγ} whereTγ(.) is the test statistic.

Thus if any of theH0γ is rejected, thenH0 must also be rejected, it offers a rejection region for UIT

as ⋃
γ∈Γ
{y : Tγ(y) ∈ Rγ}

As a simple example for UIT we consider a known hypothesis test in elementary statistics.

Example 5.1

Let Y1,Y2, ...,Yn be a i.i.d. random sample fromN (µ,σ2), whereµ andσ2 are unknown parameters.

We want to test thatH0 : µ = µ0 againstH1 : µ 6= µ0, whereµ0 is a specified number. As a UIT we

can write

H0 : {µ : µ≤ µ0}∩{µ : µ≥ µ0}
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This null hypothesis could be write as intersection of two new null hypotheses asH0Lower : {µ : µ≤

µ0} andH0U pper : {µ : µ≥ µ0}. Now as the classical approach we will test

H0Lower : µ≤ µ0 against H1Lower : µ> µ0

with rejection region
1/n∑n

i=1Yi−µ0
S/
√

n ≥ tLower and

H0U pper : µ≥ µ0 against H1U pper : µ< µ0

with rejection region
1/n∑n

i=1Yi−µ0
S/
√

n ≤ tU pper. Then the rejection region of the UIT of

H0 : {µ : µ≤ µ0}∩{µ : µ≥ µ0}

against

H1 : {µ : µ≥ µ0}∪{µ : µ≤ µ0}

for tLower =−tU pper will be express as|1/n∑n
i=1Yi−µ0

S/
√

n | ≥ tLower which is the two sided test.

5.4 Proposed test based on empirical

likelihood ratio

ConsiderȲ = (Y1,Y2, ...,Yn) as an i.i.d. random sample with unknown distribution functionF(.). We

setF0(.) as a known distribution function. The official goodness of fit test is contain testing

H0 : F(y) = F0(y) ∀y∈ Y

against

H1 : F(y) 6= F0(y) for some y∈ Y
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5.4. PROPOSED TEST BASED ON EMPIRICAL
LIKELIHOOD RATIO

A key for proposing a goodness of fit test is that the distribution functionF(z) for a fixedz is an

unknown parameter. It reduces the goodness of fit test to a LRT test as

H0z : F(z) = F0(z) ∀z∈ Z

against

H1z : F(z) 6= F0(z) for some z∈ Z.

Our idea is to rewrite this hypothesis testing as the UIT, thus we have

H0 :
⋂
z∈Z

H0z

against

H1 :
⋃
z∈Z

H1z

For eachz we can define a new random variable, see, Berk and Jones (1978), thus we have

Yiz = 1{Yi ≤ z}=


1 if Yi ≤ z

0 if Yi > z

for i = 1,2, ...,n

Now we have a parametric test with a binary variable with value in{0,1}n, i.e.

Yiz ∼ Bin(1,F(z))

and

n

∑
i=1

Yiz = nFn(z)∼ Bin(n,F(z)).

The likelihood function is given by

L(F(z)) = L(F(z);Ȳiz) = (F(z))nFn(z)(1−F(z))n(1−Fn(z))
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5.4. PROPOSED TEST BASED ON EMPIRICAL
LIKELIHOOD RATIO

The likelihood ratio test is given by

λn(z) =
supF(z) Ln(F(z))

Ln(F0(z))

λn(z) = LFn(z)/F0(z) ≡ Ln(Fn(z))
Ln(F0(z))

for the large value ofλn(z) we reject the null hypothesis. The log likelihood function is given by

logλn(z) = logLFn(z)/F0(z) = nFn(z) log(
Fn(z)
F0(z)

)+n(1−Fn(z)) log(
1−Fn(z)
1−F0(z)

).

The propose test statistics for testingH0 againstH1 is

Tn =
∫

R
logLFn(z)/F0(z)d(w(z))

The reasonable choose ofw(z) will give us a reasonable test statistic. A choice could bew(z) =

CnFn(z), and a simple one is given byCn = n−1 which defines our statistics as

Tn =
∫

R
[nFn(z) log(

Fn(z)
F0(z)

)+n(1−Fn(z)) log(
1−Fn(z)
1−F0(z)

)]d(Fn(z)) =

1
n ∑

yi∈Ai

logLFn(yi)/F0(yi)

whereAi = [Yi ,Yi+1] or Ai = [Y(i),Y(i+1)]. By this we have

Tn =
1
n

n

∑
i=1
{nFn(Yi) log(

Fn(Yi)
F0(Yi)

)+n(1−Fn(Yi)) log(
1−Fn(Yi)
1−F0(Yi)

)}

or

Tn =
1
n

n

∑
i=1
{nFn(Y(i)) log(

Fn(Y(i))
F0(Y(i))

)+n(1−Fn(Y(i))) log(
1−Fn(Y(i))
1−F0(Y(i))

)}

whereY(i) is the ith ordered statistics and also they are the discontinuity points ofFn(.) whenzi ∈Ai .

It is common used in statistics which consider

Fn(Y(i)) =
i− ε

n−2ε+1
ε ∈ [0,1].
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5.4. PROPOSED TEST BASED ON EMPIRICAL
LIKELIHOOD RATIO

5.4.1 Level of test

Two important aspects of any test is the level and the power of test. The rejection region for the UIT

is given by ⋃
z∈Z
{logLFn(z)/F0(z) ∈ Rz}

which defines the level of UIT as

αUIT = PH0

( ⋃
z∈Z
{logLFn(z)/F0(z) ≥ c

)
= PH0

(
sup
z∈Z

logLFn(z)/F0(z) ≥ c

)
.

Now we have

Tn ≤
1
n

n

∑
i=1

sup
zi

(logLFn(zi)/F0(zi)) = sup
z

(logLFn(z)/F0(z))

then

PH0
(Tn ≥ c)≤ PH0

(sup
z

(logLFn(z)/F0(z))≥ c) = αUIT .

5.4.2 Comparison with Berk-Jones’s test

ForCn = n−2 the level of our test is less than level of Berk-Jones’s test. It is because

1
n

1
n

n

∑
i=1

sup
zi

(logLFn(zi)/F0(zi))≤ sup
z∈Z

(
1
n

logLFn(z)/F0(z))

5.4.3 Bahadur efficiency of proposed test

We defined the test statistic as

Tn =
1
n ∑

zi∈Ai

logLFn(zi)/F0(zi)

then

PH0
(
1
n

Tn ≥ t) = P∩H0z{
1
n
(
1
n ∑

z
logLFn(z)/F0(z))≥ t}

≤ PH0zmax
{1

n
1
n

n(max
z

logLFn(z)/F0(z))≥ t}=
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PH0zmax
{1

n
logLFn(z)/F0(z)

zmax ≥ t} ≤ ∑
H1zmax

PH0zmax
{1

n

n

∑
i=1

log
Bin(1,F(zmax))
Bin(1,F0(zmax))

≥ t} (∗)

≤ |H1zmax| max
F(zmax)

PH0zmax
{exp

n

∑
i=1

log
Bin(1,F(zmax))
Bin(1,F0(zmax))

≥ exp(nt)}=

|H1| max
F(zmax)

PH0zmax
{exp

n

∑
i=1

log
Bin(1,F(zmax))
Bin(1,F0(zmax))

≥ exp(nt)} ≤

|H1| max
F(zmax)

EH0zmax
{

exp∑n
i=1 log Bin(1,F(zmax))

Bin(1,F0(zmax))

exp(nt)
} (by Markov inequality)=

|H1| max
F(zmax)

exp(−nt)EH0zmax
{

n

∏
i=1

Bin(1,F(zmax))
Bin(1,F0(zmax))

}=

|H1| max
F(zmax)

exp(−nt){EH0zmax

Bin(1,F(zmax))
Bin(1,F0(zmax))

}n =

|H1| max
F(zmax)

exp(−nt){∑Bin(1,F0(zmax))}n ≤ |H1|exp(−nt)

then

−2
n

logPH0
(
1
n

Tn ≥ t)≥ 2t− 2log|H1|
n

we know that

1/nlogLFn(z)/F0(z) =
1
n
(logLFn(z)− logLF0(z)) =

1
n
(logLF(z)− logLF0(z))+

1
n
(logLFn(z)− logLF(z)) (iff) F(z) 6= F0(z) (under H1z)

=
1
n

n

∑
i=1

log
Bin(1,F(z))
Bin(1,F0(z))

+
1
n
(logLFn(z)− (logLF(z)) P−→ EH1z log

Bin(1,F(z))
Bin(1,F0(z))

+(0)χ2 =

KL{Bin(1,F(z)),Bin(1,F0(z))} a.s under H1z.

Thus

1
n ∑

z
logLFn(z)/F0(z) P−→ EH1KL(Bin(1,F(Y)),Bin(1,F0(Y)))

−2
n

logPH0
(
1
n

Tn ≥ t)≥ inf
H0

EH 1KL(Bin(1,F(Y)),Bin(1,F0(Y)))

Bahadur (1967) showed that the other part of inequality for all of tests is right, then

−2
n

logPH0
(
1
n

Tn ≥ t) = 2inf
H0

EH 1KL(Bin(1,F(Y)),Bin(1,F0(Y))).
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(*) Because

1
n

logLFn(z)/F0(z)
zmax ≤ sup

F∈H1

1
n

n

∑
i=1

log
Bin(1,F(zmax))
Bin(1,F0(zmax))

.

91



Chapter 6

Proposed Model selection tests based

on likelihood and AIC

6.1 Introduction

The major goal of this chapter is to introduce and develop a methodology of model selection. This

chapter in theory and method is strongly related to the next chapter. In real situation for any inference

about a data set at hand we are interested in selecting a model among a lot of parametric models. In

usual hypothesis testing we suppose thatȲ = (Y1,Y2, ...,Yn) is a random sample with densityg(.;β)

for someβ ∈ B. In simple case we setB = B0∪B1 for two disjoint setsB0 and B1. We would

like to decide ifβ ∈ B0 or β ∈ B1, where usuallydim(B0) < dim(B1). To use the likelihood for

hypothesis testing, we may use the standard ratio as the supreme of the likelihood under alternative

hypothesis divided on the likelihood under null hypothesis and rejecting the null hypothesis for large
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value of this ratio. On the other hand we may use this principle for testing between two elements of

two different families. The other approach to make a decision as above is likelihood-based interval

inference as the dual of the hypothesis testing. Fortunately both of them work under asymptotic

theory for likelihood function.

The restriction by this approach is clear. This approach works very well for nested models, but

in other cases it does not work. Our idea is somewhat different, not in principle, but in applying the

likelihood function. In fact when we have a data set all hypotheses about the distribution of data are

null hypotheses.

We want to report the likelihood under the null hypothesis as the normalized likelihood under

indicated parameters in the null hypothesis. We can reject the null hypothesis if its likelihood is too

small, then we conclude that there are other hypotheses which are better than our hypothesis. We

will use both of hypothesis testing and confidence interval with other interpretation. As we know the

hypothesis testing is an absolute discrimination. We may consider the relative discrimination asR2,

AIC andBIC depending on the problem. This is a fact that this criteria always choose a model. If

two competing models are very bad, we would like to be able to reject both of them. The confidence

interval inference about the model selection criterion is our idea. Because by the confidence intervals

there is an opportunity to select a set of good choice. This interval will be constructed for expectation

of the log-likelihood. This confidence interval let us take in order the models. This approach has an

interpretation for a confidence interval for Kullback-Leibler discrepancy. The best model will be a

model with greatest lower and upper limit for expectation. A model with this kind of upper and lower

limits is a model with minimum Kullback-Leibler discrepancy. In the real situation, when we have

n observations at hand, before collecting this data we consider some hypotheses like independence

and identically distribution about data, the first question is about the true distribution of this sample.
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This question is on entire population. This question arises because this is the first step to decision

making. This is a question in model selection area. We can assume whether the true density belongs

to the postulated model or not. Whether true model belongs to the specified parametric model,

G , or not there is a member of this family asg(.,β) which is equal or nearly equal tof (.). The

difficulty exists yet. To search this member of parametric family we estimate its parameters by

the maximum likelihood approach. Now we have a member in the family asg(y; β̂n). This is the

best choice in the model, based on the data. Now an estimation off (.) is g(y; β̂n). If our choice

about family was not very bad the likelihood statistic under observed data must be large. Then the

normalized maximized (log)likelihood seems to be a good choice as a criterion to model selection.

Akaike (1973) has said, “assume that the true distribution does not belong to the specified parametric

family”, and introduced his criterion. It means that the normalized maximized log-likelihood for

observed data does not converge to the expected log-likelihood, where expectation is taken under

true density, i.e there is a bias. This last result guides us towardAIC. We must emphasize that the

hypothesis testing is an absolute discrimination, and theAIC is a relative discrimination. Then the

classical hypothesis testing is a method and a criterion likeAIC will answer a different question than

hypothesis testing. Anyway we can consider the normalized maximum log-likelihood andAIC as the

random variables which has a distribution. Before anything we need to formulate the null hypothesis

and some comments on our approach.

The aim of this formulation is to decide whether or notG does contain the true densityf ? If the

statistical model is correctly specified, we have,

f (y) = g(y;β?) ∀y∈ R and some β? ∈ B
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then the question which arises could be formulated as a null hypothesis

H0 : f (y) = g(y;β?) ∀y∈ R and some β? ∈ B.

In general,β? is an unknown parameter, in this case a natural way to testingH0 will be to find

an estimator forβ which is near toβ? and then to build a procedure for testing. In a simple case

β? could be known. Whenβ? is unknown the measurability ofg(y;β) in y for every β ∈ B and

continuity of g(y;β) in β ∈ B for everyy ∈ R ensures us that for all n there exists a measurable

likelihood estimator(MLE). When the true distribution belongs toG for someβ? ∈ B (underH0),

theMLE is consistent forβ? under Wald (1949) conditions, see, 4.5 . Now a question is what would

happen to the maximum likelihood estimator when the model under consideration is not correct

(the model is misspecified)? As we saw in 4.5 it is clear that the maximum likelihood estimator

would not converge toβ?, because it does not longer makes sense. When a statistical model is mis-

specified, as we saw in 4.4 the maximum likelihood estimator converges to the minimizerβ0 of the

Kullback- Leibler criterion, instead of the parameter which we consider under null hypothesis (the

true parameter). Then any difference between the postulated modelg(.,β?) and the true densityf (.)

is error due to model misspecification.

The theorems 2.1, 2.2, and 3.2 of White (1982) and in more detail in White (1994) are good

references for study the asymptotic distribution behavior of
√

n(β̂n− β0). To evaluateH0 as our

immediate goal, we note that if1
n ∑n

i=1 logg(Yi ;β?) has a large value we will conclude that the postu-

lated model in some sense is near to the true distribution. But in realistic casesβ? is unknown, thus

we are going to testingH0 by a reasonable test statistic which converges to a constant function of

1
n ∑n

i=1 logg(Yi ;β?).

When we evaluate the likelihood function at its maximizer we can say that the smaller the likeli-
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hood, the worse the goodness of fit. A problem for this kind of fits is that because of transformation

properties of likelihood functions w.r.t. change of variable, in general it is not invariant as a goodness

of fit test. By definition ofH0 as above, we can considerH1 : f 6∈ G as the alternative hypothesis,

which shows that there is noβ ∈ B which permits us to considerf (x) = g(y;β). It is clear that this

type of alternative is completely vague.

In the most general way we have
H0 : f (y) = g(y;β?) ∀y∈ R and some β? ∈ B

H1 : f (y) = g(y) with g(.) 6= g(.; .)

In other words we want to test the postulated density against different shapes. It is clear that the

alternative hypothesis like that is unuseful. In this chapter we consider only the hypothesis like the

goodness of fit test as
H0 : f (y) = g(y;β?) ∀y∈ R and some β? ∈ B

H1 : f (y) 6= g(y;β?) for at least a y∈ R

To evaluate the above hypothesis problem becauseβ? is unknown we estimate it by maximum

likelihood approach and define the normalized maximized likelihood function as the test statistic.

We verify the asymptotic distribution of this statistic where its expectation is consider under dif-

ferent situation. The normalized log-likelihood minus its expectation helps us solving the invariant

problem under some kind of transformation. This statistic is a part of the AIC criterion, then our

theorems in this chapter, asymptotically are valid about AIC. We begin with a simple case when the

β? the parameters involved in the postulated density are known. In this case the asymptotic distribu-

tion of our statistic follows by simple application of the Central limit theorem. It helps us to verify
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whether the data at hand follow a known density. A normal example is considered and the power of

the test is studied by simulation. The result of the simulation shows that our test has a reasonable

power although its power is less than the Kolmogorov-Smirnov test. But I think that this is not a

disagreement, because the model selection involves a trade-off between simplicity and fit. I want

emphasize that in the literature there is no method that is better than all the others under all condi-

tions; on the other hand for any two methods, there are circumstances in which one of them is better

than the other one. It means that every method has a some risk even in well behaved situations. The

important things is that a method must have a reasonable result.

The other part in this chapter is concerned with the realistic situation when we want to know

whether the true density belongs to a parametric family with unknown parameters. Our approach

to point estimation is again the maximum likelihood method. Here we assume that for the param-

eters under study the maximum likelihood estimator exists and it is unique. Biernacki (2004) has

made a test which compares the log-likelihood evaluated atβ̄ one of the relative maxima of the log-

likelihood function and its expected value, which is calculated as ifβ̄ is the true parameter. In fact

he proposed a test for testing whether the maximum of his function is a global maximum. On the

other hand he detected if a given solution to likelihood equation is consistent.

To searching the asymptotic distribution of our statistic we consider three situations forE{logg(Y;β)}

asEβ?
{logg(Y;β?)}, Eβ̂n

{logg(Y; β̂n)} andEβ?
{logg(Y; β̂n)}. The second expectation is the esti-

mator for the first one and the third one is related to risk of estimation when the true density belongs

to theG and also is the relevant part of the Kullback-Leibler criterion. On the other hand the first

and third one are the limiting values for our statistic the normalized maximized likelihood in some

sense and the difference of the our statistic from the second one converges to zero. For each situation

we established a theorem which each one shows that the standard value of normalized maximized
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likelihood function asymptotically is distributed according to the normal distribution with mean zero

and certain variance. According to Biernacki (2004) we talk about the variance estimation. For each

theorem we bring an example to show that it works. We verify our theorem under alternative hy-

pothesis. We define the power of test and showed that our test is consistent. It is shown that our

statistics minus its expected normalized loglikelihood underβ? is invariant under orthogonal linear

transformation. Our focus in this chapter is on theorem 6.5. This theorem admits us to propose a

new method to Multiple Regression model selection. The simulation study shows that this theorem

has a good result. The result is given in appendix A.

6.2 Known parameters case

In the first step we consider an i.i.d. random sample of size n and densityf (y). We want to test

whether the parametric densityg(y;β?) whereβ? is known, is well-specified. In fact this test is a

goodness of fit test. For doing it we need to evaluate the distribution of the test statistic.

In Theorem 1 we will find the asymptotic density of this statistic. This approach to testing for model

selection has the advantage of simplicity. A simulation study to evaluate the performance of our

statistic is done and we compare it with the Kolmogorov-Smirnov statistic.

Theorem 6.1 Let Y1, ...,Yn i.i.d. random sample with unknown density f(y). Suppose thatEβ?
{logg(Y;β?)}

exists, andEβ?
{(logg(Y;β?))2}< ∞, then

n−1/2
n

∑
i=1

[logg(Yi ;β?)−Eβ?
{logg(Yi ;β?)}]

L−→N (0,V arβ?
{logg(Y;β?)})
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Proof : The proof is a direct usage of central limit theorem. We note that

Eβ?
{1

n

n

∑
1

logg(Y;β?)}= Eβ?
{logg(Y;β?)}

and

V arβ?
{1

n

n

∑
i=1

logg(Yi ;β?)}=
1
n

V arβ?
{logg(Y;β?)}

now by CLT

n−1/2
n

∑
i=1

[logg(Yi ;β?)−Eβ?
{logg(Yi ;β?)}]

L−→N (0,V arβ?
{logg(Y;β?)}) �

Example 6.1

Suppose thatY1,Y2, ...,Yn i.i.d. with density f (y) we want to test whether or notY1,Y2, ...,Yn is a

i.i.d. random sample with normal density and parameter vector asβ? = (µ?,σ2
?), whereβ? is given,

it means that under null hypothesisYi ∼N (µ?,σ2
?). Then

g(Y1, ...,Yn;β?) =
n

∏
i=1

g(Yi , ;β?) = (2πσ2
?)
−n/2exp{−1

2

n

∑
i=1

(
Yi −µ?

σ?
)2}

by taking logarithm we have

n

∑
i=1

logg(Yi ;β?) =−n
2

log(2πσ2
?)−

1
2

n

∑
i=1

(
Yi −µ?

σ?
)2 = nb− 1

2

n

∑
i=1

(
Yi −µ?

σ?
)2

whereb =−1
2 log2πσ2

?. We know that

Xn(Y) =
n

∑
1

(
Yi −µ?

σ?
)2 ∼ χ2

n.

ThusEβ?
{Xn(Y)}= n andV arβ?

{Xn(Y)}= 2n. Now by straight application of CLT we have:

n−1/2(Xn(Y)−n)√
2

L−→N (0,1)
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Now as an application of Theorem 6.1,Eβ?
{logg(Y,β?)}=−1

2 log2πσ2
0−1/2 andV arβ?

{logg(Y;β?)}=

1
2 which gives us the same result as above

n−1/2 ∑n
i=1[b− 1

2{(
Yi−µ?

σ?
)2}−b+ 1

2]√
1
2

=
n−1/2(n−Xn(Y))√

2
L−→N (0,1)

By symmetry of standard normal distribution the straight CLT and our theorem are the same.

Also

Tn(Y;β?) =
1
n

n

∑
i=1

logg(Yi ;β?) = b− 1
2n

Xn(Y).

In consequence, weighted log-likelihood function has a biasedχ2 distribution with expectation and

variance as follows

Eβ?
{Tn(Y;β?)}= b− 1

2

and

V arβ?
{Tn(Y;β?)}=

1
2n

The distribution function ofTn is given by,

P(Tn{Y;β?} ≤ t) = P(Xn(Y) > 2n(b− t)) = 1− 1

Γ(n/2)2n/2

∫ 2n(b−t)

0
x

n
2−1
n exn/2dxn b > t

which is the survival function for aχ2 distribution. The integral is an incomplete gamma function.

We rejectH0 if

Tn(Y;β?) < t

then the test function is given by

φ(Y) =


1 if Xn(Y) > C

0 if Xn(Y) < C
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whereC = 2n(b− t). The level of test is,

α = EH0
(φ(Y)) = PH0

(Xn(Y) > C)

whereC = χ2
α,n. The power of the test is given by

γ(µ) = EH1
(φ(Y)) = PH1

(Xn(Y) > χ2
α,n)

Power Simulation:

It is known that ifY1,Y2, ...,Yn are i.i.d. N (µ?,σ2
?) and if µ0 as the possible value ofµ? is given the

statistic∑n
i=1(Yi−µ0)2 has the non-centralχ2 distribution with n degrees of freedom andn(µ?−µ0)2

as its non-centrality parameter. By this fact atσ2
? = 1 we have;

Xn(Y)∼ χ2(n,n(µ?−µ0)2).

For power computation we use the software “R”. We compare the power of our test to the power

of the Kolmogorov-Smirnov test. We consider the data generating density as theN (0,1), each time

we generaten = 5,30,50 observations of this density.

The size of the simulation ism= 10000. We want to test whether or notYi ∼N ((0.1)t,1), i =

1,2, ...,n and t = 1,2, ...,30. (as the alternative hypothesis) We set the pre-assigned levels as

α = 0.2,0.1,0.05. The result of the simulation is given in Tables 1.4-3.4 and Figure 9. Forn = 5 at

any level two tests are nearly equivalent. Atn = 30 andn = 50 the power of Kolmogorov-Smirnov

test is better than our test. For large value of(0.1)t i.e. when we are far from of true density the

two tests have almost the same power. As we see the Kolmogorov-Smirnov is more powerful than

our test. But we emphasize that our approach has a reasonable power and on the other hand the

likelihood function is a simple function which any recearcher know it. When we are one unit far

from the true mean the power is about one.
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  Table 6.1-  Power comparison of the Kolmogorov-Smirnov’s test (K-S)  
                   and  proposed test (LL) based on likelihood function for n=5                

   

Normal Mean          2.0=α      1.0=α     05.0=α  

  K-S  LL  K-S  LL  K-S  LL 

           0.1 0.2077 0.2050 0.1087 0.1034 0.0557 0.0522 

0.2 0.2279 0.2200 0.1315 0.1138 0.0656 0.0588 

0.3 0.2718 0.2500 0.1595 0.1317 0.087 0.0705 

0.4 0.3269 0.2799 0.1951 0.1572 0.1191 0.0880 

0.5 0.3971 0.3245 0.2571 0.1920 0.1594 0.1124 

0.6 0.4623 0.3778 0.3145 0.2356 0.2176 0.1447 

0.7 0.5354 0.4385 0.3892 0.2882 0.2643 0.1857 

0.8 0.6129 0.5047 0.4614 0.3492 0.3339 0.2360 

0.9 0.6856 0.5738 0.5418 0.4172 0.4076 0.2953 

1.0 0.7425 0.6430 0.6125 0.4900 0.4819 0.3627 

1.1 0.8051 0.7096 0.6822 0.5650 0.5525 0.4363 

1.2 0.8538 0.7710 0.7567 0.6392 0.6282 0.5137 

1.3 0.8957 08252 0.8054 0.7096 0.6941 0.5917 

1.4 0.9243 0.8711 0.8574 0.7736 0.7659 0.6671 

1.5 0.9446 0.9083 0.8949 0.8293 0.8056 0.7370 

1.6 0.9694 0.9372 0.9273 0.8758 0.8544 0.7990 

1.7 0.9790 0.9585 0.9456 0.9128 0.8901 0.8517 

1.8 0.9879 0.9737 0.9644 0.9411 0.9249 0.8945 

1.9 0.9910 0.9840 0.9770 0.9618 0.9495 0.9277 

2.0 0.9951 0.9907 0.9853 0.9761 0.9667 0.9523 

2.1 0.9969 0.9948 0.9921 0.9857 0.9791 0.9698 

2.2 0.9984 0.9972 0.9952 0.9918 0.9850 0.9817 

2.3 0.9995 0.9986 0.9972 0.9955 0.9908 0.9893 

2.4 0.9997 0.9993 0.9980 0.9976 0.9955 0.9940 

2.5 0.9998 0.9997 0.9995 0.9988 0.9959 0.9968 

2.6 0.9998 0.9998 0.9999 0.9994 0.9980 0.9984 

2.7 0.9999 0.9999 0.9997 0.9997 0.9991 0.9992 

2.8 1.0000 1.0000 1.0000 1.0000 0.9993 0.9996 

2.9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 

3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table  6.2-  Power comparison  of  the  Kolmogorov-Smirnov’s test (K-S)  
                   and  proposed test  (LL)   based on likelihood function for n=30.  

Normal Mean          2.0=α      1.0=α        05.0=α  

  K-S  LL  K-S  LL  K-S  LL 

          0.1 0.2224 0.2117 0.1254 0.1076 0.0666 0.0547 

0.2 0.3561 0.2478 0.2261 0.1232 0.1397 0.0702 

0.3 0.5420 0.3113 0.3849 0.1785 0.2655 0.1012 

0.4 0.7116 0.4034 0.5717 0.2524 0.4495 0.15469 

0.5 0.8512 0.5202 0.7510 0.3574 0.6190 0.2391 

0.6 0.9361 0.6495 0.8715 0.4896 0.7846 0.3576 

0.7 0.9780 0.7727 0.9481 0.6343 0.9012 0.5035 

0.8 0.9943 0.8720 0.9818 0.7693 0.9573 0.6577 

0.9 0.9982 0.9387 0.9950 0.8748 0.9874 0.7945 

1.0 0.9997 0.9755 0.9993 0.9427 0.9970 0.8951 

1.1 1.0000 0.9920 1.0000 0.9783 0.9993 0.9553 

1.2 1.0000 0.9978 1.000 0.9933 0.9998 0.9844 

1.3 1.0000 1.0000 1.0000 0.9983 1.0000 0.9956 

1.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
 
 
 Table  6.3- Power comparison of the Kolmogorov-Smirnov’s test (K-S)  
                   and proposed test (LL) based on likelihood function for n=50 
 
 

Normal 
Mean    

      2.0=α      1.0=α        05.0=α  

  K-S  LL  K-S  LL  K-S  LL 

         0.1 0.2843 0.2150 0.1649 0.1097 0.0846 0.0559 

0.2 0.4970 0.2620 0.3298 0.1419 0.2071 0.0763 

0.3 0.7151 0.3461 0.57730 0.2048 0.4388 0.1193 

0.4 0.8891 0.4684 0.7960 0.3079 0.6570 0.1975 

0.5 0.9674 0.6172 0.9236 0.4531 0.8483 0.3222 

0.6 0.9934 0.7657 0.9824 0.6236 0.9502 0.4905 

0.7 0.9994 0.8832 0.9968 0.7843 0.9884 0.6745 

0.8 0.9998 0.9544 0.9993 0.9014 0.9980 0.8313 

0.9 1.0000 0.9865 0.9999 0.9655 0.9999 0.9321 

1.0 1.0000 0.9971 1.0000 0.9910 1.0000 0.9800 

1.1 1.0000 1.0000 1.0000 0.9983 1.0000 0.9960 

1.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Figure 10: Power comparison of Kolmogorov-Smirnov test and normalized log-likelihood test.

104



Proposed Model selection tests based on likelihood and AIC 6.2. KNOWN PARAMETERS CASE

Example 6.2

SupposeY1,Y2, ...,Yn is an i.i.d.sample with unknown densityf (.) we want to test whether the expo-

nential density is a good fit toY? Then

H0 : f (y) = g(y;λ?).

with

g(y;λ?) = λ−1
? e−λ−1

? y

we have:

1
n

n

∑
i=1

logg(Yi ;λ?) =− logλ?−
∑n

i=1Yi

nλ?

It is known that

n

∑
i=1

Yi ∼ Γ(n,λ?)

by CLT,

n−1/2(∑n
i=1Yi

n
−λ?)

L−→N (0,λ2
?)

now we have

1
n

n

∑
i=1

logg(Yi ;λ?) =− logλ?−
∑n

i=1Yi

nλ?

then
1
n ∑n

i=1 logg(Yi ;λ?)− (− logλ?−1)√
1
n

L−→N (0,1)

On the other hand by Theorem 6.1, fori = 1,2, ...,n, we have,

Eλ?
{logg(Yi ;λ?)}=− logλ?−1

and

1
n

V arλ?
{logg(Yi ;λ?)}=

1
n
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which gives the same asymptotic density for normalized log-likelihood function as above.

P(
1
n

n

∑
i=1

logg(Yi ;λ?)≤ t) = 1− 1
Γ(n)λn

?

∫ −nλ?(t+logλ?)

0
xn−1

n exn/λ? dxn t <− logλ?

WhereXn = ∑n
i=1Yi , this distribution is the survival function for a gamma distribution. Again we can

consider the integral as an incomplete gamma function. In this case

φ(Y) =


1 if 1

n ∑n
i=1 logg(Yi ;λ?) < t

0 if 1
n ∑n

i=1 logg(Yi ;λ?) > t

now

α = EH0
(φ(Y)) = PH0

(Xn(Y) >−nλ?(t + logλ?)) =

1−PH0
(Xn(Y) <−nλ?(t + logλ?)), t <− logλ?

We may compare this test with a Kolmogorov-Smirnov test or other suitable tests.

6.3 Unknown parameters case

To find a test for model selection we consider a more realistic case, when the parameters of the

postulated model are unknown. We established some theorems under specified and mis-specified

hypotheses to find the test for model selection in different situations. The main part of them are the

differences between normalized maximized log-likelihood andE{logg(.,β)} whereβ could beβ?

or β0 dependent on specified or mis-specified case respectively, see 4.4.1, and expectation is consid-

ered under different situations. All the theorems apply toAIC, because in asymptotic situation the

distribution of normalized maximized log-likelihood andAIC is not different. Here we emphasize

that our focus is onAIC.
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As a starting point we want to test the null hypothesisH0 : f (y) = g(y;β?) for all y ∈ R and

someβ? ∈ B, if we reduce it toH0 : f (y) = g(y;β?) a.e. in possible range ofy for someβ? ∈ B,

this null hypothesis is equivalent to testing for:

E f {
1
n

n

∑
i=1

log f (Yi)}= E f {
1
n

n

∑
i=1

logg(Yi ;β?)}

or

Eβ?
{1

n

n

∑
i=1

log f (Yi)}= Eβ?
{1

n

n

∑
i=1

logg(Yi ;β?)}

whereEβ stands for expectation ong(.,β).

We saw that whenβ? is known, we rejectH0 for a small value of1n ∑n
i=1 logg(Yi ;β?). If β? is

unknown we propose the test statistic as

Tn(Y, β̂n) =
1
n

n

∑
i=1

logg(Yi ; β̂n)

whereY = (Y1, ...,Yn). As we saw in 4.4.1 this is the bias estimator for the important part of KL di-

vergence and then an estimator for discrepancy (distance) between the true density and the postulated

model. The test function for this type hypothesis is given by

φ(Y) =


1 if Tn(Y, β̂n) < Kn

0 if Tn(Y, β̂n) > Kn

Note that according to the weak law of large numbers, for eachβ ∈ B we have,

1
n

n

∑
i=1

logg(Yi ;β)} P−→ E f {
1
n

n

∑
i=1

logg(Yi ;β)} (1)

In theorem 6.2, by (1), convergence ofβ̂n to β? and conditions (C0)-(C4), we will show thatTn(Y, β̂n)

is a consistent estimator forEβ?
{(1

n ∑n
i=1 logg(Yi ;β?)}. It is noticeable that all the theorems in this

chapter are useful to construct the confidence interval for expectation part that isEβ(logg(Yi ;β))

where in the theorems we replace theβ by β? eitherβ̂n in argument or in expectation.
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Theorem 6.2 Suppose that Y1, ...,Yn i.i.d with unknown density f(.). LetG = {g(.,β);β ∈ B⊆ R }

is a parametric family of assumed densities for Y′
i s. If H0 holds, under conditions (C0)-(C4) and (1)

we have:

Tn(Y, β̂n)
P−→ Eβ?

{1
n

n

∑
i=1

logg(Yi ;β?)}.

Proof :

|1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β?))|=

|1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
(
1
n

n

∑
i=1

logg(Yi ; β̂n))+Eβ?
(
1
n

n

∑
i=1

logg(Yi ; β̂n))−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β?))|

≤ |1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
(
1
n

n

∑
i=1

logg(Yi ; β̂n))|+ |Eβ?
(
1
n

n

∑
i=1

logg(Yi ; β̂n))−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β?))|

≤ sup
β∈B

|1
n

n

∑
i=1

logg(Yi ;β)−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β))|+|Eβ?
(
1
n

n

∑
i=1

logg(Yi ; β̂n))−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β?))| (2)

By (C4) | logg(y;β)| ≤M(y) On the other hand by (1) we have

1
n

n

∑
i=1

logg(Yi ;β)−Eβ?
(
1
n

n

∑
i=1

logg(Yi ;β)) P−→ 0

Now under conditions (C0) and (C1) by theoremB3 the first term in (2) converges to zero. For the

second term in (2)

Eβ?
{1

n

n

∑
i=1

logg(Yi ; β̂n)−
1
n

n

∑
i=1

logg(Yi ;β?)}= [
1
n

n

∑
i=1

Eβ?
(∇ logg(Yi ;β?))](β̂n−β?)+op(β̂n−β?)

by (C3)Eβ?
(∇ logg(Yi ;β?)) exists and is equal to zero, this completes the proof.�.

Theorem 6.3 Under conditions(C0)− (C3) suppose that0 < V arβ?
{logg(Y,β?)}< ∞, we have:

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))]

L−→N (0,V arβ?
{logg(Y,β?)}).

Proof :

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))] =
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1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β?)+ logg(Yi ;β?)−Eβ?
(logg(Yi ;β?))] =

1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β?)]+
1√
n

n

∑
1

[logg(Yi ;β?)−Eβ?
(logg(Yi ;β?)]

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has

a normal distribution with average and variance equal to zero andV arβ?
{logg(Y,β?)} respectively.

For the first term, by Taylor’s expansion we have

1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β?)] =

1√
n

n

∑
i=1

[(β̂n−β?)∇ logg(Yi ;β?)+op(β̂n−β?)] =

√
n(β̂n−β?)

1
n

n

∑
i=1

∇ logg(Yi ;β?)+
√

nop(β̂n−β?) (3)

we know that under regularity conditions(C0)− (C3)′′

√
n(β̂n−β?)

L−→N (0,I−1
1 (β?)). (4)

and by WLLN

1
n

n

∑
i=1

∇ logg(Yi ;β?)
P−→ Eβ?

(∇ logg(Y;β?)) = 0

by Slutsky’s theorem

√
n(β̂n−β?)

1
n

n

∑
i=1

∇ logg(Yi ;β?)
L−→ 0

thus

√
n(β̂n−β?)

1
n

n

∑
i=1

∇ logg(Yi ;β?)
P−→ 0. (5)

On the other hand

√
nop(β̂n−β?) = op(

√
n(β̂n−β?))
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by (4)
√

n(β̂n−β?) = Op(1) then

√
nop(β̂n−β?) = op(Op(1)) = op(1) (6)

by (5) and (6)

√
n(β̂n−β?)

1
n

n

∑
i=1

∇ logg(Yi ;β?)+
√

nop(β̂n−β?)
P−→ 0

Now applying the Slutsky’s theorem. �.

6.4 Test function

As we saw we rejectH0 if

Tn(Y, β̂n) =
1
n

n

∑
i=1

logg(Yi ; β̂n) < Kn

then the test function is given by

φ(Y) =


1 if Tn(Y, β̂n) < Kn

0 if Tn(Y, β̂n) > Kn

The level of test is defined by

αn = EH0
(φ(Y)) = PH0

(Tn(Y, β̂n) < Kn)→ α∞

Now we have
√

n(Kn−Eβ?
(logg(Y;β?)))√

V arβ?
(logg(.;β?)

→ Zα∞ < 0

where the standard valueZα∞ is related to asymptotic distribution of1
n ∑n

i=1 logg(Yi ; β̂n) under The-

orem 6.3, and this is theα-quantile of the standard normal distribution. Then

Kn = Eβ?
{logg(Y;β?)}+Zα∞

√
V arβ?

(logg(Y;β?))/n
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We consider the alternative hypothesis as

H1 : @ β ∈ B such that f (y) = g(y;β)

which means thatH1 : f (.) 6∈G . It is a statistical agnostic which does not change our results consid-

erably. In this case we saw that there exists

β0 = argmax
β∈B

EH1
{logg(Y;β)} such that β̂n

P−→ β0.

6.5 Variance estimation

We need to estimateV arβ?
{logg(Y,β?)} By theorem 6.3 we have,

1√
n ∑n

i=1[logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))]√

V arβ?
logg(Y,β?)

L−→N (0,1)

Biernacki (2004) has introduced two natural consistent estimators forV arβ?
logg(Y,β?) which are

v(β̂n) = V arβ̂n
{logg(Y; β̂n)}

and

Vn(β̂n) =
1
n

n

∑
i=1

(logg(Yi ; β̂n)2− (
1
n

n

∑
i=1

(logg(Yi ; β̂n))2

In proposition 1 he has shown that under consistency ofβ̂n both of v(β̂n) andVn(β̂n) converge to

V arβ0
{logg(Y,β0)} in probability.

Now we consider these two estimators. It is clear that

v(β̂n)
V arβ∗{logg(Y,β∗)}

P−→ 1
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and also

Vn(β̂n)
V arβ∗{logg(Y,β∗)}

P−→ 1.

By Slutsky’s theorem we have:

1√
n ∑n

i=1[logg(Yi ; β̂n)−Eβ?
{logg(Yi ;β?)}]/

√
V arβ?

{logg(Y,β?)}√
v(β̂n)/V arβ?

{logg(Y,β?)}
=

1√
n ∑n

i=1[logg(Yi ; β̂n)−Eβ?
{logg(Yi ;β?)}]√

v(β̂n)

L−→N (0,1)

We have the same result forVn(β̂n) as,

1√
n ∑n

i=1[logg(Yi ; β̂n)−Eβ?
{logg(Yi ;β?)}]√

Vn(β̂n)

L−→N (0,1)

Example 6.3

SupposeY1,Y2, ...,Yn is an i.i.d. sample with unknown densityf (.). We want to test whetherf (.)

is a member of the normal family. Formally we want to test thatH0 : Y ∼ N (µ?,σ2
0) whereµ? is

unknown andσ2
0 is known. The MLE ofµ? is µ̂n = Ỹ = 1

n ∑n
i=1Yi . Now

g(Yi ;σ2
0,µ?) = (2π)−1/2(σ2

0)
−1/2exp{−1

2
(
Yi −µ?

σ0
)2}

and

logg(Yi ;σ2
0, µ̂n) =−1

2
log2π− 1

2
logσ2

0−
1

2σ2
0

(Yi − µ̂n)2

the weighted log-likelihood function is,

1
n

n

∑
i=1

logg(Yi ;σ2
0, µ̂n) = b− σ̂2

n

2σ2
0

whereb=−1
2 log2π− 1

2 logσ2
0 andσ̂2

n = 1
n ∑n

i=1(Yi−µ̂n)2 theMLE of the population variance (which

has assumed as a known). Now

X = n
σ̂2

n

σ2
0

∼ χ2
n−1
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by CLT we know that
nσ̂2

n
σ2

0
− (n−1)√
2(n−1)

L−→N (0,1)

and then
σ̂2

2σ2
0
− n−1

2n√
n−1
2n2

L−→N (0,1)

As we see1
n ∑n

i=1 logg(Yi ;σ2
0, µ̂n) only depends on̂σ2

n which is an ancillary statistic forµ? the un-

known parameter. By direct usage of the CLT, and the Lemma A1 we have,

1
n ∑n

i=1 logg(Yi ;σ2
0, µ̂n)− (b− n−1

2n )√
n−1
2n2

L−→N (0,1)

On the other hand, fori = 1,2, ...,n

Eµ?(logg(Yi ;σ2
0,µ?)) = b− 1

2

and

1
n

V arµ?{logg(Yi ;σ2
0,µ?)}=

1
2n

which indicate we do not need to variance estimation. Now by Theorem 6.3,

1
n ∑n

i=1 logg(Yi ;σ2
0, µ̂n)− (b− 1

2)√
1
2n

L−→N (0,1)

But for a large n we considern' n−1, and these two results are the same.

Here
1
n ∑n

i=1 logg(Yi ;σ2
0, µ̂n)−Eµ?{logg(Yi ;σ2

0,µ?)}√
1
nV arµ?{logg(Yi ;σ2

0,µ?)}
=

1
2−

σ̂2
n

2σ2
0√

1
2n

Then the gof in this example reduce to a comparison between the sample and population variance.

With the preassigned level test we have

EH0
(φ(Y)) = PH0

{
1
n ∑n

i=1 logg(Yi ;σ2
0, µ̂n)−Eµ?{logg(Yi ;σ2

0,µ?)√
1
nV arµ?{logg(Yi ;σ2

0,µ?)}
<

Kn−b+ 1
2√

1
2n

}
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thus

Kn =−Zα
2

√
1
2n

+b− 1
2

In this example we are able to easily compute the power function. It is because under any density

for Yi ’s σ̂2
n has a asymptotic normal density. In fact

√
n(σ̂2

n−σ2
1)

L−→N (0,µ′41 −σ4
1)

whereµ1 = EH1
(Y), σ2

1 = V arH1
(Y), 0< µ′41 = EH1

(Y−µ1)4 < ∞ andµ′41 > σ4
1.

Now

γn = P{Z >

√
n[(b−Kn)2σ2

0−σ2
1]√

µ′41 −σ4
1

}= P{Z >

√
n[(1

2 +Zα/2

√
1
2n)2σ2

0−σ2
1]√

µ′41 −σ4
1

}

Theorem 6.4 Under Theorem 6.3

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ̂n
(logg(Yi ; β̂n))]

L−→N (0,V arβ?
{logg(Y,β?)}).

Proof :

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ̂n
(logg(Yi ; β̂n))] =

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))]−

1√
n

n

∑
i=1

[Eβ̂n
(logg(Yi ; β̂n))−Eβ?

(logg(Yi ;β?))]

By Theorem 6.3

1√
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))]

L−→N (0,V arβ?
{logg(Y,β?)}). (7)

and

1√
n

n

∑
i=1

[Eβ̂n
(logg(Yi ; β̂n))−Eβ?

(logg(Yi ;β?)] =

1√
n

n

∑
i=1

[(β̂n−β?)Eβ?
(∇ logg(Yi ,β?))+op(β̂n−β?)] =

√
n(β̂n−β?)

1
n

n

∑
i=1

Eβ?
(∇ logg(Yi ,β?))+op(

√
n((β̂n−β?)) (8)
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The first term clearly is zero and the second term by (6) converges to zero; now by Slutsky’s theorem

for (7) and (8) the result holds. �

Example 6.4

SupposeY1,Y2, ...,Yn is an i.i.d. sample with unknown densityf (.). We want to check that whether

f (.) is a member of the normal family. Formally we want to test thatH0 : Y ∼ N (µ?,σ2
0) whereµ?

is unknown andσ2
0 is known. TheMLE of µ? is given byµ̂n = Ỹ = 1

n ∑n
i=1Yi

g(Yi ;σ2
0,µ?) = (2π)−1/2(σ2

0)
−1/2exp{−1

2
(
Yi −µ?

σ0
)2}

and

logg(Yi ;σ2
0, µ̂n) =−1

2
log2π− 1

2
logσ2

0−
1

2σ2
0

(Yi − µ̂n)2}.

Now

n

∑
i=1

logg(Yi ;σ2
0, µ̂n) =−n

2
log2π− n

2
logσ2

0−
1

2σ2
0

n

∑
i=1

(Yi − µ̂n)2

and

Eµ?{
n

∑
i=1

logg(Yi ;σ2
0, µ̂n)}=−n

2
log2π− n

2
logσ2

0−
1

2σ2
0

n

∑
i=1

(Yi− µ̂n)2 =−n
2

log2π− n
2

logσ2
0−

n−1
2

and also

Eµ̂n{
n

∑
i=1

logg(Yi ;σ2
0, µ̂n)}=−n

2
log2π− n

2
logσ2

0−
1

2σ2
0

n

∑
i=1

(Yi−µ̂n)2}=−n
2

log2π− n
2

logσ2
0−

n−1
2

now by Theorem 6.4 we have

1√
n

n

∑
i=1

[logg(Yi ; µ̂n)−Eµ̂n(logg(Yi ; µ̂n))]=− 1

2σ2
0

n

∑
i=1

(Yi−µ̂n)2+
n−1

2
L−→N (0,V arµ?{logg(Y,σ2

0,µ?)})

or
− 1

2σ2
0

∑n
i=1(Yi − µ̂n)2 + n−1

2√n
2

L−→N (0,1)
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After simplification we have

−
σ̂2

2σ2
0
− n−1

2n√
1
2n

which by symmetry property of normal density has the same result as the example 6.3 using Theorem

6.3.

In the next example without any information on the variance of the log-likelihood function we

are able to compute the critical value of the test.

Example 6.5

LetY1,Y2, ...,Yn i.i.d. according to the normal distributionN (µ?,σ2
?). Supposeµ? = aσ?,σ? > 0 and

a = µ?
σ?

is known. We wish to test that whetherYi ∼N (aσ?,σ2
?). Then we have

g(Yi ;σ?) = (2π)−1/2(σ2
?)
−1/2exp{− 1

2σ2
?

(Yi −aσ?)2}

and

1
n

n

∑
i=1

logg(Yi ;σ?) =−1
2

log2π− 1
2

logσ2
?−

1
2nσ2

?

n

∑
i=1

(Yi −aσ?)2}

In this case

σ̂n =
1
2
[−aỸ +

√
(aỸ)2 +4Ỹ2]

and

ˆ̂σn =
1
2
[−aỸ−

√
(aỸ)2 +4Ỹ2]

whereỸ = 1
n ∑n

i=1Yi andỸ2 = 1
n ∑n

i=1Yi
2. We have

(aỸ)2 +4Ỹ2 P−→ σ2
?(a

2 +2)2.

Then, ˆ̂σn
P−→ 1

2[−a2σ?−
√

σ2
?(a2 +2)2] < 0, then this estimator is not consistent.
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On the other hand̂σn
P−→ σ? which is a consistent estimator forσ?. Here the Theorem 6.3 is not

directly applicable, because,

Eσ{logg(Y;σ?)}=−1
2

log2π− 1
2

logσ2
?−

1
2

which is depending onσ? .

On the other hand we can write

1
n

n

∑
i=1

logg(Yi ;σ?) =−1
2

log2π− 1
2

logσ2
?−

Ỹ2

2σ2
?

+
aỸ
σ?
− a2

2

and then

1
n

n

∑
i=1

logg(Yi ; σ̂n) =−1
2

log2π− 1
2

logσ̂2
n−

Ỹ2

2σ̂2
n

+
aỸ
σ̂n
− a2

2

and

Eσ̂n{logg(Y; σ̂?)}=−1
2

log2π− 1
2

logσ̂2
n−

1
2

We have,

V arσ?{logg(Y;σ?)}=
1
4

V arσ?{(
Y−aσ?

σ?
)2}=

1
2

Now by theorem 6.4,

1
n ∑n

i=1{logg(Yi ; σ̂n)−Eσ̂n{logg(Y; σ̂n)}√
1
2n

L−→N (0,1)

where

1
n

n

∑
i=1
{logg(Yi ; σ̂n)−Eσ̂n{logg(Y; σ̂n)}=− Ỹ2

2σ̂2
n

+
aỸ
σ̂n
− a2

2
+

1
2

The level of test is given by,

EH0
(φ(Y)) = P{Z <

C−Eσ̂n{logg(Y; σ̂n)}√
1/2n

}

Then

C =−Zα/2

√
1/2n− 1

2
log2π− 1

2
logσ̂2

n−
1
2
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Theorem 6.5 Under Theorem 6.3

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
(logg(Yi ; β̂n))]

L−→N (0,V arβ?
{logg(Y,β?)}).

Proof : By Taylor expansion we have

n

∑
i=1

logg(Yi ;β?)=
n

∑
i=1

logg(Yi ; β̂n)+(β̂n−β?)
n

∑
i=1

∇ logg(Yi , β̂n)+
1
2
(β̂n−β?)2

n

∑
i=1

∇2 logg(Yi , β̂n)+op(1)=

n

∑
i=1

logg(Yi ;β?) =
n

∑
i=1

logg(Yi ; β̂n)+
1
2
(β̂n−β?)2

n

∑
i=1

∇2 logg(Yi , β̂n)+op(1)

it is known that underH0

V ar f {∇ logg(Y,β) = E f {(∇ logg(Y,β))2}}=−E f {∇2 logg(Y,β)}.

Now we replace the second sum in the right hand side by its population analogue which is

nV ar f {∇ logg(Y,β)

then

n

∑
i=1

logg(Yi ;β?) =
n

∑
i=1

logg(Yi ; β̂n)−
1
2

n(β̂n−β?)2V ar f {∇ logg(Y,β)}+op(1)

E f {
n

∑
i=1

logg(Yi ;β?)}= E f {
n

∑
i=1

logg(Yi ; β̂n)}−
1
2

E f {n(β̂n−β?)2V ar f {∇ logg(Y,β)}}+op(1) =

E f {
n

∑
i=1

logg(Yi ; β̂n)}−
1
2

+op(1) (9)

UnderH0 we have

Eβ?
{

n

∑
i=1

logg(Yi ;β?)}= Eβ?
{

n

∑
i=1

logg(Yi ; β̂n)}−
1
2

+op(1).

or

Eβ?
{

n

∑
i=1

logg(Yi ;β?)}−Eβ?
{

n

∑
i=1

logg(Yi ; β̂n)}=−1
2

+op(1).
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In Theorem 6.3 we have

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
(logg(Yi ;β?))]

L−→N (0,V arβ?
{logg(Y,β?)}).

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
{logg(Yi ; β̂n)}−{Eβ?

{logg(Yi ;β?)}−Eβ?
(logg(Yi ; β̂n))}]

L−→N (0,V arβ?
{logg(Y,β?)}).

or

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ?
{logg(Yi ; β̂n)}+

1
2n

+op(
1
n
)] L−→N (0,V arβ?

{logg(Y,β?)}).

Then the theorem holds �

Example 6.6

SupposeY1,Y2, ...,Yn is an i.i.d. sample with unknown densityf (.). We want to test thatH0 : Y ∼

N (µ?,σ2
?) whereµ? andσ2

? are unknown. TheMLE of the parameters are given by ˆµn = Ỹ = 1
n ∑n

i=1Yi

andσ̂2
n = 1

n ∑n
i=1(Yi −Ỹ)2 respectively.

g(Yi ;σ2
?,µ?) = (2π)−1/2(σ2

?)
−1/2exp{−1

2
(
Yi −µ?

σ?
)2}

and

logg(Yi ; σ̂2
n, µ̂n) =−1

2
log2π− 1

2
logσ̂2

n−
1

2σ̂2
n
(Yi − µ̂n)2

then

n

∑
i=1

logg(Yi ; σ̂2
n, µ̂n) =−n

2
log2π− n

2
logσ̂2

n−
n
2

now

Eµ?,σ2
?
{

n

∑
i=1

logg(Yi ; σ̂2
n, µ̂n)}= Eµ?,σ2

?
{−n

2
log2π− n

2
logσ̂2

n−
n
2
}=

−n
2

log2π− n
2

Eµ?,σ2
?
{logσ̂2

n}−
n
2
.
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But

Eµ?,σ2
?
{logσ̂2

n}= log2+Ψ(
n−1

2
)+ log

σ2
?

n

whereΨ is the digamma function,see, Hurvich and Tsai (1989).

n

∑
i=1

logg(Yi ; σ̂2
n, µ̂n)−Eµ?,σ2

?
{

n

∑
i=1

logg(Yi ; σ̂2
n, µ̂n)}=−n

2
logσ̂2

n +
n
2

Eµ?,σ2
?
{logσ̂2

n}=

n
2
{log

2
n

+Ψ(
n−1

2
)+ logσ2

?− logσ̂2
n}.

by Theorem 6.5 we have

1√
n{

n
2{log 2

n +Ψ(n−1
2 )+ logσ2

?− logσ̂2
n}}√n

2

L−→N (0,1).

We can use this result to construct a confidence interval.

Example 6.7

Consider the linear model asY = Xβ? + ε as usual, whereε∼N (0,σ2
?I). We have:

log
n

∏
i=1

g(Yi ;β?,σ2
?) =−n

2
log2π− n

2
logσ2

?−
1

2σ2
?

(Y−Xβ?)T(Y−Xβ?).

TheMLE of the parameters are given byβ̂n = (XTX)−1XTY andσ̂2
n = (Y−Xβ̂n)T (Y−Xβ̂n)

n respectively.

And

log
n

∏
i=1

g(Yi ; β̂n, σ̂2
n) =−n

2
log2π− n

2
logσ̂2

n−
1

2σ̂2
n
(Y−Xβ̂n)T(Y−Xβ̂n).

Then

n

∑
i=1

logg(Yi ; β̂n, σ̂2
n) =−n

2
log2π− n

2
logσ̂2

n−
n
2

now

Eβ?,σ2
?
{

n

∑
i=1

logg(Yi ; σ̂2
n, β̂n)}= Eβ?,σ2

?
{−n

2
log2π− n

2
logσ̂2

n−
n
2
}=

−n
2

log2π− n
2

Eβ?,σ2
?
{logσ̂2

n}−
n
2
.
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But

Eβ?,σ2
?
{logσ̂2

n}= log2+Ψ(
n− p

2
)+ log

σ2
?

n

whereΨ is the digamma function,see, Hurvich and Tsai (1989).

n

∑
i=1

logg(Yi ; σ̂2
n, β̂n)−Eβ?,σ2{

n

∑
i=1

logg(Yi ; σ̂2
n, β̂n)}=−n

2
logσ̂2

n +
n
2

Eβ?,σ2
?
{logσ̂2

n}=

n
2
{log

2
n

+Ψ(
n− p

2
)+ logσ2

?− logσ̂2
n}.

by Theorem 6.5 we have

1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logσ2

?− logσ̂2
n}}√n

2

L−→N (0,1).

We can use this result to construct a confidence interval.

1−α = P(L < σ2
? < U) = p(logL < logσ2

? < logU) =

p(
1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logL− logσ̂2

n}}√n
2

<

1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logσ2

?− logσ̂2
n}}√n

2

<

1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logU− logσ̂2

n}}√n
2

)

Then
1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logL− logσ̂2

n}}√n
2

=−Zα
2

and
1√
n{

n
2{log 2

n +Ψ(n−p
2 )+ logU− logσ̂2

n}}√n
2

= Zα
2

now we have

L = exp{−Zα
2

√
2− log

2
n

+Ψ(
n− p

2
)+ logσ̂2

n}

and

U = exp{Zα
2

√
2− log

2
n

+Ψ(
n− p

2
)+ logσ̂2

n}
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Example 6.8

Consider the candidate linear model asY = Xβ+ ε as usual, whereε∼N (0,σ2I). Assume that the

true model isY = Xtβt + εt whereεt ∼ N (0,σ2
t I), Xt (n× pt) is the design matrix and(βT

t ,σ2
t )

T is

the parameter vector. Clearly

log
n

∏
i=1

g(Yi ;β,σ2) =−n
2

log2π− n
2

logσ2− 1
2σ2 (Y−Xβ)T(Y−Xβ)

Then

n

∑
i=1

logg(Yi ; β̂n, σ̂2
n) =−n

2
log2π− n

2
logσ̂2

n−
1
2

(Y−Xβ̂n)T(Y−Xβ̂n)
σ̂2

n

whereβ̂n = (XTX)−1XTY andσ̂2
n = (Y−Xβ̂n)T (Y−Xβ̂n)

n are theML estimator of the parameters in the

candidate model. We notice that hereY has the covariance matrix asσ2
t I andσ̂2

n is an estimator for

V ar{ε}.

On the other hand

E f {
n

∑
i=1

logg(Yi ; β̂n, σ̂2
n) =−n

2
log2π− n

2
E f {logσ̂2

n}−
1
2
{E f {

(Y−Xβ̂n)T(Y−Xβ̂n)

σ̂2
n

}}=

E f {
n

∑
i=1

logg(Yi ; β̂n, σ̂2
n) =−n

2
log2π− n

2
E f {logσ̂2

n}−
1
2
{E f {

(Y−Xβ̂n)T(Y−Xβ̂n)
σ2

t

σ2
t

σ̂2
n
}}.

We know that

nσ̂2
n

σ2
t
∼ χ2

(n−p)

then

E f {
nσ2

t

σ̂2
n
}=

n2

(n− p−2)
.

Also

E f {
(Y−Xβ̂n)T(Y−Xβ̂n)

σ̂2
n

}= E f {
(Y−Xβ̂n)T(Y−Xβ̂n)

σ2
t

σ2
t

σ̂2
n
}
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but σ̂2 andβ̂n are independent, thus

E f {
(Y−Xβ̂n)T(Y−Xβ̂n)

σ̂2
n

}= p
n

(n− p−2)
=

np
(n− p−2)

and

E f {log
n

∏
i=1

g(Yi ; β̂n, σ̂2) =−n
2

log2π− n
2

E f {logσ̂2
n}−

1
2

np
(n− p−2)

.

Now

n

∑
i=1

logg(Yi ; β̂n, σ̂2)−E f {log
n

∏
i=1

g(Yi ; β̂n, σ̂2) =−n
2

logσ̂2
n−

n
2

+−n
2

E f {logσ̂2
n}+

1
2

np
(n− p−2)

.

By Theorem 6.5 we have

1√
n{−

n
2 logσ̂2

n− n
2 + n

2E f {logσ̂2
n}+ 1

2
np

(n−p−2)}√
1
2

L−→N (0,1)

As we see in last example

E f {logσ̂2}= log2+Ψ(
n− p

2
)+ log

σ2

n

then
1√
n{−

n
2 logσ̂2

n− n
2 + n

2{log2+Ψ(n−p
2 )+ log σ2

n }+ 1
2

np
(n−p−2)}√

1
2

L−→N (0,1)

6.6 Distribution of Tn under H1

and Power of Test

6.6.1 Distribution of Test StatisticTn under H1

For power computations we need to know the asymptotic distribution ofTn(Y; β̂n)= 1
n ∑n

i=1 logg(Yi ; β̂n)

underH1, where the generating densityf 6∈ G as we saw in 3.5.1 in this caseTn(Y; β̂n) does not
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converge toE f {logg(Y, β̂n)}. This alternative hypothesis is a “figurative alternative” because it is

completely vague. Following sections 4.3 and 4.4.1 the maximum likelihood estimator in this case

estimates the valueβ0 that makesg(Y;β0) as close (in KL sense) tof (.) as ang(Y;β) can get. As

we saw before

β̂n
P−→ β0,

√
n(β̂n−β0) is Op(1) and 0= ∇E f {logg(Y;β)}|β=β0

= E f {
∇g(Y;β0)
g(Y;β0)

}

indeed (1) is right and we have the same theorems as theorems 6.2, 6.3, 6.4 atβ0 underH1.

Theorem 6.6 (Theorem 2’) Suppose that Y1,Y2...,Yn i.i.d with unknown density f(.). Let G =

{g(.,β);β ∈ B⊆ R } is a parametric family of assumed densities for Y′
i s. If H1 holds, under condi-

tions (C0)-(C4) and (1) we have:

Tn(Y, β̂n)
P−→ E f {

1
n

n

∑
i=1

logg(Yi ;β0)}= E f {logg(Y;β0)}.

Proof :

|1
n

n

∑
i=1

logg(Yi ; β̂n)−E f (
1
n

n

∑
i=1

logg(Yi ;β0))|=

|1
n

n

∑
i=1

logg(Yi ; β̂n)−E f (
1
n

n

∑
i=1

logg(Yi ; β̂n))+E f (
1
n

n

∑
i=1

logg(Yi ; β̂n))−E f (
1
n

n

∑
i=1

logg(Yi ;β0))|

≤ |1
n

n

∑
i=1

logg(Yi ; β̂n)−E f (
1
n

n

∑
i=1

logg(Yi ; β̂n))|+ |E f (
1
n

n

∑
i=1

logg(Yi ; β̂n))−E f (
1
n

n

∑
i=1

logg(Yi ;β0))|

≤ sup
β∈B

|1
n

n

∑
i=1

logg(Yi ;β)−E f (
1
n

n

∑
i=1

logg(Yi ;β))|+|E f (
1
n

n

∑
i=1

logg(Yi ; β̂n))−E f (
1
n

n

∑
i=1

logg(Yi ;β0))| (2′)

By (C4) | logg(y;β)| ≤ ϑ(y) On the other hand by (1) we have

1
n

n

∑
i=1

logg(Yi ;β)−E f (
1
n

n

∑
i=1

logg(Yi ;β)) P−→ 0.

now under conditions (C0) and (C1) by TheoremB3 the first term in (2’) converges to zero.

For second term in (2’)

E f {
1
n

n

∑
i=1

logg(Yi ; β̂n)−
1
n

n

∑
i=1

logg(Yi ;β0)}= [
1
n

n

∑
i=1

E f (∇ logg(Yi ;β0))](β̂n−β0)+op(β̂n−β0)
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by (C3)E f (∇ logg(Yi ;β0)) exists and is equal to zero, this complete the proof.�

Theorem 6.7 (Theorem 3’) Under conditions (C0)-(C3) suppose that0 < V ar f {log f (X,θ?)} <

∞, we have:

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−E f (logg(Yi ;β0))]
L−→N (0,V ar f {logg(Y,β0)}).

Proof :

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−E f (logg(Yi ;β0))] =

1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β0)+ logg(Yi ;β0)−E f (logg(Yi ;β0))] =

1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β0)]+
1√
n

n

∑
1

[logg(Yi ;β0)−E f (logg(Yi ;β0)]

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has

a normal distribution with average and variance equal to zero andV ar f {logg(Y,β0)} respectively.

For the first term, by Taylor’s expansion we have

1√
n

n

∑
i=1

[logg(Yi ; β̂n)− logg(Yi ;β0)] =

1√
n

n

∑
i=1

[(β̂n−β0)∇ logg(Yi ;β0)+op(β̂n−β0)] =

√
n(β̂n−β0)

1
n

n

∑
i=1

∇ logg(Yi ;β0)+
√

nop(β̂n−β0) (3′)

we know that under regularity conditions (C0)-(C3)”

√
n(β̂n−β0)

L−→N (0,I−1(β0)J(β0)I−1(β0)). (4′)

By WLLN

1
n

n

∑
i=1

∇ logg(Yi ;β0)
P−→ E f (∇ logg(Y;β0)) = 0
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from these two last convergences by Slutsky’s theorem we have

√
n(β̂n−β0)

1
n

n

∑
i=1

∇ logg(Yi ;β0)
L−→ 0

which also implies

√
n(β̂n−β0)

1
n

n

∑
i=1

∇ logg(Yi ;β0)
P−→ 0. (5′)

On the other hand

√
nop(β̂n−β0) = op(

√
n(β̂n−β0))

by (4’)
√

n(β̂n−β0) = Op(1) then

√
nop(β̂n−β0) = op(Op(1)) = op(1) (6′)

by (5’) and (6’)

√
n(β̂n−β0)

1
n

n

∑
i=1

∇ logg(Yi ;β0)+
√

nop(β̂n−β0)
P−→ 0

Now applying the Slutsky’s theorem. �

Theorem 6.8 (Theorem 4’) :

Under theorem3′ we have

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−E f (logg(Yi ; β̂n))]
L−→N (0,V ar f {logg(Y,β0)}).

Proof :

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−Eβ̂n
(logg(Yi ; β̂n))] =

1√
n

n

∑
i=1

[logg(Yi ; β̂n)−E f (logg(Yi ;β0))]−
1√
n

n

∑
i=1

[Eβ̂n
(logg(Yi ; β̂n))−E f (logg(Yi ;β0))]

By theorem 3’

1√
n

n

∑
i=1

logg(Yi ; β̂n)−E f (logg(Yi ;β0))]
L−→N (0,V ar f {logg(Y,β0)}). (7′)
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and

1√
n

n

∑
i=1

[Eβ̂n
(logg(Yi ; β̂n))−E f (logg(Yi ;β0)] =

1√
n

n

∑
i=1

[(β̂n−β0)E f (∇ logg(Yi ,β0))+op(β̂n−β0)] =

√
n(β̂n−β0)

1
n

n

∑
i=1

E f (∇ logg(Yi ,β0))+op(
√

n((β̂n−β0)) (8′)

the first term clearly is zero and the second term by (6’) converges to zero, now by Slutsky’s theorem

for (7’) and (8’) the result holds. �

6.6.2 Power of Test

Before talking about power we proof a useful lemma. Ifd(x,y) = ||x− y|| = (∑k
i=1(xi − yi)2)1/2

denotes the Euclidean distance function onR k, a sequence of the random variablesYn is said to

converge in probability to theY if for everyε′ > 0, Pr(||Yn−Y||> ε′)→ 0, Van der Vaart (1998) and

Lehmann (1998). This is denoted by||Yn−Y|| P−→ 0 or as beforeYn
P−→Y.

Lemma 6.1 Let Un =

X

Yn

 and U0 =

X

Y0

 where X is a random variable and Yn
P−→Y0 then for

everyε > 0

Un
P−→U0

Proof : The convergence in probability is equivalent to individual convergence in probability of the

vector elements. TriviallyX
P−→ X then

p{||U ′
n−U ′

0||> ε1/2}= p{(X−X)2 +(Yn−Y0)2 > ε}= p{(Yn−Y0)2 > ε}

now by the fact that the quadratic function is continuous the right-hand side converges to zero by the

continuous mapping theorem. Then

Un
P−→U0. �
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Now by Lemma 1 and continuous mapping theorem logg(Y; β̂n)
P−→ logg(Y;β0) which implies

that logg(Y; β̂n)
L−→ logg(Y;β0). In general we can split the random variable logg(Y; .) into its

positive and negative parts which means that logg(Y; .) = {logg(Y; ; .)}+ −{logg(Y; .)}− where

{logg(Y; .)}+ = max{logg(Y; .),0}, {logg(Y; .)}− = max{− logg(Y; .),0} and

E f {logg(Y; .)}= E f {logg(Y; .)}+−E f {logg(Y; .)}−.

Assume that logg(Y; β̂n) is non-negative for all n,

|E f {logg(Y; β̂n)}−E f {logg(Y;β0)}|=

|
∫ ∞

0
{P(logg(Y; β̂n)) > y−P(logg(Y;β0)) > y}dy|=

|
∫ ϑ

0
{P(logg(Y; β̂n)) > y−P(logg(Y;β0)) > y}dy| ≤

∫ ϑ

0
|P{(logg(Y; β̂n)) > y}−P{(logg(Y;β0)) > y}|dy→ 0

because the interval of integration is bounded. Then by convergence in mean

E f {logg(Y; β̂n)}→ E f {logg(Y;β0)}.

for general result we can consider the positive and negative part of logg(Y; β̂n). On the other hand

by continuous mapping theorem{logg(Y; β̂n)}2 L−→ {logg(Y;β0)}2. And again

E f {(logg(Y; β̂n))2}→ E f {(logg(Y;β0))2}

now

V ar f {logg(Y; β̂n)}→ V ar f {logg(Yi ;β0)}.

thus we can approximate

V ar f {
1
n

n

∑
i=1

logg(Yi ;β0)}
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by

V ar f {
1
n

n

∑
i=1

logg(Yi ; β̂n)}.

By the Portmanteau theorem for identity function

EH1
{logg(Y; β̂n)}→ EH1

{logg(Y;β0)}

where expectation underH1 indicates that expectation is taken under the density which is specified

in H1. On the other hand by the continuous mapping theorem{logg(Y; β̂n)}2 L−→ {logg(Y;β0)}2.

and again

V arH1
{1

n

n

∑
i=1

logg(Yi ; β̂n)}→ V arH1
{1

n

n

∑
i=1

logg(Yi ;β0)}.

Now by (C4) the uniform integrability of logg(g;β) we have

EH1
{logg(Y; β̂n)}

P−→ EH1
{logg(Y;β0)}

and

V arH1
{1

n

n

∑
i=1

logg(Yi ; β̂n)}
P−→ V arH1

{1
n

n

∑
i=1

logg(Yi ;β0)}.

Then the asymptotic density of interest could be changed to asymptotic density of

1
n ∑n

i=1 logg(Yi ; β̂n)−E f {1
n ∑n

i=1 logg(Yi ;β?)}√
V ar f {1

n ∑n
i=1 logg(Yi ;β?)}

which is more realistic in theory.

The power of the test for levelαn is defined by

γn = E f (φ(Y)) = Pf (Tn(Y, β̂n) < Kn).

Now

γn = P

(
1/n∑n

i=1[logg(Yi ; β̂n)−E f (logg(Yi ;β0))]√
V ar f (logg(Y;β0))/n

<
Kn−E f (logg(Y;β0))√

V ar f (logg(Y;β0))/n

)
=
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P

(√
n(1/n∑n

i=1[logg(Yi ; β̂n)−E f (logg(Yi ;β0))]√
V ar f (logg(Y;β0))

<WZαn +
√

n{Eβ?
(logg(Y;β?))−E f (logg(Y;β0))}√

V ar f (logg(Y;β0))

)
(9)

whereW =
√

V arβ? (logg(Y;β?))
V ar f (logg(Y;β0)) , then

γn = Φ
{

WZαn +
√

n{Eβ?
(logg(Y;β?))−E f (logg(Y;β0))}√

V ar f (logg(Y;β0))

}
.

From the last equality we can see that the power of the test mainly depends on the difference in

expectations of the log- density functions underH0 andH1.

It seems that in practice we need to compute the power function as below

γn = Φ
{

WZαn +
√

n{Eβ?
(logg(Y;β?))−E f (logg(Y; β̂n))}√

V ar f (logg(Y; β̂n))

}
.

or

γn = Φ
{

WZαn +

√
n{Eβ̂n

(logg(Y; β̂n))−E f (logg(Y; β̂n))}√
V ar f (logg(Y; β̂n))

}
.

6.7 Consistency of Test

By the definition ofMLE we know that

1
n

n

∑
i=1

logg(Yi ; β̂n)≥ sup
β∈B

1
n

n

∑
i=1

logg(Yi ;β)−op(1)

then

1
n

n

∑
i=1

logg(Yi ; β̂n)≥
1
n

n

∑
i=1

logg(Yi ;β0)−op(1)→ E f {logg(Y;β0)}−op(1)

and

E f {logg(Y;β0)}−Eβ?
{logg(Y;β?)} ≤

1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
{logg(Y;β?)}+op(1)≤

sup
β∈B

{1
n

n

∑
i=1

logg(Yi ;β)−Eβ{logg(Y;β)}}+op(1)
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The right side of the last inequality under conditions (C0) and (C1) and (1) by TheoremB3 converges

to zero. By this we conclude that

Eβ?
{logg(Y;β?)}−E f {logg(Y;β0)}> 0

Then the right side of (9) goes to∞ whenn→∞ and its left side converges in distribution; it follows

thatγn→ 1 asn→∞. Thus this test is consistent. On the other hand from the power function and the

last inequality we see that when the difference gets large which means that when the hypothesized

density underH1 is far from the hypothesized density underH0 in expectation the power function

naturally gets large.

6.7.1 Power computation

For power computation we need the bootstrap estimation ofEβ?
{logg(Y;β?)}, E f (logg(Y;β0))},

V ar f {logg(Y;β0))}, V arβ?
{logg(Y;β?))} and alsoV ar f {logg(Y;β0))} .

Algorithm 1 Bootstrap estimation ofEβ?
{logg(Y;β?)} andV arβ?

{logg(Y;β?))}.

Select the p.d.f.g(.,β) ∈ G , and the sample size n.

Estimateβ by the maximum likelihood approach, say,β̂n

Generate a sequence ofb random sampleY( j)
1 ,Y( j)

2 , ...,Y( j)
n , j = 1,2, ...,b from a distribution with

p.d.f. g(y; β̂n)

Estimateβ̂( j)Boot
n by maximizing∑n

i=1 logg(y( j)
i , β̂n), j = 1,2, ...,b

Compute

Eβ?
{logg(Y;β?)} ' EBoot{logg(Y( j); β̂( j)Boot)}=

1
b

b

∑
j=1

1
n

n

∑
i=1

logg(Y( j)
i ; β̂( j)Bootn)
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and

V arβ?
{logg(Y;β?))} '

1
b−1

b

∑
j=1

[
1
n

n

∑
i=1

logg(Y( j)
i ; β̂( j)Boot

n )− 1
B

b

∑
j=1

1
n

n

∑
i=1

logg(Y( j)
i ; β̂( j)Boot

n )]2

Algorithm 2 Bootstrap estimation ofE f {logg(Y;β0)} andV ar f {logg(Y;β0))}.

Generate a sequence ofb random sampleY( j∗)
1 ,Y( j∗)

2 , ...,Y( j∗)
n , j = 1,2, ...,b from original sample.

Estimateβ̂( j∗)B
n by maximizing∑n

i=1 logg(y( j∗)
i ,β)

Compute

E f {logg(Y;β0)} ' EBoot{logg(Y( j∗);β( j∗)Boot)}=
1
b

b

∑
j=1

1
n

n

∑
i=1

logg(Y( j∗)
i ; β̂( j∗)Boot

n )

and

V ar f {logg(Y;β0))} '
1

b−1

b

∑
j=1

[
1
n

n

∑
i=1

logg(Y( j∗)
i ; β̂( j∗)Boot

n )− 1
b

b

∑
j=1

1
n

n

∑
i=1

logg(Y( j∗)
i ; β̂( j∗)Boot

n )]2

6.7.2 Invariance

Our test statistic in general is not invariant under transformation because a single distribution is

being used to compute this gof test statistic. But it is not necessarily a defect. Here we consider an

example for our test statisticTn(Y; β̂n) and then verify the general case.

Example 6.9

SupposeY1,Y2, ...,Yn is an i.i.d. sample with exponential density,Yi ∼ exp(λ?) then

g(y;λ?) = λ?
−1e−λ?

−1y

and

1
n

n

∑
i=1

logg(Yi ;λ?) =− logλ?−
∑n

i=1Yi

nλ?

132



Proposed Model selection tests based on likelihood and AIC 6.7. CONSISTENCY OF TEST

TheMLE for λ? is λ̂? = Ỹ then

1
n

n

∑
i=1

logg(Yi ; λ̂?)−E f {
1
n

n

∑
i=1

logg(Yi ;λ?) = log
λ?

λ̂?

We consider a transformation asY = T2. ThenJ = |2T| and

w(t;λ?) = λ?
−1e−λ?

−1t22t

and

1
n

n

∑
i=1

logw(Ti ; λ̂T) =− logλ̂T −
∑n

i=1T2
i

nλ̂T
+

1
n

n

∑
i=1

log2Ti where λ̂T =
1
n

n

∑
i=1

T2
i

this shows that our test statistic is not invariant.

1
n

n

∑
i=1

logw(Ti ; λ̂T)−Ew{
1
n

n

∑
i=1

logw(Ti ;λ?)}= log
λ?

λ̂T
+

1
n

n

∑
i=1

(log2Ti −Ew(log2Ti))

whenn gets large the second term on the right is negligible by WLLN. We conclude that

1
n

n

∑
i=1

log f (Yi ; λ̂?)−E f {
1
n

n

∑
i=1

logg(Yi ;λ?)} '
1
n

n

∑
i=1

logw(Ti ; λ̂T)−Ew{
1
n

n

∑
i=1

logw(Ti ;λ?)}

Then the termTn(Y, β̂n)−Ew{1
n ∑n

i=1 logg(Ti ;λ?)} is asymptotically invariant under the one to one

transformation.

Now if Y1,Y2, ...Yn be i.i.d. with common densityf (.) and assumed densityg(.;β) andWi =

ki(Y1, ...,Yn), i = 1,2, ...,n the joint density ofW1,W2, ...,Wn is given byg(k−1;β)|det(J)| whereJ is

133



Proposed Model selection tests based on likelihood and AIC 6.7. CONSISTENCY OF TEST

Jacobian matrix of

H(Y1, ...,Yn) =



k1(Y1, ...,Yn)

k2(Y1, ...,Yn)

.

.

.

kn(Y1, ...,Yn)


whereki ’s are real-valued continuous functions IfH is a one-to-one function with inverseH−1 the

Jacobian matrix ofH is n× n matrix

(
( ∂k−1

i (w1,...,wn)
∂w j

)
n×n

=
(

∂ki(y1,...,yn)
∂y j

)−1

n×n

and Jacobian ofH

defined to be the determinant of this matrix. Then log-likelihood function forW1, ...,Wn is given by

h(W;β) = h(H−1(W);β)|det(J)|

and

1
n

h(W;β) =
1
n

logh(W1, ...,Wn;β) =
1
n

logh(k−1
1 (W1, ...,Wn), ...,k−1

n (W1, ...,Wn);β)+
1
n

log|det(J)|

=
1
n

logh(W1, ...,Wn;β)+
1
n

log|det(J)|

J is not depending onβ then

sup
β∈B

1
n

logh(W1, ...,Wn;β) = sup
β∈B

1
n

logg(Y1, ...,Yn;β)

and

1
n

logh(W1, ...,Wn; β̄n) =
1
n

logg(k−1
1 (W1, ...,Wn), ...,k−1

n (W1, ...,Wn); β̂n)+
1
n

log|J|

=
1
n

logg(Y1, ...,Yn; β̂n)+
1
n

log|det(J)|

whereβ̄n = t(β̂n) is MLE w.r.t. transformed data.

Eh{logh(W1, ...,Wn;β)}= Eh{logg(Y1, ...,Yn;β)+ log|det(J)|}=
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∫ ∫
...

∫
{

n

∑
i=1

logg(Yi ;β)}|det(J)|
n

∏
i=1

g(yi ;β)dy1...dyn +Eh{log|det(J)|}

now

1
n

logh(W1, ...,Wn; β̄n)−
1
n

Eh{logh(W1, ...,Wn;β)}=

1
n

n

∑
i=1

logg(Yi ; β̂n)−
∫ ∫

...
∫
{1

n

n

∑
i=1

logg(Yi ;β)}|J|
n

∏
i=1

g(yi ;β)dy1...dyn+
1
n

log|det(J)|− 1
n

Eh{log|det(J)|}.

For a linear transformation likeYj = ∑n
i=1ai j Xi , j = 1, ...,n, then the Jacobian of the transformation

is the determinant of the matrix

(
ai j

)
and two last terms in the right of equality vanish. If this

transformation is also orthogonal we have|det(J)|= 1 then forβ?

1
n

logh(W1, ...,Wn; β̄n)−
1
n

Eh{logh(W1, ...,Wn;β?)}=
1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
{1

n

n

∑
i=1

logg(Yi ;β?)}

then

1
n

n

∑
i=1

logg(Yi ; β̂n)−Eβ?
{1

n

n

∑
i=1

logg(Yi ;β?)}

is invariant under orthogonal linear transformation.
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Chapter 7

Test For Model Selection based on

difference of AIC’s:

application to tracking interval for

∆EKL

7.1 Introduction

Usually a statistical process is to drive a model from theory and then use statistical methods to

estimate its parameter(s). In regression models for instance, the goal is to determine whether or not

an “independent” variable or a set of “independent” variables, has a statistically significant effect
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upon a dependent variable. In this circumstance the questions which arise are what are the methods

and how they work for model selection. The analysis of models has followed two approaches in the

literature; the hypothesis testing and the model selection criteria. If we find by a method, a positive

effect of independent variable(s) on a dependent variable, we will confirm our model. Sometimes

we choosee a model which is at least not falsified. Clearly this approach is different of classical

hypothesis testing. Two models may be nested or non-nested, and in the latter case they may overlap

or not. The nested models are frequently studied in both theoretical and applied statistics. On the

other hand the non-nested models are less discussed. Historically a serious studies on non-nested

models can be found in a period from Cox (1961), Cox (1962) to Vuong (1989). In search of

similarities and differences between Cox’s test and Vuong’s test we may say that the Vuong’s test

is a development of the Cox test. As a classical usage of these two tests the Cox’s test is a test

about non-nested hypothesis where the emphasis of Vuong’s test is on non-nested models. Both

tests are a generalization of the likelihood ratio tests (LRT) under different sense. In Cox’s test

the difference between the log-likelihood ratio and its expected value under the null hypothesis is

considered. The Cox’s test says that a true model must be able to predict the performance of the

specific alternatives , i.e. a true null should not distort the actual performance of the alternative

model. The idea is to compare the true performance of the alternative model with the expected

performance of the alternative model under the null hypothesis. We may make any decision about

two competing models. The important points is that when we reject a hypothesis, there is no means

that it is rejected in favor of the specific alternative. For example the rejection of both models implies

that neither model could predict the results of the other model. Then we conclude that both models

are mis-specified. May be a solution to this difficulty is to use a model selection approach which

chooses the model which is closest to the true model. We must notice that the other difficulty with
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Cox’s test is calculating the expected value of the log-likelihood ratio under the null hypothesis.

Another candidate in a similar situation is Vuong’s test. In Vuong viewpoint, the best model is the

model which maximizes the relevant part of KL risk. The null hypothesis of Vuong’s test is the

expectation under the true model of the log-likelihood ratio of the two candidate models are equal to

zero, which means that two candidate models are equivalent. This expectation however is unknown.

But Vuong’s test works, because the decision making procedure by Vuong’s test does not depend on

this unknown quantity.

7.2 Objective

The problem of model selection by model selection criterion is that it produces a deterministic out-

come, defined by the ranking of the values of the criterion, and it does not take account the prob-

abilistic nature of the result. On the other hand the differences in the criterion values may not be

statistically sufficient because the deterministic model selection criterion approach would consider

a model better than another model while in fact they may be considered as statistically equivalent.

This is a reason why Vuong (1989) considered a probabilistic framework. On the other hand the log-

likelihoods used in the Vuong’s test are affected if the number of coefficients in the two models is

different and therefore the test must be corrected for the degrees of freedom. For a relative solution to

these two problems we focus on interval estimation for normalized difference of a model selection

criteria of two competing models as the dual of the hypotheses testing problem when the models

are non-nested. Our attention is on Akaike Information Criterion(AIC), see 4.5.1, and expected

Kullback-Leibler (EKL), see 4.4.1. The Akaike criterion is often used as the measure of model

accuracy. In fact this statistic considers the lack of fit measure and the parsimony as a principal of
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model selection. From decision theory we realize that comparison could be based on some function

of the likelihood ratio of nested or non-nested models. Thus it makes sense that we consider some

condition on this kind of function. A possible function of this ratio could be the log function, the

expectation of this function define the especial loss function which is known as the Kullback-Leibler.

It was Akaike (1973) who introduced the expected value over the data of the Kullback-Leibler loss

as the risk function on which model selection can be made. In searching for the estimator for this

risk we notice that the difference ofAIC’s for two models detect the changes when we must choice

the best model. It is noticeable that the normalized difference ofAIC’s is an estimator for the differ-

ence ofEKL’s for two models. By these means we want to construct a confidence interval about the

expected Kullback-Leibler risks difference, where the expectation is taken under the unknown true

density. After tracking this interval we are in a decision making situation. If this interval contains

zero, we will conclude that the two models are equivalent in Kullback-Leibler sense related to the

true density.

In this chapter we will bring some necessary definition and by two theorems and corollary we

will argue that we can achieve a Vuong-like test under other considerations which are useful for

tracking an interval. A simulation study shows that the confidence interval has a good interpretation

in model selection where the models are logistic models in regression context. We use this approach

of model selection for real data to verify the relation between body-mass index and depression in

elderly people; see appendixB.
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7.3 Non-Nested Models comparison

Many models comparisons are performed among models that are not nested. In the literature a

method for comparing the non-nested regression models come back to Hotelling (1940), Kendall and

Stuart (1967) and Pesaran (1978). Consider two families of parametric densities asG = (gβ(.))β∈B =

{g(y;β);β∈B)} , K = (hγ(.))γ∈Γ = {h(y;γ);γ∈Γ} and an i.i.d. random sample from the true density

f (.).

Definition 7.1 (Non-Nested models)Two modelsG andK are strictly non-nested iffG ∩K = ∅.

This definition may be generalized by Kullback-Leibler divergence term between two models. Fol-

lowing 4.3 and in mis-specified case we set

β0 = argmaxβE f {logg(Y;β)} and γ0 = argmaxγE f {logh(Y;γ)}

such that if f 6∈ G , β̂n
P−→ β0 and if f 6∈ K , γ̂n

P−→ γ0 whereβ̂n andγ̂n are their maximum likelihood

estimators underg(., .) andh(., .) respectively, and

β? = argmaxβEg{logg(Y;β)} and γ? = argmaxγEh{logh(Y;γ)}

which are the true values ofβ andγ underG andK (when one at time they are the correctly specified

models) respectively. As we saw if the true densityf (.) belongs to theG theMLE of β converges

to β? and if the true densityf (.) belongs to theK theMLE of γ converges toγ?. Define

β0h = argmaxβEh{logg(Y;β)} and γ0g = argmaxγEg{logh(Y;γ)}

If h(., .) be the true densityβ0h = β0(γ?) and ifg(., .) is the true densityγ0g = γ0(β?).
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Definition 7.2 (Non-Nested models in KL sense)We say two models are non-nested if and only if

KL{h(Y,γ?(β0));g(Y,β0)} 6= 0 and KL{g(Y,β?(γ0));h(Y,γ0)} 6= 0. ∀β? ∈ B and ∀γ? ∈ Γ

The KL distance from the true densityf (.) for densitiesg(.,β0) andh(.,γ0) are given by

KL{g(.,β0); f (.)}= E f {log f (Y)}−E f {logg(Y,β0)}

and

KL{h(.,γ0), f (.)}= E f {log{ f (Y)}−E f {logh(Y,γ0)}.

Since the first term in both of KL(.,.)’s is unknown the KL(.,.) can not be estimated directly, but it

can be noticed that when two models are compared, the first term of KL(.,.) remains constant, so

that minimization of the criterion only depends on the second terms. To compare these two models

we notice thatKL{g(.,β0); f (.)}= KL{h(.,γ0); f (.)} if and only

E f {logg(Y;β0)}= E f {logh(Y;γ0)}.

Then two models are equally close in KL sense to the true densityf (.) if the last equality is true.

This lead us to model selection criterion in a hypothesis testing framework, see, Vuong (1989). The

null hypothesis is given by;

H0 : E f {log
g(Y;β0)
h(Y;γ0)

}= 0

which meaning that two models are equivalent. The alternatives could be

Hg = E f {log
g(Y;β0)
h(Y;γ0)

}> 0

or

Hh = E f {log
g(Y;β0)
h(Y;γ0)

}< 0
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The first alternative hypothesis meaning thatG is better thenK and the second alternative hy-

pothesis meaning thatK is better thenG . Consequently when we rejectH0 in favor of Hg, we say,

G is less misspecified thanK and when we rejectH0 in favor of Hh, we say,K is less misspecified

thanG .

7.3.1 Motivation to Confidence Interval construction

In model selection context, selection the null hypothesis is not easy and on the other hand we faced

with many alternatives and sometimes with infinite number of alternatives. Generally in hypothesis

testing when we decide about null hypothesis we do not add more and more alternative hypothesis, in

fact in hypothesis testing we select the one best alternative to compare against. Confidence intervals

are equivalent to encapsulating the results of many hypothesis tests. They explicitly show the region

where we are likely to find the true answer. In this section we want to show how we can construct

a pivot to building a confidence interval for difference of expected Kullbak-Leibler risks for two

models related to the true density. We do it in two parts. In the first part we consider the statistic

Tn as in chapter 6 but here for standardized ratio of two non-nested modelsg andh,say,Sn. Taylor

expansion of numerator ofSn guides us to Vuong’s theorem (1989). In a second part our focus is

on regression context in the spirit of conditional Kullback-Leibler criterion for reduced models, (for

reduced models, see, Commenges et al. (2007)). In Theorem 7.1 and in the spirit of Vuong’s theorem

we find the asymptotic distribution of a statistic which is a little different fromSn by considering the

expected Kullback-Leibler in a regression context instead of simple average ofTn in numerator ofSn.

In Theorem 7.2 using Theorem 7.1, we find the asymptotic distribution of a difference of normalized

AIC criterion, say,Dn(gβ̂n,hγ̂n). The last result is a basis to construct a confidence interval for

difference of expected Kullback-Leibler of two models related to true density, say,∆n(gβ̂n,hγ̂n),
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which helps us to choose betweeng andh.

Under Theorem 6.6 we have

1
n

n

∑
i=1

logg(Yi , β̂n)
P−→ E f {logg(Y,β0)}

and similarly

1
n

n

∑
i=1

logh(Yi , γ̂n)
P−→ E f {logh(Y,γ0)}

then we expect that

1
n

n

∑
i=1

logg(Yi , β̂n)−
1
n

n

∑
i=1

logh(Yi , γ̂n) =
1
n

n

∑
i=1
{log

g(Yi , β̂n)
h(Yi , γ̂n)

} P−→ E f {log
g(Y,β0)
h(Y,γ0)

}.

By this result we chois the left-hand side of the last relation as the test statistic. To do a test we need

to know the distribution of this test statistic. As the classical approach we consider

Sn =
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }−E f {1

n ∑n
i=1{log g(Yi ,β̂n)

h(Yi ,γ̂n) }}√
V ar f {1

n ∑n
i=1{log g(Yi ,β̂n)

h(Yi ,γ̂n) }}

or

Sn =
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }−

[
E f {1

n ∑n
i=1{log g(Yi ,β0)

h(Yi ,γ0) }}−E f {1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }}−E f {1

n ∑n
i=1{log g(Yi ,β0)

h(Yi ,γ0) }}
]

√
V ar f {1

n ∑n
i=1{log g(Yi ,β̂n)

h(Yi ,γ̂n) }}
.

By Taylor expansion the last two terms in the numerator are negligible because

E f {
1
n

n

∑
i=1
{log

g(Yi , β̂n)
h(Yi , γ̂n)

}−E f {
1
n

n

∑
i=1
{log

g(Yi ,β0)
h(Yi ,γ0)

}}=

(β̂n−β0)TE f {
1
n

n

∑
i=1

∇ logg(Yi ,β0)}− (γ̂n− γ0)TE f {
1
n

n

∑
i=1

∇ logh(Yi ,γ0)}+op(1) P−→ 0.

Thus

Sn =
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }−E f {1

n ∑n
i=1{log g(Yi ,β0)

h(Yi ,γ0) }}√
V ar f {1

n ∑n
i=1{log g(Yi ,β̂n)

h(Yi ,γ̂n) }}
.
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On the other hand

V ar{
n

∑
i=1

log
g(Yi , β̂n)
h(Yi , γ̂n)

}=
n

∑
i=1

V ar f {log
g(Yi , β̂n)
h(Yi , γ̂n)

}+2∑∑
i< j

Covf {log
g(Yi , β̂n)
h(Yi , γ̂n)

, log
g(Yj , β̂n)
h(Yj , γ̂n)

}.

Now

ˆV ar f {log
g(Yi , β̂n)
h(Yi , γ̂n)

}=
1
n

n

∑
i=1
{log

g(Yi , β̂n)
h(Yi , γ̂n)

}2−{1
n

n

∑
i=1
{log

g(Yi , β̂)
h(Yi , γ̂)

}}2.

Then

Sn =
1√
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) −E f {log g(Yi ,β0)

h(Yi ,γ0) }}√
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi ,β̂)

h(Yi ,γ̂)
}}2 + 2

n ∑∑i< j Covf {log g(Yi ,β̂n)
h(Yi ,γ̂n) , log

g(Yj ,β̂n)
h(Yj ,γ̂n) }

.

The covariance term is a part ofSn and needs to computation, but it is reasonable if we expect

that

Covf {log
g(Yi , β̂n)
h(Yi , γ̂n)

, log
g(Yj , β̂n)
h(Yj , γ̂n)

}→ Covf {log
g(Yi ,β0)
h(Yi ,γ0)

, log
g(Yj ,β0)
h(Yj ,γ0)

}

and use this fact thatg(Yi ,β0)
h(Yi ,γ0) and

g(Yj ,β0)
h(Yj ,γ0) are independent. Now if we consider the covariance term

as negligible (which in Vuong’s theorem (1989) disappears) by Vuong’s theorem (1989),Vn has

asymptotically the standard normal density. Thus

Sn =
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }−E f {1

n ∑n
i=1{log g(Yi ,β̂n)

h(Yi ,γ̂n) }}√
1
n ∑n

i=1{log g(Yi ,β̂n)
h(Yi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi ,β̂)

h(Yi ,γ̂)
}}2

L−→N (0,1)

Sn is different from Vuong’s statistics in expectation term.

7.3.2 Confidence Interval for∆EKL

Let Zn = (Z1,Z2, ...,Zn), with Zi = (Yi ,Xi); i = 1,2, ...,n; (Yi ∈ R d,Xi ∈ R m) is a sample of inde-

pendent identically distributed random variables with common true unknown density (generating

or true model)fY,X(., .) = f (., .), and with conditional density ofY givenX as f t
Y|X(., .). Consider
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gY|X(Y|X,β) andhY|X(Y|X,γ) as two non-nested models (postulated or candidate models). Follow-

ing 4.4.1 we considerβ0 andγ0 as the minimizer of KL criterion. It is known that the maximum

likelihood estimatorŝβn andγ̂n are consistent forβ0 andγ0 respectively. For the reduced model, the

KL criterion for these two models is given by

KL{gY|X(.|.,β0); fY|X(., .)}= E f {log fY|X(Y|X)}−E f {loggY|X(Y|X,β0)}

and

KL{hY|X(.|.,γ0); fY|X(., .)}= E f {log{ fY|X(Y|X)}−E f {loghY|X(Y|X,γ0)}.

where in both of them the first part is irrelevant (because for all postulated models this term is fixed)

and the second part is the relevant part for our goal. In both of aboveKL criteria the relevant parts

are the quantity of interest, but can not be estimated, because they depend on unknownf . Akaike

(1973) found that the expectation of the relevant part can be estimated. Denote the fitted models by

gY|X(Y|X, β̂n) andhY|X(Y|X, γ̂n). The conditional KL criterion for the relevant parts, say, CKLs are

CKLg,n = E f {loggY|X(Y|X, β̂n)|Zn}.

and

CKLh,n = E f {loghY|X(Y|X, γ̂n)|Zn}.

The expected CKL, say,EKLg,n is given by

E f {CKLg,n}= EKLg,n = E f {loggY|X(Y|X, β̂n)}

and similarly forCKLh,n

E f {CKLh,n}= EKLh,n = E f {loghY|X(Y|X, γ̂n)}
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Following sections 4.4.1 and 4.5.1 there is a asymptotic relation aboutEKL and its estimator. In

fact based on Taylor’s expansion of−nE f {1
n ∑n

i=1 loggY|X(Yi |Xi , β̂n)} aboutβ0 if n(β̂n−β0)(β̂n−

β0)T is uniformly integrable, we have:

−E f {loggY|X(Y|X, β̂n)}=−E f {loggY|X(Y|X,β0)}+
1
2n

tr(I−1J)+o(n−1)

and

−E f {loggY|X(Y|X, β̂n)}=−E f {
1
n

n

∑
i=1

loggY|X(Yi |Xi , β̂n)}+
1
n

tr(I−1J)+o(n−1).

By these we conclude that

−E f {loggY|X(Y|X,β0)}=−E f {
1
n

n

∑
i=1

loggY|X(Yi |Xi , β̂n)}+
1
2n

tr(I−1J)+o(n−1).

Theorem 7.1 Under assumption A6, Vuong (1989), (For F-almost all (y,x), the function| logg(y|x)|2)

and| logg(y|x)|2 are dominated by true (distribution function) FY,X-integrable functions independent

of parameters in postulated models) we have

1√
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −{EKLg,n−EKLh,n}}√

1
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi |Xi ,β̂n)

h(Yi |Xi ,γ̂n) }}2

L−→N (0,1)

Proof : Vuong (1989) has shown that

1√
n{∑n

i=1 log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −E f {log

gY|X(Y|X,β0)
hY|X(Y|X,γ0) }}√

V ar f {log g(Y|X,β0)
h(Y|X,γ0) }

L−→N (0,1).

Then

1√
n ∑n

i=1{log h(Yi |Xi ,γ̂n)
g(Yi |Xi ,β̂n)

−E f {log
gY|X(Yi |Xi ,β̂n)
hY|X(Yi |Xi ,γ̂n) }+E f {log

gY|X(Yi |Xi ,β̂n)
hY|X(Yi |Xi ,γ̂n) }−E f {log

gY|X(Yi |Xi ,β0)
hY|X(Y|X,γ0) }}√

V ar f {log g(Y|X,β0)
h(Y|X,γ0) }

L−→N (0,1).

Now by lemma 6.1 (see 6.6.2), if we setUn =


Yi

Xi

β̂n

 andU0 =


Yi

Xi

β0

 thenUn
P−→ U0 and
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similarly for Vn =

Xi

β̂n

 andV0 =

Xi

β0

 whereVn
P−→V0. They implies the convergence in distri-

bution forUn andVn. Now by continuous mapping theorem logg(Yi ,Xi , β̂n)
P−→ logg(Yi ,Xi ,β0) and

logg(Xi , β̂n)
P−→ logg(Xi ,β0) thus logg(Yi |Xi , β̂n)

P−→ logg(Yi |Xi ,β0) which implies that logg(Yi |Xi , β̂n)
L−→

logg(Yi |Xi ,β0). In general fori = 1,2, ...,n; we can split the random variable logg(Yi |X, .) into its

positive and negative parts which means that logg(Yi |Xi , .) = {logg(Yi |Xi , .)}+−{logg(Yi |Xi , .)}−

where{logg(Yi |Xi , .)}+ = max{logg(Yi |Xi , .),0}, {logg(Yi |Xi , .)}− = max{− logg(Yi |Xi , .),0} and

E f {logg(Yi |Xi , .)}= E f {logg(Yi |Xi , .)}+−E f {logg(Yi |Xi , .)}−.

Assume that logg(Yi |Xi , β̂n) is non-negative for alln and using (C4) for conditional density,

|E f {logg(Yi |Xi , β̂n)}−E f {logg(Yi |Xi ,β
0
)}|=

|
∫ ∞

0
{P(log f (Yi |Xi , β̂n)) > η−P(log f (Yi |Xi ,β0)) > η}dη|=

|
∫ g

0
{P(log f (Yi |Xi , β̂n)) > η−P(log f (Yi |Xi ,β0)) > η}dη| ≤

∫ g

0
|P{(log f (Yi |Xi , β̂n)) > η}−P{(log f (Yi |Xi ,β0)) > η}|dη→ 0

because the interval of integration is bounded. Then by convergence in mean

E f {log f (Yi |Xi , β̂n)}→ E f {log f (Yi |Xi ,β0)}.

Similarly

E f {logg(Yi |Xi , γ̂n)}→ E f {logg(Yi |Xi ,γ0)}.

which implies that

E f {log
g(Yi |Xi , β̂n)
h(Yi |Xi , γ̂n)

}→ E f {log
gY|X(Y|X,β0)
hY|X(Y|X,γ0)

}
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Now we have
1√
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −E f {log

gY|X(Yi |Xi ,β̂n)
hY|X(Yi |Xi ,γ̂n) }}√

V ar f {log g(Y|X,β0)
h(Y|X,γ0) }

L−→N (0,1).

If we use the variance estimator we have

1√
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −E f {log

gY|X(Yi |Xi ,β̂n)
hY|X(Yi |Xi ,γ̂n) }}√

1
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi |Xi ,β̂n)

h(Yi |Xi ,γ̂n) }}2

L−→N (0,1)

Then
1√
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −{E f {CKLg,n}−E f {CKLh,n}}√

1
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi |Xi ,β̂n)

h(Yi |Xi ,γ̂n) }}2

L−→N (0,1)

and thus
1√
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) −{EKLg,n−EKLh,n}}√

1
n ∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) }2−{1

n ∑n
i=1{log g(Yi |Xi ,β̂n)

h(Yi |Xi ,γ̂n) }}2

L−→N (0,1). �

Theorem 7.2 Under Theorem 7.1 let

Dn(gβ̂n,hγ̂n) = n−1
[

1
2

AICg,n−
1
2

AICh,n

]

and

∆n(gβ̂n,hγ̂n) = EKLn(gβ̂n; f )−EKLn(hγ̂n; f )

where AICg,n = −1
n ∑n

i=1 logg(Yi |Xi , β̂n) +
tr(I−1

g Jg)
n , AICh,n = −1

n ∑n
i=1 logh(Yi |Xi , γ̂n) + tr(I−1

h Jh)
n et

EKLn(gβ̂n, f ) = E f {log f (Y)
g(Y;β̂n)

} andEKLn(hγ̂n, f ) = E f {log f (Y)
h(Y;γ̂n)}, under Theorem 7.1 we have

n1/2
[
Dn(gβ̂n,hγ̂n)−∆n(gβ̂n,hγ̂n)

]
L−→N (0,ω2

?)

whereω2
? is V ar f {log g(Y|X,β0)

h(Y|X,γ0) }.

proof : We know thatDn(gβ̂n,hγ̂n) =−n−1

[
∑n

i=1{log g(Yi |Xi ,β̂n)
h(Yi |Xi ,γ̂n) }

]
+ p−q

n thus

Dn(gβ̂n,hγ̂n)−∆n(gβ̂n,hγ̂n) =−1
n

n

∑
i=1
{log

g(Yi |Xi , β̂n)
h(Yi |Xi , γ̂n)

}−EKLn(gβ̂n; f )+EKLn(hγ̂n; f )+
p−q

n
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where

p = tr(I−1
g Jg)+O(n−1)

and

q = tr(I−1
h Jh)+O(n−1),

see, 4.5.1. When the model is well specifiedp andq are the number of parameters in densitiesg and

h respectively. Then

n1/2
[
Dn(gβ̂n,hγ̂n)−∆n(gβ̂n,hγ̂n)

]
=−

[
1√
n

n

∑
i=1
{log

g(Yi |Xi , β̂n)
h(Yi |Xi , γ̂n)

−{EKLg,n−EKLh,n}}
]
+

p−q√
n

.

Now using Theorem 7.1, this fact thatp−q√
n for large n is negligible and symmetric property of normal

distribution we have

n1/2
[
Dn(gβ̂n,hγ̂n)−∆n(gβ̂n,hγ̂n)

]
L−→N (0,ω2

?). �

Corollary 1: Under Theorem 7.2, a(1−α)% confidence interval for∆n(gβ̂n,hγ̂n) is given by

[
Dn(gβ̂n,hγ̂n)−n−1/2zα/2ω̂n , Dn(gβ̂n,hγ̂n)+n−1/2zα/2ω̂n

]

where as before

ω̂2
n =

√
1
n

n

∑
i=1
{log

g(Yi |Xi , β̂n)
h(Yi |Xi , γ̂n)

}2−{1
n

n

∑
i=1
{log

g(Yi |Xi , β̂n)
h(Yi |Xi , γ̂n)

}}2. �

7.4 Logistic Regression:

The Logistic regression model, Cox (1970), has become a widely accepted method of analysis of

binary (dichotomous) data. There are similarities and differences between linear and logistic regres-

sion. As we saw in 3.4.2 by generalizing the linear models we achieve a wide range of models to
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describe the data. This generalization exactly introduces a new linear predictor based on the mean of

the outcome variableY which does no longer have to be normally distributed or even continuous. In

fact in logistic models we haveYi ∼ Bin(1,πi) andξ(µ) = η = Xβ whereξ be an invertible, smooth

function of the mean vectorµ= E(Y). The explanatory variableX is in model through the logit link

function η = log( π
1−π ), which is known as the log-odds transformation orlogit. A model for the

log-odds is called a logit or logistic regression model. It is seen that the logit transformation yields a

linear relationship for the logit model. In this case the logit link is commonly used but the other link

like probit and the complementary log− log is available. For multiple logistic regression we have

log(
π

1−π
) = Xβ

and then

π =
exp(Xβ)

1+exp(Xβ)
.

It is clear that the derivatives of likelihood function with respect to the parameters are not linear in

parameters then maximum likelihood estimator forβ is given by the iterative procedure like Newton-

Raphson algorithm which gives

β(t+1) = β(t) +{XTdiag{π(t)
i (1−π(t)

i )}X}−1XT(Y−π(t))

with start OLS solution forβ at iterationt = 0 asβ(0).

In the model selection context usually the measures of goodness of fit are based on the residuals.

In fact we determine whether the fitted model’s residual variation is small, displays no systematic

tendency and follows the variability postulated by the model. In logistic regression

π̂ =
exp(Xβ̂)

1+exp(Xβ̂)
.
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Two usual measures of goodness of fit test for logistic regression are Pearson Chi-square and the

likelihood ratio (Deviance). These statistics have both theχ2 distribution and lack of fit occurs when

the values of these statistics are large. Hosmer and Lemesho (1989) discuss two methods of grouping

based on the ranked estimated probabilities that form groups of equal numbers of subjects (deciles

of risk ) or use fixed cut points on the[0,1] interval. Tsiatis (1980) proposed an approach based on

fixed groups in the covariate space that yields a score test for fit.

Sometimes it is interesting that we categorize some explanatory variables in the regression mod-

els. For categorizing the cutpoint must be meaningful in the research area. This introduces some

regressors in our model. We consider the Body-Mass Index (BMI) as an important explanatory vari-

able which effects the depression; some people consider three categories forBMI as poor (desirable),

average and high (morbidly obese). Introducing a logistic model for modeling binary response as

depression (Y) acording toBMI(X1), age(X2) and gender(X3). The logit is given by

Y = β0 +β1X1 +β2X2 +β3X3 +β4X2∗X3 + ε

A categorization ofBMI could be done by terciles. We note that in the logistic scale the linear model

is not nested in the tercile model. The terciles will introduce two regressors in the model asX11 and

X12. See table 7.1.

Table 7.1- Introduced regressors by terciles.

Category f or BMI X11 X12

BMI ∈ Tersile 1 1 0

BMI ∈ Tersile 2 0 1

BMI ∈ Tersile 3 0 0

151



Test For Model Selection based on difference of AIC’s:
application to tracking interval for ∆EKL 7.4. LOGISTIC REGRESSION:

Now the model is

Y = β0 +β11X11+β12X12+β2X2 +β3X3 +β4X2∗X3 + ε

whereX11 andX12 are the 0−1 regressors. This model describes three parallel regression planes

which can differ in their intercept. See table 7.2.

Table 7.2- Three parallel regression models generated by terciles.

Category f or BMI Regression Model

BMI ∈ Tersile 1 Y = (β0 +β11)+β2X2 +β3X3 +β4X2∗X3 + ε

BMI ∈ Tersile 2 Y = (β0 +β12)+β2X2 +β3X3 +β4X2∗X3 + ε

BMI ∈ Tersile 3 Y = β0 +β2X2 +β3X3 +β4X2∗X3 + ε

β0 is an intercept for person with BMI in tercile 3. Here a BMI in tercile 3 serves as a baseline

category or reference group with which the other depression categories are compared. If age and

gender distributions are the same for the three groups, we could compare the mean of the three

groups.

We also consider the quadratic model as

Y = β0 +β1X1 +β2X2
1 +β3X2 +β4X3 +β5X2∗X3 + ε.

It is clear that the linear model in logistic scale is nested in quadratic model. The logistic curve for

this three models are shown in figure 11. A simple analysis of linear, tercile and quadratic models in

logistic scale are given at the end of this section. As the likelihood andAIC comparison of models

as we talked in 1.9 the likelihood function increases when the number of parameters in the model

increases. The linear case has five parameters while both the tercile and quadratic models have six

parameters. But forAIC is a little different, theAIC’s are ordered according to where the models are

nested or non-nested. The results for this three models is given in table 7.3.
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Figure 11: Logistic curves for linear, tercile and quadratic models in logistic scale.

Table 7.3- Maximized likelihood values and AIC’s for linear, tercile and quadratic models in

logistic scale

Model Likelihood AIC

Linear -1346.25 2702.5

Tercile -1345.60 2703.2

Quadratic -1342.93 2697.9

A simple analysis of our real data is given in table 7.4-7.6. A deeper analysis of this section is pre-
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sented in appendix B.

Table 7.4- Estimated coefficients for linear, tercile and quadratic models.

Linear model in Logistic scale

Coe f f icients Estimate Std.Error Z−value P(Z > |z|)

β0 -4.48569 1.02396 -4.381 1.18e-05

β1 -0.02952 0.01362 -2.167 0.030232

β2 0.04303 0.01212 3.551 0.000384

β3 3.09190 1.16200 2.661 0.007794

β4 -0.03922 0.01526 -2.269 0.010189

Tercile model in Logistic scale

Coe f f icients Estimate Std.Error Z−value P(Z > |z|)

β0 -5.32560 0.91920 -5.794 6.88e-09

β11 0.31106 0.12699 2.450 0.01430

β12 0.14375 0.12889 1.115 0.26473

β2 0.04255 0.01211 3.515 0.00044

β3 3.04914 1.16188 2.624 0.00868

β4 -0.03875 0.01526 -2.539 0.01110
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Quadratic model in Logistic scale

Coe f f icients Estimate Std.Error Z−value P(Z > |z|)

β0 -1.360874 1.546192 -0.880 0.378780

β1 -0.269327 0.089172 -3.020 0.002525

β2 0.004672 0.001701 2.746 0.006031

β3 0.041546 0.012136 3.423 0.000619

β4 3.051574 1.161999 2.626 0.008636

β5 -0.039072 0.015263 -2.560 0.010472
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Chapter 8

Conclusion and perspective

The purpose of this research is to clarify some facts and provide a simple test to model selection

which is a relatively new branch of mathematical statistics. The aim of statistical modeling is to

identify the model that most closely approximates the underlying process. As a part of model se-

lection, in chapter 5 we are in search of a goodness of fit test for the simple situation whereF0(.)

is a known distribution function; when there are unknown parameters, we have to first to estimate

and then plug-in it into the test statistic. For example in a simple normal case with mean and vari-

ance as unknown parameters, we can estimate these parameters by their known estimators as sample

mean and sample variance respectively and obtain a goodness of fit test for normality. Our idea

is considering a random sample of sizen and a goodness of fit test procedure which introduces a

likelihood ratio test for each fixed value in the variable space. The known Union-Intersection test

(UIT) is our proposal to solve this problem. The level of test and efficiency for this test has been

verified. It seems that our statistic is comparable to the Berk-Jones statistic. As a further work we

may consider more complex weight function in the definition of the proposed statistic, and compare
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the new statistics with other goodness of fit tests. On the other hand from a statistical standpoint, the

observed data are tainted with sampling error. Consequently, when we fit a model to the data, the

model performance reflects the population pattern and also the patterns due to sampling error. Such

patterns will be specific to the particular sample and will not repeat themselves in other samples.

A complex model with many parameters tends to capture these sample patterns more easily than a

simple model with few parameters. Then, the complex model yields a better fit to the data, but it

may not be because of its ability to more accurately approximate the underlying process but rather

because of its ability to capitalize on sampling error. Therefore, choosing a model based solely on

its fit, without appropriately filtering out the effects due to sampling error, will result in choosing

an overly complex model that generalizes poorly to other data from the same underlying process.

Consequently model selection should not be based on a model’s ability to fit particular sample data

but instead should be based on its ability to capture the characteristics of the population. There are

actually some different tests for model selection and consequently some different questions can be

asked about them. Each of the tests has advantages and disadvantages in their domain of usage. In

almost all of the tests and criteria for model selection the maximum likelihood estimator and max-

imized likelihood function have an essential role. With a careful attention there are two separate

functions over the parameter space. The first is the probability density for maximum likelihood es-

timator over the parameter space, and the second one is the likelihood function, which defines the

probability of the data in any particular point in the parameter space. As we see both are defined on

the parameter space but each has a different meaning. The i.i.d. assumption allows to obtain normal

asymptotic distributions for both the maximum likelihood estimator and the log-likelihood of the

observed data. This knowledge is a starting point to define a simple model selection criterion as the

normalized maximized likelihood function. This works for some known cases when the distribution
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of data is normal. But its disadvantage is that using the data at hand for estimation and evaluation.

On the other hand the maximized log-likelihood increases when the number of useless parameters in

a model increases. This leads to select the more complex model. Akaike solved these two difficulties

by his assumption about domain of data and by parsimony quantity. TheAIC introduced by Akaike

considers the parsimony principle to reduce the bias term in model selection. The main goal of this

statistic is to estimate twice the relevant part of the Kullback-Leibler divergence. But this is an un-

usual quantity to estimate, because it depends on the number of observations. In fact we encounter

the same difficulty as for estimating a sum in a population by a sum in the sample; in this case we

know that the error of estimation grows when the sample size increases. The normalization idea is

useful to solve this problem, and allows us to define a criterion for model selection. In fact in chapter

6 and related appendix (appendix A) we want to show that the normality of theAIC’s and that the

constructed confidence interval by normalizedAIC reflects the fact about models. When we do not

know the correct model the average of limits of these types of confidence intervals give us an idea

about the number of parameters in the model. On the other hand these types of confidence intervals

show us that theAIC is not an increasing function of the number of parameters in the model. In fact

complexity in model is good for reduction of bias, while simplicity of model reduces the tendency

to over-fit. On the other hand the best trade-off between unknown bias and unknown variance is

the aim of model selection. But how to achieve this trade off? This is the main question in model

selection. In chapter 6 and appendix A we are about the reduction of bias. With the assumption

that the future observations are in the same domain as the observed data it seems that the bias is

generally more important than the variance. In chapter 6 and appendix A we are about the reduction

of bias. With the assumption that the future observations are in the same domain as the observed

data it seems that the bias is generally more important than the variance. As the first step in model
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selection we are in search of a admissible bond for the average of confidence interval limits to select

the best model under parsimony. This admissible set of models must be contain all models which

are near to the selected model byAIC. Consider some models withk,k+1, ...k∗, ...,k+ l explanatory

variables. Assume that the model withk∗ explanatory variables is the selected model byAIC. On

the other hand by our simulation we see that for intermediate sample size there is an intersection

between some of the confidence intervals for models withj 6= k∗ explanatory variables and that for

selected model. We say two models are near to each other if their average confidence interval limits

have intersection. We set these kind of models in the admissible set. Now our search for the best

model will be in this set. This chapter needs to be developed by further work with other models for

finding the admissible line which enables us to select the set of candidate models. After it, we may

use a classical variable selection approach to select the best model between the condidate models or

we may use the approach developed in chapter 7 to compare the models . Anyway the result of this

chapter is a basis for chapter 7.

In chapter 7 and appendix B we improve our idea by constructing a tracking confidence interval

for a difference of expected Kullback-Leibler risks for two candidate models. The proposed confi-

dence interval contains the difference of Kullbak-Leibler risks with a fixed probability. This interval

has another interpretation for the use ofAIC’s. In fact we are not in a situation to detect the best

model but we are in search for a model which has the relatively less risk compared to other models.

It is because all the models are mis-specified. For constructing the confidence interval we need to

estimate the variance of a normalized difference ofAIC’s; a good estimation would take into account

the covariance between two maximized log-likelihoods, but it seems that finding this covariance is

difficult and is an open problem. Another open problem arises in a situation where we have many

competing models. It is because in a real situation we have a sample of sizen and many competing
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models to fit to the data at hand. We may propose a two-stage approach where in the first stage we

choose the best two models by means of maximized likelihood function and then return to the pro-

posed approach to choose the best one. But a good search could be done by a generalized approach.

On the other hand we assumed that our sample are independent and identically distributed, a nice

generalization would relax this assumption to extend this approach. In this work we have applied

our results to normal regression models and logistic regression. But the theory is general and could

be applied to the other types of regression models like Poisson regression for counting response

variable and log-normal model as a standard approach to the analysis of skewed response variable,

see Finney(1941) and Bradu and Mundlak (1970) may be of interest. Here we consider the model

selection for one dimensional random variables a generalization could be done forp dimensional

random variables.
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Model selection: Application to the Multiple Regression Model

SUMMARY

Some key words: Akaike criterion, Confidence interval, Kullback-Leibler, Model selection, Multiple

regression, Variable selection.

10.1 Introduction

Model selection is estimating the performance of different models in order to choose the best one.

It proceeds in two steps. The first step is to select a model (as the family of hypotheses or family of

densities) between competing models and second step is to select a particular hypothesis or density

from the model. The first step is sometimes a hard step, it needs to some background. For example

in regression survey may be we start with linear models and then complicate (if necessary) the model

by allowing to the facts about population under study. In literature the selection problem is where

the rival models come from a nested hierarchy ofk-degree polynomials. If there is no background,

that is required is that the models share the common goal of predicting the same data. The second

step is estimation of parameters from the observed data. On the other hand the statistical models

are typically merely approximations to reality and so sometimes a wrong model is fit to the obser-

vations, but in practice we do it for some reasons. First because a little of knowledge is better than

nothing, second an assumed parametric model may be close to the true unknown model, so that very

little is lost by assumed model and we can use the rich literature of parametric statistics, and third
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in some statistical subjects the estimated parameters for an assumed parametric model can often be

interpreted usefully.

In practic when we collect the data, there are many unobserved data from population under study

and also future observatons. As a aim of model selection may be we are in search of the model to

find the functional value of the unobserved response or to use the model to prediction of future. How

we can confident that the postulated model is accurate? Thus selection and evaluation of a model is

an important step in any research. For example in fitting curve context adding new terms add extra

adjustable coefficients (parameters) and these will improve fit to some degree. The problem is when

we add new term we gain in fit, but if this gain is small how do we make this trade-off between

addition a new term and gain in fit? And which value of gain is small or too small? So we turn to

the hypothesis testing or ordering the models by model selection criteria. The first one introduce an

absolute discrimination and second one is a relative discrimination.

Instead of the classical hypothesis testing approach to cover the analysis of the non-nested models

may be we consider the hypothesis testing to model selection. But the hypothesis testing is a de-

terministic approach. Generally in curve fitting area in which the dependent random variableY is

a function of the explanatory variable(s) the means for detect the fit is least square or likelihood

approaches. The least square approach has a limitation when the error term is not normal. Then

it is reasonable if we take the likelihood or equivalently the log-likelihood function as a measure

of fit. As the goal of the fitting curve we want use the fitted model to predict the future. In the

Akaike framework, the base assumption is that the new data are the re-sampled from the past (the

data at hand). This is an advantage for Akaike (1973) Information criterion,AIC, as the estimator

for relevant part of the Kullback-Leibler discrepancy. In this direction fit is defined in terms of dis-

crepancy from the true density, or the closeness to the true density. When we are in search of the
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best model there is not a reason for separate the hypotheses as the null and alternative hypotheses,

i.e. all of hypotheses are the null hypothesis. This is a point which indicates that may be in Akaike

framework we consider a function of the maximized log-likelihood as the test statistic. On the other

hand because the conclusion ofAIC is not never about the truth or falsity of a hypothesis, but about

its closeness to the truth, we take this logic for our idea and use the confidence interval as a set of

acceptable hypotheses. Consider a sample of i.i.d. random variablesY = (Y1,Y2, ...,Yn) which fol-

lows a linear regression model. It means thatYi = ∑p?
j=1 β jXi j + εi ; εi ∼N (0,σ2

?); i = 1,2, ...,n.

The vectorsXi = (Xi1,Xi2, ...Xip?)
T of covariate values, and the vectorβ? = (β1? ,β2? , ...,βp?)

T of

regression coefficients is to be estimated. In this case our parameter vector isθ? = (βT
? ,σ2

?)
T . Then

we have,

Y = X?β? + ε?, ε? ∼N (0,σ2
?I). (1)

We refer to(1) as the true model. Consider the postulated models as

Y = Xβ+ ε, ε∼N (0,σ2I). (2)

The postulated models are defer in ranks of design matricesXn×p. The standard approach in model

selection is fitting postulated models to the observations and then determine which of them is the

best approximation to the true model.

Formally by notation in classical statistics we want to test the null hypothesisH0 : f (y) = g(y;β?)

for all y∈ R and someβ? ∈ B, if we reduce it toH0 : f (y) = g(y;β?) a.e. in possible range ofy

for someβ? ∈ B this null hypothesis is equivalent to testing for,

E f {
1
n

n

∑
i=1

log f (Yi)}= E f {
1
n

n

∑
i=1

logg(Yi |Xi ,β?).} (3)

A known measure of discrepancy between the true and the postulated models is the Kullback-Leibler
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criterion. In literature Shimodaira (1998,2001) has extended the Linhart’s test (1988) with different

concept as Cox (1962) by definition its confidence set at a given significance level. He consider a set

of postulated models as{M( j)| j ∈M } and for eachj ∈M consider a statistical test. We propose an

other criterion which takes in order the models with property as minimum average confidence inter-

val for expected Kullback-Leibler criterion. In fact in this approach we consider the null hypothesis

asH j
0 : Y = X( j)

n× jβ + ε( j), ε( j) ∼ N (0,σ2I), j ∈ Z (an integer set) and construct a confidence

interval for negative expectedAIC and we decide for which postulated model the limits of intervals

are minimum. For simplicity consider two non-nested postulated models as

H k
0 : Y = X(k)

n×kβ+ ε(k), ε(k) ∼N (0,σ2I),

and

H l
0 : Y = X(l)

n×l γ+ ε(l), ε(l) ∼N (0,σ2I)

We noted that by these hypotheses we are not in the situation to decide which model is the correct

model, but we want to know which model is better. Now the search for the best model, in the first step

will be the search between all of non-nested models withk and l explanatory variable, separately,

and then comparing the average of interval limits for two postulated models.

As the decision we choice the model with minimum of the average of interval limits. By notation

in literature this process is the variable subset selection of the multiple regression. All of investi-

gation is to selecting a best subset of predictors. Many different definition of best can be found in

the literature. The forward selection method for subset selection is common in statistic, it checked

for improvement in the partial F-values andR2. The usual statistics to verify that whether or not the

proposed model is significant areR2 (adjusted), the residual mean square, and Mallow’sCp.

For example, the forward selection includes additional variables in the model based on maximizing
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the increment toR2 from step to step, but in a conditional sense. By these criteria, a best model

can be identified for fixed value of explanatory variables (a specified subset with k element) but

there is no general method for selecting an overall best model. As an other investigation to model

choice may be we consider the information estimator for true density and postulated model with

some explanatory variables as Akaike (1973). Akaike has used his criterion for selecting among the

competing models. In fact he select a model with minimum lack of fit in care of parsimony. In our

approach and in information context we want to consider all of models withk explanatory variables

by constructing a confidence interval for respected sub-class of models. In search of best model we

consider the minimum average of the confidence interval limits, where the minimization procedure

is taken on classes of all sub sets fork = 1,2, ...,K explanatory variables. After making decision

about the number of the explanatory variable in the model we can investigate the best model in the

interest subset of explanatory variables. In other word we want to check that a model withk = j, ex-

planatory variables is enough or not. To answer to this question we consider a measure of goodness

as average of confidence intervals for subset withk = j variables. This kind of model selection is a

overall type search.

10.2 Expected Kullback-Leibler Criteria and AIC

More generally, letZn = (Z1,Z2, ...,Zn), with Zi = (Yi ,Xi); i = 1,2, ...,n; (Yi ∈ R d,Xi ∈ R m) be a

sample of independent identically distributed random variables with common true unknown den-

sity (generating model)f t
Y,X(., .) = f t(., .) and with conditional density ofY given X as fY|X(., .).

Considergβ(.) = gY|X(Y|X,β) as postulated model and setβ0 as the minimizer of KL criterion. It
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is known that the maximum likelihood estimatorβ̂n is consistent forβ0. For reduced model, (see,

Commenges et al(2007)) the KL criterion is given by

KL{gY|X(.|.,β0); fY|X(., .)}= E f {log fY|X(Y|X)}−E f {loggY|X(Y|X,β0)}

where the first part is irrelevant and second part is relevant part for our goal.

As the more complicated distance may be we consider the Hellinger or Matusita distance of affinity,

see, Bar-Hen and Daudin (1998) for asymptotic distribution of this statistic.

In regression context we have the variance as a parameter to estimate, but our focus is on the re-

gression coefficients and for simplicity we eliminate the variance estimator in notation. Fortunately

the variance and coefficients estimators are independent and there is not difficulty to search for the

asymptotic distribution of statistics which contain both of them at the same time. In aboveKL cri-

terion the relevant part is quantity of interest, but can not be estimated, because they depend on

unknown f .

Denote the fitted models bygY|X(Y|X, β̂n). The conditional KL criterion for relevant part,’say’ CKLs

is

CKLg,n = E f {loggY|X(Y|X, β̂n)|Zn}.

The expected CKL, say,’EKLg,n’ is given by

E f {CKLg,n}= EKLg,n = E f {loggY|X(Y|X, β̂n)}

E f {CKLg,n} is a consistent estimator forE f {loggY|X(Y|X,β0). Using the empirical distribution

function for expectedCKLg,n, then its sample analogue is1
n ∑n

i=1 loggY|X(Yi |Xi , β̂n) which minimizes

an estimator ofKL{gY|X(.|.,β); fY|X(., .)}

Model selection based on Kullback-Leibler discrepancy (KL), is developed by inference about rele-

vant part of theKL divergence. It was Akaike (1973) which introduced an estimator for relevant part
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as Akaike Information Criteria, (AIC). Originally The AIC is defined as

AIC =−2Lgβ̂n +2p

whereLgβ̂n is the maximized log-likelihood function for postulated model. As noted by Hurvich and

Tsai (1989) when the dimension of the postulated model, increase in comparison to n, the sample

size, AIC becomes strongly biased which leads to over fitting problem. They have proposed a biased

corrected estimator of AIC in linear regression context. In fact they shown that in this case the

corrected AIC is

CAIC= nlogσ̂2 +
n(n+ p)
n− p−2

.

AIC is the unbiased estimator for−EKL.,n. Now constructing a confidence interval for−EKL.,n.

make sense, because this confidence interval will be a confidence interval forE(AIC). We saw

that the postulated models are different in design matrices, then they have the different CAIC. By

construction the confidence interval forE(AIC) we will be able to sort the postulated models.

10.3 Hypothesis Testing

If we write the null hypothesisH0 by notation in (3) this hypothesis is equivalent toH0 : KL(gβ? ; f ) =

0 we propose the test statistic , asK̂L(gβ? ; f ) then we rejectH0 if K̂L(gβ? ; f ) >C which is equivalent

to Tn(Y, β̂n) = 1
n ∑n

i=1 logg(Yi |Xi , β̂n) < Kn. This is the bias estimator for the KL (relevant part of KL)

divergence and then a biased estimator for distance between the true and the postulated model. The

biased term is given in Konishi and Kitagawa (1996) and Bozdogan (2000) as follows,

bias= E f {
1
n

n

∑
i=1

logg(Yi |Xi , β̂n)−
∫

R
logg(y|Xi , β̂n) f (y)dy}=

1
n

tr(I−1J)+O(n−2)
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whereI is the inverse Fisher information matrix in inner product (Hessian) form, andJ is the outer

product form of the Fisher information matrix for vectorβ.

In specified casetr(I−1J) = p the number of parameter in postulated model. The test function for

this type hypothesis is given by

φ(Y) =


1 if Tn(Y, β̂n) < Kn

0 if Tn(Y, β̂n) > Kn

Under some regularity conditions and this fact that

1
n

n

∑
i=1

logg(Yi ;β)} P−→ E f {
1
n

n

∑
i=1

logg(Yi ;β)} (4)

this test statistic is consistent or asymptotically unbiased forE f {1
n ∑n

i=1 logg(Yi ;β?)}

Theorem 1 : Suppose thatY1, ...,Yn i.i.d with unknown densityf (.). Let G = {g(.,β);β ∈ B⊆

R } is a parametric family of assumed densities forY′i s. If H0 holds, under conditions (C0)-(C4) and

(4) we have:

Tn(Y, β̂n)
P−→ E f {

1
n

n

∑
i=1

logg(Yi ;β?)}.

To make a decision aboutH0 we need to know the distribution of the test statistic under null

hypothesis. In theorem 2 we handle an asymptotic density of our statistics.

Theorem 2: Under regularity conditions

1√
n

n

∑
i=1

[logg(Yi |Xi , β̂n)−E f {logg(Yi |Xi , β̂n)}]
L−→N (0,V ar f {logg(Y|Xi ,β?)}).

proofs are given in Chapter 6, see Theorems 6.2 and 6.5.
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Corollary 1:

Zn =
−AIC

2n −EKLg,n√
1
nV ar f {logg(Yi |Xi ,β?)}

L−→N (0,1).

It is because, by theorem 2

Zn =
1
n(p− 1

2AIC)−EKLg,n√
1
nV ar f {logg(Yi |Xi ,β?)}

L−→N (0,1).

which implys that

Zn =
−AIC

2n −EKLg,n√
1
nV ar f {logg(Yi |Xi ,β?)}

+
p
n√

1
nV ar f {logg(Yi |Xi ,β?)}

L−→N (0,1).

We assumed thatV ar f {logg(Yi |Xi ,β?)}< ∞, using Slutsky’s theorem forZn and
p
n√

1
nV ar f {logg(Yi |Xi ,β?)}

→

0 show that the corollary is true. As an estimator forV ar f {logg(Yi |Xi ,β?)} we use the estimator as

1
n

n

∑
i=1
{logg(Yi |Xi , β̂n)}2−{1

n

n

∑
i=1

logg(Yi |Xi , β̂n)}2.

See Biernacki (2004)and using Slutsky’s theorem.

Using theorem 2 we can achieve a confidence interval forEKLg,n or E f (AIC) as follows

p{−zα/2 <

1√
n ∑n

i=1{logg(Yi |Xi , β̂n)−EKLg,n}√
V ar f {logg(Y|X,β?)})

< zα/2}= 1−α

which give us a(1−α)% confidence interval forEKLg,n as

[(
Tn(Y, β̂n)−n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)
,

(
Tn(Y, β̂n)+n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)]

or for−EKLg,n as

[(
AIC−2p

2n
−n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)
,

(
AIC−2p

2n
+n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)]

Corollary 1 help us to construct a confidence interval for−EKLg,n as

[(
AIC
2n

−n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)
,

(
AIC
2n

+n−1/2zα/2

√
V ar f {logg(Y|X,β?)}

)]
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10.4 Simulation

10.4.1 exploration of our result

To explore and apply the corollary 1, we consider two simulation studies. Figure 1 shows the result of

simulation study of normality for standardized AIC. We generate 105 observations from a bivariate

uniform density each one on[−
√

3,
√

3]. We consider the logistic linear regression and find the pre-

cisely estimate ofEKLg,n andV ar f {logg(Yi |Xi ,β?)} which are respectively̌EKLg,n = −0.40879

andV̌ ar f {logg(Yi |Xi ,β?)} = 0.31518. For sample size n=1000 and b=1000 iterations, we achieve

1000 values for AIC in logistic regression. To confirm that our quantityZn is asymptotically stan-

dard normal we draw the histogram of observed AIC’s and its cumulative distribution function to

comparison with standard normal density. These figures are agreement with normality ofAIC.
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Figure 1: Comparison of histograms and cumulative distribution functions of observed AIC’s and standard

normal density
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10.4.2 Application to The Multiple Regression Model.

As an illustration of this approach we consider the model choice in multiple regression. Consider

the regression model as (2), i.e.

Yn×1 = Xn×pβp×1 + εn×1

Suppose there is a suspects that some regressors are unusefull for explaningY, i.e. the true value

of the coefficients of these regressors are zero but we do not know which of the coefficients. Then

the appropriate candidate models are all submodels of the regression equation. To formulate this, let

u∈ {0,1}p , that isu is a p×1 vecor of ones and zeros. Then we can define the submodels as

{β : β j = 0 if u j = 0; j = 1, ..., p}.

By yhis notation the full model is corresponding tou = (1, ...,1) and the set of all candidate models

is given by

M = {Mu : u∈ {0,1}p}.

To illustrate our approach we considered i.i.d sample of size n of(Y,X1,X2,X3). As a true model

we setY = 0.5+ X1 + 1.25X3. By this knowledge we want to construct a confidence interval for

−EKL. In fact we expect that average of the uppers and lowers limits of confidence interval of

−EKL for the models with two explanatory variable be less than same things for the models with

one explanatory variable. Our simulation study for n=10000 observations shows that the average

confidence interval for models with{X1,X2} and{X2,X3} is in the left of the average confidence

interval for models with{X1}, {X2} and{X3} as explanatory variables. This average interval for

models with one and two explanatory variables were(1.63852,1.66645) and (1.51282,1.54030)

respectively. The length of these intervals are 0.027936 and 0.02748. For intercept model the−EKL

was 1.935429. This result confirms that best model to apply is the model with two explanatory
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variables, see table 1. For another true model asY = 0.5+ X1 + 1.25X2 + 2.5X4 we consider the

subclasses as

{
{X1,X2,X3},{X1,X3,X4},{X2,X3,X4}

}
,

{
{X1,X2},{X1,X3},{X1,X4},{X2,X3},

{X2,X4},{X3,X4}
}

and

{
{X1},{X2},{X3},{X4}

}
and construct the average intervals for each one,

the result was(1.789956,1.817359), (2.014563,2.042036) and(2.283159,2.351173) respectively.

The lengths of these intervals are 0.027403, 0.027473 and 0.068014. For intercept model the−EKL

was 2.522105. This result again confirms that the model must be a model with three explanatory

variables, see table 2. The result for relatively small sample size is a little different. For example

for n = 100 observations the result for regression model with four explanatory variables is given in

table 3. The intervales are overlap and length of average of interval limits are increased.

Table 1- The average of interval limits for AIC’s and its length for regression model.

(case with three explanatory variables, n=10000)

True Model:Y = 0.5+X1 +1.25X3

classo f explanatoryvariables averageo f interval limits length of interval{
{X1},{X2}{X3}

}
(1.63851, 1.66645) 0.02794{

{X1,X2}{X2,X3}
}

(1.51282, 1.54030) 0.02748

Table 2- The average of interval limits for AIC’s and its length for regression model.

(case with four explanatory variables, n=10000)

True Model:Y = 0.5+X1 +1.25X2 +2.5X4

classo f explanatoryvariables averageo f interval limits length of interval{
{X1},{X2},{X3},{X4}

}
(2.283159, 2.351173) 0.068014{

{X1,X2},{X1,X3},{X1,X4},{X2,X3},{X2,X4},{X3,X4}
}

(2.014563, 2.042036) 0.027473{
{X1,X2,X3},{X1,X3,X4},{X2,X3,X4}

}
(1.789956, 1.817359) 0.027403
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Table 3- The average of interval limits for AIC’s and its length for regression model.

(case with four explanatory variables, n=100)

True Model:Y = 0.5+X1 +1.25X2 +2.5X4

classo f explanatoryvariables averageo f interval limits length of interval{
{X1},{X2},{X3},{X4}

}
(1.973091, 2.642405) 0.669314{

{X1,X2},{X1,X3},{X1,X4},{X2,X3},{X2,X4},{X3,X4}
}

(1.865973, 2.153741) 0.287766{
{X1,X2,X3},{X1,X3,X4},{X2,X3,X4}

}
(1.641730, 1.923548) 0.281818
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Example 1:As a consequence of theorem 2 consider the linear model described in (2). The

log-likelihood for this model is given by

log
n

∏
i=1

g(Yi |Xiβ,σ2) =−n
2

log2π− n
2

logσ2− 1
2σ2 (Y−Xβ)T(Y−Xβ).

The MLE of the parametersβ andσ are given byβ̂n = (XTX)−1XTY and σ̂2
n = (Y−Xβ̂n)T (Y−Xβ̂n)

n

respectively. Under model (1) we have

E f {log
n

∏
i=1

g(Yi |Xiβ,σ2)}=−n
2

log2π− n
2

logσ2− 1
2σ2 (X?β?−Xβ)T(X?β?−Xβ).

The expected maximized log-likelihood is

−n
2

log2π− n
2

logσ̂2
n−

nσ2
?

2σ̂2
n
− 1

2σ̂2
n
(X?β?−Xβ̂n)T(X?β?−Xβ̂n).

It is known that

E f {
nσ2

?

2σ̂2
n
}=

n2

2
E f {(

nσ̂2
n

σ2
?

)−1}=
n2

2(n− p−2)

and

E f {
1

2σ̂2
n
(X?β?−Xβ̂n)T(X?β?−Xβ̂n)}=

1
2

E f {
σ2

?

σ̂2
n

(X?β?−Xβ̂n)T(X?β?−Xβ̂n)
σ2

?

}=
np

2(n− p−2)
.

Now

n

∑
i=1

EKLg,n =−n
2

log2π− n
2

E f {logσ̂2
n}−

n(n+ p)
2(n− p−2)

.

On the other hand

E f {logσ̂2
n}= Ψ(

n− p
2

)+ log
2σ2

?

n

whereΨ is the digamma function,see, Hurvich and Tsai (1989)

By theorem 2 we have

1√
n{

n
2 log 2σ2

?
n + n

2Ψ(n−p
2 )− n

2 logσ̂2
n− n

2 + n(n+p)
2(n−p−2)}√

1
2

L−→N (0,1).
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We can use this result to construct a confidence interval.

1−α = P(L < σ2
? <U)= p(logL < logσ2

? < logU)= p{
log 2

n +Ψ(n−p
2 )+ logL− logσ̂2

n−1+ n+p
n−p−2}√

2
n

<

log 2
n +Ψ(n−p

2 )+ logσ2
?− logσ̂2

n−1+ n+p
n−p−2√

2
n

<
log 2

n +Ψ(n−p
2 )+ logU− logσ̂2

n−1+ n+p
n−p−2√

2
n

}

Then

log 2
n +Ψ(n−p

2 )+ logL− logσ̂2
n−1+ n+p

n−p−2√
2
n

=−Zα
2

and

log 2
n +Ψ(n−p

2 )+ logU− logσ̂2
n−1+ n+p

n−p−2√
2
n

= Zα
2

now we have

L = exp{−Zα
2

√
2
n
− log

2
n
−Ψ(

n− p
2

)+ logσ̂2
n +1− n+ p

n− p−2
}

and

U = exp{Zα
2

√
2
n
− log

2
n
−Ψ(

n− p
2

)+ logσ̂2
n +1− n+ p

n− p−2
}
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Conclusion

The purpose of this research is to clarify some facts and provide a simple test to model selection

which is relatively new branch of mathematical statistics. The aim of statistical modeling is to

identify the model that most closely approximates the underlying process. On the other hand from

a statistical standpoint, observed data are tainted with sampling error. Consequently, when we fit a

model to the data, the model’s performance reflects population pattern and also the patterns due to

sampling error. Such patterns will be specific to the particular sample and will not repeat themselves

in other samples. A complex model with many parameters tends to capture these sample patterns

more easily than a simple model with few parameters. Then, the complex model yields a better fit

to the data, it is not because of its ability to more accurately approximate the underlying process

but rather because of its ability to capitalize on sampling error. Therefore, choosing a model based

solely on its fit, without appropriately filtering out the effects due to sampling error, will result in

choosing an overly complex model that generalizes poorly to other data from the same underlying

process. Consequently model selection should not be based on a model’s ability to fit particular

sample data but instead should be based on its ability to capture the characteristics of the population.

There are actually some different tests to model selection and consequently some different questions

can be asked about them. Each of tests have advantages and disadvantage in their domain of usage.

In almost all of the tests and criteria to model selection the maximum likelihood estimator and

maximized likelihood function have a essential role. With a careful attention there are two separate

functions over parameter space. The first is the probability density for maximum likelihood estimator

over the parameter space, and the second one is the likelihood function, which defined the probability

of the data in any particular point in parameter space. As we see both are defined on parameter space

but each has a different meaning. They are related by normality assumption which also determines

16



the stochastic behavior of the log-likelihood of the observed data. This knowledge is a starting

point to define a simple model selection criterion as normalized maximized likelihood function.

This works for some known case when the distribution of data is normal. But its disadvantage is

that using the data at hand for estimation and evaluation. On the other hand increases when the

number of useless parameters in a model increases. This leads to select the more complex model.

Akaike solved these two difficulties by his assumption about domain of data and by parsimony

quantity. TheAIC introduced by Akaike consider the parsimony principal to reduce the bias term

in model selection. The main goal of this statistics is to estimate two times the relevant part of

the Kullback-Leibler divergence. But this is an unusual quantity to estimate, because it depends

to the number of observations. In fact we encounter the same difficulty as for estimating a sum

in a population by a sum in the sample, in this case we know that the error of estimation grows

when the sample size increases. The normalization idea is useful to solve this problem. This is

the criterion which we use to clear the fundamental problem in model selection. In fact we want

to show that the normality of theAIC’s and that the constructed confidence interval by normalized

AIC reflects the fact about models. When we do not know the correct model the average of limits of

these types of confidence interval give us an idea about the number of parameters in the model. On

the other hand these types of confidence intervals show us theAIC is not a increasing function of the

number of parameters in the model. Actually we are in search of a distinguished line between the

values of the average of confidence interval limits to select the best model under parsimony. In fact

complexity in model is good for reduction of bias, and that simplicity of model reduces the tendency

to over fit. On the other hand the best trade off between unknown bias and unknown variance is

the model selection criterion aims. But how to do it trade off? This is the main question in model

selection. Here we are about the reduction of bias. With this hypothesis that the future observations
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are in the same domain as observed data it seems that the bias is more important than variance.

Actually as the first step in model selection we are in search of a admissible bond for the average of

confidence interval limits to select the best model under parsimony. This admissible set of models

must be contain all models which are near to the selected model byAIC. Consider some models with

k,k+1, ...k∗, ...k+ l explanatory variables. Assume that the model withk∗ explanatory variables is

the selected model byAIC. On the other hand by our simulation it seems that for intermediate sample

size there is the intersection between some of the confidence intervales for models withj 6= k∗

explanatory variables and that for selected model. We say two models are neer to each other if there

average confidence interval limits has intersection. We set these kind of models in the admissible

set. Now our search will be in this set. This chapter needs to be developed by further work with

other models for finding the admissible line which enable us to select the set of candidate models.

This work needsbe developed by further work with other models for finding the distinguished line

which enable us to select the set of simpler candidate models.
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Inference about differences of AIC: application to the choice of variable coding in logistic

regression

SUMMARY

We propose a better use of Akaike information criterion (AIC), focussing on two issues: inference

(one must not forget that AIC is a statistic) and interpretation (the exact value of AIC has no direct

interpretation while we are interested in quantifying the risks when using particular models). We

propose a statistic, a normalisation of a difference of Akaike criteria, which estimates the difference

of expected Kullback-Leibler risks between maximum likelihood estimators of the distribution in

two different models. The variability of this statistic can be estimated so that an interval can be con-

structed which contains the true difference of expected Kullback-Leibler risks with a pre-specified

probability. A simulation study shows that the method works and it is illustrated using a study of the

relationship between body-mass index and depression in elderly people.

Some key words: Akaike criterion, depression, Kullback-Leibler, logistic regression, model choice.

10.5 Introduction

Since its proposal by Akaike (1973), Akaike information criterion (AIC) has had a huge impact on

so-called “model choice”, in particular in the application of statistical methods; see the presentation

of deLeuwe (1992). It is often used in its original simple form, precisely because of its simplicity.

Many variants of the criterion have been proposed. We may cite in particular the EIC (Konishi and

Kitagawa, 1996; Shibata, 1997) which makes use of the bootstrap; the approach has been extended
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to the choice of semiparametric estimators by Liquet, Sakarovitch and Commenges (2004) and Com-

menges et al. (2007). One concern with AIC is that it is felt that it does not put enough weight on the

quality of parsimony of the model, and other criteria have been proposed such as the BIC (Schwartz,

1978) or approaches based on complexity (Bozdogan, 2000).

Our aim is to propose a better use of AIC, keeping here in the framework of parametric models.

We will focus essentially on two issues which have been rather neglected in theoretical develop-

ments. The first is that of inference: it is generally forgotten that AIC is a statistic and as such has a

distribution. AIC is commonly used to select the “best” model on the basis of a sample; however if

another sample of the same size was available we might find that another model has a smaller AIC.

So we should pay attention to the differences of AIC between different models and be able to esti-

mate the variability of these differences. Such a study can be based on the results of Vuong (1989).

However Vuong (1989) placed himself in an asymptotic context in which the Akaike correction is

negligible.

The other issue is the interpretation of differences of AIC. Indeed, the value of AIC has no

intrinsic meaning; in particular AIC is not invariant to a one-to-one transformation of the random

variables. Investigators commonly display big numbers, only the last digit of which are used to

decide which is the smallest. We recall that a normalized difference of AIC is an estimate of a

difference of Kullback-Leibler risks and thus, is interpretable. We give some examples of values of

such differences to help develop an intuition of what a large or a small difference is.

In section 2 we present the relevant Kullback-Leibler risk and we show that the normalized

difference of AIC is an estimate of the difference of risks; moreover we propose a so-called “tracking

interval” which should contain the difference of risks with a given probability; we also give insight in

the interpretation of the differences of risks. This general approach may change the use of AIC since
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we do not pretend to detect the “best” model but identify which estimators are acceptable on the basis

of the available data. For illustrating this general approach we apply it to the problem of choosing

between different codings of an explanatory variable in logistic regression. Section 3 presents a

simulation study which allows in particular to assess the properties of the proposed tracking interval.

In section 4 we present an illustration on real data: this is a study of the effect of body-mass index

(BMI) on depression using data from the Paquid study. Section 5 is a short conclusion.

10.6 Theory about inference of differences of AIC criteria

10.6.1 Estimating a difference of Kullback-Leibler divergences

Consider a sample of independently identically distributed (iid) random variablesȲn =(Yi , i = 1. . . ,n)

having probability density function (pdf)f = f (.). Let us consider two models :(g)= (gβ(.))β∈B,B⊂

ℜp and(h) = (hγ(.))γ∈Γ,Γ⊂ℜq.

Definition 10.1 (i) (g) and (h) are non-overlapping if(g)∩ (h) = /0; (ii) (g) is nested in(h) if

(g) ⊂ (h); (iii) (g) is well specified if there is a valueβ∗ ∈ B such that gβ∗ = f ; otherwise it is

mis-specified.

The loglikelihood loss ofgβ relatively to f for observationY is log f (Y)
gβ(Y)

. Akaike (1973) grounds

this choice of a loss function by arguing that all information for discriminating between distributions

is contained in the likelihood ratio (Blackwell, 1953) so that the loss should be a function of it, and

showing that the logarithm is the best function to choose. The expectation of this loss underf , or risk,

is the Kullback-Leibler divergence (Kullback, 1968) betweengβ and f : KL(gβ, f ) = Ef [log f (Y)
gβ(Y)

].

We have KL(gβ, f )≥ 0 and KL(gβ, f ) = 0 implies thatgβ = f , that isβ = β∗. The Kullback-Leibler

divergence is often intuitively interpreted as a distance between the two pdf (or more generally

between the two probability measures) but this is not mathematically a distance; in particular the
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Kullback-Leibler divergence is not symmetric. It may be felt that this is a drawback, and in particular

it makes any graphical representation perilous. However this feature may also have a deep meaning

in our particular problem: there is no symmetry betweenf , the true pdf, andgβ, a possible pdf. So

we shall take on the fact that the Kullback-Leibler divergence is an expected loss (with respect tof )

and not a distance. We assume that there is a valueβ0 ∈ B which minimizes KL(gβ, f ). If the model

is well specifiedβ0 = β∗; if the model is mis-specified KL(gβ0, f ) > 0.

Since the main interest of a model is to approachf , it is of obvious interest to estimateβ0. We

have that

KL(gβ, f ) = Ef [log f (Y)]−Ef [loggβ(Y)].

The first term on the right-hand sideH( f ) = Ef [log f (Y)] is the entropy off and cannot be estimated

directly sincef is unknown; however, it does not depend on the parametersβ nor on(g). The second

term on the right-hand can not be directly computed because of the expectation underf ; however,

replacingf by its empirical estimate we obtain the estimator

−n−1
n

∑
i=1

loggβ(Yi) =−n−1Lgβ

Ȳn
,

whereLgβ

Ȳn
is the loglikelihood based on the samplēYn. Thus, the maximum likelihood estimator

β̂n minimizes a natural estimator of KL(gβ, f ). Moreover it can be shown thatβ̂n is a consistent

estimator ofβ0.

Now if we consider two or more models, there is the problem of choosing between them. A

natural way is to choose(g) against(h) if KL (gβ0, f ) < KL(hγ0, f ); we shall say in that case that

(g) is closer to f than (h) (avoiding to qualify(g) as“better” which may be misleading in this

context). There are two problems: (i) we can not estimate KL(gβ0, f ) because the entropy off can

not be correctly estimated; (ii)β0 and γ0 are unknown. The two problems are solved by noting
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that we can estimate the difference of Kullback-Leibler divergences KL(gβ0, f )−KL(hγ0, f ) by

−n−1(Lgβ̂n

Ȳn
−Lhγ̂n

Ȳn
).

This result may not be completely satisfactory in practice ifn is not very large because the

distribution we will use isgβ̂n rather thangβ0. In consequence a more relevant criterion for model

choice is Ef [log f (Y)
gβ̂n(Y)

] that we call the expected Kullback-Leibler risk (or simply Kullback-Leibler

risk) and that we denote by EKL(gβ̂n, f ). This is the point of view introduced by Akaike (1973).

He also showed thatn−1Lgβ̂n

Ȳn
overestimated Ef [loggβ̂n(Y)] (because of the maximisation procedure)

and proposed a criterion correcting for the number of parameters of the model:

AIC(gβ̂n) =−2Lgβ̂n

Ȳn
+2p.

Akaike’s approach was revisited by Linhart and Zucchini (1986) who showed that:

EKL(gβ̂n, f ) = KL(gβ0, f )+
1
2

n−1Tr(I−1
g Jg)+o(n−1), (10.1)

whereIg = −Ef [
∂2 loggβ(Y)

∂β2 |β0
] andJg = Ef {[ ∂ loggβ(Y)

∂β |β0
][ ∂ loggβ(Y)

∂β |β0
]T}. This can be nicely inter-

preted by saying that the risk EKL(gβ̂n, f ) is the sum of the mis-specification risk KL(gβ0, f ) plus the

statistical risk1
2n−1Tr(I−1

g Jg). Note in passing that if(g) is well specified we have KL(gβ0, f ) = 0

andIg = Jg, and thus EKL(gβ̂n, f ) = p
2n +o(n−1).

We also have:

EKL(gβ̂n, f ) =−n−1Lgβ̂n

Ȳn
+H( f )+

1
n

Tr(I−1
g Jg)+op(n−1). (10.2)

Here we have essentially estimated Ef [loggβ0(Y)] by n−1Lgβ̂n but because of the overestima-

tion bias, the factor12 in the last term disappears; thus the term1
nTr(I−1

g Jg) is the sum of two equal

terms, the statistical error and the estimation bias of the mis-specification risk (of course the mis-

specification risk is estimated up to the constantH( f )). Akaike criterion follows from (10.2) by
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multiplying by 2n, deleting the constant termH( f ) and replacing Tr(I−1
g Jg) by p; in fact the cor-

rectionp arises only if the model is well-specified (in which caseIg = Jg) but Linhart and Zucchini

(1986) argue that it can be used even if the model is not well-specified. Using (10.2) we obtain:

−n−1{Lgβ̂n

Ȳn
−Lhγ̂n

Ȳn
− [Tr(I−1

g Jg)−Tr(I−1
h Jh)]}= ∆(gβ̂n,hγ̂n)+op(n−1),

where∆(gβ̂n,hγ̂n) = EKL(gβ̂n, f )−EKL(hγ̂n, f ). It is possible to estimate the matricesIg, Jg, Ih

and Jh by plugging the estimatorŝβn and γ̂n into the expression of these matrices, and thus an

estimator of∆(gβ̂n,hγ̂n) is obtained. A simpler estimator of∆(gβ̂n,hγ̂n) is obtained by using the

Akaike approximation Tr(I−1
g Jg)≈ p:

D(gβ̂n,hγ̂n) =
1
2

n−1[AIC(gβ̂n)−AIC(hγ̂n)] =−n−1[Lgβ̂n

Ȳn
−Lhγ̂n

Ȳn
− (p−q)].

We will prefer estimatorgβ̂n to hγ̂n if this “estimate” is negative, meaning that the estimate of the

expected loss incurred in usinggβ̂n in place of f is less than that incurred in usinghγ̂n.

Thus, in contrast with AIC,D(gβ̂n,hγ̂n) has an interpretation since it tracks the quantity of main

interest∆(gβ̂n,hγ̂n) with pretty good accuracy. Moreover it has important invariance properties.

Lemma 1 (Invariance properties) Both∆(gβ̂n,hγ̂n) and D(gβ̂n,hγ̂n) are invariant under reparametriza-

tion, one-to-one transformation of the observed variables and change of the reference probability.

The proof is straightforward. It can be noted that AIC itself is invariant under reparametrization

but neither under one-to-one transformation of the observed variables nor change of the reference

probability.

10.6.2 Tracking interval for a difference of Kullback-Leibler divergences

In practice the epidemiologists or biostatisticians choose the model which has the best AIC. However

it is important to know with which confidence we can infer the sign of the difference of the EKL from
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the difference of the AIC. Moreover the statisticD(gβ̂n,hγ̂n) estimates the difference of the expected

losses which is of interestper seand should be interpreted. We are in a context of model choice

or rather of estimator choice. The question is not to find the true model, because all the models are

more or less mis-specified; it is not even to choose the closest model, but the best estimator based on

the available sample. The good choice does not depend only on the models but also on the quantity

of information (here essentiallyn) available in the sample.

We focus on the case wheregβ0 6= hγ0. This is necessarily the case if the models do not overlap

and may also be often the case even if the models overlap or are nested. Using Theorem 3.3 of

Vuong (1989), which is valid under conditions clearly stated by this author, we obtain that in that

case:

n1/2[D(gβ̂n,hγ̂n)−∆(gβ̂n,hγ̂n)]−→D N (0,ω2
∗),

whereω2
∗ = var

[
log gβ0(Y)

hγ0(Y)

]
. A natural estimator ofω2

∗ is

ω̂2
n = n−1

n

∑
i=1

[
log

gβ̂n(Yi)
hγ̂n(Yi)

]2

−

[
n−1

n

∑
i=1

log
gβ̂n(Yi)
hγ̂n(Yi)

]2

.

From this we can compute the tracking interval(An,Bn), whereAn = D(gβ̂n,hγ̂n)−zα/2n−1/2ω̂n

and Bn = D(gβ̂n,hγ̂n) + zα/2n−1/2ω̂n, where 1−Φ(zα/2) = α/2 andΦ is the cdf of the standard

normal variable. This interval has the property:

Pf [An < ∆(gβ̂n,hγ̂n) < Bn]−→ 1−α,

wherePf represents the probability with densityf .

We can also judge whether the values within the intervals correspond to large or small expected

losses, according to the hint given by Commenges et al. (2007). This paper established a link

between the value of KL(g, f ) and the relative error made in evaluating the typical set whose prob-

ability is underestimated usingg rather thanf , and used this to qualify KL values of 10−1, 10−2,
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10−3, 10−4 as “large”, “moderate”, “small” and “negligible” respectively. As an example the KL

divergence of a double exponential relative to a normal distribution with same mean and variance is

of order 10−1 what may be called a “large” value. We may also measure on this scale the magnitude

of the Akaike correction of(p−q)/n: for instance if we compare two models withp−q = 1 and

we haven = 100 or with p− q = 5 and we haven = 500 the Akaike correction is 10−2 in both

cases, a value qualified as “moderate”; as a matter of fact Akaike correction is rarely negligible in

epidemiological studies. As already noted we can give an interpretation of EKL from (10.1) as the

sum of the mis-specification risk KL(gβ0, f ) and the estimation risk, approximated byp/2n. For a

well specified model the risk is aboutp/2n; for instance it is 10−2 if p = 10 andn = 500.

10.6.3 Extension to regression models

All that has been said can be extended to regression models(gY|X) = (gβ
Y|X(.|.))β∈B and(hY|X) =

(hγ
Y|X(.|.))γ∈Γ. This can be done as in Vuong (1989) by directly defining the Kullback-Leibler di-

vergence in term of conditional densities: KL(gβ
Y|X, fY|X) = Ef [log

fY|X(Y|X)

gβ
Y|X(Y|X)

], where the expecta-

tion is taken for the true distribution of the coupleY,X. However this approach has the draw-

back of requiring a new definition of the Kullback-Leibler divergence . The so-called reduced

model approach (Commenges et al., 2007) is more satisfactory. Consider a sample of iid couples

of variables(Yi ,Xi), i = 1, . . . ,n having joint pdf f , f (y,x) = fY|X(y|x) fX(x). Consider the model

(g) = (gβ(., .))β∈B such thatgβ(y,x) = gβ
Y|X(y|x) fX(x) ; the model is called “reduced” becausefX(.)

is assumed known. The Kullback-Leibler divergence is:

KL(gβ, f ) = Ef [log fY|X(Y|X)]−Ef [loggβ
Y|X(Y,X)],

that is the term infX(.) disappears (so that we do not need to know it in fact) and we get the same

definition as in Vuong (1989) using only the conventional Kullback-Leibler divergence .
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10.7 Application to logistic regression: a simulation study

As an illustration of this general procedure we will apply it to the problem of choice of the coding

of an explanatory variable in logistic regression. We considered iid samples of sizen of triples

(Yi ,xi
1,x

i
2), i = 1, . . . ,n from the following distribution (which plays the role of the true distribution

f ). The conditional distribution ofYi given (xi
1,x

i
2) was logistic with logit[ fY|X(1|xi

1,x
i
2)] = 0.5+

xi
1 + 2xi

2, where fY|X(1|xi
1,x

i
2) = P∗(Yi = 1|xi

1,x
i
2), P∗ stands for the true probability; the marginal

distributions of(xi
1,x

i
2) were bivariate normal with zero expectation and variance equal to the identity

matrix. We considered model(g) specified by logit[gβ
Y|X(1|xi

1,x
i
2)] = β0 + β1xi

1 + β2xi
2, which was

well specified and the (mis)-specified model(h) defined as logit[hγ
Y|X(1|xi

1,x
i
2)] = γ0 + ∑2

l=1 γl xi
1l +

γ3xi
2, wherexi

1l were dummy variables indicating in which categoriesxi
1 fell; the categories were

defined using terciles of the observed distribution ofx1, and this was represented by two dummy

variables:xi
11 indicating whetherxi

1 fell in the first tercile or not,xi
12 indicating whetherxi

1 fell in the

second tercile or not.

Since model (g) is well specified we know thatgβ0 = f , that the mis-specification error KL(gβ0, f )

is zero and that Tr(I−1
g Jg) = p. As for model (h) we must compute the quantities of interest

by simulation. We can compute that in the logistic regression thel ,k term of the matrixJh is

Ef [xl (Y− exγ0

1+exγ0 )2xk] , and that thel ,k term of the matrixIh is Ef [xl
exγ0

(1+exγ0)2 xk]. We estimated

γ0 by fitting model(h) on a simulated data set withn = 105. Our precise estimatěγ0 was thus

γ̂n for n = 105. We used it to precisely estimateJh and Ih as Ǐh = 10−5 ∑105

i=1[x
i
l

exi γ̌0

(1+exi γ̌0)2
xi

k] and

J̌h = 10−5 ∑105

i=1[x
i
l (Yi − exi γ̌0

1+exi γ̌0
)2xi

k]. We estimated KL(hγ0, f ) by 10−5 ∑105

i=1 log
fY|X(Yi |xi

1,xi
2)

h
γ̌0
Y|X(Yi |xi

1,xi
2)

. We also

computed a precise estimate ofω2
∗, ω̌2

∗, by the empirical variance of log
fY|X(Yi |xi

1,xi
2)

h
γ̌0
Y|X(Yi |xi

1,xi
2)

computed on

105 replicas. Thus we can compute a precise estimate of EKL(hγ̂n, f ) and EKL(gβ̂n, f ) by replac-
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ing the terms on right-hand of (10.1) by their estimates. Because(g) is well specified we obtain

immediately EKL(gβ̂n, f ) ≈ 3
2n; a precise estimate of EKL(gβ̂n, f )−EKL(hγ̂n, f ) is thus given by

∆̌ = 3
2n −KL(hγ̌0, f )− 1

2nTr(Ǐ−1
h J̌h). We find first that KL(hγ̌0, f )≈ 7.28 10−3, a value approaching

the “moderate magnitude”. We found 3.998 and 3.999 for the values of Tr(Ǐ−1
h J̌h) for n = 250 and

n = 1000 respectively. These values are very close toq = 4 (that would obtain if(h) was well-

specified) so, in the following we will use this approximation. Using this approximation we can

compute∆̌ = − 1
2n −KL(hγ̌0, f ) and obtain∆̌ = −9.28 10−3 for n = 250 and∆̌ = −7.78 10−3 for

n = 1000. We also finďω2
∗ = 1.44 10−2. We can then compute the standard error ofD asn−1/2ω̌∗

and find 7.59 10−3 and 3.79 10−3 for n = 250 andn = 1000 respectively. We see at once that there

is more chance that the tracking interval does not contain zero forn = 1000 than forn = 250.

We generated 1000 replications from the above model forn= 250 andn= 1000. For each repli-

cation we computed the maximum likelihood estimates and the AIC. We computed the histogram

of D(gβ̂n,hγ̂n) (see Figure 1): its shape is approximately in accordance with the asymptotic normal

distribution for both sample sizes; the empirical mean was−9.50 10−3 and−7.67 10−3 for n = 250

andn = 1000 respectively, close to the values of∆̌. The empirical variance ofD (not shown) was

in agreement with the theoretical variance computed fromω̌2
∗. The mean of the estimated variances

ω̂2
∗ was 1.88 10−2 and 1.54 10−2 for n = 250 andn = 1000 respectively, also reasonably close to

the ω̌2
∗. The proportion of replicas for whicȟ∆ was outside the.95 tracking interval was 0.045 and

0.053 forn = 250 andn = 1000 respectively. The proportion of replicas for which zero was outside

of the tracking interval was 0.197 and 0.514 forn = 250 andn = 1000 respectively, and in all cases

(g) was prefered to(h). These results are summarized in Table 1.
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10.8 Choice of the best coding of age in a study of depression

10.8.1 The Paquid study

The application is based on the Paquid research programme (Letenneur et al., 1999), a prospective

cohort study of mental and physical aging that evaluates social environment and health status. The

target population consists of subjects aged 65 years and older living at home in southwestern France.

The baseline variables registered included socio-demographic factors, medical history and psycho-

metric tests. In particular the CESD scale for depression was completed. Here we illustrate the

method of the paper by examining possible models of association of depression and BMI. As is con-

ventional, depression was considered as a binary trait coded by a dichotomized version of the CESD

(using the thresholds 17 and 23 for men and women respectively). We worked with the sample of

the first visit of the Paquid study and we excluded the subjects who were diagnosed demented at that

visit: the sample size was 3484. We fitted logistic regression models for explaining depression from

BMI, age and gender. We entered age, gender and their interaction as explanatory variables. As for

BMI which was the factor of main interest, we tried a linear (in the logistic scale) model and then

we challenged the linear model by trying a categorization of BMI in terciles and a quadratic model.

Both the tercile and the quadratic models have six parameters while the linear model has five. Note

that the linear model is not nested in the tercile model while it is in the quadratic model.

The values of AIC, and theD statistic and tracking intervals (taking as reference the linear model)

are given in Table 2. The tercile model had a larger AIC than the linear model but the point estimate

(D) of the difference of risks was lower than 10−4 a level that we have qualified “negligible”, and

zero was well inside the tracking interval. So from the point of view of Kullback-Leibler risk there

was no evidence than one model is better than the other. When it comes to comparing the linear

32



and the quadratic model, because the first is nested in the second, we can use the likelihood ratio

test: the null hypothesis is that the best distribution is in the linear sub-model. The hypothesis was

strongly rejected (p < 0.01). We tend to conclude that the shape of the effect is not linear and that

we may approach it better with a quadratic term. The point estimate of the difference of risks was

0.0007, a value which approaches the 10−3 level that we qualified to be a small (but not negligible)

difference. The tracking interval was[−0.0001;0.0022] which includes zero, so we are not really

sure to incur a smaller risk with the quadratic model. However we can correct the lower bound of the

interval by the following argument. If(g) ⊂ (h) we have that KL(gβ0, f ) ≥ KL(hγ0, f ). Thus from

equation (10.1), using the approximation Tr(I−1
g Jg)≈ p we obtain∆(gβ̂n,hγ̂n)≥− 1

2n(p−q). In our

case we obtain∆(gβ̂n,hγ̂n) ≥ −1.4 10−4. Thus the maximum increased risk in using the quadratic

model is negligible. It may seem paradoxical (in view of the likelihood ratio test) that we can not

assert with high probability that the estimator based on the quadratic model is better than that based

on the linear model, but we must remember that the asymptotic law of the likelihood ratio we use is

not the same as in the likelihood ratio test. The likelihood ratio test tells us that the quadratic model

is closerthan the linear model from the true distribution but it is still possible that we incur a larger

risk when using the quadratic model estimator because of the increased statistical risk; however from

the tracking interval we see that we are exposed to a negligible additional expected Kullback-Leibler

risk when using the quadratic model while it is likely that it is in fact smaller. In conclusion, in

this application there is no reason to prefer the tercile model to the linear model but there are some

reasons to prefer the quadratic model to the linear model. Figure 1 shows the shape of the effect

of BMI with the quadratic model, taking as reference the median BMI (equal to 24.2). This is a U-

shaped curve yielding the lower risks of depression for medium values of the BMI, somewhat shifted

however toward large BMI. Of course the epidemiological interpretation of this result is delicate and
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the apparent effect that we have detected is the consequence of complex biological and psychological

mechanisms that we do not attempt to explore here. Several other studies have found links between

BMI and depression; see for instance Rantanen et al. (2000).

10.9 Discussion

We have proposed a statistic which tracks the difference of expected Kullback-Leibler risks between

maximum likelihood estimators in two different models. Moreover we have an estimator of the

variance of this statistic and we can construct a “tracking interval”.In fine we can do more than

simply choosing the estimator which has the lowest AIC. We can estimate the difference of risks.

This difference of risk has the same meaning in different problems and we may become accustomed

to considering differences of 10−2, 10−3, 10−4 as moderate, small and negligible respectively, as we

are accustomed to interpret correlation coefficients or odds-ratios for instance.

A more complex and related problem occurs if we try a large number of models. In that case

we have a family of estimatorsgβ̂1n
1 , . . . ,gβ̂Kn

K . We may first compute the AIC of thegβ̂kn
k ; let us call

g
β̂k0n

k0
the estimator with the smallest AIC. For the other estimators we may computeD(gβ̂kn

k ,g
β̂k0n

k0
).

Of course theD(gβ̂kn
k ,g

β̂k0n

k0
) are correlated and a confidence interval has to take into account this

correlation as well as the multiple testing issue (Edwards and Hsu, 1983; Hsu, 1984). Shimodaira

(2001) has proposed an interesting approach to this problem, leading to define a set of admissible

models.
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Table 8.1: Simulation study: choice between tercile and linear model for the explanatory variable in

a logistic regression model

n ∆̌ D̄ ¯̂ω2 Coverage rate Power

250 −9.28 10−3 −9.50 10−3 1.88 10−2 0.955 0.197

1000 −7.78 10−3 −7.67 10−3 1.54 10−2 0.947 0.514

Table 8.2: Application: comparison of the linear, tercile and quadratic models for the effect of BMI

on depression:D and the tracking interval for the difference of Kullback-Leibler risks are with

respect to the linear model.

Model # parameters Likelihood AIC D Tracking interval

Linear 5 −1346.25 2702.5 - -

Tercile 6 −1345.60 2703.2 −0.0001 [−0.0009;0.0007]

quadratic 6 −1342.93 2697.9 0.0007 [−0.0001;0.0022]
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Figure 8.1: Histogram of the values ofD (which estimates the difference of Kullback-Leibler risks

between the tercile and the linear models) in the simulation: upper figure,n = 250, lower figure,

n = 1000.
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Figure 8.2: Estimated “effect” of the BMI on depression in the quadratic model: odds-ratios with

respect to the probability at the median of BMI (24.2); the dots have for abscissas the observed

BMI values.
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