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Introduction en francais
Un probkeme important de la statistique concernanéahantillon i.i.d, de taille n est de tester si ses
observations viennent d'une distributiorésp ée. Cela signi e qu'il y a une incertitude et nous de-
vons prendre uneétision. Un processusdisionnel en situation d'incertitude est en grande partie
bas sur I'application d'analyse de doaes statistiques pouglalution des risques probabilistes de
notre cécision. Dans une situatioRaliste nous avons seulement un ensemble deédsnactuelles
et nous devongétablir 'la connaissance'. La connaissance est ce que nous savons et la communica-
tion de la connaissance est 'linformation’. Les d@as sont seulement l'information brute et non
la connaissance de celles-ci. Les dees deviennent des informations quand cela devient pertinent
a notre probme de écision. L'information devient 'le fait' quand les doaas peuvent le soutenir.
En n le fait devient la connaissance quand il est uélidans I'ackevement eussi du proldme de
décision. Le processug rechi statistique bassur les donges, construira les metks statistiques
pour la prise de &cision en situation d'incertitude. La statistiquesulte du besoin de placer la
connaissance sur une base sysitique devidence. Ceci a exgguneétude des lois de probabéit
Ainsi, la fonction de densit est un concept fondamental dans la statistique. La vraie fonction de
densié, que nous &nhotonsf(:) est inconnue. Nous appelons cette distribution la ‘vrai distribu-
tion'. Un mockle est une famille des distributions et est appleien- specié' s'il contient la vrai
distribution; on peuggalement parler du ‘vrai mé&tke' mais cela peuétre fallacieux (induire en
erreur). Les donkes sont insuf santes pour reconstruire chagéeitide f(:). Alors parfois nous
I'estimons et parfois nous I'approximons. Le secteur d'estimation de depsiitetre pararatrique
ou nonpararatrique. Le cas nonpardtrique est la construction d'une estimation de la fonction
densié des donees obse®es @ le nombre de parastres est cons@&é comme in ni. Dans ce

cas-ci l'estimation de la densitf(:) pour tous les points dans son support impliquerait I'estimation



d'un nombre in ni de pararatres. Historiquement on peut dire que I'estimateur (nonpatague)

de densit le plus ancien utilis est I'histogramme qui @t raf né pour obtenir les estimateurs lisses
par I'approche d'estimation noyaux, voir, Fix and Hodges (1951), Devroye (1985) and Silverman
(1986). Voir la gure 1. L'autre cas est le cas paraimque, @ nous supposons connue la forme de
la fonction de densi et nous voulons estimer seulement les patees. Dans le cas parainque
nous supposons que les déeas sont grérée a partir des familles parastriques de distributions
connues. L'approche la plus empty est bae sur les estimateurs de maximum de vraisemblance
I'(EMV) et certaines de ses modi cations. éferalement ce secteur esk lau probéme de test
d'hypothése. En tant que pro@te naturelle, nous voulons consi@r les néthodes pour construire
les pro@dures qui sont ef caces, c'estdire, asymptotiquement optimales. L&dhie derrére le
EMV garantit cette optimakt. Dans le proldme de test d'hypo#ise, nousé& nissons formellement
les hypotlese nulle et alternative au sujet des pagtes de la den&tfondamentale. Les quargitde
base dont nous avons besoin dans le test d'hygsattsont la valeur critique qui fournit le niveau du
test, la puissance du test et la dimension deHantillon requise pour obtenir une puissance éenn
D'autre part nous pouvons comparer deux led en concurrence, par exemple une demsii-
male contre une denéitdouble exponentielle. Puisque nous pouvons imaginer plusieurslesod
pour I'approche dé(:), la question du “choix du maae” surgit. Par la choix de meade nous nous
rappelons Ockham (1282-1347) qui @cthé que des 'entéts ne doivent pastre multiplisiees au
de la recessi¢, qui est connue sous le nom de rasoir d'Ockham. Simplement uelenedt un
ensemble dquations, ou de fonctions avec quelques pategs ajustables, nous pouvorésrir

un mockle en tant qu'ensemble de probal@jiou d'hypotleses statistiques. Le choix de nebsl
consistea flectionner un moele mattematique parmi un jeu de mekds potentiels, celui qui se

collera au mieuxa notre grie d'observations. Nous congidbns une famille de dengg comme



mockle, dans la quelle les membres diffnt par la valeur des paratres. Notre recherche est de
trouver le vrai modle. Nous disons qu'un méte est vrai si et seulement si une des déssifu'il
contient est la vraie. |l estatessaire de choisir 'ensemble de raled avant de commencer. Dans
le mocele de egression ligaire par exemple, le choix de nad est dif cile car nous avonsP2
mockle potentiels b p est le nombre de variables explicatives qui sont candidaktesplication de

la variable Eponse. Le probme est que des termes swpkntaires ajoutent des partnes ajusta-
bles supptmentaires, et ceux-ci a@toreront I'ajustement. Pour prouver la sensiBilitu choix de
mockle, et I'importance de ce concept dans le secteur de recherche, nousoomsideux moeles
pour un ensemble de doees actuel, les comni&y = bg+ by X3+ € bg;b12 R; e N(0;1)g
etfY = bg+ b1 X1+ b2X12+ € bo;b1;bo2 R; e N(0;1)g. Nous consiérons une situation de
simulation dans laquelle nous savons que le premierefecgist correct, ca-d. nous acceptons que
b2= 0. La gure 2 montre que l'inclusion d'une variable explicative avec coef ciedtaedans les
mockle changent la distribution de I'estimateurlde De ce fait I'utilisation du mauvaise mete
(deuxieme moele) nous mnea une mauvaise iBfence poub;, le paranetre qui doitétre dans le
mockele. Dans la littrature, les rathodes classiques de choix de raledsont connues sous forme
de test d'ajustement, Pearson (1900), et le test d'hygsatitlassique, Neyman-Pearson (1933-1938)
pour des moedlesa un pararatre, et sa prolongation qui emploie le paradigme de Neyman-Pearson
avec l'estimateur de maximum de vraisemblance pour nous donner ethede de test universel,
le test de rapport de vraisemblance. D'autre part quelquethades &centes dans les @ies de
choix de moele sont le crigre d'information d'Akaike(AIC), (Akaike, 1973), le critre Baysien
d'information (BIC) (Schwarz, 1978), la technique de validation ceeigjui est asymptotiquement
équivalena AIC dans le cas paragirique, et le cridre minimum de longueur de description, Bozdo-

gan (2000) qui est asymptotiguemeéngjuivalent alBIC. En fait nous savons que le test d'hypese



classique avec saébrieétendue optimise la quaditde I'ajustement. Ainsi pourquoi y a-t-il besoin
d'autres néthodes de&dect de modle? La éponse est que cettetthode ne se prolonge pas simple-
menta I'hypothése non embtée et puis avec cetteathode nous ne pouvons pas faire une analyse
profonde du prol@me du élection de modle dans de situationgelle. Un autre point important
est que la conclusion des @ies comm@\lC ne sont jamais au sujet de lanté ou de la fausset
d'une hypotlese, mais au sujet de sa proxient la \erité. D'autre part dans le test d'hypabes
classique on chercteeminimiser les erreurs des typlestIl qui ne sont pas compatibles. Iy a une
autre objection au raisonnement du test d'hyps#s classiques. Il peétre dif cile de trouver un
mockle bien specié. Il peut encorétre appropé de choisir le meilleur made parmi un ensem-
ble (non specié) de moeles. Notre travail porte sur lagthode de maximum de vraisemblance
et particulerment sur IAIC. Ceci parce que AIC peutétre emplog pour les modles embiés

et non embdés. LAIC adopte le critre de Kullback-Leibler en tant que sa fonction de diver-
gence. Fisher dans son introduction originale duecgitde suf sance, a exggque la statistique
devrait Esumer la totalé de l'information appropée fournie par Bchantillon, et le prol@me de
discriminer de l'icee de Kullback-Leibler est de conéigr une mesure de la distance ou de la di-
vergence entre les distributions statistiques en termes de leur mesure d'information. Nous pouvons
également conséater la distance d'Hellinger ou la distance de Matusita de I'aénioir Bar-Hen

et Daudin (1998). En fait ils onté&lni le rapport de log-vraisemblance comme l'information d'une
observatiory a distinguer entre deux hypdtbes lgesa la €lection du modle. Il y a beaucoup de
mankeres de @ nir la divergence, mais dans tout le manque d'ajustemésigteé sous le nom de
divergence. Dans la lérature il y a quelques autres versions duecetd'Akaike. Dans le magle

de régression ligaire, la statistique la plus populaire pour le choix de et@ast l1eC, de Mal-

lows (1973). D'autres criires sont des cate I' AIC. corrigé par Hurvith et Tsai (1989), le ceite



prolongg de l'information EIC par Ishiguro et al (1997), cette approcl&éaprolonge au choix
de l'estimateur semi-paragtrique par Commenges et al. (2007) et ICOMP par Bozdogan (2000).
lls sonta la recherche du choix du poids de langlie du criere, ce qui estd a la parcimonie
du mockle. D'autre part classiguement nous pouvons carsidles modles formués comme des
distributions de probabikt En fait la &€lection des maogles se fait en deuatapes. Dans la preére
étape nous devons choisir I'ensemble des etesl La deuxameétape de @ection de modle est
bien connue commeéVvaluation des paragires, c.a-d. une fois que I'ensemble des nedeks pos-
sibles sont choisis, I'analyse matatique nous permet dét@rminer le meilleur de ces melés.
Mais que signi e le meilleur? Une bonne technique de choix deete@quilibrera I'ajustement et
la complexié. L'ajustement est&éralement @termiré par la divergence minimum ou au sens de
la vraisemblance, et la comple&iest @réralement mesée en comptant le nombre de partnas
libres dans le mogle. Pour choisir parmi les metks en concurrence, nous devolsider quel
critere doitétre emplog pourévaluer les moeles, et puis pour faire la meilleure @rence quara
laguelle moéle est peferable. Comme nous avons dit, nous pouvons cénsida divergence entre
les mockles comme crilre de choix de maale. Alors notre recherche sera de trouver le ated
avec la divergence minimum par rapparia vrai dens# qui est parfois comptement inconnue et
parfois inconnue dans le paratre. Un travail inéressant est effedpar Vuong (1989) qui emploi
le critere de Kullback-Leibler pour mesurer la proxigd'un mockle au vrai. Il considre la lim-
ite de la @nalie dans IAIC comme une quanétrégligeable quand la dimension dédhantillon
devient grande. Il y a uneépiode importante pour les test delection de moele, de Cox (1961-
1962)a Vuong (1989). Le test de Vuong comme un test pour choix deetaoekt diferent de
test de Cox. Avec le test de Cox chaque meledestévalle contre les doréres, ca-d. le moéle

alternatif fournit la puissance. En fait le test de Cox est une modi cation du test de rapport de
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vraisemblance de Neyman-Pearson. D'autre part le test de Vuong est un test ddsgpudtatif.
Dans ce cas les tests de netek sonévalles contre les dor@es et I'un contre l'autre. La défrence
entre les deux test est importante. Le test de Cox est valable pour desdsgmtion-embiees
tandis que le test de Vuong s'utilise po@lexctionner des madies non-embitees. |l est Bcessaire

de souligner qua l'origine le test de rapport de vraisemblance est un test statistique d'ajustement
entre deux moeles embdées. Par ce test un melé relativement plus complexe est congpamun
modcele plus simple. D'autre part les tests classiques d'ajustement €opigfhement emplég par

tous les chercheurs qui ont besoin de l'intétation statistique de leur doees. Historiquement
Pearson (1900) a prop@de premier test d'ajustement qui est connu comme test’deCet test

de base est devenu une source importante pougveldppement des secteurs principaux en prob-
abilité et statistique. Fisher (1922) aégené la vraisemblance dans le contexte de I'estimation au
point pour un paraetre d'inerét, mais au commencement la vraisemblance est un outil pour traiter
l'incertitude duea la quantié d'information limitte continue dans les doges. C'est la fonction
entiere de vraisemblance qui saisit toute I'information dans les &esnAlors pour chercher un test
d'ajustement la fonction de vraisemblance est un premier candidat.

Notre Objectif

Nous nous concentrons sur leétitie asymptotique pour l&kection de moele. Nousétudions

la situation sous laquelle les pextures deé&ection de moeles sont asymptotiquement optimales
pour choisir un moedle. Notre travail port sur l'irfrence au sujet de I'AIC (un cas de vraisem-
blance gnali®e) d'Akaike (1973), o comme estimateur de divergence de Kullback-Leibler est
intimement relgea I'estimateur de maximum de vraisemblance. Comme une partie de la statistique
inferentielle, dans le contexte de test d'hypsh, la divergence de Kullback-Leibler et le lemme

de Neyman-Pearson sont deux concepts fondamentaux. Tous les deux sont au sujet du rapports de
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vraisemblance. Neyman-Pearson est au sujet du taux d'erreur du test du rapport de vraisemblance
et la divergence de Kullback-Leibler est I'éspnce du rapport de log-vraisemblance. Ce raccorde-
ment pésente une autre intefgation de la divergence de Kullback-Leibler dans la limite de la
perte de puissance du test du rapport de veraisemblance quand la distribution fausse eseemploy
pour une de I'hypotlse, c.a-d. la divergence de Kullback-Leibler de deux fonctions de distribu-
tion P et Q mesure combien de puissance nous perdons avec la test du rapport de vraisemblance
si nous mouvais §i ée I'hypottese alternative P comme Q. Nous voulons encore con rmer que
I'estimateur de la divergence de Kullback-Leibler qui est la fonction maxéen{gt normalise) de
vraisemblance, assymptotiquement pourié une bonne statistique pour le choix de sledPar

ceci nouliminons le partie normalée du test du rapport de vraisemblance qui est une cause qui
l'incapacit de I'etude classique de puissance. En fait nous voulémsldppons une approche pour

le test d'ajustement bassur des fonctions vraisemblance normédis (par nombre d'observation) et

de I'AIC normalisee quand la dimension deéeEhantillon devient grande.

Notre approche est bas sur I'AIC et la diference de I'AIC pour deux mades de concurrence en
utilisant l'intervalle de con ance au lieu du test de hypesle comme son double, c'est parce que
I'intervalle de con ance est un ensemble de toutes les hygs®h acceptables avec la con ance pr
assigee. L'évaluation d'un intervalle de con ance pour deux neteb embtées ou non-embiees

en concurrence est concergrdessus, que l'intervalle de con ance contiaetaou pas. En bref

nous consiérons les AIC car une statistique qui nous laisse@s@nter une statistique de test pour
selection de moele. Cette i@e est diferente de l'ide originale au sujet de I'AIC qui consice

AIC comme criere qui ordonne maaes. Nous voulons souligner que le choix de eledhourrait
impliquer une diference entre la simpliétet I'ajustement. Il y a beaucoup de mems de faire

cette diference. Essentiellement cependant, il n'y a aucugthade qui est meilleure que toutes
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les autres dans toutes les conditionsa-tl- pour toutes les @thodeml etm?2 , il y a sont des cir-
constances dans lesquella% est meilleur que len2, et d'autres circonstances dans lesqueti@s

est meiuex quenl. Il semble qu'il est dif cile de comparer les @hodes, parce qu'il parfois nous
guideraa une conclusion non-admissible. Au lieu de choisir urighode nous pouvons analyser
notre probéme et peciser notre but et les moyens damliser notre but et d'expliquer nalement
comment un criére fonctionne engalisant notre but. Le domaine du choix de miedest tes grand.
Une cagégorisation du prokeime de choix de made peugtre consiéree selon que les metks sont
embdtés, en chevauchement ou non eftdm Geréralement deux mades seraient non emhbe

s'il n'est pas possible de conduire chacun d'eux par les autres I'un ou l'autre au moyen d'un en-
semble exact de restriction paréfrique ou en raison d'un processus limiteur. Lélidture sur test
d'hypothése non embBtee aéte imitiee par Cox (1961), Cox (1962) et Atkinson (1970), ce sujet
appligie par Pesaran (1974) et Pesaran et Deaton (1978). L'analyse detemégression non
embdtés aéte consi@ré par Davidson et Mackinnon (1981), Fisher et McAller (1981) et Dastoor
(1983). D'autre part Vuong (1989) a conéié le test d'hypothse quand deux metes en concur-
rence sont emBteés, chevauchement ou non eritbe. Son approche est lgassur la distribution
asymptotique de la di#frence des fonctions de log-vraisemblance pour deuxeleedn concur-
rence. Shimodaira (1998) et Shimodaira (2001) a c@nsiderreur d'echantillonnage dedIC dans

des comparaisons multiples et a construit un ensemble avec de boékempldt que de choisir un
mockEle simple. Rcemment la distribution asymptotique dAallC dans des maales de &gression

linéaire et la correction de biais du ces statistiques sont éissyiar Yanagihara et Ohomoto (2005).
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Chapter 1

Introduction

An important problem in statistics concerning a sampla imfdependent and identically distributed
observations is to test whether these observations come from a speci ed distribution. It means that
there is a uncertainty and we have to make a decision. Decision making process under uncertainty
is largely based on application of statistical data analysis for probabilistic risk assessment of our
decision. In realistic situation we have only a set of data at hand and we need to build knowledge
from it. Knowledge is what we know and the communication of knowledge is information. The
data are only crude information and not knowledge by themselves. The data becomes information
when it becomes relevant to our decision problem. The information becomes fact when the data
can support it. Finally the fact becomes knowledge when it is used in the successful completion of

decision problem. Then

Data! Information! Factsl Knowledge
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The statistical thinking process based on data will construct statistical models for decision making
under uncertainty. Statistics arise from the need to place knowledge on a systematic evidence base.
This required a study of the laws of probability. The level of exactness of statistical models increases
when level of improvements on decision making increases. Thus the probability density function is
a fundamental concept in statistics. The true probability density function, that we dinpie
unknown. The model that we can think of as having given rise to the observation is usually very
complex. A convenient framework is to consider that the observations are realizations of independent
and identical random variables; then the whole model is speci ed by their common probability
density function,f(:). We call this distribution the true distribution or data generating distribution.

A model is family of distribution and is called well-speci ed if it contains the true distribution; one
may also speak of “true model” but this may be misleading. The data are insuf cient to reconstruct
every detail off(:). Then sometimes we estimate and sometimes we approximate this density.
The density estimation area may be nonparametric or parametric. The nonparametric case is the
construction of an estimate of the density function from the observed data where the number of
parameters is considered as in nite. In this case, estimation of the defi{sjtpver all points in

its support would involve estimation of an in nite number of parameters. Historically we can say
that the oldest used (nonparametric) density estimator is the histogram which has been re ned for
obtaining smooth estimators by the kernel approach, see, Fix and Hodges (1951), Devroye (1985)

and Silverman (1986).See Figure 1.
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Figure 1: Histogram and kernel estimator of the same data. As we see these two approachs give us relatively

the same information about the data generating probability.

The other case is the parametric case, where we assume the shape of the density function and we
want only to estimate the parameters. In the parametric case we assume that the data are drawn from
one of the known parametric families of distributions. The most widely used approach for such a
construction is based on Maximum Likelihood Estimatfivi_E) and some of its modi cations.
Generally this area is related to hypothesis testing problem. As natural property, we want to con-
sider the methods for constructing procedures which are ef cient, that is, asymptotically optimal.
The theory behind th®ILE guaranties this optimality. In hypothesis testing problem formally we

de ne the null and alternative hypotheses about the parameters of the underlying density. The basic
guantities that we need in hypothesis testing are the critical value that provides the desirad level

the power of test and the sample size required to achieve a given power. On the other hand we may

compare two competing models, for example a hormal density against a double exponential density.
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The density approximation methodology is an alternative to kernel density estimation, but com-
putationally as simple as parametric methods. It is based on the mode nding algorithm. Since we
may imagine several models for approachfifg, the “Model Selection” issue arises. By model se-
lection we remember Ockham (1282-1347) who stated that “Entities are not to be multiplied beyond
necessity”, which is known as Ockham's razor (Occam's razor). Simply a model is a set of equations,
or functions with some adjustable parameters, or we may de ne a model as a sets of probabilistic,
or statistical hypotheses. Model selection is the task of selecting a mathematical model from a set
of potential models, i.e. determining the principle behind a series of observations. Some people
however consider it as an intermediate step in model selection, and say that the model selection is
to select a particular density from a model. We consider a family of densities as a model, where its
members differ by the value of the parameters.

Our search is for the true model. We say a model is true if and only if one of the densities it
contains is true. Itis necessary to choose the set of models before beginning. In the linear regression
model for instance, the model choice is dif cult because we hdvpd®ential model wherg is the
number of the explicative variables which are candidate to explanation of the response variable. The
problem is that extra terms add extra adjustable parameters, and these will improve t; the question
however is “does an extra term added to an equation count as beyond necessity” if the gain in tis
too small?” If so, what counts as too small? How do we make this trade off between the addition of
new parameters and gain in t? And what is gained by the trade off? These are some questions in
model selection. To show that the sensitivity of model selection, and the importance of this concept
in research area consider two models for a set of data at harfitf, ashg+ b1 X+ € bg;b1 2
R; e N(O;l)gandfY = bo+ biX;+ bpX2+ € bo;b;;b2 R; e N (0;1)g. We consider

a simulation situation in which we know the rst model is correct model, i.e we accepbiatO.
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Figure 2 shows that including an explanatory variable that have zero coef cient in the model, changes
the distribution of the estimator df;. Thus using the wrong model (second model) guides us to

wrong inference about;, the parameter which must be in model.

40
L

30
L

---- quadratic model
— linear model

Density
20
L

10
L

Figure 2: The solid density is much narraower than the dashed density. It shows that including predictors that

have zero coef cient in the model will change the distribution of the estimabg :of

In the literature the classical method of model selection is known as goodness of t test, Pearson
(1900), and classical hypothesis testing, Neyman-Pearson (1933-1938), for one parameter models,
and its extension which uses the Neyman-Pearson paradigm along with maximum likelihood estima-
tor to give us a general-purpose testing procedure, the likelihood ratio test. On the other hand some
recent methods in model selection criteria are Akaike information Crité/Ad@), (Akaike, 1973),

the Bayesian information criteriofBIC) (Schwarz, 1978), Cross Validation technique, which is
asymptotically equivalent to th&IC in the parametric case, and Minimum Description Length cri-

terion, Bozdogan (2000) which is asymptotically equivalent toBH@
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As a matter of fact we know that classical hypothesis testing with its extensive theory succeeds
in goodness of t. So why is there a need for other method of model selection? The answer is that
this method does not extend straightforwardly to non-nested hypothesis and then with this method
we can not make a deep analysis into the problem of model selection in real situations. Another
important point is that the conclusion of the criteria likéC are never about the truth or falsity
of a hypothesis, but about its closeness to the truth. On the other hand it seems that the rational
behind the classical hypothesis testing is minimization of the kygyeor and the typ# error which
are incompatible. But the actual practice is a trade off between these two errors. There is another
objection to the rationale of classical hypothesis testing. It may be dif cult to nd a well-speci ed
model (all models are wrong...). It may still be relevant to choose the best model among a set of
(misspeci ed) models.

Our focus in this work is on maximum likelihood method and especiallAh This because
AIC can be used for nested and non-nested models. The rationale of model choice is different from
the classical testing approachlC adopts the Kullback-Leibler measures as its discrepancy function.

In fact this statistic is an estimator of the relevant part of Kullback-Leibler (1951) discrepancy.
Fisher, in his original introduction of the criterion of suf ciency, required “that the statistic chosen
should summarize the whole of the relevant information supplied by the sample”, and the Kullback-
Leibler idea problem of discrimination is by considering a measure of the distance or discrepancy
between statistical distributions in terms of their measure of information. We may also consider
the Hellinger or Matusita distance of af nity, see Bar-Hen and Daudin (1998). In fact they de ned
the loglikelihood ratio as the information in observation for discriminating between two hypotheses
related to the model selection. There are many ways of de ning discrepancy, but in all of them the

lack of tis referred to as discrepancy. In the literature there are some other versions of Akaike's
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criterion. In the linear regression model the most popular statistic for model choice is Mallows's
Cp (Mallows, 1973). Other criteria are the corrected Akaike's critedd@. proposed by Hurvith

and Tsai (1989), the extended information crited®l@€ by Ishiguro et al (1997); this approach has
been extended to the choice of semi-parametric estimator by Commenges et al (2007) and ICOMP
by Bozdogan (2000). They are in search of put enough weight on the quality of penalty term of the
criterion which is related to the parsimony of the model.

On the other hand classically we may consider the models formulated as probability distribution.
In fact model selection will be done in two steps. In the rst step we must choose the set of models.
The second step of model selection is well known as the estimation of parameters, i.e. once the set
of possible models are selected, the mathematical analysis allows us to determine the 'best' of these
models. Here, what means that the best? A good model selection technique will balance goodness-
of- t and complexity. Goodness of t is generally determined in the minimum discrepancy (like
Chi-square) or likelihood sense and the complexity is generally measured by counting the number of
free parameters in the model. To select among competing models, one must decide which criterion
to use to evaluate the models, and then make the best inference as to which model is preferable. As
we said we may consider the discrepancy between the models as the criterion for model selection.
Then our search will be nd a model with minimum discrepancy from the true density which is
sometimes completely unknown and sometimes unknown in parameter.

A kind of search is formulated as the hypothesis testing for model selection. An interesting
work is done by Vuong (1989) who uses the Kullback-Leibler criterion to measure the closeness of
a model to the true one. He considers the penalty teril@ as a negligible quantity when the
sample size gets large. Any way tA&C evaluation of models must agree with the likelihood choice

or ordering of these models when the models have the same numbers of adjustable parameters. There
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is an important period for model selection tests, from Cox to Vuong. The Vuong's test (1989) as a
model selection test is different of Cox (1961) and Cox (1962) type test. By Cox test each model
is evaluated against the data, i.e. the alternative model provides the power. In fact Cox test is a
modi cation of Neyman-Pearson maximum likelihood ratio test. On the other hand the Vuong's test

is a relative hypothesis test. In this kind of test the models are evaluated against the data and each
other. Separation between the Cox's test and Vuong's test is important. The Cox testis for non-nested
hypotheses and the Vuong's test is for non-nested model selection. It is hecessary we emphasize that
originally the likelihood ratio test is a statistical test of the goodness of t test between two nested
models. By this test a relatively more complex model is compared to a simpler model to see ifit tsa
particular dataset signi cantly better. Sometimes we refer to any test for model selection as goodness
of ttest. But the goodness of t tests as the approaches to model selection have their area and they
are known as a category of model selection approaches. The goodness of t tests frequently used by
any researcher who need to statistical interpretation of their data and model selection. Historically
for it was in 1900 when Pearson proposed the rst test of goodness-of- tg#test to solve this
problem. This basic test became a major source for the development of key areas in probability and
statistics. There is no such method for unbind data. Fisher (1922) introduced the likelihood in the
context of estimation. Although the obvious role of the likelihood function is to provide a point
estimate for a parameter of interest, initially the likelihood is a tool for dealing with the uncertainty
due to the limited amount of information contained in the data. It is the entire likelihood function
that captures all the information in the data. Then in searching for an unbind goodness-of- t test the

likelihood function is a rst candidate.
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Introduction 1.1. OUR OBJECTIVE

1.1 Our Objective

Our focus is on asymptotic theory for model selection. We study the situation under which model
selection procedures are asymptotically optimal for selecting a model. We can say, all of things
in our work is inference about th&IC (a kind of penalized likelihood), Akaike (1973), to model
selection, where as an estimator for Kullback-Leibler discrepancy is intimately connected with max-
imum likelihood estimator. As a part of statistical inference, in the hypothesis testing context, the
Kullback-Leibler divergence and the Neyman-Pearson lemma are two fundamental concepts. Both
are about likelihood ratios. The Neyman-Pearson is about error rate of likelihood ratio tests and
Kullback-Leibler divergence is the expected log-likelihood ratio. This connection introduces an-
other interpretation of the Kullback-Leibler divergence in term of the loss of power of the likelihood
ratio test when the wrong distribution is used for one of the hypothesis, i.e. the Kullback-Leibler
divergence from two distribution functiofsto Q measures how much power we lose with the like-
lihood ratio test if we mis-specify the alternative hypothdsmssQ. We want again to con rm that
the Kullback-Leibler divergence estimator which is the (normalized) maximized likelihood function,
asymptotically could be a good statistic for model selection. By this we eliminate the normalized
part of likelihood ratio test, which is a cause that to inability the classical power study. In fact
we want develop an approach to goodness-of- t test based on normalized likelihood functions and
normalized AIC's when the sample size gets large.

Our approach is based &IC and difference ofAIC's for two competing models using con -
dence interval instead of hypothesis testing as its dual; it is because the con dence interval is a set of
all acceptable hypotheses with pre-assigned con dence. The evaluation of a con dence interval for

two competing nested or non-nested model is concentrated on whether the con dence interval has
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Introduction 1.1. OUR OBJECTIVE

contained zero or not. In brief we consider thi€ as a statistic which let us introduce a test statistic

to model selection. This idea is different from the original idea abouAi@=which considers the

AIC as a criterion which allows to order the models. We want to emphasize that model selection
could involve a trade-off between simplicity and t. However there are many ways of making this
trade-off. Essentially however, there is no method that is better than all the others under all condi-
tions, i.e. for any methodsl andm?2, there are circumstances in whicli is better thanm2, and

there are other circumstances in whioB will do better thammi.

It seems that it is dif cult to compare the methods, because it sometimes will guide us to an
invalid conclusion. Instead to choose a method we can analyze our problem and precise our aim and
the means to achieve our aim and nally to explain how a criterion works in achieving our aim. The
area of model selection is very wide. A categorization of model selection problem can be considered
according to whether the models are nested, overlap our non-nested. Generally two models are said
to be non-nested if it is not possible to drive each of them from the other one either by means of an
exact set of parametric restriction or as a result of a limiting process. The literature on non-nested
hypothesis testing in statistics was pioneered by Cox (1961), Cox (1962) and Atkinson (1970), this
subject applied by Pesaran (1974) and Pesaran and Deaton (1978). The analysis of non-nested
regression models considered by Davidson and MacKinnon (1981), Fisher and McAleer (1981) and
Dastoor (1983). Vuong (1989) considered the hypothesis testing when two competing models are
nested, overlap and non-nested. His approach is based on the asymptotic distribution of difference
of log-likelihood functions for two competing models. Shimodaira (1998) and Shimodaira (2001)
has considered the sampling error™d€ in multiple comparisons and has constructed a set of good
models rather than choosing a single model. Recently the asymptotic distributkd@ afi linear

regression models and the bias correction of this statistics are discussed by Yanagihara and Ohomoto
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Introduction 1.2. PLAN OF THESIS

(2005).

1.2 Plan of Thesis

In the remainder of this chapter we will bring some de nitions, theorems and lemmas which will

be frequently used. Chapter 2 is about theory of models. In chapter 3 we recall the goodness-of- t
tests as a base to introduce late a new approach and test statistics in goodness of t test. Chapter 4
contains the assumptions and necessary instruments to develop our ideas in subsequent chapters. In
chapter 5 we will propose a new test based on the likelihood ratio test for an empirical distribution
function and we verify some aspects of this test. Chapter 6 concerns our proposed test when we want
to test whether the unknown true density could be a member of a parametric family. This chapter
is largely related to maximized likelihood function (and th&i€C) and its asymptotic distribution,

where we are interested in nding a criterion to achieve a reasonable model in multiple regression
models. A simulation study is done which con rms our idea, see, appendix A. In chapter 7 we will
introduce the difference of expected Kullback-Leibler divergence related to competing models to
verify and a normalized difference #C as an estimator of it. The con dence interval as a dual

of hypothesis testing is constructed to assess which model is better in Kullback-Leibler sense. The
simulation study for logistic regression models con rms our idea in this chapter. We use our idea

about real data when the variable under study is dichotomous. See appendix B.
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Chapter 2

Reminders about models

and some asymptotic results

2.1 Models

The question of choosing a model is of course central in statistics. Usually we are not in the situation
without any knowledge. We have a menu of rival models which could be used to describe the data.
Let M denote a class of these candidate models. Each nié@M is considered as a set of

probability distribution functions for our data, i.e.
G=fg(;b):R! R*:b2B RY=(g"())p2s

whereg(:;b) denotes a probability distribution for observatigrand B represents the parameter
space which can be different across different mo€&IsVe note that in this framework that it may

or may not be the case that one of the candidate md&d@isM is a correct model.
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Reminders about models
and some asymptotic results

2.1. MODELS

For example in a simple case may be we know that our observationdfagemsity but the true

parameter of density is unknown. In the Figure 3 some of the membersdensity is shown. The

guestion is which member of this family is the data generating density.
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Figure 3: Example of some members of Chi squared family. As a step of model selection sometimes we

must select a member of the family of densities.
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and some asymptotic results 2.2. MODEL SELECTION

As another example consider the normal linear modéd asXb + e with usual hypotheses of
normality and independence of tkee We say this model is the full model. It is a suspected that
some regressors i.e. some columnX@fre not necessary to explainiMgwhich means that the true
values of the coef cients of the coef cient for these regressors are equal to zero, but which ones?
Then the appropriate candidate models are all sub-models of the full model given by zero restrictions

on the parameter vector.

2.2 Model Selection

As a starting point consider observatioris= ( Y1;Ys;::Y,) from a scale and regression model of
the formY = Xb+ se; where X is a xedn k matrix,b 2 R¥ is a vector of unknown regression
coef cients,s is a scale parameter, aris a vector of errors such théd ; :::; &,) is a random sample

from a densityf(:). Popular choices fof (:) include the normal, Student's t, logistic and Cauchy
distrributions. On the other hand distributions on the positive real line include the exponential,
gamma and so on. As a simple class of models consider theMassth two members a&; =
fN(s?);u2 R; s?2R*gandG = fC(a;b);a2 R; b2 R*gwhereC stands for Cauchy
density. The model selection in the rst step is choose betw&eandG, and in the second step is
choosing a member of the selected family in the rst step. This two families for some of its members
are shown in Figure 4. Model selection is a classical topic in statistics which concerns a vector of
observatiorY = (Y1;Y2;:::; Ya) with the unknown densitf (:). The ultimate goal of model selection

is to approachf(:). As we said in the last section there are many possible models, that is sets of
densities indexed by parameters. We denote amodgka&= fg(:;b):R! R*:b2B RYg=

(6P(2)) p2g: If we setf(:) = g(:;Bn) whereb,, a function ofY is the estimator ob, clearly there is
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a risk which is known as the approximation risk. On the other hand if there is a mem@ersal

o(y; bo) which is equal (or near) té(:) using theg(:; Bn) will introduce the other type of risk as the

estimation risk.

NORMAL FAMILY CAUCHY FAMILY

0.4
1

normal density
cauchy density

Figure 4: Two possible densities for data at hand. In a simple case of two candidate models, the model

selection in the rst step is choosing between two models and then choosing a member of the selected model.

The discrepancy betweef(:) and g(:;Bn) is known as bias term, which is in fact the mis-
speci cation risk, and the discrepancy betweagy; bp) andg(:; Bn), is known as the variance term,

which is a statistical risk, i.e.
Overall Risk= Risk of Modeling Risk of estimation

or

Overall discrepancy Bias + Variance
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How we can minimize these two types of risks, is the model selection object. In fact model selection
is the compromise between these two types of risks. Now if wekhaodels ads;; G;; 105 Ge

the model selection is in search of a mo€gl | = 1;2;:::;K which minimizes the discrepancy
betweenf (:) andg(:; Bn). In model selection like the classical statistic we want to minimize the bias

and the variance to nd the optimal model which has the minimum risk.

2.3 Goal of Model Selection and its means

The goal of model selection depends on the research area. But as a common goal in model selection
we are interested using the selected model in the prediction of the unobserved data. In the Akaike
(1973) framework, a basic assumption is that the domain of unobserved data is the same as the
domain in which the data are sampled, in other words we could think about new data as the data
which re-sampled from observed data. Then there is a connection between model selection and
predictive accuracy which is the expected t of the unobserved data. But a point about the predictive
accuracy is that its value for observed data is larger than its value for unobserved data. The tcan be
assessed by the method of least squares or by the likelihood function. But the method of least squares
have limitations. The question which arises is whether the likelihood approach applies to all cases?
If the hypothesis is probabilistic, our hypothesis has a likelihood associated and we can choose a
reasonable function of the likelihood as the model selection criterion. This function in the literature

is known as the log-likelihood function. The only problem with the (log)-likelihood function is that

this function depends on the sample size. To solve it, we normalize this function by the sample
size. When we have the€ competing models, in each model there is a vector of parameters. When

we estimate the parameters of each models in fact in Kagtodels we nd a member which is
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the best tting under model. Now we can say that the aim of model selection is to maximize the
predictive accuracy of the best tting from the competing models. Itis clear that when the estimation
of the parameter(s) in likelihood sense in the model is a random variable the normalized maximized
likelihood also is a random variable. This value minus the number of parameter in model divided by
the sample size is a unbiased estimator of the predictive accuracy. This is the Akaike information
criterion, AIC, for model selection, which states that we should choose the model with the lowest
value of this criterion. But this criterion is used as if it were deterministic; we wish to change

emphasize its statistical nature.

2.4 Nested and Non-Nested Models

We will bring the mathematical de nition of nested and non-nested models in the next chapters, but

simply we can say that two models are nested if one model can be reduced to the other model by
imposing restriction on certain parameters. Two models are non-nested or completely separated if
one model cannot be reduced to the other model by imposing restrictions on certain parameters. Also

two models can be non-nested in terms of their functional forms and error structures. For example
Y = bo+ b1X1+ boXo+ bsXz+ €
and
Y = bg+ b1 Xy + boXo+ b3Xz+ baXs+ u

are two nested models. Discriminating between these two models, can be based on a t-test under
ordinary least squares or a likelihood ratio test under either maximum likelihood or least squares.
On the other hand

Y = bo+ biX1+ bpXo+ bsXz+ €
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and

Y = b7+ bsXz+ baXg+ bsXs+ bgXg+ u

are two non-nested models. Testing such models can be based on model selection tests using differ-

ent concepts as for nested models.

2.5 Probability Metrics

The model selection is related to the distance between probability measures or densities. Determin-
ing whether a sequence of probability measures converges is a task for a statistician or a probabilist.
The quantify that convergence in terms of some probability metric is all of things which we expect
from a probability metric. In the literature there are a host of metrics to quantify the distance between
probability measures. We should notice that some of them are not even metrics in the strict sense.
Selecting a metric depends on our problem. Fortunately we can de ne a wide range of metrics. We
set(W,F) as a measurable space dvidbe a space of all probability measures(@F). Then

we consider convergence M , with P andQ as two probability measures & and two density
function with respect ts- nite dominating measure which could §+ Q)=2. By settingWW= R.

we can consider two distribution functions corresponding to the densities. By this assumption some
measure of distance could be de ned on probability measures, on densities or on distribution func-
tions. Some of more important metrics in statistics ardiscrepancy metric, this metrics is in

[0;1] and is scale-invariant. Y2Hellinger distance, which de ne between two densities function,

its value is in[O;p 2], see, Lecam (1986). ) Kullback-Leibler divergence (Relative entropy),
Kullback-Leibler (1951), this criteria is de ned on two densities and its value [§;¥]. The rela-

tive entropy is not a metric, because it is not symmetric and does not satisfy the triangle inequality,
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but it has many useful properties, including additivity over marginals of product measures, Cover
and Thomas (1991). )&olmogorov (or Uniform) metric, Kolmogorov (1933), this metric, is a
distance between two distribution functions with valugdnl]. This metric is invariant under all
increasing one-to-one transformation on the ling Tétal variation distance, its value is if0; 1].

6) Levy metric, is a distance between two distribution functions and takes val[@ 1f this mea-

sure is shift invariant but not scale invarian}.Prohkorov (or L evy-Prokhorov) metric, Prokhorov
(1956), this metric is theoretically important because it metricizes weak convergence on any separa-
ble metric space, it assumes valudOnl]. 8) Separationdistance, this distance was advocated by
Aldous and Diaconis (1987) to study Markov chains. However, it is not a metric and0slin9)
Wassersteinmetric, and 19 c? distance is de ned on two densities and its value is [ih¥], see
Pearson (1900). This distance is not symmetric in its arguments and therefore not a metric. There
are many inequalities between these metrics, but for our object one of the most important relation is
related to the Kullback-Leibler divergence and other metrics. In section 3.4 we will talk about some

of these inequalities.

2.6 Akaike framework and his Theorem

An inferential framework was developed by Hirotugu Akaike (1973) for thinking about how models
are used to make prediction. But the prediction is for future data not for the data at hand (the old
data). Prediction is of fundamental importance in all the science. Prediction accuracy is of obvious
importance. Akaike not only introduced a framework in which predictive accuracy is the goal of
inference, indeed provided a methodology for estimating a model predictive accuracy. Akaike in-

troduced a criterion as Akaike information criterioAlIC) for model selection which is expressed
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by a theorem. In fact he answered to the question as Given the data at hand, how is one to estimate
how well a model will do in predicting new data, data that one does not yet have? The Akaike's
theorem imposes a penalty term for complexity to the likelihood of the old data (goodness of t) to
describe how much of gain in likelihood there must be to off-set a given loss in simplicity. Naturally
the Akaike's theorem has assumptions. First he de nes the distance between a tted model and the
truth by using the Kullback-Leibler discrepancy. Second, he assumes that the new data will be drawn
from the same underlying reality that generated the data at hand which has two parts: that the true
function that connects independent to dependent variables is the same across data sets, and that the
distribution that determines how the values of independent variables are selected is also the same.
The Akaike's criterion is an unbiased estimator for Kullack-Leibler discrepancy, up to additive and
multiplicative constants. This criterion allows to compare both nested and non-nested models as two
important varieties in model selection. An other interpretatioAld is that when this criterion is
applied to the model selection, the number of the parameters of the model that it leads us to choose,

can be viewed as an estimate of the number of parameters of the smallest correct model.

2.7 Complexity in model selection

Complexity is due to the number of parameters and functional form of the model, where the latter
refers to the way in which the parameters are combined in the model equation. Many people believe
that model selection should be based not only on goodness of t, but must also consider model
complexity. It seems clear that the goodness of tis a necessary but not suf cient condition in model
selection. An important consideration in model selection is to avoid choosing unnecessarily complex

models because a simple model is more tractable, the stability of parameter estimates is greater and it
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will generalize better to new data sets than a complex model which increase the predictive accuracy
of the model. The complexity of model can be illustrated by considering the range of probability
distributions of observations speci ed by the model equation that a model can occupy in model
space. As an example consider 4 pointAaB;C andD in Figure 5, where they are modeled by

a constant, a linear, a quadratic and cubic models. This is clear that the more complex model, the
better the t between the model and the points. This result is about the observed data, but consider
a new data withk = 5. For this observation we have four prediction dependent on our model as
3:25,6;4:75 and 1704 respectively. By inspection it seems that a value about 5 is reasonable. This
example shows that the better t does not necessarily produce better inference.We show this result by
Figure 5 which indicates that the complexity in mathematical form does not help to model selection.

This is the meaning of Ockham's razor, see Chapter 1.

o

=~

[

Dependent Variable
ro

P

Indepandsnt Variable

Figure 5: Four models are tted to the data points, It shows it is not a case that the more complex model ts

better than the simpler models to prediction.
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All models occupy a section of model space. Then a simple model is a small section of this
space and a complex model will occupy a large section of the model space. Myung (2000) in an
example shows that the true model (quadratic model) but also more complex models (model of de-
gree four and a non-linear model) can t data well, which is why goodness of t is not a suf cient
condition for model selection. For exampC, BIC and root mean squared deviatiBMSDare
some criteria for model selection which proposed that adjust for variation in the number of parame-
ters as the complexity among models which was developed by Akaike (1973), Schwarz (1978) and
Friedman et al (1995) respectively. Recently Information-theoretic measure of complexity (ICOMP)
was developed by Bozdogan (1990, 2000). He considered two penalty terms as model complexity
which are related to the covariance matrix of parameter estimates for the model. To show the role
of complexity in model selection, consider a simulation study on regression model as follows. For
nested models computeC, BIC and log-likelihood function. The result of simulation shows by
Figure 6. We see th#&lC andBIC have a minimum when we take three good explanatory variables,
but the log-likelihood increases when the number of unuseful explanatory variables increases. To
compare with usual criterion we also draw fRequared and adjust&isquared.

By these two simple examples we see that the model selection should be based not solely on good-
ness of t, but must also consider model complexity. It is shown that model selection based only on
the tto observed data will result in the choice of an unnecessarily complex model that over ts the

data. The effect of over tting must be properly offset by model selection methods.
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Figure 6: Comparison of some criteria to model selection.

41



Reminders about models
and some asymptotic results 2.8. ASYMPTOTIC THEORY

2.8 Asymptotic theory

Asymptotic theory is a branch of statistics which have developed because of some theorems and
relations in theory of probability. In fact asymptotic theory is concerned with the situation where
the sample size is large or could be large. The most important of these theorems are the Weak
and Strong Law of large numbers and Central limit theorems. By these theorems many problems
in statistics are solvable. But there is a question, whether asymptotic results are useful, i.e. when
using a sample with nite size, are we close enough to the asymptotic results ? Answer to this hard
guestion involves the solution of the more dif cult nite sample problem. If we want to defend the
asymptotic theory we can say that this idea give insight into what constitutes a reasonable approach
for the nite sample case. For example by this theory the maximum likelihood estimator becomes
extremely popular, and in any area of science all of people use it without anxiety even for small

sample.
Example 2.1 (A simple example of asymptotic distribution in hypothesis testing)

The asymptotic theory is a set of mathematical results useful in approximating the distribution of
random elements. This random elements in general could be any statistics. To illustrate why this
approximations are useful tools in hypothesis testing we can consider a known and simple case
whereY, N (;s2) and we are interested in testing the hypothékjs u= Lo for some speci ed
value ofy. One way to test is to form the statistit;, = M whenY is a simple average of
n i.i.d random variable¥;;i = 1;2;:::;n. If the true variances? is known thenH, N (0;1). By
this we could construct a rejection region and make a decision &hpuivhens? is an unknown

S

parameter we form the statistit, = where$ is an estimate fos, in this caseéH,, t, 1

and could thus again construct a rejection region.
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We note however, that whengets large, the t-student distribution approaches the standard nor-
mal distribution. This suggest that in large samples we would not make a big mistake by ignoring
the fact thats is estimated rather than known a priori. Now consider the situation whesenot
known to be from a normal distribution.

Note that it still holds thaEHO(V) = to. WhenHg is true we would still expedt, or H,, to be
close to zero. It then seems reasonable to continue tblgse H,, as test statistics. The problem
however is that we no longer know the distribution of these two statistics and thus are unable to
construct a test. This is a situation where an approximation to the distributidp isfuseful. It is
known that by central limit theored,, will have a limit distribution which is very close to standard
normal distributiorN (0; 1), see Figure 7.

On the other handl, = Hng, now if § be the maximum likelihood estimator ferby the weak
law of large numbers we have th?tp 1 then by Slutsky's theorei, asymptotically isN (0; 1)

and we can construct a rejection region.

2.9 Goodness of Fit Test and

Classical Hypothesis Testing

Hypothesis testing is generally formulated in terms of null and alternative hypotheses, type one and
type two errors and the power of test. If we ask which test is better, the answer is that the test which
has a highest power among all possible tests (for xed type | error), i.e. an ideal test is uniformly
most powerful test. If we are not able to nd a uniformly most powerful test, we turn to the search
of a test with an acceptable power function. In all-purpose goodness of t tests framework there can

be no optimal test, because there is no speci ¢ alternative hypothesis, so it is impossible to de ne
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the power of the test simply. In goodness of t test we do not have any clear criteria for choosing
one goodness of t test procedure over another, i.e. one can propose a goodness of t test and a
computational method(s). To verify a proposed test we are restricted to verify the power of our test

against a few alternatives. We must notice that these alternatives must be carefully chosen.

0.4
I

gaussian
- t,df=100
-+ t,df=10

t,df=5

0.2 0.3
1

dnorm(x)

0.1

Figure 7: Some members of t-student model with standard normal density as its limit distribution.
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2.10 Reminder on Theorems and Lemmas

The following lemmas and theorems will be used in this work.
Lemma 2.1 (Al) If Y] L Y, and a; ay are constants with.a6 0, then aY,+ ajl L aY + a;.

Theorem 2.1 (B1) [Central limit theorem(CLT), i.i.d. case (Lindeberg\y)] LetY;i = 1;2;::;;n

be i.i.d. with mean p and nite variancg?: Then

% W N(©s)

i=1

B
Qo5

The Lindeberg-vy CLT is a special case of Lindeberg-Feller or Lyapunov CLT for not necessarily
identically distributed independent random variables. CLT for dependent variables is also estab-

lished, see Lehmann (1998).

Theorem 2.2 (B2) [Weak law of large numbers]. LetY= 1;2;:::;n be i.i.d. with mean pand nite
variances?: Then
Theorem 2.3 (B3) SupposerYYo;:::; Yy i.i.d. with density {:;q) whereqis xed at some arbitrary
value in the parameter spac@ Letj is a function of {:;q) and WMY;q) = j (Y;q) E:fj (Y;q)g
be a measurable function of y for al and a continuous function a@f for almost all y. Suppose
that (i)Q is compact, and tha¢ii)%é{‘=1w(Yi;q) converges to zero in probability o@. Then if
(iii)jj (v;9)j < g(y) for some function g satisfyirlg;f g(Y)g < ¥ then we have

gggiéwmq)j! "0

The history of this theorem come back to de nition of stochastically equicontinuous functions for

example Billingsley (p. 55 1968), Billingsley (p. 355 1995) and Andrews (1992). In fact this
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theorem is a combination of two theorems. The rst one says that under the assunfptiand
(iii) %éi”: 1] (Yi;q) is stochastically equicontinuous and that j (Y;q)g is (equi) continuous. The

second one says thatﬁfé L W(Yi;q) P 0theorem B3 is right.

Theorem 2.4 (B4)[Slutsky's theorem] LetnYY; W, be random vectors or variables. Iﬂ\}' Y and
W L c; for a constant c, then
. L
()Yt WH - X+c
.. L
(i) WnhYd ~ cY
1 L 1 .
(i)W, “Yd ~ ¢ Y provided & O
Where sometimes we have to consider c as a scaler and sometimes as a vector.
Note that no restrictions are imposed on the possible dependence among the random variables in-

volved.
Theorem 2.5 (B5) If Y4 © Y:thenalso ¥ - Y:
Theorem 2.6 (B6) Yy P c; for a constant c if and only if,}(" c

Theorem 2.7 (B7) [Continuous mapping]. LetgR*! R™ be continuous at every point of a set
S RKsuchthat gy 2 9= 1.
. L .. L .
@) IFYd ~ Y;thendYy) — g(Y):
. P .. P )
@iy Ifyd " Y thendYa)  g(Y):
The continuous mapping theorem has many important applications that are based on the following
simp[? copvergence theorem. Assume tﬁatp c where c is a constant anaf L W; then we
Yn L c
have% §! % § jointly. Now the Slutsky's theorem is a simple application of the continuous
W W

mapping theorem.
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Chapter 3

Reminder on Goodness of Fit Tests

3.1 Testing tto a xed distribution

The goodness-of- t (gof) are used for verifying whether or not the experimental data come from the
postulated model. In this direction one must decide if theoretical and experimental distributions are
the same. Then gof is a hypothesis testing problem and the problem is concerned with the choice of

one of these two alternative hypothesis
Ho: F(y) = Fo(y) 8y

Hi: F(y) 6 Fo(y)

for a xed distribution functionFg:
In fact we can put gof tests into two classes. The rst class divides the range of the data into
disjoint cells and compares the observed numbers to the expected number under the hypothesized

distribution. Naturally they are useful for discrete case but we can use them in continuous case also.
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The second class of tests are used for continuous distributions. For these types, we compare an
empirical distribution function of the data with a distribution function uridgr The test statistic for
these tests is based on a measure of correlation between the distributions or based on some measure
of distance between the two distribution functions. A good reference for gof tests is D'Agostino and
Stephens (1986).

The most popular goodness of t test is due to Pearson (1900). As a new look to this statistic,
for any generalized linear model, the Pearson goodness of ttest is the score test statistic for testing
the postulated model against the saturated model. The relationship between the Pearson statistic and
the residual deviance is therefore the relationship between the score test and the likelihood ratio test

statistics.

3.1.1 Basic Goodness of Fit Test

The most important goodness of t test goes back at least to Pearson's Chi-squared test (1900). He
establishes the asymptotié distribution for a goodness of t statistic for the multinomial distribu-
tion. It can be useful in both discrete and continuous cases when the data be grouped into classes (or

cells). This statistic is given by

X2: é (C)J npj)2

— T 1
i o Dy 1S 1Dk 1
=1

whereQj is the number of observations in c€ll, p; = Py (Y 2 Cj) then by this de nition we have:

Dm=n 20, np::iOn npn)S N (0:Sm) for m Kk
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8
% Pi Pj ifi6 ]
2

Sjj =
TP op) ifi=j
Shi= d
8
%pkl ifi6]
dij =

2

Zptept o ifi=

A well known result in the asymptotic theory of tests of t says that uridgr

L 2
cd- 2,

In the continuous case thé? statistic will not distinguish two different distributions sharing the
same cell probabilities. It is because we look only to the cell frequency which produces a loss of

information that results in lack of power.

3.1.2 Tests on the basis of Functional Distance

A proposed way to improve the Pearson's statistics is by employing a functional distance to mea-
sure the discrepancy between hypothesized distribij@md the empirical distribution functids,

where for i.i.d. random variable§;Y>;:::; Y, is de ned as
18
Fa(y) = —a I ¥y (Y):
Ni=1

The rst one of this type is the test statistics which to known as the @ravbn Mises type statistics.
Here we reintroduce them and others in brief.

Cranér (1928) and in a more general form Von-Mises(1931) proposed

Zy
Wi =n L(Fa) Fo(y)) 2z(y) dy
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for some weight functioz as an adequate measure of discrepancy.

The Kolmogorov test (1933) is the easiest and also most natural non-parametric test. It is based
on theLy norm and computes the distance between an empirical and the theoretical distribution
function under the null hypothesis. Undei the difference between the empirical and theoretical

distribution functions will be noticeable. This statistic is given by

p_ . .
Dn= " nsupiFn(y) Fo(Y)i
y2R

A problem mathematically similar to Kolmogorov's was studied by Smirnov (1939,1941) he has
considered;, andD, where

D! = P AsupFay)  Fo(¥)
V2R

D, = P AsupRoly)  F(y)
v2R

The statistic®p; D} andD,, are known as Kolmogorov-Smirnov statistics. They have the advantage
of being distribution free. Thus the same p-values can be used to obtain the signi cance level when
testing it to any continuous distribution.

In search of this property fow2 has introduced a simple modi cation. A modi cation for

Cramner-Von Mises distance is

Zy
W)= 0y (RODF(Fa(y)  Foly) *gdFoy)
which was proposed by Smirnov (1936-1937). All the statistics which can be obtained by warying
as we said are usually refereed to as statistics of €raran Mises type, two of them are as follows.

The Cranér-Von Mises's statistic obtained b2 fory (:) = 1,

Zy
WZ=n L(Fa) Fo(y)) 2 dFo(y)
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and the Anderson-Darling's statistic (1955) foft) = (t(1 t)) 1,

Zy 2
. Z¥ (R R
A= R Ry T

Consideration of different weight functions allows the statistician to put special emphasis on
the detection of particular sets of alternatives. Some people prefer employingicvam Mises
statistics instead of Kolmogorov-Smirnov statistics; it is because Kolmogorov-Smirnov statistics
accounts only for the largest deviation betwég(t) andF(t), while the other one is a weighted
average of all the deviations betwelgift) andF(t). Anyway we rejecHy if in each case the value

of the statistic is large.

3.2 Adaptation of tests coming from the xed-distribution

All the procedures in the last section were based on a distribution obtained from a sample and xed
distribution. A way to adapt this idea for the parametric case is replacing the xed distribution by

F(:;q), that is by a model. Historically it was Pearson who suggested

%2 = é G n pi(&n)) 2
=1 np;j (an)

Wherepj(f]n) denotes the probability undé&i(:;q), thatY; falls into cell j. At these times, Pearson

did not realize that the estimation of parameters changes the asymptotic distribu¥dn lbfwas

Fisher who pointed out that fj, is the maximum likelihood estimatdf2 has an asymptotic?
distribution. He also pointed out that the estimating parameter from the grouped data instead of the
complete data will cause a loss of information resulting in lack of power. Chernoff and Lehmann
(1954) is a good reference for the parametric case. The choice of cells is an important part of the

search for asymptotic distribution of Pearson'’s statistic. Because the distribution of Pearson statistic
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is a consequence of the asymptotic normality of the cell frequencies, then it will be sensitive to
the magnitude of these frequencies. Hence , combining neighboring cells with few observations is
suggested by Cochran (1952).

Adaptation foW2(y ) andD,, are

. Zy . . .
W2(y)=n ¥y(F(y,qn))f(Fn(y) F(Y;Gn)) 2gdF(Y; On)

and
P AL
Dn=" nsupjFn(y) F(y;0n)]
y2R
respectively. Unfortunately in general the nice property exhibitetNBgy ) andD,, of being dis-
tribution free does not carry over to the parametric case. The asymptotic distribution of these two
statistics is due to Darling (1955). He showed that these asymptotic distributions are a function of a

Gaussian process.

3.3 Tests on the basis of Correlation and Regression

Goodness-of- t tests in this subsection focus on the analysis of the probability plot. We consider
F's as a location scale family of distribution functions i.e. given a probability measgrave

will assume thaf 'S is the family of distribution functions obtained froly by location or scale
changes. Assume th# is standardized and suppose tNatYs;:::Y, is an i.i.d. sample whose

common distribution belongs #6'S and has meap and variance? . In fact we want to test that

Ho: F) = Koo )
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V = (vij) be, respectively, the mean vector and the covariance matw.df Hy is true

Y.
Wiy = (I)S Ll; in distributionn = 1;2:::::n

Lack of linearity in this plot suggests that the distributionYpfdoes not belong to the family of
distribution inHy and then we would expect to see some curvature. Checking this linearity is often
done by eye. However, some analytical approaches have been devised to test it. On the other hand

we know that

_ Ak, (% X)?
§= n 1

is a consistent estimator fs? on the other hand
PeLue = Yn

and

&2
are the best linear unbiased estimatopahds. Hence, under the null hypothesf@% should be

a2
near to 1.The Shapiro-Wilk (1965) or W-test statistic is a normalized versiéﬁé@?,

(mV 1Y)?

W= IV I AL, v)2

It is clear thatW, 2 [0;1] and the small value of this statistic would lead to rejection of the null
hypothesis. According to simulation by Shapiro et al.(1968) it seems that the W-test is one of the
most powerful normality tests against a wide range of alternatives. A weakness of the W-test is that
the procedure may be not consistent for testing t to non-normal families of distributions and also

computation of this test requires previous computatiomandV 1.
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The Shapiro-Francia test is based on replacing mtrixby the identity | which de ned as

o (%2
0= A, )2

the computation of which is easier thi#. A further simpli cation of theW? was proposed by

i 3=8);

Weisberg et al (1975) by replacimgby the vectoM = F 1( 1=

i = 1;2;::;;n; andF denotes

the standard Gaussian distribution function. This statistic is easier to comput/fhan

3.4 Tests on the basis of Likelihood Functions

3.4.1 Berk-Jones's statistics

Berk and Jones (1979) have de ned a test statistic on the basis of hypothesized and empirical distri-

bution function in a xed pointy. Then for xedy we have

nFa(y)  Bin(n;F(y))

SURE:(y) Ln(F(y)) _ Ln(Fn(Y)) -
Ln(Fo(Y)) Ln(Fo(y))

# PO org L P00 na my

I'n(y) =

Fo(y) 1 Foly)
by de ning
logl n(y) = nK(Fa(y); Fo(¥))
where
K(Fa(y); Fo(y)) = Fa(y) (log( E(”)g; NH(1 Fa(y) |ogi En)g;

the Berk-Jones's statistics is given by
Ry = supn *logl n(y) = supK(Fa(y); Fo(¥)):
y2R y2R
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We rejectHg for large value oR,,. UnderHg
1 1 L
nR, loglog(n)+ EIogIogIoan) éIog(4p)! W

where
Fw=e %’

Einmahl and McKeague (2003) propose an integral stafigtde ned by

z 1
Th=2 . K(Fa(y); Fo(y)) dFo(y)

Jager et al (2005) introduced a related statistic, the “reversed Berk-Jones statistic” which differs from

the Berk-Jones statistic.

3.4.2 Generalized Linear Models (GLMs) and Deviance

The generalized linear models expresses the means of the response variables as some function of a

linear combination of the explanatory variables
EfYjXg= i (bg+ byXy+ i+ beXy)

where the form of the functiop(:) is known and the parameters of the moldgilb,;:::; bk are not
known. If the functionj (:) is the identity function an has the normal distribution this model is
the simple linear model.

An issue is to evaluate the relevance of our model for our data and how well it ts the data (gof).
The strategy is nding a simple model but with a good t (the principle of parsimony). GLMs,
McCullagh and Nelder (1989), provide a fairly simple, but widely useful extension of the usual

Normal linear model. Start with the standard linear model meeting the Gauss-Markov conditions
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with p= k+ 1

Y = Xb + e
MY (mppy I

E(Y)= g = Xb
nmny MDD (ppy

X: Matrix of observed data values.

Xb: Linear structure vector.

e. Errorterms.

Y: A variable which is distributed as i.i.d normal random with megand constant varianc.
Generalization

We generalize this with a new “linear predictor” based on the mean of the outcome variable Y which

is no longer required to be normally distributed or even continuous.

x(W= h = Xb
mny (D (ppl

wherex(:) be an invertible, smooth function of the mean vegter E(Y).

The effect of the explanatory variables is now expressed in the model only through the link from
the linear structurexb, to the linear predictoh = x(|), controlled by the form of the link function,
X(:). This link function connects the linear predictor to the mean of the outcome variable not directly
to the expression of the outcome variable itself, so the outcome variable can now take on a variety
of non-normal forms. The link function connects the stochastic component describes some response
variable from a wide variety of forms to all of the standard normal theory supporting the linear

systematic component through the mean function
X(W) = h=Xb
x Hx(W)= x *(h)= x (Xb)= p= E(Y)
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In general we suppose that the stochastic component Y is distributed according to a member of

exponential family with meap as follows

(yai  b(ay))
J =W

a(y;qisj ) = expf c(y:j )9

where the weighty; is a known constant arjd> 0 is a scale parameter (often it is considered as a
nuisance parameter). The stochastic and systematic components are linked by a furctidmiobf

is taken from the inverse the of the canonical lib{g): Givenb the functionc is determined by the
requirement the integrates to one. The GLMs are free of the assumption that the residuals have
mean zero and constant variance, but there are more complex stochastic structures. We may consider
the residual as

R=Y x (Xb)

but this does not provide the nice distribution theory we get from the standard linear model.
Deviance
The deviance function is a residual function for generalized linear models. This is built in a similar
fashion as the likelihood ratio statistics, comparing the log-likelihood from a proposed model speci-
cation to the maximum log-likelihood possible through the saturated (full or maximal) model. The
saturated model is loosely de ned as the model where the number of parameters equals the number
of data points. The resulting difference is multiplied by two and called the summed deviance. In fact
in saturated model there is basically one parameter per observation then we can think of this as the
most general model possible with the maximum number of parameters that can be estimated.
The deviance assesses the goodness of t for the model by looking at the difference between
two log-likelihood functions. The resulting difference is multiplied by two and called the summed

Deviance. The goodness of tintuition is derived from the idea that this sum constitutes the summed
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contrast of individual likelihood contributions with the native data contributions to the saturated
model. As we say the point here is to compare the log-likelihood for the proposed (current) model

yigi  b(a) -
f=— + c(Vis
T w (vi:i )9

. g
(@i jy)= a
1=

to the same log-likelihood function with identical data and the same link function, expect that it now

with n coef cients for then data points, i.e. the saturated model log-likelihood function

g b(a)

.. & Vi .
I(a:jjy)= af— +c(yi;j )o:
i=1

j=w
The latter is the highest possible value for the log-likelihood function achievable with the given data,
then

[CHEY) RRICTR)Y)

The deviance function is then given by

D(gy) = 28 0(a;ily) 1(@iiyl= 28 b @) (b(a) b@))G =w) *

i=1 i=1
This statistic under some conditions is asymptoticaﬂyk. The conditions will be discussed for

each type of response data individually. In fact the distribution of the deviance is approximately

2

Cn k;n’

wheren is the non-centrality parameter. When this are normal and the link is identity
function and the variance is known the deviance has a eadistribution. Otherwise we will
consider the ratio of mean deviances, which does not involve the scale parameter in the exponential
dispersion family. In general, we use the deviance in goodness-of- t tests for Poisson and Binomial
GLMs where we can calculate the deviance from the data and there is no unknown parameter. On the
other hand it is noticeable that sometimes the deviance is not informative. For example for Bernoulli

observations the Deviance depends on the suf cient statistics not the individual observation and so

is, of little use for measuring goodness of t.
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Dependence of degree of freedormtavhen we talk about asymptotic density seems irrelevant.

In fact when we consideg as a known vector with xed length

D(aiy)= 2a [(aisijy) Naiiiyl= 28 (e @) (b(a) b(a)IG=w) * cf

i=1 i=1
if E(fq) = gand under mild regularity conditions. The proof is given in any statistical standard book
as example Lehmann (1986), but this proof does not generally hold for saturated models because the
length ofq is not xed and grows with sample size. Clearly a small deviance implies a good t.

The deviance function depends jorthen simply the unscaled deviance function is de ned as

jD(q;X)zzé.lWi[Yi(Qi a) (b(ai) b(ap]

Example 3.1 (Normal (linear) model)

If Y is distributed according the normal model we have

2) 1=2

ov(V;q;j ) =(2ps exgf (y W?=2s%g=

1
expf (yu 1=2)=s? S(y*=s*+ log(2ps?)g
Now for Y1; Yo; ::2: Y, from theN (pi; s2) wherep's are distinct we have; = 1, j = s2, and
ai)=j; bla)=a?=2 cyj)= 3fy*=s?+log(2ps?)g)

for asample withtailn g =y, and 61; ={ then,

o )2
g2

Qo5

D(y;p =

1

the residual sum of squares. This deviance is a function of unknown parafeter
The unscaled deviance function is given 93D (y; ) = &{L,(yi ) which is residual sum of

squares for the proposed (current) model.
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Example 3.2 (Logistic model)

Suppose;  Bin(n;; pi). Then

Py &
logQav(yi;pi)= afylogpi+(n yi)log(l pi)g
i=1 i=1
and
. OL10v(¥ivi) g yi n Vi
D(y;) = 2log =220 = 5 8 fyilog—2—+(n  yj)lo L
-9 9T ov(yp) & %5 (- wlogy npi

If we perform a logistic regressiofy, isa 0 1 outcome then fon; = 1, Olog0= 1 andj = 1, we

have

n
D(y;= 2afylogpi+(1 y)log(l pi)g
i=1
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Chapter 4

Motivation to Model Selection Tests

4.1 Introduction

This chapter is a motivation to the next three chapters, especially to chapters 6 and 7. Model selection
goes through estimating the performance of different models in order to choose the best one. On the
other hand we know that the statistical models are typically merely approximations to reality and so
most often are wrong; however they may be useful. First because a little of knowledge is better than
nothing, second an assumed parametric model may be close to the true unknown model, so that very
little is lost by the assumed model and we can use the rich literature of parametric statistics, and
third in some applications the parameters for an assumed parametric model can often be interpreted
usefully. Then selection and evaluation of a model is an important step. To do it we turn to the
hypothesis testing for model selection or using some criteria.

Sometimes we consider only the paramétas unknown, that is, we have assumed the shape of

the distribution up to the value of an unknown parameter, which allows us to focus on inference for

61



Motivation to Model Selection Tests 4.1. INTRODUCTION

this parameter but in many situations one may not have enough con dence that this is so. It means
that sometimes we need to test the shape of the density for instance. Generally in this direction we
require formulation of null and alternative hypothesis. An ideal hypothesis test is the test which
gives the highest power among all possible tests at the xed level of test (UMP tests). But this type
of tests do not work for non-nested parametric families.

In other situations, a problem concerned withi.d observations is to test whether the observa-
tions have a particular distribution, in other words we want to test whether a particular distribution
ts our data. In some cases these tests are informal. Procedures of this kind are called goodness of
t tests.

There is a controversy about the connection between hypothesis testing and goodness of t tests,
because the alternative hypothesis is not very clear for the goodness of t test. Then one wants to
know how well this method will perform in a decision situation. That is, how do we assess the per-
formance of the test? For answering this essential question we must be able to study the power of the
proposed method against some alternatives. It seems that there is not an overall approach to de ne
the alternative hypothesis in goodness of t tests and it depends on the situation. In model selection
we can consider each of the postulated models as the null model. It leads us to consider the null
likelihood function or a function of it as our criterion to de ne a test. Thus we need to use a metric
to verify the proximity of the postulated model to the true one. This chapter is essentially related
to assumptions, properties of maximum likelihood estimators, maximized likelihood funaticn,

and some metrics which are useful to model selection.
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Motivation to Model Selection Tests 4.2. ASSUMPTIONS

4.2 Assumptions

Suppose that the random varialflés a measurable real valued function from a probability measure
space(W, F ; Py) into (R;Br) where for alll 2 Bg we havep(l )= Py(X2 I) = R| dR as the
probability law ofX, which admits a density ‘L—F,? wheren is as- nite measure or(R;Bgr) and

Py is absolutely continuous w.r.h with regard to the Lebesgue's measureRdnSuppose that is
unknown andvi;Y>;::;; Yy be an i.i.d sample, independentYofwhereY  f(:) and with the same
distribution as Y. We know that the observations can not be in nite but we assume bigabomes
large.

ConsiderR, as a member of the family of all parametric probability measure@\ir ) which
is absolutely continuous w.rh as- nite measure or(R;Bgr) and admits the density(:;b) = %—?
with regard to the Lebesgue's measurerwhich are measurable infor everyb 2 B (compact)
and continuous it for everyy2 R. ThenRy(Y 2 I) = R| o(y;b) dh. Always we can choicé = n
if for all b, B, is absolutely continuous w.r.t. any meashré n it follows B, andP, are absolutely
continuous w.r.t.%(h + n) then we can replacke andn by %(h + n). The notationg(Y;b) asserts
thatg(:;;:)) :W B! R™ thenlogf :W B! R. Here after sometimes we shajz;b) by f,.

If g belongs to a parametric family of densities this family (assumed or postulated family) could
be considered &8 = fg(:;b):R! R*;:b2B R9g=(g°(:))p25: When we consider a parametric
model we assume that the parameter uniquely determines the probability law related to a member of
Gi.e. if we know the parameter then we know the underlying probability law.

Related tof (:) andg(:; b) suppose that the following conditions are satis ed.

(CO) i) f(y) is measurable ity, g(y;b) is measurable in y for eadh2 B, ii) g(:;:) underG are

distinct  is identi able), iii) and alsog(:;:) is continuous irb for eachy 2 R.
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Motivation to Model Selection Tests 4.2. ASSUMPTIONS

(C1)Bis compact.

(C2) i) f(y) andg(y;b), 8y 2 R are greater than zero and § = fy;g(y;b) > Og the common
support ofg(:; b) does not depend dn.

(C3) i) g(y; b) is twice continuously differentiable as a functiontofind also ii)RRlogg(y; b) dyis
twice differentiable under the integral sign with respedbfor ally 2 S,.

(C3)°g(:;b) is three times differentiable with respecttt@nd the third derivative is continuous with
possibility of differentiating under the integral sign.

(C3)°9f b, denotes the true value bfthere exists a positive numbeb-,) and a functiorMp, (y)

such that

3

j%logg(y;b)j Mo,(¥) 8y2 Shiib  bsj< c(bo)

and

Eb?f Mb,)(Y)g < ¥:

(C4) There is a functiod which does not depend dn such thajlogg(y;b)j J(y) 8b2 B and
Ef(J(Y)) < ¥.

If f(:) can be zero then lofy:) can be ¥. Then we consider the extendBdi.e R and assume that
fw2 W: X(w)= ¥gandfw2 W:Y(w)= ¥gboth lie inF and the random variabk¢: W! R

de ned on(W,F ;:) is measurable and hence the log likelihood function is a measurable extended

real valued function.
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4.3 Likelihood Function and

Maximum Likelihood Estimator

Fisher (1912, 1922) introduced the likelihood in the context of estimation via the method of maxi-
mum likelihood. The likelihood is a tool for dealing with the uncertainty due to the limited amount
of information contained in the data. The purpose of the likelihood function is to convey information
about unknown quantities (a parameter or unobserved random values or a mixed of both of them).
The information is incomplete, and the likelihood function will express the degree of incomplete-
ness. Of cially the likelihood function is de ned as below. When a parametric model is available,

we ask what is the best estimate by data at hand. Here the uncertainty is in a way a nuisance.

De nition 4.1 Assuming a statistical model parametrized by a xed and unknvthe likelihood

L(b) is the probability of the observed data z considered as a functitin of

The dataz could include any set of observations. Fisher (1922) noticed that it is the entire likelihood
function that captures all the information contained in the data about a certain parameter not just
its maximizer but in the context of point estimation we are looking for the maximum likelihood
estimator. The likelihood function for an i.i.d. sample with siz@nd with densityf (:) = g(:;b); b2

Bis de ned as
Ju)
Oalyi;b)
i=1

and the log-likelihood function is
3
a logg(yi;b):
i=1
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Our interest is in the weighted or normalized log-likelihood function which is de ned as:

logg(Yi; b):

1
Ni=1

n
o

i
When we write “big Y” the log-likelihood becomes a random function, and every things about it,
including its derivatives, is also random. Each different valub &fB as a speci ed point in log-
likelihood function and its derivatives gives a different random variable. Like every other random
variable, they have probability distributions.

An important aspect of likelihood functions in asymptotic theory is nding a root for this kind

of functions which is consistent for the true valuebotUnder (CO0)i,ii) and (C2)ii) we have:

Pb?f(ﬂ)g(Yi;b?)> (ﬂ)g(Ya;b)g! 1 & nl ¥

i=1 i=1
for any xed b 6 b, whereb, = argmax,g E¢flogg(Y;b)g is the true value of parameter and we

remember that we sd{:) = g(:;:), Lehmann (1983). It is because

0 1¢
a logg(Yi:b2) > — a logg(¥i:b)g =

n n

) g 1
R.,f O a(Yi;b2) > Og(Yi;b)g= F*D?fﬁ

i=1 i=1 i=1 i=1
178
) logg(Yi; bs) < Og

178
P,,f —a logg(Yi;b)
n; i=1

i=1
By the law of large numbers, the left side tends in probability to

g(Yi; b)

Ep.flo
A

the log function is strictly convex then by Jensen's inequality it is less than

g(Yi;b)
logEy.f <0
90l (%isbo) ¢
thus

n n
Rf T & loga(Yib) & loga(Yibs) < 0g! 1 as nt ¥
i=1 i=1
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4.3. LIKELIHOOD FUNCTION AND
Motivation to Model Selection Tests MAXIMUM LIKELIHOOD ESTIMATOR

If we setb = b, + d whered is a positive arbitrary value near to 0, it follows that the likelihood
function has a local maximum bb. By this result, the density of random sample at top@xceeds
that at any other xedb with high probability whem is large. We do not knowb, but we can
determine the vaIuBn of b which maximizes the density of the random sample. If this value exists

and is unique, it is the Maximum Likelihood Estimat{®iLE). Then,

~ pu}
bn = argmax Oav;b)g:
i=1

The MLE has many large sample properties which make it popular and attractive for all researcher.
It is asymptotically consistent, ef cient and unbiased and the estimates themselves are normally
distributed. Generally, a single number is not enough to represent a function. If the log likelihood
is well approximated by a quadratic function, we need at least the location of its maximum and the
curvature at the maximum. When the size of sample gets large these two quantities become more
acceptable.

We usually nd the maximum likelihood estimator as a solution of the score function

n
Nlogg(Y;b) = N § logg(Y;;b) = O;
i=1

denoted b;f)n we have

logg(¥;;bn) = O:

Qo5

N

1

Note that this does not imply th&itd . ; logg(Y;; b7) = 0. Just the opposite. In falsta L ; logg(Y;; b»)
is a random variable and hence doesn't have a constant value. The second derivative of the log-

likelihood is negative, so if de ne

w2 & Tlogg(Y;b)
_ 2 /. —
I(b)= EgfN i§1Iogg(\(.,b)g— Eqf o
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or in other form the information matrix is given by

fllogg(Y;b) Mlogg(Y;b)
b o

J(b) = E4f
then a stronger consistency result lﬁaris
bn !a:s b’?

For almost every sequence of sample wHegElogg(Y; b»)g exists (see White, 1982), the curvature
atBn isl (Bn). Alarge curvature(f)n) is associated with strong peak which indicates less uncertainty
aboutb. The quantityl(f)n)is called the observed Fisher information. An important asymptotic
property of normalized Likelihood function is that according to the weak law of large numbers, for
eachb 2 B we have,

38 1oga(vit)g ” Ef 18 logal¥ib)y ()
The compactness @ con dent that the supremes dm exists and also sypg of a measurable
function is measurable. This property for parameter space is discussed in White (1994). We note
that the compactness of parameter space is not necessary for consistency of MLE but we need to this

condition for (1). Anyway we seB as a compact set because for use of ULLN also we need this

kind of parameter space.

4.3.1 Correctly Speci ed and Mis-Speci ed models

If the data generating densifywas known, then we would know everything. The estimation, infer-

ence and especially the hypothesis testing arise bedaissenknown. Then we postulate a model,

A fundamental assumption in classical hypothesis testing isftls#iongs to a parametric family
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of densities i.e.f 2 G. If so, there exist®,» which impliesf(:) = g(:;b»). In this case we say the
model is correctly (or well) speci ed. On the other handd@ 2 B which impliesf(:) = g(:;b) we
say the model is mis-speci ed. Fortunately as we will see in the next section in this case there exists
abg 2 B which minimizes the discrepancy betweghn) andg(:;:).

When the model is correctly speci ed the statistical inference and specially the asymptotic in-
ference is straightforward; see Wald (1949) for strongly consistendyldt and Cramer (1945)
and Hajek (1970) for asymptotic variance. In the mis-speci ed case it is hard to decide whom to
give credits for the asymptotic behavior MfLE. Huber (1967) proved consistency MiLE under
some regularity conditions. Akaike (1973) recognized it but provided only heuristics. White (1982)

provided an exact proof..

4.4 Metrics on spaces of probability

Metrization of probability measures i.e. de ning a notation of distance is important, since in statistics
one is often concerned about convergence of estimates based on nite samples to the true parameter
which is often a probability measure and a de nition of convergence is the notation of a distance.

Two usual metrics are: Total variation (TV) and Hellinger distance (HD). For the probability

spacgW, F) the TV distance between probability measuPeendQ is de ned as:

Z
. o1t
D™V(PQ) = supjP(E) Q(E)j= 5 jf qdp
E2F 2

and the HD is de ned as:
Z

H(RQ= [T Pakay

wherep is any measure that dominates b&hand Q and f and q are the densities d® and Q

:di,

respectively with respect to measyree. f dli

andg= §2.
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This is easy to see that thé?(P,Q) is independent ofi and alsof andqg. To show it, let
W = Pr+ Qp and de ne:

fi= — and 1= 3“1:

It is clear thaty; dominates botli; andQq, so the derivatives exist. On the other handominate

M. Now
‘P p 2% dpdm | dQdp 2
T Pordu= Sl Sl TTE
[ adu dyg dp dw dp H
7 s___ s __
dP dQ 2
- — du
diy diu

This shows that the invariance of the Hellinger distance to the choice of the dominating measure

All of these measures are known as D-divergences or Ali-Silvey distances which de ned as bellow.

De nition 4.2 De nition Given any continuous convex function:[0;+¥]! R [f ¥g, the D-
R
divergence between f and q is given byfi;q) = Zq(z)D(%): The TV, HD and KL divergence
p

are given by choosing @) = %ju 1j, D(u) = %( u 1)?2and D(u) = ulog(u) respectively.

Itis clear that the Kullback-Leibler discrepancy is a convex function. This convexity could be easily

verify for the nested models.

Example 4.1 (Convexity of KL for Bernoulli distribution)

Consider the Bernoulli moddin(1;p) a member of this family i8in(1; po) wherepg is known.
Then we havgy(Y;p)= p'(1 p)! Y; Y= 0;1: The respective measure for this model is given

by KLfg(:;p);9(:;po)g = polog%+(l po)logll—%0 if we setpp = 0:1;0:2;:::0:9
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True parameter=0.1

2.0
1

KL Discrepancy
1.0

0.0

True parameter=0.4

0.8

KL Discrepancy
0.4
1

0.0

02 04 06 08 10

True parameter=0.7

1.0 15
1

KL Discrepancy
0.5
1

0.0
1

02 04 06 08 10

True parameter=0.2

> wn
g <7
©
Qo
[ o
[T
2
a
oow
< o
o
°© T T T T T
02 04 06 08 10
True parameter=0.5
@
@
g o
g oS
g
=<
3 o]
a
N
2 S
°
© T T T T T
02 04 06 08 1.0
True parameter=0.8
> n
2 <7
©
Q
o o |
%3 -
2
5, ]
< o
e
°© T T T T T
02 04 06 08 1.0

KL Discrepancy KL Discrepancy

KL Discrepancy

0.5 1.0 15

0.0

0.8

0.4

0.0

2.0

1.0

0.0

True parameter=0.3

True parameter=0.6

True parameter=0.9

Figure 8: An example which shows that the convexity of Kulback-Leibler criterion for Bernoulli family and

its minimum which happens ab.
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Example 4.2 (Convexity of KL for Normal distribution)

The KL discrepancy for the Normal model &bl (1;1); p2 Rgis given by%: Forppg= 1

the KL discrepancy shows in Figure 8.

0.5

KL Discrepancy
0.3 0.4
1

0.2
1

0.1

0.0 0.5 1.0 15 2.0

Figure 9: Kullback-Leibler discrepancy for Normal density.

These two examples suggest that in realistic situations when we do not have any knowledge about
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the true density which generates the data we should search for a minimization procedure for the KL

discrepancy. This idea agrees with the distance concept of KL criterion.

4.4.1 Kullback-Leibler Discrepancy (divergence)

An important discrepancy measure in statistics is known as the Kullback-Leibler discrepancy (Kullback-
Leibler distance, although the term "distance” needs to be interpreted because this criterion does not
satisfy some properties of a usual distances). By notation of section 4.4 the Kullback-Leibler dis-
crepancy is de ned as:
Z
KL(Q;P) = flogadp
There is a relation between three distances as follows

D™V(PQJ* 2H3(PQ) KL(Q:P)

It follows that if theKL discrepancy between a sequence of probabilititeg and a xed probability

P goes to zero, then this convergence should happen for Hellinger and total variation sense.

model: G = (g(:;b)) = ( ¢°(:)) 2 The Kullback-Leibler discrepancy (KL criterion) for the data

generating density andg(:;b) 2 Gis de ned as

4

KLfg(:b):if()g=  log— )

a(y;b)

f(y) dy

which is a non-negative quantity. By de nition, the mogé:;b) agrees withf(:) the smaller
KLfg(:;b); f(:)gis. Then the closest member@to the f is g(:; bg) wherebg 2 B is the minimizer
of KLf g(:;b); f(:)g as de ned in 4.3. Under this divergenas;; bp) is the best approximation tb

under modef(G. It is important we notice that when the model is correctly speci ed we have:

bo = b?Z
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Note that according to the weak law of large numbers, for &eZiB we have,

Qo P
a logg(Yi;b)d = Esf

1
Ni=y

178
) logg(Yi;b)g (1)
i=1

A natural estimator oy, Knight (1999), is the minimizekfan of the

KLif(3)if()9= - & log 1o
i=1 3

since it can be written as

1 17

—a logf(¥) —a logg(Yi;b)

Niz1 Ni=1
Bn minimizes the second term. We note that this term is the negative normalized log-likelihood func-
tion, then the minimizer oKLxf g(:;b); f(;)g is simply the maximum likelihood estimator. Hence

we can comparé(:) with g(;; Bn) an estimate ofj(:; bg) the best approximation tb underG.

Now consider a random variable whose distribution comes ftoftine correctly speci ed case).

The Kullback-Leibler divergence is de ned (under (CO)ii) as

a(Y;b2)
o(V;b) &

KLfg(:;b);g(:;b2)g= Ep,flog

As we see, the KL measure the distance of the model from the true density and is not observable
becausg(Y;b,) is unknown. Then an essential question in this case is that how can we use it? This

number is nonnegative because

a(Y;b»)
g(Y;b)

g(Y;b)
a(Y;b?)

g(Y;b)
a(Y;b?)

Ep,flog g= Ep,f log g logEy,f g>0

with equality if and only ifo = bs,.
Now the Kullback-Leibler divergence is connected with maximum likelihood estimation as be-

low.

n /. n /. ~ A~
L 2 10g Q02 - g 0q 0002 ) £ beyigiba)g+ KLEg(:B)ig(:ba)g O
n &by - n &% gvibn)
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Then

~ 19 Yi; b ~ :
0 KLfg(:B):g(:bo)g | nalogggY'_Ef; KLT g(:;bn); 0(::b2)gi
i=1 i»Mn

18 .18 - A

j=a logg(Yi;b2) Ep,flogg(Y;b2)gj+ i-a logg(Yi;bn) Ep,flogg(Y;bn)gj
i= i=1

10 . 1

—a logg(Yi;b2) Ep,flogg(Y;b2)gj+ sup—

i=1 ) b2g N

Sk
[N

n
j A logg(Yi;b)  Ep,flogg(Y;b)gj
=1

>

the rstterm by (1) and the second term by (1) and theoBShtonverge to zero (a.e.) in probability.

Then
KLfg(Y;Bn);g(Y;by)g! 0O as n! ¥
and a.e.
o(Y:bn) |
g(Y;b?)
which implies that
6,4 P b»:

On the other hand assume tHa625 andbg = bg(f) denote the minimizer of thkLf g(:;b); f(:)g:

Now

n e
& logg(Y:bY ** Eiflogg(Y;b)g= Erflogf(Y)g Eiflog— o2

} g
Ni=1 g(Y;b)

then under (CO) i,ii) and (C4)

n
argmax,%é_ logg(Y;; b) P argmaxf E¢flog f(Y)g E¢flog f(Y)

a o(¥;0) %

which means that

S P

bd bo:

In the next section we will talk about consistency of maximum likelihood estimator.
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4.5 Consistency of Maximum Likelihood

Estimator

The mean theorem about the consistency of maximum likelihood estimator is given in theorem 2.2 of
White (1982) which says that under (C0),(C1) and (C2) the maximum likelihood estiﬁpaabnost

surely converges tbg the unique minimizer oKL divergence between data generating density and
postulated model. As we saw if the model is correctly speci ed therf)this consistent for true
parameteib, which is unique. This later result is the classical consistenclbE. Biernacki

(2004), proved that under (C1), (C2), (C3) and this hypothesis that the

maxEqsupij j(Y;b)j < ¥;  BgSupiNj j(V;b)j< ¥ j=1;2
wherej 1(Y;b) = Nlogg(Y;b), andj »(Y;b) is the functionW(Y;b) de ned in theorem B3 for
i ) = log(y), by is consistent foibg iff %é{‘:1W(Y;6n)! P 0. The consistency of MLE, Wald
(1949), is strongly related to choice of the parameter sBade general we say that the parameter
spaceB (an open interval) contains an open interkabf which the true parameter valle is an
interior point. May be we sdB as a nite set. The compactness (closed and bounded) is nearest
property to niteness. It is often said that compactness is the next best thing to niteness, because
the more modern de nition of compact space says that a space is compact if each of its open covers
has a nite sub covers.

Indeed under (CO0)i,ii) and (C2) and nitenessBf by exists, it is unigue and consistent w.p.1.

Under (CO0), (C2)ii), (C3) and the condition which consideas a open interval contain an open

interval L of which the true parameter valle is an interior point, Lehmann (1999), we conclude
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thatN &L, logg(Yi;b) = 0 has a unique root zfs, which is consistent fob-, that is

S P

bH b?i

Which means thefbn is a consistent estimator fbr. As a counterexample of the inconsist&fitE

consider Ferguson's example, see , Lehmann (1998).

Example 4.3

Suppose that

| 1 b iy b
o(y;b) = b21[ Lyt d(b) ! d(b)

Lpy(Y)

whereb 2 B=[ 1;1] d(:) is decreasing and continuous wif0) = 1, 0< d(b) 1 bfor0<

b< 1,andc(b) (b d(b);b+ d(b)): Note thatg(y;b) is continuous irb for all y, andg(y;0) =

(1] ¥y 1(y) is the triangular density, whilg(y; 1) = %1[ 1;17(y) is the uniform density.Since a
continuous function on compact §611] achieves its maximum on the set, and regularity conditions
is satis ed for this example thus BILE exists. Now ifd(b) ! 0 rapidly enough ab! 1 then

bl ¥ 1 for everyb 2 [0; 1] no matter what the true value bf

4.6 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) initially was proposed as an estimate of minus twice the
expected log-likelihood. We notice that the important part of the KL divergenkefilogg(Y;b)g

which has an estimator as

178 ~
—a logg(Yi;bn):
Ni—y
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It can be considered as an estimator of the distance between the true density and the model. Now
the stress is oi, because%é{‘zllogg(Yi;Bn) provides an overestimate and then the maximized
likelihood function has a positive bias as an estimator of the expected log-likelihood. &jnce
corresponds to the empirical distribution, s&y,which introduces the estimator. In fact both of
them depend on the same sample.

Unfortunately wherf 625

logg(Y;; bn)g

1
n 1

n
o

10g9(¥Bn) 9 Eqf -

n
[o]
1 i=

and introduce the bias, according to Konishi and Kitagawa (1996) and Bozdogan(2000) we have,
Z

n ~ ~

bias= E(f = 3 loga(Yibn) _loga(y:B) f(y)dyg= Str(1 *9)+ O(n 2
i=1

where as beforeé is the inverse Fisher information matrix in inner product (Hessian) formJaad

the outer product form of the Fisher information matrix for vedtor

Tlogg(Y;b)

| = Eff ﬂbﬂbo

and

_ e« Tlogg(Y;b) flogg(Y;b)
J= Ef b b0 g
An estimate for these two information matrices on the base of any estit;}aaxmd empirical distri-

bution function is given by

( )

. 1 ¢ fPlogg(Y;b). _ -
| = a4 ————"jb=Db; rs=12:;

n& b b P
and )
~_ 1¢g Tlogg(Y;;b) Tlogg(Yi;b)., _ =~
J= = b=b; rs=12:

ni?.l Tbr bs : P
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If f2G, tr(l )= tr(lp) = p; wherep = dim(B): (The Information Matrix Equivalence Test,

White (1982)). Asymptotically we have:
bias= §+ o(n ?)

which givesbias= ﬁ. Now the criterion based on the bias corrected normalized log-likelihood is

given by

logg(Y;;bn) bias

1
Ni=1

n
o

Akaike (1973) introduced a criterion as

n ~ ~ n ~
AIC= 20 -8 loga(Yiby) biag= 28 logg(Y:bn)+ 2p;
i=1 i=1

or
1 1
—AIC= =
2n n

g oy P
logg(Yi;bn)+ =
=1 n
When there are several competing models, the values of AIC's are computed. The model with
minimum AIC value is chosen as the best model to t the data. Whgats large the xed penalty

term 2p does not change and we expect tﬁat 0. However for niten AICis a way of expressing

the parsimony principle.

4.7 Distribution of Maximum Likelihood

Estimator

Here we review the convergence in distribution of maximum likelihood estimators andiatimlve

a vector. In fact under some regularity conditions

PhRn b2y " N1 Y(by))
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herel 1(b») is the Fisher information from a single observation with true derfity= g(:;b-), and
the regularity conditions ag€0) (C3),(C3)%nd(C3)%°

If f 625 under same regularity conditions as above
p_- L g1 1
n(bn bo) = N(O;1 *(bo)J(bo)l *(bo))

wherel andJ evaluated abg are de ned as before. THe 1(bg)J(bo)l *(bo) is a robust variance,
since it is correct regardless whetHethe true density is correctly speci ed or not. A proof of this
asymptotic distribution is as follow.

Based onYy; Y2;:::; Y, an ii.d. sample we have the likelihood function as @b, g(Yi;b) =

&L ,logg(Yi; b), expanding the normalized derivative of this likelihood function atgutt follows

that
17aL,l0gg(Y;b) _ 1941, l00g(%;b), , 1fPAL;loga(vib)
n b n b b=bo ™ ToT° 0
atf)nwe have
1140, logg(Y;; bn) - }ﬂé{‘zllogg(Yi;b)j .\ }ﬂzéi”:lbgg(yi;b’r)(ﬁ o
n b n b b=bo ™ 1 oTP n Do
or
_ 17&7logg(Y;hb). 19247 ,logg(Y;;b") =
0= = S byt S s (B Do)
wherejb? bj j b byj: Itis clear that
Tlogg(Y;b) .
Eff%glmbo =0
and
flogg(Y;b) . _ _ ¢ Tlogg(Y;b) flogg(Y;b) .
VarfngJb:bo - J(bo)— Eff le ﬂbo b:bo'

Now by the Central Limit Theorem, &t= by we have

1=25 ong(Yi;b)! LN (0:3(bo)):

n
=1 b
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On the other hand

Tlogg(Y;b"), p
1 fb®

Tlogg(Y;;b") .

Eqf T Glb=ho

= | (bo):

Qo>

1174 logg(¥i;b") _ 1
n TofkP - n|

Thus from the Taylor expansion we have

121811 logg(Yi;bo) _  11Plogg(Y;b")p
Tq n  Tbfk°

n n(by  bo)
and by Slutsky's theorem

Phn bo) - N (01 X(bo)d(bo)l (b))

if | is invertible. Now if f 2 G, bg = b» andl (bg) = J(bg)
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Chapter 5

Proposed test for Goodness of Fit
Test:
A test based on empirical likelihood

ratio

5.1 Introduction

The method which we want to discuss in this chapter may be viewed as an application of a goodness

of t measure extended to the likelihood ratio test. When we are in goodness of t test situation we
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have a null hypothesis which is completely clear and an alternative which is completely vague as
Ho:F(y)= Fo(y) 8y2Y

against

Hi:F(y) 8 Ro(y) forsome y2Y

whereFy(:) is a known distribution function. Chapter 3 has introduced some goodness of t test to
this problem. Here we want to introduces an approach which introduce a test statistic using known
likelihood ratio test. This idea is not in favor or against the known goodness of t tests, but is
an approach which helps us to solve a problem with a different method which works for binned
and unbind data. The likelihood ratio approach has an extensive theory which is a guaranty for
this method of test. In fact this idea is based on the Berk-Jones statistics (1979), see, 3.4.1. More

precisely the Berk-Jones statistics could be de ned as a supreme of
8

%Fn(y)(log(ﬁggi))ﬂ 1 Fa(y) log TF if 0 < Fo(y) < Fn(y) < 1

K(Fa(y);Fo(W) = _ o ifO Fa(y) Fo(y) 1

L

This is the Kullback-Leibler discrepancy for two Bernoulli distributions. It is known ki@, (y); Fo(y))

otherwise.

behaves a%w' This last term is half of the Pearson statisticsRglty) which is distributed
FoW(1 Fa(y)

asBin(1; Fy(y)) fora xedy. The theorem 9.1 Knight (1999) shows that when we consider the good-

ness of t test for multinomial distribution, the Pearsof statistic is asymptotically equivalent to

the likelihood ratio statistic. Berk-Jones proposed that we caypaxd construct a test statistic by

likelihood ratio test for goodness of t test problem as above.
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5.2 Our objective

In this chapter we are in search of a goodness of t test for the simple situation Whgjeis

a known distribution function, if not, as a common approach for goodness of t test we have to
estimate the unknown parameter(s) at rst and then apply the test. Parametric case will change our
situation for model selection from testing for a speci ed distribution belong to the model to the

more general situation which is testing for a family of distributions (model). Our idea is as follows,

a likelihood ratio test for each xed which could be between any of twd's. Here we must
emphasis thaf (y) is an unknown distribution function, whereB$z) with xed zis an unknown
parameter. If we separate the null hypothédjs F(y) = Fo(y) 8y2 Y to several null hypotheses
asHg, : F(2 = Fo(2) 8z2 Z we can construct a likelihood ratio for each one of H‘lés for

each xedz and then construct a test for our essential hypothesis testing problem. Fortunately
this concept is known in statistics. The Union-Intersection test (UIT) is our proposal to solve this
problem. As a test statistic we generalized the logic of the likelihood ratio test. In fact we de ned
a weight function asv(z). This weight function permit us to construct different tests. As a simple
choice we considew(z) = C,F,(2) or more complex choice as a complex functionFgfz). For

Cn= n ! we verify the level and ef ciency of our test. If we s€; = n 2 the typel error of our

test is less than typeerror of Berk-Jones's test. After a brief review of UIT, we will construct the
likelihood ratio test statistic by UIT. The level of test and ef ciency for this test will be veri ed. It

seems that our statistic is comparable by Berk-Jones statistic.
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5.3 Union-Intersection Test

The likelihood ratio test (LRT) method is a commonly used method of hypothesis test construction.
Another method, which is appropriate when the null hypothesis is expressed as an intersection, is
the union-intersection test (UIT). In classical statistics we may write
\
Ho:q2 Qg
®RG
whereGis an arbitrary index set that may be nite or in nite, depending on the problem. By this

notation we have

[
Hi:q2 Qf
®G

Suppose that for each of the testirg, : q 2 Qg against the alternative hypothebigy: q 2 Qg We
know that the rejection region for the testldggis fy : To(y) 2 Ryg whereTy(:) is the test statistic.
Thus if any of theHyyg is rejected, thetdy must also be rejected, it offers a rejection region for UIT

as

[
fy:Tg(y) 2 Rg
®G

As a simple example for UIT we consider a known hypothesis test in elementary statistics.

Example 5.1

LetYi;Yo; 22 Yn be ai.i.d. random sample froM (p; s2), wherep ands? are unknown parameters.
We want to test thaltly : = Lo againstH; : ©86 o, wherepy is a speci ed number. As a UIT we

can write

Ho:fpip Wog\f wip pog
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This null hypothesis could be write as intersection of two new null hypothedels gger: f 1 1

Hog andHou pper: fH: 1 Hog. Now as the classical approach we will test
HoLower: 1 Mo against Hiiower: > Mo
with rejection regionﬁ'—égzéy tLower and
Houpper: 1 Mo against Hiypper: H< Ho
with rejection regionm—éééy tupper- Then the rejection region of the UIT of
Ho:fp:ip pog\f pip pog

against
Hi:fpiw wog[f wip pog

—nan /.
for tLower= tupper Will be express ajsm—asi;éé—poj tLower Which is the two sided test.

5.4 Proposed test based on empirical

likelihood ratio

setFy(:) as a known distribution function. The of cial goodness of t test is contain testing
Ho:F(y)= Fo(y) 8y2Y
against

Hi:F(y) 8 Fo(y) forsome y2Y
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A key for proposing a goodness of t test is that the distribution functdqa) for a xed zis an

unknown parameter. It reduces the goodness of ttestto a LRT test as
Hoz:F(2= Ro(2) 8z2Z

against

Hi;:F(2) 6 Fy(2) forsome z2 Z:

Our idea is to rewrite this hypothesis testing as the UIT, thus we have

\
Ho . HoZ

2z
against

Hl . le
7

For eactz we can de ne a new random variable, see, Berk and Jones (1978), thus we have
8

%1 ifyY, z
Y= 1Yy zg=

70 ifYi>z
fori=1;2;::;;n
Now we have a parametric test with a binary variable with valugidg", i.e.

Yz Bin(1;F(2)

and

én.Yiz: nFa(2)  Bin(n;F(2):
i=1

The likelihood function is given by

L(F@)= L(F@:Ya) =(F@)""@@1 F(z)"* @
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The likelihood ratio test is given by

SUR:(» Ln(F(2)

2= L "@

- Ln(Fn(2)
— | F(@=Fo(29
@=L Co(Fo(2)

for the large value off ,(2) we reject the null hypothesis. The log likelihood function is given by

Fn(2)
Fo(2)

1 R(2

logl n(2) = logL @70 = nR,(2) log( 1 R(?

)+ n(1 Fn(2) log(

):

The propose test statistics for testidg againstH; is

V4
T = . logL Fn(Z)=Fo(Z)d(W(Z))

The reasonable choose w(z) will give us a reasonable test statistic. A choice couldnljg) =

CnFn(2), and a simple one is given I, = n ' which de nes our statistics as

Z
_ Fn(2) 1 (2 _
o= IR@I0A(Z )+ (1 F2) log(;— 3 d(Fa(2) =
1 8 jogLmon=Rwm
Nyi2p
whereA; = [Y;;Yix 1] or A =[Y;); Y+ 1]: By this we have
_1g : Fn(YD) : 1 Fa(Y)
To= A FIR(NDI0g(E )+ Nl Fi() ool —p (g
or
1g¢ Fn(Y()) 1 FR(Yay)
To= o A fR() gl D+ (L FlYo)) log(g—grg g

whereY(; is the ith ordered statistics and also they are the discontinuity poifg 9fwhenz 2 A;.

It is common used in statistics which consider

Fa(Yey) = T oer 1

e2 [0;1]:
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A test based on empirical likelihood ratio LIKELIHOOD RATIO

5.4.1 Level of test

Two important aspects of any test is the level and the power of test. The rejection region for the UIT
is given by

f|Og|_Hw(Z):Fo(Z) 2 Rg
b2¥4

which de nes the level of UIT as

[ 5 .
ayT =Py,  flogLm@@ ¢ = PR, supogl"@F@ ¢ :
27 27

Now we have

n
Th }é sup(logL ?n(@)=Fo(@)) = sug(logL F@=Fo(?)
i=1 & z

then

Pi(Th © Py, (suplogL™@¥0@)  ¢) = ayr:
4

5.4.2 Comparison with Berk-Jones's test

ForC, = n 2the level of our test is less than level of Berk-Jones's test. It is because

}}én‘ sup(logL f(z)=Fo(2)) sup(} logL Fi@=Fo(?)
NNz 3z »7 N

5.4.3 Bahadur ef ciency of proposed test

We de ned the test statistic as

To= L & logL F@=Fo()
nEZAa

then
1 11, _
PHo(ﬁTn t) = R He,f ﬁ(ﬁ 4 logL "(@=0@) g
z

11 -
Fu(2)= _
Pcaa! - -N(maxiog Lm@@)y  tg=
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Fa(2=Fo(2) 1 Bin(1; F (zmay)
Proaa! Iongmax tg A Py - o= —w 9 ()
o o romad 0 S T Bin(L Fo(Zma)

g Bin(1; F (Zmax)
J Hizod ma>:) Phozna fexpal m

o g Bin(1; F(Zmax)
Hij max B fex log——"2
JP) ey Hom pa 9 Bin(Z; Fo(zma)

exp(nt)g =

exp(nt)g

. Bin(1;F (zmax)
o exPaiL 1100 gith Gy
JHl_l max EH

P2 By, exp(nt)

g (by Markov inequality)=

- 2 Bin(L;F(zmay) . _
JH]_] Fr(nzmaa)fa exp( nt)EHOzmaxfgm )

Bin(1; F (zmax)
Bin(1; Fo(Zmax)

jHaj maxexp( n)f & Bin(L; Fo(zmad) @" § Hyjexp( o)
Zma

jHaj t)f E
j uFr(nz%exp( nt)f By,

then

2logjH;j

2 1
ZlogPy (=T,
n Og Ho(n n t) 2t n

we know that

1=nlogL "(@=Fo(?) = (IogLHw(Z) logL Fo@) =

%(IogLF(Z) logL @) + }(IogLF“(Z) logL™@)  (iff) F(2) 6 F(2) (under Hiy)

17 o Bin(LF(2) ,

Bin(1; F(2)
n & 9Bin(L (@)

= Fn(2 F@y P
(I gL (logL™2) EHlZIOgBiI’I(l;F()(Z))

+(0)c?=

KLfBin(1;F(2);Bin(1;F(2)g a.s under Hy:

Thus

% & logL P@=@ P B, KI(Bin(1; F(Y)); Bin(1; Fo(Y)))

z

2100, (T 1) inf By KL(BIN(L;F(V): Bin(L; Fo(Y)

Bahadur (1967) showed that the other part of inequality for all of tests is right, then
2 1 . . .
~loghy, (DT 1) = 2||_r|]fEH 1KL(BIn(1;F(Y)); Bin(1; Fo(Y))) :
0
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(*) Because

11 F@=Fo(d 1g  Bin(1F(znay)
=logLgms sup=Qq logo————"=:
n oo F2Hrini=1 Bin(1; Fo(Zmax)
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Chapter 6

Proposed Model selection tests based

on likelihood and AIC

6.1 Introduction

The major goal of this chapter is to introduce and develop a methodology of model selection. This
chapter in theory and method is strongly related to the next chapter. In real situation for any inference

about a data set at hand we are interested in selecting a model among a lot of parametric models. In

for someb 2 B: In simple case we sdd = By[ B; for two disjoint setsBy andB;. We would
like to decide ifb 2 By or b 2 By, where usuallydim(Bg) < dim(B1): To use the likelihood for
hypothesis testing, we may use the standard ratio as the supreme of the likelihood under alternative

hypothesis divided on the likelihood under null hypothesis and rejecting the null hypothesis for large
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value of this ratio. On the other hand we may use this principle for testing between two elements of
two different families. The other approach to make a decision as above is likelihood-based interval
inference as the dual of the hypothesis testing. Fortunately both of them work under asymptotic
theory for likelihood function.

The restriction by this approach is clear. This approach works very well for nested models, but
in other cases it does not work. Our idea is somewhat different, not in principle, but in applying the
likelihood function. In fact when we have a data set all hypotheses about the distribution of data are
null hypotheses.

We want to report the likelihood under the null hypothesis as the normalized likelihood under
indicated parameters in the null hypothesis. We can reject the null hypothesis if its likelihood is too
small, then we conclude that there are other hypotheses which are better than our hypothesis. We
will use both of hypothesis testing and con dence interval with other interpretation. As we know the
hypothesis testing is an absolute discrimination. We may consider the relative discrimina®&n as
AIC andBIC depending on the problem. This is a fact that this criteria always choose a model. If
two competing models are very bad, we would like to be able to reject both of them. The con dence
interval inference about the model selection criterion is our idea. Because by the con dence intervals
there is an opportunity to select a set of good choice. This interval will be constructed for expectation
of the log-likelihood. This con dence interval let us take in order the models. This approach has an
interpretation for a con dence interval for Kullback-Leibler discrepancy. The best model will be a
model with greatest lower and upper limit for expectation. A model with this kind of upper and lower
limits is a model with minimum Kullback-Leibler discrepancy. In the real situation, when we have
n observations at hand, before collecting this data we consider some hypotheses like independence

and identically distribution about data, the rst question is about the true distribution of this sample.
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This question is on entire population. This question arises because this is the rst step to decision
making. This is a question in model selection area. We can assume whether the true density belongs
to the postulated model or not. Whether true model belongs to the speci ed parametric model,
G, or not there is a member of this family g&;b) which is equal or nearly equal t&(:). The
dif culty exists yet. To search this member of parametric family we estimate its parameters by
the maximum likelihood approach. Now we have a member in the famig(yaﬁn). This is the
best choice in the model, based on the data. Now an estimati6(t)ofs g(y; Bn). If our choice
about family was not very bad the likelihood statistic under observed data must be large. Then the
normalized maximized (log)likelihood seems to be a good choice as a criterion to model selection.
Akaike (1973) has said, “assume that the true distribution does not belong to the speci ed parametric
family”, and introduced his criterion. It means that the normalized maximized log-likelihood for
observed data does not converge to the expected log-likelihood, where expectation is taken under
true density, i.e there is a bias. This last result guides us todE®d We must emphasize that the
hypothesis testing is an absolute discrimination, andAtiizis a relative discrimination. Then the
classical hypothesis testing is a method and a criteriomdlkewill answer a different question than
hypothesis testing. Anyway we can consider the normalized maximum log-likelihoodl &rats the
random variables which has a distribution. Before anything we need to formulate the null hypothesis
and some comments on our approach.

The aim of this formulation is to decide whether or fidtloes contain the true densit If the

statistical model is correctly speci ed, we have,

f(y) = g(y;b2) 8y2 R andsome b,2B
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then the question which arises could be formulated as a null hypothesis
Ho: f(y) = g(y;b2) 8y2 R andsome b,2B:

In general,b, is an unknown parameter, in this case a natural way to tesfjnwill be to nd

an estimator fob which is near td, and then to build a procedure for testing. In a simple case
b, could be known. Whet, is unknown the measurability af(y;b) in y for everyb 2 B and
continuity ofg(y;b) in b 2 B for everyy 2 R ensures us that for all n there exists a measurable
likelihood estimatol MLE): When the true distribution belongs € for someb- 2 B (underHo),
theMLE is consistent fob, under Wald (1949) conditions, see, 4.5 . Now a question is what would
happen to the maximum likelihood estimator when the model under consideration is not correct
(the model is misspeci ed)? As we saw in 4.5 it is clear that the maximum likelihood estimator
would not converge tb-, because it does not longer makes sense. When a statistical model is mis-
speci ed, as we saw in 4.4 the maximum likelihood estimator converges to the miniginéithe
Kullback- Leibler criterion, instead of the parameter which we consider under null hypothesis (the
true parameter). Then any difference between the postulated gilod®l) and the true density(:)

is error due to model misspeci cation.

The theorems 2.1, 2.2, and 3.2 of White (1982) and in more detail in White (1994) are good
references for study the asymptotic distribution behavio? E(Bn bp): To evaluateHy as our
immediate goal, we note that%fé L, logg(Yi; b7) has a large value we will conclude that the postu-
lated model in some sense is near to the true distribution. But in realistic lzaseanknown, thus
we are going to testingly by a reasonable test statistic which converges to a constant function of
2aM,logg(Yi;bo).

When we evaluate the likelihood function at its maximizer we can say that the smaller the likeli-
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hood, the worse the goodness of t. A problem for this kind of ts is that because of transformation
properties of likelihood functions w.r.t. change of variable, in general it is not invariant as a goodness
of ttest. By de nition of Hy as above, we can considel; : f 62G as the alternative hypothesis,
which shows that there is w2 B which permits us to considdi(x) = g(y;b). It is clear that this

type of alternative is completely vague.

In the most general way we have
8

%Ho: f(y)= g(y;b;) 8y2R and some b,2B

-§ Hi: f(y)= o(y) with g(:) 6 g(:;2)

In other words we want to test the postulated density against different shapes. It is clear that the
alternative hypothesis like that is unuseful. In this chapter we consider only the hypothesis like the

goodness of ttestas
8

EHO: f(y)= g(y;b;) 8y2R and some b,2B

.g Hi: f(y) 6 g(y;b») foratleasta y2 R
To evaluate the above hypothesis problem bechdse unknown we estimate it by maximum
likelihood approach and de ne the normalized maximized likelihood function as the test statistic.
We verify the asymptotic distribution of this statistic where its expectation is consider under dif-
ferent situation. The normalized log-likelihood minus its expectation helps us solving the invariant
problem under some kind of transformation. This statistic is a part of the AIC criterion, then our
theorems in this chapter, asymptotically are valid about AIC. We begin with a simple case when the
b- the parameters involved in the postulated density are known. In this case the asymptotic distribu-

tion of our statistic follows by simple application of the Central limit theorem. It helps us to verify
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whether the data at hand follow a known density. A normal example is considered and the power of
the test is studied by simulation. The result of the simulation shows that our test has a reasonable
power although its power is less than the Kolmogorov-Smirnov test. But | think that this is not a
disagreement, because the model selection involves a trade-off between simplicity and t. | want
emphasize that in the literature there is no method that is better than all the others under all condi-
tions; on the other hand for any two methods, there are circumstances in which one of them is better
than the other one. It means that every method has a some risk even in well behaved situations. The
important things is that a method must have a reasonable result.

The other part in this chapter is concerned with the realistic situation when we want to know
whether the true density belongs to a parametric family with unknown parameters. Our approach
to point estimation is again the maximum likelihood method. Here we assume that for the param-
eters under study the maximum likelihood estimator exists and it is unique. Biernacki (2004) has
made a test which compares the log-likelihood evaluatédomte of the relative maxima of the log-
likelihood function and its expected value, which is calculated asisfthe true parameter. In fact
he proposed a test for testing whether the maximum of his function is a global maximum. On the
other hand he detected if a given solution to likelihood equation is consistent.

To searching the asymptotic distribution of our statistic we consider three situatidaslémg(Y; b)g
askyp,flogg(Y;b-)g, Eﬁnf logg(Y; Bn)g andEp,flogg(Y; Bn)g: The second expectation is the esti-
mator for the rst one and the third one is related to risk of estimation when the true density belongs
to theG and also is the relevant part of the Kullback-Leibler criterion. On the other hand the rst
and third one are the limiting values for our statistic the normalized maximized likelihood in some
sense and the difference of the our statistic from the second one converges to zero. For each situation

we established a theorem which each one shows that the standard value of normalized maximized
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likelihood function asymptotically is distributed according to the normal distribution with mean zero
and certain variance. According to Biernacki (2004) we talk about the variance estimation. For each
theorem we bring an example to show that it works. We verify our theorem under alternative hy-
pothesis. We de ne the power of test and showed that our test is consistent. It is shown that our
statistics minus its expected normalized loglikelihood urigess invariant under orthogonal linear
transformation. Our focus in this chapter is on theorem 6.5. This theorem admits us to propose a
new method to Multiple Regression model selection. The simulation study shows that this theorem

has a good result. The result is given in appendix A.

6.2 Known parameters case

In the rst step we consider an i.i.d. random sample of size n and def§fy We want to test
whether the parametric densityy; b») whereb, is known, is well-speci ed. In fact this test is a
goodness of ttest. For doing it we need to evaluate the distribution of the test statistic.

In Theorem 1 we will nd the asymptotic density of this statistic. This approach to testing for model
selection has the advantage of simplicity. A simulation study to evaluate the performance of our

statistic is done and we compare it with the Kolmogorov-Smirnov statistic.

exists, andEp,f (logg(Y;b-))2g< ¥, then

n
n 2§ [logg(Yi;bs) Es,flogg(¥i:bs)g) = N (0;Varp,flogg(Y;bs)g)
i=1
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Proof : The proof is a direct usage of central limit theorem. We note that

n
Eu,f + & 109(Y;br)g = Ey,floga(Yib-)g
1

and
10 1
Vary,f - a logg(¥;;bz)g= —Var,flogg(Y;b2)g
i=1
now by CLT
n
122 & llogg(Y;;b?)  Ep,floga(Yi;bs)gl = N (0;V ary,flogg(Y; b))
i=1

Example 6.1

i.i.d. random sample with normal density and parameter vectbs ag [;S3), whereb- is given,

it means that under null hypotheds N (i»;s%). Then

A = Y,
o(Ya; 15 Yoi b2) = Q oYz b2) = (2psf) "Pexpf a( Rk
i=1
by taking logarithm we have
n ]
& logg(Y;;bo) = glog(zps%) 7a(Y “”) b %é Yty
i=1 21 4 So

whereb= 1log2ps3. We know that
o Yi
Xol¥) = a( By ek
ThusEy,f Xa(Y)g= nandV ar,,f Xs(Y)g= 2n: Now by straight application of CLT we have:

n 172 (;) n)! L N (0:1)
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Now as an application of Theorem 6H,,flogg(Y;b2)g= % log 2ps(2) 1=2 andV arp,flogg(Y;b-)g=

% which gives us the same result as above

n2alib (M’ b3l n P X)L oy .
1 - pé ! N(07l)

Nl |

By symmetry of standard normal distribution the straight CLT and our theorem are the same.
Also

Ta(Y;bo) = %

9 Ty 1, .
: logg(Yi;b2) = b %Xn(Y)-

i=1

In consequence, weighted log-likelihood function has a biadedistribution with expectation and
variance as follows

EvTib)g=b

and

Var,(T(Vibg= -

The distribution function off, is given by,

1 z 2n(b t) n

Y: = Y = - 2 ! n=2
P(TfY;bog t)= PXa(Y)> 2n(b 1)) = 1 G272 o X3 "&2dyx,  b>t

which is the survival function for a? distribution. The integral is an incomplete gamma function.
We rejectHg if

Ta(Y;bo) <t

then the test function is given by

8
§1 if X(Y) > C
f(Y) =

E

20 ifX(Y)<C
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whereC = 2n(b t): The level of test is,
a= By, (f ()= Pyy(Xa(Y) > C)
whereC = cg;n. The power of the test is given by

oM = Ep, (F (V) = Py, (Xa(Y) > c2.)

Power Simulation:

statisticdL ;(Yi  Ho)? has the non-centraf distribution with n degrees of freedom an@r,  1o)?

as its non-centrality parameter. By this facsgt= 1 we have;
Xa(Y) cA(mn(ke  Ho)?):

For power computation we use the software “R”. We compare the power of our test to the power
of the Kolmogorov-Smirnov test. We consider the data generating density Bs(fh4); each time
we generate = 5;30; 50 observations of this density.

The size of the simulation im= 10000. We want to test whether or gt N ((0:1)t;1); i=
1;2;::;n and t= 1;2;::;30 (as the alternative hypothesis) We set the pre-assigned levels as
a = 0:2;0:1;0:05: The result of the simulation is given in Tables 1.4-3.4 and Figure 9nFob at
any level two tests are nearly equivalent. &t 30 andn = 50 the power of Kolmogorov-Smirnov
test is better than our test. For large valug@fl)t i.e. when we are far from of true density the
two tests have almost the same power. As we see the Kolmogorov-Smirnov is more powerful than
our test. But we emphasize that our approach has a reasonable power and on the other hand the
likelihood function is a simple function which any recearcher know it. When we are one unit far

from the true mean the power is about one.
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Table 6.1- Power comparison of the Kolmogorow8aov's test (K-S)
and proposed test (LL) basetll@iihood function for n=5

Normal Mean | & =02 | a=o01 | a=005 |

| K | LL | KS | LL | K-S | LL |

0.1 | 0.2077 0.2050 0.1087 0.1034 0.05570522|
0.2 | 0.2279 0.2200 0.1315 0.1138 0.0656 0.0588
0.3 | 0.2718 0.2500 0.1595 0.1317 0.087 0.0705
0.4 | 0.3269 0.279¢ 0.1951 0.15f2 0.1191 0.0880
0.5 | 0.3971 0.3245 0.2571 0.1920 0.1594 0.1124
0.6 | 0.4623 0.3778 0.3145 0.2356 0.2176 0.1447
0.7 | 0.5354 0.4385 0.3892 0.2882 0.2643 0.1857
0.8 | 0.6129 0.5047 0.4614 0.3492 0.3339 0.2360
0.9 | 0.6856 0.5738 0.5413 0.4172 0.4076 0.2953
1.0 | 0.7425 0.6430 0.6125 0.4900 0.4819 0.3627
1.1 | 0.8051 0.7096 0.6822 0.5650 0.5525 0.41363
1.2 | 0.8538 0.7710 0.7567 0.6392 0.6282 0.5137
1.3 | 0.8957 08252 0.8054 0.7096 0.6941 0.5917
1.4 | 0.9243 0.8711 0.8574 0.7786 0.7659 0.6671
1.5 | 0.9446 0.9083 0.8949 0.8293 0.8056 0.7370
1.6 | 0.9694 0.9372 0.9273 0.8758 0.8544 0.7990
1.7 | 0.9790 0.9585 0.9455 0.9128 0.8901 0.8517
1.8 | 0.9879 0.9737 0.9644 0.9411 0.9249 0.8945
1.9 | 0.9910 0.9840 0.9770 0.96[.8 0.9495 0.9277
2.0 | 0.9951] 0.9907 0.9853 0.9761 0.9667 0.9523
2.1 | 0.9969 0.9948 0.9921 0.9857 0.9791 0.9698
2.2 | 0.9984 0.9972 0.9952 0.9918 0.9850 0.9817
2.3 | 0.9995 0.9986 0.9972 0.9955 0.9908 0.9393
2.4 | 0.9997 0.9992 0.9980 0.9976 0.9955 0.9940
2.5 | 0.9998 0.9997 0.9995 0.9988 0.9959 0.9968
2.6 | 0.9998 0.999¢ 0.9999 0.9994 0.9980 0.9984
2.7 | 0.9999 0.999¢ 0.9997 0.9997 0.9991 0.9992
2.8 | 1.0000 1.0000 1.0000 1.0000 0.9993 0.9996
2.9 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
3.0 | 1.0000 1.000¢ 1.0000 1.0000 1.0000 1.0000
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Table 6.2- Power comparison of the KolmogoBmirnov's test (K-S)

and proposed test (LL) basedikelihood function for n=30.

Normal Mean|  a =02 | a=01 | a=005 |

| Ks | LL | Ks | LL | Ks | L |

0.1 | 0.2224 0.2117 0.1254 0.1076 0.0666054% |
0.2 | 0.3561 0.2478 0.2261 0.1282 0.1397 0.0702
0.3 | 0.5420 0.3118 0.3849 0.1785 0.2655 0.1012
0.4 | 0.7116 0.4034 0.5717 0.25P4 0.4495 0.15469
0.5 | 0.8512 0.5202 0.7510 0.3574 0.6190 0.2391
0.6 | 0.9361] 0.649% 0.8715 0.4806 0.7846 0.3576
0.7 | 0.9780 0.7727 0.9481 0.6343 0.9012 0.5035
0.8 | 0.9943 0.8720 0.9813 0.7693 0.9573 0.6577
0.9 | 0.9982 0.9387 0.9950 0.8748 0.9874 0.7945
1.0 | 0.9997 0.9755 0.9993 0.9427 0.9970 0.8951
1.1 | 1.0000 0.9920 1.0000 0.9783 0.9993 0.9553
1.2 | 1.0000 0.9978 1.000 0.9983 0.9998 0.9844
1.3 | 1.0000 1.0000 1.0000 0.9983 1.0000 0.9956
1.4 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6.3- Power comparison of the Kolmogorov4®mi's test (K-S)

and proposed test (LL) basedil@iihood function for n=50

Normal a=02 a=01 a =005
Mean
| Ks | LL | KSs | L | Ks | L |

0.1 | 0.2843 0.2150 0.1649 0.1097 0.0846 53R0|
0.2 | 0.4970 0.2620 0.3298 0.14019 0.2071 0.0763
0.3 | 0.7151 0.3461 0.57730 0.2048 0.4388 0.1193
0.4 | 0.8891] 0.4684 0.7960 0.3079 0.6570 0.1975
0.5 | 0.9674 0.6172 0.9236  0.4531 0.8483 0.3222
0.6 | 0.9934 0.7657 0.9824 0.6236 0.9502 0.4905
0.7 | 0.9994 0.8832 0.9968 0.7843 0.9884 0.6745
0.8 | 0.9998 0.9544 0.9993 0.9014 0.9980 0.8313
0.9 | 1.0000 0.9865 0.9999 0.9655 0.9999 0.9321
1.0 | 1.0000 0.9971 1.0000 0.9910 1.0000 0.9800
1.1 | 1.0000 1.0000 1.0000 0.9983 1.0000 0.9960
1.2 | 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
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Figure 10: Power comparison of Kolmogorov-Smirnov test and normalized log-likelihood test.
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Proposed Model selection tests based on likelihood and AIC

Example 6.2

Supposér; Yo; i
nential density is a good tt&? Then

Yy is an i.i.d.sample with unknown density:) we want to test whether the expo-

Ho: f(y) = g(y;1 2):

with
. _ ] 14 1,0
gy;l2)=1,e 2
we have:
n 2 n 4
L8 logg(vil )= logl, =1t
n& | -
It is known that
J
ayYy danmlo-)
i=1
by CLT,
on 4
n l:Z(aFT]-YI |9)I L N (O,l '2))
now we have
19 =1 Y
= 8 logg(¥i;l )= logl, 2T
n | -
then
1o /.
nalalogg(tils) (logle D)L oy

Sk |

On the other hand by Theorem 6.1, for 1;2;:::;n, we have,

E ,flogg(Y;l 2)g= logl-» 1

1

and
“Var .flo (YI )
- I 2 galyi;1 2)g= —
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which gives the same asymptotic density for normalized log-likelihood function as above.

4

17 1 nl o(t+logl »)

X e 7dx,  t<  loglo

WhereX, = &iL, Y, this distribution is the survival function for a gamma distribution. Again we can

consider the integral as an incomplete gamma function. In this case

8

El if 12 logg(Y;;1 ) < t
f(Y)=

2

f
>0 if1&L,logg(Yi;l7) > t

now

a= Ey,(f(Y)) = Py, (%a(Y) > nlo(t+ logl 7)) =
1 Py,(%n(Y) < nlo(t+logl-); t< logl-

We may compare this test with a Kolmogorov-Smirnov test or other suitable tests.

6.3 Unknown parameters case

To nd a test for model selection we consider a more realistic case, when the parameters of the
postulated model are unknown. We established some theorems under speci ed and mis-speci ed
hypotheses to nd the test for model selection in different situations. The main part of them are the
differences between normalized maximized log-likelihood BEifidbgg(:; b)g whereb could beb-

or bg dependent on speci ed or mis-speci ed case respectively, see 4.4.1, and expectation is consid-
ered under different situations. All the theorems applAlG, because in asymptotic situation the
distribution of normalized maximized log-likelihood aAdC is not different. Here we emphasize

that our focus is oRAIC.
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As a starting point we want to test the null hypothddis: f(y) = g(y;b-) for ally2 R and
someb- 2 B, if we reduce it toHp : f(y) = g(y;b>) ae in possible range of for someb-, 2 B,
this null hypothesis is equivalent to testing for:

1d 17
E¢f —a logf(Y)g= Etf — q logg(Y;;b2)g
Ni=1 Ni=1

or

18 14
Ep.f=a logf(Y)g= E,f - a logg(Yi;b2)g
Nizy Niz1
whereE, stands for expectation aif:; b).

We saw that whetb- is known, we rejecHg for a small value of%éﬁzllogg(Yi;b?). If by is

unknown we propose the test statistic as

.. 14 .
Ta(Y;bn) = n é logg(Yi; bn)
i=1

vergence and then an estimator for discrepancy (distance) between the true density and the postulated

model. The test function for this type hypothesis is given by
8

%1 if Tn(Y:bp) < Kn
f(Y)=

20 if Th(Y;bn) > Kn

Note that according to the weak law of large numbers, for &eZiB we have,

10 P 14
—a logg(Yi;b)d = Eff=Qq logg(Yi;b)g (1)
ni-y ni-y

Intheorem 6.2, by (1), convergenceﬁafto b~ and conditions (C0)-(C4), we will show th#t(Y; Bn)
is a consistent estimator féf;,f (% aiL,logg(Yi;b-)g: It is noticeable that all the theorems in this
chapter are useful to construct the con dence interval for expectation part tEg(lisgg(Y;; b))

where in the theorems we replace thby b, eitherby, in argument or in expectation.
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Theorem 6.2 Suppose thatyY:::; Yy i.i.d with unknown density(f). LetG= fg(;;b);b2 B Rg
is a parametric family of assumed densities f8.Yf Ho holds, under conditions (C0)-(C4) and (1)
we have:

. 1]
Ta(¥Vibo} © Ep,f - & logg(¥;;bo)g

i=1
Proof :

1 - 19 .
i-a logg(Y;; bn) Eb?(ﬁ a logg(Yi;b2))j =

i=1 i=1

10 .
a logg(Y;; bn) Ebo( a logg(Y;; bn)) + Ebo( a logg(Y;; bn)) qu(ﬁa logg(Yi; b2))]

n| 1 Ni=1 Ni=1 i=1
19 19 cn e 14 - 14 .
i - & logg(¥i:bn) Ebv(na Iogg(%;bn))mEb?(ﬁ_a logg(¥i;bn))  Ep, (T @ 10gg(¥i;b2))]

i=1 i=1

ﬁf@ alogg(Y b) Ebo( alogg(Y b))J"'JEbv( alogg(Y br)) Eb-)( alogg(Y b2))i (2
i=1 |= |=1

By (C4)jlogg(y;b)j M(y) On the other hand by (1) we have

18 18 P
ﬁalogg(Yi;b) Eb?(ﬁalogg(Yi;b))! 0

i=1 i=1
Now under conditions (C0) and (C1) by theor&8 the rstterm in (2) converges to zero. For the

second term in (2)

14 ~ 14 1J - - R
Ep.f - a logg(¥iibn) - — @ logg(Yiib2)g=[ @ Ep,(Nlogg(¥;;b2))I(bn  b2)+ 0p(bn  b2)
i=1 i=1 i=1
by (C3) Ep,(Nlogg(¥i; b)) exists and is equal to zero, this completes the proof. .

Theorem 6.3 Under condition{C0) (C3) suppose thad < V ary,,flogg(Y;b-)g < ¥, we have:

[10gg(%:br) ~ Ep,(logg(%:b-)} b N (0:Vary,flogg(Y;be)g):

|| moj

1
P5
Proof :

P 8 11009(Y:Br)  Ew, (loga(¥i b)) =
i=1
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plfn{;’\lllogg(Y bn) logg(Yi;b2) + logg(Yi;b2)  Ep,(logg(Yi;b2))] =
91; é llogg(Yi;bn) logg(Y;; bs)] + ﬁka[logg(Y b2)  Ep,(logg(Yi;br)]

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has
a normal distribution with average and variance equal to zerdvaang,f logg(Y; b»)g respectively.

For the rstterm, by Taylor's expansion we have

llogg(Y;;bn) logg(¥i;b2)] =

Qoo

o
Ni=1

[(bn b2)Nlogg(¥i;bs)+ 0p(bn  b2)] =

it
|| Qo5

PHbn bo)

Sl

n ~
& Nlogg(¥;br)+ Phopbn b)) (3

we know that under regularity conditiofg€0) (C3)00
P = L g1 .
nbn b - N(O:l, Y(b2):  (4)

and by WLLN

=}

L 8 Rilogg(Yib2) P Ep,(Rlogg(Y;bs)) = 0
i=1

=]

by Slutsky's theorem

— .~ 1
ECIOH

& L
a Nlogg(Yi;b2) = 0

thus

D\H

3 P
é logg(Yi;bo) ~ 0: (5)

PHn bo)

On the other hand

P fiop(Bn b7)= 0p(" (B 7))
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6.4. TEST FUNCTION

by ()P fi(bn  b2)= Op(1) then
P fiop(Bn D7) = 0p(0p(D) = 0p(1)  (6)

by (5) and (6)

P ﬁ(E)n b?)

Sl

n
o
i=1

Now applying the Slutsky's theorem.

6.4 Test function

As we saw we rejedt if

_ - 1d ~
Ta(Y;bn) = n a logg(Yi;bp) < Ky
i=1

then the test function is given by

1 if  Ta(Y;bn) < Kn
f(Y)=

WW AW O

0 if Ta(Y;bn) > Kn
The level of test is de ned by

an= Epy(f (V) = Po(Tn(Yibn) < Kn) ! ay
Now we have

PR(Kn  En,(logg(Y;bs)
Varp,(logg(:;b2)

| Zay <0

Rlogg(¥;:b»)+ * fiop(Bn b) © 0

where the standard valug, is related to asymptotic distribution égfé L logg(Yi; Bn) under The-

orem 6.3, and this is the-quantile of the standard normal distribution. Then

q
Kn = Ep,flogg(Y;b2)g+ Za, Varg,(logg(Y;b-))=n
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We consider the alternative hypothesis as
Hy:@ b2 B suchthat f(y)= g(y;b)

which means thatl; : f(:) 62G. It is a statistical agnostic which does not change our results consid-

erably. In this case we saw that there exists

bg = arg[’rzlgEHlflogg(Y;b)g such that by P bo:

6.5 Variance estimation

We need to estimat¥ ary,,flogg(Y; b>)g By theorem 6.3 we have,

PL 4 4[logg(Yi;bn)  Ep,(logg(Yi;ba))] |
g 1= N(0;1)
Vary, logg(Y; b»)

Biernacki (2004) has introduced two natural consistent estimatoh &g, logg(Y; b») which are
V(Bn) = Vaanf logg(Y; Bn)g

and

A 1
Vn(bp) = n

3 (Iogg("iB)° (.

A (logg(Yi; b))
1 i=1

In proposition 1 he has shown that under consistendgrndjoth ofv(Bn) anan(Bn) converge to
Varp,flogg(Y; bo)g in probability.
Now we consider these two estimators. It is clear that

V(Bn) | P

Var, flogg(Y;b )g
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and also

Vin(bn) ,
Var, flogg(Y;b )g

P

By Slutsky's theorem we have:

. q
P&l y[logg(Yiibn)  Ep,flogg(Yiibo)gl= Var,flogg(Y:b2)g

==
v(bn)=V ary,flogg(Y; b2)g

pLﬁéle[logg(Yi;gn) Ep,f Iogg(Yi;b?)g]! L N

V(Bn)

We have the same result fU,I{(Bn) as,

Plﬁépzl[lOgg(Yi;’qbn) Ep,f logg(Yi;b?)g]! L N(01)

Via(b)
Example 6.3
Supposers;Yo; i Yy is an ii.d. sample with unknown densify:). We want to test whetheir(:)
is a member of the normal family. Formally we want to test tHgtY N (u?;s%) wherepy, is

unknown ancsg is known. The MLE ofi isfi, = Y = %éi“ 1 Yi: Now

1,
,('7“?)29

o(Y;s3) = (2p) ¥3(s3) Flexpf -
So

and
1 1 1
o209\ = 2 A N2
logg(Yi;sg; ) = 5I092p Elogso E%(Yi )

the weighted log-likelihood function is,

L £ loga(¥: 53 ) = b S
p a logalisti) = b 5

whereb=1log2p 3ilogs3and$2= 14" (Y [i)?theMLE of the population variance (which

has assumed as a known). Now
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by CLT we know that

and then

S n1
252 2n | L

Z—" N

2n2

As we see% é{‘zllogg(Yi;sS; fl) only depends 082 which is an ancillary statistic fog, the un-

known parameter. By direct usage of the CLT, and the Lemma Al we have,

/- N(0;1)
n1

2n?

safilogg(Yisdin) (b %) L
4 !

On the other hand, far= 1;2;:::;n

1

Ewn(logg(Yi;sé;e) = b 5

and

1 1
=V ar,flogg(Y;;s; = =
SVaneflogg(Yisgw)g= o
which indicate we do not need to variance estimation. Now by Theorem 6.3,

%é{‘zllogg(Ygs%;ﬁn) (b %)I L
4 !
1

2n

N (0;1)

But for a large n we consider' n 1, and these two results are the same.
Here

lan
n

N 1

ai:llogg(Y;s%;un) E.flogg(Y;s3i)g 2
4 =

2V ar,flogg(Yi; s )9

2
n
2s

128

2
0

1

2n
Then the gof in this example reduce to a comparison between the sample and population variance

With the preassigned level test we have
1&M1logo(¥;sfil) Enflogg(Yisfimw) _ Kn b+ 3
<

Eno(f (V) = Py f - : 4
2Vary,flogg(Yi;s§; )9

|

—4g
1
2n
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thus

' 1 1
—+b =
2n

Kh= Z 5

a
2

In this example we are able to easily compute the power function. It is because under any density

for Y's §2 has a asymptotic normal density. In fact

p_, . L
n2 s - N sb

wherepy = Ey (Y),s3= Vary (), 0< i = Ey (Y m)*< ¥ andpf > s1.
Now

p_ 2 o2 PHii+ ey £)252 s7]
n[(bq Kn)2s§ Slgz PFZ 5 27 P2 W0 1g

O o4 O o4
M Si M S3

th=Pfz>
Theorem 6.4 Under Theorem 6.3

19 ~ -
P & 0000(Y:Br) g (0g9(Y; B} © N (0:V arif log(Y;br)o):

Proof :
P A logo(Y b E, (9ol o)l =
p%é[logg(w;ﬁn) Eu,(0gg(¥:b)] P & [E; (0g0(¥:n)  Es,(loga(¥:bo)]
i=1 i=1

By Theorem 6.3

logg(Y;; bn) Eb?(|099(Yi;b?))]!L N (0;Varp,flogg(Y;b2)g):  (7)

"Qos

g
Ni=1

and
P AL, (0g0(YBr)  Eny(loga(¥:b7)] =
P Al bEs(Wloga(¥:b)+ op(by b7]=

Pibn )% & Eu(Nlogatviba)+ op” By b)) (8
i=1
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The rstterm clearly is zero and the second term by (6) converges to zero; now by Slutsky's theorem

for (7) and (8) the result holds.
Example 6.4

SupposeYs; Ya; i Yy is an i.i.d. sample with unknown densify:). We want to check that whether
f(:) is a member of the normal family. Formally we want to testtdat Y N (b; 5(2)) wherep,

is unknown and3 is known. TheMLE of |, is given byp = Y = 281, %

oishin) = (20) 2(sh) ext (1 )2
0
and
1 1 1
L2y ) — 2 A2
logg(¥i;sgifn) = 5log2p 3 logsg E%(Yi Fin)°0:
Now
o 2. n n n , 1 3 .2
a logg(Yi;sgifin) =  Slog2p  Slogsg - a(Yi fn)
i=1 2 2 25§51
and
o n n 198 n n n 1
Ewfd logg(Yi;sdifn)g= log2p Zlogsy -5 A (Y M?= Slog2p logs§ ——
ot & ! 2 2 2535 2 2 2
and also
g n n 18 n n n 1
Enfa logg(Yisgifn)g= 5log2p Slogs§ - a (¥ fg= 5log2p ;logs§ ——
tnt & ! 2 2 2535, 2 2 2

now by Theorem 6.4 we have

13 . R 1 d . n
%ﬁa[logg(Yi;un) Eg, (logg(Yi; i)l = ga(Yi un)2+T]‘- - N (0;V ary,flogg(Y;s3; ) g)
i=1 0i=1

or
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After simpli cation we have

2 na1
232Q 2n
1

N
=}

which by symmetry property of normal density has the same result as the example 6.3 using Theorem
6.3.
In the next example without any information on the variance of the log-likelihood function we

are able to compute the critical value of the test.

Example 6.5

= ;‘—: is known. We wish to test that whethér N (as?;s%). Then we have

o(Yiis7) = (20) ¥2(s?) Pex glg(vi as7)°g

and
1q ) 1 1 2 1 8 : 2
ﬁiz:illogg(%,s?)— élogao Qlogs? 2ns%i§1(Y' as-)°g
In this case
1 ~ q o~
Sh= 5[ ay+ (aY)Z+ 4y?
and
~ 1 - q .~
Sp= E[ ay (aY)2+ 4Y?

whereY = 13, Y andY2= 14l Y2, We have

(a¥)2+ a¥2 ¥ s2(a2+ 2)%

2 P . : . .
Then,sd P 3[ a%s, s%(a2+ 2)2] < 0, then this estimator is not consistent.
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On the other hand| P s» which is a consistent estimator fes. Here the Theorem 6.3 is not

directly applicable, because,

=

. — 1 1 2
Esflogg(Y;s2)g= 510020 slogs; 5
which is depending os- .

On the other hand we can write

1°n /. _ 1 2 Y~2 a.? a.2
ﬁi:1|099(Y|,S?)— 5log2p  Slogs? g+§ >
and then
17 N | 1, Y2 &y a2
Adlossiisn = gl glossi ppr g G
and
gg= 1iqe2 1
Es,flogg(Y;$-)g= 5log2p Slogsy 3
We have,
Vars,tlogg(Y;s-)g= 2Vare,f (Y 27)2g=
' 4 sy 2
Now by theorem 6.4,
SaLf Iogg(Yi;éa)7E§nf|0gg(Y;§n)g! LN ©1)
1

2n
where

1g & e Y2 af & 1
nafloggiSn)  Es,floga(Visme= 2+ 5 5+ 3
The level of test is given by,

En,(f (V)= PfZ< c Eég'iig(Y;sn)g
=ZNn

Then

1 1 ~ 1
C= Zamp 1=2n Slog2p EIogsﬁ

2
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Theorem 6.5 Under Theorem 6.3

llogg(Yi;bn)  Es,(loga(¥i; b)) = N (0;Vary,flogg(Y; b)g):

Qo5

1
gpﬁ

i=1

Proof : By Taylor expansion we have

2 2 U 1 - :
a logg(Yi;b7) = a logg(Yi;bn)+(bn  b2) @ Nlogg(¥i;bn)+ 5 (bn b2)? & NZlogg(Y;; bn)+ op(1) =
i=1 i=1 i=1 =1

2 2 oL 1o - :

a 1ogg(¥i;b2) = @ logg(¥;bn)+ S(bn  b2)* @ Nlogg(¥i;bn) + 0p(1)

i=1 i=1 i=1

it is known that undeHg
Var¢f Nlogg(Y:;b) = E¢f (Nlogg(Y;b))?gg= E;fK?logg(Y;b)g:
Now we replace the second sum in the right hand side by its population analogue which is
nV ar¢f Nlogg(Y;b)

then

3 & ~ 1 - .
a logg(Yi;b7) = @ logg(¥;;bn) - 5n(bn b2)2V ar¢f Nlogg(Y;b)g+ 0p(1)
i=1 i=1

n n - ~ "
E¢f & logg(Y;;b2)g= E¢f § logg(Y;;bn)g %Effn(bn b-)2V ar¢f Nlogg(Y; b)gg+ op(1) =
i=1 i=1

n

o ~ 1

E+f a logg(Yi;bn)g §+0p(1) (9
i=1

UnderHg we have

n n N
Ep,f & logg(¥i;b2)g= Ep,f & logg(¥i;bn)g = + op(1):
i=1 i=1

or
3 g ~ 1
Ep.f @ logg(¥i;b2)g  Ep.fQ logg(¥iibn)g= 5+ 0p(1):

i=1 i=1
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In Theorem 6.3 we have

[logg(Yi:bn)  Ep,(logg(¥:ba)l = N (0;V ary,tlogg(Y: bo)g):

N
QDo

i=1

17
%na[logg(Y..bn) Ep,flogg(Yi;bn)g f Ep,flogg(Yi;b2)g Ebo(logg(Y.,bn))g] N (0;V ary,flogg(Y;b2)g):
i=1
or
1 d ~ 1 1.1
P=a llogg(¥;;bn) Ep,flogg(Yi;bn)g+ ot Op(ﬁ)]! N (0;V ary,flogg(Y;b2)g):

i=1

Then the theorem holds
Example 6.6

Supposer1;Ys; Yy is an i.i.d. sample with unknown densify:). We want to test thatly : Y

N (u»; s3) wherep, ands$ are unknown. Th®ILE of the parameters are given py= Y= % 1Y

and$2= 13 (Y, V)2 respectively.
ve2e) — 122,02y 1=2 1Y
g(Yi;s5 k) =(2p) ~(s5) ~“exgt ( )
’ ’ 2 S»
and
A0 A 1 1 A 1 A
logg(¥i:$7:f) = 5log2p = logsy 252" fin)?
then
A A~ n n_ ., n
Ellogg(\ﬁ:SE:unF 5log2p  Slogst 5
now
3 SO n n__., n
E,s3f 8 1099(Y: 85 )9 = B3t 5log2p 5 logs? Sg=
i=1

n n N
5 log 2p EEu?;sgf log$2g 5
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But
Ao n 1 s3
E,..s3flogShg= log2+ Y(?)+ IogF

whereY is the digamma function,see, Hurvich and Tsai (1989).

5 A2 A g ao n_ ., n R
_allogg(Y:sﬁ;un) Eu?;s;f.allogg(Y;sﬁ:un)g= 510987+ 5B, q5flogsig =
1= i=

n 2 n 1
E”Ogﬁ+ Y( 5

)+ logs3 log$2g:

by Theorem 6.5 we have

PLf Oflog2 + Y(”Tnl)+ logs3 IogéﬁggI L

P .

N (0;2):

NI

We can use this result to construct a con dence interval.
Example 6.7
Consider the linear model ¥= Xb,+ eas usual, where N (0;s3l). We have:

n
~ hae2y = N n > 1 T .
ogQ ¥ibrish = Fl0g2 glogss 5o (v XbAT(Y Xbo):

2 _ (Y_Xbp)T(Y Xbp)
n~ ~  n

TheMLE of the parameters are given by= ( XTX) IXTY and$ respectively.

And
000 ov:bnsd) = Mog logs2 = XBpT(Y Xby):
gi:lg Undliind 1V 2 g 2 gSh 2§% n n)-
Then
n
3 bg2y= 1 Moga2 "
i§1|099(\ﬁ,bn,8n) 5log2p  Slogsy 3
now

Eps3f @ logg(Y;;$3:bn)g = Ey,.s3f ElogZp éIogsﬁ 9=
S =1 ’
n n . n
E |092p EEb?;ng IOgS%g é:
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But

2
Ey31109830= log2+ Y (" %)+ log 22

whereY is the digamma function,see, Hurvich and Tsai (1989).

g o n a . N .o )
a logg(¥i:87bn)  Ep,of & logg(Yi;$5;bn)g = §|093ﬁ+ éEb?;s%f log$§2g=
i=1

i=1

n 2 n A
Sflog =+ Y ( Zp)+logs_§ log$2g:

by Theorem 6.5 we have

logs? logsfigg | N (D)

2
ral
P

pLf OflogZ + Y (",0)+
n
2

We can use this result to construct a con dence interval.

1 a=P(L<s3<U)= p(logL < logs3 < logu) =
(p%f Dflog2+ Y(%)+ logL Iogéﬁgg<

P
2

PLfOflog2+ Y(2,2)+ logs3 log§2gg PLfOflog2+ Y (",2)+ logu log$2gg
p = < P n )
7 2
Then
PLf5flog2+ Y ("52)+ logL log$2gg
P = 4
2
and
pfSfloga+ Y ("5P)+ logu logsZgg
P =23
2
now we have
p 2 n p .
L=expgf Zg 2 Iogﬁ+ Y( 5 )+ logég
and
p_ 2 n p ~2
U=exifZs 2 log—+Y(—)+ logsqg
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Example 6.8

Consider the candidate linear modeNas Xb+ eas usual, where N (0;s2l): Assume that the
true model isY = Xb; + & whereeze N (0;s?1), % (n ) is the design matrix angb( ;s?)" is

the parameter vector. Clearly

Q n n 1
he2y= N n 2 T
IOging(Y'b'S) 2IogZp 2Iogs 252(Y Xb)' (Y Xb)
Then

poeg2y= N N . 1(Y Xbp)T(Y Xbp)

Qo5

i=1

~ ~ AT . .
wherebp = (XTX) 1XTY and$2 = w are theML estimator of the parameters in the
candidate model. We notice that heféas the covariance matrix agl and$?2 is an estimator for
V arf eg.

On the other hand

n R AT i
E+f & logg(Yi;bn;§2) = glogao gEfflogéﬁg %fEff(Y Xbn) (¥ Xb")gg=

i=1 S%

J . n n o1 Y Xby)T(Y Xbp)s?
Eif & logg(¥i;bn83) = ~log2p ~E¢flogdig g ”)2( ”)A—‘zgg:

i=1 2 2 2 St Sn

We know that

2
sz St
then
ns? n?
Eif o>g= ———:
"9 0 p 2
Also
(Y Xbn)T(Y Xbn) _ _ . (Y Xby)T(Y Xbpn)s?2
E:f 32 g= E¢f ) ?g
n t n
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but§? andf)n are independent, thus

£ (Y Xbo)T(Y Xby) _ n___.np
i 52 PP 2" p 2
and
n
Aoy h-a2y= N n s2g 1P
Efflogi(:)lg(\ﬁ,bn,s) 2Iog&3 2EfﬂOgSng 20 p 2
Now
i=1 1y &Ny i=1 b 2 n 2 2 n 2(n p 2)

By Theorem 6.5 we have

P Dlogs2 D+ UEflogs2g+ %ﬁg! L

a
|

NIS

N (0; 1)

Nl |

As we see in last example

2
=)+ log>-

2

Eiflogs?g= log2+ Y(

then

N (0; 1)

~ 2
pLf Dlogs2 5+ gflogZiY(¥)+ e ) 59 L
g— !

1
2

6.6 Distribution of T, under H;

and Power of Test

6.6.1 Distribution of Test Statistic T, under Hy

For power computations we need to know the asymptotic distributidg(¥f Bn) = % &L, logg(Y;; Bn)

underH;, where the generating densify62G as we saw in 3.5.1 in this ca§'e(Y;6n) does not
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converge toE¢f logg(Y; Bn)g. This alternative hypothesis is a “ gurative alternative” because it is
completely vague. Following sections 4.3 and 4.4.1 the maximum likelihood estimator in this case
estimates the valuley that makegy(Y;bg) as close (in KL sense) té(:) as ang(Y;b) can get. As

we saw before

Ng(Y; bo)
a(Y; bo)

by ¥ bo; (b bo) is Op(1) and 0= REfflogg(Y;b)g,., = Eff

indeed (1) is right and we have the same theorems as theorems 6.2, 6.3uhderH, .

Theorem 6.6 (Theorem 2') Suppose that1YY>:::; Y, i.i.d with unknown density (f). Let G =
fg(:;b);b2 B Rgis a parametric family of assumed densities f&.YIf H; holds, under condi-

tions (C0)-(C4) and (1) we have:

o~ 19
Ta(Y; bn) P Effﬁa logg(Yi;bo)g = E:flogg(Y;bo)g:
i=1

Proof :
18 ~ 18 )
j=a logg(Yi;bn) Ef(=a logg(Yi;bo))j =
Ni=y Ni=y
18 ~ 19 - 18 - 18 .
j=a logg(Yi;bn) Ef(= a logg(Yi;bn))+ Ef(= a logg(Yi;bn)) Ef(= a logg(Yi;bo))j
ni-q ni-; N Ni—y
17 ~ 18 A 18 ~ 18 .
j —alogg(Yi;bn) Ef(= a logg(Yi;bn))j+ jE:(= a logg(Yi;bn)) Ef(= a logg(Yi;bo))j
ni-y ni-y Ny Ny

18 18 A ~ 178 .
supi= 8 logg(¥i;b) Ef(=Q logg(Y;;b)j+Es(= Q& logg(¥i;bn)) Ef(= @ logg(¥i;bo)j (29
b2B Mi=1 Ni=1 Ni=1 Ni=1
By (C4)jlogg(y;b)j J(y) On the other hand by (1) we have
10 148
=& logg(Y;b) E(= 8 logg(Yib) ¥ o:
Ni=1 Ni=1

now under conditions (C0) and (C1) by TheorB&ithe rstterm in (2") converges to zero.

For second term in (2')

18 - 18 18 - ~ ~
Effﬁ a logg(Yi; bp) ~a Iogg(Yi;bo)g=[ﬁ a Ef(Nlogg(Yi;bo))l(bn  bo)+ op(bn  bo)
i=1 i=1 i=1
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by (C3)E¢(Nlogg(Y;;bo)) exists and is equal to zero, this complete the proof.

Theorem 6.7 (Theorem 3') Under conditions (C0)-(C3) suppose thaie Var¢flog f(X;q7)g <

¥, we have:
18 ~
P &l10gg(Yibr)  Er(logg(t:bo)} L N (0;Var;flogg(Y; bo)g):
i=1
Proof :
18 ~
mn a [logg(Yi;bn) Ef(logg(Yi;bo))] =
19 -
PRa [logg(Yi;bn)  logg(Yi;bo) + logg(Yi;bo)  Et(logg(Yi;bo))] =
18 A 1J
FFna“Ogg(Yi;bn) logg(Y;; bo)] + %ﬁallogg(\ﬁ;bo) Et(logg(Y;; bo)]
: 1

The second term on the right, by direct usage of the central limit theorem (CLT) asymptotically has
a normal distribution with average and variance equal to zerd/mdf logg(Y; bg)g respectively.

For the rstterm, by Taylor's expansion we have

llogg(¥i;bn) logg(Y;; bo)] =

Sl
Qo5

1

19
%na[(bn bo)Nlogg(Yi; bo) + 0p(bn  bo)] =

1
n

"m0 & Rlogo(¥;b0)+ " oy(by bo) ()

we know that under regularity conditions (C0)-(C3)”
pﬁ(Bn bo) © N(0;1 (bo)d(bo)l (bo)): (49

By WLLN

Sl

n
& Nlogg(Y;;boY © E¢(Nlogg(Y;bo)) = 0
i=1
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from these two last convergences by Slutsky's theorem we have

—,n 1
Vb o)

. L
a Nlogg(Yi;bo) = 0

which also implies

]

%é’t Nlogg(¥ibo} ~ 0: (59

pﬁ(Bn bO)
On the other hand
P fiop(Bn bo) = 0p(” A(Bn o))
by () P A(Bn  bo) = Op(L) then
P fop(Bn o) = 0p(Op(1) = 0p(1) (69

by (5 and (6')

D\I—‘

p_ - o < p_ -
(B bo) -8 Nloga(¥;bo)+ ™ (b boy © 0

Now applying the Slutsky's theorem.

Theorem 6.8 (Theorem 4') :

Under theoren8’we have

18 . .
p— &llogg(¥:Br)  E(logg(":B)l - N (0;Varflogg(Y;bo)o):
i=1

Proof :
p= & lloga(Yibr)  E; (Iogg(¥; bl =
a
1 ¢ - 1 b .
f#na[logg(Yi;bn) Er(logg(Yi;bo))l  P= a [E; (logg(Yi;bn)) - Et(logg(Yi;bo))]
i=1 i=1

By theorem 3'

logg(Yi;bn)  Er(logg(Yi;bo)l = N (0;Varsflogg(Y;bo)g): (79

Qo>

1
p—ﬁ

1
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and
13
p= a [E; (logg(Y; bn)  Ex(logg(Y;; bo)] =
i=1
1 g ~ -
FFn a [(bn  bo)Ef(Nlogg(¥i;bo))+ op(bn  bo)] =

(6 bo>ﬁén1Ef(Nlogg(w;bo»+op<pﬁ«6n o) (8)
i=1

the rstterm clearly is zero and the second term by (6") converges to zero, now by Slutsky's theorem

for (7") and (8') the result holds.

6.6.2 Power of Test

Before talking about power we proof a useful lemma.d(k;y) = jix yjj = (&% (x  y)?)*¥?
denotes the Euclidean distance functionRk, a sequence of the random variab¥gsis said to
converge in probability to th¥ if for everye®> 0, P (jj¥n  Yijj> €)! 0, Van der Vaart (1998) and

Lehmann (1998). This is denoted Y,  Yijj! P 0oras beforey Py
0 1 0 1

X X

Lemma 6.1 Let U, = % § and U = % § where X is a random variable an(;l{\rP Yo then for
Yn Y0

everye> 0

ud " Uo

Proof : The convergence in probability is equivalent to individual convergence in probability of the

vector elements. Triviallx! P X then
pfij UY UGl > €7g= pf(X X)?+(Ya Y0)*>eg= pf(Ya Yo)*> eg

now by the fact that the quadratic function is continuous the right-hand side converges to zero by the
continuous mapping theorem. Then

Ud  Ug:
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Now by Lemma 1 and continuous mapping theoreng(dg Bn)! P logg(Y;bo) which implies
that Iogg(Y;Bn)! L logg(Y;bo): In general we can split the random variable ¢¢4;:) into its
positive and negative parts which means thatgdg:) = flogg(Y;;:)g" f logg(Y;:)g where

flogg(Y;:)g" = maxlogg(Y;:);0g, flogg(Y;:)g = maxX logg(Y;:);0gand
Efflogg(Y;:)g= Efflogg(Y;:)g" E¢flogg(Y;:)g :
Assume that log(Y; Bn) is non-negative for all n,

jE¢flogg(Y;bn)g E:flogg(Y;bo)gj =

Z
j 0¥f P(logg(Y;bn)) >y  P(logg(Y;bo)) > ygdy =
Z, R
j . fP(logg(Y;bn)) >y P(logg(Y;bo)) > ygdyj
Z; .
. jPf(logg(Y;bn)) > yg Pf(logg(Y;bo)) > ygjdy! O

because the interval of integration is bounded. Then by convergence in mean
Efflogg(Y;bn)g! Eiflogg(Y;bo)g:

for general result we can consider the positive and negative part g(Yof;n): On the other hand

by continuous mapping theoreffogg(Y;; Bn)g% IL logg(Y;bo)g?: And again
E+f (logg(Y;bn)?g ! Ef (logg(Y;bo))’g

now
Variflogg(Y;bn)g! Variflogg(Y;bo)g:

thus we can approximate

178
V ar¢f —a logg(Yi; bo)g
i=1
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by

17 -
Varffﬁa logg(Yi;bn)ga:
i=1

By the Portmanteau theorem for identity function

Ep,flogg(Y;bn)g! Ep,flogg(Y;bo)g

where expectation undét; indicates that expectation is taken under the density which is speci ed
in Hy. On the other hand by the continuous mapping thedrmgg(Y;Bn)gz! *‘ logg(Y;bo)g?:
and again

1¢ ~ 19
Vary,f ~a logg(Yi;bn)g! Varyf -a logg(Y;; bo)g:
i=1 i=1

Now by (C4) the uniform integrability of log(g; b) we have
Er,flogg(Y;bn)d © Ep,flogg(Y;bo)g

and
17 P 18
Vary,f = a logg(¥i:bn)d = Vary,f - a logg(¥;bo)g:
i=1 i=1
Then the asymptotic density of interest could be changed to asymptotic density of

140 ,logg(¥:;bn) EifLa[L,logg(Yi;bo)g
|

Varf 2381 ,logg(Y;;b)g
which is more realistic in theory.

The power of the test for leval, is de ned by
= Er(F(V) = Pr(Ta(Y;bn) < Kp):

Now

1=n&[L,[logg(Yi;bn) Er(logg(Y;;bo))] _ Kn Ei(logg(Y;bo)
" Var((logg(Y: bo)=n " Var((logg(Y;bo)=n

;=P
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P Eny(logg(¥;b2)) Ex(logg(Y;bo))g
" Var(logg(Y;bo))

P (1=naL, floga(¥;Br)  E:(logg(¥;; o))

" Vart (logg(Y; bo))
r -
V ary, (logg(Y;b?))
Var¢(logg(Y:bo)) ’

b 9

<WZ, +

whereWw = then

P En,(logg(Y;b2)) Eq(logg(Y;bo))g
" Var;(logg(Y;bo))

h=F WZ,+

From the last equality we can see that the power of the test mainly depends on the difference in
expectations of the log- density functions unttgrandH;.

It seems that in practice we need to compute the power function as below

i Eu,(logg(Yibz))  Er(logg(Yibn)g

h=F W7, + =
Var¢(logg(Y;bn))

or
p

nf E; (1ogg(Y:bn)  Er(logg(Y;bn))g

h=F W2z + =
Vars(logg(Y;bn))

6.7 Consistency of Test
By the de nition of MLE we know that

18 ~ 18
= 4 logg(Yi;bn)  sup> § logg(Yi;b) op(1)
n; b2 N

i=1 i=1

then

10 N 18

~a logg(Y;; bn) ~a logg(Yi;bo) o0p(1)! Esflogg(Y;bo)g o0p(1)
i=1 i=1

and

n ~
& logg(Yi;bn)  Ep,flogg(Y;bs)g+ 0p(1)
i=1

1
E¢flogg(Y;bo)g Ep,flogg(Y;b-)g =

178
sud - g logg(Yi;b)  Esflogg(Y;b)gg+ op(1)
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The right side of the last inequality under conditions (C0) and (C1) and (1) by TheB8@anverges

to zero. By this we conclude that
Ep,flogg(Y;b2)g Efflogg(Y;bo)g> 0

Then the right side of (9) goes ¥owhenn! ¥ and its left side converges in distribution; it follows
thatg,! 1asn! ¥. Thusthistestis consistent. On the other hand from the power function and the
last inequality we see that when the difference gets large which means that when the hypothesized
density undeHj is far from the hypothesized density undds in expectation the power function

naturally gets large.

6.7.1 Power computation

For power computation we need the bootstrap estimatida,gflogg(Y;b-)g, Ef(logg(Y;bo)) g,
Var¢flogg(Y;bo))g, Vary,flogg(Y;b-))gand alsoV arflogg(Y;bo))g .

Algorithm 1 Bootstrap estimation dE,.flogg(Y;b-)gandV ary,flogg(Y;b-))g.

Select the p.d.fg(:;b) 2 G, and the sample size n.

Estimateb by the maximum likelihood approach, saﬁm,

Generate a sequencetnfandom sample”; v{; v j = 1;2::::: b from a distribution with
p.d.f. o(y; bn)

Estimateb{B py maximizingé{‘zllogg(yi(j);Bn), j=12;:b

Compute

Ep,flogg(Y;b7)g" Esoof logg(Y!;b(j)Boogg = %

b n A
_z‘gl & loga(y":b(j)Boot)

CT \
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and

L
b 1

1 1
n; B

A 1
log o(% ;BB n

|| g_)o3

2
al

=1

Varp,flogg(Y;b2))g"

m Qo

1

|| g)oj

logg(y; B

Algorithm 2 Bootstrap estimation dE;f logg(Y;bg)g andV ar¢f logg(Y;bo))g.

Generate a sequencelxfandom samplﬁfl(j );Yz(j AR i=12;:

EstimateBE,j )8 by maximizingéizllogg(y,-(j );b)

Compute
E¢floga(Y;bo)g' Esootf logg(Y! );bli 1Boo g = iébli
and
Var:flogg(Y;bo))g" bill éb_ [ié_ logg(Y(} );B{ )Bo% éé" ié‘

=1 1

6.7.2 Invariance

:;bfrom original sample.

n o
4 logg(Y! ;b 1Bo%
a

logg(v! ;b 7))

Our test statistic in general is not invariant under transformation because a single distribution is

being used to compute this gof test statistic. But it is not necessarily a defect. Here we consider an

example for our test statistiG(Y; Bn) and then verify the general case.

Example 6.9

Supposérs;Ys; i Ya is an i.i.d. sample with exponential density, exp(l 7) then

gy;l2)=1- te!'? Yy

and

ailqYi

18 L
ﬁi§1|099(\ﬁ,| 2)= logl - =
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TheMLE for | »isl »= Y then

148
n:

R n
loga(Y:T») Erf - & logg(¥:l +) = log
1 ni:]_ |’7

We consider a transformation ¥s= T2. ThenJ = j2Tj and
Wt:l2)= 15 Yo 2 ¥y

and

n
o

1 n ~ - an TZ 1 n . 1
ﬁ.é logw(Ti;l )= logl 1 a"l#‘* ﬁé. log2Ti  where 1= -3 T?

i=1 nir i=1 i=1

this shows that our test statistic is not invariant.

n . n n
L 2 logw(Tii 1) Euf & logw(Ti1 )g= logi2+ * & (IogZli  En(log2Ty))
ni=l ni:l lT ni=l

whenn gets large the second term on the right is negligible by WLLN. We conclude that

17 ~ 17 17 ~ 18
—alogf(Yi;l2) Eff-alogg(V;l-)g" —a logw(Ti;l 1) Ewf-a logw(Ti;l -)g
nj Niz1 Niz1 Niz1

i=1 i=
Then the terniy(Y; Bn) Ewf %é{‘:llogg(Ti ;1 2)g is asymptotically invariant under the one to one
transformation.

Now if Y1;Y2;:::Y, be i.i.d. with common density(:) and assumed density:;b) andW =

ki(Ye;:Yn); i = 1;2;:;n the joint density ofVi;We; ;W is given byg(k 1:b)jdei(J)j whereld is
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Jacobian matrix of 0 1

H(Y1 5 Yn) =

wherek;'s are real-valued continuous functionsHfis a one-to-one function with invers¢ ! the

1
Jacobian matrix oH isn n matrix (m = w and Jacobian off
nn yJ nn

de ned to be the determinant of this matrix. Then log-likelihood functiorMr:::; W, is given by
h(W;b) = h(H *(W); b)j de(J);
and
R 1 1 1 1 1 .
Hh(W;b): Hlogh(Wl;:::;Wn;b): HIogh(k1 (WA 2 Wh) s Ky (WA 25 Wh); b) + HIogjdei(J)j
1 1 .
= ﬁIogh(Wl;:::;Wn;b)+ ﬁIogjdeI(J)j
Jis not depending ob then

supilogh(wl;:::;vvn;b) = sup} logg(Ys;:::; Yn; b)
b2 N b2 N

and

whereBn = t(f)n) is MLE w.r.t. transformed data.
Enf logh(Wy;::5;Wh; b)g = Enflogg(Ys; 2 Ya; b) + logjdet(J)jg =
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Z2Z Z 0
f & logg(Y;;b)gjdetd)j O 9(yi; b)dya:::dyn + Enf logj de(J)jg
i=1 i=1
now
1 - 1
HIogh(Wl;:::;Wn bn) ﬁEhrogh(Wl;:::;Wn;b)g:
10 . 2% Z g0 2 1 1
~a logg(Yi; bn) i fﬁ a logg(Yi;b)gjdj O g(yi; b)dys:::dyn+ ﬁ logj detJ)j ﬁEhflogj de(J)jg:
i=1 i=1 i=1

For alinear transformation likg = é{‘zla”xi; j = 1;::;n; then the Jacobian of the transformation
is the determinant of the matrixa”. and two last terms in the right of equality vanish. If this

transformation is also orthogonal we hgde{J)j = 1 then forb,
1 -1 17 - 18
a logh(W; :::;Wh; bn) ﬁEhf logh(Wa; 2, Wh; b2)g = ~a logg(Yi;bn)  Ep,f ~a logg(Yi;b2)g
i=1 i=1

then

18 . 1J
—a logg(Yi;bn) Ep,f=q logg(Yi;b2)g
ni-y ni-p

is invariant under orthogonal linear transformation.
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Chapter 7

Test For Model Selection based on
difference of AIC's:
application to tracking interval for

DEKL

7.1 Introduction

Usually a statistical process is to drive a model from theory and then use statistical methods to
estimate its parameter(s). In regression models for instance, the goal is to determine whether or not

an “independent” variable or a set of “independent” variables, has a statistically signi cant effect
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upon a dependent variable. In this circumstance the questions which arise are what are the methods
and how they work for model selection. The analysis of models has followed two approaches in the
literature; the hypothesis testing and the model selection criteria. If we nd by a method, a positive
effect of independent variable(s) on a dependent variable, we will con rm our model. Sometimes
we choosee a model which is at least not falsi ed. Clearly this approach is different of classical
hypothesis testing. Two models may be nested or non-nested, and in the latter case they may overlap
or not. The nested models are frequently studied in both theoretical and applied statistics. On the
other hand the non-nested models are less discussed. Historically a serious studies on non-nested
models can be found in a period from Cox (1961), Cox (1962) to Vuong (1989). In search of
similarities and differences between Cox's test and Vuong's test we may say that the Vuong's test
is a development of the Cox test. As a classical usage of these two tests the Cox's test is a test
about non-nested hypothesis where the emphasis of Vuong's test is on non-nested models. Both
tests are a generalization of the likelihood ratio tests (LRT) under different sense. In Cox's test
the difference between the log-likelihood ratio and its expected value under the null hypothesis is
considered. The Cox's test says that a true model must be able to predict the performance of the
speci ¢ alternatives , i.e. a true null should not distort the actual performance of the alternative
model. The idea is to compare the true performance of the alternative model with the expected
performance of the alternative model under the null hypothesis. We may make any decision about
two competing models. The important points is that when we reject a hypothesis, there is no means
that it is rejected in favor of the speci c alternative. For example the rejection of both models implies
that neither model could predict the results of the other model. Then we conclude that both models
are mis-speci ed. May be a solution to this dif culty is to use a model selection approach which

chooses the model which is closest to the true model. We must notice that the other dif culty with
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Cox's test is calculating the expected value of the log-likelihood ratio under the null hypothesis.
Another candidate in a similar situation is Vuong's test. In Vuong viewpoint, the best model is the
model which maximizes the relevant part of KL risk. The null hypothesis of Vuong's test is the
expectation under the true model of the log-likelihood ratio of the two candidate models are equal to
zero, which means that two candidate models are equivalent. This expectation however is unknown.
But Vuong's test works, because the decision making procedure by Vuong's test does not depend on

this unknown quantity.

7.2 Objective

The problem of model selection by model selection criterion is that it produces a deterministic out-
come, de ned by the ranking of the values of the criterion, and it does not take account the prob-
abilistic nature of the result. On the other hand the differences in the criterion values may not be
statistically suf cient because the deterministic model selection criterion approach would consider
a model better than another model while in fact they may be considered as statistically equivalent.
This is a reason why Vuong (1989) considered a probabilistic framework. On the other hand the log-
likelihoods used in the Vuong's test are affected if the number of coef cients in the two models is
different and therefore the test must be corrected for the degrees of freedom. For a relative solution to
these two problems we focus on interval estimation for normalized difference of a model selection
criteria of two competing models as the dual of the hypotheses testing problem when the models
are non-nested. Our attention is on Akaike Information Crite(ialC), see 4.5.1, and expected
Kullback-Leibler (EKL), see 4.4.1. The Akaike criterion is often used as the measure of model

accuracy. In fact this statistic considers the lack of t measure and the parsimony as a principal of
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model selection. From decision theory we realize that comparison could be based on some function
of the likelihood ratio of nested or non-nested models. Thus it makes sense that we consider some
condition on this kind of function. A possible function of this ratio could be the log function, the
expectation of this function de ne the especial loss function which is known as the Kullback-Leibler.

It was Akaike (1973) who introduced the expected value over the data of the Kullback-Leibler loss
as the risk function on which model selection can be made. In searching for the estimator for this
risk we notice that the difference &iC's for two models detect the changes when we must choice
the best model. It is noticeable that the normalized differen@d@F is an estimator for the differ-

ence ofEKL's for two models. By these means we want to construct a con dence interval about the
expected Kullback-Leibler risks difference, where the expectation is taken under the unknown true
density. After tracking this interval we are in a decision making situation. If this interval contains
zero, we will conclude that the two models are equivalent in Kullback-Leibler sense related to the
true density.

In this chapter we will bring some necessary de nition and by two theorems and corollary we
will argue that we can achieve a Vuong-like test under other considerations which are useful for
tracking an interval. A simulation study shows that the con dence interval has a good interpretation
in model selection where the models are logistic models in regression context. We use this approach
of model selection for real data to verify the relation between body-mass index and depression in

elderly people; see appendsix

139



Test For Model Selection based on difference of AIC's:
application to tracking interval fdDEKL 7.3. NON-NESTED MODELS COMPARISON

7.3 Non-Nested Models comparison

Many models comparisons are performed among models that are not nested. In the literature a
method for comparing the non-nested regression models come back to Hotelling (1940), Kendall and
Stuart (1967) and Pesaran (1978). Consider two families of parametric dens@es(@®(:)) p25 =
fo(y;b);b2B)g, K =(h9(:)) o= fh(y;0);92 Ggand ani.i.d. random sample from the true density

f(2):
De nition 7.1 (Non-Nested models) Two model$s andK are strictly non-nested if6\ K = ?:

This de nition may be generalized by Kullback-Leibler divergence term between two models. Fol-

lowing 4.3 and in mis-speci ed case we set
bo = argmaxE;flogg(Y;b)g and g = argmaxE¢flogh(Y;gg

such that iff 62G, Br.! P bo and if f 62K, i1 P 04 whereBn andg, are their maximum likelihood

estimators undeg(:;:) andh(:;:) respectively, and
b» = argmaxEgflogg(Y;b)g and g = argmaxEnflogh(Y;gg

which are the true values bfandgunderG andK (when one at time they are the correctly speci ed
models) respectively. As we saw if the true dendify) belongs to thés the MLE of b converges

to b, and if the true density(:) belongs to th& the MLE of gconverges tap. De ne

bon = argmaxExflogg(Y;b)g and gy = argmaxEgflogh(Y;gg

If h(:;:) be the true densitlgon = bo(g) and ifg(:;:) is the true densitgng = g(b»).
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De nition 7.2 (Non-Nested models in KL sense)We say two models are non-nested if and only if

KLfh(Y;g(bg));g(Y;bp)g6 0 and KLfg(Y;b>(m));h(Y;0)g8 0. 8b,2B and 8x,2 G

The KL distance from the true densify:) for densitieg)(:;bg) andh(:; g) are given by

KLfg(:;bo); f()g= Etflogf(Y)g E:flogg(Y;bo)g

and

KLfh(:;o); f(:)g= E¢flogf f(Y)g E¢flogh(Y;mp)a:

Since the rstterm in both of KL(.,.)'s is unknown the KL(.,.) can not be estimated directly, but it
can be noticed that when two models are compared, the rst term of KL(.,.) remains constant, so
that minimization of the criterion only depends on the second terms. To compare these two models

we notice thaKLf g(:;bo); f(:)g= KLfh(:; q); f(:)gif and only

E¢flogg(Y;bo)g= E:flogh(Y;m)g:

Then two models are equally close in KL sense to the true defiéipif the last equality is true.
This lead us to model selection criterion in a hypothesis testing framework, see, Vuong (1989). The

null hypothesis is given by;

a(Y;bo)

Ho : Eflog h(Y- )

9=0

which meaning that two models are equivalent. The alternatives could be

_ 9(Y; bo)
Hg = Esflog h(Y o) g>0
or
_ g(Y;bo)
H, = E¢flog (Y &) g< o0
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The rst alternative hypothesis meaning tHatis better therK and the second alternative hy-
pothesis meaning th# is better ther(G. Consequently when we rejelek in favor of Hy, we say,
Gis less misspeci ed thalK and when we rejedtly in favor of Hy, we sayK is less misspeci ed

thanG.

7.3.1 Motivation to Con dence Interval construction

In model selection context, selection the null hypothesis is not easy and on the other hand we faced
with many alternatives and sometimes with in nite number of alternatives. Generally in hypothesis
testing when we decide about null hypothesis we do not add more and more alternative hypothesis, in
fact in hypothesis testing we select the one best alternative to compare against. Con dence intervals
are equivalent to encapsulating the results of many hypothesis tests. They explicitly show the region
where we are likely to nd the true answer. In this section we want to show how we can construct
a pivot to building a con dence interval for difference of expected Kullbak-Leibler risks for two
models related to the true density. We do it in two parts. In the rst part we consider the statistic
T, as in chapter 6 but here for standardized ratio of two non-nested mpdelgh,say,S,. Taylor
expansion of numerator &, guides us to Vuong's theorem (1989). In a second part our focus is

on regression context in the spirit of conditional Kullback-Leibler criterion for reduced models, (for
reduced models, see, Commenges et al. (2007)). In Theorem 7.1 and in the spirit of Vuong's theorem
we nd the asymptotic distribution of a statistic which is a little different fr@nby considering the
expected Kullback-Leibler in a regression context instead of simple averdgéaiumerator of5,.

In Theorem 7.2 using Theorem 7.1, we nd the asymptotic distribution of a difference of normalized
AIC criterion, say,Dn(gE’n;h‘}). The last result is a basis to construct a con dence interval for

difference of expected Kullback-Leibler of two models related to true density, Mg,f’";h@"),
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which helps us to choose betwegandh.

Under Theorem 6.6 we have

18 ~
=& logg(¥i:b) © Eiflogg(Y:bo)g
i=1

and similarly

17 .
=3 logh(Y;; &) P Esflogh(Y; m)g
i=1

then we expect that

g(Y; bo)
h(Y; o)

10 ~ Y:;b
= & logg(¥;bn) fa logh(Y;; &) = faflogg( bn) 4 P Eytiog

nNi-y =1 h(Yi; &)

g

By this result we chois the left-hand side of the last relation as the test statistic. To do a test we need

to know the distribution of this test statistic. As the classical approach we consider

1g n= f|ogg(Ybn)g Efflolnlﬂogg(Ybn)gg

- n h(Y;;on) h(Y;;on)
Varif L&l ,flog h(\; g;‘))gg
or
(Yi:bn) h (Yi:bo) (Yi;bn) (¥i:bo)
.- lan flogﬂ(Yg:‘g Eifial 1f|og%Ygg)gg Eiflal lflogﬂ(Y'i';@:‘)gg Eifial 1f|og%Yg§)gg _

Varif1al,flog ?1((:(( z:‘)) gg

By Taylor expansion the last two terms in the numerator are negligible because

9(Y:; bn) g(Yi;bo)
Eff—aflo h(vio¢ )g E+f —a Iogh(Y q))gg—
- e .18 N e .18 P
(bn  bo) Effﬁa Nlogg(Yi;bo)g (& @) Effﬁa Nlogh(Yi;)g+ op(1)} = 0
i= i=
Thus A
. halifoatiie Elalifogtie

Varff 13 \flog ?]((\; g;‘;gg
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On the other hand

a(Yi;b An) g(Yi;Bn) g(Yi;Bn)_lo g(Yj;Bn)

n
Varfa log h(o5 0 i§1Varfflog h(Yi;(})g+ Zé_éjCovfflog A3 9 b, 5 o:
Now
Vérfflogm = iénlfIog?]((:((ii;;g;:))g2 f ﬁa_flog?]((:(("b)gg2
Then
. Aanfoofs) Enoo oo |
140, 110g XU 1 141 11ogHiB gcP+ 244 ) Coviflog In:10g Kb g

The covariance term is a part §f and needs to computation, but it is reasonable if we expect

that

a(Yj; 6n)
h(Yj;Gn)

9(Y:;by)

a(Yi; bo) . (Yj ;bo)
(Y &) log

Coviflog h(Yi;o) " h(Yj; o)

g! Covif Iog

;log g

and use this fact th (ﬁigg and %((\\((J :g)) are independent. Now if we consider the covariance term

as negligible (which in Vuong's theorem (1989) disappears) by Vuong's theorem (1¢88as

asymptotically the standard normal density. Thus

1o Ybn) 1o bn)
s 1a an f|09h(v 39 Eff 4L 1floghYlgh)gg L N(©:1)
lal flogh:((tg’;))g2 f lan 1fIog%’1((:/(:';'2]))992

S, is different from Vuong's statistics in expectation term.

7.3.2 Con dence Interval for DEKL

Let Zn = (Z1;Z2;::Z0), with Zi = (Y X):i = L2::n; (Y 2 R9: X 2 R™) is a sample of inde-
pendent identically distributed random variables with common true unknown density (generating

or true model)fy.x(:;:) = f(:;:); and with conditional density of givenX as f\t(jx(:? :). Consider
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9vjx (YiX;b) andhyix (YjX;d) as two non-nested models (postulated or candidate models). Follow-
ing 4.4.1 we consideg andg as the minimizer of KL criterion. It is known that the maximum
likelihood estimatorsl%n andgh are consistent fong andg, respectively. For the reduced model, the

KL criterion for these two models is given by

KLf gyjx (:j:bo); fyjx ()9 = Erflog fyix (YiX)g  Esfloggyjx(YiX;bo)g

and
KLf hyjx (5 @); fyjx ()9 = Efflogf fyjx(YiX)g Esfloghyjx (YjiX; m)g:

where in both of them the rst part is irrelevant (because for all postulated models this term is xed)
and the second part is the relevant part for our goal. In both of allbweriteria the relevant parts

are the quantity of interest, but can not be estimated, because they depend on umkrdvaike

(1973) found that the expectation of the relevant part can be estimated. Denote the tted models by

Oyjx (YiX; Bn) andhy;jx (YjX;&). The conditional KL criterion for the relevant parts, say, CKLs are
CKLgn = Etfloggyx (YiX; bn)iZng:

and

CKLiyn = Efloghyjx (YiX; h)iZng:

The expected CKL, saf;KLg is given by
EtfCKLgng= EKLgn = EfﬂOgngX(YjX;Bn)g
and similarly forCKLy;,

E+f CKLyng= EKLpn = Effloghyix (YiX;th)g
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Following sections 4.4.1 and 4.5.1 there is a asymptotic relation &bidutand its estimator. In
fact based on Taylor's expansion ofnE;f & sl 1IogngX(Yijxi;Bn)g aboutby if n(f)n bo)(Bn
bo)T is uniformly integrable, we have:

Eifloggyx(YiXiBrlg=  Eifloggyx(YiXibolg+ oetr(l 1)+ ofn )
and
.0 17 L 1 1 1
Etfloggyix(YiX;bn)g= Etf —a 10ggyix(YiiX;bn)g+ —tr(l “3)+ o(n 7:
i=1
By these we conclude that
. 17 L .n 1 1 1
Etfloggyix(YiX;bo)g= Etf —a loggyix(YijXi;bn)g+ o tr(l ~J)+ o(n 7):
i=1

Theorem 7.1 Under assumption A6, Vuong (1989), (For F-almost all (y,x), the fungtamg(yjx)j?)
andjlogg(yjx)j? are dominated by true (distribution function).k-integrable functions independent

of parameters in postulated models) we have

p% éI: 1f |Og g(YJX' bn) f EKLg’n EKLh’ngg

1g 9(YijXi:bn) 1lg 9(Y;iX;;bn)
2 “zfloghYmg:‘)ng 240 roghYmg:‘ g

Proof : Vuong (1989) has shown that

PLTATL log SN flog PX(HRY gg

h(YiiX; x(YIX:
g (YijXi:tn) (be)hYX(J o) 7% L N (0;1):
Then
(i) Grix (1X:bn) 9ix (1iX:Bn) Brix(iXibo)
LAl flog - i) XD EffloghY (YjX. 59+ Eiflog Py (V%0 9 E¢flog Pyix(YIXi@) 9% L N (0; 1):
YjX;bo) o
" Var log ﬂ(YJJX gg) g

0 1 1

0
Y;
Now by lemma 6.1 (see 6.6.2), if we s&f = B x. ¢« andUp = E:ﬁ thenU,! P Up and
Bn bo
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0 1 0 1

X X
similarly for \, = % § andVg = % § whereV] P Vo: They implies the convergence in distri-
Bn bo

bution forU, andV,: Now by continuous mapping theorem Ig(g(i;xi;f)n)! P logg(Yi; Xi;bp) and
10gg(%;bnY © 10gg(X;;bo) thus logg(YijX;;bn} © logg(¥ijX;; bo) which implies that log(Y;ji; b} -
logg(YijXi;bo): In general fori = 1;2;:::;n; we can split the random variable IgfyijX;:) into its
positive and negative parts which means thaggjXi;:) = flogg(YijXi;:)g" f logg(YijXi;:)g

wheref logg(YijXi;:)g" = max logg(YijXi;:);0g, flogg(YijX;:)g = max logg(YijXi;:);0gand
E+flogg(YijX;)g= Esflogg(YjX;)g" E¢flogg(¥ijX;;:)g :
Assume that Iog(Yini;Bn) is non-negative for alh and using (C4) for conditional density,

JE+flogg(YiiX;;bn)g Eiflogg(¥jXi;b’)gj=

Zy .
j . fP(log f(YijXi;bn)) > h P(log f(YijXi;bo)) > hgdhj =

z
g .
I TP(log f(¥ijX;bn)) > h - P(log f(¥ijXi;bo)) > hgdh

z
g .
o JPf(log f(YijXi;bn)) > hg  Pf(log f(YijXi;bo)) > hgjdh! 0

because the interval of integration is bounded. Then by convergence in mean
Erflog f(YijX;b)g! Eiflogf(¥jX;bo)g:

Similarly
Etflogg(YijXi;g)g! Etflogg(YiiXi;m)g:

which implies that

g(YI]Xth) I
Efflogih(Yini;gq)g. E:flog

Ivjx (YiX;bo) g
hyix (YiX; o)
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Now we have ) n
L an . f log 9(YijXi;bn) E:flog Gyjx (YijXi;bn)

i=1 h(Yij%:g yjx (YX:En)
n g (YijXi:tn) g(YJXbO)hYx(J ) L N (0;1):
V ar¢flog hYiXa) 9
If we use the variance estimator we have
g(YiiXi:bn) Gjx (YiXi bn)
) Pralaflogfgicgy  Erflogn s %)g LN
1g 9(¥iiXi;bn) lg g(YiiX;;bn)
nlifl00Rxg & T adiif100 iyjxg) 99"
Then
b
L &1Lt log fx: gj) f E¢fCKLgng EffCKLhngg LN
1g 9(¥ijXi;bn) 1 2 9(YiiX;;bn)
naf flog h(Yii%;en) ¢ f i 1f|og h(Yi[%i:6n) 992
and thus
9(¥iiXi;bn)
. Praliflogigigy f EKLgn EKlnngg YN0 D):
1g o(YijXi:bn) 1s 9(¥iiXi;bn)
ndiEafl0g iy 9 F nadiEaflog i) 99

Theorem 7.2 Under Theorem 7.1 let
0a 1 1
Dn(gP;h%) = n * SAICgn  SAICH

and
Dn(gP;h®) = EKLn(gP; f)  EKLn(h®; f)

1 1
where AlGn = £&;10gg(¥iX:bn) + "2, AlGyn = Fal1logh(YjX: ) + T et

I’1 =

EKLn(gbn f)=E flog f(Y) gandEKLn(hgh f)= Esflog h(féYg)q)g under Theorem 7.1 we have

M2 Dy(g;h®) D) 1 E N (0ud)

5. 9(YjX:bo)
wherews is V arf log {5 gg) g

proof : We know thaDy(gPr;hé) = n 1 47 ,flog ﬁ(g('llj))zg’q‘))g + B A thus

g(YijXi;b An)

bn. - P q
h(Yj X & )g EKL,(g"; f)+ EKLy(h®; f)+ —

Dn(gPr;hé)  Dn(gPr;he) = ,af.og
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where

p=tr(lg')+ O(n 1)

and

q=tr(l, ")+ O(n 1);

see, 4.5.1. When the model is well speci pdndq are the number of parameters in densitjesd

h respectively. Then

; o o L 2 f10g 90X bn) p. q
1=2 bn . |oh bn.wohy — _ _ .
n Dn(g™;h™)  Dn(g™;h™) P*n§f hOVIX ) f EKlgn EKlnngg + p—:

Now using Theorem 7.1, this fact th%tﬁH for large n is negligible and symmetric property of normal

distribution we have

n=2 Dy(g;h) Dy’ 1E N (0:wd):
Corollary 1: Under Theorem 7.2, L a)% con dence interval fOIDn(gE’”; ht) is given by
Dn(@™:h®) N 2zp0, ; Da(gPih®)+ n Pz,

where as before
S ~
~ 17 o(YijXi; bn) 17 a(YijX; n)
W2= ZJflog=>2Mg2 f Z3flo
T ndM0hsixa S T n a1k 99

7.4 Logistic Regression:

The Logistic regression model, Cox (1970), has become a widely accepted method of analysis of
binary (dichotomous) data. There are similarities and differences between linear and logistic regres-

sion. As we saw in 3.4.2 by generalizing the linear models we achieve a wide range of models to
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describe the data. This generalization exactly introduces a new linear predictor based on the mean of
the outcome variabl¢ which does no longer have to be normally distributed or even continuous. In
fact in logistic models we havg  Bin(1;p;j) andx(4) = h = Xb wherex be an invertible, smooth
function of the mean vectqr= E(Y): The explanatory variabl¥ is in model through the logit link
functionh = Iog(ﬁ), which is known as the log-odds transformationlagit: A model for the
log-odds is called a logit or logistic regression model. It is seen that the logit transformation yields a
linear relationship for the logit model. In this case the logit link is commonly used but the other link

like probit and the complementary lodog is available. For multiple logistic regression we have

p
1vp

log( )= Xb

and then

__expXb)
T 1+ exp(Xb)

It is clear that the derivatives of likelihood function with respect to the parameters are not linear in
parameters then maximum likelihood estimatordfds given by the iterative procedure like Newton-

Raphson algorithm which gives
b(t+ 1) - b(t) + fXleagf pl(t)(l pl(t))gxg le (Y p(t))

with start OLS solution fob at iterationt = 0 asb(?:
In the model selection context usually the measures of goodness of t are based on the residuals.
In fact we determine whether the tted model's residual variation is small, displays no systematic

tendency and follows the variability postulated by the model. In logistic regression

exp(Xf))

P= 1+ exr(XB) '
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Two usual measures of goodness of t test for logistic regression are Pearson Chi-square and the
likelihood ratio (Deviance). These statistics have bottcthdistribution and lack of t occurs when

the values of these statistics are large. Hosmer and Lemesho (1989) discuss two methods of grouping
based on the ranked estimated probabilities that form groups of equal nhumbers of subjects (deciles
of risk ) or use xed cut points on thf®; 1] interval. Tsiatis (1980) proposed an approach based on
xed groups in the covariate space that yields a score test for t.

Sometimes it is interesting that we categorize some explanatory variables in the regression mod-
els. For categorizing the cutpoint must be meaningful in the research area. This introduces some
regressors in our model. We consider the Body-Mass InB&K ) as an important explanatory vari-
able which effects the depression; some people consider three categoBbH fas poor (desirable),
average and high (morbidly obese). Introducing a logistic model for modeling binary response as

depressionY) acording toBMI(X1), age(Xz) and gende(Xs). The logit is given by
Y = bg+ biXg+ boXo+ bsXg+ bgXo Xz+ e

A categorization oBMI could be done by terciles. We note that in the logistic scale the linear model
is not nested in the tercile model. The terciles will introduce two regressors in the moiglasd

X12. See table 7.1.

Table 7.1- Introduced regressors by terciles.

Category for BMI| Xq1 | Xi12

BMI 2 Tersile 1 1 0

BMI 2 Tersile 2 0 1

BMI 2 Tersile 3 0 0
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Now the model is

Y = bo+ b11Xa1+ b1oXio+ boXo+ baXs+ baXo X3+ e

whereX;1 andX;, are the 0 1 regressors. This model describes three parallel regression planes

which can differ in their intercept. See table 7.2.

Table 7.2- Three parallel regression models generated by terciles.

Category for BMI Regression Mode

BMI 2 Tersile1| Y = ( bo + b11)+ boXo+ bsXsg+ baXo X3+ €
BMI 2 Tersile2| Y = ( bo + b12)+ boXo+ baXz+ bsXo X3+ e

BMI 2 Tersile 3 Y = bo+ boXo+ baXg+ baXo X+ e

b is an intercept for person with BMI in tercile 3. Here a BMI in tercile 3 serves as a baseline
category or reference group with which the other depression categories are compared. If age and
gender distributions are the same for the three groups, we could compare the mean of the three
groups.

We also consider the quadratic model as
Y = bo+ b1 Xy + b2X12+ b3Xo + baXz+ bsXy, X3+ €

It is clear that the linear model in logistic scale is nested in quadratic model. The logistic curve for
this three models are shown in gure 11. A simple analysis of linear, tercile and quadratic models in
logistic scale are given at the end of this section. As the likelihoodfd@dcomparison of models

as we talked in B the likelihood function increases when the number of parameters in the model
increases. The linear case has ve parameters while both the tercile and quadratic models have six
parameters. But foAIC is a little different, theAlC's are ordered according to where the models are

nested or non-nested. The results for this three models is given in table 7.3.
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Figure 11: Logistic curves for linear, tercile and quadratic models in logistic scale.

Table 7.3- Maximized likelihood values and AIC's for linear, tercile and quadratic models in

logistic scale

Model | Likelihood AIC

Linear -1346.25| 2702.5
Tercile -1345.60| 2703.2

Quadratic| -1342.93| 2697.9

A simple analysis of our real data is given in table 7.4-7.6. A deeper analysis of this section is pre-
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sented in appendix B.

Table 7.4- Estimated coef cients for linear, tercile and quadratic models.

Linear model in Logistic scale

Coef ficients| Estimate| StdError | Z value | P(Z> jZ)

bo | -4.48569| 1.02396 -4.381| 1.18e-05
b, | -0.02952| 0.01362 -2.167 | 0.030232
b, | 0.04303| 0.01212 3.551| 0.000384
bz | 3.09190| 1.16200 2.661| 0.007794

bs | -0.03922| 0.01526 -2.269| 0.010189

Tercile model in Logistic scale

Coefficients| Estimate| StdError | Z value | P(Z> jZ7)

bo | -5.32560| 0.91920 -5.794| 6.88e-09
bi1 | 0.31106| 0.12699 2.450 0.01430
bip | 0.14375| 0.12889 1.115 0.26473
b, | 0.04255| 0.01211 3.515 0.00044
bs | 3.04914| 1.16188 2.624 0.00868

bs | -0.03875| 0.01526 -2.539 0.01110
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Quadratic model in Logistic scale
Coefficients| Estimate| StdError | Z value | P(Z > jZ)
bo | -1.360874| 1.546192 -0.880 | 0.378780
by | -0.269327| 0.089172 -3.020| 0.002525
b, | 0.004672| 0.001701 2.746 | 0.006031
bs | 0.041546| 0.012136 3.423| 0.000619
bs | 3.051574| 1.161999 2.626 | 0.008636
bs | -0.039072| 0.015263 -2.560 | 0.010472
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Chapter 8

Conclusion and perspective

The purpose of this research is to clarify some facts and provide a simple test to model selection
which is a relatively new branch of mathematical statistics. The aim of statistical modeling is to
identify the model that most closely approximates the underlying process. As a part of model se-
lection, in chapter 5 we are in search of a goodness of t test for the simple situation #j{ere

is a known distribution function; when there are unknown parameters, we have to rst to estimate
and then plug-in it into the test statistic. For example in a simple normal case with mean and vari-
ance as unknown parameters, we can estimate these parameters by their known estimators as sample
mean and sample variance respectively and obtain a goodness of t test for normality. Our idea
is considering a random sample of sizand a goodness of t test procedure which introduces a
likelihood ratio test for each xed value in the variable space. The known Union-Intersection test
(UIT) is our proposal to solve this problem. The level of test and ef ciency for this test has been
veri ed. It seems that our statistic is comparable to the Berk-Jones statistic. As a further work we

may consider more complex weight function in the de nition of the proposed statistic, and compare
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the new statistics with other goodness of t tests. On the other hand from a statistical standpoint, the
observed data are tainted with sampling error. Consequently, when we t a model to the data, the
model performance re ects the population pattern and also the patterns due to sampling error. Such
patterns will be speci c to the particular sample and will not repeat themselves in other samples.
A complex model with many parameters tends to capture these sample patterns more easily than a
simple model with few parameters. Then, the complex model yields a better t to the data, but it
may not be because of its ability to more accurately approximate the underlying process but rather
because of its ability to capitalize on sampling error. Therefore, choosing a model based solely on
its t, without appropriately ltering out the effects due to sampling error, will result in choosing

an overly complex model that generalizes poorly to other data from the same underlying process.
Consequently model selection should not be based on a model's ability to t particular sample data
but instead should be based on its ability to capture the characteristics of the population. There are
actually some different tests for model selection and consequently some different questions can be
asked about them. Each of the tests has advantages and disadvantages in their domain of usage. In
almost all of the tests and criteria for model selection the maximum likelihood estimator and max-
imized likelihood function have an essential role. With a careful attention there are two separate
functions over the parameter space. The rst is the probability density for maximum likelihood es-
timator over the parameter space, and the second one is the likelihood function, which de nes the
probability of the data in any particular point in the parameter space. As we see both are de ned on
the parameter space but each has a different meaning. The i.i.d. assumption allows to obtain normal
asymptotic distributions for both the maximum likelihood estimator and the log-likelihood of the
observed data. This knowledge is a starting point to de ne a simple model selection criterion as the

normalized maximized likelihood function. This works for some known cases when the distribution
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of data is normal. But its disadvantage is that using the data at hand for estimation and evaluation.
On the other hand the maximized log-likelihood increases when the number of useless parameters in
amodel increases. This leads to select the more complex model. Akaike solved these two dif culties
by his assumption about domain of data and by parsimony quantityAlhetroduced by Akaike
considers the parsimony principle to reduce the bias term in model selection. The main goal of this
statistic is to estimate twice the relevant part of the Kullback-Leibler divergence. But this is an un-
usual quantity to estimate, because it depends on the number of observations. In fact we encounter
the same dif culty as for estimating a sum in a population by a sum in the sample; in this case we
know that the error of estimation grows when the sample size increases. The normalization idea is
useful to solve this problem, and allows us to de ne a criterion for model selection. In fact in chapter

6 and related appendix (appendix A) we want to show that the normality diltB's and that the
constructed con dence interval by normalizAHC re ects the fact about models. When we do not
know the correct model the average of limits of these types of con dence intervals give us an idea
about the number of parameters in the model. On the other hand these types of con dence intervals
show us that th&lC is not an increasing function of the number of parameters in the model. In fact
complexity in model is good for reduction of bias, while simplicity of model reduces the tendency

to over-t. On the other hand the best trade-off between unknown bias and unknown variance is
the aim of model selection. But how to achieve this trade off? This is the main question in model
selection. In chapter 6 and appendix A we are about the reduction of bias. With the assumption
that the future observations are in the same domain as the observed data it seems that the bias is
generally more important than the variance. In chapter 6 and appendix A we are about the reduction
of bias. With the assumption that the future observations are in the same domain as the observed

data it seems that the bias is generally more important than the variance. As the rst step in model

158



selection we are in search of a admissible bond for the average of con dence interval limits to select
the best model under parsimony. This admissible set of models must be contain all models which
are near to the selected modelANC. Consider some models wikhk+ 1;:::k ;:::;k+ | explanatory
variables. Assume that the model wihexplanatory variables is the selected modeldg¢. On

the other hand by our simulation we see that for intermediate sample size there is an intersection
between some of the con dence intervals for models wig k explanatory variables and that for
selected model. We say two models are near to each other if their average con dence interval limits
have intersection. We set these kind of models in the admissible set. Now our search for the best
model will be in this set. This chapter needs to be developed by further work with other models for
nding the admissible line which enables us to select the set of candidate models. After it, we may
use a classical variable selection approach to select the best model between the condidate models or
we may use the approach developed in chapter 7 to compare the models . Anyway the result of this
chapter is a basis for chapter 7.

In chapter 7 and appendix B we improve our idea by constructing a tracking con dence interval
for a difference of expected Kullback-Leibler risks for two candidate models. The proposed con -
dence interval contains the difference of Kullbak-Leibler risks with a xed probability. This interval
has another interpretation for the useAdC's. In fact we are not in a situation to detect the best
model but we are in search for a model which has the relatively less risk compared to other models.
It is because all the models are mis-speci ed. For constructing the con dence interval we need to
estimate the variance of a normalized differencal@'s; a good estimation would take into account
the covariance between two maximized log-likelihoods, but it seems that nding this covariance is
dif cult and is an open problem. Another open problem arises in a situation where we have many

competing models. It is because in a real situation we have a sample ofaizemany competing

159



models to t to the data at hand. We may propose a two-stage approach where in the rst stage we
choose the best two models by means of maximized likelihood function and then return to the pro-
posed approach to choose the best one. But a good search could be done by a generalized approach.
On the other hand we assumed that our sample are independent and identically distributed, a nice
generalization would relax this assumption to extend this approach. In this work we have applied
our results to normal regression models and logistic regression. But the theory is general and could
be applied to the other types of regression models like Poisson regression for counting response
variable and log-normal model as a standard approach to the analysis of skewed response variable,
see Finney(1941) and Bradu and Mundlak (1970) may be of interest. Here we consider the model
selection for one dimensional random variables a generalization could be dopelifoensional

random variables.
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Model selection: Application to the Multiple Regression Model

SUMMARY

Some key wordsAkaike criterion, Con dence interval, Kullback-Leibler, Model selection, Multiple

regression, Variable selection.

10.1 Introduction

Model selection is estimating the performance of different models in order to choose the best one.
It proceeds in two steps. The rst step is to select a model (as the family of hypotheses or family of
densities) between competing models and second step is to select a particular hypothesis or density
from the model. The rst step is sometimes a hard step, it needs to some background. For example
in regression survey may be we start with linear models and then complicate (if necessary) the model
by allowing to the facts about population under study. In literature the selection problem is where
the rival models come from a nested hierarchyk-afegree polynomials. If there is no background,

that is required is that the models share the common goal of predicting the same data. The second
step is estimation of parameters from the observed data. On the other hand the statistical models
are typically merely approximations to reality and so sometimes a wrong model is t to the obser-
vations, but in practice we do it for some reasons. First because a little of knowledge is better than
nothing, second an assumed parametric model may be close to the true unknown model, so that very

little is lost by assumed model and we can use the rich literature of parametric statistics, and third



in some statistical subjects the estimated parameters for an assumed parametric model can often be
interpreted usefully.

In practic when we collect the data, there are many unobserved data from population under study
and also future observatons. As a aim of model selection may be we are in search of the model to
nd the functional value of the unobserved response or to use the model to prediction of future. How
we can con dent that the postulated model is accurate? Thus selection and evaluation of a model is
an important step in any research. For example in tting curve context adding new terms add extra
adjustable coef cients (parameters) and these will improve tto some degree. The problem is when
we add new term we gain in t, but if this gain is small how do we make this trade-off between
addition a new term and gain in t? And which value of gain is small or too small? So we turn to
the hypothesis testing or ordering the models by model selection criteria. The rst one introduce an
absolute discrimination and second one is a relative discrimination.

Instead of the classical hypothesis testing approach to cover the analysis of the non-nested models
may be we consider the hypothesis testing to model selection. But the hypothesis testing is a de-
terministic approach. Generally in curve tting area in which the dependent random vaYiasle

a function of the explanatory variable(s) the means for detect the t is least square or likelihood
approaches. The least square approach has a limitation when the error term is not normal. Then
it is reasonable if we take the likelihood or equivalently the log-likelihood function as a measure
of t. As the goal of the tting curve we want use the tted model to predict the future. In the
Akaike framework, the base assumption is that the new data are the re-sampled from the past (the
data at hand). This is an advantage for Akaike (1973) Information criteffd, as the estimator

for relevant part of the Kullback-Leibler discrepancy. In this direction tis de ned in terms of dis-

crepancy from the true density, or the closeness to the true density. When we are in search of the



best model there is not a reason for separate the hypotheses as the null and alternative hypotheses,
i.e. all of hypotheses are the null hypothesis. This is a point which indicates that may be in Akaike
framework we consider a function of the maximized log-likelihood as the test statistic. On the other
hand because the conclusionAdfC is not never about the truth or falsity of a hypothesis, but about

its closeness to the truth, we take this logic for our idea and use the con dence interval as a set of
acceptable hypotheses. Consider a sample of i.i.d. random vanablé¥:;Y;:::;Y,) which fol-

lows a linear regression model. It means that éf’:-’lbjxij +a; & N(0s3); i=12:mmn

regression coef cients is to be estimated. In this case our parameter veqtor (sh};s%)". Then
we have,

Y= Xbote; & N(Os3l): (1)
We refer to(1) as the true model. Consider the postulated models as

Y=Xb+e e N(s?): (2

The postulated models are defer in ranks of design matdges The standard approach in model
selection is tting postulated models to the observations and then determine which of them is the
best approximation to the true model.

Formally by notation in classical statistics we want to test the null hypothésisf (y) = g(y;b-)

for ally2 R and some, 2 B, if we reduce it toHg : f(y) = 9(y;b») ae in possible range of

for someb- 2 B this null hypothesis is equivalent to testing for,

18 178 )
E:f La logf(Y)g= E:f La logg(YijXi;b2):g (3
1 1

A known measure of discrepancy between the true and the postulated models is the Kullback-Leibler



criterion. In literature Shimodaira (1998,2001) has extended the Linhart's test (1988) with different
concept as Cox (1962) by de nition its con dence set at a given signi cance level. He consider a set
of postulated models dM(j)jj 2 M gand for eaclj 2 M consider a statistical test. We propose an
other criterion which takes in order the models with property as minimum average con dence inter-
val for expected Kullback-Leibler criterion. In fact in this approach we consider the null hypothesis
asHJ 1Y = X,Ej)jb+ el; &) N(0;s2l); |2z (an integer set) and construct a con dence
interval for negative expectedlC and we decide for which postulated model the limits of intervals

are minimum. For simplicity consider two non-nested postulated models as
HE:v= x®b+e®; ¥ N(0;s2);

and

Hy:Y= x,§'>|g+ e &) N(0;s2)

We noted that by these hypotheses we are not in the situation to decide which model is the correct
model, but we want to know which model is better. Now the search for the best model, in the rst step
will be the search between all of non-nested models Wwiimd| explanatory variable, separately,
and then comparing the average of interval limits for two postulated models.

As the decision we choice the model with minimum of the average of interval limits. By notation
in literature this process is the variable subset selection of the multiple regression. All of investi-
gation is to selecting a best subset of predictors. Many different de nition of best can be found in
the literature. The forward selection method for subset selection is common in statistic, it checked
for improvement in the partial F-values aR8. The usual statistics to verify that whether or not the
proposed model is signi cant af®? (adjusted), the residual mean square, and Mall@y's

For example, the forward selection includes additional variables in the model based on maximizing



the increment tdR? from step to step, but in a conditional sense. By these criteria, a best model
can be identi ed for xed value of explanatory variables (a speci ed subset with k element) but
there is no general method for selecting an overall best model. As an other investigation to model
choice may be we consider the information estimator for true density and postulated model with
some explanatory variables as Akaike (1973). Akaike has used his criterion for selecting among the
competing models. In fact he select a model with minimum lack of tin care of parsimony. In our
approach and in information context we want to consider all of modelskagttplanatory variables

by constructing a con dence interval for respected sub-class of models. In search of best model we
consider the minimum average of the con dence interval limits, where the minimization procedure
is taken on classes of all sub sets kor 1;2;:::;K explanatory variables. After making decision
about the number of the explanatory variable in the model we can investigate the best model in the
interest subset of explanatory variables. In other word we want to check that a modkekwjttex-
planatory variables is enough or not. To answer to this question we consider a measure of goodness
as average of con dence intervals for subset With j variables. This kind of model selection is a

overall type search.

10.2 Expected Kullback-Leibler Criteria and AIC

More generally, leZ, = (Z1;Z2;:::Zn), with Z, = (Y; %):i = L1220 (Y, 2 R9:X 2 R™) be a
sample of independent identically distributed random variables with common true unknown den-
sity (generating model)\‘(;x(:;:) = fY(:;:) and with conditional density of given X as fyix (557).

Considerg®(:) = gyjx(YjX;b) as postulated model and s®f as the minimizer of KL criterion. It



is known that the maximum likelihood estimalifnr is consistent foby. For reduced model, (see,

Commenges et al(2007)) the KL criterion is given by
KLf gvix (5 00); fyrix (::)g = Etflog fyix (YjX)g  Effloggyx(YiX;bo)g

where the rst part is irrelevant and second part is relevant part for our goal.
As the more complicated distance may be we consider the Hellinger or Matusita distance of af nity,
see, Bar-Hen and Daudin (1998) for asymptotic distribution of this statistic.
In regression context we have the variance as a parameter to estimate, but our focus is on the re-
gression coef cients and for simplicity we eliminate the variance estimator in notation. Fortunately
the variance and coef cients estimators are independent and there is not dif culty to search for the
asymptotic distribution of statistics which contain both of them at the same time. In &hbows-
terion the relevant part is quantity of interest, but can not be estimated, because they depend on
unknownf.
Denote the tted models bgyx (YjX; Bn): The conditional KL criterion for relevant part,say' CKLs
is

CKLgn = Eifloggyjx(YiX;bn)iZng:
The expected CKL, sayfKLgn' is given by

EtfCKLgng= EKLgn = Eff|099YjX(YjX;6n)g

E+fCKLgng is a consistent estimator fdt¢floggyx(YjX;bo): Using the empirical distribution
function for expecte@€KLg, then its sample analogueﬁé L 1 loggyjx (YijXi; Bn) which minimizes
an estimator oKLf gyjx (:j:; b); fyjx(:;:)g

Model selection based on Kullback-Leibler discreparn€l)( is developed by inference about rele-

vant part of theKL divergence. It was Akaike (1973) which introduced an estimator for relevant part



as Akaike Information Criteria, (AIC). Originally The AIC is de ned as
AlC= 209"+ 2p

whereLgf’n is the maximized log-likelihood function for postulated model. As noted by Hurvich and
Tsai (1989) when the dimension of the postulated model, increase in comparison to n, the sample
size, AIC becomes strongly biased which leads to over tting problem. They have proposed a biased
corrected estimator of AIC in linear regression context. In fact they shown that in this case the

corrected AIC is

.o n(n+
CAIC= nlog§?+ nn+p).
n p 2
AIC is the unbiased estimator forEKL..,: Now constructing a con dence interval forEKL..,:
make sense, because this con dence interval will be a con dence intervdt (8tC): We saw

that the postulated models are different in design matrices, then they have the different CAIC. By

construction the con dence interval f&(AIC) we will be able to sort the postulated models.

10.3 Hypothesis Testing

If we write the null hypothesiblg by notation in (3) this hypothesis is equivalenHg: KL(g°?; ) =

0 we propose the test statistic ,Ks(g°?; f) then we rejecHy if KL(gP?; f) > C which is equivalent

to Th(Y; Bn) = % &L, logg(YijX; Bn) < Kp: This is the bias estimator for the KL (relevant part of KL)
divergence and then a biased estimator for distance between the true and the postulated model. The

biased term is given in Konishi and Kitagawa (1996) and Bozdogan (2000) as follows,

z

. 17 o r o~ 1
bias= Eif - & logg(¥iiXi;bn) _ 10gg(yiXi;bn) f(y) dyg= —tr(l L)+ O(n ?)
i=1



wherel is the inverse Fisher information matrix in inner product (Hessian) formJdaadhe outer
product form of the Fisher information matrix for vectmr
In speci ed casdr(l 1J)= pthe number of parameter in postulated model. The test function for

this type hypothesis is given by

8
% 1 if Th(Y;bn) < Kn
f(Y)=
3 0 if Ta(Y;bn) > Ky
Under some regularity conditions and this fact that
18 P 18
—a logg(Yi;b)d = Eif —Q logg(Yi;b)g  (4)
Ni=y Ni=y
this test statistic is consistent or asymptotically unbiasedEf(Br% &L, logg(Yi;b2)g
Theorem 1 : Suppose thaty;:::; Y, i.i.d with unknown densityf (:). LetG= fg(;;b);b2 B
Rgis a parametric family of assumed densities¥és. If Ho holds, under conditions (C0)-(C4) and

(4) we have:

Vb P Eit S

n
A logg(Yi;bo)g:
=1

To make a decision abotiy we need to know the distribution of the test statistic under null
hypothesis. In theorem 2 we handle an asymptotic density of our statistics.

Theorem 2: Under regularity conditions

19 oA oA .
%ﬁa[logg(\ﬁm;bn) E+flogg(YijX;bn)al = N (0;Varflogg(YjX;bs)g):

i=1

proofs are given in Chapter 6, see Theorems 6.2 and 6.5.



Corollary 1:

AC EKL,
Zn= ¢ 2n gn b N (0;1):

5 Vareflogg(YjX;b2)g

It is because, by theorem 2

i(p IAIC) EKLgy

Zo= § . - N(0;2):
5 Vareflogg(YjX;b2)g
which implys that
AC  EKLy i
Zy= ¢—2 T+ q . 'E N

IVariflogg(YjX;bs)g  EVarsflogg(YjXi;b-)g

We assumed that ar¢f logg(YijXi; b2)g < ¥, using Slutsky's theorem faf, ands n !
LVariflogg(YijXi;b2)g

0 show that the corollary is true. As an estimator¥6ar:f logg(Y;jX; b»)g we use the estimator as

14 . 1d N,

= a flogg(YijXi;bn)g® f = & logg(YijX; bn)g’:
Niz1 Niz1

See Biernacki (2004)and using Slutsky's theorem.

Using theorem 2 we can achieve a con dence intervaH#il_q, or E¢(AIC) as follows

P &1L 4flogg(YijXi;bn) EKLgng
" Varflogg(YjX;b2)g)

pf Za < <zg9=1 a

which give us 1 a)% con dence interval foEKLgn as

. q X q
Ta(Y;bn) n %z, Variflogg(YjX;bo)g ; Ta(Y:bn)+ n 2z, Vareflogg(YjX;bo)g

or for EKLgnas

AIC 2p 1=2

n AIC 2p+ n 1=2
2n

q
n Z,= Vartflogg(YjX;b-)g

q
Z, Vartflogg(YjX;b2)g ;

Corollary 1 help us to construct a con dence interval fdeKLg, as

q q
% n %2z, Varflogg(YjX;b2)g ; %H\ 227, Variflogg(YjX;bs)g



10.4 Simulation

10.4.1 exploration of our result

To explore and apply the corollary 1, we consider two simulation studies. Figure 1 shows the result of
simulation study of normality for standardized AIC. We generafediservations from a bivariate
uniform density each one dn P 3; P 3]. We consider the logistic linear regression and nd the pre-
cisely estimate oEKLy, andV ar¢flogg(YijX; b2)g which are respectivelfEKLgn =  0:40879

andV ar¢f logg(YijXi;b-)g = 0:31518. For sample size n=1000 and b=1000 iterations, we achieve
1000 values for AIC in logistic regression. To con rm that our quan#tyis asymptotically stan-

dard normal we draw the histogram of observed AIC's and its cumulative distribution function to

comparison with standard normal density. These gures are agreement with normaifg.of

Figure 1. Comparison of histograms and cumulative distribution functions of observed AIC's and standard

normal density

10



10.4.2 Application to The Multiple Regression Model.

As an illustration of this approach we consider the model choice in multiple regression. Consider
the regression model as (2), i.e.

Yo 1= Xn pbp 1+ &0 1
Suppose there is a suspects that some regressors are unusefull for explarenghe true value
of the coef cients of these regressors are zero but we do not know which of the coef cients. Then
the appropriate candidate models are all submodels of the regression equation. To formulate this, let

u2f0;1gP, thatisuisap 1 vecor of ones and zeros. Then we can de ne the submodels as
fb:b;j=0 if u;=0;j= 1 po:

By yhis notation the full model is correspondingue ( 1;:::;1) and the set of all candidate models
is given by

M = fMy:u2f0;19°g:

To illustrate our approach we considered i.i.d sample of size (Y;0f1; X2; X3): As a true model
we setY = 0:5+ X; + 1:25X3: By this knowledge we want to construct a con dence interval for
EKL: In fact we expect that average of the uppers and lowers limits of con dence interval of
EKL for the models with two explanatory variable be less than same things for the models with
one explanatory variable. Our simulation study for n=10000 observations shows that the average
con dence interval for models witlfiX1; Xog andf X,; X3g is in the left of the average con dence
interval for models withf X;g, f Xog andf X3g as explanatory variables. This average interval for
models with one and two explanatory variables wgr®38521:66645 and (1:512821:54030
respectively. The length of these intervals a@27936 and @2748. For intercept model theEKL

was 1935429. This result con rms that best model to apply is the model with two explanatory

11



variables, see table 1. For another true modef as0:5+ X; + 1:25X, + 2:5X4 we consider the

subclasses asf Xy; Xo; X30; f X1; X3; Xa0; f Xo; X3;Xag ;T X1; X20; T X1; Xa0; f Xq; Xa0; f Xo; X30;

fX2; Xa0;f X3; X490 and fX10;f Xo0;f X3g;f X4g and construct the average intervals for each one,

the result wag$1:7899561:817359, (2:0145632:04203§ and(2:2831592:351173 respectively.

The lengths of these intervals ar®27403, 0027473 and @68014. For intercept model theEKL

was 2522105. This result again con rms that the model must be a model with three explanatory

variables, see table 2. The result for relatively small sample size is a little different. For example

for n= 100 observations the result for regression model with four explanatory variables is given in

table 3. The intervales are overlap and length of average of interval limits are increased.

Table 1- The average of interval limits for AIC's and its length for regression model.

(case with three explanatory variables, n=10000)

True Model:Y = 0:5+ X3+ 1:

25X3

classof explanatoryvariables averageof interval limits| length of interval

f X10;f Xogf X3g (1.63851,1

f Xq; Xo0f X2; X309 (1.51282,1

.66645 0.02794

.54030 0.02748

Table 2- The average of interval limits for AIC's and its length for regression model.

(case with four explanatory variables, n=10000)

True Model:Y = 0:5+ X; +

1:25X+ 2:5%4

classof explanatoryvariable

5 averageof interval limits

length ofinterval

fX10;f X0, f X30; f Xa0
X1, Xo0;  Xq; Xa0;  X1; Xa0; f Xo; Xag; f Xo; Xa0; f X3; Xag

 X1; X2; X30; T X1; X35 Xa0; T X2; X3; Xag

(2.283159, 2.351173
(2.014563, 2.042036

(1.789956, 1.817359

0.068014

0.027473

0.027403
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Table 3- The average of interval limits for AIC's and its length for regression model.

(case with four explanatory variables, n=100)

True Model:Y = 0:5+ X3+ 1:25X, + 2:5X%,4

classof explanatoryvariables average of interval limits| length of interval

fX10;f X20; f X30;f Xa9 (1.973091, 2.642405 0.669314
f Xq; Xo0; f Xq; X30; f Xq; Xa0; T X2; X3g; f Xo; Xa; f X3; Xa0 (1.865973, 2.153741 0.287766
fX1; Xo; X30; f X1; X3; Xa0; T X2; X3; Xag (1.641730, 1.923548 0.281818
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Example 1:As a consequence of theorem 2 consider the linear model described in (2). The

log-likelihood for this model is given by

n
NalYiXbs2y= 1 N oe2 1 T .
Iogi(:)lg(\nmb,s)_ 51092p  Slogs? S 5(Y Xb)T(Y Xb):

The MLE of the parameterb ands are given byb, = (XTX) 1XTY and§2 = w

respectively. Under model (1) we have

n
EflogQ g(YjXb;s2)g= 2I092p glogsz %(x?b? Xb)T (Xobs  Xb):
i=1

The expected maximized log-likelihood is

n N qa2 5 1 0T AW
2|092p zlogsn 2,\% 2§%(X’_}b? Xbp) ' (Xob,  Xbp):

It is known that

ns3 n? n§2 n?
Eif —2g= —E:f(—=") g= ——
f23%9 2 f(s%) g 2(n p 2
and
1 o < 1_ . s3(Xbs Xbn)T(Xeb, Xbp) np
Now
g _n n A2 n(n+ p)
i§1EKLg;n— EIogZp éEfflogsng 720] o 2
On the other hand
2
E(flogé2g= Y (" 5 Py+ Iogzin?

whereY is the digamma function,see, Hurvich and Tsai (1989)

By theorem 2 we have

2s3 S
i flogZz + By (%,R)  SlogsZ §+ Py YN (0:1):

A

Nl |
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We can use this result to construct a con dence interval.

log2+ Y("2)+ logL log§2 1+ n”’;ng<
G

1 a=P(L<s3<U)= p(logL< logs3< logU)= pf

2
n
logZ+ Y (";")+ logs? logs7 1+ n"*ppz< logZ+ Y ("5)+ logu log§7 1+ n”;ng
h | E | E
n n
Then
loga+ Y (";P)+ logL logs? 1+ ;7B
&— = Za
2 2
n
and
logZ+ Y (%2)+ logu log§2 1+ n”;pz _,
9 — _— a
2 2
n
now we have
' 2 2
_ n p a2 +p
L=e Z — log- Y + logs5+ 1
xf Zy - logs Y(=5)+ logs] L
and
' 2 2
_ p a2 +p
U=exgdZa = log= Y + logss+ 1
MZg — log— Y(——)+ logsy o 29
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Conclusion
The purpose of this research is to clarify some facts and provide a simple test to model selection
which is relatively new branch of mathematical statistics. The aim of statistical modeling is to
identify the model that most closely approximates the underlying process. On the other hand from
a statistical standpoint, observed data are tainted with sampling error. Consequently, when we ta
model to the data, the model's performance re ects population pattern and also the patterns due to
sampling error. Such patterns will be speci c to the particular sample and will not repeat themselves
in other samples. A complex model with many parameters tends to capture these sample patterns
more easily than a simple model with few parameters. Then, the complex model yields a better t
to the data, it is not because of its ability to more accurately approximate the underlying process
but rather because of its ability to capitalize on sampling error. Therefore, choosing a model based
solely on its t, without appropriately Itering out the effects due to sampling error, will result in
choosing an overly complex model that generalizes poorly to other data from the same underlying
process. Consequently model selection should not be based on a model's ability to t particular
sample data but instead should be based on its ability to capture the characteristics of the population.
There are actually some different tests to model selection and consequently some different questions
can be asked about them. Each of tests have advantages and disadvantage in their domain of usage.
In almost all of the tests and criteria to model selection the maximum likelihood estimator and
maximized likelihood function have a essential role. With a careful attention there are two separate
functions over parameter space. The rstis the probability density for maximum likelihood estimator
over the parameter space, and the second one is the likelihood function, which de ned the probability
of the data in any particular point in parameter space. As we see both are de ned on parameter space

but each has a different meaning. They are related by normality assumption which also determines

16



the stochastic behavior of the log-likelihood of the observed data. This knowledge is a starting
point to de ne a simple model selection criterion as normalized maximized likelihood function.
This works for some known case when the distribution of data is normal. But its disadvantage is
that using the data at hand for estimation and evaluation. On the other hand increases when the
number of useless parameters in a model increases. This leads to select the more complex model.
Akaike solved these two dif culties by his assumption about domain of data and by parsimony
quantity. TheAlC introduced by Akaike consider the parsimony principal to reduce the bias term

in model selection. The main goal of this statistics is to estimate two times the relevant part of
the Kullback-Leibler divergence. But this is an unusual quantity to estimate, because it depends
to the number of observations. In fact we encounter the same dif culty as for estimating a sum
in a population by a sum in the sample, in this case we know that the error of estimation grows
when the sample size increases. The normalization idea is useful to solve this problem. This is
the criterion which we use to clear the fundamental problem in model selection. In fact we want
to show that the normality of thalC's and that the constructed con dence interval by normalized
AIC re ects the fact about models. When we do not know the correct model the average of limits of
these types of con dence interval give us an idea about the number of parameters in the model. On
the other hand these types of con dence intervals show uAl@iés not a increasing function of the
number of parameters in the model. Actually we are in search of a distinguished line between the
values of the average of con dence interval limits to select the best model under parsimony. In fact
complexity in model is good for reduction of bias, and that simplicity of model reduces the tendency
to over t. On the other hand the best trade off between unknown bias and unknown variance is
the model selection criterion aims. But how to do it trade off? This is the main question in model

selection. Here we are about the reduction of bias. With this hypothesis that the future observations
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are in the same domain as observed data it seems that the bias is more important than variance.
Actually as the rst step in model selection we are in search of a admissible bond for the average of
con dence interval limits to select the best model under parsimony. This admissible set of models
must be contain all models which are near to the selected moddlbhyConsider some models with

k;k+ 1;:::k ;:::k+ | explanatory variables. Assume that the model Witlexplanatory variables is

the selected model b4 C. On the other hand by our simulation it seems that for intermediate sample
size there is the intersection between some of the con dence intervales for model§ &vikh
explanatory variables and that for selected model. We say two models are neer to each other if there
average con dence interval limits has intersection. We set these kind of models in the admissible
set. Now our search will be in this set. This chapter needs to be developed by further work with
other models for nding the admissible line which enable us to select the set of candidate models.
This work needsbe developed by further work with other models for nding the distinguished line

which enable us to select the set of simpler candidate models.
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Inference about differences of AIC: application to the choice of variable coding in logistic

regression

SUMMARY

We propose a better use of Akaike information criterion (AIC), focussing on two issues: inference
(one must not forget that AIC is a statistic) and interpretation (the exact value of AIC has no direct
interpretation while we are interested in quantifying the risks when using particular models). We
propose a statistic, a normalisation of a difference of Akaike criteria, which estimates the difference
of expected Kullback-Leibler risks between maximum likelihood estimators of the distribution in

two different models. The variability of this statistic can be estimated so that an interval can be con-
structed which contains the true difference of expected Kullback-Leibler risks with a pre-speci ed

probability. A simulation study shows that the method works and it is illustrated using a study of the

relationship between body-mass index and depression in elderly people.

Some key wordsAkaike criterion, depression, Kullback-Leibler, logistic regression, model choice.

10.5 Introduction

Since its proposal by Akaike (1973), Akaike information criterion (AIC) has had a huge impact on
so-called “model choice”, in particular in the application of statistical methods; see the presentation
of deLeuwe (1992). It is often used in its original simple form, precisely because of its simplicity.
Many variants of the criterion have been proposed. We may cite in particular the EIC (Konishi and

Kitagawa, 1996; Shibata, 1997) which makes use of the bootstrap; the approach has been extended
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to the choice of semiparametric estimators by Liquet, Sakarovitch and Commenges (2004) and Com-
menges et al. (2007). One concern with AIC is that it is felt that it does not put enough weight on the
guality of parsimony of the model, and other criteria have been proposed such as the BIC (Schwartz,
1978) or approaches based on complexity (Bozdogan, 2000).

Our aim is to propose a better use of AIC, keeping here in the framework of parametric models.
We will focus essentially on two issues which have been rather neglected in theoretical develop-
ments. The rstis that of inference: it is generally forgotten that AIC is a statistic and as such has a
distribution. AIC is commonly used to select the “best” model on the basis of a sample; however if
another sample of the same size was available we might nd that another model has a smaller AIC.
So we should pay attention to the differences of AIC between different models and be able to esti-
mate the variability of these differences. Such a study can be based on the results of Vuong (1989).
However Vuong (1989) placed himself in an asymptotic context in which the Akaike correction is
negligible.

The other issue is the interpretation of differences of AIC. Indeed, the value of AIC has no
intrinsic meaning; in particular AIC is not invariant to a one-to-one transformation of the random
variables. Investigators commonly display big numbers, only the last digit of which are used to
decide which is the smallest. We recall that a normalized difference of AIC is an estimate of a
difference of Kullback-Leibler risks and thus, is interpretable. We give some examples of values of
such differences to help develop an intuition of what a large or a small difference is.

In section 2 we present the relevant Kullback-Leibler risk and we show that the normalized
difference of AIC is an estimate of the difference of risks; moreover we propose a so-called “tracking
interval” which should contain the difference of risks with a given probability; we also give insight in

the interpretation of the differences of risks. This general approach may change the use of AIC since
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we do not pretend to detect the “best” model but identify which estimators are acceptable on the basis
of the available data. For illustrating this general approach we apply it to the problem of choosing

between different codings of an explanatory variable in logistic regression. Section 3 presents a
simulation study which allows in particular to assess the properties of the proposed tracking interval.
In section 4 we present an illustration on real data: this is a study of the effect of body-mass index

(BMI) on depression using data from the Paquid study. Section 5 is a short conclusion.

10.6 Theory about inference of differences of AIC criteria
10.6.1 Estimating a difference of Kullback-Leibler divergences

Consider a sample of independently identically distributed (iid) random varPKble(sYi; i=1:::;n)
having probability density function (pdf)= f(:). Letus consider two modelgg) = ( g°(})) p25; B
APand(h)=(h%(:))gsG AY.

De nition 10.1 (i) (g) and (h) are non-overlapping if{g)\ (h) = ©; (ii) (g) is nested in(h) if
(g) (h): (iii) (g) is well specied if there is a valué 2 B such that § = f; otherwise it is
mis-speci ed.

The loglikelihood loss ofP relatively tof for observatiorY is Iog%. Akaike (1973) grounds
this choice of a loss function by arguing that all information for discriminating between distributions
is contained in the likelihood ratio (Blackwell, 1953) so that the loss should be a function of it, and
showing that the logarithm is the best function to choose. The expectation of this loss podesk,
is the Kullback-Leibler divergence (Kullback, 1968) betwefrand f: KL(g?; f) = E¢[log %1.
We have KI(g°; f) 0and KL(g?; f) = 0 implies thag® = f, thatisb = b . The Kullback-Leibler

divergence is often intuitively interpreted as a distance between the two pdf (or more generally

between the two probability measures) but this is not mathematically a distance; in particular the
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Kullback-Leibler divergence is not symmetric. It may be felt that this is a drawback, and in particular
it makes any graphical representation perilous. However this feature may also have a deep meaning
in our particular problem: there is no symmetry betwéethe true pdf, and, a possible pdf. So
we shall take on the fact that the Kullback-Leibler divergence is an expected loss (with resfect to
and not a distance. We assume that there is a \m/@eB which minimizes KI(g®; ). If the model
is well speci edbg = b :; if the model is mis-speci ed K(g; f) > 0.
Since the main interest of a model is to approécit is of obvious interest to estimatg. We
have that

KL(g" )= Ellogf(Y)] Efllogg®(Y)I:

The rstterm on the right-hand sidd(f) = E¢[log f(Y)] is the entropy off and cannot be estimated
directly sincef is unknown; however, it does not depend on the parambteos on(g). The second
term on the right-hand can not be directly computed because of the expectationf yhdarever,

replacingf by its empirical estimate we obtain the estimator

n
n 18 logg’(Y)= n 1LY
i=1

whereL%: is the loglikelihood based on the samm_e Thus, the maximum likelihood estimator
Bn minimizes a natural estimator of Kg°; f). Moreover it can be shown th&tq is a consistent
estimator ofog.

Now if we consider two or more models, there is the problem of choosing between them. A
natural way is to choosgg) against(h) if KL (g%; f) < KL(h®; f); we shall say in that case that
(0) is closerto f than (h) (avoiding to qualify(g) as“better” which may be misleading in this
context). There are two problems: (i) we can not estimatégkd; f) because the entropy dfcan

not be correctly estimated; (ip andg are unknown. The two problems are solved by noting
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that we can estimate the difference of Kullback-Leibler divergences(giktf) KL (h®;f) by
n HLE" L),
This result may not be completely satisfactory in practica i§ not very large because the

distribution we will use igg® rather thargP. In consequence a more relevant criterion for model

f(Y)

choice is E[log )

] that we call the expected Kullback-Leibler risk (or simply Kullback-Leibler
risk) and that we denote by El(gf’"; f). This is the point of view introduced by Akaike (1973).
He also showed that 1L%: " overestimated E[Iogan(Y)] (because of the maximisation procedure)

and proposed a criterion correcting for the number of parameters of the model:
bny — gbn .
AIC(g°) = 2L\7n + 2p:
Akaike's approach was revisited by Linhart and Zucchini (1986) who showed that:

EKL(gP": f) = KL (gPo; f)+ %n ITr(ly Ng) + o(n b); (10.1)

wherelg = Ef[%jbol andJg = E¢f [ﬂlogﬂg;(y)jbO][ﬂlog.ﬂg;(Y)jbo]Tg. This can be nicely inter-
preted by saying that the risk EKgE’"; f) is the sum of the mis-speci cation risk KgP; f) plus the
statistical risk%n 1Tr(Ig 1Jg). Note in passing that ifg) is well speci ed we have K{g: f) = 0

andlg = Jg, and thus EKIgP; f) = £+0o(n ).

We also have:
EKL(@™ )= n 1"+ H(f)+ %Tr(lgng)+ op(n 1): (10.2)

Here we have essentially estimatee[lBggPo(Y)] by n 11 put because of the overestima-
tion bias, the facto% in the last term disappears; thus the tq}ﬂﬁ(lg 1Jg,) is the sum of two equal
terms, the statistical error and the estimation bias of the mis-speci cation risk (of course the mis-

speci cation risk is estimated up to the constahtf)). Akaike criterion follows from (10.2) by
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multiplying by 2n, deleting the constant tert(f) and replacing T, 1Jg) by p; in fact the cor-
rectionp arises only if the model is well-speci ed (in which cakgg= Jg) but Linhart and Zucchini

(1986) argue that it can be used even if the model is not well-speci ed. Using (10.2) we obtain:
bn g o
n f L%, Lengh [Tr(lg 1\]g) Tr(Ih 1Jh)]g = D(gbn; ht) + op(n 1);

whereD(gP;ho) = EKL(gP: f) EKL(h®: f). It is possible to estimate the matricks Jg, In
and J,, by plugging the estimatorEn and ¢, into the expression of these matrices, and thus an
estimator ofD(gf’”;h@h) is obtained. A simpler estimator dij(an;h@h) is obtained by using the

Akaike approximation T, 1Jg) p:
~ . 1 ~ N Bn N
D(g™:h¥) = Sn YAIC(g™) AIC()= n " LYY (p Q)

We will prefer estimatOIg*AJn to ht if this “estimate” is negative, meaning that the estimate of the
expected loss incurred in usilgén in place off is less than that incurred in usihé.

Thus, in contrast with AICD(QE’"; ht) has an interpretation since it tracks the quantity of main
interestD(gE’n; ht) with pretty good accuracy. Moreover it has important invariance properties.
Lemma 1 (Invariance properties) BothD(gE’n; ht) and D(an; ht) are invariant under reparametriza-
tion, one-to-one transformation of the observed variables and change of the reference probability.

The proof is straightforward. It can be noted that AIC itself is invariant under reparametrization
but neither under one-to-one transformation of the observed variables nor change of the reference

probability.

10.6.2 Tracking interval for a difference of Kullback-Leibler divergences

In practice the epidemiologists or biostatisticians choose the model which has the best AIC. However

itis important to know with which con dence we can infer the sign of the difference of the EKL from
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the difference of the AIC. Moreover the statislt)¢g5n; hth) estimates the difference of the expected
losses which is of interegter seand should be interpreted. We are in a context of model choice

or rather of estimator choice. The question is not to nd the true model, because all the models are
more or less mis-speci ed; it is not even to choose the closest model, but the best estimator based on
the available sample. The good choice does not depend only on the models but also on the quantity
of information (here essentially) available in the sample.

We focus on the case wheg 6 h®. This is necessarily the case if the models do not overlap
and may also be often the case even if the models overlap or are nested. Using Theorem 3.3 of
Vuong (1989), which is valid under conditions clearly stated by this author, we obtain that in that
case:

i 2D(gP ;) D(gPi )] 1P N (Ow);
h
wherew? = var log %ggg; . A natural estimator ofv? is

" A #,m

2 R
~ g Pr(Y) & g™(¥)
#2=n 18 logL U nldlogz—=

BRI &, v,

From this we can compute the tracking inter@@; Bn), whereA, = D(gPr;h®)  z,n 72,
and By = D(gf’”;h@“)+ Za—on W, where 1 F(z,—) = a=2 andF is the cdf of the standard

normal variable. This interval has the property:
Pt[An < D(gka”;hg‘) <By! 1 a;

wherePs represents the probability with density

We can also judge whether the values within the intervals correspond to large or small expected
losses, according to the hint given by Commenges et al. (2007). This paper established a link
between the value of K{g; f) and the relative error made in evaluating the typical set whose prob-

ability is underestimated usirgyrather thanf, and used this to qualify KL values of 18, 10 2,
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10 3, 10 4 as “large”, “moderate”, “small” and “negligible” respectively. As an example the KL
divergence of a double exponential relative to a normal distribution with same mean and variance is
of order 10 * what may be called a “large” value. We may also measure on this scale the magnitude
of the Akaike correction ofp g)=n: for instance if we compare two models with g= 1 and

we haven = 100 or withp q= 5 and we haven = 500 the Akaike correction is 1@ in both

cases, a value quali ed as “moderate”; as a matter of fact Akaike correction is rarely negligible in
epidemiological studies. As already noted we can give an interpretation of EKL from (10.1) as the
sum of the mis-speci cation risk K(gP°; f) and the estimation risk, approximated py2n. For a

well speci ed model the risk is aboyt=2n; for instance it is 102 if p= 10 andn= 500.

10.6.3 Extension to regression models

All that has been said can be extended to regression mealglg = ( ggjx(:j:)) b2 and(hyjx) =

(hgjx(:j:))gze. This can be done as in Vuong (1989) by directly de ning the Kullback-Leibler di-

vergence in term of conditional densities: (g?ix; fyjx) = Et[log gé‘xgii;] where the expecta-

iX

tion is taken for the true distribution of the coupteX. However this approach has the draw-
back of requiring a new de nition of the Kullback-Leibler divergence . The so-called reduced

model approach (Commenges et al., 2007) is more satisfactory. Consider a sample of iid couples

(9) = (P(:;2) b2 Such thagP(y; x) = gf;jx(ij) fx(X) ; the model is called “reduced” becaukq:)
is assumed known. The Kullback-Leibler divergence is:
KL(g% ) = Efllog fyx(YiX)]  Erlloggyy (Y:X)];

that is the term infx(;) disappears (so that we do not need to know it in fact) and we get the same

de nition as in Vuong (1989) using only the conventional Kullback-Leibler divergence .
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10.7 Application to logistic regression: a simulation study

As an illustration of this general procedure we will apply it to the problem of choice of the coding

of an explanatory variable in logistic regression. We considered iid samples of sizé&riples

f). The conditional distribution of; given (x;;x,) was logistic with logify;x (1jx};X,)] = 0:5+
X + 2%, where fyjx (1jx;%) = P (Y = 1jx;;%,), P stands for the true probability; the marginal
distributions of(xil; xiz) were bivariate normal with zero expectation and variance equal to the identity
matrix. We considered modéd)) speci ed by Iogi[g$jx(1jxil;xi2)] = bo+ byx| + byx,, which was
well speci ed and the (mis)-speci ed modéh) de ned as Iogi{hgjx(ljxil;xiz)] = o+ &%, ax, +
ggxiz, Wherexi1| were dummy variables indicating in which categorj@sfell; the categories were
de ned using terciles of the observed distributionxaf and this was represented by two dummy
variables:}, indicating whethex fell in the rst tercile or not,x, , indicating whethexi fell in the
second tercile or not.

Since model (g) is well speci ed we know thgle = f, that the mis-speci cation error K{gPe; f)
is zero and that Tt, lJg) = p. As for model (h) we must compute the quantities of interest
by simulation. We can compute that in the logistic regressionl tkderm of the matrixJ, is
Ef[x(Y %)Zxk] , and that thd;k term of the matrixly, is E¢[x %xk]. We estimated
o by tting model (h) on a simulated data set with= 10°. Our precise estimatg, was thus

&
(1+ )2

oh for n= 10°. We used it to precisely estimafig and I, asl, = 10 5é’1i1=°51[x}

%] and

Jh=10 5é’1i1=°51[x} \% ﬂ)zx{(]. We estimated K{h®; f) by 10 Séﬂilogw We also

1+ &' ARy (Y )
. . - - frix (VX xbh)
2 iX 172
computed a precise estimatewf, w?, by the empirical variance of Ioéﬁhij(\ﬁixil:xiz) computed on

10° replicas. Thus we can compute a precise estimate of(6KLf) and EKL(an; f) by replac-

30



ing the terms on right-hand of (10.1) by their estimates. Becég)se well speci ed we obtain
immediately EKL(gE’“; ) 2—3;1; a precise estimate of EKan; f) EKL(h@h; f) is thus given by
D=2 KL(h®;f) XTr(l,*J). We nd rstthat KL (h®; f) 7:28 10 3, a value approaching
the “moderate magnitude”. We found 3.998 and 3.999 for the vaIues(qI}Eh) for n= 250 and

n= 1000 respectively. These values are very closq 104 (that would obtain if(h) was well-
speci ed) so, in the following we will use this approximation. Using this approximation we can
computeD= 2 KL(h®;f) and obtainD=9:28 10 3 for n= 250 andD= 7:78 10 3 for

n= 1000. We also ndw? = 1:44 10 2. We can then compute the standard errobaisn 172w

and nd 7:59 10 3 and 379 10 2 for n= 250 andn = 1000 respectively. We see at once that there
is more chance that the tracking interval does not contain zem#0t 000 than fon = 250.

We generated 1000 replications from the above model o250 andn = 1000. For each repli-
cation we computed the maximum likelihood estimates and the AIC. We computed the histogram
of D(gf’n; ht) (see Figure 1): its shape is approximately in accordance with the asymptotic normal
distribution for both sample sizes; the empirical mean was0 10 2 and 7:67 10 2 for n= 250
andn = 1000 respectively, close to the valueshf The empirical variance dd (not shown) was
in agreement with the theoretical variance computed fwmThe mean of the estimated variances
W2 was 188 10 2 and 154 10 2 for n= 250 andn = 1000 respectively, also reasonably close to
thew?. The proportion of replicas for which was outside thed5 tracking interval was:045 and
0:053 forn= 250 andn = 1000 respectively. The proportion of replicas for which zero was outside

of the tracking interval was:097 and @614 forn= 250 andn = 1000 respectively, and in all cases

(g) was prefered tgh). These results are summarized in Table 1.
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10.8 Choice of the best coding of age in a study of depression
10.8.1 The Paquid study

The application is based on the Paquid research programme (Letenneur et al., 1999), a prospective
cohort study of mental and physical aging that evaluates social environment and health status. The
target population consists of subjects aged 65 years and older living at home in southwestern France.
The baseline variables registered included socio-demographic factors, medical history and psycho-
metric tests. In particular the CESD scale for depression was completed. Here we illustrate the
method of the paper by examining possible models of association of depression and BMI. As is con-
ventional, depression was considered as a binary trait coded by a dichotomized version of the CESD
(using the thresholds 17 and 23 for men and women respectively). We worked with the sample of
the rstvisit of the Paquid study and we excluded the subjects who were diagnosed demented at that
visit: the sample size was 3484. We tted logistic regression models for explaining depression from
BMI, age and gender. We entered age, gender and their interaction as explanatory variables. As for
BMI which was the factor of main interest, we tried a linear (in the logistic scale) model and then
we challenged the linear model by trying a categorization of BMI in terciles and a quadratic model.
Both the tercile and the quadratic models have six parameters while the linear model has ve. Note
that the linear model is not nested in the tercile model while it is in the quadratic model.

The values of AIC, and the statistic and tracking intervals (taking as reference the linear model)
are given in Table 2. The tercile model had a larger AIC than the linear model but the point estimate
(D) of the difference of risks was lower than 1Da level that we have quali ed “negligible”, and
zero was well inside the tracking interval. So from the point of view of Kullback-Leibler risk there

was no evidence than one model is better than the other. When it comes to comparing the linear
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and the quadratic model, because the rst is nested in the second, we can use the likelihood ratio
test: the null hypothesis is that the best distribution is in the linear sub-model. The hypothesis was
strongly rejectedg < 0:01). We tend to conclude that the shape of the effect is not linear and that
we may approach it better with a quadratic term. The point estimate of the difference of risks was
0:0007, a value which approaches the d0evel that we quali ed to be a small (but not negligible)
difference. The tracking interval wds 0:0001;00023 which includes zero, so we are not really

sure to incur a smaller risk with the quadratic model. However we can correct the lower bound of the
interval by the following argument. (fg)  (h) we have that Ki(g®; f) KL (h®; f). Thus from
equation (10.1), using the approximatior(l'grng) pwe obtainD(an; ho) 2—1n(p g). In our

case we obtairD(gE’";h@“) 1:4 10 4. Thus the maximum increased risk in using the quadratic
model is negligible. It may seem paradoxical (in view of the likelihood ratio test) that we can not
assert with high probability that the estimator based on the quadratic model is better than that based
on the linear model, but we must remember that the asymptotic law of the likelihood ratio we use is
not the same as in the likelihood ratio test. The likelihood ratio test tells us that the quadratic model
is closerthan the linear model from the true distribution but it is still possible that we incur a larger
risk when using the quadratic model estimator because of the increased statistical risk; however from
the tracking interval we see that we are exposed to a negligible additional expected Kullback-Leibler
risk when using the quadratic model while it is likely that it is in fact smaller. In conclusion, in
this application there is no reason to prefer the tercile model to the linear model but there are some
reasons to prefer the quadratic model to the linear model. Figure 1 shows the shape of the effect
of BMI with the quadratic model, taking as reference the median BMI (equal to 24.2). This is a U-
shaped curve yielding the lower risks of depression for medium values of the BMI, somewhat shifted

however toward large BMI. Of course the epidemiological interpretation of this result is delicate and
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the apparent effect that we have detected is the consequence of complex biological and psychological
mechanisms that we do not attempt to explore here. Several other studies have found links between

BMI and depression; see for instance Rantanen et al. (2000).

10.9 Discussion

We have proposed a statistic which tracks the difference of expected Kullback-Leibler risks between
maximum likelihood estimators in two different models. Moreover we have an estimator of the
variance of this statistic and we can construct a “tracking intervid”.ne we can do more than
simply choosing the estimator which has the lowest AIC. We can estimate the difference of risks.
This difference of risk has the same meaning in different problems and we may become accustomed
to considering differences of 18, 10 3, 10 4 as moderate, small and negligible respectively, as we

are accustomed to interpret correlation coef cients or odds-ratios for instance.

A more complex and related problem occurs if we try a large number of models. In that case

g&okf’” the estimator with the smallest AIC. For the other estimators we may corﬁ]QgEé";gEO ".

Of course tth(gEk”;gEOkO”) are correlated and a con dence interval has to take into account this
correlation as well as the multiple testing issue (Edwards and Hsu, 1983; Hsu, 1984). Shimodaira
(2001) has proposed an interesting approach to this problem, leading to de ne a set of admissible

models.
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Table 8.1: Simulation study: choice between tercile and linear model for the explanatory variable in

a logistic regression model

n D D W2 Coverage rate  Power
250 928103 950103 188102 0:955 Q197
1000| 7:7810°3 767103 1541072 0:947 0514

Table 8.2: Application: comparison of the linear, tercile and quadratic models for the effect of BMI
on depressionD and the tracking interval for the difference of Kullback-Leibler risks are with

respect to the linear model.

Model | # parameters Likelihood  AIC D Tracking interval
Linear 5 134625 27025 - -

Tercile 6 134560 27032 0:0001 [ 0:0009;00007
guadratic 6 134293 26979 (0007 [ 0:0001;00022
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Figure 8.1: Histogram of the values Bf(which estimates the difference of Kullback-Leibler risks
between the tercile and the linear models) in the simulation: upper gure250, lower gure,

n= 1000.
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Figure 8.2: Estimated “effect” of the BMI on depression in the quadratic model: odds-ratios with
respect to the probability at the median of BMI (24.2); the dots have for abscissas the observed

BMI values.
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