Y. Then, S. , and D. , we deduce that S ?,? D ? = 0 in Y \ D. Finally, from the jump of the normal derivative of S ?,? D ? on ?D, we deduce that ? = 0. The assumption on ? 2 /k leads to ? = 0. This is in contradiction with the fact that (?, ?) = (0, 0) This completes the proof

J. Albert, Generic properties of eigenfunctions of elliptic partial differential operators, Transactions of the American Mathematical Society, vol.238, pp.341-354, 1978.
DOI : 10.1090/S0002-9947-1978-0471000-3

H. Ammari, M. Asch, and H. Kang, Boundary voltage perturbations caused by small conductivity inhomogeneities nearly touching the boundary, Advances in Applied Mathematics, vol.35, issue.4
DOI : 10.1016/j.aam.2004.06.007

H. Ammari, N. Béreux, and J. C. Nédélec, Resonances for Maxwell???s equations in a periodic structure, Japan Journal of Industrial and Applied Mathematics, vol.263, issue.6, pp.149-198, 2000.
DOI : 10.1007/BF03167342

H. Ammari and H. Kang, High-Order Terms in the Asymptotic Expansions of the Steady-State Voltage Potentials in the Presence of Conductivity Inhomogeneities of Small Diameter, SIAM Journal on Mathematical Analysis, vol.34, issue.5, pp.1152-1166, 2003.
DOI : 10.1137/S0036141001399234

H. Ammari, H. Kang, M. Lim, and H. Zribi, Conductivity interface problems. Part I: Small perturbations of an interface, Transactions of the American Mathematical Society, vol.362, issue.5
DOI : 10.1090/S0002-9947-09-04842-9

?. H. Ammari, H. Kang, S. Soussi, and H. Zribi, Layer potential techniques in spectral analysis. Part I: complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions Layer potential techniques in spectral analysis. Part II: Sensitivity analysis of spectral properties of high contrast band-gap materials

H. Ammari, H. Kang, and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials, Asymp. Anal, pp.41-119, 2005.

H. Ammari, H. Kang, and H. Zribi, Electrostatics in high-contrast materials

H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, Journal de Math??matiques Pures et Appliqu??es, vol.82, issue.7, pp.749-842, 2003.
DOI : 10.1016/S0021-7824(03)00033-3

URL : http://doi.org/10.1016/s0021-7824(03)00033-3

H. Ammari and S. Moskow, Asymptotic expansions for eigenvalues in the presence of small inhomogeneities, Mathematical Methods in the Applied Sciences, vol.61, issue.1, pp.67-75, 2003.
DOI : 10.1002/mma.343

H. Ammari and F. Triki, Resonances for microstrip transmission lines, SIAM J. Appl. Math, vol.64, pp.601-636, 2004.

E. Beretta, E. Francini, and M. S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A??rigorous error analysis, Journal de Math??matiques Pures et Appliqu??es, vol.82, issue.10, pp.1277-1301, 2003.
DOI : 10.1016/S0021-7824(03)00081-3

E. Beretta, A. Mukherjee, and M. S. Vogelius, Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfections of small area, Z. Angew. Math. Phys, pp.52-543, 2001.

G. Besson, Comportement asymptotique des valeurs propres du Laplacian dans un domaine avec un trou, Bull. Soc. Math France, vol.113, pp.211-230, 1985.

Y. Capdeboscq and M. S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.1, pp.159-173, 2003.
DOI : 10.1051/m2an:2003014

D. J. Cedio-fengya, S. Moskow, and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, vol.14, issue.3, pp.553-595, 1998.
DOI : 10.1088/0266-5611/14/3/011

T. Chan and X. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, Journal of Computational Physics, vol.193, issue.1, pp.40-66, 2003.
DOI : 10.1016/j.jcp.2003.08.003

H. Cheng, W. Y. Crutchfield, M. Doery, and L. Greengard, Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory, Optics Express, vol.12, issue.16, pp.3791-3805, 2004.
DOI : 10.1364/OPEX.12.003791

H. Cheng and S. Torquato, Effective conductivity of periodic arrays of spheres with interfacial resistance, Proc. R. Soc. Lond. A, pp.453-145, 1997.
DOI : 10.1098/rspa.1997.0009

R. R. Coifman, A. Mcintosh, Y. Meyer, and L. , L'integrale de Cauchy Definit un Operateur Borne sur L 2 Pour Les Courbes Lipschitziennes, The Annals of Mathematics, vol.116, issue.2, pp.361-387, 1982.
DOI : 10.2307/2007065

G. Courtois, Spectrum of Manifolds with Holes, Journal of Functional Analysis, vol.134, issue.1, pp.194-221, 1995.
DOI : 10.1006/jfan.1995.1142

S. J. Cox and D. C. Dobson, Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization, Journal of Computational Physics, vol.158, issue.2, pp.214-224, 2000.
DOI : 10.1006/jcph.1999.6415

W. Y. Crutchfield, H. Cheng, and L. Greengard, Sensitivity analysis of photonic crystal fiber, Optics Express, vol.12, issue.18, pp.4220-4226, 2004.
DOI : 10.1364/OPEX.12.004220

D. Daners, Dirichlet problems on varying domains, Journal of Differential Equations, vol.188, issue.2, pp.591-624, 2003.
DOI : 10.1016/S0022-0396(02)00105-5

URL : http://doi.org/10.1016/s0022-0396(02)00105-5

A. Dienstfrey, F. Hang, and J. Huang, Lattice sums and the twodimensional , periodic Green's function for the Helmholtz equation

D. C. Dobson, An Efficient Method for Band Structure Calculations in 2D Photonic Crystals, Journal of Computational Physics, vol.149, issue.2, pp.363-376, 1999.
DOI : 10.1006/jcph.1998.6157

D. C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, An Efficient Method for Band Structure Calculations in 3D Photonic Crystals, Journal of Computational Physics, vol.161, issue.2, pp.668-679, 2000.
DOI : 10.1006/jcph.2000.6521

E. B. Fabes, M. Jodeit, and N. M. Riviére, Potential techniques for boundary value problems on C1-domains, Acta Mathematica, vol.141, issue.0, pp.165-186, 1978.
DOI : 10.1007/BF02545747

E. Fabes, H. Kang, and J. K. Seo, Inverse Conductivity Problem with One Measurement: Error Estimates and Approximate Identification for Perturbed Disks, SIAM Journal on Mathematical Analysis, vol.30, issue.4, pp.699-720, 1999.
DOI : 10.1137/S0036141097324958

A. Figotin and P. Kuchment, Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model, SIAM Journal on Applied Mathematics, vol.56, issue.1, pp.68-88, 1996.
DOI : 10.1137/S0036139994263859

]. L. Friedlander, ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT, Communications in Partial Differential Equations, vol.14, issue.1-2, pp.355-380, 2002.
DOI : 10.2307/2374041

A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Archive for Rational Mechanics and Analysis, vol.34, issue.4, pp.563-579, 1989.
DOI : 10.1007/BF00281494

G. B. Folland, Introduction to Partial Differential Equations, 1976.

R. R. Gadyl-'shin and A. M. , Asymptotic behaviour of the eigenvalues of the Dirichlet problem in a domain with a narrow slit, Sbornik: Mathematics, vol.189, issue.4, pp.503-526, 1998.
DOI : 10.1070/SM1998v189n04ABEH000305

I. T. Gohberg and E. I. Sigal, Operator extension of the logarithmic residue theorem and Rouché's theorem, Mat. Sb. (N.S.), vol.84, pp.607-642, 1971.

L. Greengard and J. Lee, Electrostatics and heat conduction in high contrast composite materials, Journal of Computational Physics, vol.211, issue.1, pp.64-76, 2006.
DOI : 10.1016/j.jcp.2005.05.004

R. Hempel and I. Herbst, Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Communications in Mathematical Physics, vol.54, issue.2, pp.237-259, 1995.
DOI : 10.1007/BF02099472

R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit, Communications in Partial Differential Equations, vol.26, issue.7-8, pp.1445-1470, 2000.
DOI : 10.7146/math.scand.a-12040

F. Hettlich and W. , The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems, vol.14, issue.1, pp.67-82, 1998.
DOI : 10.1088/0266-5611/14/1/008

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Physical Review Letters, vol.65, issue.25, pp.65-3152, 1990.
DOI : 10.1103/PhysRevLett.65.3152

K. Ito, K. Kunish, and Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems, vol.17, issue.5, pp.1225-1242, 2001.
DOI : 10.1088/0266-5611/17/5/301

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals. The Road from Theory to Practice, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00720587

T. Kato, Perturbation Theory for Linear Operators, 1976.

H. Kang and J. K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems, vol.12, issue.3, pp.267-278, 1996.
DOI : 10.1088/0266-5611/12/3/007

H. Kang, J. K. Seo, and D. Sheen, The Inverse Conductivity Problem with One Measurement: Stability and Estimation of Size, SIAM Journal on Mathematical Analysis, vol.28, issue.6, pp.1389-1405, 1997.
DOI : 10.1137/S0036141096299375

J. B. Keller, A Theorem on the Conductivity of a Composite Medium, Journal of Mathematical Physics, vol.5, issue.4, pp.548-549, 1964.
DOI : 10.1063/1.1704146

K. S. Mendelson, Effective conductivity of two???phase material with cylindrical phase boundaries, Journal of Applied Physics, vol.46, issue.2, pp.917-918, 1975.
DOI : 10.1063/1.321615

P. Kuchment, 7. The Mathematics of Photonic Crystals, Mathematical Modelling in Optical Science, pp.207-272, 2001.
DOI : 10.1137/1.9780898717594.ch7

O. Kwon, J. K. Seo, and J. R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement, Communications on Pure and Applied Mathematics, vol.59, issue.1, pp.1-29, 2002.
DOI : 10.1002/cpa.3009

C. M. Linton, The Green's function for the two-dimensional Helmholtz equation in periodic domains, Journal of Engineering Mathematics, vol.33, issue.4, pp.377-402, 1998.
DOI : 10.1023/A:1004377501747

R. Lipton, Influence of interfacial surface conduction on the DC electrical conductivity of particle reinforced composites, Proc. R. Soc. Lond. A, pp.454-1371, 1998.
DOI : 10.1098/rspa.1998.0212

V. G. Maz-'ya, S. A. Nazarov, and B. A. Plamenevskii, ASYMPTOTIC EXPANSIONS OF THE EIGENVALUES OF BOUNDARY VALUE PROBLEMS FOR THE LAPLACE OPERATOR IN DOMAINS WITH SMALL HOLES, Mathematics of the USSR-Izvestiya, vol.24, issue.2, pp.321-345, 1985.
DOI : 10.1070/IM1985v024n02ABEH001237

I. Mcgillivray, Capacitary asymptotic expansion of the groundstate to second order, Communications in Partial Differential Equations, vol.100, issue.11-12, pp.2219-2252, 1998.
DOI : 10.1215/S0012-7094-79-04620-9

R. C. Mcphedran, N. A. Nicorovici, L. C. Botten, and K. Bao, Green???s function, lattice sums and rayleigh???s identity for a dynamic scattering problem, Wave Propagation in Complex Media, pp.155-186, 1994.
DOI : 10.1007/978-1-4612-1678-0_8

T. Miloh and Y. Benveniste, On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proc. R
DOI : 10.1098/rspa.1999.0422

N. A. Nicorovici, R. C. Mcphedran, and L. C. Botten, Photonic band gaps for arrays of perfectly conducting cylinders, Physical Rev, E, pp.52-1135, 1995.

A. Noll, Domain Perturbations, Shift of Eigenvalues and Capacity, Journal of Functional Analysis, vol.170, issue.1, pp.246-263, 2000.
DOI : 10.1006/jfan.1999.3496

]. S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math, J, vol.48, pp.767-778, 1981.

H. , P. Huy, and E. Sanchez-palencia, Phénomènes de transmissionàtransmission`transmissionà travers des couches minces de conductivité'´ elevée, J. Math. Anal. Appl, pp.47-284, 1974.

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Journal of Functional Analysis, vol.18, issue.1, pp.27-59, 1975.
DOI : 10.1016/0022-1236(75)90028-2

G. F. Roach, Green's Functions: Introductory Theory with Applications, 1970.

K. Sakoda, Optical Properties of Photonic Crystals, 2001.
DOI : 10.1007/978-3-662-14324-7

E. Sanchez-palencia, Comportement limite d'unprobì eme de transmissionà transmission`transmissionà travers une plaque faiblement conductrice, C.R. Acad. Sci. Paris A, vol.270, pp.1026-1028, 1970.

J. , S. Hubert, and E. Sanchez-palencia, Vibration and Coupling of Continuous Systems, 1989.

J. Selden, Periodic Operators in High-Contrast Media and the Integrated Density of States Function, Communications in Partial Differential Equations, vol.30, issue.7, pp.1021-1037, 2005.
DOI : 10.2307/2374041

V. P. Shestopalov and Y. V. Shestopalov, Spectral Theory and Excitation of Open Structures, 1996.
DOI : 10.1049/PBEW042E

S. Soussi, Second-Harmonic Generation in the Undepleted-Pump Approximation, Multiscale Modeling & Simulation, vol.4, issue.1, pp.115-148, 2005.
DOI : 10.1137/040608799

H. S. Sözüer, J. W. Haus, and R. Inguva, Photonic bands: Convergence problems with the plane-wave method, Physical Review B, vol.45, issue.24, p.13962, 1992.
DOI : 10.1103/PhysRevB.45.13962

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1993.

J. Tausch and J. White, Capacitance extraction of 3-D conductor systems in dielectric media with high-permittivity ratios, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.1, pp.18-26, 1999.
DOI : 10.1109/22.740070

J. Tausch, J. Wang, and J. White, Improved integral formulations for fast 3-D method-of-moments solvers, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.20, issue.12, pp.1398-1405, 2001.
DOI : 10.1109/43.969433

M. E. Taylor, Partial Differential Equations II, Qualitative Studies of Linear Equations, Applied Mathematical Sciences, vol.116, 1996.

C. F. Tolmasky and A. Wiegmann, Recovery of small perturbations of an interface for an elliptic inverse problem via linearization, Inverse Problems, vol.15, issue.2, pp.465-487, 1999.
DOI : 10.1088/0266-5611/15/2/008

S. Torquato and M. D. Rintoul, Effect of the interface on the properties of composite media, Phys. Rev. Lett, vol.75, pp.4060-4070, 1995.

K. Uhlenbeck, Generic Properties of Eigenfunctions, American Journal of Mathematics, vol.98, issue.4, pp.1059-1078, 1976.
DOI : 10.2307/2374041

S. Venakides, M. A. Haider, and V. Papanicolaou, Boundary integral calculations of two-dimensional electromagnetic scattering by photonic crystal Fabry-Perot structures, SIAM J. Appl. Math, pp.60-1686, 2000.

G. C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, Journal of Functional Analysis, vol.59, issue.3, pp.572-611, 1984.
DOI : 10.1016/0022-1236(84)90066-1

M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, ESAIM: Mathematical Modelling and Numerical Analysis, vol.34, issue.4, pp.723-748, 2000.
DOI : 10.1051/m2an:2000101

M. J. Ward and J. B. Keller, Strong Localized Perturbations of Eigenvalue Problems, SIAM Journal on Applied Mathematics, vol.53, issue.3, pp.770-798, 1993.
DOI : 10.1137/0153038

E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, vol.58, issue.20, p.2059, 1987.
DOI : 10.1103/PhysRevLett.58.2059