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INFORMATIQUE

par

Xavier DAHAN

Sujet de la thèse :
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Rédigée en anglais sous le titre :

On the representation of polynomial systems: triangulation,

modular methods, dynamic evaluation

Soutenue le 24 novembre 2006 devant le jury composé de :
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ÉCOLE POLYTECHNIQUE
PARIS





Remerciements

Beaucoup d’aspirants thésards ont dans l’idée de travailler avec un grand chercheur
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Durant plus de trois ans, j’ai pu côtyer les chercheurs Bruno Salvy, Alin Bostan,
François Ollivier, Michel Fliess, Jean Moulin Ollagnier, Frédéric Chyzak, Mohab
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1



2



Contents

Introduction 5

1 Preliminaries 13

1.1 Polynomial systems representations . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1 Hypotheses - Presentation . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Primitive element representation . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Triangular systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Chow form and height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.1 Chow form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Height theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Basic algorithmic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.2 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Lifting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.1 Triangular Newton-Hensel operator . . . . . . . . . . . . . . . . . . . 35
1.4.2 Rational reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.3 Probabilistic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Height bounds for polynomial representations 45

2.1 Bounds from derivation of the Chow form . . . . . . . . . . . . . . . . . . . 52
2.1.1 Formulas of derivations . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.2 Bounds for primitive element representations . . . . . . . . . . . . . . 58
2.1.3 A link between Chow forms and triangular polynomials . . . . . . . . 62
2.1.4 Height of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1.5 Attempt of bounds for (Ti)i from (Mi)i . . . . . . . . . . . . . . . . . 77

2.2 Bounds from interpolation formulas . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.1 Interpolation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.2 Links with Chow forms . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.2.3 From interpolation to height bounds . . . . . . . . . . . . . . . . . . 86

3 Change of order for regular chains . . . 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.1 Additional results on regular chains . . . . . . . . . . . . . . . . . . . 101
3.2.2 Algorithmic prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3



Contents

3.3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3.2 A greedy optimization algorithm . . . . . . . . . . . . . . . . . . . . 108

3.4 Computing the exchange data . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4.1 Characterization of the target set of algebraic variables . . . . . . . . 110
3.4.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.3 Computing the initial specialization . . . . . . . . . . . . . . . . . . . 113
3.4.4 Computing the exchange data . . . . . . . . . . . . . . . . . . . . . . 114

3.5 Changing the lifting fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.1 Setup and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Finding the new lifting fiber . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.3 Proof of Proposition 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.6 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4 Lifting techniques for triangular decompositions 125

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Split-and-Merge algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3 proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 On the complexity of the D5 principle 145

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Basic complexity results: multiplication and splitting . . . . . . . . . . . . . 150
5.3 Fast GCD computations modulo a triangular set . . . . . . . . . . . . . . . . 153
5.4 Fast computation of quasi-inverses . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5 Coprime factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5.1 Computing multiple gcd’s . . . . . . . . . . . . . . . . . . . . . . . . 158
5.5.2 Computing all pairs of gcd’s . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.3 A special case of coprime factorization . . . . . . . . . . . . . . . . . 162
5.5.4 Conclusion: Proof of the main result . . . . . . . . . . . . . . . . . . 164

5.6 Removing critical pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.7 Concluding the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Appendix: merging triangular sets for inversion . . . . . . . . . . . . . . . . . . . 168

Conclusion 173

4



Introduction

Avec les nouvelles possibilités de calcul apportées par les ordinateurs, un regain d’intérêt
pour les questions effectives en algèbre a emergé après, puis à côté (plus que côte-à-côte) de
son abstraction croissante tout au long du xxème siècle. Cela s’est fait parallèlement avec
la forte demande industrielle en modélisation, et l’émergence dans l’industrie de la branche
des mathématiques appliquées, l’analyse numérique, qui malgré les inévitables problèmes
liés à la décision pour un nombre d’être nul ou pas, continue à y jouer un rôle dominant.
Pourtant, loin de se cantonner à des algorithmes algébriques qui seraient utilisés comme des
calculs “expérimentaux” par les mathématiciens, le Calcul Formel a permis des applications
industrielles dont un des exemples les plus spectaculaires est certainement la cryptographie.

Le travail en Calcul Formel peut s’effectuer à plusieurs échelons : architecture et arith-
métique des ordinateurs, algorithmique de base (opérations de base), algorithmique impli-
quant des structures évoluées, création de logiciels spécialisés (Computer Algebra System) ;
analyse de complexité. Les sujets abordés ici se situent dans la conception d’algorithmes
avec des structures évoluées, ainsi que de leur analyse de complexité.

Les thèmes mathématiques en Calul Formel concernent surtout la théorie algébrique
des nombres, l’algèbre commutative et géometrie algébrique, l’algèbre différentielle. Les
polynômes y jouent ainsi un des rôles principaux, et c’est sur eux que portent les résultats
de cette thèse. Avant d’en détailler les énoncés, introduisons le contexte et les concepts
permettant d’en comprendre les enjeux.

Calcul avec les systèmes polynomiaux

Il est question de transformer un système d’équations polynomiales donné en un ou plusieurs
autres ayant les propriétés adéquates pour lire les informations que l’on souhaite acquérir.
Cette transformation d’un système à un autre est appelée résolution (d’un système de
polynômes), comme souligné par Daniel Lazard dans [74]. Ces propriétés pourront être
la capacité à représenter l’idéal engendré par le système et le calcul dans l’algèbre quotient,
la lecture efficace des singularités, la précision des approximations numériques, entre autres.

Bases de Gröbner

La méthode la plus utilisée est le calcul de bases de Gröbner, qui permettent de résoudre
un grand nombre de problèmes, et pouvant être calculées par un algorithme simple (d’après
Buchberger). Elles ne constituent souvent qu’une étape intermédiaire mais permettent une
large palette d’applications. De nettes améliorations ont été produites dans la conception et
l’implémentation de l’algorithme de Buchberger depuis sa création. Malgré une complexité
dans le cas le pire doublement exponentielle en le nombre de variables ou le degré des
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polynômes, il n’en demeure pas moins que leurs calculs sont assez efficaces. Récemment,
Bardet et al. [11] ont d’ailleurs montré qu’en moyenne cette complexité était simplement
exponentielle, en un degré de “semi-régularité”.

Représentation à la Kronecker

Une autre structure de données majeure est la représentation par élément primitif (Cf.
§ 1.1.2). C’est sous la forme rationnelle que cette représentation est la plus économe en
place mémoire. Bien que déjà mentionnée dans l’œuvre de Kronecker, qui justifie le terme
de représentation de Kronecker [75] pour désigner cette représentation, aujourd’hui la ter-
minologie de Représentation Univariée Rationnelle (en abrégée RUR) est également large-
ment utilisée. Trois grandes écoles existent pour calculer ce genre de système, celle que
représente désormais Rouillier et al., obtenue à partir d’une base de Gröbner [101], celle
du groupe TERA, dont l’algorithme finalisé porte le nom de résolution géometrique [52], et
celle de l’algèbre linéaire des matrices bezoutiennes [39]. Cette structure de données est bien
adaptée pour les calculs numériques, car permet l’utilisation du savoir-faire du cas univarié
(malgré une grande précision nécessaire pour ces approximations). Toutefois ne permet pas
la représentation des singularités, seulement une information sur les multiplicités peut être
fournie ; certaines informations géometriques, comme d’éventuelles symétries par exemple,
sont généralement perdues par le choix de la forme linéaire séparante.

Décomposition triangulaire

Dans cette thèse on s’intéressera aux décompositions triangulaires (ou triangulations, en
s’inspirant du terme anglais “triangulation-decomposition”) d’un système polynomial. Il
n’y a plus un mais plusieurs systèmes en sortie, à l’instar de la décomposition primaire, qui
en est en fait un cas particulier. Les variables sont ordonnées par un ordre lexicographique,
le i-ème polynôme fait intervenir au moins une nouvelle variable plus grande que toutes
celles du i − 1-ème. Ce type de système, très structuré, a été largement étudié du côté
de l’algèbre différentielle comme commutative, son utilisation pour la résolution bien re-
connu aujourd’hui (voir l’article de Lazard sur un état de l’art de la résolution des systèmes
polynomiaux en 2000 [73]). Cette structure triangulaire permet d’avoir un point de vue
univarié, la variable considérée étant la plus grande — pour l’ordre lexicographique con-
sidéré, les autres sont placées dans le corps ou l’anneau de base. Selon les hypothèses que
l’on rajoute à ces ensembles triangulaires, notamment en ce qui concerne les polynômes
formant les coefficients dominants en cette plus grande variable, de nombreuses définitions
ont été introduites : ensembles caractéristiques, châınes régulières, ensembles triangulaires
de Lazard (se réferrer au § 1.1.3 pour plus de détails). On ne s’intéressera qu’aux ensem-
bles triangulaires de Lazard et aux châınes régulières dans ce manuscrit. Ces deux derniers
systèmes offrent en effet des propriétés intéressantes pour la résolution des systèmes poly-
nomiaux, tant du point de vue conceptuel qu’algorithmique. Les améliorations apportées
ici découlent essentiellement des deux faits suivants :

1. l’existence d’un opérateur de Newton-Hensel pour les ensembles triangulaires de Lazard
zéro-dimensionnels.

2. le point de vue univarié des ces polynômes.
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Le point 1 autorise les “calculs modulaires” (Cf. Figure 3.1, p. 94) et sera au centre des
chapitres 4 et 3, et dans une moindre mesure dans le chapitre 2. Bien que sous-jacente même
à l’intérêt des ensembles triangulaires, l’utilité du point 2 se ressent particulièrement dans le
chapitre 5 où l’on étendra des algorithmes rapides dédiés aux polynômes univariés tels que
le calcul de pgcd, le calcul d’une base sans facteurs communs d’une famille de polyômes,
à ces ensembles triangulaires ; cela dans le contexte de l’estimation de la complexité de
l’évaluation dynamique.

Résultats

Chapitre 2 Souvent les algorithmes de résolution font intervenir des polynômes intermé-
diaires avec des coefficients très grands, comparés à ceux qui sont en entrée. Il est bien
connu que les calculs modulaires peuvent porter remède à ce grossissement, que ce soit avec
des “restes chinois” ou avec la remontée de Hensel. Un problème de même nature est posé
pour les systèmes de dimension positive où cette fois-ci, c’est le degré des variables libres
qui peut être excessivement élevé. Dans ce cas il est notoirement connu que l’opérateur de
Newton peut permettre de réduire les calculs à la dimension zéro sous certaines hypothèses,
qui avec les progrès deviennent de moins en moins restrictives. Les algorithmes de résolution
sur lesquels porteront nos résultats concernent les méthodes de triangulation d’un système
en plusieurs ensembles triangulaires.

L’opérateur de Newton est un outil omniprésent dans le calcul numérique approché.
L’extension au cadre formel de l’approximation —numérique— des zéros d’un système poly-
nomial s’est avérée efficace après les travaux de nombreux auteurs aboutissant à l’algorithme
de résolution présenté dans [75] pour le calcul de représentation de Kronecker, puis dans [102]
pour les ensembles triangulaires de Lazard zéro-dimensionnels et radicaux.

Le lien avec la remontée de Hensel (calcul modulo les puissances d’un nombre premier)
est bien mis en valeur dans [75], où la terminologie de topologie m-adique permet d’unifier
les deux approches (topologie archimédienne dans le cas de l’opérateur de Newton, non-
archimédienne dans le cas de la remontée de Hensel). Le terme de remontée de Newton-
Hensel a ainsi bien un sens, et sera utilisé par la suite.

Le principe est l’approximation successive des zéros avec convergence quadratique. Le
nombre d’étapes permettant d’assurer une approximation suffisante requiert une borne sur
la taille des coefficients ou le degré des variables libres pour la représentation de sortie (les
ensembles triangulaires donc). Cela fait l’objet du second chapitre, où une amélioration
substantielle des précédentes bornes pour les ensembles triangulaires de Lazard est prouvée.
L’outil de mesure adéquat est la hauteur, provenant de l’approximation diophantienne et
permettant d’unifier le cas archimédien et non-archimédien. Différentes définitions existent
pour les hauteurs des variétés, celle que nous utiliserons est due à Philippon [95], reposant
sur la forme de Chow.

Theorem 2.7 Soit T ⊂ K[X1, . . . , Xn] un ensemble triangulaire de Lazard, radical et de
dimension zéro défini sur un corps K, extension finie de Q ou du corps des fractions ra-
tionnelles en m variables, k(p1, . . . , pm). On note V l’ensemble (fini) des zéros de T dans
une clôture algébrique de k, et pour 1 ≤ ℓ ≤ n, πn

ℓ (V ) la projection de V sur les axes
X1, . . . , Xℓ.
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La hauteur h(Tℓ) de Tℓ est bornée par une quantitée en

O
(

deg
(
πn

ℓ (V )
)
· h
(
πn

ℓ (V )
)

+ deg
(
πn

ℓ (V )
)2)

.

Nous en avons profité pour clarifier le même type de résultat (déjà connu mais dans une
formulation moins générale) pour les polynômes formant une représentation de Kronecker.
Soit V une variété de dimension zéro définie sur un corps K, extension finie de Q ou de
k(p1, . . . , pm). On considère la représentation de Kronecker de V de forme linéaire séprante
U , et d’élément primitif χu :

(χu(T ) , w1(T ) , w2(T ) , . . . , wn(T )).

Theorem 2.2 La hauteur des coefficients de χ′u(T ) et de wi(T ) est bornée par :

h(V ) + deg(V )h(U) + deg(V ) log(n + 2) + (n + 1) log deg(V ) (K est un corps de nombres)
h(V ) + deg(V )h(U) (K est un corps de fonctions).

Ces bornes ont la particularité d’être intrinsèques, c’est-à-dire ne dépendent pas d’un
système polynomial particulier représentant V . Il est toutefois facile de déduire des bornes
extrinsèques grâce aux théorèmes de Bézout géometrique et arithmétique. D’autres bornes
sont données pour des systèmes triangulaires avec introduction de différents coefficients
dominants, avec des preuves totalement différentes, mais non dénuées d’intérêt, car font
apparaitre des formules non triviales de dérivations de la forme de Chow. L’Introduction à
ce chapitre propose un résumé des méthodes, résultats, et comparaisons expérimentales.

Chapitre 4 Nous nous intéressons dans ce chapitre à la résolution des systèmes polynomi-
aux par triangulation-decomposition, la nouveauté étant dans la méthode, puisque cela y est
fait modulairement : les principaux calculs, en général les plus gourmands en taille mémoire,
sont faits modulo un nombre premier p, donc sans croissance excessive des coefficients. Les
algorithmes de triangulation ne renvoient pas un résultat canonique, et savoir si le nombre
premier p de réduction donne lieu à une réduction stable, c’est-à-dire compatibilité entre les
ensembles triangulaires obtenus par exécution de l’algorithme de triangulation modulo p et
sur Q, n’est pas évident.

Nous avons ainsi introduit une nouvelle triangulation canonique des systèmes polyno-
miaux dans le cas radical et zéro-dimensionnel, la décomposition équiprojetable ; le choix
du nombre premier de réduction est quantifiable numériquement. On peut même utiliser
un nombre premier plus petit au détriment du déterminisme, mais en contrôlant alors
complètement la probabilité de succès. Ce type d’analyse probabiliste est relativement
standard une fois que le critère numérique est prouvé (sinon il serait souhaitable qu’elle le
devienne).

Theorem 4.1 (Vulgarisé). Soit n polynômes multivariés f1, . . . , fn dans Q[X1, . . . , Xn] de
degré au plus d, et de hauteur au plus h. Il existe un entier A, dont le nombre de chiffres
est essentiellement borné par une quantitée en O(̃n2hd2n+1), tel que tout nombre premier
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p ne divisant pas A, rend compatible la décomposition équiprojetable des zéros simples de
V (f mod p) et la réduction modulo p de la décomposition équiprojetable des zéros simples
de V (f).

Ceci résout le défaut de compatibilité entre les ensembles triangulaires calculés modulaire-
ment sur Fp, et ceux calculés sur Q. L’entier A n’est pas explicité ; pour s’assurer de
choisir un bon premier p de réduction, il faudrait donc le choisir plus grand que la borne
donnée, soit un nombre de chiffres de l’ordre de d2n+1, ce qui n’est pas une amélioration
substantielle pour l’utilisation d’une méthode modulaire. En revanche, il est possible de
déduire un algorithme probabiliste avec contrôle de la probabilité de succès :

Theorem 4.2(Vulgarisé). Pour tout ε > 1 assez grand, le choix d’un nombre premier p
avec un nombre de chiffres de l’ordre de log ε + log θ(n, d, h) donne lieu, avec probabilité
1− 1

ε
, à une compatibilité semblable à celle énoncée dans le Theorem 4.1, ainsi qu’au calcul

de la décomposition équiprojetable des zéros simples de V (f).
L’algorithme probabiliste utilisé requiert au plus un nombre polynomial en des données

“standards” du problème : degré et hauteur de V (f), complexité d’évaluation de f et taille
des constantes dans ce schéma d’évaluation de f , notamment. La fonction θ est dominée
par un terme en O(n2hd2n+1).

Chapitre 3 Une autre transformation des systèmes polynomiaux intéressante, un peu à
côté de ce que nous avons appelé résolution, est le changement d’ordre des variables. Bien
sûr pour les bases de Gröbner où le calcul sous un ordre peut être bien plus efficace que
sous un autre, ceci peut présenter un intérêt, mais nous nous restreindrons aux ordres lexi-
cograhiques, donc à un périmètre bien délimité, mais toutefois non dépourvu d’applications :
on peut citer l’implicitisation et toutes ces utilisations [27], mais aussi la réecriture des in-
variants dans une base d’invariants fondementaux. De plus, l’intérêt réside également dans
l’approche théorique nouvelle. En dimension zéro cela se fait déjà efficacement (le célèbre
FGLM [42] de complexité cubique en le degré de la variété) et l’on en tire parti pour le
cas de la dimension positive, grâce à des spécialisations judicieuses des variables libres pour
se retrouver en dimension zéro. Mais le changement d’ordre et la spécialisation de vari-
ables libres, impliquant leur disparition, ne sont pas à priori compatibles. Ce problème est
résolu par l’adaptation non évidente des principales étapes de l’algorithme de résolution
géometrique au contexte du changement d’ordre.

Le changement d’ordre s’opère en effet étape par étape par échanges successifs de deux
variables (voir la figure 3.3). Le système est remonté par l’opérateur de Newton en dimension
un, puis respécialisé en dimension zéro en une autre variable ; un changement d’ordre y est
alors effectué. On répète ces trois opérations sur plusieurs couples de variables à remonter
/ spécialiser, et l’on parvient à avoir en sortie une fibre de remontée de la sortie souhaitée
(cette dernière pouvant être obtenue par application de l’opérateur de Newton multivarié
pour faire apparaitre les variables libres, mais alors le coût est exponentiel).

Cela ne fonctionne pas pour tous les systèmes, bien sûr. Seules les “châınes régulières”
(Definition 1.3, page 18), jouant un rôle important dans le cas de la dimenion positive, sont
envisagées. On considère une variété irréductible W de dimension positive, on dispose d’une
châıne régiulière la décrivant, et l’on souhaite changer d’ordre des variables de cette châıne
régulière. Pour décider des couples de variables que nous aurons à remonter / spécialiser,
nous utilisons l’analogie entre les variables libres de notre variété et celles d’un de ses espaces

9



Introduction

tangents en un point générique.

Theorem 3.1 Soit F = (F1, . . . , Fs) une châıne régulière dans K[X] = K[X1, . . . , Xn]
pour un ordre d’entrée <, dont le saturé Sat(F) est un idéal premier. Supposons connus un
straight-line program de taille L qui calcule F, la variable principale de chacun des polynômes
de F ainsi que leur degré en cette variable.

Étant donnné un ordre cible <′ sur X, on peut calculer par un algorithme probabiliste
une fibre de remontée pour l’ordre cible <′. En cas de succès, l’algorithme utilise

(nL deg V (Sat(F))O(1)

opérations dans K. L’algorithme choisit n + s paramètres dans K. Si ces paramèters
sont choisis aléatoirement uniformément dans un ensemble fini S de K, alors, notant
m = max(n, d), la probabilité d’échec est d’au plus g(n, m, d)/|S|, où g ∈ O(nm2d3n).

La complexité est polynomiale puisqu’en “grand O(1)” en les données naturelles d’entrée
L, n et deg V (Sat(F)), ce qui constitue une nouveauté pour ce type de problème en dimen-
sion positive. De même la probabilité d’échec de cet algorithme croit polynomialement
en le nombre de Bézout (égal ci-dessus à dn). En choisissant S suffisamment vaste, cette
probabilité peut être arbitrairement minorée.

Chapitre 5 Ce chapitre est un peu à part des trois autres dans la mesure où le lien avec
l’opérateur de Newton-Hensel est caché, et que les applications dépassent le cadre de cet
opérateur. Dans les annés 80, un article d’environ une page de Dicrescenzo, Dominique
Duval et Della-Dora, jette les bases d’une nouvelle méthode pour calculer avec les nombres
algébriques, en suivant une idée suggérée par Lazard. Depuis, le “principe D5” fait l’objet
de nombreux travaux toujours en chantier au sujet des applications, les liens avec d’autres
domaines de l’informatique et de l’algorithmique. Toutefois, du côté de la complexité, à
part l’étude de la complexité parallèle dans [46], aucun résultat général n’a été donné, à
notre connaissance. Nous comblons ce vide dans ce chapitre.

Comment calculer avec les nombres algébriques ? L’approche standard est de calculer
dans le quotient Q[X]/(p) où p est le polynôme minimal du nombre algébrique. Lorsqu’il
y en a plusieurs, par exemple solutions d’un polynôme f (que l’on supposera sans facteur
carré), on peut factoriser et retrouver le polynôme minimal de chaque nombre algébrique.

Plus généralement, soit I un idéal radical de dimension 0 et Z l’ensemble des points
algébriques associés à I, et f une fonction algébrique définie sur Z. L’ensemble des points
où f est inversible se note D(f) en général. Ainsi D(f) et son complémentaire V (f) forment
une partition de Z, qui se traduit en terme d’idéaux en un scindage de l’anneau de fonctions
sur Z:

k[X1, . . . , Xn]/I ≃ k[X1, . . . , Xn]/(I : f)× k[X1, . . . , Xn]/I + (f), (1)

et ce, sans recours à la décomposition primaire. On peut commencer par décomposer I en
ensembles triangulaires et se ramener à une situation où I est lui-même engendré par un
ensemble triangulaire de Lazard T . D’un point de vue effectif, l’intérêt est la possiblité de se
réferrer, par induction sur le nombre de variables, au cas bien compris d’une seule variable.
En particulier, l’inversion sera donnée par un calcul de pgcd étendu. Le nombre de divisions
euclidiennes nécessaires à son calcul conditionne inévitablement le nombre de scindages
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ayant lieu, puisque qu’il faut alors ne considérer que des restes unitaires, nécessitant un
calcul d’inverse. Ainsi, ça ne sera qu’un raffinement de chacune des deux branches de 1 que
l’on ne pourra calculer.

Lors d’une étude de complexité d’un algorithme reposant sur ce principe, on est amené
à estimer le coût de l’opération d’évaluation après un scindage ; plus précisemment, soit
T ∈ k[X1, . . . , Xn] un ensemble triangulaire (de Lazard, zéro dimensionel et radical) et
T 1, . . . , T e une famille de e ensembles triangulaires tels que V (T i) ∩ V (T j) = ∅, et V (T ) =
V (T 1) ∪ . . . ∪ V (T e) (on dira que T 1, . . . , T e est une décomposition triangulaire de T ).

k[X1, . . . , Xn]/(T ) → k[X1, . . . , Xn]/(T 1)× · · · × k[X1, . . . , Xn]/(T e) (2)

α mod T 7→ (α1 mod T 1, . . . , αe mod T e).

La complexité dans le cas univarié est bien connue (c’est la multi-évaluation, Proposi-
tion 1.7 4., p. 32). Elle se généralise aux ensembles triangulaires par induction. Toutefois,
les hypothèses nécessaires au cas multivarié ne se généralisent pas elles, aussi facilement,
et nécessitent un raffinement de la définition de décomposition triangulaire, appelée non-
critical triangular decomposition (voir Definition 5.5, page 147 et l’exemple qui la précède et
surtout qui la suit). Dans ces conditions, l’opération d’évaluation discutée ci-dessus peut être
calculée avec une complexité raisonnable, comparable au cas univaré. Soit T = T1, . . . , Tn

les polynômes de l’ensemble triangulaire T , et soit di le degré en Xi de Ti.

Proposition. Soit M(d) une borne supérieure pour le coût de la multiplication univariée de
degré d. L’opération d’évaluation (2) peut être calculée en moins de nCn

∏
i≤n M(di) log di

opérations sur k.

Il faut pouvoir raffiner une décomposition triangulaire en une décomposition sans paire
critique (voir Definition 5.4 p. 147), dans le temps requis. Cela nécessite un calcul de
pgcd rapide au dessus d’un produit de corps. L’algorithme du Half-gcd y est adapté dans le
§ 5.3 ; or cet algorithme crée lui même des paires crtiques, dues aux inversions produites pour
rendre unitaire les restes des divisions euclidiennes. Cependant, ces nouvelles paires critiques
sont en n − 1 variables, ce qui est rend possible un schéma de double récurrence“croisée”
(Cf. Figure 5.1). Par ce biais on parvient à :

Theorem 5.1. Il existe une constante C indépendante de T et du degré des polynômes de T ,
telle que l’addition, la multiplication et la quasi-inversion dans k[X1, . . . , Xn]/(T ) peuvent
être calculées en au plus Cn

∏
1≤i≤n M(di) log(di)

3 opérations sur k.

Ce résultat est de même ordre que l’inversion modulaire univariée, à des facteurs carrés
logarithmiques, et aux mesures de complexité naturelles liées à l’ensemble triangulaire T
près. En ce sens, on peut considérer que cette complexité, et par voie de conséquences
celles des autres algorithmes présentés dans ce chapitre, sont certainement optimales : les
grandeurs apparaissent en croissance linéaire, si l’on omet les facteurs logarithmiques.
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Chapter 1

Preliminaries

1.1 Polynomial systems representations

This section presents two representations of polynomial systems which are of practical in-
terest. The primitive element and triangular representations of a polynomial system. The
first one has a good behavior under numerical approximations. In real geometry it allows
to reduce problems to the univariate situation, where powerful methods of isolation of real
roots exist. It is a central object in this topic, and we refer to the book [12] for the details.
More precisions are given in § 1.1.2.

The second one, triangular systems, is used in manipulation of algebraic numbers, Galois
theory [2, 4, 97], differential algebra [59], dynamic evaluation [35] and in the CAD algorithm
of real geometry (Cf. [12] and the references therein), where the management of the lifting
step is handled by triangular systems [98]. In § 1.1.3 more details are added.

1.1.1 Hypotheses - Presentation

In the sequel, K is assumed to be any commutative field (but we will only work with number
fields, finite fields and function fields in m variables). In particular K is not necessary
supposed to be perfect, possibly inducing a lack of correspondence between the geometry and
the algebraic equations: we have in mind the classic example of non-perfect field K = Fp(T )
and the irreducible polynomial Xp − T in K[X]. The number of solutions in the algebraic
closure K̄ of K is one, but with multiplicity p, whereas the ideal (Xp−T ) is radical. As we
want to discard this kind of bad situation we need to add some separability assumptions on
the ideal generated by our algebraic equations.

Separability assumption. In the sequel, given a zero-dimensional radical ideal I of poly-
nomials lying in K[X1, . . . , Xn], we assume that the extension K → K[X1, . . . , Xn]/I is
separable, that is to say: If p1, . . . , ps are the primary ideals of I, then each field extension
K → K[X1, . . . , Xn]/pi is separable.

Under this assumption, the number of solutions in An
K̄

of the polynomials in I is equal
to the dimension of the K-vector space K[X1, . . . , Xn]/I. All these solutions are simple. As
usual, V (I) denotes this set of solutions. We have a satisfactory correspondence between the
number of solutions and the degree of the defining polynomials. Throughout this chapter
of preliminaries, we will use the following Lemma:

13
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Lemma 1.1. Consider a polynomial U in K[X1, . . . , Xn], and its multiplication map MU :

MU : K[X1, . . . , Xn]/I
×U
−−→ K[X1, . . . , Xn]/I

P mod I 7−→ U · P mod I.

Under the separability assumption on I, the characteristic polynomial χU of U verifies:

χU(T ) =
∏

α∈V (I)

T − U(α),

where V (I) is the set of solutions in K̄ of the polynomials in I.

Proof: Let us consider the dual endomorphism M̂U of MU , and for α ∈ V = V (I), the
evaluation map Evalα from K̄[X1, . . . , Xn]/I to K̄, defined by

Evalα(p(X1, . . . , Xn) mod I) = p(α).

Then,

M̂U (Evalα)(p) = (Evalα◦MU)(p)

= Evalα(U . p)

=

(
n∑

i=1

Uiαi

)
p(α)

= Evalα(p)U(α).

This implies that U(α) is an eigenvalue of eigenvector Evalα. Since α = Evalα(1K mod
I), these eigenvectors are pairwise distinct and of cardinal #V (I). From the separability
assumption, #V (I) = dimK (K[X1, . . . , Xn]/I) hence all the eigenvectors are of the form

Evalα. It follows that all the eigenvalues of MU (which are the same as M̂U) are U(α) for
α ∈ V (I).

1.1.2 Primitive element representation

This kind of representation is commonly attributed to Kronecker, Macaulay in [82] calls
Kronecker substitution, the specialization by a separating linear form as done in Lemma 1.2.
The Shape Lemma representation (1.3) was first considered in computer algebra, actually
coming from numerical analysis work of Auzinger-Stetter [10]. Then after the remark on
the size of coefficients made in Alonso-Becker-Roy-Wörmann [3], the alternative equivalent
representation of Definition 1.2 is nowadays preferred.

Main algorithms to compute it are implemented by Rouillier [101] (the RUR, following
the ideas presented in [3]), relying on a Gröbner basis pre-computation, and to Lecerf [76].
This last implementation follows the Geometric Resolution algorithm resulting on a long and
exacting task initiated by Giusti and Heintz [48] in the aim to have a subexponential solver
of polynomial systems. With their collaborators Krick, Morgenstern, Montaña, Morais and
Pardo, they carry on in the 90’s this work in the series of articles [50, 51, 49]. In [52], Giusti,
Lecerf and Salvy removed some constraining assumptions of regularity. For more details we
refer to the thesis of Schost [102], Ch.1 §1.1, and Lecerf [75] Ch.1 §I.5.
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Both algorithm can take into account multiplicity numbers. The algorithm [76] treats the
positive dimension in the equidimensional situation. The Rouillier’s approach is improved
by Noro-Yokoyama in [92] by using the Chinese Remaindering Theorem. The algorithm of
Lecerf relies him on lifting techniques with the use of a formal Newton-Hensel operator.

Primitive element representations are not unique, rely on the choice of a separating linear
form:

Definition 1.1. A linear form (i.e. homogeneous polynomial of degree 1) ∆(X1, . . . , Xn) is
a separating linear form for V if and only if ∆(α) 6= ∆(β) for all α 6= β ∈ V .

So let ∆ be such a form for V and consider χ∆(T ) the characteristic polynomial of the
endomorphism of multiplication by ∆:

M∆ : K[X1, . . . , Xn]/I(V )
×∆
−−→ K[X1, . . . , Xn]/I(V )

P mod I(V ) 7−→ ∆ · P mod I(V ).

The definition of a separating linear form implies a one-one correspondence between the
points of V and the roots of χ∆. In fact Lemma 1.1 says that the roots of χ∆ are the
{∆(α)}α∈V . More precisely, we have the following isomorphism:

Proposition 1.1. With the notation above, the following map is an isomorphism of K-
algebras:

K[T ]/(χ∆(T )) −→ K[X1, . . . , Xn]/I(V ), (1.1)

T mod χ∆ 7−→ ∆ mod I(V ).

Proof: This map is clearly an homomorphism of K-algebras. Let P (T ) ∈ K[T ] such that
P (∆(X1, . . . , Xn)) ∈ I(V ). This implies that for every polynomial Q ∈ K[X1, . . . , Xn],
P (∆) ·Q belongs to I(V ), or

∀Q ∈ K[X1, . . . , Xn] , P (M∆) (Q mod I(V )) = 0 in K[X1, . . . , Xn]/I(V )

The endomorphism P (M∆) is the null endomorphism. It follows that P ∈ (χ∆) and that
the map (1.1) is injective. The separability assumption implies the following equality of the
dimensions:

dimK K[T ]/(χ∆) = deg χ∆ = dimK K[X1, . . . , Xn]/I(V ),

permitting to prove that the map (1.1) is also onto. 2

We can go further, by describing the roots of χ∆ in function of the solutions of any system
generating I. Let us explain the geometry behind this correspondence, in the case of a real
number field K ⊂ R, and where V ⊂ An

R. Denote by ( . , . ) the usual Euclidean scalar
product on Rn ≃ An

R. Let us denote by L the line orthogonal for ( . , . ) to the hyperplane
H defined by the linear form ∆ and going through the origin. Figure 1.1 hereunder shows
the geometric meaning of χ∆: its roots parametrize the projection of V on L.

Proposition 1.2. Let α ∈ V . Then the value ∆(α) is the coordinate, on the axis held by
the line L, of the orthogonal projection on L along H of α (as drawn on the Figure (1.1)).
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Proof: Let us write ∆ = δ1X1+· · ·+δnXn. Then the vector ~δ = (δ1, . . . , δn) is by definition
orthogonal to the hyperplane H :

α ∈ H ⇔ ∆(α) = 0⇔ (~α , ~δ) = 0.

Consider now α ∈ V . The orthogonal projection of α over L along H is then the extremity
of the vector (~α , ~δ)~δ. Hence, this vector is ∆(α)~δ. By definition of ~δ, this means that ∆(α)
is the coordinate on the line L of the orthogonal projection of α on L along H . 2

~δ is the direction vector of L

~Ot′ = ∆(β)~δ

~Ot = ∆(α)~δ

X1

X2

X3

t

L t′

H

β

α

Figure 1.1: The orthogonal projection along H of two points α and β over L

We go back to the general situation where K is not necessarily contained in R. Let
(α1, . . . , αn) be the coordinates of α. We denote by Wi the following Lagrange interpolation
polynomial for each value 1 ≤ i ≤ n,

Wi(T ) =
∑

α∈V

αi

∏

β∈V

β 6=α

(T −∆(β))

∆(α)−∆(β)
. (1.2)

So that, for every point α ∈ V and for 1 ≤ i ≤ n, we have: αi = Wi(∆(α)), yielding:

Xi ≡ Wi(∆) mod I(V ).

The following representation due to Auzinger-Stetter [10] and called Shape Lemma repre-
sentation of V by Lakshman, is the data of:

χ(T ),





Xn −Wn(T )
...

X1 −W1(T ).

(1.3)

This Isomorphism (1.1) shows that {1, ∆, ∆2, . . . , ∆deg χ−1} is a basis of the K-vector space
K[X1, . . . , Xn]/I(V ). Since deg Wi ≤ deg χ − 1, it follows that Wi(∆) is the expression of
Xi in this basis. Thus the polynomials Wi have coefficients in K.
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Definition 1.2. Denote by wi(T ) the polynomial Wi(T ) · χ′∆ mod χ∆. Then the follow-
ing representation of V is called the Rational Univariate Representation, or the Kronecker
representation:

χ∆(T ),





χ′∆Xn − wn(T )
...

χ′∆X1 − w1(T ).

Corollary 1.1. For 1 ≤ i ≤ n, the polynomials wi(T ) defined above verify:

wi(T ) =
∑

α∈V

αi

∏

β∈V

β 6=α

(T −∆(β))

Proof: Let us denote tα = ∆(α) for α ∈ V . Since χ′∆(T ) =
∑

α∈V

∏
β 6=α(T − ∆(β)),

it follows that χ′∆(tα) =
∏

β 6=α(tα − ∆(β)). Using interpolation formula (1.2), it follows
that χ′∆(tα)Wi(tα) = αi

∏
β 6=α(T − ∆(β)). Hence, Definition 1.2 implies that wi(tα) =

αi

∏
β 6=α(tα − ∆(β)). It follows that both side of the equality we want to prove agree

modulo χ∆. As both polynomials have the same degree and are monic, this implies that
they are equal. 2

1.1.3 Triangular systems

The notion of characteristic sets, close to the one of triangular sets, is commonly attributed
to J. F. Ritt [100, 99], who introduced it in the differential algebra context. Since, many
authors have proposed similar approaches, aiming at describing the zeros of an algebraic
system through a finite family of triangular sets: Wu Wen-Tsun [120], D. Lazard [72, 71],
M. Kalkbrener [62], D. Wang [118], M. Moreno Maza [88] as well as the dynamic evaluation
school, notably D. Duval, T. Gomez-Diàs and S. Deillère. [37, 53, 34]. The algorithm
proposed by Lazard in [71] is not proved, and is actually not correct in this article. The
one of Gomez-Diàs [53] is implemented but not proved. Concerning regular chains (defined
hereafter), the only proved algorithm and describing all the zeros of the input algebraic
system is the one of Moreno Maza [80], implemented in the computer algebra systems
Maple (RegularChains library) and in Axiom and Aldor (Triade algorithm).

The articles of Aubry, Lazard and Moreno-Maza [7, 8], and the thesis of Deillère [34],
classify and compare the existing different approaches of “triangular systems”. The notes
of Hubert [60, 59] are emphasized on the parallel between the algebraic and differential
cases. In dimension zero, where this work only deals with, different notions are coinciding.
In positive dimension, these notions extends, and differences take place: the “Kalkbrener”
decompositions [62, 6] only describe a dense open set of the variety considered, whereas the
“Lazard decompositions” [71, 85] describe the whole variety.

The dynamic evaluation paradigm [36, 53, 34] permits to handle computations with
algebraic numbers, eventually depending on parameters, by automatically managing the
splittings which are occurring, and carrying on the computations in the different branches.
This method comes from in questions of treatment of algebraic numbers [36]. For appli-
cations to triangularization of algebraic systems, we refer to [53, 34], and for a didactic
approach to [37].
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We begin by defining the more general notion of regular chains following [20]. Consider a
polynomial ring A[X1, . . . , Xn] over an unitary commutative ring A as well as a lexicographic
order ≺ on the variables.

• The greatest variable of a polynomial P is called the main variable and is denoted by
mvar(P ).

• The coefficient of P with respect to its main variable is a polynomial involving smaller
variables, called the initial and denoted by init(P ).

• For s ≤ n, consider the family of polynomial, C = C1, . . . , Cs ∈ A[X1, . . . , Xn] with
mvar (Ci) = Xℓi

and Xℓ1 ≺ Xℓ2 ≺ · · · ≺ Xℓs
.

• Let hi be the initial of Ci.

• The i-th saturated ideal of C denoted Sati(C) is the ideal (C1, . . . , Ci) : (h1 · · ·hi)
∞.

The n-th saturated ideal is simply denoted by Sat(C).

Definition 1.3 (Regular chain). The family of polynomials C above is a regular chain, if
for all 2 ≤ i ≤ s, hi is a non-zero divisor in (A[X1, . . . , Xn]/Sati−1(C)). The set W (C) =
V (C) \ V (h1 · · ·hn) is called the quasi-component of C. It verifies W (C) = V (Sat(C)).

Example: Assume that the ring A is a field K and consider the system in K[X1, X2, X3]
for the order X1 < X2 < X3:

∣∣∣∣
C2 = (X1 + X2)X

2
3 + X3 + 1

C1 = X2
1 + 1

mvar (C1) = X1 , mvar (C2) = X3

h1 = init (C1) = 1 , h2 = init (C2) = X1 + X2

Sat1(C) = (C1) : h1 = (C1)
Sat2(C) = (C1, C2) : (X1 + X2)

∞

The system above is a regular chain since h2 = X1 + X2 is a non-zero divisor of the algebra
K[X1, X2]/(X2

1 + 1). 2

Given an ideal I ⊂ K[X1, . . . , Xn], a subset of variables Y1, . . . , Ys ⊂ {X1, . . . , Xn} is
free for I if I ∩K[Y1, . . . , Ys] = (0).

Theorem 1.1. The ideal generated by Sat(C) is equidimensional, and if p is an associated
prime of Sat(C), then dim p = n−#C.

The variables Xi which are not main variables of C are free variables. We call them the
canonical set of free variables associated to C.

Proof: It comes from [20], Theorem 1. 2

In the previous example, {X2} is the set of canonical free variables for C.

Theorem 1.2. Let p a prime ideal of codimension n − d. A subset Y = {Y1, . . . , Yd} ⊂
{X1, . . . , Xn} is a maximal set of free variables for p if and only if there exists a regular
chain R = R1, . . . , Rs with p as saturated ideal in K[X1, . . . , Xn] and with Y as canonical
set of free variables.
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Proof: Assume first that Y is a maximal set of free variables for p. Let us order the
variables of X such that every variable of Y is smaller than every variable of X −Y. Let
G be the reduced lexicographical Gröbner basis of p w.r.t this order. By hypothesis, no
polynomials of G lies in K[Y]. By virtue of Theorem 3.2 in [7] one can extract from G a
Ritt characteristic set C of p. Moreover, Theorems 3.3 and 6.1 in [7] show that C is a regular
chain. Clearly, no variables in Y is the main variable of a polynomial in C. Moreover, from
Theorem 3.1 in [63] we have d = n−#C. Hence, Y is the canonical set of free variables of
C.

Conversely, let us assume now that there exists a regular chain R = R1, . . . , Rs with
p as saturated ideal and Y as canonical set of free variables. We can order the variables
such that every variable of Y is smaller than every variable of X−Y while preserving the
fact that R is a regular chain for this new variable order. Then, it follows from Theorem 1
in [20] that K[Y]∩ p equals the trivial ideal, which shows that Y is a maximal set of free
variables for p, concluding the proof. 2

� The definition of triangular set we give is specific to this thesis, and is a particular case of
Lazard triangular sets defined for example in [7]. It is restrictive to the dimension zero.

Definition 1.4 (Triangular set). A triangular set T = (T1, . . . , Tn) is a regular chain for
the order X1 < · · · < Xn verifying init (Ti) = 1. We ask that the ideal generated by T verifies
the Separability Assumption. It is then a lexicographic Gröbner basis, that we assume to be
reduced.

Remark: According to the definition of regular chains 1.3, triangular sets can be defined
over a ring A. Such triangular sets are useful for defining the Newton operator over rings
such as Z/p2κ

. Else, all triangular sets considered will be defined over a field K (and as
usual, finite extension of Q or of k(p1, . . . , pm)).

Positive dimension We suppose that we are given a triangular set T set with coefficients
in k(p1, . . . , pm). The zero set of T in k(p1, . . . , pm) is denoted by V . Dividing out the
denominators, yields a regular chain t lying in k[p1, . . . , pm, X1, . . . , Xn]. The variables
p1, . . . , pm form the canonical set of free variables for t. Let V ⊂ An+m

k̄
be the Zariski closure

of the quasi-component of t, i.e. V = W (t). Theorem 1.1 states that V is equidimensional
of dimension m. We have moreover:

deg(V ) ≤ deg(V) (1.4)

There is a non-trivial relation between regular chains and triangular sets that we describe
here:

Theorem 1.3. Let C = C1, . . . , Cn a regular chain in k[p1, . . . , pm, X1, . . . , Xn] such that
mvar (Ci) = Xi for 1 ≤ i ≤ n, so that the canonical set of free variables for C is p1, . . . , pm.
Then, for 2 ≤ ℓ ≤ n, init (Cℓ) is invertible in the ring:

Rℓ−1 = k(p1, . . . , pm)[X1, . . . , Xℓ−1]/Satℓ−1(C).
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This is Theorem 3 of [20]. In particular, it is possible to construct a triangular set with
coefficients in the function field with variables the canonical set of free variables associated
to C, by a modular inversion process.

Under the Separability Assumption and radicality, the variety described by T verifies
a nice geometric property, called equiprojectable, introduced by Aubry-Valibouze in [9].
Before, let us define some projectors that will be used all along this thesis.

Definition 1.5. Given some integers 1 ≤ j ≤ ı ≤ n, let πn
i be the projection:

πn
i : An

K̄ −→ Ai
K̄

(α1, . . . , αn) 7−→ (α1, . . . , αi).

We note that πi
j ◦ πn

i = πn
j .

Definition 1.6 (Equiprojectable variety). A finite set of points V ⊂ Ai
K̄

is said to be
i-equiprojectable if either i = 1, or i > 1 and πi

i−1(V ) is i− 1 equiprojectable and

#(πi
i−1)

−1({α}) = #(πi
i−1)

−1({β}), for each α, β ∈ πi
i−1(V ).

Finally, a finite set of points V ∈ An
K̄

is said to be equiprojectable if it is n-equiprojectable.

The main result for triangular set is the following result due to Aubry and Valibouze [9],
Theorem 4.5.

Theorem 1.4. Let T be a radical triangular set defined over K with di := degXi
(Ti). The

zero set V = V (T) ∈ An
K̄

is equiprojectable. Moreover, d1 = #πn
1 (V ) and, for i ≥ 2 the

cardinality #(πi
i−1)

−1(πn
i ({α})) for each α ∈ V is equal to di, for i ≥ 2.

Here are some pictures illustrating those definitions.

Example: The picture on the right shows an equiprojectable variety, described by a trian-
gular set T1, T2, T3 of degrees (d1, d2, d3) = (1, 1, 3).

The picture in the middle shows a non equiprojectable variety since #(π2
1)
−1({A}) = 2,

whereas #(π2
1)
−1({B}) = 1 (so it is not 2-equiprojectable).

The variety V drawn on the left is also not equiprojectable: in fact the fiber (π3
2)
−1({D})

over D has cardinality 2, but the other fibers over A, B and C have cardinality 3. However,
the projection π3

2(V ) on the X1, X2-axes is equiprojectable, hence V is 2-equiprojectable.

1.2 Chow form and height

Height theory is a long time studied mathematical subject. For the height of varieties,
different notions exist; we refer to the introductory slides of Silverman [108] for a survey
of the subject. In computer algebra and effective algebra, it appears that the height of
Philippon relying on the Chow form reveals to be the most used [66, 95]. We perpetuate
this “tradition” in this work.
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Figure 1.2: Example of equiprojectable and non equiprojectable varieties

1.2.1 Chow form

The notion of Chow form can exist for positive equidimensional ideals. However, we only
deal with the 0-dimensional case, where it is much easier to define. For a general treatment
see [66, 94].

So suppose we are given a 0-dimensional variety V defined over K. Let I = I(V ) be the
ideal of polynomials vanishing on V . Let us introduce some new indeterminates U1, . . . , Un;
the notation K[U] may be used instead of K[U1, . . . , Un] and K[X] instead of K[X1, . . . , Xn].
This following scalar extension is useful

(K[X]⊗K[U])/(I ⊗K[U]) ≃ (K[X]/I)⊗K[U] ≃ K[X,U]/IK[X,U].

If p is an associated (respectively minimal) prime of I, then so is it of p⊗K(U) for I⊗K(U).
For each such prime, the extension K[X]/p is then generated over K by a separable element
ap. Hence the extension K[X]/p ⊗ K(U) is also generated by ap over K(U), meaning
that this extension is separable. Consequently, if I verifies the Separability Assumption,
I ⊗K(U) verifies it also.

Proposition 1.3. K[U] ⊗ (K[X]/I) is a free K[U] -module of rank the dimension of the
K vector space K[X]. Moreover if p1, . . . , pD is basis of K[X]/I, then p1⊗ 1K , . . . , pD ⊗ 1K

is a basis of (K[X]/I)⊗K[U].

Proof: For a ∈ K[X]/I, 〈a〉 denotes the sub-vector space of K[X]/I generated by a. Let
us prove the following isomorphism, from which the claim is deduced immediately, since
⊕D

i=1〈pi〉 = K[X]/I:

(
⊕D

i=1〈pi〉
)
⊗K K[U] ≃ ⊕D

i=1(〈pi〉 ⊗K K[U]).

In fact there is a K-bilinear map:

(⊕i〈pi〉)×K[U] −→ ⊕i(〈pi〉 ⊗K K[U])

((a1p1, . . . , aDpD), P ) 7−→
D∑

i=1

(aipi ⊗K P )

21



Chapter 1. Preliminaries

permitting to define the map (⊕i〈pi〉)⊗K[U]→ ⊕i(〈pi〉⊗K[U]), which admits the reciprocal
map:

⊕D
i=1(〈pi〉 ⊗K K[U]) −→

(
⊕D

i=1〈pi〉
)
⊗K K[U]

(p1 ⊗ R1, . . . , pD ⊗ RD) 7−→
D∑

i=1

(0, . . . , pi, . . . , 0)⊗ Ri

2

Definition 1.7 (Chow form). Let U := U1X1 + · · · + UnXn. Consider the endomorphism
MU of multiplication by U in the K[U]-module (K[X,U]/IK[X,U]). The characteristic
polynomial det(T1−MU) is called the Chow form of V and is denoted CV (U1, . . . , Un, T ).

It is used in the following form:

Proposition 1.4. The Chow form of V verifies the following identity:

CV (U1, . . . , Un, T ) =
∏

α∈V

(T −
n∑

i=1

αiUi).

Proof: From Separability Assumption,
∑n

i=1 αiUi 6=
∑n

i=1 βiUi as soon as α 6= β. From
Lemma 1.1 all the {

∑n
i=1 αiUi}α∈V are eigenvalues, which are pairwise distinct from the

Separability Assumption. Moreover #V = dimK[U](K[U,X]/IK[U,X]) by Proposition 1.3,
concluding the proof. 2

It follows immediately the multiplicative property of the Chow form. If V1 and V2 are disjoint
varieties then:

CV1∪V2 = CV1CV2 . (1.5)

Let us mention the easy but important cancellation identity:

Lemma 1.2. If U = U1X1 + · · ·+ UnXn, then

CV (U1, . . . , Un, U) ≡ 0 mod K[X,U]/IK[X,U].

Proof: Let us reuse the notation MU of Definition 1.7.

MU(1K mod IK[U,X]) = U mod IK[U,X],

so that

CV (U1, . . . , Un, U) ≡ CV (U1, . . . , Un, MU(1K)) ≡ CV (U1, . . . , Un, MU)(1K) mod IK[U,X].

Finally the last term above is null due to Cayley-Hamilton’s theorem: CV (U1, . . . , Un, MU )
is the null endomorphism in the K[U]-module K[X,U]/IK[X,U]. 2

Finally, using the fact that the notion of triangular set and equiprojectable variety is
stable under projection discarding the last variables, we have:
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1.2. Chow form and height

Lemma 1.3. Let V be an equiprojectable variety defined by a triangular set T1, . . . , Tn over
K of degrees d1, . . . , dn. Let CV be the Chow form of V , and denote by Ci the Chow form of
πn

i (V ) instead of Cπn
i (V ). Then for all 1 ≤ i ≤ n− 1, the following equality holds:

Ci+1(U1, . . . , Ui, 0, T ) = Ci(U1, . . . , Ui, T )di+1.

Proof: From Proposition 1.4,

Ci+1(U1, . . . , Ui, 0, T ) =
∏

α∈πn
i+1(V )

(T − U1α1 − · · · − Uiαi).

The factor (T − U1α1 − · · · − Uiαi) appears #(πi+1
i )−1({α1, . . . , αi}) times, which is di+1

from Theorem 1.4, independently of α. The proposition follows. 2

1.2.2 Height theory

The literature is vast on this topic, and we refer to one of the numerous books of Diophantine
Approximation or Geometry for a more general treatment (for example [67, 68, 58]) The
notion of height relies on absolute values existing over a field. When the field presents
no Archimedean absolute value, then the notion is easy and all the different approaches
are essentially the same. Problems arise when the field presents such absolute values. An
absolute value over a field K is an application

|.|v : K −→ R +

x 7−→ |x|v,

satisfying the standard properties:

(i) |x|v = 0 if and only if x = 0.

(ii) |x · y|v = |x|v · |y|v.

(iii) |x + y|v ≤ |x|v + |y|v.

If moreover the ultrametric inequality holds:

(iii)’ |x + y|v ≤ max{|x|v, |y|v},

then |.|v is said non-Archimedean. Else it is said Archimedean.
In this work we will be interested in two families of fields: the number fields, i.e. finite

extensions of Q, and function fields, i.e. finite extensions of k(p1, . . . , pm), where pi are
parameters. The first family presents Archimedean absolute values, and the second one
does not.

Definition 1.8. In the sequel and all along this thesis, K0 will refer either to the base field
Q, or to the base field k(p1, . . . , pm); the finite extension of K0 considered will be denoted by
K.

The results presented in Chapter 2 are easier and nicer in the function field case. The
height measures the arithmetic complexity of a rational number, the primitive roots of unity
being yardsticks: their height is in fact null. For the functional case, height measures the
degree of divisors. These measures are particularly clear for rational numbers and rational
functions: number of digits, and degree in the parameters respectively.
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Absolute values over the rational number and function fields. Let x = a/b ∈ Q,
a and b being relatively prime integers. We denote by |.|∞ the usual absolute value, i.e.
|x|∞ = max{x,−x}; it is Archimedean. Let p be a prime number. Denote by vp(a) the
exponent of p in the decomposition of the integer a in prime numbers (i.e. pvp(a)|a but
pvp(a)+1 ∤ a). We define by |.|p the application:

|.|p : Q −→ R +

x 7−→ pvp(b)−vp(a)

This defines a non-Archimedean absolute value over Q.

In the same way, consider a rational function F = A/B, with A, B relatively prime
polynomials in k[p1, . . . , pm]. There is a natural absolute value,

|F |∞ = edeg A−deg B,

which is not Archimedean. Additionally, for an irreducible polynomial P ∈ k[p1, . . . , pm], let
vP (A) be the exponent of P appearing in the factorization of A. The following application
|.|P is a non-Archimedean absolute value:

|.|P : k(p1, . . . , pm) −→ R +

F 7−→ edeg P (vP (B)−vP (A))

In the sequel, when we speak of the set of absolute values over K0 = Q or K0 = k(p1, . . . , pm),
we always mean the set of absolute values as above. We denote this set by MK0 =
(M0

K0
, M∞

K0
), where M0

K0
are the non-Archimedean ones, and M∞

K0
are the Archimedean

ones (when K0 = k(p1, . . . , pm) then M∞
K0

= ∅). Consider a field L with a set of absolute
values ML = (M0

L, M∞
L ). We say that ML satisfies the product formula with multiplicity mv

if we have: ∏

v∈ML

|x|mv

v = 1 for all x ∈ L, x 6= 0.

For fields L endowed with such a family of absolute values, it is possible to define the
height of an element x of F :

h(x) =
∑

v∈ML

mv log max{1, |x|v}.

When L = Q, the set of absolute values defined previously verifies the product formula with
multiplicity one; if x = a/b then the height of x is nothing else that:

h(x) = log max{|a|∞, |b|∞}.

Hence h(x) bounds the number of digits of its numerator and denominator. When L =
k(p1, . . . , pm), the set of absolute values defined previously also verifies the product formula
with multiplicity one; if F = A/B is:

h(F ) = max{deg A, deg B}.
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1.2. Chow form and height

Fields extension. Consider now a finite extension K of the base field K0. An absolute
value v of MK0 defines a metric space on K0, so the concept of Cauchy sequences and
completion make sense. We denote by K0v the completion of K0 for the metric induced by
v. Let w be an absolute value over K extending v ∈MK0. Then the fields extension Kw|K0v

is finite. Let Cv be the completion of the algebraic closure of K0v (Cv is also algebraically
closed). There is an embedding:

σw : K → Cv, (1.6)

of K as a subfield of Cv. Then w ∈MK is defined by |x|w = |σw(x)|v, for all x ∈ K.
For each absolute value w of K, we have what we call the local degree Nw = [Kw : K0v],

and the degree formula [58, Proposition B.1.1], holds:

∑

w∈MK , w|v

[Kw : K0v] = [K : K0], (1.7)

where the symbol w|v means that the restriction of w to K0 is v. As a result, it follows that
the set of absolute values MK satisfies the product formula with multiplicity Nw, namely:

∏

w∈MK

|x|Nw

w = 1 for all x ∈ K, x 6= 0.

It is therefore possible to define the height of an element of K:

h(x) :=
1

[K : K0]

∑

w∈MK

Nw log max{1, |x|w}

Height of polynomials. Let f be a polynomial in K[X1, . . . , Xn], where K is a field
endowed with a family of absolute values satisfying the product formula with multiplicity
Nv. Denote by Xa the monomial Xa1

1 · · ·X
an
n for a n-uple a = (a1, . . . , an) ∈ Nn. Write the

polynomial f in the following way:

f =
∑

a∈Nn

faX
a, where the fa ∈ K are almost all zero.

Let v be an absolute value in MK . The following notation is convenient in the sequel:

log |f |v := log{max
a∈Nn
{|fa|v}}. (1.8)

We define the local height of f :

hv(f) = max{0, log |f |v}.

Then the height of a polynomial f is the sum of its local heights:

h(f) :=
1

[K : K0]

∑

v∈MK

Nvhv(f).

We note that if f has its coefficients in K0, then the height of f defined over K and defined
over K0 coincide. Let v be an Archimedean absolute value. Then in the embedding (1.6)
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σv, the image Cv is the complex field C, endowed with its usual norm. Extending σv to the
polynomial rings over K, we define the Mahler measure of f ∈ K[X1, . . . , Xn]:

m(σv(f)) :=

∫ 1

0

. . .

∫ 1

0

log |σv(f)(e2iπt1 , . . . , e2iπtn)|dt1 . . . dtn,

and the Sn-Mahler measure of f (integration is made on the sphere and no more on the
torus):

m(σv(f); Sn) :=

∫

Sn

log |σv(f)|µn,

where Sn is the complex sphere of dimension n, µn is the Haar measure over Sn. It is
immediately seen that both quantities are additive.

We conclude this paragraph by giving useful inequalities for the height of polynomials
over K0 := Q and over K0 := k(p1, . . . , pm), showing that this notion is relevant to space
complexity. The ring of integers of a field K endowed with a family of absolute value MK

is the ring R equal to:

R =
⋂

v∈MK

{x ∈ K, such that |x|v ≤ 1}

Proposition 1.5. Let P ∈ K0[X1, . . . , Xn], c the lcm of the denominators of its coefficients.
Then cP has its coefficients in the ring of integers of K0 (so Z or k[p1, . . . , pm]). We denote
by C the set of the coefficient of cP . Then,

h(P ) = log max ({|c|∞} ∪ {|x|∞ , x ∈ C}) ,

where |x|∞ is max{x,−x} when K0 = Q, and is deg(x) when K0 = k(p1, . . . , pm).

Proof: By definition, if v 6=∞ then hv(cP ) = 0. Hence

h(cP ) = h∞(cP ) = log max{|x|∞ , x ∈ C},

since the coefficients x ∈ C are in the ring of integers, hence |x|∞ ≥ 1. Moreover, taking
the maximum in the equality |y|v = |cy|v · |

1
c
|v, yields:

log max{|y|v , y coefficient of P} =

{
log |1

c
|v + h(cP ) if v =∞,

log |1
c
|v if v 6=∞.

(1.9)

Let v 6=∞. Since c is the lcm of the denominators of the coefficients of P , we have:

hv(P ) > 0⇔ log |
1

c
|v > 0.

Let M0
K0

(P ) := {v ∈M0
K0

, hv(P ) > 0}. We then have

hv(P ) = log max{|x|v , x coefficient of P},

for such a v, and with Equality (1.9):

∑

v∈M0
K0

hv(P ) =
∑

v∈M0
K0

(P )

hv(P ) =
∑

v∈M0
K0

(P )

log |
1

c
|v =

∑

v∈M0
K0

log |
1

c
|v = log |c|∞,
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1.2. Chow form and height

the last equality coming from the product formula. It follows that h(P ) = log |c|∞+h∞(P ).
If h∞(P ) = 0, then each coefficient x of P verifies |x|∞ ≤ 1, so |cx|∞ ≤ |c|∞ and the
maximum in {|c|∞} ∪ {|y|∞ , y ∈ C} is |c|∞. Since h(P ) = log{|c|∞}, this proves the
proposition when h∞(P ) = 0. Else h∞(P ) = log max{|x|∞ , x coefficient of P}, yielding
h∞(P ) = log |1

c
|∞ + h∞(cP ), and by Equality (1.9):

h(P ) = log |c|∞ + log |
1

c
|∞ + h∞(cP ) = h∞(cP ).

Now h∞(P ) > 0 implies that there exists a coefficient x of P , such that |x|∞ > 1, so that
cx ∈ C gives |cx|∞ > |x|∞; hence |c|∞ is not the maximum in the set of the proposition
Consequently, in this case, we have h(P ) = h∞(cP ) = log({|c|∞} ∪ {|x|∞ , x ∈ C}). 2

As an immediate corollary, with the notations of Paragraph “Positive dimension” after
Definition 1.4, we have:

h(V ) ≤ deg(V) (1.10)

Height of varieties. We define here the height of a zero-set of a polynomial system over
K (the same as above, a number field or a function field in m variables). In the case of
dimension zero, the Weil height is commonly used, but we prefer to use the height of Philip-
pon relying on the Chow form, as it appears quite naturally in our problem. Moreover, an
extension to the positive dimensional case, where the Weil height is no more available, is
foreseen. Let us mention the height of Bost-Gillet-Soulé [18], widely used in the mathe-
matics’s community. These two definitions of height coincide, as soon as the metric for the
Archimedean absolute values is well chosen, as shown in [111, théorème 3] .

Let V ⊆ An
K̄

be a variety of dimension 0, CV its Chow form. The height of the variety
V , in the functional case (no Archimedean absolute values) is:

h(V ) :=
1

[K : K0]

∑

v∈M0
K

Nvhv(CV ), (1.11)

and when K is a number field (with Archimedean absolute values) the height of V is:

h(V ) :=
1

[K : K0]

∑

v∈M0
K

Nvhv(CV ) +
1

[K : K0]

∑

v∈M∞
K

Nvm(σv(CV ); Sn+1) + deg(V )

(
n∑

i=1

1

2i

)
.

(1.12)
See [66] for an explanation of the corrective term at the end, and for a discussion of the
inequalities hereunder:

m(f)− deg(f) log(n + 1) ≤ log |f | ≤ m(f) + deg(f) log(n + 1) (1.13)

0 ≤ m(f)−m(f ; Sn) ≤ deg(f)

(
n−1∑

i=1

1

2i

)
(1.14)

The following straightforward corollary of these inequalities is useful in many situations.

Corollary 1.2. Suppose that K is a number field, and v =∞ is the Archimedean absolute
value of Q. We consider a variety V defined over K with Chow form CV ∈ K[X1, . . . , Xn, T ].
Then, if h∞( . ) := 1

[K:Q]

∑
w|∞[Kw : R]hw( . ) we have:

h∞(CV ) ≤ h∞(V ) + deg(V ) log(n + 2).
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Proof: From Equality (1.13), hw(CV ) ≤ m(σw(CV )) + deg(CV ) log(n + 2). From Equal-
ity (1.14),

hw(CV ) ≤ m(σw(CV ); Sn+1) + deg(CV )

(
n∑

i=1

1

2i
+ log(n + 2)

)
.

The degree formula (1.7) implies then:

h∞(CV ) ≤ deg(CV )

(
n∑

i=1

1

2i
+ log(n + 2)

)
+

1

[K : Q]

∑

w|∞

[Kw : R]m(σw(CV ); Sn+1).

We recognize the definition of the height of the variety:

h∞(CV ) ≤ deg(CV ) log(n + 2) +
1

[K : Q]

∑

w|v

[Kw : R]hw(V )

≤ deg(CV ) log(n + 2) + h∞(V ).

We conclude with deg(CV ) = deg(V ). 2

A nice property of the height is that if V1 and V2 are disjoint varieties, following from
equality (1.5):

h(V1 ∪ V2) = h(V1) + h(V2).

The well known geometric Bézout theorem, bounding the degree of the intersection of
two varieties has an arithmetic counterpart, due to Philippon, but we refer to § 2.2.2 of [66],
closer to our notations.

Theorem 1.5. Let f1, . . . , fs be a family of n-variate polynomials defined over K. We
define:

d := max
1≤i≤s

{deg(fi)} and h := max
1≤i≤s

{h(fi)}.

The degree of V = V (f1, . . . , fs) is bounded by (geometric Bézout theorem):

deg(V ) ≤ ds.

Its height verifies the following inequality (arithmetic Bézout theorem):

h(V ) ≤ ds
(
sh + (n + s) log(n + 1)

)

These results will be useful to get extrinsic bounds in Table 2.1 p. 50.

Useful inequalities. We conclude by giving basic inequalities for local heights and Mahler
measures. All the results of this section are taken from [66], §1.1. Except the two inequalities
A2 and A6, coming from inequalities (1.13) and (1.14)discussed above, all the proofs are
not difficult.

Let f1, . . . , fs be in K[X0, . . . , Xn], f in K[X1], g ∈ K[Y1, . . . , Ys], and assume that
each fi has at least one coefficient equal to 1 (this simplifying assumption is satisfied in the
sequel). If v is an Archimedean absolute value on K, we have:

A1 m(fi) ≥ 0 if deg(fi) = 1.
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A2 hv(fi) ≤ mv(fi) + log(n + 2) deg(fi).

A3 hv(f1 · · ·fs) ≤
∑s

i=1 hv(fi) + log(n + 2)
∑s

i=1 deg(fi).

A4

∑s
i=1 hv(fi) ≤ hv(f1 · · · fs) + 2 log(n + 2)

∑s
i=1 deg(fi).

A5 hv(f1 + · · ·+ fs) ≤ max
i≤s

hv(fi) + log s.

A6 mv(fi) ≤ mv(fi; Sn+1) + deg(fi)
(∑n

i=1
1
2i

)
.

A7 hv(f(x)) ≤ hv(f) + deg(f)(hv(x) + log(2)) for x ∈ K.

A8 mv(fi(X0, . . . , Xn−1, 0)) ≤ mv(fi).

A9 hv(g(f1, . . . , fs)) ≤ hv(g) + deg g(max
i≤s

hv(fi) + log(s + 1) + max
i≤s
{deg(fi)} log(n + 1))

If v is a non-Archimedean absolute value on K, we have:

N1 hv(f1 · · ·fs) = hv(f1) + · · ·+ hv(fs).

N2 hv(f1 + · · ·+ fs) ≤ maxi≤s hv(fi).

N3 hv(f(x)) ≤ hv(f) + deg(f)hv(x) for x ∈ k.

If we drop the assumption that each fi has one coefficient equal to 1, we still have, for
any absolute value v:

E hv(xfi) ≤ hv(x) + hv(fi) for x ∈ K.

Corollary 1.3. Let M be a s×s matrice of polynomials (fi.j)1≤i,j≤s, with d = maxi,j{deg(fi,j)}
and h∞ = max1≤i,j≤s h∞(fi,j). Then,

h∞(det(M)) ≤ s(h∞ + log s + d log(n + 1)).

1.3 Basic algorithmic

This section is devoted to some well-known definitions and statements concerning basic
algorithmic that is of use all along this work. A good reference is the book of Gathen-
Gerhard [117]. The first subsection “Generalities” defines some notions of elementary al-
gorithmic such that super-additive functions, and the subproduct tree, useful for stating
the results in Chapter “On the complexity of D5 principle”. The second subsection recalls
the complexity of basic operations, multiplication, division, extended GCD, simultaneous
remainders, multivariate multiplication.

1.3.1 Generalities

Here no big results appear, just some recalls and properties useful for handling fast algo-
rithms. They are relevant to the Chapter “On the complexity of the D5 principle”.
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Super-additive functions. We start by introducing a notion of super-additivity for func-
tions of several variables.

Definition 1.9. Let n be a positive integer. A function A : Nn → R is super-additive if for
all s ≥ 1, for all integer n-uples (d1, . . . , dn) and (di,1, . . . , di,n), with 1 ≤ i ≤ s, satisfying

∑

i≤s

di,1 · · ·di,n = d1 · · · dn and for all j, di,j ≤ dj,

the inequality ∑

i≤s

A(di,1, . . . , di,n) ≤ A(d1, . . . , dn)

holds.

The following lemma helps to prove that a function is super-additive.

Lemma 1.4. Suppose that for all (d1, . . . , dn) and (d′1, . . . , d
′
n) in Nn, with di ≤ d′i for all i,

the inequality
A(d1, . . . , dn)

d1 · · · dn

≤
A(d′1, . . . , d

′
n)

d′1 · · · d
′
n

holds. Then A is super-additive.

Proof: Let s, (d1, . . . , dn) and (di,1, . . . , di,n) be as in Definition 1.9. For any i ≤ s, our
assumption yield the inequalities

A(di,1, . . . , di,n)

di,1 · · ·di,n

≤
A(d1, . . . , dn)

d1 · · ·dn

,

whence

d1 · · · dn A(di,1, . . . , di,n) ≤ di,1 · · · di,n A(d1, . . . , dn).

Summing over all i leads to

d1 · · ·dn

∑

i≤s

A(di,1, . . . , di,n) ≤

(∑

i≤s

di,1 · · · di,n

)
A(d1, . . . , dn)

≤ d1 · · · dn A(d1, . . . , dn).

Canceling d1 · · · dn gives the result. 2

Corollary 1.4. Suppose that U : N → N satisfies U(d)
d
≤ U(d′)

d′
for all d ≤ d′. Then the

function

(d1, . . . , dn) 7→
∏

i≤n

U(di)

is super-additive.
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Logarithmic functions. For our complexity estimates, we need to state inequalities in-
volving logarithmic functions. In order to obtain explicit results that hold for all values of
the arguments, we are led to the following definition.

Definition 1.10. The function logp is defined by logp(x) = 2 log2(max{2, x}) for any
positive integer x.

This definition is motivated by the following lemma.

Lemma 1.5. For all n and all positive integers d1, . . . , dn, we have the inequalities

2 ≤ logp(d1 · · · dn) ≤ logp(d1) · · · logp(dn).

Proof: Let d1, . . . , dn be positive integers. The inequality 2 ≤ logp(d1 · · · dn) is obvious.
To prove the right-hand inequality, we can freely suppose that the di are not all equal to
1, this last case being trivial. Suppose further that d1, . . . , dk are all at least 2, whereas
dk+1, . . . , dn are all 1. Then d1 · · · dn = d1 · · · dk, so we get

logp(d1 · · · dn) = logp(d1 · · · dk).

We then have the equalities

logp(d1 · · · dk) = 2 log2(d1 · · ·dk) = 2
∑

1≤j≤k

log2(dj) = 2
∑

1≤j≤k

logp(dj)

2
.

This estimate admits the upper bounds

∑

1≤j≤k

logp(dj) ≤
∏

1≤j≤k

logp(dj),

the last inequality following from the lower bound logp(dj) ≥ 2. 2

The subproduct tree. The subproduct tree is a useful construction to devise fast al-
gorithms for univariate polynomials. It is a binary tree, all of whose nodes are labeled by
univariate polynomials.

Definition 1.11. Let R be a ring and m1, . . . , mr be monic, non-constant, polynomials in
R[y]. The subproduct tree Sub associated to m1, . . . , mr is defined as follows:

• If r = 1, then Sub is a single node, labeled by the polynomial m1.

• Else, let r′ = ⌈r/2⌉, and let Sub1 and Sub2 be the trees associated to m1, . . . , mr′ and
mr′+1, . . . , mr respectively. Let p1 and p2 be the polynomials at the roots of Sub1 and
Sub2. Then Sub is the tree whose root is labeled by the product p1p2 and has children
Sub1 and Sub2.

A row of the tree consists in all nodes lying at some given distance from the root. The depth
of the tree is the number of its non-empty rows.

Lemma 1.6. Let d =
∑r

i=1 deg(mi). Then the following holds:
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1. The sum of the degrees of the polynomials on any row of Sub is at most d.

2. The depth of Sub is at most logp(d).

Proof: Point (1) comes by an immediate structural induction.
We next prove that for all r ≥ 1, the depth admits the upper bound 1 + ⌈log2(r)⌉. This

is proved by induction: the result clearly holds for r = 1, and the induction step follows
from the identity ⌈log2(r)⌉ = 1 + ⌈log2(⌈r/2⌉)⌉, which holds for all r ≥ 2. Point (2) now
comes from the inequality r ≤ d, which holds since all mi are non-constant, and from the
definition of the function logp. 2

1.3.2 Basic operations

We deal here with fast algorithms for multiplication, GCD computation, multivariate mul-
tiplication and rational reconstruction. It is strongly inspired by Chapters 10 and 11 of
Gathen-Gerhard [117].

Operations on univariate polynomials. We now define multiplication time for uni-
variate polynomials.

Definition 1.12. A multiplication time is a map M : N→ R such that:

• For any ring R, polynomials of degree less than d in R[X] can be multiplied in at most
M(d) operations (+,×) in R.

• For any d ≤ d′, the inequality M(d)
d
≤ M(d′)

d′
holds.

Note that in particular, the inequality M(d) ≥ d holds for all d. The following result is
due to [26], following work of Schönhage and Strassen.

Proposition 1.6. There exists c ∈ R such that the function

d 7→ M(d) = c d logp(d)logplogp(d)

is a multiplication time.

Fast polynomial multiplication is the basis of many other fast algorithms: Euclidean
division, computation of the subproduct tree, and multiple remaindering. We give two sorts
of statements: one, as is usual, in terms of the M function, involving O( ) terms, and another
with more explicit estimates.

Proposition 1.7. Let M be a multiplication time. There exists a constant CM ≥ 1 such
that the following holds over any ring R:

1. Dividing in R[X] a polynomial of degree less than 2d by a monic polynomial of degree
at most d can be done using at most

5M(d) + O(d) ≤ CM M(d)

operations (+,×) in R.
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2. Let F be a monic polynomial of degree d in R[X]. Then additions and multiplications
in R[X]/F can be done using at most

6 M(d) + O(d) ≤ CM M(d)

operations (+,×) in R.

3. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then one can compute the subproduct tree associated to F1, . . . , Fs using at most

M(d)logp(d)

operations (+,×) in R.

4. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then given A in R[X] of degree less than d, one can compute A mod F1, . . . , A mod Fs

using at most
11 M(d)logp(d) + O(dlogp(d)) ≤ CM M(d)logp(d)

operations (+,×) in R.

5. Assume that R is a field. Then, given two polynomials in R[X] of degree at most d,
computing their monic GCD and their Bézout coefficients can be done in no more than

33 M(d)logp(d) + O(dlogp(d)) ≤ CM M(d)logp(d)

multiplications, additions and inversions in R.

Proof: The first point is proved in [117, Theorem 9.6, Ch. 9] and implies the second
one [117, Corollary 9.7]. The third and fourth points are proved in Lemma10.4 and Corol-
lary 10.7 of Chapter 10 of the same reference. The fifth point is reported in its Chapter
11 with constant of 24 instead of 33. In Chapter “On the complexity of the D5 principle”,
using this constant is more convenient and simplifies the calculations. 2

Multivariate multiplication. This paragraph deals with multivariate multiplication of
polynomials, power series and the related question of multiplication modulo a triangular
set. Here are the notations used:

• M(m, d) : multiplication of two multivariate polynomials of degree d with m variables.

• Ms(m, d) : multiplication of two power series at precision d with m variables.

• Mtrig(d1, . . . , dn) or Mtrig(T ) : multiplication of a polynomial P ∈ K[X1, . . . , Xn] mod-
ulo a triangular set T of multi-degree (d1, . . . , dn).

Using a Kronecker substitution [117, § 8.4] to a polynomial f ∈ K[X1, . . . , Xn] of par-
tial degree in Xi at most di leads to univariate multiplications of degree

∏n
i=1(2di + 1).

Over a field of characteristic zero or greater than 2di + 1 for each i, Pan [93] gives a com-

plexity in O
(∏n

i=1(2di + 1)
∑n

i=1
M(di) log(di)

di

)
. In 2004, van der Hoeven [116] with some

improvements of the complexity analysis of the truncated Fourier transform, reachs a
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O
(∏n

i=1(2di + 1)
∑

i log(di)
)
, when there exists enough primitive roots of unity in the base

field.

Concerning truncated series, two types of truncation are of interest. First, the partial
degree truncation, where monomials in the ideal (pd1

1 , . . . , pdm
m ) are discarded. The best

result in that direction is due to Schost [104, Corollary 2]. The complexity reached is
MS(m, d1 · · · dm) ∈ O

(
(d1 · · · dm)1+ǫ

)
, for every ǫ. Second, the total degree truncation. It

is of use notably for the Newton-Hensel algorithm (see next section). Here, they are the
monomials in the ideal (p1, . . . , pm)d which are discarded. The more satisfactory result seems
to be the work of Lecerf and Schost [78, Theorem 1]. Van der Hoeven announces a better
result in [116], but the proof was not correct. A proof in an addendum [115] is in progress
of validation.

Lecerf-Schost MS(m, d) ∈ O
(
D log(D)3 log(log(d))

)
, where D =

(
m + d

m

)
. (1.15)

Modulo triangular sets. The problem is now to evaluate the complexity of multiplica-
tion modulo a triangular set. As required for the analysis of a lifting step of the Newton-
Hensel lifting in Algorithm 1.1, we state this result here. Let T = T1, . . . , Tn be a triangular
set over K, of degree d1, . . . , dn. Given two polynomials f and g, both reduced modulo T ,
we want to evaluate the number of operations Mtrig(T ) = Mtrig(degX1

(T1), . . . , degXn
(Tn))

over K required for computing fg mod (T ). An easy induction, using point (1) of the
Proposition 1.7 gives:

Mtrig(T ) ≤ Cn
M

M(degX1
(T1)) · · ·M(degXn

(Tn)). (1.16)

In Chapter 3, this function is denoted MT. There, since MT take additionally care of
modular inversions, appear cubic logarithmic terms.

1.4 Lifting techniques

This section provides all the material required for using the Newton-Hensel operator: con-
struction of the triangular operator, rational reconstruction, and the stop criterion. These
three steps are sometimes known as the specialize and lift paradigm, and are enclosed in the
generic term of lifting techniques.

The Newton operator is used in this thesis in its triangular form: We only give here the
main lines of its description, in the next subsection and refer to the thesis of Schost [102,
Chapitre 6 and Annexe C]. Subsection 1.4.2 tackles the “Rational reconstruction” problem.
More details on the multivariate rational reconstruction are given in Paragraph 4.3 of [103],
which strongly inspired these lines. The presentation of Lecerf in his thesis [75, § II.4] is also
of interest. Both of these works are in the continuity of the articles of Giusti, Heintz, Pardo
et al. [49, 50] and also in [56]. Inside their work, appears an use of the Newton operator
with complexity considerations. The complexities of the algorithms for changing of order
(Chapter 3) and for the equiprojectable decomposition (Chapter 4) both rely on a study in
the same vein of the Newton operator.
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1.4.1 Triangular Newton-Hensel operator

Originated from numerical analysis, the Newton operator is used for solving polynomial
systems symbolically since the 80’s. The presentation and the spirit of the complexity
results given here are mostly inspired by the work of the TERA group of Giusti, Heintz,
Pardo et al. [49, 50, 56]. It is only a sketch of presentation, for proofs and further details,
the references are [102, Chapitre 6], [105, § 7], [103, § 4 and 5], and [75, § II.4].

Triangular Newton-Hensel operator: Let A be an unitary commutative ring, m an ideal
of A, f = (f1, . . . , fn) a square polynomial system in A[X1, . . . , Xn] and t a triangular set
in A[X1, . . . , Xn] such that:

- the system f is reduced to zero modulo t.
- the jacobian matrix Jac (t) is invertible in (A/m)[X1, . . . , Xn]/(t).

The Newton-Hensel operator considered here computes iteratively the sequence (tκ ≡ t mod
m2κ

), from the datum of t mod m, by a succession of matrix products and one inversion.

In this thesis, the ring A and the ideal m considered above will be either Z and the maximal
ideal (p) for a prime p, either K[p1, . . . , pm] and the maximal ideal (p1 − a1, . . . , pm − am)
for an m-uple in Km.

The effective algorithm is given by Schost [103, Proposition 4]; we recall how it is devised
in Algorithm 1.1, and we introduce some notations used therein:

• tκ denotes the system t mod m2κ

• Tκ = (T κ
1 , . . . , T κ

n ) is a triangular set such that

T κ
j ≡ tκj mod m2κ

(A/m2κ+1

)[X1, . . . , Xn] , j = 1, . . . , n.

• fκ is the image of f through A[X1, . . . , Xn]→ (A/m2κ+1
)[X1, . . . , Xn]/(Tκ).

• Jac (fκ) denotes the jacobian matrix of fκ.

Let us turn out to the complexity of the lifting step. It is convenient to introduce the
complexity of evaluation of a polynomial. Numerous references treat of algorithmic topics by
evaluation computation [65, 24, 49]. In our context, we follow the ideas present in the works
of Giusti et al. [49, 50, 51] where it is shown that the use of such data structures permits to
obtain a better complexity than the representation of polynomials in the monomial basis.

It is a natural assumption that f is given by a straight-line program since the algorithm
required to evaluate the system and its jacobian modulo a triangular set. More precisely,
in the multivariate situation where f ⊂ k[p1, . . . , pm, X1, . . . , Xn] is given by s straight-line
program of size L, then we have [105, Proposition 11]:

Proposition 1.8. Computing tκ+1 from tκ using Algorithm 1.1 requires a number of oper-
ations over A in the order of:

O
(
(nL + n3)Mtrig(degX1

(tκ1), . . . , degXn
(tκn))MS(2κ+1, m)

)
.

As in the introduction, K0 denotes either Q or k(p1, . . . , pm). We are interested in only
these two situations and no more on finite extensions of those, so that K = K0 in this section.
Moreover the ring of integers of K is denoted OK (so that OK = Z or OK = k[p1, . . . , pm]).
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Lift(f , tκ , Jac (fκ)−1 )

#Inputs: f the input polynomial system.
# tκ such that f mod m2κ

⊂ tκ.
# Jac (fκ)−1 the inverse of the jacobian matrix of fκ.

#Outputs: the triangular set tκ+1 ≡ tκ mod m2κ+1
A[X1, . . . , Xn].

# the inverse matrix Jac (fκ+1)−1.

The computations in Steps 1., 2. and 3. are done over A/m2κ+1
[X1, . . . , Xn]/(T κ

1 , . . . , T κ
n )

1. Compute Jac (Tκ).

2. Let δκ = Jac (Tκ)Jac (fκ)−1fκ.

3. Let δ̃κ
j be the preimage of δκ

j through

A/m2κ+1

[X1, . . . , Xn]→ A/m2κ+1

[X1, . . . , Xn]/(T κ
1 , . . . , T κ

n ),

expressed in the monomial basis {Xa1
1 · · ·X

an
n , 0 ≤ aj < degXj

(T κ
j )}.

4. Let tκ+1 = (tκ+1
1 , . . . , tκ+1

n ) = (T κ
1 + δ̃κ

1 , . . . , T κ
n + δ̃κ

n).

5. Jac (fκ+1)−1 = 2Jac (fκ)−1 − Jac (fκ)−1 · Jac (f) · Jac (fκ)−1.
This permits to perform only one inversion, explicitly Jac (f0)−1, to get Jac (fκ+1)−1

only with matrix multiplication

6. return Jac (fκ+1)−1 and tκ+1.

Algo 1.1: One iteration of the lifting procedure: from 2κ to 2κ+1

To control the number of steps of Newton iterations, it is necessary to have at hands some
bounds on the height of the element x of K we aim at reconstruct. An easy case in when
this element x belongs to the ring of integers OK , since there is no rational reconstruction
necessary. Then the number of steps κ should verify at least

κ >

{
⌈log2

(
hp(x)+1
log(p)

)
⌉ if x ∈ Z and m = (p),

⌈log2(deg(x) + 1)⌉ if x ∈ k[p1, . . . , pm].
(1.17)

When x ∈ K − OK , then an additional procedure is required, the rational reconstruction.
It is the object of the next subsection. In this case, κ should verify

κ >

{
⌈log2

(
2hp(x)+1

log(p)

)
⌉ if x ∈ Q and m = (p),

⌈log2(2 deg(x) + 1)⌉ if x ∈ k(p1, . . . , pm).
(1.18)

In our context, we aim at reconstruct coefficients in Q or k(p1, . . . , pm) of the polynomials
of a triangular set. In Chapter 2 general bounds are given for triangular systems, including
sharp bounds for triangular sets. To control the number of steps, we make use of those.
They are intrinsic, i.e. depends on the degree and the height of the variety described by
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the input system. In practice, Bézout theorem permits to obtain bounds readable on the
system; but they are in dn if there are n polynomials of maximal degree d.

To avoid lifing until the Bézout bound dn, a probabilistic version of the Stop Crite-
rion permits to minimize costly Newton iterations (Subsection 1.4.3). The choice of that
criterion is discussed at the end of the next subsection, after the presentation of the ratio-
nal reconstruction principle. Whatever is decided, probabilistic criterion or not, let us call
StopCriterion(tκ) the procedure taking as input a triangular set in OK/m2κ

and returning
a boolean and eventually a triangular set over K, deciding if the lifting process should be
stopped or continued. We get Algorithm 1.2.

LiftingProcess(f , m , t0 , StopCriterion , Bound )

#Inputs: f input polynomial system.
# t0 a triangular set modulo m such that f mod m ⊂ t0.
# Bound is an a priori bound on the number of steps.
#Output: a triangular set t ⊃ f such that t mod m ≡ t0.

1. bool = false ; κ = 1;

2. Compute the inverse Jac (t)−1 in (OK/m)[X1, . . . , Xn]
/
(t0).

3. while (κ ≤ Bound) do

(a) ( tκ , Jac (fκ)−1 ) =Lift(f , tκ−1 , Jac (fκ−1)−1 )

(b) (bool , t′) =StopCriterion(tκ)

(c) if bool then return t’ ; end if

(d) κ = κ + 1

4. end while

5. return fail

Algo 1.2: The Newton-Hensel lifting process

1.4.2 Rational reconstruction

This constitutes the last step of the lifting procedure. A good reference is Paragraph 4.3
of [103]. Let us start with the univariate situation. The problem is the following:

• Let n be an integer and f = f0 +f1X + · · · ∈ k[[X]] a univariate power series known at
precision n. Given an integer m ≤ n, is there exist (and how to compute) polynomials
U and V with deg(U) ≤ m− 1 and deg(V ) ≤ n−m such that:

V (0) 6= 0 and f =
U

V
mod Xn. (1.19)

It is the problem of Padé approximation; U and V are approximates of order (m, n−m)
of f .
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• Let n be a positive integer, p a prime number, and f an integer ranged between 0 and
pn − 1. Given m ≤ n, is there exist (and how to compute) integers U and V , with
|U | < pm and 0 ≤ V ≤ pn−m, such that:

p ∤ V and f =
U

V
mod pn (1.20)

Both problems can be solved efficiently by the extended Euclidean algorithm, leading to a
satisfactory complexity: with the notations above, deciding if (1.19) has a solution, and in
the affirmative, computes such a solution, can be done in

O
(
M(n) log(n)

)
(1.21)

operations over the base field k. The same properties are valid for the problem (1.20) with
the complexity:

O
(
MZ(n log(p)) log(n log(p))

)
(1.22)

bit operations, where MZ(d) is an upper bound on the number of bit operations required to
perform the multiplication of two integers with d digits at most. These two problems are of
the same nature under the point of view of power series: Problem (1.20) is also a rational
reconstruction from a power series, according to the embedding Z →֒ Zp and the bijection
Zp ≃ Fp[[X]],

∑
aip

i 7→
∑

aiX
i (this is the Hensel representation of p-adic integers; there

are others).

In the multivariate case the probabilistic algorithm of Schost [103, page 27] reduces to
the univariate situation by a generic linear change of variable and by putting the variables
in the coefficients ring. The complexity then makes appear the cost of the multiplication of
multivariate power series. Moreover some choices are made for the linear change of variable,
making the algorithm probabilistic. The way how it is designed is outlined in Algorithm 1.3.

The complexity is no more polynomial in d, the degree precision reached, because of the
cost of the multivariate power series multiplication. However the results are similar to the
univariate case. Proposition 83 of [102] proves that the algorithm above requires:

O
(
m2 M(d) MS(2d, m)

)
, (1.23)

operations over k. The probabilistic aspect can be quantified thanks to Proposition 81
of [102], that we recopy in extenso here:

Proposition 81 Let p and q be two polynomials in k[p1, . . . , pm] of degree at most d, with
q(0) 6= 0, and r the Taylor expansion of p/q at the origin at the total degree precision
d′ ≥ 2d. There exists a polynomial P ∈ k[γ2, . . . , γm] of degree at most

d′2(d′ + 1),

such that for all γ not canceling P , Algorithm 1.3 applied to (r, γ) computes p/q within the
complexity (1.23).

Let us go back to the probabilistic StopCriterion discussed above. At each iteration
of the Newton process, this criterion is performing:

- a rational reconstruction of the current Taylor approximation.
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MutlivariateRationalReconstruction(s , γ)

#Inputs: s ∈ k[[p1, . . . , pm]], known at precision d.
# γ is an element of km−1.
#Output: true and (p, q) if there exists p, q ∈ k[X1, . . . , Xn] of degrees lower than d/2,
# and such that p = qs at precision d holds, and with q(0) 6= 0.
# false otherwise.

1. (p1, . . . , pm) = (p1, p2 + γ2p1, . . . , pm + γp1).

2. s = s(t, tp2, . . . , tpm).
It is not necessary to keep the variable p1 since the monomials coefficients in
s(tp1, . . . , tpm) are all homogeneous; hence we do p1 = 1.

3. (bool , (P, Q)) = UnivariateRationalReconstruction(P, Q).
It is performed in k[[p1, . . . , pm]][t].

4. (p1, . . . , pm) = (p1, p2 − γ2p1, . . . , pm − γmp1).

5. if (not bool) return false ; end if

6. Homogenize the monomials by reintroducing the variable p1 in P and Q.

7. p = P |t=1 and q = Q|t=1.

8. return p/q.

Algo 1.3: The multivariate rational reconstruction

- if this succeeds, a probabilistic test that the output is the good one (Figure 1.3).

This permits to reduce the number of steps of the lifting process. The probabilistic test
we use in this thesis is to reduce the input system f on the ideal generated by the output
triangular set(s). For the change of order, in Chapter 3, there is only one output triangular
set, and for the modular equiprojectable decomposition described in Chapter 4, there are
several. We describe in Algorithm 1.4 the test for one triangular set, and refer to the
adequate chapter for more details.

Complexity analysis. Here we sketch a complexity analysis of the lifitng step of the
algorithm. Let K = Q or K = k(p1, . . . , pm), OK its ring of integers and tκ a triangular set
in (OK/m2κ

)[X1, . . . , Xn] as defined in the Input of the algorithm StopCriterion. Let CM

be the universal constant of Proposition 1.7.

• f is given by a straight-line program of size L.

• δ1, . . . , δn is the multi-degree of the triangular set tκ.

• m′ is a maximal ideal in OK , equal to (p1 − y′1, . . . , pm − y′m) for a point y′ =
(y′1, . . . , y

′
m) ∈ Km when OK = k[p1, . . . , pm], and equal to (p′) for a prime p′ ∈ Z

when K = Q.

• For any system F in OK [X1, . . . , Xn] and any maximal ideal m′, the notation Fm′

refers to the system F mod m′ ∈ (OK/m′)[X1, . . .Xn].
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In Steps 3 and 4.(a), the computation of fm′ and of its normal form with respect to the
Gröbner basis fm′ can be executed within

{
L ·Mtrig(δ1, . . . , δn) if K = k(p1, . . . , pm)

L ·O
(
MZ(p′)

)
if K = Q

(1.24)

We follow each step of the straight-line program, and do the following:

- expand systematically the product or the sum corresponding to the step.

- reduce it modulo tm′.

Hence each step requires Mtrig(δ1, . . . , δn) or O
(
MZ(p′)

)
operations over k or bit operations

over Z, leading to L ·Mtrig(δ1, . . . , δn) or to L ·O
(
MZ(p′)

)
.

As for Step 1.(a), the cost of all the rational recontructions is less than





O
(
κM
(
2κ)
)

if K = k(p1)

O
(
MZ(2κ log(p′)) log(2κ log(p′))

)
if K = Q

O
(
m2M(2κ)MS(2κ+1, m)

)
if K = k(p1, . . . , pm) with m ≥ 2,

(1.25)

We have general estimates of the StopCriterion algorithm that we will precise depend-
ing on the situation. In Chapter “Equiprojectable decomposition”, it will be used with
K = Q, for the Chapter “Changing of Order”, with K = k(p1, . . . , pm). Now we turn on
probabilistic considerations.

1.4.3 Probabilistic aspects

During the whole process in Algorithm 1.2, the random choices made come from:

- the multivariate rational reconstruction (Algorithm 1.3), only in the case where OK =
k[p1, . . . , pm] with m ≥ 2.

- the choices of the ideal m′. It comes from the StopCriterion, presented in Algo-
rithm 1.4 in order to limit the number of iteration of the Newton operator, which is
getting more and more costly.

� It is important to remark that while the execution of a modular algorithm, there are other
random choices, which are not included in the lifing process. Therefore, we suppose in this
subsection that all those others random choices are lucky, i.e. answer the correct ouptut.
We will quantify them in the concerned chapters.

The probabilistic quantification of the multivariate rational reconstruction has already
been studied by Schost [103, 105, 102]. Let us evaluate the probability of success of the
StopCriterion described above. When K = Q, we want to specialize modulo a prime
number p′, and when K = k(p1, . . . , pm) specialize at a relevant point y ∈ Km. We give
here the general scheme for the probabilistic stop criterion:
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t triangular set successfully
reconstructed at a step κ

of the lifting process
K = Q

reduction
modulo p′

K = k(p1, . . . , pm)
evaluation at
point y′ ∈ km

Need a κ + 1-th iteration

We claim that t
is the correct ouput

tm ∈ OK/m[X1, . . . , Xn]

Newton-Hensel
iterations

tm′ ≡ t mod m′ Do we have (fm′) ⊂ (tm′) ?

Yes

No

Figure 1.3: The probabilistic test in Step 4 of Algorithm 1.4 StopCriterion

In Chapter 3, the input system f is completely generated by one triangular set. So
the test (fm′) ⊂ (tm′) is equivalent to the more classical (fm′) = (tm′). But in the chapter
“Equiprojectable Decomposition”, several triangular sets are required to generate (f), hence
the test is relevant: stating it in this way permits to treat both cases.

The ideal m′ is randomely chosen. A bad choice succeeds to the test but gives a wrong
answer:

bad choice of ideal m′: (fm′) ⊂ (tm′) but (f) 6⊂ (t).

In order to give a probability of success of our lifting process, we need to quantify the locus
of bad choices. The following proposition gives a result in that direction in the case of a
function in m variables.

Proposition 1.9. Let us consider the notations tκ, f like in the inputs of Algorithm 1.4:

- tκ ⊂
(
k[p1, . . . , pm]/m′2

κ)
[X1, . . . , Xm], is successfully reconstructed into a triangular

set t ∈ k[p1, . . . , pm, X1, . . . , Xn].
- the multi-degree of the triangular set t is denoted d1, . . . , dn.
- d is the maximal total degree of the polynomials in the system f

There exists a polynomial Θ ∈ k[p1, . . . , pm] of degree n d d1d2 · · · dn such that if y =
(y1, . . . , ym) does not vanish Θ, and if m′ = (p1 − y1, . . . , pm − ym) then,

(fm′) ⊂ (tm′) ⇒ (f) ⊂ (t),

with the notations of Step 3 of Algorithm 1.4, fm′ = f mod m′, and tm′ = t mod m′.

Proof: Let us suppose that the test at Step 4 returns true, but that the output is not
correct: (f) 6⊂ (t). This means that there exists a polynomial fi ∈ f such that V (t) 6⊂ V (fi),
but V (t) ∩ {p = y} ⊂ V (f), where p denotes the set of variables p1, . . . , pm. We want to
enclose such points y in an hypersurface of the parameters space Am

K̄
of degree dd1 · · ·dn.

Let W be an irreducible component of V (t) not completely contained in V (fi). Then
dim(W∩V (fi)) = dim(W )−1 and by Bézout theorem 1.5, deg(W∩V (fi)) ≤ deg(fi) deg(W ).
Let πp be the projection on the variables p1, . . . , pm. The Zariski closure πp(W ∩ V (fi)) of
the projection of W ∩ V (fi) on the parameters space is of dimension m− 1 and has degree
at most deg(fi) deg(W ). We note that π−1

p ({y}) ∩W = W ∩ {p = y}, implying:

W ∩ {p = y} ⊂ V (fi) ⇔ ∀ y ∈ πp(W ∩ V (fi)), πp({y}) ∩W ⊂ V (fi).
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It suffices to discard all these points y for each irreducible components of V (t) not contained
in V (fi), for an fi ∈ f . Hence, y should be outside the hypersurface defined by:

⋃

fi∈f

⋃

W irred. comp.

of V (t), W 6⊂V (fi)

πp

(
V (fi) ∩W

)
.

The degree of that hypersurface is bounded by:

n




∑

W irred. comp.
of V (t), W 6⊂V (fi)

deg(W ) max
1≤i≤n

{deg(fi)}


 ≤ n d d1 · · · dn,

since deg(fi) ≤ d and
∑

W irred. comp.
of V (t)

deg(W ) = deg(V (t)) = d1 · · ·dn. 2

From Zippel-Schwartz Lemma [123, 106], if the choice of m′ = (p1−y′1, . . . , pm−y′m) is made
inside a finite set Γm ⊂ km, then the bound above discriminates at most Dd1 · · · dn|Γ|

m−1

values among Γm−1.

Multivariate rational reconstruction. As stated in Subsection 1.4.2, this algorithm
makes m − 1 random choices (Cf. Algorithm 1.3) to reconstruct a rational function in
k(p1, . . . , pm) from a power series in k[[p1, . . . , pm]], for m ≥ 2. The m−1 choices constitute
a point γ ∈ kn−1. We want to quantify here the points γ leading to a failure. Let us assume
that:

- there are N power series to reconstruct.

- the numerator and denominator are bounded in degree by D.

Proposition 81 page 38 proves that each random choice should be outside an hypersurface
of Am−1

k̄
of degree 4D(2D +1)2. Let Γ be a finite subset of k. If the m− 1 choices are made

inside Γm−1, then by Zippel-Schwartz Lemma, this discriminates at most:

4 N D (2D + 1)2|Γ|m−2

values of γ among Γm−1.
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StopCriterion(tκ)

#Inputs: tκ a triangular set in OK/m2κ

[X1, . . . , Xn], as given after a Newton iteration.
# Remark: the input system f is implicitly known also.
#Output: (true, t) or false,
# where t is a triangular set in K[X1, . . . , Xn].

1. For all the coefficients r ∈ OK/m2κ

of all the polynomials tκi of tκ do:

(a) (bool, r̃) = RationalReconstruction(r)
When OK = k[p1], i.e. m = 1, or when K = Q (so m = (p), for a prime p), then
it is a UnivariateRationalReconstruction(r). Else, when OK = k[p1, . . . , pm]
for m ≥ 2, it is the probabilistic MultivariateRationalReconstruction(r, γ)
of Algorithm 1.3.

(b) If (non bool) then return false; end if

end for

Here, the rational reconstruction of all the coefficients of the system tκ has succeeded.

2. reconstruct the system t ∈ K[X1, . . . , Xn] with all the coefficients reconstructed in the
For loop of Step 1.

3. Choose a maximal ideal m′ (i.e. a prime p or a point y1, . . . , ym) satisfying the same
conditions as m. Compute fm′ ≡ f mod m′ and tm′ ≡ t mod m′.

4. For all polynomials fi ∈ fm′ do

(a) Compute the normal form fi mod (tm′) of fi modulo the Gröbner basis tm′.

(b) if (fi mod (t) 6≡ 0) return false; end if

If (f) 6⊂ (t) then more precisions may be required: another iteration is performed.

end for

5. return (true,t)

Algo 1.4: The probabilistic stop criterion in Step 2.(b) of Algorithm 1.2

43



Chapter 1. Preliminaries

44



Chapter 2

Height bounds for polynomial

representations

Introduction. In this chapter are given space complexity results concerning the Kronecker
representation and triangular representations. For the first one, this kind of result is not
really new, but nowhere clearly stated in such a generality in my knowledge, and for the
second one the results are new. Usually this kind of results is stated in term of bit size, useful
for quantifying the bit complexity of some algorithms, but the notion of height introduced
in § 1.2.2 gives similar results in term of degrees over functional fields, unifying the cases
of numbers and functions, and involving intrinsic quantities. The height of a variety has
in fact been introduced in this aim, as a universal yardstick among all possible algebraic
systems describing this variety.

This space complexity is of importance for a polynomial system candidate pretending
to represent general algebraic varieties: The more it is compact, the best it is (even if, of
course, the bit size is a feature among others to take into account). Hence such candidates are
expected to have coefficients growing at most polynomially with natural quantities attached
to the input system. Experiments and previous results show that these data are dominated
by the Bézout number, i.e. dn for a polynomial system of maximal degree d with n variables.
Thus any complexity bounds should take care of that quantity, and hopefully be polynomial
with respect to it. A look at the Bézout Theorem 1.5 shows that the degree and the
height of a variety are both bounded essentially by dn, hence intrinsic bounds should be
polynomial in these two quantities. This is the case for the bounds given in this chapter.
As said before, for the Kronecker representation, such bounds are not new. For triangular
representations, and more precisely for triangular sets, previous bounds were exponential in
the Bézout number, and we provide here a quadratic bound. It dramatically improves the
previous upper bounds given in [45, 112, 105] in the function field case. Those in [105] are
intrinsic; they show a bound for a polynomial of triangular set in nO(n) deg(V)O(n), which
is exponential in n (here V denotes the variety described by the polynomials) The bounds
of Gallo-Mishra in [45, 112] are not intrinsic, and lie in nO(n)dO(n2), which is exponential in
the Bézout number dn. Applying Bézout theorems to intrinsic bounds of Schost [105] gives
slightly better result still exponential. These results are available in the function field case,
and I am not aware of similar bound in the number field case.

The importance of having sharp bounds also holds for algorithms involving modular
methods. To avoid expression swell during an algorithm dealing with rationals number for
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example, it is performed modulo a prime number, and then the output is lifted to the required
output. Of course, random choices are made, and controlling them permit to evaluate a
probability of success. Bounds like the ones presented in this chapter help to sharpen this
probability.

In this context, getting intrinsic bounds requires to link the Chow form to the polyno-
mial system representation considered, because of the definition of the height of a variety
relying on Chow forms. For the Kronecker representation, this link appears in Macaulay [82]
among others, and exists since probably before. We recall this technique of differentiating
and specializing the Chow form to get the parameterizing polynomials of this representation
in § 2.1.2. This is a warming-up to the generalization of this technique to triangular rep-
resentations. The Chow form in the triangular context needs to be differentiated carefully.
Entire Paragraph 2.1.1 is devoted to technical derivation formulas. The link with Chow
forms required is proved in Paragraph 2.1.3. The polynomials obtained (denoted Mi here-
under) are triangular but are not triangular sets. It is however possible to derive formulas
for others interesting triangular representations. These representations (denoted NFi and
Ni in the sequel) appears in the PhD thesis of Schost [102] (in two variables, and in an
experimental form, in table p. 165, Ch. 18), where he noticed that introducing initials to
the polynomials of a triangular set permits to reduce the coefficients.

Before defining these polynomials, let us mention the second technique presented in
Section 2.2 to make a link with the Chow form. The bounds obtained therein are the best
and use interpolation formulas (Corollary 2.3 and Equation (2.26)). In this form, they seem
to be new, even if the Lagrange interpolation formula (Gröbner bases version) as stated
in [84, Lemma 1.5] should produce such formulas. The specificities of our work is indeed a
simplicity and the key partition of the variety into the V i

α (see Figure 2.3). These do not
seem to appear in previous works.

Main results. Let us state now the main results of this chapter. Assume that K0 is one
of the field Q or k(p1, . . . , pm), for a field k, and that K is a finite extension of K0. Let V
be an algebraic zero-dimensional variety defined over K, of degree D whose vanishing ideal
verifies the Separability Assumption. We denote by χu, w1, . . . , wn the polynomials of the
Kronecker representation (Cf. Definition 1.2) associated with a separating linear form U .
Is proved in Theorem 2.2:

Theorem. The height of the coefficients of χ′u(T ) and wi(T ) of the primitive element
representation of V is bounded by:

h(V ) + Dh(U) + D log(n + 2) + (n + 1) log D (number field case)
h(V ) + Dh(U) (function field case).

This result is not a brand-new one, but it has the advantage to be written in both cases of
the number and function fields. In [102, Théorèmes 8 , 15], similar bounds are given.

For triangular representations, the generalization of the differentiation of the Chow form
made for the primitive element in Theorem 2.1 makes appear new polynomials. Suppose
now that we are given an equiprojectable variety V (Cf. Definition 1.6) defined by a family
of triangular set T = (T1, . . . , Tn) over K, of degree (d1, . . . dn), hence, whose generating
radical ideal verifies the Separability Assumption (conditions contained in our definition
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of triangular set 1.4). The use of the projectors πn
i of Definition 1.5 and of the following

convenient notation is made:

Gℓ = 1 + 2
∑

i≤ℓ−1

(di − 1)

Hℓ = 5 log(ℓ + 3)
∑
i≤ℓ

di

Iℓ = Hℓ + 3 log(2)
∑

i≤ℓ−1

di(di − 1).

(2.1)

Since
∏

i di >
∑

i(di − 1), Gℓ and Hℓ are in O(log(ℓ)(ℓ + deg
(
πn

ℓ (V )
)
: we think of them

as linear in deg(πn
ℓ (V )), overlooking the dependence in ℓ. Since d2

i ≥ di(di − 1) + 1 we get∏
i d

2
i >

∑
i di(di − 1), so:

Iℓ ∈ O
((

log(ℓ)(deg(πn
ℓ (V )) + ℓ

)
+
(
deg(πn

ℓ (V )) + ℓ
)2)

= O
(
(deg(πn

ℓ (V )) + ℓ)2
)

we see it as a quadratic quantity. We prove in Theorem 2.7:

Theorem. For 0 ≤ ℓ ≤ n− 1 the height of the polynomial Tℓ+1 is bounded by:

h(Tℓ+1) ≤

{
Gℓ+1h(πn

ℓ+1(V )) + Iℓ+1, (number field case)

Gℓ+1h
(
πn

ℓ+1(V )
)
≤ 2 deg(V)2, (function field case)

The last equality comes from Equation (1.10). The comments made about the bounds
Gℓ, Hℓ and Iℓ show that in the number field case the height is essentially bounded by

O
(

deg
(
πn

ℓ+1(V )
)
· h
(
πn

ℓ+1(V )
)

+ deg
(
πn

ℓ+1(V )
)2)

,

where the “big O” hides logarithmic terms in the height and in the degree. We can say
that this bound, as well as the one for the function field case, is quadratic in the data of the
problem, since only the product of the height by the degree and the square of the degree
appears.

As for the Shape Lemma representation (Cf. Equations (1.3)), where introducing deriva-
tives leads to the Kronecker representation and its diminution of the size of the coefficients,
the same can be expected for triangular sets: introducing suitable initials can reduce the size
of the coefficients. Schost in [102, p. 165, Ch. 18], made some experiments in two variables.
Here we define these initials and give bounds to the two resulting families of triangular
polynomials:

Nℓ+1 ≡
( ℓ∏

i=1

∂Xi
(Ti)

)
· Tℓ+1 mod (T1, . . . , Tℓ)

NFℓ+1 ≡ dℓ+1!
ℓ∏

i=1

(
(di − 1)di+1 · · · dℓ+1

)
!
( ℓ∏

i=1

∂Xi
(Ti)

di+1···dℓ+1

)
· Tℓ+1 mod (T1, . . . , Tℓ).

We prove the following bounds in Section 2.2, using the interpolation formula of Corol-
lary 2.3.
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Theorem. If N1 = T1 and Nℓ+1 defined above for 0 ≤ ℓ ≤ n− 1 then we have

h(Nℓ+1) ≤

{
h(πn

ℓ+1(V )) + Hℓ+1, (number field case)

h(πn
ℓ+1(V )) ≤ deg(V). (functional case)

Using the comments after Definition of Hℓ, in the number field case, the height of h(Nℓ+1)
is bounded by:

O
(
h(πn

ℓ+1(V )) + deg(πn
ℓ+1(V ))

)
,

where again the “big O” hides logarithmic terms in deg(πn
ℓ+1(V )) or h(πn

ℓ+1(V )). Here the
bound is linear in the degree and the height. It is better than the bound obtained for the
coefficients of the polynomials T1, . . . , Tn. Experiments reported in Table 2.2 confirm this
remark. Among all the triangular systems proposed in this Chapter, the family N!, . . . , Nn

present the best result (Cf. Table 2.1. The last inequality involving V comes from Equa-
tion (1.10).

Using the formula of derivations of Section 2.1 we prove in Theorem 2.6 the following
bound for the polynomials NFi:

Theorem. Let NF1 = T1 and NFℓ+1 defined as above for 1 ≤ ℓ ≤ n− 1, then the following
bounds hold:

h(NFℓ+1) ≤





h
(
πn

ℓ+1(V )
)

+ deg(πn
ℓ+1(V ))

(
log
(
(n + 2) deg(πn

ℓ+1(V ))
)

+(n− 1)h(πn
ℓ+1(V )) deg(πn

ℓ+1(V )) + 5n2 + 4n3 deg(πn
ℓ+1(V ))

)
(number field)

h(NFℓ+1) ≤ h(πn
ℓ+1(V ))

(
1 + (n− 1) deg(πn

ℓ+1(V ))2
)

(function field)

This bound is cubic: In fact it is bounded by:

O
(
deg(πn

ℓ+1(V ))2h(πn
ℓ+1(V )

)
,

However, the simplifications made to get this bound may appear brutal in some situations.
Even if these simplifications are nearly optimal in some specific examples, I would say that
these bounds are nearly quadratic. It is polynomial in any case, which is already a good
point. Even it would be quadratic, that is to say inn the same class than the bounds
obtained for polynomials Ti, experiments show that the coefficients are usually smaller than
the coefficients of the polynomial Tℓ+1.

Denote by CV the Chow form of V and for simplicity Ci the Chow form of πn
i (V ) instead

of Cπn
i (V ). We prove that (Theorem 2.5):

Theorem. Let M1 = T1 and for 1 ≤ ℓ ≤ n − 1, define the derivation ∂ ∈ Aℓ+1(K) ⊂
DerK(K[X1, . . . , Xℓ+1]) as follows:

∂ := ∂
(d2−1)d3···dℓ+1

2 ∂
(d3−1)d4···dℓ+1

3 · · ·∂
(dℓ−1)dℓ+1

ℓ .

Define Mℓ+1(X1, . . . , Xℓ+1) = ∂∂
dℓ+1

ℓ+1 (Cℓ+1)(1, 0, . . . , 0, X1). Then:

h(Mℓ+1) ≤

{
h
(
πn

ℓ+1(V )
)

+ deg
(
πn

ℓ+1(V )
)(

log(ℓ + 3) + log deg(πn
ℓ+1(V ))

)
, (number field)

h(πn
ℓ+1(V )) ≤ deg(V) (function field)
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It is almost linear in the degree and the height, but the bound is a bit less better than
the bound obtained for the polynomial Nℓ+1. Moreover the degrees in X1, . . . , Xℓ are much
higher, since degXi

(Mℓ+1) = (di − 1)di+1 · · · dℓ+1. And last but not least, except by calcu-
lating the Chow form, which is not an easy task (and rely on Gröbner basis computation),
I do not know how to compute these polynomials. However, the theoretical bound is useful
for getting the bounds on the polynomials NFi, since (Theorem 2.4):

NFi ≡Mi mod (T1, . . . , Ti−1).

Comments. The bounds given in this Chapter are intrinsic, that is to say, only depend
on quantities attached to the underlying variety: the height and the degree. It is more
general to state them in this way, since it does not depend on the datum of a polynomial
system. However, the height of a variety is tedious to compute, since it was not introduced
at all in this aim. Hence having at hand bounds involving quantities attached to an input
polynomial system is of interest.

For example, a polynomial system over K whose zero-set is equiprojectable, has a lex-
icographic Gröbner basis which is a triangular set. If d and h are the maximal degree and
height of the polynomials of the system, then it is natural to want to estimate the height of
the polynomials of the output Gröbner basis in function of d and h. Using the geometric
and arithmetic Bézout theorem 1.5 permits to derive such bounds form our intrinsic ones:
this is how we fill the column “Extrinsic bounds” in Table 2.1.

We can compare the bounds for the triangular and primitive element representation. In
fact, if (χu, W1, . . . , Wn) is a Shape Lemma representation defined by Equation (1.2) then
the polynomials T1, . . . , Tn+1 hereunder form a triangular set.

∣∣∣∣∣∣∣∣∣∣∣

T1(X1) = χu(X1)
T2(X1, X2) = X2 −W2(X1)

...
Tn(X1, . . . , Xn) = Xn −Wn−1(X1)
Tn+1(X1, . . . , Xn+1) = Xn+1 −Wn(X1)

. (2.2)

Then the polynomials N1, . . . , Nn+1 verify:

∣∣∣∣∣∣∣∣∣∣∣

N1(X1) = χu(X1)
N2(X1, X2) = χ′uX2 − w2(X1)

...
Nn(X1, . . . , Xn) = χ′uXn − wn−1(X1)
Nn+1(X1, . . . , Xn+1) = χ′uXn+1 − wn(X1)

, (2.3)

where χu, w1, . . . , wn is a Kronecker representation (or RUR) defined in Definition 1.2. Let
V ⊂ An

K̄
be the variety parametrized by this representation, and V ′ ⊂ An+1

K̄
the variety

defined by T1, . . . , Tn+1. If deg(V ) = D, then deg(πn+1
i (V ′)) = D for 1 ≤ i ≤ n + 1. In

Corollary 2.4, we obtain resuls summarized in Figure 2.1, restricted to the most interesting
case of a number field.
Conclusion bounds for the regular chain N1, . . . , Nn are of the same order than the bounds
for the Kronecker representation.
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Chapter 2. Height bounds for polynomial representations

Polynomials Definition
Kind of
fields

Intrinsic bound
Extrinsic
bound

Theorem
Section

(T1, . . . , Tn) Def. 1.4 Number

deg(V )
(
h(V ) +

5 log(n + 3) deg(V ) +

3 log(2) deg(V )
) O(nhd2n)

Th. 2.7,
§ 2.2.3

Function 2 deg(V)2 2d2n

(N1, . . . , Nn) Def. 2.3 Number h(V ) + 5 log(n + 3) deg(V ) O(nhdn)
Th. 2.7,
§ 2.2

Function deg(V) dn

(M1, . . . ,Mn) Def. 2.2 Number
h(V )+deg(V )

(
log(n+3)+

log deg(V )
) O(nhdn)

Th. 2.5,
§ 2.1.4

Function deg(V) dn

(NF1, . . . , NFn) § 2.1.5 Number

h(V ) + deg(V )
(

log
(
(n +

2) deg(V )
)

+ (n −
1) deg(V )h(V ) + 5n2 +

4n3 deg(V )
)

O(n3hd3n)
Th. 2.6,
§ 2.1.5

Function n deg(V))3 nd3n

(χu, w1, . . . , wn) Def. 1.2 Number
h(V ) + deg(V )h(U) +
deg(V ) log(n + 2) + (n +
1) log(D)

O
(
n2hdn

) Th. 2.2
§ 2.1.2

Function deg(V)(1 + deg(u) dn deg(u)

Table 2.1: Summary of the results and extrinsic bounds

h(Ni+1) = max{h(χ′u), h(wi)}
1 ≤ i ≤ n

Bounds from Ni Bounds from wi

h(wn) ≤ h(V ′)+
5D log(n + 3)

Corollary 2.4

h(Ni) ≤ h(V ) + Dh(X1)+
D log(n + 2) + (n + 2) log(D)

Corollary 2.4

h(wn) ≤ h(V ) + Dh(u)+
4 log(n + 2) + 5D log(n + 3)

Equivalent

h(wi) ≤ h(V ′) + D(2 + log(n + 2))
+(n + 1) log(D)

Figure 2.1: Comparison of bounds for Ni and for Kronecker representation

In this last section, we compare the representations by the polynomials Tℓ, Nℓ, and
NFℓ from practical viewpoint. We do not mention the polynomials Mi, because as stated
before they are not easily computable. We set K = K0 = Q and compare the bit-size of
the coefficients of these polynomials for various systems coming from applications. In our
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D
A

T
A Syst. P19 Bersh. Hawes J1J2J3

Var. 5 4 7 4
Deg. 31 , 1 , 2 , 1 , 1 12 , 2 , 30 , 4 , 1 , 1 , 5 , 2 ,

1 , 1 1 , 1 , 1 3 , 1
T

1
,.

..
,T

n hnum 90 , 1444 , 1029 , 15 , 58 , 77 , 1560 , 1558 , 1563 , 13 , 25 ,
Tℓ 1444 , 1467 57 , 72 1564 , 1561 , 1560 24 , 39

hden 30 , 1448 , 1031 , 5 , 57 , 46 , 1560 , 1557 , 1561 19 , 24 ,
Tℓ 1450 , 1483 57 , 70 1561 , 1563 , 1560 25 , 39

N
1
,.

..
,N

n hnum 90 , 94 , 117 , 15 , 17 , 77 , 80 , 78 , 78 , 13 , 17 ,
Nℓ 117 , 117 17 , 29 79 , 118 , 80 21 , 17
hden 30 , 28 , 44 , 5 , 5 , 46 , 48 , 47 , 19 , 2 ,
Nℓ 44 , 62 5 , 18 46 , 46 , 85 , 47 8 , 5

N
F
1
,
.
.
.
,
N

F
n hnum 92 , 85 , 489 , 15 , 29 , 77 , 661 , 661 , 13 , 26 ,

NFℓ 490 , 400 29 , 38 661 , 694 , 694 96 , 95
hden 28 , 60 , 342 , 5 , 20 , 46 , 558 , 558 , 0 , 9 ,
NFℓ 342, 230 20 , 34 551 , 554 , 591 ,561 33 , 31

Table 2.2: Number of digits of coefficients for 4 systems

experiments, the representation Nℓ always leads to smaller coefficients, sometimes by an
important factor. These systems, called Bershenko, P19, Hawes and J1J2J3, together with
background information, are given in [102, Annexe E].

How to read Table 2.2 ? The second line gives the number n of variables of the system
the third returns the lists of degrees [d1, . . . , dn] of the polynomials [T1, . . . , Tn]; for example,
the system called Bershenko has 4 variables, and the triangular set T1, T2, T3, T4 representing
it has degree 12, 2, 1, 1. Then the reminding rows are divided in three parts: T1, . . . , Tn,
N1, . . . , Nn and NF1, . . . , NFn. Each of these three parts is composed of two rows. The first
one, denoted hnum returns the maximal number of digits of the integer at the numerator,
among all the rational coefficients of the polynomial considered. The second line gives the
same series of numbers, but for the denominator.

We observe a systematic diminution of the size of the coefficients for the polynomials
Nℓ, which is sometimes quite important: our conclusion is that using the polynomials Nℓ is
a good choice in practice. For the polynomials NF1, . . . , NFn, it appears that coefficients
are often smaller than the ones of polynomial T1, . . . , Tn, whereas their bounds are similar.

The first section is devoted to prove the bounds on the Kronecker representation and
on the polynomials M1, . . . , Mn and NF1, . . . , NFn. It relies on technical results on the
behavior of polynomials under derivations, proved in Subsection 2.1.1, and may be skipped
for a first reading. The second section mostly presents the results of the article [32] written
with the collaboration of É. Schost. The bounds for Tℓ+1 and Nℓ+1 proved therein use new
interpolation formula exploiting the very simple shape of a triangular set.
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Chapter 2. Height bounds for polynomial representations

2.1 Bounds from derivation of the Chow form

The first application of this technique is to obtain bounds for primitive element representa-
tion (see Subsection 2.1.2) using the analogy of the Chow form and the primitive element, as
seen in Subsection 1.2.1. Then we extend the result to triangular sets; as it is more tedious,
all the technical results are gathered in the following subsection.

2.1.1 Formulas of derivations

We aim at proving the following result (Proposition 2.3) in this subsection. It will be
central in the proof of our main result (Theorem 2.4) about the invertibilty of the leading
coefficient of polynomial Mℓ+1 in Section 2.1.3 Let V be an equiprojectable variety defined
by a triangular set T1, . . . , Tn over K, with degrees d1, . . . , dn. The Chow form of πn

i (V ) is
denoted by Ci instead of Cπn

i (V ).

Proposition. Let 1 ≤ ℓ ≤ s be two integers and set d≥ℓ := dℓdℓ+1 . . . ds, and d<ℓ =
d1 . . . dℓ−1. Consider also some integers nℓ, . . . , ns, nT , satisfying

∑s
i=ℓ ni+nT = S ≤ d≥ℓ−1.

Then the derivation

∂ := ∂nℓ

Uℓ
∂nℓ+1

Uℓ+1
. . . ∂ns

Us
∂nT

T ,

verifies the following property:

Cℓ−1(U1, . . . , Uℓ−1, T ) | ∂(Cs)(U1, . . . , Uℓ−1, 0, . . . , 0, T ).

We prove a series of results involving derivations. We recall their definition:

Definition 2.1 (Derivation). Let K be a field and R a commutative K-algebra. A K-
linear map d : R→ R is a derivation of order 1 if: for all x, y ∈ R, d(xy) = xd(y) + d(x)y.
Recursively, we define a derivation of order n by saying that it is a K-linear map D : R→ R
such that ∀x, y ∈ R, y 7→ D(xy)− xD(y)− yD(x) is a derivation of order n− 1. The set
of K-derivations over R is denoted by DerK(R), and it is a (non-commutative) K-algebra.

Example 2.1: If R = K[X1, . . . , Xn] we define derivations of order 1:

for i = 1, . . . , n ∂Xi
(Xα1

1 · · ·X
αn

n ) := αiX
α1
1 · · ·X

αi−1
i · · ·Xαn

n .

They commute each other. The sub-K-algebra An(K) of DerK(K[X1, . . . , Xn]) they gener-
ate is called the n-th Weyl algebra. It is isomorphic to K[X1, . . . , Xn, Y1, . . . , Yn]/R, where
R is the ideal of relations generated by [Xi, Xj] = [Xi, Yj] = [Yi, Yj] = 0 if i 6= j and
[Xi, Yi] = 1 ([., .] is the usual Lie product). ∂Xi

is then identified to Yi.

The following lemma is not of use for this paragraph, but as it deals with derivations,
we state it here:

Lemma 2.1. Let A ∈ K[U1, . . . , Ui][T, X1, . . . , Xi−1] and ∂i be the derivation of order 1
equal to ∂Ui

+ Xi∂T . Then:

∀ k ∈ N ∂Xi
∂k

i (A) = k ∂T ∂k−1
i (A).
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2.1. Bounds from derivation of the Chow form

Proof. Since ∂Ui
, Xi and ∂T commute, ∂k

i =
∑k

j=0

(
k
j

)
∂j

Ui
Xk−j

i ∂k−j
T . It follows:

∂Xi
∂k

i (A) = ∂Xi

(
k∑

j=0

(
k

j

)
∂j

Ui
Xk−j

i ∂k−j
T

)
(A)

=

k∑

j=0

(
k

j

)
∂j

Ui
∂k−j

T ∂Xi
(Xk−j

i ·A)

= ∂T

(
k−1∑

j=0

(k − j)

(
k

j

)
∂j

Ui
Xk−j−1

i ∂k−j−1
T

)
(A).

The last equality follows from the fact that ∂Xi
(Xα

i .A) = αXα−1
i .A since by hypothesis A

does not involve Xi. The equality (k − j)
(

k
j

)
= k

(
k−1

j

)
permits then to conclude. 2

We want now some formulas for the derivative of a product of polynomials. First with
one derivative (Proposition 2.1), and then for several (Corollary 2.1). At last, we apply
these formulas in the special case of products of linear forms, with specific derivations to
get the fundamental Proposition 2.2. It will be applied to Chow forms, which are product
of linear forms: this is how the Proposition 2.3 is obtained.

Proposition 2.1. Let F be a commutative field, f1, . . . , fs some polynomials in F [X1, . . . , Xn]
and ∂ a derivation of order 1 of An(F ). We have the following (generalized Leibniz) formula:

∂k(f1 · · · fs) =
∑

j=(j1,...,js)∈Ns

|j|=k

(
k

j

)
∂j1(f1) · ∂

j2(f2) · · ·∂
js(fs)

where
(

k
j

)
= k!

j1!...js!
and |j| =

∑s
t=1 jt

Proof. By induction on k. For k = 1, it is the well-known Leibniz formula. Suppose
the formula is true at rank k, and let us show it at rank k + 1. We are led to consider

∂

(
s∏

t=1

∂jt(ft)

)
, which is equal to

s∑
t=1

∂jt+1
∏
α6=t

∂jαfα (due to the Leibniz formula). So,

∂k+1(f1 . . . fs) =
∑

j=(j1,...,js)
|j|=k

(
k

j

)( s∑

t=1

∂jt+1
∏

α6=t

∂jα(fα)

)
. (2.4)

Denote by Ss,k the set of s-uples whose sum is k, Ss,k := {(j1, . . . , js) ∈ Ns |
∑s

i=1 ji = k}.
Consider the application:

φ : Ss,k −→ Set of sets of cardinality s of elements in Ss,k+1

j 7−→ {(j1 + 1, j2, . . . , js), (j1, j2 + 1, j3, . . . , js), . . . , (j1, . . . , js−1, js + 1)}

Then the equation 2.4 is rewritten:

∂k+1(f1 . . . fs) =
∑

j=(j1,...,js)
|j|=k

(
k

j

) ∑

(ℓ1,...,ℓs)∈φ(j)

∂ℓ1(f1) . . . ∂ℓs(fs) (2.5)
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Chapter 2. Height bounds for polynomial representations

It is easy to see that ⋃

j∈Ss,k

∪l∈φ(j)l = Ss,k+1.

Hence the formula (2.5) is indeed of the shape:

∑

l=(ℓ1,...,ℓs)
|l|=k+1

C(l) .

s∏

i=1

∂ℓt(ft),

where C(l) ∈ F is only dependent on l. It remains to determine the coefficient C(l). Let
us fix l = (ℓ1, . . . , ℓs) ∈ Ss,k+1, and define El := {β ∈ {1, . . . , s} | ℓβ > 0}. For each β ∈ El,
we can associate to l an unique element j ∈ Ss,k: it suffices to take jβ = ℓβ − 1 and
jα = ℓα, ∀α 6= β. We get:

C(l) =
∑

j∈Ss,k
l∈φ(j)

(
k

j

)
=
∑

β∈El

k!∏
α6=β ℓα!(ℓβ − 1)!

= k!

(∑
β∈El

ℓβ∏s
α=1 ℓα!

)
=

(
k + 1

l

)
.

This concludes the proof. 2

Corollary 2.1. Let δ1, . . . , δi be some derivations of order 1, and k1, . . . , ki some non-
negative integers. With the same polynomials fi of the previous proposition we have:

δk1
1 δk2

2 · · · δ
ki

i (f1 · · · fs) =
∑

j(1),...,j(i)

j(r)∈Ns , |j(r)|=kr

(
k1

j(1)

)
· · ·

(
ki

j(i)

) s∏

t=1

δ
j
(1)
t

1 δ
j
(2)
t

2 · · · δ
j
(i)
t

i (ft).

Proof. By induction on i, the previous proposition giving the case i = 1. We suppose that
the corollary is true for a product of i− 1 derivations indexed from 2 to i; so that:

δk2
2 . . . δki

i (f1 . . . fs) =
∑

j(2),...,j(i)

j(r)∈Ns , |j(r)|=kr

(
k2

j(2)

)
. . .

(
ki

j(i)

) s∏

t=2

δ
j
(2)
t

2 δ
j
(3)
t

3 . . . δ
j
(i)
t

i (ft). (2.6)

Let δ1 be a derivation of order 1, and k1 ∈ N. Due to the generalized Leibniz formula from
the previous Proposition:

δk1
1

(
s∏

t=1

δ
j
(2)
t

2 δ
j
(3)
t

3 . . . δ
j
(i)
t

i (ft)

)
=

∑

j(1)=(j
(1)
1

,...,j
(1)
s )

|j(1)|=k1

(
k1

j(1)

) s∏

t=1

δ
j
(1)
t

1 . . . δ
j
(i)
t

i (ft).

If we report this sum in equation (2.6), we obtain the required formula. 2

Proposition 2.2. Let ℓ and s be two integers such that 2 ≤ ℓ < s. Let (ai,j) 1≤i≤s
1≤j≤ℓ

and

(bi,j,k) 1≤i≤s
1≤j≤r
ℓ≤k≤n

be elements of K̄. We set for all i = 1, . . . , s:

fi :=
r∏

j=1

(ai,1X1 + · · ·+ ai,ℓ−1Xℓ−1 + bi,j,ℓXℓ + · · ·+ bi,j,nXn),
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that will be written more simply: fi :=
r∏

j=1

(X ′(ai)+X ′′(bi,j)). Let kℓ, . . . , kn be some integers

such that
∑n

α=ℓ kα = S. Then,

∂kℓ

Xℓ
∂

kℓ+1

Xℓ+1
· · ·∂kn

Xn
(f1 · · · fs) =

∑

J=(J1,...,Js)
|J|=S

Ji⊆{1,...,r}∪{∅}

C(J)
s∏

i=1

C(Ji)
∏

j 6∈Ji

(X ′(ai) + X ′′(bi,j)),

where C(J) and C(Ji) are constants only dependent on J and Ji respectively.

Proof. Let us set ∂ := ∂kℓ

Xℓ
∂

kℓ+1

Xℓ+1
· · ·∂kn

Xn
. From Corollary 2.1:

∂(f1 · · · fs) =
∑

j(ℓ),...,j(n)∈Ns

|j(α)|=kα, ℓ≤α≤n

C(j(ℓ), . . . , j(n))

s∏

t=1

∂
j
(ℓ)
t

Xℓ
· · ·∂

j
(n)
t

Xn
(ft), (2.7)

Let us fix some s-uples (j(α))α=ℓ,...,n as well as t in {1, . . . , s}, and denote ∂0 := ∂
j
(ℓ)
t

Xℓ
· · ·∂

j
(n)
t

Xn
.

We focus now on ∂0(ft). We aim at proving:

∂0(ft) := ∂
j
(ℓ)
t

Xℓ
. . . ∂

j
(n)
t

Xn
(ft) =

∑

J⊆{1,...,r}

|J|=j
(ℓ)
t

+···+j
(n)
t

C(J)
∏

j 6∈J

(X ′(ai) + X ′′(bi,j)). (2.8)

We need the following for that purpose:

Lemma 2.2. Let g =
p∏

i=1

(aiX + bi) where ai, bi are in a field L extension of a field L0, and

an integer 1 ≤ d < p. The following formula holds:

∂d
X(g) =

∑

{i1,...,id}⊆

{1,...,p}

C({i1, . . . , id})
∏

i6∈{i1,...,id}

(aiX + bi),

where C({i1, . . . , id}) ∈ L is only dependent on the set {i1, . . . , id}.

Proof. By induction on d, the case d = 1 being easy. Let us show the formula at rank d+1,
supposing it is true at rank d:

∂d+1
X (g) = ∂X




∑

{i1,...,id}

⊆{1,...,p}

C({i1, . . . , id})
∏

i6∈{i1,...,id}

(aiX + bi)




=
∑

{i1,...,id}

⊆{1,...,p}

C({i1, . . . , id})∂X


 ∏

i6∈{i1,...,id}

(aiX + bi)




=
∑

{i1,...,id}
⊆{1,...,p}

C({i1, . . . , id})




p∑

id+1=1

id+1 6∈{i1,...,id}

C(id+1)
∏

i6∈{i1,...,id+1}

(aiX + bi)




=
∑

{i1,...,id+1}

⊆{1,...,p}

C({i1, . . . , id+1})
∏

i6∈{i1,...,id+1}

(aiX + bi),
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Chapter 2. Height bounds for polynomial representations

where C({i1, . . . , id+1}) = C({i1, . . . , id})C(id+1). 2

Back to the proposition : The proof of Equation (2.8) is done by decreasing induction
on ℓ. For ℓ = n (which corresponds to the initialization of our induction), we have, thanks
to the previous lemma applied with X = Xn, L = K(X1, . . . , Xn−1) and L0 = K:

∂
j
(n)
t

Xn
(ft) =

∑

J⊆{1,...,r}

|J|=j
(n)
t

C(J)
∏

i6∈J

(X ′(ai) + X ′′(bi,j)).

Suppose the formula exact at rank ℓ + 1, and let us show it at rank ℓ:

∂0(ft) = ∂
j
(ℓ)
t

Xℓ




∑

J⊆{1,...,r}

|J|=j
(ℓ+1)
t

+···+j
(n)
t

C(J)
∏

j 6∈J

(X ′(ai) + X ′′(bi,j))


 . (2.9)

So we look at ∂
j
(ℓ)
t

Xℓ

(∏
j 6∈J(X ′(ai) + X ′′(bi,j))

)
. Again from the previous Lemma applied with

X = Xℓ, L = K(X1, . . . , Xℓ−1, Xℓ+1, . . . , Xn), d = j
(ℓ)
t and p = r − |J |

∂
j
(ℓ)
t

Xℓ

(∏

j 6∈J

(X ′(ai) + X ′′(bi,j))

)
=

∑

J′⊆{1,...,r}\J

|J′|=j
(ℓ)
t

C(J, J ′)
∏

j 6∈J ′∪J

(X ′(ai) + X ′′(bi,j)),

where C(J, J ′) is only dependent on J and J ′. This sum is to be added to each terms
indexed by the J in (2.9). But,

{
J ∪ J ′ such that J , J ′ ⊆ {1, . . . , r} and J ∩ J ′ = ∅ and |J | = j

(ℓ+1)
t + · · ·+ j

(n)
t

and |J ′| = j
(ℓ)
t

}
=
{

J ′′ ⊆ {1, . . . , r}, |J ′′| = j
(ℓ)
t + · · ·+ j

(n)
t

}
.

Hence taking into account this new way of indexing, Equation (2.9) becomes:

∂0(ft) =
∑

J′′⊆{1,...,r}

|J′′|=j
(ℓ)
t

+···+j
(n)
t

C(J ′′)
∏

j 6∈J ′′

(X ′(ai) + X ′′(bi,j)),

where C(J ′′) ∈ K is only dependent on the set J ′′. This is Equation (2.8). So, Equation (2.7)
is rewritten:

∂(f1 . . . fs) =
∑

j(ℓ),...,j(n)

|j(r)|=dα,∀α

C(j(ℓ), . . . , j(n))

s∏

t=1




∑

J⊆{1,...,r}

|J|=j
(ℓ)
t

+···+j
(n)
t

C(J)
∏

j 6∈J

(X ′(ai) + X ′′(bi,j))


 .

A classical formula, of type
∏n

i=1(
∑m

j=1 ai,j) =
∑

1≤ℓ1,...,ℓn≤m

∏n
i=1 ai,ℓi

, gives in our context:

s∏

t=1




∑

J⊆{1,...,r}

|J|=j
(ℓ)
t

+···+j
(n)
t

C(J)
∏

j 6∈J

(X ′(ai) + X ′′(bi,j))


 =

∑

J=(J1,...,Js)

|Jt|=j
(ℓ)
t

+···+j
(n)
t

C(J)

s∏

t=1

C(Jt)
∏

j 6∈Jt

(X ′(ai) + X ′′(bi,j)).
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2.1. Bounds from derivation of the Chow form

Again, here C(J) and C(Jt) only depends of the s-uple of sets J and on the set Jt respectively.
At last, to arrive at the required formula, it suffices to see that:

⋃

j(ℓ),...,j(n)

|j(α)|=kα, ℓ≤α≤n

{(J1, . . . , Js), |Jt| = j
(ℓ)
t + · · ·+ j

(n)
t } = {(J1, . . . , Js), Ji ⊂ {1, . . . r} ∪ {∅},

and |J1|+ · · ·+ |Js| = S}

This is precisely the set on which holds the sum of the proposition. Note that the union is
not disjoint, which possibly makes appear constants C(J), but as stated before, computing
them is not useful for our purpose. 2

Finally, we are able to prove the important divisibility result announced in the beginning
of this subsection. This result will be used intensively in Paragraph 2.1.3 and is an outcome
of the previous results of this subsection. Given an equiprojectable variety V ⊂ An

K̄
defined

over K, with di as cardinal of the fibers of πi
i−1, for 2 ≤ i ≤ n and d1 as cardinal of the

points of πn
1 (V ), we have:

Proposition 2.3. Let 1 ≤ ℓ ≤ s be two integers and set d≥ℓ := dℓdℓ+1 . . . ds, and d<ℓ =
d1 . . . dℓ−1. Consider also some integers nℓ, . . . , ns, nT , satisfying

∑s
i=ℓ ni+nT = S ≤ d≥ℓ−1.

Then the derivation
∂ := ∂nℓ

Uℓ
∂nℓ+1

Uℓ+1
. . . ∂ns

Us
∂nT

T ,

verifies the following property:

Cℓ−1(U1, . . . , Uℓ−1, T ) | ∂(Cs)(U1, . . . , Uℓ−1, 0, . . . , 0, T ).

Proof. From Proposition 1.4, and by definition of an equiprojectable variety, we have:

Cs :=
∏

α∈πn
ℓ−1(V )

∏

β∈(πs
ℓ−1)

−1(α)

(T − U1α1 − · · · − Uℓ−1αℓ−1 − Uℓβℓ − · · · − Usβs).

Before applying Proposition 2.2 with the linear forms fi equal to
∏

β∈(πs
ℓ−1)

−1(α)(T −U1α1−

· · ·−Uℓ−1αℓ−1−Uℓβℓ−· · ·−Usβs), a homogenization between the notations of Proposition 2.2
and the ones here is necessary. For each α ∈ πn

ℓ−1(V ), consider a bijection φα:

φα : {1, . . . , d≥ℓ} −→ (πs
ℓ−1)

−1({α}).

Then the summation of Proposition 2.2 is rewritten as:

∂(Cs)(U1, . . . , Us, T ) :=
∑

J=(J1,...,Jd<ℓ
)

|J|=S

Ji⊂{1,...,d≥ℓ}∪{∅}

C(J)
∏

α∈πn
ℓ−1(V )

C(Ji)
∏

β/∈φα(Ji)

(T − U1α1 − · · ·

· · · − Uℓ−1αℓ−1 − Uℓβℓ − · · · − Usβs).

Evaluating Uℓ = Uℓ+1 = · · · = Us = 0, yields:

∂(Cs)(U1, . . . , Uℓ−1, 0, . . . , 0, T ) =
∑

j=(j1,...,jd<ℓ
)

|j|=S

C(J)
∏

α∈πn
ℓ−1(V )

(T −U1α1−· · ·−Uℓ−1αℓ−1)
d≥ℓ−ji.

Since for all i, ji ≤ S ≤ d≥ℓ − 1, all the exponents above are non-zero. So
∏

α∈πn
ℓ−1(V )(T −

U1α1 − · · · − Uℓ−1αℓ−1) := Cℓ, divides ∂(Cs)(U1, . . . , Uℓ−1, 0, . . . , 0, T ). 2
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Chapter 2. Height bounds for polynomial representations

2.1.2 Bounds for primitive element representations

In this paragraph, we are interested in proving the estimate in Theorem 2.2. Previous
estimates are given in terms of a suitable multiplication tensor in [3, 101], and polynomial-
type bounds are also given for such representations in [47, 109, 102].

We consider a zero-dimensional variety V of a polynomial system over K. As usual,
its vanishing ideal verifies the Separability Assumption. We are interested in recovering its
primitive element representation by differentiating and specializing its Chow form (Theo-
rem 2.1). It does not use the previous technical results, but deals also with derivations.

In this section, D is the degree deg(V ) of V . The following lemma shows an important
cancellation identity of the Chow form when specialized at a generic linear form.

Lemma 2.3. For an integer i ≥ 1, consider a derivation ∂ in a Weyl algebra Ai+1(K[X1, . . . , Xn]) ⊂
DerK[X1,...,Xn](K[X1, . . . , Xn][U1, . . . , Ui, T ]), such that ∂ is product of N derivations among
{∂1, . . . , ∂i}. Consider also a polynomial A in K[U1, . . . , Ui, T ]. Then,

∂(A · Ci)(U1, . . . , Ui,
∑

1≤k≤i

UkXk) ≡ 0 mod I(πn
i (V ))⊗K[U1, . . . , Ui].

Proof. Let us prove it by induction on N . The case N = 0 corresponds to Lemma 1.2
applied for each projection πn

i (V ). Assume that the result is true for every derivation of
Ai+1(K) of order N − 1. By definition, the K-linear map:

L : K[X1, . . . , Xn, U1, . . . , Ui, T ] −→ K[X1, . . . , Xn, U1, . . . , Ui, T ]

y 7−→ ∂(A · y)−A · ∂(y)− y · ∂(A).

is a derivation of order N − 1. So that ∂(Ci . A) = A . ∂(Ci) + Ci . ∂(A) + L(Ci). By the
induction hypothesis,

L(Ci)(U1, . . . , Ui,

i∑

k=1

UkXk) ≡ 0 mod I(πn
i (V ))⊗K[U1, . . . , Ui]

and Lemma 1.2 gives:

Ci(U1, . . . , Ui, U1X1 + · · ·+ UiXi) ≡ 0 mod I(πn
i (V ))⊗K[U1, . . . , Ui]

Let us prove that ∂(Ci)(U1, . . . , Ui, U1X1 + · · ·+ UiXi) is also null modulo that ideal. This
will conclude the proof. Let us see Ci(U1, . . . , Ui,

∑
1≤ℓ≤i UℓXℓ) as a polynomial in U1, . . . , Ui

and with coefficients in K[X1, . . . , Xi]. Lemma 1.2 means that all the coefficients of this
polynomial lie in I(πn

i (V )). To prove that ∂(Ci)(U1, . . . , Ui, U1X1 + · · ·+ UiXi) is also null
modulo I(πn

i (V ))⊗K[U1, . . . , Ui], we prove the following lemma:

Lemma 2.4. Let R be a ring, f ∈ R[U1, . . . , Uℓ] and ∂ a derivation in Aℓ(R), of order N .
Suppose that the coefficients of f lie in an ideal I of R. Then the coefficients of ∂(f) also
belong to I.

Proof. Let us write f as
∑

a∈Nℓ faU
a1
1 · · ·U

aℓ

ℓ , with fa ∈ I. For 1 ≤ i ≤ ℓ, and an integer bi

we have:
∂bi

Ui
(f) = 0,
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2.1. Bounds from derivation of the Chow form

if bi > max{ai|a ∈ Nsand fa 6= 0}. Else,

∂bi

Ui
(f) =

∑

a∈Ns such
that ai≥bi

fa

ai!

(ai − bi)!
Ua1

1 · · ·U
ai−bi

i · · ·Uaℓ

ℓ .

As fa ∈ I, it follows that ai!
(ai−bi)!

fa ∈ I. Hence for every monomials U = Ua1
1 · · ·U

aℓ

ℓ , the

polynomial U(∂U1 , . . . , ∂Uℓ
)(f) has all its coefficients in I. As the derivatives ∂Ui

generates
the Weyl algebra, so it is for ∂(f). 2

Back to the proof: We define the derivation δ from ∂ by replacing each factor ∂j by
∂Uj

. If f denotes Ci(U1, . . . , Uℓ, U1X1 + · · ·+ UiXi), then an easy induction gives:

δ(f) = ∂(Ci)(U1, . . . , Ui, U1X1 + · · ·+ UiXi).

The previous lemma applied with R = K[X1, . . . , Xi], with I = I(πn
i (V )) and with ∂ = δ,

leads to ∂(Ci)(U1, . . . , Ui, U1X1 + · · ·+ UiXi) is null modulo I(πn
i (V ))⊗K[U1, . . . , Ui]. 2

Now that we have at hand this cancellation identity that we use partially (with A = 1)
in this section (but fully exploited in the next section), we start to investigate link between
primitive element representations and Chow forms.

F (U1, . . . , Un) = CV (U1, . . . , Un, U1X1 + · · ·+ UnXn),

where F ∈ K[X1, . . . , Xn][U1, . . . , Un], we get:

∂Ui
(F )(U1, . . . , Un) = (∂Ui

(CV ) + Xi∂T (CV ))(U1, . . . , Un, U1X1 + · · ·+ XnUn). (2.10)

Thanks to the previous Lemma applied with the derivation ∂i = ∂Ui
+ Xi∂T , it is null

modulo I(V ) ⊗K[U1, . . . , Un]. Let (u1, . . . , un) ∈ K̄n such that u := u1X1 + · · ·+ unXn is
a separating element in K[X1, . . . , Xn]/I(V ). In other words, the map V → K̄, α 7→ u(α)
is injective. We consider the specialization map ϕ : K[U1, . . . , Un] → K̄, (Ui 7→ ui)i and
denote by χu(T ) the characteristic polynomial of the endomorphism Mu of multiplication
by u in K[X1, . . . , Xn]/I(V ). We have seen in Proposition 1.3 that K[X]/I(V )⊗K[U] is a
K[U]-free module of the same dimension as the K-vector space K[X]/I(V ). So the following
diagram

K[X]/I(V )⊗K[U]

ϕ

MU

det(T.Id−MU )

K[X]/I(V )⊗K[U]

ϕ

CV (U1, . . . , Un, T )

ϕ

K[X]/I(V ) Mu

det(T.Id−Mu)

K[X]/I(V ) χu(T )

commutes, as the Chow form of V is the characteristic polynomial of MU and the operation
det commutes with the specialization ϕ. We get,

ϕ(CV (U1, . . . , Un, T )) = χu(T ). (2.11)
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Chapter 2. Height bounds for polynomial representations

Moreover ϕ and ∂T commute also, leading to:

φ(∂T (CV )(U1, . . . , Un, T )) = χ′u(T ). (2.12)

This equation with the following theorem provide the link sought between the Chow form
and the Kronecker representation of Definition 1.2. As said before, this result is abso-
lutely not new, nut is a warming-up for the generalization of this technique to triangular
representation.

Theorem 2.1. With the notation wi(T ) of the Kronecker representation introduced in Def-
inition 1.2, we have:

wi(T ) = −ϕ(∂Ui
(CV )(U1, . . . , Un, T )).

Proof. We start with Identity (2.10), to which is applied the specialization ϕ to get:

∂Ui
(CV )(u1, . . . , un, u1X1+· · ·+unXn)+Xi∂T (CV )(u1, . . . , un, u1X1+· · ·+unXn) ≡ 0 mod I(V ).

From Equality (2.12), this is rewritten:

∂Ui
(CV )(u1, . . . , un, u1X1 + · · ·+ unXn) + Xi · χ

′
u(u) ≡ 0 mod I(V ).

The polynomial Wi(T ) of the Shape lemma representation (see Equation (1.2)), is the
expression of Xi in the basis {1, u, u2, . . . , udeg χu−1}. So Wi(u) ≡ Xi mod I(V ). Thanks to
the isomorphism (1.1),which transforms u to T , this is rewritten:

∂Ui
(CV )(u1, . . . , un, T ) + Wi(T )χ′u(T ) ≡ 0 mod χu(T ).

Definition 1.2 of the Kronecker representation implies that wi(T ) ≡ −∂Ui
(CV )(u1, . . . , un, T )

modulo χu. Both polynomials have the same degree in T , so they are equal. 2

This result creates a link between the Chow from of V and any primitive element rep-
resentation of V . It makes it possible to obtain heights bounds (using the definitions 1.12
and 1.11 of height relying on Chow forms). We need to look at the behavior of the height
of a polynomial through derivation and specialization. We make use of the notation log |f |
of Equation (1.8). The following notations are useful:

∂T (CV )(u1, . . . , un, T ) =

D∑

i=0

(
aiT

i

(∑

α∈Nn

aαu
α

))
, (2.13)

where uα = uα1
1 . . . uαn

n . Then, from:

log |∂T (CV )(U1, . . . , Un, T )|v = log max
(i,α)
{|aiaα|v}.

Let ∂ ∈ {∂U1 , ∂U2 , . . . , ∂Un
, ∂T}; since the degree of each monomial of CV is at most D, and

that all its derivatives have less monomials (not only because of the argument ∂X(Y ) = 0,
but also because the base field may be finite):

max{| coefficients of ∂(CV )|v} ≤

{
max{| coefficients of CV |v}, if K is a function field

|D|v max{| coefficients of CV |v}, if K is a number field.

60



2.1. Bounds from derivation of the Chow form

Since |D|v = 1 if v is a non-Archimedean absolute value in the case where K is a number
field, and |D|v = D if v is Archimedean, it follows:

log |∂(CV )(U1, . . . , Un, T )|v ≤

{
log(D) + log |CV |v if v is Archimedean, (A)∂

log |CV |v if v is non-Archimedean. (NA)∂

Now Equation (2.13) shows that:

log |∂T (CV )(u1, . . . , un, T )|v = log max
i
{|ai(

∑

α

aαu
α)|v}, (2.14)

So, if v is non-Archimedean, we get:

|ai(
∑

α

aαu
α)|v = |ai|v|(

∑

α

aαu
α)|v, then by the ultrametric inequality,

≤ |ai|v max
α
{|aαu

α|v}

≤ max
(i,α)
{|aiaα|v}max

α
{|uα|v}, that implies,

log max
i
{|ai(

∑

α

aαu
α)|v} ≤ log max

(i,α)
{|aiaα|v}+ log max

α
{|uα|v}, and then

log |∂TCV (u1, . . . , un, T )|v ≤ log |∂TCV (U1, . . . , Un, T )|v + log(max{|u1|v, . . . , |un|v}
D)

≤ log |∂TCV (U1, . . . , Un, T )|v + D log max
i
{|ui|v}

after (A)∂T
≤ D log max

i
{|ui|v}+ log |CV |v

hv(∂TCV (u1, . . . , un, T )) ≤ hv(V ) + Dhv(U). (2.15)

And if v is Archimedean:

|ai(
∑

α aαu
α)| ≤ |ai|v|(

∑
α aαu

α)|v
≤ |ai|vD

n max
α
{|aαu

α|v}

≤ Dn max
(i,α)
{|aiaα|v}max

α
{|uα|v}, which implies

log max
i
{|ai(

∑
α aαu

α)|v} ≤ n log D + log max
(i,α)
{|aiaα|v}+ log max

α
{|uα|v}, so,

log |∂TCV (u1, . . . , un, T )|v ≤ n log D + log |∂TCV (U1, . . . , Un, T )|v+
+ log(max{|u1|v, . . . , |un|v}

D)
≤ n log D + log |∂TCV (U1, . . . , Un, T )|v + D log max

i
{|ui|v}

after (NA)∂T
≤ (n + 1) log D + D log max

i
{|ui|v}+ log |CV |v.

From inequality (1.13), we get, when v is Archimedean:

log |CV |v ≤ m(σv(CV )) + D log(n + 2)

and then, after (1.14) we get:

log |CV |v ≤ m(σv(CV ); Sn+2) + D

(
log(n + 2) +

n+1∑

i=1

1

2i

)
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Chapter 2. Height bounds for polynomial representations

It follows:

log |∂T (CV )(u1, . . . , un, T )|v ≤ (n + 1) log D + m(σv(CV ); Sn+2)

+ D

(
log max

i
{|ui|v}+ log(n + 2) +

n+1∑

i=1

1

2i

)
.

And finally

hv

(
∂T (CV )(u1, . . . , un, T )

)
≤ hv(V ) + D log(n + 2) + (n + 1) log D + Dhv(U). (2.16)

We deduce the bounds on the Kronecker representation in the theorem hereunder. As for
the previous theorem, this bound is not new, but it stated in full generality, and is readable.
Moreover, it will be useful in the sequel.

Theorem 2.2. The height of the coefficients of χ′u(T ) and wi(T ) of the primitive element
representation of V is bounded by:

h(V ) + Dh(U) + D log(n + 2) + (n + 1) log D (number field case)
h(V ) + Dh(U) (function field case).

Proof. From the definition of the height, we have

h(χ′u(T )) =
1

[K : K0]

∑

v∈M∞
K

Nvhv(χ
′
u(T )) +

1

[K : K0]

∑

v∈M0
K

Nvhv(χ
′
u(T ))

So we use Equations (2.16) and (2.15) to get the expected result. 2

2.1.3 A link between Chow forms and triangular polynomials

We generalize the trick of differentiating the Chow form to get a primitive element rep-
resentation, to triangular representations. We manage to get a family of polynomials
(M1, . . . , Mn) (see Definition 2.2) having the same solutions than the corresponding triangu-
lar set, and the possibility to convert this family to this triangular set (see Algorithm 2.1).

The bounds obtained here use fully the derivation formulas of Section 1. As for the
primitive element representation, we need to link the Chow form of V (zero-dimensional
variety, equiprojectable, vanishing ideal verifying Separability Assumption) and the poly-
nomials of the triangular set describing V . Let us first see on an example how this link is
coming across.

Introduction - Case n = 2 and n = 3

As the results are quite technical, this paragraph first introduces the problem and pro-
vides some examples. Suppose we have an equiprojectable variety V ⊂ A3

K̄
. As usual

C3 ∈ K[U1, U2, U3, T ], C2 ∈ K[U1, U2, T ] and C1 ∈ K[U1, T ] will denote the Chow forms
of V , π3

2(V ) and π3
1(V ) respectively. The following theorem shows how to reconstruct the

polynomials T1, T2 and T3 of the triangular set describing V .
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2.1. Bounds from derivation of the Chow form

Theorem 2.3. Let ∂i denote the derivation ∂Ui
+Xi∂T for i = 2 or 3. Define the polynomials

M1, M2, and M3 as follows:

∣∣∣∣∣∣

M1(X1) = C1(X1)

M2(X1, X2) = ∂d2
2 (C2)(1, 0, X1)

M3(X1, X2, X3) = ∂
(d2−1)d3

2 ∂d3
3 (C3)(1, 0, 0, X1).

Then (M1, M2, M3) is a regular chain whose initials h2 = init(M2) and h3 = init(M3) verify:

h2 ≡ d2!T
′
1(X1)

d2 mod (T1),

h3 ≡ d3!(d3(d2 − 1))!
(
T ′1(X1)

d2d3 · ∂X2(T2)(X1, X2)
d3
)

mod (T1, T2).

Moreover, these initials are invertible modulo (T1) and (T1, T2) respectively, and the following
hold:

T1(X1) = M1(X1)

T2(X1, X2) ≡ (h−1
2 mod (T1)) ·M2(X1, X2) mod (T1),

T3(X1, X2, X3) ≡ (h−1
3 mod (T1, T2)) ·M3(X1, X2, X3) mod (T1, T2).

Example: Consider the family of 8 points of coordinates (i, j, k), i, j, k = 1 or 2,
forming an equiprojectable variety in A3

Q̄
. It is folklore to see that this variety is described

by the triangular set:

T1(X1) = X2
1−3X1+2 , T2(X1, X2) = X2

2−3X2+2 , T3(X1, X2, X3) = X2
3−3X3+2.

It is particularly simple since T2 does not involve X2 and T3 does not involve X2 neither X1.

2

X2

X1

X3

2

2

Figure 2.2: Example on an easy equiprojectable family of 8 points
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Although, the Chow form C3(U1, U2, U3, T ) is equal to:

16 U
8

1
+ 144 U

7

1
U2 + 144 U

7

1
U3 − 96 U

7

1
T + 548 U

6

1
U

2

2
+ 1116 U

6

1
U2 U3 − 744 U

6

1
U2 T + 548 U

6

1
U

2

3
− 744 U

6

1
U3 T + 248 U

6

1
T

2
+ 1152 U

5

1
U

3

2

+3582 U
5

1
U

2

2
U3 − 2388 U

5

1
U

2

2
T + 3582 U

5

1
U2 U

2

3
− 4860 U

5

1
U2 U3 T + 1620 U

5

1
U2 T

2
+ 1152 U

5

1
U

3

3
− 2388 U

5

1
U

2

3
T + 1620 U

5

1
U3 T

2

−360 U
5

1
T

3
+ 1464 U

4

1
U

4

2
+ 6174 U

4

1
U

3

2
U3 − 4116 U

4

1
U

3

2
T + 9424 U

4

1
U

2

2
U

2

3
− 12783 U

4

1
U

2

2
U3 T + 4261 U

4

1
U

2

2
T

2
+ 6174 U

4

1
U2 U

3

3

+12783 U
4

1
U2 U

2

3
T + 8667 U

4

1
U2 U3 T

2 − 1926 U
4

1
U2 T

3
+ 1464 U

4

1
U

4

3
− 4116 U

4

1
U

3

3
T + 4261 U

4

1
U

2

3
T

2 − 1926 U
4

1
U3 T

3
+ 321 U

4

1
T

4

+1152 U
3

1
U

5

2
+ 6174 U

3

1
U

4

2
U3 − 4116 U

3

1
U

4

2
T + 12780 U

3

1
U

3

2
U

2

3
− 17334 U

3

1
U

3

2
U3 T + 5778 U

3

1
U

3

2
T

2
+ 12780 U

3

1
U

2

2
U

3

3

−26448 U
3

1
U

2

2
U

2

3
T + 17928 U

3

1
U

2

2
U3 T

2 − 3984 U
3

1
U

2

2
T

3
+ 6174 U

3

1
U2 U

4

3
− 17334 U

3

1
U2 U

3

3
T + 17928 U

3

1
U2 U

2

3
T

2

−8100 U
3

1
U2 U3 T

3
+ 1350 U

3

1
U2 T

4
+ 1152 U

3

1
U

5

3
− 4116 U

3

1
U

4

3
T + 5778 U

3

1
U

3

3
T

2 − 3984 U
3

1
U

2

3
T

3

+1350 U
3

1
U3 T

4 − 180 U
3

1
T

5
+ 548 U

2

1
U

6

2
+ 3582 U

2

1
U

5

2
U3 − 2388 U

2

1
U

5

2
T + 9424 U

2

1
U

4

2
U

2

3

−12783 U
2

1
U

4

2
U3 T + 4261 U

2

1
U

4

2
T

2
+ 12780 U

2

1
U

3

2
U

3

3
− 26448 U

2

1
U

3

2
U

2

3
T + 17928 U

2

1
U

3

2
U3 T

2

−3984 U
2

1
U

3

2
T

3
+ 9424 U

2

1
U

2

2
U

4

3
− 26448 U

2

1
U

2

2
U

3

3
T + 27347 U

2

1
U

2

2
U

2

3
T

2 − 12354 U
2

1
U

2

2
U3 T

3
+ 2059 U

2

1
U

2

2
T

4

+3582 U
2

1
U2 U

5

3
− 12783 U

2

1
U2 U

4

3
T + 17928 U

2

1
U2 U

3

3
T

2 − 12354 U
2

1
U2 U

2

3
T

3
+ 4185 U

2

1
U2 U3 T

4 − 558 U
2

1
U2 T

5

+548 U
2

1
U

6

3
− 2388 U

2

1
U

5

3
T + 4261 U

2

1
U

4

3
T

2 − 3984 U
2

1
U

3

3
T

3
+ 2059 U

2

1
U

2

3
T

4 − 558 U
2

1
U3 T

5
+ 62 U

2

1
T

6
+ 144 U1 U

7

2
+ 1116 U1 U

6

2
U3

−744 U1 U
6

2
T + 3582 U1 U

5

2
U

2

3
− 4860 U1 U

5

2
U3 T + 1620 U1 U

5

2
T

2
+ 6174 U1 U

4

2
U

3

3
− 12783 U1 U

4

2
U

2

3
T + 8667 U1 U

4

2
U3 T

2

−1926 U1 U
4

2
T

3
+ 6174 U1 U

3

2
U

4

3
− 17334 U1 U

3

2
U

3

3
T + 17928 U1 U

3

2
U

2

3
T

2 − 8100 U1 U
3

2
U3 T

3
+ 1350 U1 U

3

2
T

4
+ 3582 U1 U

2

2
U

5

3

−12783 U1 U
2

2
U

4

3
T + 17928 U1 U

2

2
U

3

3
T

2 − 12354 U1 U
2

2
U

2

3
T

3
+ 4185 U1 U

2

2
U3 T

4 − 558 U1 U
2

2
T

5
+ 1116 U1 U2 U

6

3

−4860 U1 U2 U
5

3
T + 8667 U1 U2 U

4

3
T

2 − 8100 U1 U2 U
3

3
T

3
+ 4185 U1 U2 U

2

3
T

4 − 1134 U1 U2 U3 T
5

+ 126 U1 U2 T
6

+ 144 U1 U
7

3

−744 U1 U
6

3
T + 1620 U1 U

5

3
T

2 − 1926 U1 U
4

3
T

3
+ 1350 U1 U

3

3
T

4 − 558 U1 U
2

3
T

5
+ 126 U1 U3 T

6 − 12 U1 T
7

+16 U
8

2
+ 144 U

7

2
U3 − 96 U

7

2
T + 548 U

6

2
U

2

3
− 744 U

6

2
U3 T + 248 U

6

2
T

2
+ 1152 U

5

2
U

3

3
− 2388 U

5

2
U

2

3
T + 1620 U

5

2
U3 T

2
− 360 U

5

2
T

3

−1464 U
4

2
U

4

3
− 4116 U

4

2
U

3

3
T + 4261 U

4

2
U

2

3
T

2 − 1926 U
4

2
U3 T

3
+ 321 U

4

2
T

4
+ 1152 U

3

2
U

5

3
− 4116 U

3

2
U

4

3
T + 5778 U

3

2
U

3

3
T

2 − 3984 U
3

2
U

2

3
T

3

+1350 U
3

2
U3 T

4 − 180 U
3

2
T

5
+ 548 U

2

2
U

6

3
− 2388 U

2

2
U

5

3
T + 4261 U

2

2
U

4

3
T

2 − 3984 U
2

2
U

3

3
T

3
+ 2059 U

2

2
U

2

3
T

4 − 558 U
2

2
U3 T

5

+62 U
2

2
T

6
+ 144 U2 U

7

3
− 744 U2 U

6

3
T + 1620 U2 U

5

3
T

2 − 1926 U2 U
4

3
T

3
+ 1350 U2 U

3

3
T

4 − 558 U2 U
2

3
T

5
+ 126 U2 U3 T

6

−12 U2 T
7

+ 16 U
8

3
− 96 U

7

3
T + 248 U

6

3
T

2 − 360 U
5

3
T

3
+ 321 U

4

3
T

4 − 180 U
3

3
T

5
+ 62 U

2

3
T

6 − 12 U3 T
7

+ T
8

Lemma 1.3 shows that the Chow form C2 is equal to C3(U1, U2, 0, T )1/2:

4U4
1 + 18U3

1 U2 − 12U3
1 T + 28U2

1 U2
2 − 39U2

1 U2T + 13U2
1 T 2 + 18U1U

3
2 − 39U1U

2
2 T + 27U1U2T

2

− 6U1T
3 + 4U4

2 − 12U3
2 T + 13U2

2 T 2 − 6U2T
3 + T 4

and obviously C1(U1, T ) = (T−U1) (T−2 U1), so that T1(X1) = C1(1, X1) = (X1−1)(X1−2).
Following the formula of the theorem above, we compute:

∂d2
2 (C2)(1, 0, X1) = 12X2

1X
2
2−36X2

1X2+26X2
1−36X1X

2
2+108X1X2−78X1+26X2

2−78X2+56.

Then an extended GCD computation gives T ′1(X1)
−1 mod T1 = 2X1 − 3, so that:

1

d2!

(
T ′1(X1)

−d2 mod T1

)
∂d2

2 (C2)(1, 0,X1) = 4X4
1X3

2 − 72X4
1X2

2 + 52X4
1X2 − 144X3

1X3
2

+432X3
1X2

2 − 312X3
1X2 + 322X2

1X3
2 − 966X2

1X2
2 + 697X2

1 X2 − 318X1X
3
2

+954X1X
2
2 − 687X1X2 + 117X3

2 − 351X2
2 + 252X2

It remains to reduce all the coefficients in X1 (when the polynomial above is seen as a
univariate polynomial in X2):

degree 0 52X4
1 − 312X3

1 + 697X2
1 − 687X1 + 252 mod T1 = 2

degree 1, X2 −72X4
1 + 432X3

1 − 966X2
1 + 954X1 − 351 mod T1 = −3

degree 2, X2
2 24X4

1 − 144X3
1 + 322X2

1 − 318X1 + 117 mod T1 = 1

It finally gives the required polynomial T2(X1, X2) = X2
2 − 3X2 + 2.
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The computation for T3 follows the same scheme.

∂2
2∂2

3(C3)(1, 0, 0,X1) = 420X4
1X2

2X2
3 − 1260X4

1X2
2X3 + 930X4

1X2
2 − 1260X4

1 X2X
2
3 + 3780X4

1 X2X3

−2790X4
1X2 + 930X4

1X2
3 − 2790X4

1 X3 + 2059X4
1 − 2520X3

1 X2
2X2

3 + 7560X3
1 X2

2X3

−5580X3
1X2

2 + 7560X3
1 X2X

2
3 − 22680X3

1 X2X3 + 16740X3
1 X2 −−5580X3

1X2
3 + 16740X3

1 X3

−12354X3
1 + 5580X2

1 X2
2X2

3 − 16740X2
1 X2

2X3 + 12354X2
1 X2

2 − 16740X2
1 X2X

2
3

+50220X2
1 X2X3 − 37062X2

1 X2 + 12354X2
1 X2

3 − 37062X2
1 X3 + 27347X2

1 − 5400X1X
2
2X2

3

+16200X1X
2
2X3 − 11952X1X

2
2 + 16200X1X2X

2
3 − 48600X1X2X3 + 35856X1X2

−11952X1X
2
3 + +35856X1X3 − 26448X1 + 1926X2

2 X2
3 − 5778X2

2 X3 + 4261X2
2

−5778X2X
2
3 + 17334X2X3 − 12783X2 + 4261X2

3 − 12783X3 + 9424

An extended GCD computation gives ∂X2(T2)
−1 mod (T1, T2) = 2X2 − 3, yielding to:

1

d3!(d2 − 1)d3!
T ′1(X1)

−d2d3∂X2(T2)(X1,X2)
−d3 ≡

1

4
(2X1 − 3)4 (2X2 − 3)2 mod (T1, T2).

Hence, following the formula for T3 of Theorem 2.3, before reduction modulo (T1, T2) we
get a polynomial in X3 whose coefficients in X2 are:

degree 0: 1 59520X8
1 X4

2 − 357120X8
1 X3

2 + 801376X8
1 X2

2 − 797088X8
1 X2 + 296496X8

1

714240X7
1 X4

2 + 4285440X7
1 X3

2 − 9616512X7
1 X2

2 + 9565056X7
1 X2 − 3557952X7

1

+3736896X6
1 X4

2 − 22421376X6
1 X3

2 + 50313200X6
1 X2

2 − 50043408X6
1 X2 + 18614520X6

1

−11133504X5
1 X4

2 + 66801024X5
1 X3

2 − 149898672X5
1 X2

2 + 149091408X5
1 X2 − 55455192X5

1

+20658568X4
1 X4

2 − 123951408X4
1 X3

2 + 278136838X4
1 X2

2 − 276629178X4
1 X2 + 102887883X4

1

−24444528X3
1 X4

2 + 146667168X3
1 X3

2 − 329101332X3
1 X2

2 + 327301740X3
1 X2 − 121725882X3

1

+18010728X2
1 X4

2 − 108064368X2
1 X3

2 + 242474526X2
1 X2

2 − 241133922X2
1 X2 + 89671131X2

1

−7553952X1X
4
2 + 45323712X1X

3
2 − 101693448X1X2

2 + 101123640X1X2 − 37600848X1

+1380564X4
2 − 8283384X3

2 + 18584721X2
2 − 18478935X2 + 6870096,

degree 1 : X3 − 80640X8
1 X4

2 + 483840X8
1 X3

2 − 1085760X8
1 X2

2 + 1080000X8
1 X2 − 401760X8

1

+967680X7
1 X4

2 − 5806080X7
1 X3

2 + 13029120X7
1 X2

2 − 12960000X7
1 X2 + 4821120X7

1

−5063040X6
1 X4

2 + 30378240X6
1 X3

2 − 68169888X6
1 X2

2 + 67807584X6
1 X2 − 25224048X6

1

+15085440X5
1 X4

2 − 90512640X5
1 X3

2 + 203111712X5
1 X2

2 − 202028256X5
1 X2 + 75151152X5

1

−27994032X4
1 X4

2 + 167964192X4
1 X3

2 − 376908564X4
1 X2

2 + 374886828X4
1 X2 − 139445334X4

1

+33128352X3
1 X4

2 − 198770112X3
1 X3

2 + 446027544X3
1 X2

2 − 443617128X3
1 X2 + 165000564X3

1

−24412752X2
1 X4

2 + 146476512X2
1 X3

2 − 328675644X2
1 X2

2 + 326882628X2
1 X2 − 121572414X2

1

+10240992X1X
4
2 − 61445952X1X

3
2 + 137873016X1X2

2 − 137112264X1X2 + 50989176X1

−1872072X4
2 + 11232432X3

2 − 25202502X2
2 + 25061562X2 − 9318807,

65



Chapter 2. Height bounds for polynomial representations

degree 2 : X2
3 26880X8

1 X4
2 − 161280X8

1 X3
2 + 361920X8

1 X2
2 − 360000X8

1 X2 + 133920X8
1

−322560X7
1 X4

2 + 1935360X7
1 X3

2 − 4343040X7
1 X2

2 + 4320000X7
1 X2 − 1607040X7

1

+1687680X6
1 X4

2 − 10126080X6
1 X3

2 + 22723296X6
1 X2

2 − 22602528X6
1 X2 + 8408016X6

1

−5028480X5
1 X4

2 + 30170880X5
1 X3

2 − 67703904X5
1 X2

2 + 67342752X5
1 X2 − 25050384X5

1

+9331344X4
1 X4

2 − 55988064X4
1 X3

2 + 125636188X4
1 X2

2 − 124962276X4
1 X2 + 46481778X4

1

−11042784X3
1 X4

2 + 66256704X3
1 X3

2 − 148675848X3
1 X2

2 + 147872376X3
1 X2 − 55000188X3

1

+8137584X2
1 X4

2 − 48825504X2
1 X3

2 + 109558548X2
1 X2

2 − 108960876X2
1 X2 + 40524138X2

1

−3413664X1X
4
2 + 20481984X1X3

2 − 45957672X1X
2
2 + 45704088X1X2 − 16996392X1

+624024X4
2 − 3744144X3

2 + 8400834X2
2 − 8353854X2 + 3106269.

To perform the reduction, first a reduction modulo T1 of the coefficients in X1 of monomials
X i

2, for the 3 polynomials in above, and then a reduction modulo T2(X1, X2) in the base
ring K[X1] (which is possible, since T2 is monic). Yielding to the expected result for T3:

degree 0, 1 59520X8
1 X4

2 − · · · mod (T1, T2) = 2
degree 1, X3 −80640X8

1 X4
2 + · · · mod (T1, T2) = −3

degree 2, X2
3 26880X8

1 X4
2 − · · · mod (T1, T2) = 1

so that we get T3 = X@
3 − 3X3 + 2, as foreseen.

Staying in the case of three variables, let us prove the Theorem 2.3: how to get T1, T2, T3

from the Chow form CV .

Calculation of T1. As T1(X1) = C1(1, X1), and C1(U1, T )d2d3 = CV (U1, 0, 0, T ) by Lemma 1.3,
it is easy to get T1 from the Chow form V .

Calculation of T2. Set F2(U1, U2) = C2(U1, U2, U1X1 + U2X2). After Lemma 2.3

∀i ∈ N, (∂i
U2

F2)(U1, U2) = (∂i
2C2)(U1, U2, U1X1 + U2X2) ≡ 0 mod (T1, T2)⊗K[U1, U2].

It is easy to check that (∂i
U2

F2)(1, 0) is a polynomial of degree i in X2, with coefficients
in K[X1]. This polynomial also vanishes on π3

2(V ) since it is null modulo (T1, T2), thanks
to the previous equality. So we now look for which i its leading coefficient is invertible
mod(T1). We have the equality:

∂d2
2 (C2)(1, 0, X1) =

d2∑

i=0

∂n−i
U2

∂i
T (C2)(1, 0, X1), (2.17)

so that the leading coefficient in X2 is h2 = ∂d2
T (C2)(1, 0, X1). Since the specialization

U2 = 0 commutes with the derivation ∂T , the equality ∂d2
T (C2)(U1, 0, T ) = ∂d2

T (Cd2
1 )(U1, T )

holds, thanks to Lemma 1.3. Proposition 2.1 then gives:

∂d2
T (Cd2

1 )(X1) =
∑

j=(j1,...,jd2
)

|j|=d2

(
d2

j

) t=d2∏

t=1

∂jt

T (C1)(X1).
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But all the d2-uples j for which there exists an index t ∈ {1, . . . , d2} such that jt = 0 we
have

∏t=d2

t=1 ∂jt

T (C1)(1, X1) ≡ 0 mod (T1), since C1(1, X1) ≡ 0 mod (T1) the only d2-uple j for
which this does not happen is (1, . . . , 1). Hence, the equality above is reduced to:

(∂d2
T (C1)

d2)(1, X1) ≡ d2! (∂TC1(1, X1))
d2 mod (T1)

≡ d2!(T
′
1(X1))

d2 mod (T1)

Moreover T1 is square-free so that T ′1(X1) is coprime with T1(X1), i.e. T ′1(X1) is invertible
mod(T1). It follows that (h−1

2 mod (T1)
(
∂d2

2 (C2)(1, 0, X1)
)

mod (T1) is null modulo (T1, T2)
(it vanishes on π3

2(V )), is monic of degree d2 in X2 and reduced modulo (T1). It follows that
it is equal to T2.

Calculation of T3 Set F3(U1, U2, U3) = C3(U1, U2, U3, U1X1 + U2X2 + U3X3). Lemma 2.3
says that the following family of polynomials:

{
∂s

2∂
ℓ
3(C3)(1, 0, 0, X1)

}
s,ℓ∈N

⇐⇒
{
∂s

U2
∂ℓ

U3
(F2)(1, 0, 0, X1)

}
s,ℓ∈N

vanish on π3
2(V ). Let us show that when s = (d2 − 1)d3 and ℓ = d3, the leading coefficient

in X3 is invertible mod(T1, T2).

∂
(d2−1)d3

2 ∂d3
3 (C3)(1, 0, 0, X1) =

d3∑

i=0

∂
(d2−1)d3

2 ∂d3−i
U3

∂i
T (C3)(1, 0, 0, X1) ·X

i
3 (2.18)

Thus the leading coefficient is ∂
(d2−1)d3

2 ∂d3
T (C3)(1, 0, 0, X1). Since ∂T commutes with the

specialization U3 = 0, we have from Lemma 1.3:

∂d3
T (C3)(U1, U2, 0, T ) = ∂d3

T (Cd3
2 )(U1, U2, T ).

Thanks to the generalized Leibniz formula (Proposition 2.1):

∂d3
T (Cd3

2 )(U1, U2, T ) =
∑

j=(j1,...,jd3
)

|j|=d3

(
d3

j

) t=d3∏

t=1

∂jt

T (C2)(U1, U2, T ).

But C2(U1, U2, T ) divides all the products above as soon as at least one index jt is non zero.
The only d3-uple j for which this does not happen is (1, 1, . . . , 1). Hence, there exists a
polynomial A ∈ K[U1, U2, T ], such that:

∂d3
T (Cd3

2 )(U1, U2, T ) = A · C2(U1, U2, T ) + d3!(∂T (C2)(U1, U2, T ))d3.

From Lemma 2.3 applied with i = 2, it follows:

∂
(d2−1)d3

T (A · C2)(U1, U2, U1X1 + U2X2) ≡ 0 mod (T1, T2)⊗K[U1, U2].

Now we focus on the other term d3!(∂T (C2)
d3).

∂
(d2−1)d3

2 d3!(∂T (C2)(U1, U2, T ))d3 = d3!
∑

j=(j1,...,jd3
)

|j|=(d2−1)d3

(
(d2 − 1)d3

j

) t=d3∏

t=1

∂jt

2 ∂T (C2)(U1, U2, T ).
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Then Proposition 2.3 shows that for all j such that there exists t ∈ {1, . . . , d3} with jt ≤ d2−
2, the product above where appears such a j is null after specialization U1, U2, T → 1, 0, X1

and reduction modulo (T1, T2). So, the only d3-uple leading to a non null product, and
respecting |j| = (d2 − 1)d3 is (d2 − 1, . . . d2 − 1):

d3!
(
∂

(d2−1)d3

2

(
∂T (C2)(1, 0, X1)

)d3
)
≡ d3!

((d2 − 1)d3)!

(d2 − 1)!d3

(
∂d2−1

2 ∂T (C2)(1, 0, X1)
)d3

mod (T1, T2),

But from Lemma 2.1

∂d2−1
2 ∂T (C2) =

1

d2
∂X2∂

d2
2 (C2)

and as ∂d2
2 (C2)(1, 0, X1) ≡ d2!(T

′(X1))
d2T2(X1, X2) mod (T1, T2) from the previous para-

graph “Calculation of T2”, we get:

∂d2−1
2 ∂T (C2)(1, 0, X1) ≡ (d2 − 1)!(T ′1(X1))

d2∂X2(T2)(X1, X2) mod (T1, T2),

Finally, the leading coefficient, that we have denoted h3 in the theorem, is finally equal to
d3!(d3(d2 − 1))!(T ′1(X1))

d2d3(∂X2(T2)(X1, X2))
d3 modulo (T1, T2). Let us see this polynomial

in
(
K[X1]/(T1)

)
[X2]. We have seen in the previous paragraph that T ′1(X1) is a unit in that

ring. Moreover T2(X1, X2) mod (T1) has no common root with ∂X2(T2) mod (T1), else T1, T2

would not generate a radical ideal. So ∂X2(T2) mod (T1) is invertible modulo (T1, T2). It
follows that h3 is also invertible modulo (T1, T2) as product of invertible elements. Finally,

let P =
(
h−1

3 mod (T1, T2)
)
∂

(d2−1)d3

2 ∂d3
3 (C3)(1, 0, 0, X1). Then P is of degree d3 in X3 (it is

Equation (2.18)), and vanishes on V since the second factor of P does. If we add the degree
constraints that verify T3, that is degX1

(T3) < d1 and degX2
(T2) < d2, then we conclude

that P mod (T1, T2) = T3. 2

Before proving the general case, let us sketch an algorithm for computing a triangular
set for V from the data of its Chow form, through the polynomials M1, . . . , Mn (Cf. Defini-
tion 2.2 hereafter). It should not be seen with an algorithmic viewpoint: we have the aim at
analyzing the size of the coefficients of the output, hence coefficients swell at each step of this
algorithm is analyzed. That is only why it is used. Hereunder, NormalForm(x, G) outputs
the normal form of the polynomial x with respect to the Gröbner basis G; ModInv(y, G)
outputs the inverse of y, in normal form, modulo the Gröbner basis G, when it exists.

General case

By following the main steps of the calculations of T2 and T3 above, we want to compute
the analogous formula for the polynomial Ts+1 (with s < n) of the triangular set. It is
equivalent to show that Algorithm 2.1 gives the correct output.

Lemma 2.3 shows that the family of polynomials

{∂n2
2 · · ·∂

ns+1

s+1 (Cs+1)(1, 0, . . . , 0, X1)}(n2,...,ns+1)∈Ns

vanish on πn
s+1(V ). Now we aim at showing that for the family of indices

n2 = (d2 − 1)d3 · · · ds+1 , n3 = (d3 − 1)d4 · · · ds+1 , . . . , ns+1 = ds+1 − 1,

the leading coefficients in Xs+1 of ∂n2
2 · · ·∂

ns+1

s+1 (Cs+1)(1, 0, . . . , 0, X1) is invertible mod (T1, . . . , Ts).
To prove this, let us introduce the following notation and definition:

d(i,j) := (di − 1)di+1 · · · dj, and ∂ = ∂
d(2,s+1)

2 ∂
d(3,s+1)

3 · · ·∂
d(s,s+1)
s .
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2.1. Bounds from derivation of the Chow form

TurnMintoT(M1, . . . , Mn)

#Inputs:Family of polynomials (M1, . . . , Mn) as defined in Introduction.
# Output: A triangular set (T1, . . . , Tn), degXi

(Ti) = di.

1. if (n = 1) then return (T1) = (M1).

2. let (T1, . . . , Tn−1) = TurnMintoT(M1, . . . , Mn−1).

3. write Mn =
∑dn

i=0 mn,i ·X
i
n.

4. for i = 0 to dn do

m̃n,i := NormalForm(mn,i, (T1, . . . , Tn−1)).

end for

5. write M̃n :=
∑dn

i=0 m̃n,iX
i
n.

6. hn := init(M̃n). Compute Hn := ModInv(hn, (T1, . . . , Tn−1)).

7. return
(
T1, . . . , Tn−1 , NormalForm

(
Hn · M̃n, (T1, . . . , Tn−1)

))
.

Algo 2.1: How to get recursively the polynomials Ti from the polynomials Mi

Definition 2.2. Let V be an equiprojectable variety defined by a triangular set T1, . . . , Tn,
with CV for Chow form. Denote Ci instead of Cπn

i (V ), the Chow form of the projection
πn

i (V ). Let M1(X1) = T1(X1) and for 1 ≤ s ≤ n − 1, we define the polynomial Ms+1 ∈
K[X1, . . . , Xs+1] in the following way:

Ms+1(X1, . . . , Xs+1) = ∂∂
ds+1

s+1 (Cs+1)(1, 0, . . . , 0, X1).

Since ∂, ∂Us+1 and ∂T commute, we have:

∂
ds+1

s+1 = (∂Us+1 + Xs+1∂T )ds+1 =

ds+1∑

i=0

(
ds+1

i

)
X i

s+1 · ∂
i
T ∂

ds+1−i
Us+1

.

The coefficient of X i
s+1 in K[X1, . . . , Xs] of ∂∂

ds+1

s+1 (Cs+1), is:
(

ds+1

i

)
∂∂

ds+1−i
Us+1

∂i
T (Cs+1)(1, 0, . . . , 0, X1), (2.19)

hence, the leading coefficient we are interested in is:

∂∂
ds+1

T (Cs+1)(1, 0, . . . , 0, X1).

All the derivations {∂i}i and ∂T commute with the specialization Us+1 = 0; consequently,
all the calculations can be conducted modulo this specialization. Moreover, since from
Lemma 1.3

Cs+1(U1, . . . , Us, 0, T ) = Cs(U1, . . . , Us, T )ds+1
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we get:

∂
ds+1

T (Cs+1)(U1, . . . , Us, 0, T ) = ∂
ds+1

T (Cds+1
s )(U1, . . . , Us, T ).

The generalized Leibniz formula (Proposition 2.1) applied to the equation above gives:

∂
ds+1

T (Cds+1
s ) =

∑

j=(j1,...,jds+1
)

|j|=ds+1

(
ds+1

j

)
∂j1

T (Cs) · · ·∂
jds+1

T (Cs)

= ds+1!∂T (Cs)
ds+1 + A · Cs , for a polynomial A ∈ K[U1, . . . , Us, T ].

The first term corresponds to the ds+1-uple (1, . . . , 1), and the second term corresponds the
the other uples. In fact one of these uples necessary contains a zero, making appear a factor
∂0

T (Cs) = Cs. So Cs divides the product indexed by such a ds+1-ulpe j, that is why there is
a polynomial A here.

Again, an application of Lemma 2.3 with i = s and the derivation ∂, and applied to
A · Cs leads to:

∂(A · Cs)(U1, . . . , Us,
∑

1≤k≤s

UkXk) ≡ 0 mod (T1, . . . , Ts)⊗K[U1, . . . , Us]. (2.20)

We can therefore only pay attention to the term ds+1!(∂T (Cs))
ds+1, to which we apply Corol-

lary 2.1:

ds+1!∂(∂T (Cs))
ds+1 = ds+1!

∑

j
(α)
t

(
d(2,s+1)

j(2)

)
· · ·

(
d(s,s+1)

j(s)

) t=ds+1∏

t=1

∂
j
(2)
t

2 ∂
j
(3)
t

3 · · ·∂j
(s)
t

s ∂T (Cs) (2.21)

{
j(α) = (j

(α)
1 , . . . , j

(α)
ds+1

) , α = 2, . . . , s,

|j(α)| = (dα − 1)dα+1 · · · ds+1

To eliminate the ds+1-uples j(α) which actually will cancel the products above after special-
ization and reduction, hence useless uples, the following proposition is required.

Proposition 2.4. Let 2 ≤ i ≤ s be two integers, and denote by Gi the following set:

Gi = {(j(i), . . . , j(s)) ∈ (Nds+1)s−i+1 such that there exists t verifying
s∑

α=i

j
(α)
t +1 6= di · · · ds}.

If (j(i), . . . , j(s)) ∈ Gi then for all (j(2), . . . , j(i−1)) ∈ (Nds+1)i−2, we have:

ds+1∏

t=1

∂
j
(2)
t

2 ∂
j
(3)
t

3 . . . ∂j
(s)
t

s ∂T (Cs)(U1, . . . , Ui−1, 0, . . . , 0, U1X1 + · · ·+ Ui−1Xi−1) ≡ 0

modulo (T1, . . . , Ti−1)⊗K[U1, . . . , Ui−1].

Proof. Suppose first that (j(i), . . . , j(s)) ∈ Gi is such that there exists t ∈ {d1, . . . , ds+1}

with
∑s

α=i j
(α)
t + 1 ≤ di · · · ds − 1. Then Proposition 2.3 applied with ℓ = i shows that Ci−1
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divides ∂
j
(2)
t

2 · · ·∂
j
(s)
t

s ∂T (Cs) specialized at Ui = · · · = Us = 0. Hence there exists a polynomial
A ∈ K[U1, . . . , Ui−1, T ] such that:

∂
j
(2)
t

2 · · ·∂j
(s)
t

s ∂T (Cs)(U1, . . . , Ui−1, 0, . . . , 0, T ) = A · Ci−1.

By Lemma 2.3 used with the derivation ∂0 = ∂
j
(2)
t

2 · · ·∂
j
(i−1)
t

i−1 and applied to A · Ci−1, we
have:

∂0(A · Ci−1)(U1, . . . , Ui−1,
∑

1≤k≤i−1

UkXk) ≡ 0 mod (T1, . . . , Ti−1)⊗K[U1, . . . , Ui−1].

It follows that the product on which the statement holds has a null factor, hence is itself
null.

We restrict therefore our interest to the (j(i), . . . , j(s)) such that for all t, holds the

inequality:
∑s

α=i j
(α)
t + 1 ≥ didi+1 · · · ds. But as

∑ds+1

t=1

∑s
α=i j

(α)
t + 1 =

∑s
α=i |j

(α)|+ ds+1 =
di · · · ds+1:

∀t ,
s∑

α=i

j
(α)
t + 1 = di · · · ds.

But then (j(i), . . . , j(s)) 6∈ Gi. Hence all the uples in Gi verify the cancellation identity. 2

Corollary 2.2. Suppose that there exists t ∈ {1, . . . , ds+1} such that one of the following
two conditions holds:

(i) j
(s)
t 6= ds − 1.

(ii) j
(i)
t 6= (di − 1)di+1 · · ·ds for at least one i ∈ {2, . . . , s− 1},

Then there is the cancellation identity:

ds+1∏

t=1

∂
j
(2)
t

2 ∂
j
(3)
t

3 · · ·∂j
(s)
t

s ∂T (Cs)(U1, 0, . . . , 0, U1X1) ≡ 0 mod (T1, . . . , Ts−1)⊗K[U1].

Proof. In case (i), the ds+1-uple j(s) ∈ Gs. The previous proposition implies that:

ds+1∏

t=1

∂
j
(2)
t

2 ∂
j
(3)
t

3 · · ·∂j
(s)
t

s ∂T (Cs)(U1, . . . , Us−1, 0, , U1X1 + · · ·+ Us−1Xs−1) ≡ 0

modulo (T1, . . . , Ts−1) ⊗ K[U1, . . . , Us−1]. Specializing U2 = · · · = Us−1 = 0 gives the
requested result.

In case (ii), if (j(i+1), . . . , j(s)) ∈ Gi+1, then we are done by applying the proposition above,
and taking the specialization U2 = · · · = Ui = 0. Else, (j(i+1), . . . , j(s)) 6∈ Gi+1 and for all t,∑s

α=i+1 j
(α)
t +1 = di+1 · · · ds. If moreover (j(i), . . . , j(s)) 6∈ Gi, then ∀t,

∑s
α=i j

(α)
t +1 = di · · · ds.

Whereas j
(i)
t =

(
s∑

α=i

j
(α)
t + 1

)
−
(∑s

α=i+1 j
(α)
t + 1

)
= (di − 1)di+1 · · · ds, which is false by

hypothesis; thus (j(i), . . . , j(s)) ∈ Gi and after the previous proposition, this leads to:

ds+1∏

t=1

(
∂

j
(2)
t

2 ∂
j
(3)
t

3 · · ·∂j
(s)
t

s ∂TCs

)
(U1, . . . , Ui−1, 0 . . . , 0, U1X1 + · · ·+ Ui−1Xi−1) ≡ 0
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modulo (T1, . . . , Ti−1) ⊗ K[U1, . . . , Ui−1]. It is also null modulo the ideal (T1, . . . , Ts−1) ⊗
K[U1, . . . , Ui−1]. Since i ≥ 2, the corollary is obtained by specializing U2 = · · · = Ui−1 = 0.
2

We want to determine hs+1 for all s by proving the following theorem:

Theorem 2.4. The leading coefficient hs+1 ∈ K[X1, . . . , Xs] of ∂∂
ds+1

s+1 (Cs+1)(1, 0, . . . , 0, X1)
verifies:

(i) hs+1 ≡
ds+1!

s
Q

i=2
d(i,s+1)!

„

(ds−1)!
s−1
Q

i=2
d(i,s)!

«ds+1

(
1
ds
· hs · ∂Xs

(Ts)
)ds+1

modulo (T1, . . . , Ts),

(ii) hs+1 is invertible modulo (T1, . . . , Ts),

(iii) hs+1 ≡ ds+1!
∏s

i=2 d(i,s+1)

(
T ′1(X1)

d2···ds+1∂X2(T2)(X1, X2)
d3···ds+1 · · ·

· · ·∂Xs−1(Ts−1)(X1, . . . , Xs−1)
dsds+1∂Xs

(Ts)(X1, . . . , Xs−1, Xs)
ds+1

)
mod (T1, . . . , Ts).

As a consequence, the following formula for Ts+1 holds:

Ts+1 =
(
h−1

s+1 mod (T1, . . . , Ts)
)
∂∂

ds+1

s+1 (Cs+1)(1, 0, . . . , 0, X1) mod (T1, . . . , Ts).

Proof. The proof is the continuation of the reasoning begun at this paragraph “General
case”. Proposition 2.4 and Corollary 2.2 were required to discard ds+1-uples j(α) in Equa-
tion (2.21). There, an application of Lemma 2.3 had led to compute modulo (T1, . . . , Ts) in
Equation (2.20), and hence it is necessary to carry on those modular calculations.

1st step: Corollary 2.2 applied to Equation (2.21) gives, modulo (T1, . . . , Ts−1)⊗K[U1]:

ds+1!(∂(∂T (Cs))
ds+1)(U1, 0, . . . , 0, U1X1) ≡ c

ds+1∏

t=1

(∂
(d2−1)d3···ds

2 · · · ∂ds−1
s ∂T (Cs))(U1, 0, . . . , 0, U1X1)

≡ c
(
∂

(d2−1)d3···ds

2 · · · ∂ds−1
s ∂T (Cs)

)ds+1

(U1, 0, . . . , 0, U1X1)

where,

c = ds+1!

(
d(s,s+1)

j(2)

)(
d(3,s+1)

j(3)

)
· · ·

(
d(s,s+1)

j(s)

)

= ds+1!

(
((d2 − 1)d3 · · · ds+1)!

((d2 − 1)d3 · · · ds)!ds+1

)(
((d3 − 1)d4 · · · ds+1)!

((d3 − 1)d4 · · ·ds)!ds+1

)
· · ·

(
((ds − 1)ds+1)!

(ds − 1)!ds+1

)

= ds+1!
d(2,s+1)!

d(2,s)!ds+1

d(3,s+1)!

d(3,s)!ds+1
· · ·

d(s,s+1)!

(ds − 1)!ds+1
.

After Lemma 2.1, ∂ds−1
s ∂T (Cs) = 1

ds
∂Xs

∂ds
s (Cs). Moreover, ∂Xs

commutes with ∂2, ∂3, . . . , ∂s−1,
so that

∂
(d2−1)d3···ds

2 · · ·∂ds−1
s ∂T (Cs) =

1

ds

∂Xs
∂

(d2−1)d3···ds

2 · · ·∂ds

s (Cs).
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Finally, modulo the ideal (T1, . . . , Ts), we have:

∂∂
ds+1

T (Cs+1)(1, 0, . . . , 0,X1) ≡

ds+1!
s∏

i=2
d(i,s+1)!

(
(ds − 1)!

s−1∏
i=2

d(i,s)!

)ds+1

(
1

ds
∂Xs∂

d(2,s)

2 · · · ∂ds
s (Cs)(1, 0, .., 0,X1)

)ds+1

.

2nd step : By induction on s. The previous paragraph gives h2 and h3. Suppose that the
formula is true for hs and let us prove it for hs+1. All the equalities hereunder are true
modulo (T1, . . . , Ts). From the last equation in Step 1, we have Equality (i):

hs+1 ≡

ds+1!
s∏

i=2

d(i,s+1)!

(
(ds − 1)!

s−1∏
i=2

d(i,s)!

)ds+1

(
1

ds
· hs · ∂Xs

(Ts)

)ds+1

, (2.22)

By induction hypothesis, we get:

hs = ds!

(
s−1∏

i=2

((di − 1)di+1 · · · ds)!

)(
s−1∏

i=1

∂Xi
(Ti)

di+1···ds

)
,

= ds!

(
s−1∏

i=2

d(i,s)!

)(
s−1∏

i=1

∂Xi
(Ti)

di+1···ds

)
.

We compute hs+1 by replacing hs by the formula above.

(
1

ds

hs∂Xs
(Ts)

)ds+1

=

(
(ds − 1)!.

s−1∏

i=2

d(i,s)! ·
s−1∏

i=1

∂Xi
(Ti)

di+1···ds · ∂Xs
(Ts)

)ds+1

hence, hs+1 = ds+1!
s∏

i=2

d(i,s+1)!

(
s∏

i=1

∂Xi
(Ti)

di+1···ds+1

)

This is Formula (iii). Let us now prove (ii).

In the ring (K[X1, . . . , Xs−1])/(T1, . . . , Ts−1)[Xs] the polynomials ∂Xs
(Ts) and Ts have

no common root, else the ideal (T1, . . . , Tn) would not be radical. Therefore, ∂Xs
(Ts) is

invertible in that ring. By induction, so it is for hs, and by Equation (2.22), hs+1 also, as a
product of invertible elements.

Finally, the polynomial Ms+1 := ∂∂
ds+1

s+1 (Cs+1)(1, 0, . . . , 0, 1) vanishes on πn
s+1(V ), is of de-

gree ds+1 in Xs+1 (from Equation (2.19)). The polynomial P =
(
h−1

s+1 mod (T1, . . . , Ts)
)
Ms+1

verifies the same properties but is moreover monic. The normal form P mod (T1, . . . , Ts) of
P with respect to the Gröbner basis (T1, . . . , Ts) verifies the same features, but moreover
the degree constraints ensure that it is Ts+1. 2

This proof also shows the correctness of Algorithm 2.1.
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2.1.4 Height of coefficients

In this subsection, bounds are provided for the alternative representation (M1, . . . , Mn) of
V (Cf. Definition 2.2). These bounds were the first insight to space complexity bounds for
triangular representation. In the sequel of this section, the notation hereunder is used:

f1 := Cs+1(U1, . . . , Us+1, T )

f2 := ∂
(d2−1)d3···ds+1

2 (Cs+1)(U1, . . . , Us+1, T )
...

fs−1 := ∂
(d2−1)d3···ds+1

2 · · ·∂
(ds−1−1)dsds+1

s−1 (Cs+1)(U1, . . . , Us+1, T ),

= ∂
d(2,s+1)

2 · · ·∂
d(s−1,s+1)

s−1 (Cs+1)(U1, . . . , Us+1, T )

fs := ∂
d(2,s+1)

2 · · ·∂
d(s,s+1)
s (Cs+1)(U1, . . . , Us+1, T ).

The following notation denotes the coefficients of ft :

∀ 2 ≤ t ≤ s, ft :=
D∑

i=0

fi,tX
i
t , with fi,t ∈ K[U1, . . . , Us+1, T ][X2, . . . , Xt−1].

Repetitive application of the binomial formula gives:

fi,t :=

(
d(t,s+1)

i

)
∂

d(2,s+1)

2 · · ·∂
d(t−1,s+1)

t−1 ∂
d(t,s+1)−i

Ut
∂i

T (Cs+1).

Lemma 2.5. With the notation above, the following inequalities hold:

log |ft| ≤ d(t,s+1) log D + log |ft−1|+ log
(

d(t,s+1)

xd(t,s+1)/2y

)
, (number field case)

log |ft| ≤ log |ft−1|, (function field case)

Proof. Since ∂Ut
and ∂T commute with ∂2, . . . , ∂t−1, we have:

fi,t =

(
d(t,s+1)

i

)
∂

d(t,s+1)−i

Ut
∂i

T ∂
d(2,s+1)

2 · · ·∂
d(t−1,s+1)

t−1 (Cs+1) =

(
d(t,s+1)

i

)
∂

d(t,s+1)−i

Ut
ft−1.

Applying (NA)∂Ut
, (A)∂T

, (A)∂Ut
and (NA)∂T

page 61, at will we get:

log |fi,t|v ≤

{
log
(
d(t,s+1)

i

)
+ d(t,s+1) log D + log |ft−1|v, if v is Archimedean (i),

log |ft−1|v, if v is non-Archimedean(ii).

It is easy to show that:

max{| coeff ft|v} = max
i
{max{| coeff fi,t|v}}.

so that log |ft|v = maxi log |fi,t|v, and by using (i) and (ii) at will:

log |ft|v ≤

{
d(t,s+1) log D + log |ft−1|v + maxi log

(
d(t,s+1)

i

)
, if v is Archimedean

log |ft−1|v, if v is non-Archimedean

≤

{
d(t,s+1) log D + log |ft−1|v + log

(
d(t,s+1)

xd(t,s+1)/2y

)
, if v is Archimedean

log |ft−1|v, if v is non-Archimedean.
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2.1. Bounds from derivation of the Chow form

It just remains to use the definition of the height for the function or number field case. 2

This lemma provides an inductive relation to get the Chow form Cs+1 from ∂∂
ds+1

s+1 (Cs+1)
by deleting derivations.

Theorem 2.5. The height h(Ms+1) of the polynomial Ms+1 is upper bounded by the following
quantity in the the number field case,

h(πn
s+1(V )) + deg(πn

s+1(V )) log(s + 3) + (d2 · · · ds + ds+1 + 1) log deg(πn
s+1(V ))

and by the following quantity in the function field case:

h(Ms+1) ≤ h(πn
s+1(V )).

Proof. Let us start with the Archimedean case. From the previous lemma:

log |∂∂s+1Cs+1|v = log |fs+1|v ≤ ds+1 log D + log |fs|v + log

(
ds+1

xds+1/2y

)
,

so that

log |fs+1|v − log |fs|v + log |fs|v − log |fs−1|v + · · ·+ log |f2|v − log |f1|v

is upper-bounded by
s+1∑

j=2

d(j,s+1) log D + log

(
d(j,s+1)

xd(j,s+1)/2y

)
.

Since f1 = Cs+1(U1, . . . , Us+1, T ), it follows that:

log |fs+1|v ≤ d2 · · · ds+1 log D + log |Cs+1|v + log

(
s+1∏

j=2

(
d(j,s+1)

xd(j,s+1)/2y

))
.

Now we are interested by the specializing; Let us rewrite the polynomial fi,s+1:

fi,s+1 = ∂∂
ds+1−i
Us+1

∂i
TCs+1(U1, . . . , Us+1, T ) =

D∑

j=0

ajT
j


 ∑

α∈Ns+1

bαU
α


 ∑

β∈Ns−1

cβX
β




 ,

where Uα = Uα1
1 · · ·U

αs+1

s+1 for all s+1-uples α and Xβ = Xβ2

2 · · ·X
βs+1

s+1 . Using these notations
leads to:

log |fi,s+1(U1, . . . , Us+1, T )|v = log max
(j,α,β)

{|ajbαcβ|v},

and to

fi,s+1(1, 0, . . . , 0, X1) =

D∑

j=0

ajX
j
1

( ∑

α2=···=αs+1=0

bα

(∑

β

cβX
β

))
.

It follows that:

log |fi,s+1(1, 0, . . . , 0, X1)|v = log max
(j,β)
{|ajcβ(

∑

α2=···=αs+1=0

bα)|v}.
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Chapter 2. Height bounds for polynomial representations

But,

∀j, β |ajcβ(
∑

α2=···=αs+1=0

bα)|v ≤ D|ajcβ|v max
α
|bα|v

≤ D max
α
{|ajcβbα|v}

so that max
(j,β)
{|ajcβ(

∑

α2=···=αs+1=0

bα)|v} ≤ D max
(j,α,β)

{|ajcβbα|v},

and as a consequence,

log |fi,s+1(1, 0, . . . , 0, X1)|v ≤ log D + log |fi,s+1(U1, . . . , Us+1, T )|v.

By using the Lemma 2.5 and the bound (i) page 74, we get:

log |fi,s+1(1, 0, .., 0, X1)|v ≤ log D + log

(
ds+1

i

)
+ ds+1 log D + d2 · · · ds log D

+ log |Cs+1|v + log

(
s∏

j=2

(
d(j,s+1)

xd(j,s+1)/2y

))

log |fi,s+1(1, 0, . . . , 0, X1)|v ≤ (d2 · · · ds + ds+1 + 1) log D + log |Cs+1|v

+ log

(
s+1∏

j=2

(
d(j,s+1)

xd(j,s+1)/2y

))
(2.23)

From inequalities (1.13) and (1.14), we introduce the Ss+2-Mahler measure:

log |Cs+1| ≤ m(Cs+1; Ss+2) + deg(Cs+1)

(
s+1∑

i=1

1

2i
+ log(s + 3)

)

log |fi,s+1(1, 0, . . . , 0, X1)|v ≤ (d2 · · · ds + ds+1 + 1) log D + m(Cs+1; Ss+1)

+ deg(Cs+1)

(
s+1∑

i=1

1

2i
+ log(s + 3)

)

≤ (d2 · · · ds + ds+1 + 1) log D + hv(π
n
s+1(V )) + log(s + 3) deg(πn

s+1(V ))

This achieves the Archimedean case. The case v non-Archimedean is easier. From Lemma 2.5
log |fs+1|v ≤ log |fs|v, and using the ultrametric inequality,

max
(j,β)
{|ajcβ(

∑

α2=···=αs+1=0

bα)|v} ≤ max
(j,α,β)

{|ajcβbα|v}.

So that, with inequality (ii) page 74:

log |fi,s+1(1, . . . , 0, X1)|v ≤ log |fi,s+1(U1, . . . , Us+1, T )|v

In fine,
log |fi,s+1(1, . . . , 0, X1)|v ≤ log |Cs+1|v.

Using the v-adic definition of the height of a variety (1.11), permits to get hv(Ms+1) ≤
hv(π

n
s+1(V )). Using the Archimedean definition (1.12) of the height of a variety permits to

conclude the proof. 2

76



2.1. Bounds from derivation of the Chow form

2.1.5 Attempt of bounds for (Ti)i from (Mi)i

We investigate in this paragraph what kind of bounds on the polynomials (T1, . . . , Tn) can
be obtained from the one given on the polynomials (M1, . . . , Mn) in Theorem 2.5. We
follow Algorithm 2.1 turning the regular chain (M1, . . . , Mn) into a triangular set. It relies
of course on Theorem 2.4 permitting to inverse the leading coefficient. We quantify the
different subroutines of the algorithm, that it to say NormalForm and ModInv. How do
the coefficients of a polynomial grow under these operations ? Langemyr answers in [69]
Theorem 3 and 8, in the case of integers. We transcribe his results in term of height
(essentially, by taking the logarithm of his bounds, at least in the Archimedean case).

With this method, we obtain quadratic bounds for polynomials NF1, . . . , NFn, which is
satisfactory. But for T1, . . . , Tn, this method seems not give polynomial bounds, due to the
blowing-up of the coefficients under the ModInv operation.

NormalForm(P, (T1, . . . , Tn))

#Inputs: P ∈ K[X1, . . . , Xn].
# A triangular set (T1, . . . , Tn), degXi

(Ti) = di.
#Output: The normal form Q ≡ P mod (T1, . . . , Tn).

1. if (n = 1) then return the remainder Q of the Euclidean division of P by T1.

2. write P =
∑degXn

(P )

i=0 PiX
i
n, Pi ∈ K[X1, . . . , Xn−1].

3. for i = 0 to ℓn do

P̃i = NormalForm(Pi, (T1, . . . , Tn−1)).

end for

4. return the remainder Q of the Euclidean division of
∑degXn

(P )

i=0 P̃iX
i
n by Tn, over

K[X1 . . . , Xn−1]/(T1, . . . , Tn−1).

Algo 2.2: Recursive algorithm for the normal form of a polynomial

Define P̃ :=
∑ℓn

i=0 P̃iX
i
n the polynomial obtained after the for loop (Step 3 of Algo. 2.2),

where polynomials P̃i are in normal form modulo (T1, . . . , Tn−1). We can see it as a polyno-
mial over K[X1, . . . , Xn−1]/(T1, . . . , Tn−1). Let v be an value over K. It is well known that
for univariate polynomials A and B over K, with B monic and with deg(B) < deg(A), the
remainder R of the Euclidean division of A by B verifies:

hv(R) ≤

{
hv(A) + (deg(A)− deg(B) + 1)(hv(B) + log(2)), if v is Archimedean,

hv(A) + (deg(A)− deg(B) + 1)hv(B), if v is non-Archimedean..

We need to extend this inequality to the base ring K[X1, . . . , Xi]/(T1, . . . , Ti). An ele-
ment a in this ring is represented by a reduced polynomial a(X1, . . . , Xi) with degXj

(a) < dj,
for j = 1, . . . , i. Let Qv

i be an upper bound on the growth of the coefficients under the mul-
tiplication operation in K[X1, . . . , Xi]/(T1, . . . , Ti), that is to say: if a and b are elements in
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Chapter 2. Height bounds for polynomial representations

this ring, then the product c ≡ a · b mod (T1, . . . , Ti) verifies:

hv(c) ≤

{
hv(a) + hv(b) + Q∞i , if v is Archimedean,

hv(a) + hv(b) + Q0
i , if v is non-Archimedean.

In Langemyr [69, Theorem 3] to any Archimedean absolute value v, and get:

Q∞i =

i∑

j=1

dj+1 · · · di log(dj) + dj · · · di(log(2) + hv(Tj)), for i ≥ 1.

It not difficult to prove by induction that for the non-Archimedean case, we have:

Q0
i =

i∑

j=1

dj · · · dihv(Tj), for i ≥ 1.

Hence when quantifying the coefficients swell during the Euclidean division in Step 4, we
get:

hv(Q) ≤

{
hv(P̃ ) + (degXn

(P )− dn + 1)(hv(Tn) + Q∞n−1 + log(2)), if v is Archimedean,

hv(P̃ ) + (degXn
(P )− dn + 1)(hv(Tn) + Q0

n−1)., if v is non-Archimedean.

Denote ℓi = degXi
(P )−di+1. Recursively, we get the height of Q = NormalForm(P, (T1, . . . , Tn)):

hv(Q) ≤

{
hv(P ) +

∑n
j=1 ℓj(hv(Tj) + Q∞j−1 + log(2)), if v is Archimedean,

hv(P ) +
∑n

j=1 ℓj(hv(Tj) + Q0
j−1), if v is non-Archimedean.

We make simplifications such as log(di) ≤ di and log(2) ≤ 1, which do not devalue the
quality of the bounds; yielding, for i ≥ 1:

Q∞i ≤ d1 · · · di(2+hv(T1))+d2 · · · di(2+hv(T2))+ · · ·+di−1di(2+hv(Ti−1))+di(2+hv(Ti)).
(2.24)

The aim of this paragraph is an attempt to obtain bounds on polynomials NFi, and poly-
nomials Ti through Algorithm 2.1. It is require to compute first bounds for polynomials
NFi, since they appear to be a “step” for getting bounds on Ti, regarding to Step 4 of
Algorithm 2.1. In our problem, these are the coefficients of Mn that we need to reduce. In
fact, from Formula (2.19):

Mn =
dn∑

i=0

X i
n ·

(
dn

i

)
∂∂dn−i

Un
∂i

T (CV )(1, . . . , 0, X1).

Hence, for i < n, degXi
(Mn) = d(i,n) = (di − 1)di+1 · · · dn. Therefore, we go on with

polynomials in n− 1 variables, to plug the results for the polynomials Mn.
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2.1. Bounds from derivation of the Chow form

Let us go back to Equation (2.24). By taking ℓi equal to degXi
(P )− di + 1, it comes for

v non-Archimedean:

hv(Q) ≤ hv(P ) + ℓ1

(
hv(T1) + 2

)

+ℓ2

(
hv(T2) + d2(2 + hv(T2)) + d1d2(2 + hv(T1))

)

...

+ℓn−2

(
hv(Tn−2) + dn−2(2 + hv(Tn−2)) + dn−2dn−3(2 + hv(Tn−3)) + · · ·

· · ·+ d1 · · · dn−2(2 + hv(T1))
)

+ℓn−1

(
hv(Tn−1) + dn−1(2 + hv(Tn−1)) + dn−2dn−1(2 + hv(Tn−2)) + · · ·

· · ·+ d1 · · · dn−1(2 + hv(T1))
)
.

And if v is non-Archimedean, we have:

hv(Q) ≤ hv(P ) + ℓ1hv(T1) +
n−1∑

j=2

ℓj

(
hv(Tj) +

j−1∑

k=1

dk · · · djhv(Tk)

)

In these sums, the term hv(Ti) appears for i ≥ 2 with the factor:

ℓi(1 + di) + ℓi+1didi+1 + · · ·+ ℓn−2di · · · dn−2 + ℓn−1di · · · dn−1. (2.25)

For hv(T1), it appears with the same factor above except for the first term which is equal to
ℓ1 and not ℓ1(1 + d1) . Now we do not replace ℓi by d(i,n) − di + 1, but only by d(i,n), which
is an acceptable simplification. The sum (2.25) is now bounded for i ≥ 2 by

Ci := (1 + di)d(i,n) + didi+1d(i+1,n) + · · ·+ di · · · dn−1d(n−1,n).

If D = d1 · · · dn, then :

Ci ≤ (di + · · ·+ dn−1 − n + i)
D

d1 · · · di−1
.

The inequality for hv(Q) is then rewritten:

hv(Q) ≤ hv(P ) + C1hv(T1) + C2hv(T2) + · · ·+ Cn−1hv(Tn−1)
[

+ R
]

v Archimedean
,

where R = ℓ1+
∑n−1

j=2 ℓj (2dj + 2dj−1dj + · · ·+ 2d1 · · · dj). It simplifies into D
(∑n

j=2 j(dj−1 − 1)
)
.

The bound for v non-Archimedean is the same without the term R.
Let us consider the initial hn of Mn. We want to evaluate the height of its normal form

Hn with respect to (T1, . . . , Tn−1). Then Q is replaced by Hn and P by hn in the inequality
above:

hv(Hn) ≤ hv(hn) + C1hv(T1) + C2hv(T2) + · · ·+ Cn−1hv(Tn−1)
[

+ R
]

v Archimedean
.
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Chapter 2. Height bounds for polynomial representations

In introduction, we have stated some polynomial bounds for the polynomials T1, . . . , Tn.
These bounds will be proved in the next section. Let us try to get similar bounds by
following Algorithm 2.1.

In this aim, we need to compute a modular inverse. Thanks to Theorem 2.4, Hn admits
an inverse modulo (T1, . . . , Tn−1). Theorem 8 of Langemyr’s paper [69] says that hv(a

−1) ∈
O(l),where:

l = hv(a)
( n−1∑

i=1

di · · · dn−1+hv(Ti)
( n−1∑

j=i

d1 · · ·dj+d2 · · · dj+· · ·+di−1 · · · dj+di · · · dj

)
(di · · · dj)

)
.

The formula becoming sophisticated, it is preferable before simplifying expressions to get
bound for n = 2, 3 or 4. Even for such small values of n, I have preferred to use a computer
to calculate these recursive formulas in order not to make any simplification. Thus, if the
bounds obtained in that way are bad, then it is not of use to investigate further this attempt.
We compute a 2i -variate polynomial Boundi(x1, . . . , xi, y1, . . . , yi) ∈ Z[x1, . . . , xi, y1, . . . , yi]
verifying:

hv(Ti) ≤ Boundi(hv(π
n
1 (V )), . . . , hv(π

n
i (V )), d1, . . . , di),

and obtained recursively by using the recursive bounds given by Langemyr for the NormalForm
and ModInv algorithm. Here is a report of the computations: For n = 4 and i = 3, the
monomials hv(π

4
3(V ))

(
1 + d2 + d2d3

)
and d4

1d
3
2d3 appears in Bound3. In the polynomial

Bound4, the monomial hv(V )(d1d2d3 + d2d3 + d3) appear and the highest degree monomial
is d5

1d
4
2d

3
3d4. It is already not a polynomial bound, getting worst as n grows, and it seems

impossible to get a polynomial bound with respect to d1 · · · dn with this method. We give
up the attempt to get bounds for the heights of triangular sets through Algorithm 2.1.

Consequently, in order to analyze the coefficient swell in the NormalForm algorithm, we
make use of the bounds proved in the next section here. Theorem 2.7 together with the
notations of Equations (2.1) yield for v Archimedean:

hv(Hn) ≤ hv(hn) + C1(G1hv(π
n
1 (V )) + I1) + C2(G2hv(π

n
2 (V )) + I2) + · · ·

· · ·+ Cn−1(Gn−1hv(π
n
n−1(V )) + In−1) + R,

and for v non-Archimedean:

hv(Hn) ≤ hv(hn) + C1G1hv(π
n
1 (V )) + C2G2hv(π

n
2 (V )) + · · ·+ Cn−1Gn−1h(πn

n−1(V )).

This bound is actually valid for any coefficient bi :=
(

dn

i

)
∂∂dn−i

Un
∂i

T (CV )(1, . . . , 0, X1) of
X i

n in Mn. Since the height of Mn is equal to the maximal height of its coefficients bi, it
follows that, for v Archimedean, we have:

hv(NFn) ≤ hv(Mn) + C1 · hv(G1hv(π
n
1 (V )) + I1) + C2 · hv(G2hv(π

n
2 (V )) + I2) + · · ·

· · ·+ Cn−1hv(Gn−1hv(π
n
n−1(V )) + In−1) + R

≤ hv(Mn) +
n−1∑

i=1

di · · · dn−1 (di + di+1 + · · ·+ dn−1 − n + i) (Gihv(π
n
i (V )) + Ii) + R.
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2.1. Bounds from derivation of the Chow form

And when v is not Archimedean, we have:

hv(NFn) ≤ hv(Mn) +

n−1∑

i=1

di · · · dn−1 (di + di+1 + · · ·+ dn−1 − n + i) Gihv(π
n
i (V )).

It is easy to check from Definitions 2.1 that:

• Gidi · · · dn−1 < D

• Hidi · · · dn−1 ≤ 5 log(i + 3)D, implying
∑n−1

i=1 Hidi · · · dn−1 ≤ 5n2D

• Iidi · · ·dn−1 ≤ 5 log(i + 3)D + 3Dd1 · · ·di−1 log(i + 2)

It follows that
∑n−1

i=1 Iidi · · · dn−1 ≤ 5n2D + 3n3D2. Moreover R ≤ D
(∑n

j=2 j(dj−1 − 1)
)

is

upper bounded by n2D2 ≤ n3D2. If we replace hv(Mn) by the bounds of Theorem 2.5, we
finally have if v is Archimedean:

hv(NFn) ≤ hv(V ) + D log((n + 2)D) + D

(
n−1∑

i=1

(di + · · ·+ dn−1 − n + i)hv(π
n
i (V ))

)

+5n2D + 4n3D2

≤ hv(V ) + D log((n + 2)D) + (n− 1)D2hv(V ) + 5n2D + 4n3D2

Let us turn to the non-Archimedean case:

hv(NFn) ≤ hv(V ) + D

(
n−1∑

i=1

(di + · · ·+ dn−1 − n + i)hv(π
n
i (V ))

)

≤ hv(V ) + (n− 1)D2hv(V )

By using the definition of the height of a variety, we finally get the following theorem:

Theorem 2.6. Let V be an equiprojectable variety defined by a triangular set over K of
degree d1, . . . , dn. Then the height of the polynomials NFi introduced in Definition 2.3
verifies:

h(NFi) ≤ h(πn
i (V )) + deg(πn

i (V ))
(

log
(
(n + 2) deg(πn

i (V ))
)

+(n− 1) deg(πn
i (V ))h(πn

i (V )) + 5n2 + 4n3
)
, (K is a number field)

h(NFi) ≤ h(πn
i (V ))

(
1 + (n− 1) deg(πn

i (V ))2
)
, (K is a function field)

The bound is indeed polynomial, and actually cubic with respect to the degree and the
height of V , because of the term D2hv(V ). The bounds for the polynomials Ti that we have
used are quadratic. However, experiments show that the coefficients of the NFi are often
smaller than those of Ti (see Table 2.2 page 51). I can not explain this fact, except that
bound for hv(NFn) is weakly cubic, regarding to the simplifications made.
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Chapter 2. Height bounds for polynomial representations

2.2 Bounds from interpolation formulas

We use here some generalized Lagrange interpolation formulas to make appear a geometric
link between the points of the underlying variety of our triangular set. This allows to use the
classical height bounds of § 1.2.2 taken from [66] Lemma 2.1. The results of this paragraph
have been published in [32] with É. Schost.

Definition 2.3. Let D1 = 1 and N1 = T1. For ℓ in 2, . . . , n, define

Dℓ =
∏

1≤i≤ℓ−1

∂Ti

∂Xi
mod (T1, . . . , Tℓ−1),

Nℓ = DℓTℓ mod (T1, . . . , Tℓ−1).

Note that Dℓ ∈ K[X1, . . . , Xℓ−1], Nℓ ∈ K[X1, . . . , Xℓ−1, Xℓ], and Dℓ is the leading coeffi-
cient of Nℓ viewed as a univariate polynomial in Xℓ and with coefficients in K[X1, . . . , Xℓ−1].

The difference between these polynomials Nℓ and the polynomials Tℓ of the corresponding
triangular set is to be compared with the difference between the Kronecker representation
and the Shape Lemma representation (see Ch. I, § 1.1.2). We are goring to prove the same
diminution of the size of the coefficients. It should be noted that our estimates are a faithful
extension of these results to triangular representations.

2.2.1 Interpolation formulas

The classical Lagrange formula permits to interpolate some values fi at given points ei in
K̄:

Lag(X1) =
∑

i

fi

∏

j 6=i

X1 − ej

ei − ej
.

We extend in this paragraph this formula to the polynomials of a triangular set T. A natural
generalization is to consider for Tℓ+1:

∑

α∈πn
ℓ
(V )

Tℓ+1(α1, . . . , αℓ, Xℓ+1)Fα(X1, . . . , Xℓ), with Fα(β) =

{
1 if β = α and,

0 if β ∈ πn
ℓ (V ) \ {α}.

(2.26)

The role played by Fα is the same as the one played by
∏

j 6=i
X1−ej

ei−ej
, they are called idempo-

tents. An idempotent fits if it verifies the following formula:

Lemma 2.6. If degXi
Fα < di, ∀ i = 1, . . . , n, then Tℓ+1 is equal to the polynomial (2.26)

above. Such an idempotent is then unique.

Proof. By definition, the polynomial (2.26) is equal to Tℓ+1 modulo (T1, . . . , Tℓ). The degree
constraint insures that they are both reduced with respect to the Gröbner basis (T1, . . . , Tℓ),
so they are equal. This argument also proves uniqueness. 2

It remains to construct such polynomials Fα, for each α ∈ πn
ℓ (V ). For such a fixed α,

consider the following subfamilies of points of πn
ℓ+1(V )

• V 1
α := {(β1, . . . , βℓ+1) ∈ πn

ℓ+1(V ) such that β1 6= α1}.

• V 2
α := {(α1, β2, . . . , βℓ+1) ∈ πn

ℓ+1(V ) such that β2 6= α2}.
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2.2. Bounds from interpolation formulas

• generally, for i = 1, . . . , ℓ, V i
α = {(α1, . . . , αi−1, βi, βi+1, . . . , βℓ+1) ∈ πn

ℓ+1(V ) such that
βi 6= αi}

• finally, V ℓ+1
α := {(α1, . . . , αℓ, βℓ+1) ∈ πn

ℓ+1(V )}.

We also consider the projection of V i
α on on the Xi-axis: this set of elements of K̄ is denoted

by vα,i. Its cardinal is di−1 for i ≤ ℓ and #vα,ℓ+1 = dℓ+1. Define also eα,i :=
∏

x∈vα,i
(Xi−x),

and Tα,i = Ti(α1, . . . , αi−1, Xi).

α

t2
X1

t1

u1

u2

X2

X3

s1

s2

V 2
αV 1

αV 3
α

eα,1(X1) = (X1 − t1)(X1 − t2) , eα,2(X2) := (X2 − u1)(X2 − u2) , Tα,3(X3) = (X3 − s1)(X3 − s2)

Figure 2.3: Example of partition in a 3-dimensional space

Proposition 2.5. With the notation of Lemma 2.6:

Fα = Eα(X1, . . . , Xℓ)/Eα(α), where Eα :=

ℓ∏

i=1

eα,i.

Hence, Tℓ+1 =
∑

α∈πn
ℓ
(V )

Tα,ℓ+1
Eα

Eα(α)
.

Proof. Eα(α) 6= 0 since none of the eα,i vanishes on αi, by construction. However, if β ∈
πn

ℓ (V ) \ {α}, then at least one coordinate βi is distinct from αi. Thus βi ∈ vα,i, and
eα,i(βi) = 0. We have Eα(β) = 0, implying that Eα( . )/Eα(α) is an idempotent. Moreover
the degree constraints of Lemma 2.6 are verified, and we conclude by the unicity assertion
of that lemma. 2

83



Chapter 2. Height bounds for polynomial representations

Corollary 2.3. The polynomial Nℓ+1 defined in Definition 2.3 is rewritten:

Nℓ+1 =
∑

α∈πn
ℓ
(V )

Tℓ+1(α1, . . . , αℓ, Xℓ+1)Eα(X1 . . . , Xℓ).

Proof. Let α ∈ πn
ℓ (V ). Since Eβ(α) = 0 for β 6= α, the right-hand side reduces to

Eα(α)Tℓ+1(α, Xℓ+1), so we are left to estimate the value Eα(α). Since the roots of Tα,i(Xi)
are the values of vi

α ∪ {αi} for i ≤ ℓ, we have

Tα,i(Xi) = Ti(α1, . . . , αi−1, Xi) = (Xi − αi).eα,i(Xi),

from which we deduce that

eα,i(αi) =
∂Ti

∂Xi
(α1, . . . , αi).

And we get Eα(α) =
(∏ℓ

i=1
∂Ti

∂Xi
(α)
)
. On the other hand, from Definition 2.3 ,

Nℓ+1(α, Xℓ+1) =

( ∏

1≤i≤ℓ

∂Ti

∂Xi
(α)

)
Tℓ+1(α, Xℓ+1) ∈ K̄[Xℓ+1]. (2.27)

Hence Nℓ+1(α, Xℓ+1) = Eα(α)Tℓ+1(α, Xℓ+1). Both sides of the equation agree on πn
ℓ (V ),

hence agree modulo (T1, . . . , Tℓ). To conclude at the equality, we prove that the right-hand
term is reduced with respect that Gröbner basis, since it is the case by definition for Nℓ+1.
For 1 ≤ i ≤ ℓ, degXi

(Eα) = deg(eα,i) which is equal by definition to di − 1. It follows that
Eα is in normal form with respect to the Gröbner basis T1, . . . , Tℓ. The degree in Xi of the
right-hand term in the corollary is at most the degree in Xi of Eα, hence this term is also
reduced with respect to T1, . . . , Tℓ. 2

Some previous works exist and give satisfactory results for interpolating Gröbner basis
from a family of points. The earlier work of Buchberger-Möller [23], gives a strikingly
simple recursive algorithm to construct the minimal reduced lexicographic Gröbner basis
of a given finite family of points. But they do not provide interpolations formula workable
for our purpose. The Lazard structural theorem [70] gives explicit formulas that verify
the polynomials of a bivariate Gröbner basis. There is no doubt that height bounds can be
deduced for these polynomials, using the same technique as here. The specificity of our work
is a simplicity, circumvent the technical aspect of the Lagrange Gröbner basis interpolation
of Möller. Moreover the partition of the variety by the V i

α is a key point of our work. Let
us mention some recent works concerning interpolation of Gröbner bases, notably [83, 84].

Let us conclude this paragraph by defining the constants useful for the sequel.

ei =
∏

α∈πn
i (V )

eα,i(αi) for i ≤ ℓ, and Eℓ =
∏

1≤i≤ℓ

ei.

The equation of Proposition 2.5 is equivalent to write Tℓ+1 as the quotient of

Tℓ+1 =
∑

α∈πn
ℓ
(V )

EαTα,ℓ+1Eℓ

Eα(α)
= EℓTℓ+1

by Eℓ. We now show that both quantities are defined over K; in Section 2.2.3, we will
actually prove bounds on Tℓ+1, and deduce bounds for Tℓ+1.
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Lemma 2.7. The polynomial Tℓ+1 is in K[X1, . . . , Xℓ+1].

Proof. Since Tℓ+1 is defined over K, it suffices to prove that for i ≤ ℓ, ei is in K. Given α
in πn

i (V ), we saw in the proof of Corollary 2.3 that eα,i(αi) = ∂Ti/∂Xi(α). Thus, ei is the
determinant of the endomorphism of multiplication by ∂Ti/∂Xi modulo (T1, . . . , Ti), so it
is in K. 2

2.2.2 Links with Chow forms

In this paragraph we rewrite the polynomials Ti and Ni in terms of relevant Chow forms;
this step is fundamental to link the geometry of the underlying variety and the involved
polynomials. It relies on the interpolation formulas of the previous paragraph.

• Denote by Cℓ+1 ∈ K[X1, . . . , Xℓ+1, T ] the Chow form of πn
ℓ+1(V ) for ℓ = 1, . . . , n,

• by Cα,i ∈ K̄[X1, . . . , Xℓ+1, T ] the Chow form of V i
α for α ∈ πn

ℓ (V ), and for i = 1, . . . , ℓ+
1.

• The multiplicative property of the Chow form (1.5) induces the following factorization:

Cℓ+1 =
ℓ+1∏

i=1

Cα,i. (2.28)

Let us start with some preliminary lemmas.

Lemma 2.8. For α in πn
ℓ (V ) and i ≤ ℓ, we have

Cα,i(0, . . . , 0, 1, 0, . . . , 0, Xi) = e
di+1···dℓ+1

α,i (Xi) (2.29)

Cα,ℓ+1(1, 0, . . . , 0, Xℓ+1) = Tα,ℓ+1(Xℓ+1). (2.30)

Proof. By definition,

Cα,i =
∏

β∈V i
α

(T − β1X1 − · · · − βℓ+1Xℓ+1). (2.31)

Thus the polynomial Cα,i(0, . . . , 1, . . . , 0, Xi) is equal to
∏

β∈V i
α
(Xi − βi). As for each value

x of vi
α there are di+1 . . . dℓ+1 points of V i

α which projects on x, we deduce that this product
is actually equal to

∏
x∈vi

α
(Xi − x)di+1...dℓ+1. This proves equality (2.29). Equation (2.30) is

easy to obtain. 2

We insert two others formulas, not involving Chow forms but related to the ones above.

Lemma 2.9. For α ∈ πn
ℓ (V ), the following equality holds:

Eℓ

Eα(α)
=
∏

1≤i≤ℓ

∏
β∈πn

i
(V )

β 6=πℓ
i
(α)

eβ,i(βi). (2.32)

For i ≤ ℓ, the following equality holds:
∏

β∈πn
ℓ
(V )

eβ,i(Xi − βi)
di−1 =

∏

β∈πn
i (V )

(Xi − βi)
2di−2. (2.33)

Proof. The two equalities follow directly from the definitions of Eℓ, Eα and eβ,i. 2
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2.2.3 From interpolation to height bounds

Using formulas in Proposition 2.5 and in Corollary 2.3, and the height inequalities of Sec-
tion 1.2.2, we deduce in this subsection the height bounds announced.

Theorem 2.7. For 0 ≤ ℓ ≤ n− 1, the following inequalities hold:

h(Nℓ+1) ≤

{
h(πn

ℓ+1(V )) , (function fields),

h(πn
ℓ+1(V )) + Hℓ+1, (number fields)

h(Tℓ+1) ≤

{
Gℓ+1 h(πn

ℓ+1(V )), (function fields)

Gℓ+1 h(πn
ℓ+1(V )) + Iℓ+1, (number fields).

The core of the proof is the following lemma, which involves the polynomials Tℓ+1 defined
at the beginning of the paragraph.

Lemma 2.10. Let 0 ≤ ℓ ≤ n− 1. For v ∈M0
K we have

hv(Nℓ+1) ≤ hv(Cℓ+1) , and hv(Tℓ+1) ≤ Gℓ+1 hv(Cℓ+1).

For v ∈M∞
K and σv an isometric embedding into C, we have

hv(Nℓ+1) ≤ m(σv(Cℓ+1)) + Hℓ+1 , and hv(Tℓ+1) ≤ Gℓ+1 m(σv(Cℓ+1)) + Iℓ+1.

Let us show how to derive Theorem 2.7. Plugging the estimates for hv(Nℓ+1) in the
definition of height, gives:

h(Nℓ+1) ≤
1

[K : K0]

∑

v∈M0
K

hv(Cℓ+1) +
1

[K : K0]

∑

v∈M∞
K

(m(σv(Cℓ+1)) + Hℓ+1) ,

and the first part of Theorem 2.7 follows from inequality A6 page 28. Similar arguments
apply to Tℓ+1 and yield the bound

h(Tℓ+1) ≤

{
Gℓ+1 h(πn

ℓ+1(V )) + Iℓ+1 (numberfieldcase),

Gℓ+1 h(πn
ℓ+1(V )) (function field case)

Now, Tℓ+1 is obtained by dividing out Tℓ+1 by its leading coefficient in Xℓ+1. By the product
formula, this operation lowers the global height, whence Theorem 2.7 follows. Thus, we can
now focus on proving the lemma, using freely the notation of § 2.2.1 and § 2.2.2.

In what follows, we consider ℓ in 1, . . . , n − 1. The case ℓ = 0 follows along the same
lines, by noting that T1 = N1 = M1 is obtained by a suitable specialization of the Chow
form C1 of πn

1 (V ) (see Section 2.1).
Let then L be a finite extension of K that contains all coordinates of all points in V .

Let w ∈ ML extending an absolute value v ∈ MK . Consider α in πn
ℓ (V ). Specializing

indeterminates at zero decreases height, so

hw(Cα,i(0, . . . , 0, Xi, 0, . . . , 0, T )) ≤ hw(Cα,i) for i ≤ ℓ.
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2.2. Bounds from interpolation formulas

Since Cα,i(0, . . . , 0, Xi, 0, . . . , 0, T ) is homogeneous, its local height coincides with that of
Cα,i(0, . . . , 0, 1, 0, . . . , 0, Xi). Then, Equations (2.29) and (2.30) finally give

hw(e
di+1···dℓ+1

α,i ) ≤ hw(Cα,i) for i ≤ ℓ (2.34)

hw(Tα,ℓ+1) ≤ hw(Cα,ℓ+1). (2.35)

Case 1: w is non-Archimedean. We use equality N1 (Cf. § 1.2.2, p. 28) and Equa-
tions (2.34) and (2.35) to give

hw(EαTα,ℓ+1) =
∑

i≤ℓ

hw(eα,i) + hw(Tα,ℓ+1)

≤
∑

i≤ℓ

hw(Cα,i) + hw(Cα,ℓ+1) = hw(Cℓ+1).

Summing on all α, we deduce hw(Nℓ+1) ≤ hw(Cℓ+1) by inequality N2. Since both polyno-
mials have coefficients in K, and w extends v, this proves the first part of Lemma 2.10.

Next, we consider Tℓ+1. Inequality E yields

hw

(
EαTα,ℓ+1Eℓ

Eα(α)

)
≤ hw(EαTα,ℓ+1) + hw

(
Eℓ

Eα(α)

)
. (2.36)

The term hw(EαTα,ℓ+1) was dealt with above. As to the other term, inequality E and
Equation (2.32) shows that

hw

(
Eℓ

Eα(α)

)
≤
∑

1≤i≤ℓ

∑

β∈πn
i (V )

hw(eβ,i(β)), (2.37)

since the positivity of height enables us to complete the product in Equation (2.32). Then
inequality N3 gives the upper bound

∑

1≤i≤ℓ

∑

β∈πn
i (V )

(hw(eβ,i) + (di − 1)hw(β)) .

Note that hw(βi) = hw(Xi − βi), so by equality N1, the innermost term is hw(eβ,i(Xi −
βi)

di−1). Using Equation (2.33), the inner sum is then bounded from above by

∑

β∈πn
i (V )

hw(eβ,i(Xi − βi)
di−1) = hw

( ∏

β∈πn
i (V )

(Xi − βi)
2di−2

)
.

This quantity can be bounded from above by 2(di−1)hw(Ci). Note that hw(Ci) ≤ hw(Cℓ+1);
summing on i ≤ ℓ and introducing the constant Gℓ+1 gives the second point in Lemma 2.10.

Case 2: w is Archimedean. Let σv and σw be the isometric injections from K or L into
C. They coincide on polynomials with coefficients in K.

For i ≤ ℓ, since Cα,i has degree (di − 1)di+1 · · · dℓ+1, inequality A2 gives

hw(Cα,i) ≤ m(σw(Cα,i)) + (di − 1)di+1 · · · dℓ+1 log(ℓ + 2).
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Thus, we deduce from inequality A4 and Equation (2.34)

hw(eα,i) ≤
hw(Cα,i)

di+1 · · · dℓ+1
+ 2(di − 1) log(ℓ + 2)

≤
m(σw(Cα,i))

di+1 · · · dℓ+1
+ 3(di − 1) log(ℓ + 2)

Using (di+1 · · ·dℓ+1) ≥ 1 and inequality A3, we obtain

hw(Eα) ≤
∑

i≤ℓ

m(σw(Cα,i)) + 4 log(ℓ + 2)
∑

i≤ℓ

(di − 1).

We next deduce from Equation (2.35) and inequality A2

hw(Tα,ℓ+1) ≤ m(σw(Cα,ℓ+1)) + log(ℓ + 3)dℓ+1.

Now, from (2.28), it follows that m(σw(Cℓ+1)) = m(σw(Cα,ℓ+1)) +
∑

i≤ℓ m(σw(Cα,i)), so ap-
plying inequality A3 yields

hw(EαTα,ℓ+1) ≤ m(σw(Cℓ+1)) + 4 log(ℓ + 3)
∑

i≤ℓ+1

di.

Summing over α and using inequality A5, we finally get

hw(Nℓ+1) ≤ m(σw(Cℓ+1)) + 4 log(ℓ + 3)
∑

i≤ℓ+1

di + log(d1 · · ·dℓ+1).

Next, we use the inequality log(di) ≤ di for all i. With the introduction of the constant
Hℓ+1, this finishes the proof of the third point in Lemma 2.10, since Nℓ+1 and Cℓ+1 both
have coefficients in K.

As for the last point of that lemma, note first that inequalities (2.36) and (2.37) hold
in the Archimedean case as well; we now only have to bound the rightmost term of Equa-
tion (2.37).

Using inequalities A7 and A3 and Equation (2.33), an easy check proves that for i ≤ ℓ,
the sum

∑
β∈πn

i (V ) hw(eβ,i(β)) is bounded from above by

2(di − 1)m
( ∏

α∈πn
i (V )

σw(Xi − αi)
)

+ 3di(di − 1) log(2).

Now, we remark that m(σw(Xi − αi)) = m(σw(T − αiXi)). Using the additivity of the
Mahler measure, we deduce that the above quantity equals

2(di − 1)m(σw(Ci(0, . . . , 0, Xi, 0, . . . , 0, T ))) + 3di(di − 1) log(2).

Inequality A8 now shows that this can be bounded from above by 2(di − 1)m(σw(Ci)) +
3di(di − 1) log(2). Noticing that m(σw(Ci)) ≤ m(σw(Cℓ+1)) and using the above estimates
yields

hw

(
EαTα,ℓ+1Eℓ

Eα(α)

)
≤ m(σw(Cℓ+1))

(
1 + 2

∑

i≤ℓ

(di − 1)
)

+ 4 log(ℓ + 3)
∑

i≤ℓ+1

di

+ 3 log(2)
∑

i≤ℓ

di(di − 1).
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Summing on all α and using inequality A5 as above, we conclude the proof of Lemma 2.10.

As a corollary, it would be interesting to compare the bounds obtained for N1, . . . , Nn

above and for the Kronecker representation, in the specific situation where X1 is separating.
This problem has already been mentioned in introduction of chapter, in Equations (2.2)
and (2.3). In fact, there is a the strong analogy between, in one hand, Formula (1.2)
page 16 and the formula for Tℓ+1 in Proposition 2.5 and in the other hand between formulas
of Corollary 2.3, and Corollary 1.1, page 17.

Corollary 2.4. Let V ⊂ An
K̄

a zero-dimensional variety with vanishing ideal is defined
over K and verified the Separability Assumption. Let u be a separating linear form for
V and (χu, w1, . . . , wn) the associated Kronecker representation. Define the polynomials
N1, . . . , Nn+1 as follows:

∣∣∣∣∣∣∣∣∣∣∣

N1(X1) = χu(X1)
N2(X1, X2) = χ′u(X1)X2 − w2(X1)

...
Nn(X1, . . . , Xn) = χ′u(X1)Xn − wn−1(X1)
Nn+1(X1, . . . , Xn+1) = χ′u(X1)Xn+1 − wn(X1)

,

The family {Ni}1≤i≤n+1 verifies the equality in Corollary 2.3. For 2 ≤ i ≤ n + 1, the
equality max{h(χ′u), h(wi−1)} = h(Ni) holds. Moreover, the bounds obtained for polynomials
N2, . . . , Nn+1 (Theorem 2.5) applied to polynomials w1, . . . , wn are equal, modulo negligible
logarithmic terms, to the bounds obtained for the Kronecker representation (Theorem 2.2).
The reciprocal is also true.

Proof. The first point is a consequence of Equations (2.2) page 49. We apply to them
the formula of Defintion 2.3 page 82, and we obtain the polynomials χ′u and wi of the
Kronecker representation. The equality h(Ni) = max{h(χ′u), h(wi−1)} then follows from
the definition of height of a polynomial. Let us prove the estimate of the last point of the
corollary. Let V ′ ⊂ An+1

K̄
the zero-set of N1, . . . , Nn+1. As N1(X1) = χu(X1), it follows that

degX1
(N1) = deg(V ). As the others polynomials N1, . . . , Nn+1 have degree one, it follows

that degX1
(N1) = deg(V ′) also, and deg(πn+1

i (V ′) = deg(V ′) = deg(V ). Let us denote by
D this common degree. The Chow form of V ′ verifies:

CV ′ =
∏

α∈V

(T − u(α)U1 − α1U1 · · · − αnUn+1).

hv(T − u(α)U1 − α1U2 − · · · − αnUn+1) = log max{1, |u(α)|v, |α1|v, . . . , |αn|v}.

Let us write u = u1X1 + · · ·+ unXn.

|u(α)|v ≤





∑n
i=1 |ui|v · |αi|v ≤ n

(
max
1≤i≤n

|ui|v

)(
max
1≤i≤n

|αi|v

)
if v is Archimedean

max
1≤i≤n

|ui|v · |αi|v ≤

(
max
1≤i≤n

|ui|v

)(
max
1≤i≤n

|αi|v

)
, if v is non-Archimedean.
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It follows that

log max{1, |u(α)|v, |α1|v, . . . , |αn|v} ≤





log max{1, max
1≤i≤n

{|ui|v}}+ log max{1, max
1≤i≤n

{|αi|v}}

+ log(n), if v is Archimedean

log max{1, max
1≤i≤n

{|ui|v}}+ log max{1, max
1≤i≤n

{|αi|v}},

if v is non-Archimedean.
By definition of the height of a polynomial, we deduce that:

hv(T − u(α)U1 − α1U2 − · · · − αnUn+1) ≤





hv(u) + hv(T − α1U1 − · · · − αnUn) + log(n),

if v is Archimedean

hv(u) + hv(T − α1U1 − · · · − αnUn),

if v is non-Archimedean.

Suppose now that v is a non-Archimedean absolute value in M0
K . Then inequality A3

gives:

hv(CV ′) ≤
∑

α∈V

hv(T − u(α)U1 − α1U2 − · · · − αnXn+1) + D log(n + 3)

≤
∑

α∈V

hv(u) + log(n) + hv(T − α1U1 − · · · − αnUn

From A4: ≤ D(hv(u) + log(n)) + hv(CV ) + 2D log(n + 2)

≤ D (hv(u) + 3 log(n + 2)) + hv(CV ).

Suppose now that v ∈M∞
K is non-Archimedean. equality N1 yields:

hv(CV ′) =
∑

α∈V

hv(T − u(α)U1 − α1U2 − · · · − αnXn+1)

≤
∑

α∈V

hv(u) + hv(T − α1U1 − · · · − αnUn)

From Equality N1: ≤ Dhv(u) + hv(CV )

Using the definition of the height of a variety, and Corollary 1.2 for the number field case,
leads to:

h(V ′) ≤

{
h(V ) + Dh(u), if K is a function field

h(V ) + Dh(u) + 4 log(n + 2), if K is a number field.

Let us apply to wn the bounds proved for Nn+1 in Theorem 2.5. We get:

h(wn) ≤

{
h(V ′) + 5 log(n + 3) deg(V ), (numbers case)

h(V ′), (functional case),

≤

{
h(V ) + Dh(u) + 4 log(n + 2) + 5D log(n + 3), (numbers case)

h(V ) + Dh(u), (functional case).

As foreseen, minor changes in the logarithmic terms and we recognize the bounds obtained
in Theorem 2.2 for the Kronecker representation.
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Conversely, Llet us estimate the Chow form of V in function of the Chow form of V ′. It
suffices to notice that

CV ′(0, U1, . . . , Un, T ) = CV (U1, . . . , Un, T ).

Specializing a variable to zero lowers the height, and also the Mahler measure from inequal-
ity A8. Thus, for any absolute value v ∈ MK , hv(CV ) ≤ hv(CV ′) and that m(σv(CV )) ≤
m(σv(CV ′). With Corollary 1.2, it follows that:

h(V ) ≤

{
h(V ′) (functional case)

h(V ′) + D log(n + 2) (number field case).

we notice that N1, N2, . . . , Nn+1 is a primitive element representation à la Kronecker for
V where X1 is a separating linear form, whose minimal polynomial is N1. Then applying
the estimates obtained for the polynomials of the Kronecker representation in Theorem 2.2
page 2.2 leads to:

h(Nn+1) ≤

{
h(V ) + Dh(X1) + D log(n + 2) + (n + 1) log(D), (number field case)

h(V ) + Dh(X1), (functional case).

≤

{
h(V ) + D(2 + log(n + 2)) + (n + 1) log(D), (number field case)

h(V ) + D, (functional case).

We notice that hese bounds are similar to the ones obtained in Theoerem 2.5 page 75 for
polynomial N1, . . . , Nn+1. 2
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Chapter 3

Change of order for regular chains in

positive dimension

We discuss changing the variable order for a regular chain in positive dimension. This
quite general question has applications going from implicitization problems to the symbolic
resolution of some systems of differential algebraic equations.

We propose a modular method, reducing the problem to computations in dimension
zero and one. The problems raised by the choice of the specialization points and the lack of
the (crucial) information of what are the free and algebraic variables for the new order are
discussed. Strong (but not unusual) hypotheses for the initial regular chain are required;
the main required subroutines are change of order in dimension zero and a formal Newton
iteration.

This is a joint work with Xin Jin, Marc Moreno Maza, and Éric Schost. An implemen-
tation of this algorithm is available in Maple 11, inside the RegularChains library; I have
not contributed to this program, only due to the other three authors.

3.1 Introduction

Many operations with multivariate polynomials, such as implicitization, rely on manipula-
tions involving one or several lexicographic orders. These lexicographic orders are also a key
component to define regular chains (see definition below) [63, 88, 80], so that these regular
chains appear as a natural tool to handle situations where orders on the variables matter.

Explicitly, suppose that we are given a regular chain for some input order, as well as a
target order on the variables; we are interested in converting the input into a new regular
chain with respect to the target order, while describing the same (generic) solutions. This
is required by many applications (the implicitization problem falls into this category), as in
the following example.

Example. Consider the polynomials P in Q[X1, X2] such that P (X1, X2) = P (−X1,−X2).
Invariant theory tells us that any such polynomial can be written as a polynomial in X2

1 , X
2
2

(the primary invariants P1 and P2) and X1X2 (the secondary invariant S); natural questions
to ask are whether such a representation is unique, and how to perform the rewriting.

This can be done by getting an expression of X1 and X2 in function of P1 and P2,
hence by changing the order of the following system from X2 < X1 < S < P2 < P1 to
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P2 < P1 < S < X1 < X2. Given

∣∣∣∣∣∣

P1 = X2
1

P2 = X2
2

S = X1X2

or equivalently

∣∣∣∣∣∣

P1 −X2
1 = 0

P2 −X2
2 = 0

S −X1X2 = 0,

we wish to obtain

∣∣∣∣∣∣

SX2 − P1X1 = 0
X2

1 − P1 = 0
S2 − P1P2 = 0

or equivalently

∣∣∣∣∣∣

X2 = S
P1

X1

X2
1 = P1

S2 = P1P2.

In this form, we observe the relation S2 = P1P2 between our basic invariants, which estab-
lishes that the representation cannot be unique. Furthermore, the new form of the system
can be used as a set of rewriting rules, so as to obtain a canonical form for any invariant
polynomial.

In this article, we present an algorithm for performing such conversions, concentrating
on the case of varieties of positive dimension. Representing such a variety by a regular chain
then involves decomposing the set of coordinates into free / algebraic variables; for instance,
in the input of the previous algorithm, (X1, X2) are free and (P1, P2, S) algebraic. We will
then use modular techniques (consisting in “specializing” and “lifting” the free variables)
to keep the size of intermediate expressions involving the free variables under control.

To get a hint of the way such techniques work, one can consider the over-simplified
case where the free (resp. algebraic) variables are the same for both the input and the
target order (this is not the case in the previous example), so that only the order of the
algebraic variables actually matters. In this case, a direct approach consists in specializing
the free variables at a random value (thus reducing to dimension zero), use change of order
in dimension zero to operate on the algebraic variables, and recover the dependence in the
free variables using a formal version of Newton iteration (Figure 3.1).

Input : System in
positive dimension

Algorithm A

(costly)

Specialization of some
free variables

Output: Another system in
positive dimension

System in
dimension zero

Algorithm A performed

in dimension zero

System in dimension zero
close to the output

Newton− Hensel
operator

Figure 3.1: Prototype of a modular method using Newton-Hensel technique

We will extend this approach to the general case, where the sets of free (resp. algebraic)
variables differ in the input and output. Of course, we do not know a priori what the free
(resp. algebraic) variables are in the output, so they will have to be determined; using this
information will enable us to design a fully modular algorithm.
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Representing varieties by regular chains. After this general introduction, we can
define more formally the objects we will compute with. To start with, let us consider a
family X = (X1, . . . , Xn) of indeterminates over a perfect field K, and suppose that these
variables are ordered. In this paragraph, our order will simply be X1 < · · · < Xn, a
situation to which one can always reduce at the cost of renaming the variables. We refer to
Section 1.1.3 in the preliminary chapter for the definitions and basic properties of regular
chains and triangular sets. We recall that they are all Lazard triangular sets, as along this
thesis.

Given a variety W , what are the regular chains R such that W = V (Sat(R))? In what
follows, we will let W ⊂ K

n
be an irreducible variety of dimension r, defined over K, and

we let I be its defining ideal in K[X]. Since we make a heavy use of projections, we use

a special notation: if Z is a subset of X of cardinality ℓ, we denote by πZ : K
n
→ K

ℓ
the

projection on the Z-space, that forgets all coordinates not in Z. For z in K
ℓ
, we then denote

by Wz the fiber W ∩ π−1
Z (z), that is, the subset of points of W that project onto z.

A subset Z of X is then a set of free variables for W if I ∩ K[Z] = {0}, i.e. if the
image πZ(W ) is dense. If Z is such a set of free variables, it is then called maximal if it
is additionally maximal (for inclusion) among the sets of free variables; in this case, for a
generic choice of z, the fiber Wz has dimension zero. Theorem 1.2 p. 18, shows that given
a maximal set Z of free variables of the irreducible variety W , there exists a regular chain
having Z for free variables, and X − Z for algebraic variables. There is no unicity, the
first reason being that we have not specified the variable order. But even then, there is a
priori no canonical choice, due to the possible choices of initials. The following proposition
restores canonicity, by introducing a normal form for these initials.

Proposition 3.1. Let < be an order on X. Then all regular chains R for the order <
for which I = Sat(R) have the same set of algebraic variables Y (resp. free variables Z).
Furthermore, there exists a unique triangular set T in K(Z)[Y] for the order induced by <
on Y such that (T) = I ·K(Z)[Y].

In the situation of the previous proposition, T represents the generic points of W . If we
clean all denominators from T, we obtain a regular chain R in K[Z][Y] = K[X], having all
its initials in K[Z] and such that Sat(R) = I (this regular chain is called strongly normalized
in [79]). We will call T and R the canonical representations associated to the order <.

Lifting fibers. As usual in this kind of situation, one has to be careful to avoid a combi-
natorial explosion due to the sheer number of monomials that may appear in representations
such as T or R mentioned above.

A natural measure of the complexity of the problem is the degree of the variety W
(see [55], from where we take all our results on this notion). Now, if W has arbitrary
positive dimension, the number of monomials that can appear in T or R is not polynomial
in the degree of W . To overcome this difficulty, we use lifting fibers [52, 77]: an irreducible
variety W of dimension r will be represented by a specialization of the associated canonical
representation T at some point z ∈ Kr, thus describing a fiber Wz of some projection πZ(W ).

Precisely, let < be an order on the set X. Associated with this order, let the set of free
variables Z, its complement Y = X−Z, and the canonical representation T ∈ K(Z)[Y] be as
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in Proposition 3.1. We will then put natural non-degeneracy conditions on our specialization
point z ∈ Kr.

H1. The point z ∈ Kr cancels no denominator in T.

In this case, we denote by Tz the triangular set in K[Y] obtained by specializing Z at z in
T. Even under condition H1, Tz does not necessarily represent the fiber Wz; we thus take
it as an assumption.

H2. The fiber Wz = W ∩ π−1
Z (z) equals {z} × V (Tz); in other words, the roots of Tz are

the points of W above z.

H3. The triangular system Tz defines a radical ideal (hence is a triangular set).

Finally, we need a system of equations to recover W from the fiber Wz. In our case, we will
be given a system of equations F = F1, . . . , Fs and an inequation h in K[X] such that W
is the Zariski-closure of V (F) − V (h) (later, F will be our input regular chain, and h the
product of its initials). We also require that the conditions of the implicit function theorem
are satisfied:

H4. The Jacobian determinant of F with respect to Y does not vanish on Wz.

Then, a lifting fiber for (F, h, <) is the data of z and Tz satisfying assumptions H1, . . . , H4.
Using Newton iteration, if needed, one can then recover the canonical representation T ∈
K(Z)[Y] from such a lifting fiber, see Proposition 3.7 below. The main interest of this notion
is thus that it enables us to handle objects of dimension zero instead of positive dimension,
avoiding the cost of representing all monomials in positive dimension, without losing any
information.

Let us illustrate this notion on the invariant problem met before. Consider again the
system of equations F over the field K:

S −X1X2, P2 −X2
2 , P1 −X2

1 ,

and let W be its zero-set in K
5
, so that the inequation h is here 1. In this order, this

family of polynomials is already a regular chain for the order X2 < X1 < S < P2 < P1,
admitting Z = (X1, X2) as free variables. Then one checks that the point z = (1, 1) satisfies
assumptions H1, . . . , H4; the corresponding lifting fiber is given by z, together with

T(1,1)

∣∣∣∣∣∣

P1 − 1
P2 − 1
S − 1

which is a specialization of T

∣∣∣∣∣∣

P1 −X2
1

P2 −X2
2

S −X1X2.

Observe next that Z′ = (P1, P2) is also a maximal set of free variables. Using the order
P2 < P1 < S < X1 < X2, one checks that the point z′ = (1, 1) satisfies assumptions
H1, . . . , H4 as well; the corresponding lifting fiber is given by z′, together with

T′(1,1)

∣∣∣∣∣∣

X2 − SX1

X2
1 − 1

S2 − 1
which is a specialization of T′

∣∣∣∣∣∣

X2 −
S
P1

X1

X2
1 − P1

S2 − P1P2.

Lifting fibers are defined using variable orders. However, to have more notational flexibility
in what follows, we also associate a notion of lifting fiber to a given set of free variables Z

(resp. a set of algebraic variables Y): this is a lifting fiber for (F, h, <), where < is any
order inducing Z as free variables for W (resp. Y as algebraic variables).
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Main results. In what follows, we denote by MT a function that assigns to an irreducible
variety W an upper bound on the cost of all operations (+,−,×), invertibility testing and
inversion modulo triangular sets arising as lifting fibers for W . The precise definition is
given in Subsections 1.3.2 and 3.2.2, together with various estimates; in the meantime, we
point out that MT(W ) is polynomial in the degree (deg W ) of W . We also denote by M a
multiplication time function for univariate polynomials, see again Subsection 1.3.2.

Given an input regular chain and a target order, our main result is then a polynomial-
time bound on the complexity of computing a lifting fiber for the output regular chain. Since
our algorithms use Newton iteration, a natural encoding for the input system is through a
straight-line program, as this representation is especially well adapted to such evaluation-
intensive routines. The counterpart of this representation is that it does not immediately
give information such as total or partial degrees, which are needed below; while it would be
possible to determine these quantities at some extra cost, we adopt the simpler solution of
taking them as input.

Theorem 3.1. Let F = (F1, . . . , Fs) be a regular chain in K[X] = K[X1, . . . , Xn] for an
input order <, and assume that the following assumptions hold:

• The characteristic of K is larger than dn, where d is an upper bound on the degrees of
the polynomials in F.

• The saturated ideal of F is prime.

Let W = V (Sat(F)) and let h be the product of the initials of F. Suppose also that the
regular chain F is given by a straight-line program of size L, that the main variables of F

are known, as well as the degree of these polynomials in their main variables.
Given a target order <′ on X, one can compute by a probabilistic algorithm a lifting fiber

for (F, h, <′). In case of success, the algorithm uses

O
(
s(n4 + nL) MT(W ) M

(
(deg W )2

)
log(deg W )

)
⊂ (nL deg W )O(1)

operations in K. The algorithm chooses n + s parameters in K. If these parameters are
chosen uniformly at random in a finite subset S of K, writing m = max(n, d), the probability
of failure is at most

2dn(3d2n + n2n + (6 + 13m)mdn + m2)

|S|
.

Let us illustrate the probabilistic aspect by the example of a system with n = 10 un-
knowns, with input equations of maximal degree d = 4, solved over a finite field K with
approximately 1019 elements (so that the field elements fit into a 64-bit word). Then if one
chooses all random values in K, by the previous theorem, the probability of failure is at
most ≃ 6 · 10−7.

As was mentioned before, from our output lifting fiber, recovering the full expansion
of the target regular chain is a well-known question, that is solved using again Newton
iteration: for the sake of reference, the cost of this operation is reviewed in Proposition 3.7.
However, one should bear in mind that in general, using dense monomial representation,
the cost of this last step may be prohibitive due to the sheer number of monomials that
may appear, which is not polynomial in the degree of W .
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To conclude, we mention some workarounds to this issue. First, in several situations,
knowing a single lifting fiber is actually enough: for instance, it enables one to recover any
other lifting fiber efficiently (that is, in a time that remains polynomial in the degree of W ).
If the multivariate representation of the target regular chain is really required, then it can
be computed in polynomial time using straight-line program encoding, following the ideas
of [50, 49, 47, 57, 61]; however, as of now, there is no software package enabling easily such
manipulations. Finally, when using dense representation, a direction of future research will
consist in using sparse lifting techniques, taking into account the possible sparse nature of
the output.

Outlook of the algorithm. The algorithm is an iterative process: the input regular
chain provides us with a first lifting fiber, for the initial order. We will then compute a
finite sequence of lifting fibers, the last one being a lifting fiber for the target order.

The algorithm works in two steps. As was said before, we do not know a priori what are
the algebraic variables in the output; the first step of the algorithm will determine them.
Since this will be required in the second stage of the algorithm, we will actually compute a
more precise information: a whole sequence of sets of algebraic variables Y0, . . . ,Ys, where
Y0 is the set of algebraic variables in the input regular chain, and Ys is that for the target
regular chain. Writing Yi for the set of algebraic variables at step i, we will then arrange
that Yi and Yi+1 differ by a single element. This will be done by linear algebra (with
algebraic number coefficients), using a characterization of Ys as the maximal element of a
suitable matroid.

The second step consists in computing an associated sequence of lifting fibers. This is
an inductive process: given a lifting fiber for Yi, we will deduce a lifting fiber for Yi+1.
Our requirements on the sequence Y0, . . . ,Ys make this task easy, using change of order
in dimension zero and Newton iteration in one variable. Hence, all the objects that we see
will be either zero- or one-dimensional; this will allow us to keep a good control on the
complexity.

Let us illustrate the behavior of this algorithm with our previous example (see Figure 3.2
for a visual explanation). The set of algebraic variables for the input regular chain is
Y0 = {S, P1, P2}. In the first part of the algorithm, we will obtain the following sets of
algebraic variables:

Y1 = Y0 − {P2} ∪ {X2} = {S, P1, X2}
Y2 = Y1 − {P1} ∪ {X1} = {S, X1, X2}.

In the second phase, we obtain the associated lifting fibers:

∣∣∣∣∣∣

P1 − 1
P2 − 1
S − 1

∣∣∣∣∣∣

X2 − S
S2 − 1
P 2

1 − 1

∣∣∣∣∣∣

X2 − SX1

X2
1 − 1

S2 − 1
with (X1 = 1, X2 = 1) with (X1 = 1, P2 = 1) with (P1 = 1, P2 = 1),

the last one being the output of our algorithm.
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Chapter 3. Change of order for regular chains . . .

Applications. Change of order is an ubiquitous problem. A first vast family of appli-
cations is coming from implicitization problems, which essentially consist in finding the
polynomial relations between several multivariate rational functions. This problem fits nat-
urally in our setting: to a system of rational functions of the form

ϕi =
fi(Z1, . . . , Zr)

gi(Z1, . . . , Zr)
i = 1, . . . , s

one associates the regular chain

Fi : gi(Z1, . . . , Zr)Yi − fi(Z1, . . . , Zr) i = 1, . . . , s

having Z = Z1, . . . , Zr as free variables and Y = Y1, . . . , Ys as algebraic variables. Changing
to an order where the Z variables are larger than the Y variables enables us to find the
relations between the rational function ϕi, but also to recover the parameters Z as algebraic
functions of the image points Y (when it is possible).

As was illustrated in the introductory example, several other families of problems fit into
a similar setting, such as many questions coming from invariant theory, using the above “tag
variables” techniques [107]. In all these cases, our primality assumption is indeed satisfied.

Several other application examples are coming from differential algebra: as illustrated
in [20], characteristic sets conversion in a differential ring can partly be reduced to perform
change of orders for positive-dimensional regular chains in a polynomial ring (see the ex-
ample Euler’s equations for a perfect fluid in [20]). Again, in this context, our primality
assumption is satisfied.

Previous work. As was said above, the concept of regular chain was introduced in [63],
following previous work initiated by Ritt [100] and Wu [120]. Other contributors were
[71, 72], Aubry et al. [7] and Moreno Maza [88]; a recent overview is also given in [60, 59].

In this paper, we focus on the case of positive dimension. There already exist many
algorithms to perform the change of order in this context, either under the point of view
of Gröbner bases [28, 64, 113] or regular chains [20]. As was said above, an important
application of change of order is the implicitization problem, for which many specialized
algorithms have been developed, relying on resultant formalisms and homological algebra
techniques, see for instance [25, 33, 29] and the numerous references therein.

However, as far as we know, the complexity of these algorithms is not well known, and
in most cases, cannot be expected to be polynomial in the degree of W . Our specificity is to
provide a fine algorithmic study, relying on a few well-identified subroutines, such as change
of order in dimension zero, and Newton iteration. This enables us to offer a clear view of
the complexity of the problem: the central operation presented in this article, computing
a lifting fiber for the target regular chain, can be done in a time that is polynomial in the
natural complexity measures of the problem. Recovering the full monomial expansion of
the target regular chain can then be done using standard techniques.

This notion of lifting fiber (though not exactly with the same requirements as ours)
explicitly appeared in [52, 77], following extensive previous work of Giusti, Heintz, Pardo
and collaborators [50, 49, 47], with the purpose of computing geometric resolutions. A
similar idea appeared again in the context of numerical algebraic geometry, with the name
of witness sets [110].
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Linked with the notion of lifting fiber, other aspects of this work are following the ideas
of the references [50, 49, 47, 52, 77] cited above. Besides the use of straight-line programs
and of Newton iteration, the approach used in the second part of our algorithm bears some
similarity with the above works in its iterative lifting / intersection process. However, in our
case, we obtain finer complexity estimates and a sharp control on the probabilistic aspects:
our algorithm is polynomial in the degree of the variety defined by the input system F,
whereas none of the above methods is known to reach this bound.

Organization of the chapter. Section 3.2 adds to Subsections 1.1.3 and 1.3.2 some
basic geometric and algorithmic results on regular chains that are used throughout this
article. Section 3.3 then introduces the language of matroids as a convenient tool to describe
independence properties: this will give a general framework for us to design the latter
algorithms. Using this language, in Section 3.4, we use linear algebra to determine the set
of algebraic variables that appear in the target regular chain. Section 3.5 shows how to use
that information to compute a sequence of lifting fibers, and Section 3.6 gives the proof of
the main theorem. We finish this article with a conclusion section, and an appendix devoted
to the computation of inverses modulo a triangular set.

3.2 Preliminaries

This section goes into detail the properties of regular chains (addressed in Subsection 1.1.3)
and related algorithmic questions (addressed in Subsection 1.3.2) Many of those are already
known; a few new facts are introduced here. In all that follows, K is a perfect field.

3.2.1 Additional results on regular chains

We start by discussing some properties of regular chains in dimension zero. Following
Theorems 1.2 and 1.3, if W is an irreducible zero-dimensional variety defined over K, then
for any order < on the variables, there exists a unique triangular set T for the order < such
that (T) equals the generating ideal I(W ) of W ; this triangular set is the Gröbner basis of
I(W ) for the lexicographic order induced by <.

When W is not irreducible, this does not have to be the case anymore: I(W ) is gen-
erated by a triangular set for the order < if and only if W is equiprojectable for a suitable
family of projections [9]. In what follows, our zero-dimensional objects will be obtained
as sections of irreducible varieties of positive dimension. Using generic sections will ensure
that equiprojectability holds.

We next discuss Proposition 3.1, whose statement is the following: Let < be an order on
X. Then all regular chains R for the order < for which I = Sat(R) have the same set of
algebraic variables Y (resp. free variables Z). Furthermore, there exists a unique triangular
set T in K(Z)[Y] for the order induced by < on Y such that (T) = I ·K(Z)[Y].

The first point will be proved in Proposition 3.10, where we actually give a more precise
statement. To obtain the second part of the proposition, we establish some more precise
results, needed later on.
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Lemma 3.1. Let Z be a maximal set of free variables for W and let Y = X − Z. Then,
K(W ) ≃ K(Z)[Y]/I, and the extension K(Z) → K(W ) is finite. If the characteristic of K
is larger than deg(W ), then this extension is separable.

Proof: Since I contains no polynomial in K[Z], one checks that I ·K(Z)[Y] is still prime,
and the isomorphism K(W ) ≃ K(Z)[Y]/I follows easily. We next show that K(Z)→ K(W )
is finite and separable. Let Y thus be in Y. Since Z+{Y } is not free, there exists a non-zero
polynomial PY in I ∩ K[Z, Y ], of degree at most (deg W ). Note that PY does not reduce
modulo I to a polynomial in K[Z], since Z are free variables. Hence Y ∈ K(W ) is algebraic
over K(Z). Furthermore, if char(K) > (deg W ) ≥ degY PY , Y is separable over K(Z), so
our claim follows. 2

Observe now that the second point in Proposition 3.1 is an immediate consequence of this
lemma, in view of the previous discussion on triangular sets for zero-dimensional varieties.

Quantifying degeneracies. We will need two different statements regarding the degen-
eracies of specializations. The first result will be used to control the degeneracies in the
input regular chain F of our main algorithm. The second statement will be used to control
degeneracies attached to the intermediate and output regular chains, which feature stronger
properties (e.g., they are strongly normalized), but with a looser control on the degrees.

Proposition 3.2. Let F = (F1, . . . , Fs) be a regular chain in K[X], let W be the zero-set
of Sat(F) and let r = n− s. Let Z be the free of variables of F, and let Y = X − Z be its
algebraic variables, so that Yi is the main variable of Fi. Suppose that W is irreducible and
that the Jacobian determinant σ of F with respect to Y, given by

σ =
∏

1≤i≤s

∂Fi

∂ Yi

,

does not vanish identically on W . Let finally d be a bound on the degrees of the polynomials
in F.

There exists a non-zero polynomial ∆reg ∈ K[Z] of degree at most 2sdn+1 with the fol-
lowing property. For z ∈ Kr, if ∆reg(z) is not zero, then Fz = F(z,Y) is a regular chain in
K[Y] and defines a radical ideal.

Proof: Let V be the zero-set of F; for i ≤ s, let us denote by hi the initial of Fi and let
h ∈ K[X] be the product h1 · · ·hs. We start by a lemma.

Lemma 3.2. The projection πZ(V ∩ V (h)) has dimension less than r.

Proof: The intersection V ∩ V (h) can be rewritten as

(
V0 ∩ V (h1)

)
∪
(
V1 ∩ V (h2)

)
∪ · · · ∪

(
Vs−1 ∩ V (hs)

)

where Vi is the Zariski closure of V −V (h1 · · ·hi). Let us denote by Wi the Zariski-closure of

V (F1, . . . , Fi)−V (h1 · · ·hi) in K
r+i

. Since F is a regular chain, Wi ∩V (hi+1) has dimension
less than r, so that its projection on the Z-space has dimension less than r as well. This
implies that Vi ∩ V (hi+1) satisfies the same property. 2

Let us return to the proof of the proposition. By Bézout’s inequality [55], V ∩ V (h) has
degree at most (deg V )(deg h) ≤ dn×sd = sdn+1; by the previous lemma, its image through
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πZ has dimension less than r. Hence, there exists a non-zero polynomial ∆1 of degree at
most sdn+1 such that if z ∈ Kr does not cancel ∆1, h(z,Y) vanishes nowhere on V (Fz).
Hence, each hi(z,Y) is a non zero-divizor modulo (F1(z,Y), . . . , Fi−1(z,Y)). For such a
value of z, Fz is a regular chain and the fiber Wz equals {z} × V (Fz).

We then deal with the zeros of the polynomial σ. By assumption, W∩V (σ) has dimension
less than r; by Bézout’s inequality, its degree is at most sdn+1. Hence, there exists a non-
zero polynomial ∆2 of degree at most sdn+1 such that if z ∈ Kr does not cancel ∆2, σ(z,Y)
vanishes nowhere on V (Fz); in this case, Fz defines a radical ideal, by the Jacobian criterion.
To conclude, it suffices to take ∆reg = ∆1∆2. 2

We next address the degeneracies that may occur in the latter stages of the algorithm.
We thus still consider the input regular chain F in K[X], the product h of its initials, and
the variety W = V (Sat(F)) of dimension r; we assume that Sat(F) is prime. Let next <
be an order on the set X (not necessarily the order associated with F), and let the sets of
variables (Z,Y) and the canonical representation T ∈ K(Z)[Y] be associated to the order
< by Proposition 3.1. The following proposition quantifies the specializations z ∈ Kr of Z

that do not yield lifting fibers for (F, h, <).

Proposition 3.3. Suppose that all polynomials in F have degree bounded by d, and that
the Jacobian determinant of F with respect to Y does not vanish identically on W . Then
there exists a non-zero polynomial ∆lift ∈ K[Z] of degree at most ndn(3dn + n + d) such that
for z ∈ Kr, if ∆lift(z) is not zero, then Tz is well-defined and (z,Tz) is a lifting fiber for
(F, h, <).

Proof: By Theorem 2 in [105], there exists a non-zero polynomial ∆1 ∈ K[Z] of degree
at most n deg W (3 deg W + n) such that if ∆1(z) is not zero, then z satisfies assumptions
H1, H2, H3.

Let next V be the intersection W ∩V (σ), where σ is the Jacobian determinant of F with
respect to Y. By assumption, V has dimension at most r − 1 and degree at most sdn+1,
so there exists a non-zero polynomial ∆2 ∈ K[Z] of degree at most sdn+1 such that πZ(V )
is contained in V (∆2). To conclude, we define ∆lift = ∆1∆2; the requested degree bound
follows from the inequality deg W ≤ dn. 2

3.2.2 Algorithmic prerequisites

We will make use of basic operations for univariate polynomials as presented in the prelimi-
nary chapter, in Subsection 1.3.2. In particular M is a multiplicatioin time. We precise also
the cost function MT for operations modulo a triangular set.

First, we require that MT enables us to describe the cost of ring operations modulo an
arbitrary zero-dimensional triangular set. In other words, MT is such that for any n and
any triangular set T = (T1, . . . , Tn) in K[X1, . . . , Xn] for the order X1 < · · · < Xn, all
operations (+,−,×) modulo T can be computed in MT(d1, . . . , dn) base field operations,
with di = degXi

(Ti).
Second, we ask that MT enables us to describe the cost of inversion, assuming that we

work modulo a triangular set that generates a zero-dimensional radical ideal (the radicality
assumption is used to derive the bounds given below). In other words, MT is such that for
any n and any triangular set T = (T1, . . . , Tn) generating a radical ideal in K[X1, . . . , Xn],
given A ∈ K[X1, . . . , Xn] reduced with respect to T, one can test if A is a unit modulo T and
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if so, compute its inverse, using MT(d1, . . . , dn) base field operations (with di = degXi
Ti,

and assuming that the variables are ordered as above).
Finally, we request that there exists a constant c such that the inequalities

MT(d1, . . . , dn) ≤ c MT(d1, . . . , dn, dn+1, . . . , dm)

MT(d1, . . . , dn + 1) ≤ c MT(d1, . . . , dn)

MT(d1, . . . , dn)dn+1 ≤ c MT(d1, . . . , dn, dn+1)

hold for all values of the arguments. The following proposition then gives an upper bound
the complexity of all the previous operations.

Proposition 3.4. Let M : N→ R be a multiplication time. There exists a constant C such
that one can take

MT(d1, . . . , dn) = Cn′
∏

i≤n,di 6=1

M(di)logp3(di),

where n′ is the number of elements of {d1, . . . , dn} different from 1.

This proposition is proved in Corollary ??. the chapter “On the complexity of the D5
principle”. For the addition and multiplication, the result in Subsection 1.3.2 gives better
estimates: there is no logarithmic terms. Observe that for fixed n, this bound is linear
in d1 · · · dn, up to logarithmic factors. As a corollary, we also obtain the following result,
that shows that the first factor Cn′

is controlled by the second one, proving that all these
operations can be done in polynomial time.

Corollary 3.1. One can take MT(d1, . . . , dn) ≤ (d1 · · · dn)κ, for some constant κ.

Proof: Let us fix a multiplication time M; hence, there exists a constant λ such that
M(d) log3(d) is upper-bounded by dλ for all d. Let next C be the constant appearing in the
previous proposition and let µ = log2(C), so that that C = 2µ. Then, for any integer d > 1,
C ≤ dµ holds. To conclude, it suffices to take κ = λµ. 2

To conclude on this question, we associate a similar notion of cost to operations with an
irreducible variety. Let thus W ⊂ K

n
be an irreducible variety defined over K, let r be its

dimension, and let I be the defining ideal of W in K[X].
Let next < be a variable order, and let Z, Y and T = (T1, . . . , Ts) ⊂ K(Z)[Y] be the

canonical representation defined in Proposition 3.1. Writing di for the degree of Ti in its
main variable, we define MT(W, <) = MT(d1, . . . , ds); this will be used to represent the cost
of operations modulo a generic specialization of T. To give upper-bounds independent of the
choice of Z, we write MT(W ) = max MT(W, <), for all orders <. Remarking that for any
choice of Z, the product d1 · · · ds is upper-bounded by (deg W ), we derive using Corollary 3.1
the polynomial upper bound MT(W ) ≤ (deg W )κ. To simplify some estimates, we will also
suppose that (degW ) ≤ MT(W ) holds for all W .

Further operations in dimension zero. Among the needed operations modulo a zero-
dimensional triangular set T, we will be led to perform matrix inversion, assuming that T

generates a radical ideal. We expect that for a matrix of size ℓ, this can be done with an
order of ℓω operations modulo T, where ω is the exponent of linear algebra over the base
field [24]. However, managing the difficulties raised by the fact that K[X]/(T) is not a field
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but a product of fields is beyond the scope of this article. Hence, we will content ourselves
with the following result.

Lemma 3.3. Let T ⊂ K[X] be a zero-dimensional triangular set, that generates a radical
ideal, and let m be an ℓ × ℓ matrix over K[X]/(T). Then one can test if m is invertible
and, if so, compute its inverse, using O(ℓ4) arithmetic operations modulo T.

Proof: Berkowitz’s algorithm [14] computes the characteristic polynomial of m in the
requested complexity, using only ring operations. From this, a single invertibility tests tells
whether m is a unit, and if so, one can deduce the inverse of A for O(ℓ) additional ℓ × ℓ
matrix additions and multiplications. 2

Our final subroutine is change of order in dimension zero. Given a zero-dimensional triangu-
lar set T for an input order < and a target order <′, we want to compute a triangular set T′

for the order <′, such that (T) = (T′) holds. As was mentioned in the previous subsection,
there is no guarantee that the requested output exists (unless T generates a prime ideal).
However, supposing that this output T′ exists, several solutions are available to compute it.
Recalling that zero-dimensional triangular sets are actually lexicographic Gröbner bases, we
will use the FGLM algorithm [42] to do this operation, obtaining the following complexity
estimate.

Proposition 3.5. Let T = (T1, . . . , Tn) be a zero-dimensional triangular set in K[X] =
K[X1, . . . , Xn] for an input order < and let <′ be a target order on X. Suppose that there
exists a triangular set T′ in K[X] for the target order, such that the equality (T) = (T′)
holds. Then one can compute T′ using O(n(d1 · · · dn)3) operations in K, where di is the
degree of Ti in its main variable.

Newton iteration for triangular sets. Newton iteration enables us to obtain positive-
dimensional information starting from a zero-dimensional input. In the case at hand, we
start from a lifting fiber (z,Tz) for a system (F, h, <). Then, Newton iteration, combined
by rational function reconstruction, enables us to recover the canonical representation T ⊂
K(Z)[Y] associated to <, where Z,Y and T are as in Proposition 3.1.

We give a simplified result of the Newton lifting, when only one free variable is lifted,
since this is what is needed later on. The algorithm is probabilistic (we use a probabilistic
criterion to stop the lifting); the following proposition gives the complexity of the process
and quantifies the probability of error.

Proposition 3.6. Let (z,Tz) be a lifting fiber for the system (F, h, <), with z = (z1, . . . , zr).
Suppose that the polynomials in F can be computed by a straight-line program of size L. Then
one can compute T(z1, . . . , zr−1, Zr,Y) ⊂ K(Zr)[Y] using

O
(
(n4 + nL) MT(W ) M

(
(deg W )2

)
log(deg W )

)

operations in K. The algorithm chooses a value z′r in K; all possible choices except at most
nd2n(n + 16 log d + 11) lead to success.

Proof: Proposition 1.8 gives the cost of one iteration:

O
(
(nL + n3)MT(d1, . . . , dn)MS(2κ, 1),
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where MS(2κ, 1) is the cost multplication of univariate series. In the preliminary chapter,
we have seen that MS(2κ, 1) ∈ O(κM(2κ)). Moreover MT(d1, . . . , dn) ≤ MT(deg(W )), and
if we compute a matrix inversion as in Lemma 3.3, not taken into account in this estimate,
this adds a O(n4). The bounds in Theorem 2.7 and Equation (1.18) p. 36 shows that the
lifting can stop as soon as κ > log2(2 deg(W )2+1). After as performing a few simplifications
yields our complexity statement (observe that in [105], a matrix inversion in size n over the
ring K[Y]/(Tz) was not taken into account; computing this inverse by Lemma 3.3 yields an
additional n4 term in the complexity).

As pointed out in Subsection 1.4.2, the univariate rational reconstruction is not proba-
bilistic. Hence, the only random choice comes from the stop criterion (Figure 1.3, p. 41). To
test if a candidate triangular set U ⊂ K(Zr)[Y] is indeed the requested output, we specialize
it at the random value z′r ∈ K, and check if the resulting triangular set Uz′ coincides with
Tz′, where z′ denotes the point (z1, . . . , zr−1, z

′
r). Since of course Tz′ is unknown, to do

this check, we use a slight modification of the stop criterion given in Subsection 1.4.3 and
sketched in Figure 1.3. testing if:

• the triangular set Uz′ defines a radical ideal;

• the lifting system F(z′,Y) reduces to zero modulo Uz′ ;

• the polynomial h(z′,Y) is a unit modulo Uz′ .

Assuming that z′ is a lifting fiber for (F, h, <) and that z′ is not in the projection πZ(W ∩
V (h)), the previous conditions imply that Uz′ = Tz′ , which is the property we want to test.

Taking this modification into account, in the analysis of [105, Section 7.2.2, page 38],
only the second and third items of that reference have to be taken care of. Taking into
account the upper bound 2 deg(W )2 ≤ 2d2n on the degrees of the polynomials in T yields
the result reported here, after a few simplifications. 2

While this is not the main purpose of this article, we also mention (without proof) the
complexity and probability analysis for lifting all free variables starting from the output
lifting fiber of our algorithm. The result is essentially that of [105, Section 7.2], up to the
minor modifications already reported in the proof of the previous proposition.

In the complexity estimate, we denote by MS : N2 → R a function that bounds the
cost of multivariate power series arithmetic, that is, such that all operations (+,−,×) in
K[Z1, . . . , Zr]/(Z1, . . . , Zr)

d can be computed in MS(r, d) base field operations. We refer
to [78, 115] for estimates on this question.

Proposition 3.7. Let assumptions and notation be as in Proposition 3.6. Then one can
compute T ⊂ K(Z)[Y] using

O˜
(
(n4 + nL) MT(W ) M

(
(deg W )2

)
MS
(
(m− 1, 8(deg W )2

))

operations in K, where O˜ denotes the omission of logarithmic factors. The algorithm
chooses 2r − 1 values in K. If these values are chosen uniformly at random in a finite
subset S of K, then the algorithm fails for at most 130 d6n|S|2r−2 choices.
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3.3 Matroids

A substantial part of what follows relies on discussion of independence properties. All the
required notions are conveniently described through the concept of matroid [119, 96]. We
give here the basic definitions and introduce a few fundamental examples. We also discuss
a greedy algorithm for finding a maximal element among the bases of a matroid, which will
be used in the next section.

3.3.1 Definition and examples

A matroid M is given by a finite set V(M) and a non-empty family Ind(M) of subsets of
V(M) satisfying the properties below:

Heredity: for all Z in Ind(M), every subset of Z belongs to Ind(M).

Augmentation: for all Z,Z′ in Ind(M) with |Z| < |Z′|, there exists Z in Z′ − Z such that
Z ∪ {Z} is in Ind(M).

The members of V(M) and Ind(M) are the elements and the independents of the matroidM
(in most of our applications, V(M) will be the set of variables X on the ambient space K

n
).

The independents of M that are maximal for inclusion form a non-empty family B(M),
called the set of bases ofM. They satisfy the following properties:

Equicardinality: for all Z,Z′ in B(M) we have |Z| = |Z′|,

Exchange: for all Z,Z′ in B(M), for every Z in Z − Z′ there exists Z ′ in Z′ − Z such that
Z− {Z} ∪ {Z ′} is in B(M).

The common cardinality of the bases ofM is called the rank ofM.

Example 1: Vectorial matroids. A first example of a matroid is given by sets of
independent vectors. Precisely, let X be a finite set of cardinality n, let K be a field, and
let m be an s × n matrix over K; we suppose that the columns of m are indexed by the
elements of X. Then, we say that a subset Y ⊂ X is independent if the corresponding s×|Y|
submatrix of m has full rank. One then easily checks that this collection of sets are indeed
the independents of a matroidM over X, which we call the vectorial matroid generated by
the columns of m. The bases of M are the subsets Y corresponding to invertible s × s
submatrices of m.

Example 2: Coordinate matroids. Let K be a field and let us now consider an irre-
ducible variety W ⊂ K

n
of dimension r, defined over K. Let X = (X1, . . . , Xn) be our usual

set of n variables and let I be the prime ideal of K[X] defining W ; we also write s = n− r.
Let finally Ind be the family of subsets Z ⊂ X such that I ∩K[Z] is the trivial ideal {0}.

Proposition 3.8. The family Ind is the collection of independent sets of a matroid on X

of rank r.
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Proof: Let ℓ be the natural homomorphism K[X]→ K(W ) and let Z be a non-empty subset
of X. By definition, we have Z 6∈ Ind if and only there exists a non-constant polynomial
P ∈ K[Z] such that ℓ(P ) = 0, that is, the elements ℓ(Z), for all Z ∈ Z, are algebraically
dependent over K. We conclude with Theorem 1 p. 183 in [119]. 2

In what follows, we denote this matroid byMcoord(W ) and we call it the coordinate matroid
of the variety W . We can then restate Theorem 1.2 in this language: let Z be a subset of X

with cardinal r. Then, Z is a basis ofMcoord(W ) if and only if there exists a regular chain
R in K[X] having I as saturated ideal and Z as free variables.

Dual matroids. We continue by introducing the notion of a dual matroid. AssumeM is
a matroid over X, of rank r < n. Denote by B∗(M) the set of all sets X−Z for Z ∈ B(M).
Then, the set B∗(M) is the set of bases of a matroidM∗ of rank s = n− r, called the dual
matroid ofM. A subset Y of X is an independent ofM∗ if and only if there exists a basis
Z ∈ B(M) such that Z ∩Y is empty.

In particular, we will use this notion with M =Mcoord(W ), the coordinate matroid of
an irreducible variety W as above. Let thenM∗ =M∗

coord(W ) be its dual. By Theorem 1.2,
a subset of Y of X is a basis of M∗ if and only if there exists a regular chain R in K[X]
having I = I(W ) as saturated ideal and Y as algebraic variables.

Restriction of a matroid. The final needed concept is that of restriction of matroids.
Let M be a matroid over X and let X′ be a subset of X. Then, the collection of the
independent sets of M that are contained in X′ is the family of the independent sets of a
matroid on X′, called the restriction ofM to X′.

3.3.2 A greedy optimization algorithm

Let M be a matroid of rank s over X = (X1, . . . , Xn); later on, M will be the dual of the
coordinate matroid of an irreducible variety W , so we denote its independent sets by Y.
Suppose that X is endowed with the order X1 < · · · < Xn (one can always suppose that
this is the case, up to renaming the variables). In this paragraph, we show how to extend
the order < given on X to the bases ofM, and give a greedy algorithm to find the maximal
basis.

First, observe that any basis Y of M can be ordered as Y = (Xi1 < · · · < Xis). Let
Y′ 6= Y be another basis ofM, which we similarly write Y′ = (Xj1 < · · · < Xjs

). Let κ ≤ s
be the largest index such that

Xis = Xjs
, Xis−1 = Xjs−1 , . . . , Xiκ 6= Xjκ

.

Then if Xiκ > Xjκ
, we say that Y > Y′, and if Xiκ < Xjκ, we say that Y < Y′.

In the next section, we will need to compute the maximal basis Ymax ofM for this order,
in the particular case whereM is the dual of the coordinate matroid of an irreducible variety.
We now give a general algorithm for finding this maximum basis.

To do so, we will assume that a basis Y0 ofM is known. Using only independence tests,
we will construct a sequence Y0,Y1, . . . ,Ys of bases of M, such that Ys = Ymax and for
i < s, Yi and Yi+1 differ by at most one element. In other words, for all i, either Yi+1 = Yi,
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or there exists Bi and Ai in X such that the following holds:

Bi ∈ Yi, Ai /∈ Yi, Yi+1 = Yi − {Bi} ∪ {Ai} ∈ M (3.1)

Our algorithm starts by finding the last entry of Ymax, then the last two ones, and so on.
The basis of this algorithm is thus the following lemma.

Lemma 3.4. Let Ymax be written as (Xℓ1 < · · · < Xℓs
) and let Y = (Xℓ′1

< · · · < Xℓ′s) be
another basis of M, such that

ℓ′s = ℓs, . . . , ℓ′j+1 = ℓj+1

holds. Then ℓj equals max{ℓ ∈ {ℓ′j , . . . , ℓj+1 − 1} | (Xℓ, Xℓj+1
, . . . , Xℓs

) ∈ Ind(M)}.

Proof: Let S be the set

{ℓ ∈ {ℓ′j, . . . , ℓj+1 − 1} | (Xℓ, Xℓj+1
, . . . , Xℓs

) ∈ Ind(M)}.

We start by showing that ℓj is in S. Observe first that ℓj ≤ ℓj+1 − 1. Next, by definition,
we have the inequality Ymax > Y. Since the entries of indices j + 1, . . . , s of Ymax and Y

coincide, we deduce that ℓj ≥ ℓ′j . Furthermore, since Ymax = (Xℓ1 , . . . , Xℓs
) is in Ind(M),

(Xℓj
, . . . , Xℓs

) is in Ind(M) as well, by the heredity property. This shows that ℓj is in S.
We next prove that ℓj is the maximal element of S. Suppose thus that there exist

ℓ ∈ S with ℓ > ℓj. Since ℓ is in S, Y′ = (Xℓ, Xℓj+1
, . . . , Xℓs

) is in Ind(M). Applying the
augmentation property as many times as necessary to Y′ and Ymax, we can complete Y′

into a Y′′ basis ofM. Since all elements added to Y′ are taken from Ymax, they are all less
than Xℓ. This implies the inequality Y′′ > Ymax, a contradiction. 2

The previous lemma yields the following algorithm to compute Ymax. Given a basis Y0

ofM, letting ℓs+1 = n + 1, we do the following for j = s, . . . , 1.

1. Let k = s− j and write Yk as (Xℓk,1
< · · · < Xℓk,s

).

2. Let ℓj be the maximum element of the set

{ℓ ∈ {ℓk,j, . . . , ℓk,j+1 − 1} | (Xℓ, Xℓk,j+1
, . . . , Xℓk,s

) ∈ Ind(M)}.

3. If ℓj = ℓk,j, let Yk+1 = Yk.

4. If ℓj > ℓk,j, let Ak = Xℓj
, and find Bk < Ak in Yk such that Yk − {Bk} ∪ {Ak} is a

basis ofM. Define Yk+1 = Yk − {Bk} ∪ {Ak}.

Lemma 3.5. The previous algorithm correctly computes Ys = Ymax.

Proof: We prove by induction that the last k entries of Yk and Ymax coincide. This is
indeed the case for j = s (and hence k = 0), so we do the induction step. If we go through
Line (3), our claim holds; suppose then that we go through Line (4).

The previous lemma shows that the index ℓj is indeed the jth index of Ymax. Observe
now that it is indeed possible to find Bk < Ak such that Yk − {Bk} ∪ {Ak} is a basis of
M. This is done by augmenting the independent set (Xℓj

, Xk,ℓj+1
, . . . , Xk,ℓs

) by elements of
Yk into a basis ofM. An element Bk will be left out, and by construction, Bk < Ak. This
concludes the proof. 2
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3.4 Computing the exchange data

Getting back to the context of regular chains, this section describes the first part of our
main algorithm: given the input regular chain F in K[X], with Sat(F) prime, and given
the target order <′, we compute a sequence of subsets Y0, . . . ,Ys of X with the following
properties, where we write W = V (Sat(F)):

• Y0 is the set of algebraic variables in F;

• Ys is the set of algebraic variables in the target regular chain;

• each intermediate Yi is a basis ofM∗
coord(W );

• for i = 0, . . . , s− 1, either Yi+1 = Yi, or there exists Ai ∈ X−Yi and Bi in Yi such
that the following equation holds:

Yi+1 = Yi − {Bi} ∪ {Ai}

The sequence Y0, . . . ,Ys will be called the exchange data. The main result in this section
is an estimate on the cost of computing this sequence.

Proposition 3.9. Suppose that the input regular chain F = (F1, . . . , Fs) is given by a
straight-line program of size L. Let d be an upper bound on the total degree of the polynomials
(F1, . . . , Fs).

Suppose that for i ≤ s, the main variable of Fi is known, as well as its degree di in
this main variable. Suppose also that char K is larger than dn. Then one can compute the
exchange data by a probabilistic algorithm, that uses

O((n4 + nL) MT(W ))

operations in K in case of success. The algorithm uses a random point z ∈ Kr; there exists
a non-zero polynomial ∆lin in K[Z] of degree at most n(2d)n+1 such that if ∆lin(z) is not
zero, the algorithm succeeds.

We start this section by characterizing the algebraic variables for the target order as
maximal bases in a suitable matroid (the dual of the coordinate matroid of W ). Since test-
ing independence in such a matroid is a difficult problem in general, we will then present a
workaround relying on a linearization of the problem, that reduces to linear algebra opera-
tions in a product of fields.

3.4.1 Characterization of the target set of algebraic variables

Let R = (R1, . . . , Rs) be a regular chain for the target order <′, such that W = V (Sat(R)).
Recall from Subsection 3.3.2 that the order <′ induces an order <′ on the bases ofM∗

coord(W ).
Using this order leads us to a characterization of the algebraic variables in the regular chain
R.

Proposition 3.10. The set of the algebraic variables of R is the maximum basis ofM∗
coord(W )

for the order <′.
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Proof: We start by a lemma, using the notion of restriction of a matroid.

Lemma 3.6. Let m be an index less than n, and let Z be the set of the first m variables of
X for the target order <′. Let also W ′ be the Zariski closure of πZ(W ).

Then, the matroid Mcoord(W
′) is the restriction of Mcoord(W ) to Z. Moreover, it has

rank r − t, where t is the number of variables in X − Z that are not algebraic variables of
R.

Proof: First, since W ′ is irreducible [30, Theorem 3 p. 122], Mcoord(W
′) is well-defined.

In addition, that results shows that a subset of Z is a an independent set of Mcoord(W
′)

if and only if it is an independent set of Mcoord(W ) contained in Z. This proves the first
claim.

Define Rm = R ∩ K[Z]. It follows from the definition of a regular chain that Rm is
a regular chain. Moreover, it follows from Proposition 5.1 and Theorem 6.1 in [7] that
the saturated ideal of Rm in K[Z] is I ∩K[Z]. Then, Theorem 1.2 implies that the rank of
Mcoord(W

′) is m−|Rm|. Observe now that the number of elements in Rm is |R|−(n−m)+t.
Hence, the rank of Mcoord(W

′) is n− |R| − t, that is, r − t. 2

We can now prove the proposition. Let Y be the set of the algebraic variables of R and recall
first that Y is indeed in M∗

coord(W ). Assuming that there exists a basis Y′ of M∗
coord(W )

such that Y < Y′ holds, we will derive a contradiction. To this effect, let Xmax be the
largest element (for the order <′) that belongs to Y′ and not to Y; let m be such that
Xmax is the m + 1th element of X, and let Z and W ′ be as in Lemma 3.6. By Lemma 3.6,
Mcoord(W

′) is the restriction ofMcoord(W ) to Z. As in the lemma, we let t be the number
of variables in X− Z that are not algebraic variables of R.

Let us prove that the intersection of X−Y′ with Z is an independent set ofMcoord(W
′)

of cardinality is r − t + 1. We have |Y′| = s = n − r, since Y′ is a basis of M∗
coord(W ).

Now, the definitions of m and t imply the equality |Y′ ∩ (X− Z)| = n−m− t + 1, which
leads to |Y′∩Z| = m + t− 1− r, proving our claim. We have reached a contradiction, since
Lemma 3.6 states that the rank ofMcoord(W

′) is r − t. 2

3.4.2 Linearization

In what follows, we use all the notation of Proposition 3.9. The previous subsection showed
that the set of algebraic variables in the target regular chain is the maximum basis of
M∗

coord(W ). In order to apply the algorithm of Subsection 3.3.2 to find this maximum, we
need to perform the required independence tests. To do so, we will use that fact that for
a random point x on W , the coordinate matroids Mcoord(W ) and Mcoord(TxW ) coincide,
where TxW is the tangent space of W at x. This will enable us to perform the required
independence tests by linear algebra.

We will assume that the characteristic of K is larger than dn, where d is an upper bound
on the degrees of the polynomials is F; hence, by Bézout’s inequality, char K is larger than
(deg W ), so in particular Lemma 3.1 applies.

Let Z (resp. Y) be the free (resp. algebraic) variables in F, and let jac be the Jacobian
matrix of F. In what follows, if Y′ is a subset of X of cardinality s and m a matrix with s
rows and with columns indexed by X, we denote by m(Y′) the determinant of the submatrix
of m corresponding to the columns indexed by Y′.
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Given z in Kr, we denote by Fz the family of polynomials F(z,Y) in K[Y], by Qz the
residue class ring K[Y]/(Fz) and by jacz the Jacobian matrix of F, seen as a matrix with
entries in Qz. We then denote by Bz(F) the set

{Y′ ⊂ X such that |Y′| = s and jacz(Y
′) is invertible}.

In general, Qz is not a field, so that Bz(F) is not evidently the set of bases of a vectorial
matroid over X. The following proposition shows that for most choices of z, however, there
is such a matroid structure.

Proposition 3.11. There exists a non-zero polynomial ∆lin ∈ K[Z] of degree at most
n(2d)n+1 such that if ∆lin(z) is not zero, Fz is a regular chain in K[Y] that defines a
radical ideal, and Bz(F) is the set of bases of Mcoord(W )∗.

Hence, this proposition says that for most choices of z, Qz is a product of finite field
extensions of K, and the maximal minors of the Jacobian matrix jacz over Qz correspond
to the sets of algebraic variables for W . The rest of this subsection is devoted to prove this
proposition.

To start with, let TM(F) ⊂ X be the vectorial matroid generated by the columns of
jac over K(W ). Then we have the following linearization property, which is a rewording of
the implicit function theorem adapted to our context.

Lemma 3.7. The matroid TM(F) equals Mcoord(W )∗.

Proof: Let Y′ be a subset of X and let Z′ = X − Y′. We have to prove that Z′ is a
maximal set of free variables for W if and only jac(Y′) is a unit in K(W ), that is, if it does
not vanish identically on W .

Suppose that jac(Y′) does not vanish identically on W , and let M be the sequence
(jac(Y′)i)i≥0. Our assumption implies that the multiplicative set M does not intersect (F).
Then, Proposition 3.2.a in [90] shows that each prime component J of (F) : M∞ admits Z′

as a maximal set of free variables, and Y′ as algebraic variables. Writing h for the product
of the initials in F, the ideal I = (F) : h∞ appears as one of these components, proving the
first direction of our equivalence.

Suppose next that Z′ is a maximal set of free variables. Using Lemma 3.1, Lemma
16.15 in [38] implies that the module of differentials ΩK(W )/K(Z) = 0. Letting G be a set
of generators of Sat(F), this means that the Jacobian matrix of G with respect to Y′ has
maximal rank over K(W ). Then, the definition of G implies that jac(Y′) is has full rank
over K(W ) as well. 2

We continue the proof by discussing specialization properties. For any x ∈W , let us denote
by TMx(F) the vectorial matroid generated over K by the columns of the Jacobian matrix
of F evaluated at x.

Lemma 3.8. There exists a non-zero polynomial ∆1 ∈ K[Z] of degree at most sdn+1
(

s
n

)

with the following property. Let z be in Kr such that ∆1(z) 6= 0; then, for any x in the fiber
Wz, the equality TMx(F) = TM(F) holds.

Proof: Let Y′ be a subset of X of cardinality s. If Y′ is not a basis of TM(W ), then
jac(Y′) vanishes identically on W , so for any x in W , Y′ is not in TMx(F).

Conversely, suppose that Y′ is a basis of TMx(F), so that jac(Y′) does not vanish
in K(W ), and let VY′ be the projection of V (jac(Y′)) ∩ W on the Z-space. Since W
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is irreducible, VY′ has dimension at most m − 1 and degree at most (d deg W ) ≤ sdn+1.
Thus, there exists a non-zero polynomial ∆Y′ ∈ K[Z] of degree at most sdn+1, such that if
∆Y′(z) 6= 0, then jac(Y′) vanishes on none of the points x ∈W above z.

It suffices to take for ∆1 the product of all ∆Y′ , for Y′ in TM(W ). Since the rank of
TM(F) is at most

(
s
n

)
, the conclusion follows. 2

We can now conclude the proof of Proposition 3.11. Observe first that the assumption
of Proposition 3.2 is satisfied: by Theorem 1.2, the set of algebraic variables Y of F is in
M∗

coord(W ); Lemma 3.7 then implies that the Jacobian determinant σ of F with respect to Y

does not vanish identically on W , as requested. We then let ∆reg be the polynomial defined
in Proposition 3.2. Observe that if ∆reg(z) is not zero, the fiber Wz equals {z} × V (Fz),
and Fz is a regular chain that generates a radical ideal. Then, for a polynomial G ∈ K[X],
G(z,Y) is a unit in Qz if and only if G is non-zero at every point in the fiber Wz.

If we suppose additionally that ∆1(z) is not zero, then by Lemma 3.8, for any x in
Wz, TMx(F) = TM(F). In particular, for any Y′ ⊂ X of cardinality s, Y′ is a basis of
TM(F) if and only if Y′ is a basis of TMx(F) for all x above z, that is, if and only if the
corresponding determinant jac(z,Y′) vanishes on none of these points x. By the preceding
remarks, this is the case exactly when this determinant is a unit in Qz. Hence, it suffices to
take ∆lin = ∆1∆reg; the degree estimates comes from a straightforward simplification.

3.4.3 Computing the initial specialization

The previous subsection gives the theoretical foundation of our algorithm for computing
the exchange data; this paragraph is devoted to study a preliminary subroutine for this
algorithm. As before, given the input regular chain F, having Z as free variables (resp. Y

as algebraic variables), and a point z ∈ Kr, we denote by Fz the set of polynomials of K[Y]
obtained by specializing Z at z in F.

We will assume here that z satisfies the assumption of Proposition 3.11; hence Fz is a
regular chain and defines a radical ideal. Let Tz ⊂ K[Y] be the monic form of Fz, that
is, the triangular set obtained by inverting all initials of Fz. We estimate here the cost
of computing Tz from the input regular chain F, showing that this can be done in time
polynomial in the degree of the variety W = V (Sat(F)), and the complexity of evaluation
of F.

Proposition 3.12. Suppose that the input regular chain F = (F1, . . . , Fs) is given by a
straight-line program of size L, and assume that the main variable of Fi and the degree di

of Fi in this main variable are known for all i. Let z be in Kr that does not cancel the
polynomial ∆lin of Proposition 3.11. Then the monic form Tz of Fz can be computed in
O(s L MT(W )) operations in K.

Proof: We compute inductively the polynomials T1, . . . , Ts of Tz. Supposing that T1, . . . , Ti+1

are known, we deduce the cost of computing Ti+1. We write the entries of Y as (Y1, . . . , Ys),
where Yi is the main variable of Fi. We also let Γ be the straight-line program computing
F; in particular, Γ compute Fi+1. By replacing all indeterminates Yi+2, . . . , Ys by 0, we may
assume without loss of generality that Γ involves only the variables Z, Y1, . . . , Yi+1.

The main idea is then to evaluate Γ modulo (T1, . . . , Ti), after specializing Z at z.
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However, we need to control the degree in Yi+1 as well; hence the evaluation will be done in

Q = K[Y1, . . . , Yi+1]/(T1, . . . , Ti, Y
di+1+1
i+1 ),

as this is enough to recover Fi+1(z, Y1, . . . , Yi) modulo (T1, . . . , Ti). In view of the discussion
in Subsection 3.2.2, and in particular of Equations (3.1), the cost of a single operation in Q is
MT(d1, . . . , di, di+1+1) ∈ O(MT(W )). Hence, the whole cost of this step is in O(L MT(W )).

By assumption on z, the initial hi+1 is a unit modulo (T1, . . . , Ti); computing its inverse
gi can then be done in time MT(d1, . . . , di). Once this inverse is known, we multiply all
coefficients of Fi+1 by gi modulo T1, . . . , Ti to conclude. The cost is MT(d1, . . . , di)di+1 which
is in O(MT(W )), again by Equations (3.1). Putting all estimates together and summing
over i finishes the proof. 2

3.4.4 Computing the exchange data

We conclude this section by proving Proposition 3.9. The exchange data will be computed
by applying the algorithm of Subsection 3.3.2 in our particular case, using the previous
linearization results to perform independence tests. We will write Z0 = Z and Y0 = Y.
Recall that given the initial basis Y0 of M∗

coord(W ), the algorithm of Subsection 3.3.2
computes a sequence of bases Y1, . . . ,Ys, where Ys = Ymax is the set of algebraic variables
in the output regular chain.

Let z be in Kr, such that z does not cancel the polynomial ∆lin of Proposition 3.11, let
Tz ⊂ K[Y] be the triangular set obtained by inverting all initials of Fz, and let Qz be the
residue class ring K[Y]/(Tz). Then, Qz is is a product of finite field extensions of K. Let
jacz be the Jacobian matrix of F, seen as a matrix with entries in Qz. Then, in addition,
a subset Y′ of size s of X is a basis of M∗

coord(W ) if and only if the submatrix jacz(Y
′) is

invertible.

To prove Proposition 3.9, it will be enough to give the cost of deducing Yk+1 from
Yk. We will actually assume that at step k, in addition to Yk, the inverse of the matrix
jacz(Yk) is known, and we will deduce simultaneously the new basis Yk+1 and the inverse
of the matrix jacz(Yk+1). Below, we write Ymax = (Xℓ1 < · · · < Xℓs

).

Proposition 3.13. Given the matrix jacz, the basis Yk and the inverse of the matrix
jacz(Yk), one can compute the basis Yk+1 and the inverse of jacz(Yk+1) using O(n2(ℓk+1−
ℓk)) arithmetic operations in Qz.

Proof: Following the description in Subsection 3.2.2, we let j = s− k and we write

Yk = (Xℓk,1
< · · · < Xℓk,s

),

so that ℓk,j+1 = ℓj+1, . . . , ℓk,s = ℓs holds. Recall then that from Lemma 3.4, ℓj is the maximal
element of

S = {ℓ ∈ {ℓk,j, . . . , ℓj+1 − 1} | (Xℓ, Xℓj+1
, . . . , Xℓs

) ∈ Ind(M∗
coord(W ))}.

It is then easy to describe the set S. Let m be the matrix
(
jacz(Yk)

)−1
jacz. Our basic
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remark is that the matrix m has the following shape:




⋆ · · · ⋆ 1 ⋆ · · · ⋆ 0 ⋆ · · · ⋆ 0 ⋆ · · · ⋆
⋆ · · · ⋆ 0 ⋆ · · · ⋆ 1 ⋆ · · · ⋆ 0 ⋆ · · · ⋆

⋆ · · · ⋆
... ⋆ · · · ⋆

... ⋆ · · · ⋆
... ⋆ · · · ⋆

⋆ · · · ⋆ 0 ⋆ · · · ⋆ 0 ⋆ · · · ⋆ 1 ⋆ · · · ⋆


 ,

having an identity submatrix at the columns indexed by Yk.

Lemma 3.9. Let ℓ be in {ℓk,j, . . . , ℓj+1 − 1}. Then ℓ is in S if and only if the (j, ℓ)-entry
mj,ℓ of m is a unit.

Proof: Let us write Y′ = (Xℓk,1
, . . . , Xℓk,j−1

, Xℓ, Xℓj+1
, . . . , Xℓs

), and observe that the sub-
matrix m(Y′) is diagonal with 1’s on the diagonal, except for its ℓ-column. If the entry mj,ℓ

is a unit, m(Y′) is invertible, which implies that jacz(Y
′) is invertible too, and thus that ℓ

is in S.

Conversely, suppose that ℓ is in S, so that (Xℓ, Xℓj+1
, . . . , Xℓs

) is an independent set in
M∗

coord(W ). This independent set can be augmented into a basis Y′ of M∗
coord(W ). The

submatrix m(Y′) is then a unit; in view of the shape of the matrix m, this implies that the
entry mj,ℓ is a unit. 2

We can then conclude the proof of Proposition 3.13. Assuming that ℓj is known, let us
define Yk+1 = Yk − {Xℓk,j

} ∪ {Xℓj
}. Since by construction the submatrix m(Yk+1) is a

unit, Yk+1 is indeed a basis of M∗
coord(W ).

It remains to estimate the complexity of this process. First, observe that we do not
need the full matrix m, but only its submatrix m(Xℓk,j

, . . . , Xℓj+1−1), since this is where
the search takes place. Furthermore, its columns can be computed one at a time, starting
from the ones of highest indices, until an invertible entry is found: the cost for computing
the requested part of m is thus O(n2(ℓj+1 − ℓj)) operations (+,−,×) in Qz.

Finding ℓj requires at most ℓj+1−ℓk,j invertibility tests in Qz, starting from index ℓj+1−1.
To conclude, we need to compute the inverse of jacz(Yk+1). Since Yk and Yk+1 differ by
a single entry, the inverse of jacz(Yk+1) can be obtained in O(n2) operations (+,−,×) in
Qz, together with the inversion of the (j, ℓj)-entry of m. Putting all costs together gives
the bound of Proposition 3.13. 2

We can then finish the proof of Proposition 3.9. Correctness of the previous algorithm
follows from Lemma 3.5, so it remains to deal with the complexity analysis. As a preliminary,
we need to compute the triangular set Tz: the cost is estimated in Proposition 3.12.

Using backward derivation [13], the Jacobian matrix of F can be evaluated in O(nL) op-
erations, so that its modular image jacz can be evaluated in O(nL) operations in Qz. Using
Lemma 3.3, one can compute the inverse of the submatrix jacz(Y0) in O(n4) operations
in Qz, involving only the inversion of its determinant. Finally, summing the complexity
estimate of the previous proposition for all values k = 0, . . . , s−1, the total cost of the final
part of the algorithm is O(n3) operations in Qz, so that the total number of operations in
Qz for finding the maximal basis is O(n4 + nL). Using the definition of the function MT,
this concludes the proof of Proposition 3.9.
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3.5 Changing the lifting fiber

In this section, we describe the operations in the second phase of our algorithm. Given the
input regular chain F, we suppose at this stage that the exchange data has been computed
previously. This means that we know a sequence Y0, . . . ,Ys in M∗

coord(W ), for W =
V (Sat(F)), where Yi and Yi+1 differ by at most one element for all i.

Starting from a lifting fiber associated to the choice of algebraic variables Y0, we will
now compute a sequence of lifting fibers associated to the algebraic variables Y1, . . . and
finally output a lifting fiber associated to the set of algebraic variables Ys.

The ith step goes as follows. Suppose that Yi and Yi+1 are such that Yi+1 = Yi−{Bi}∪
{Ai}, with Yi+1 6= Yi (if they coincide, there is nothing to do). Hence, Ai is a free variable
at step i that becomes algebraic, and Bi is algebraic at step i and becomes free. Suppose
also that we know a lifting fiber for Yi. First, we change the order in this lifting fiber, so
that Bi becomes the smallest algebraic variable: this is done using a routine for change of
order in dimension zero. Then, we lift the free variable Ai using Newton iteration, clean
all denominators (if needed), and specialize Bi at a random value. Making all polynomials
monic in the resulting regular chain yields the next lifting fiber.

As an illustration, consider the variety W given in the introduction, defined over the
field K by the equations

P1 −X2
1 = 0, P2 −X2

2 = 0, S −X1X2 = 0.

The initial set of free variables is (X1, X2), with algebraic variables (S, P1, P2); the first
lifting fiber is (X1 = 1, X2 = 1), together with the zero-dimensional triangular set

∣∣∣∣∣∣

P1 − 1
P2 − 1
S − 1.

The second set of free variables is (X1, P2), with algebraic variables (S, P1, X2). To obtain
the corresponding lifting fiber, the first operation consists in putting P2 as last free variable
in the previous lifting fiber. Here, this is a trivial computation, yielding

∣∣∣∣∣∣

P1 − 1
S − 1
P2 − 1.

We then lift X2, using Newton’s iteration. Here again, the computation is trivial; we obtain
∣∣∣∣∣∣

P1 − 1
S −X2

P2 −X2
2 .

Finally, we specialize P2 at a “random” value, here 1, and rearrange the equations (making
every equation monic again), to obtain a lifting fiber corresponding to the set of algebraic
variables (S, P1, X2). ∣∣∣∣∣∣

P1 − 1
S −X2

1−X2
2

;

∣∣∣∣∣∣

P1 − 1
S −X2

X2 − 1.

116



3.5. Changing the lifting fiber

This section describes this process, gives a complexity analysis and quantifies the bad spe-
cialization choices. Since the whole second step of our main algorithm essentially amounts
to perform at most s times the variable exchange process just described, we concentrate on
proving the following proposition.

Proposition 3.14. Let Y and Y′ be two sets of algebraic variables for W , such that Y′ =
Y − {B} ∪ {A} holds. Suppose that a lifting fiber (z,Tz) for the set of algebraic variables
Y is known, and write z = (z1, . . . , zr−1, a).

Then one can compute a lifting fiber (z′, Uz′) for the set of algebraic variables Y′ by a
probabilistic algorithm, using

O
(
(n4 + nL) MT(W ) M

(
(deg W )2

)
log(deg W )

)

operations in K in case of success. The algorithm chooses two values values (a′, b) in K,
letting in particular z′ = (z1, . . . , zr−1, b).

There exists a non-zero polynomial ∆exchange ∈ K[Z1, . . . , Zr−1, A
′, B] of degree at most

2dn(3d2n+(6m+13m2)dn+m2), with m = max(n, d), such that if ∆exchange(z1, . . . , zr−1, a
′, b)

is not zero, the algorithm succeeds.

Given the exchange data Y0, . . . ,Ys, applying successively this proposition to

(Y0,Y1), . . . , (Ys−1,Ys)

will easily yield the proof of our main theorem. Hence, the rest of this section is devoted to
prove this proposition.

3.5.1 Setup and preliminaries

We first detail some preparatory steps for our algorithm, using the notation of Propo-
sition 3.14. Let thus Y and Y′ be two bases of M∗

coord(W ), and let Z = X − Y and
Z′ = X−Y′. We suppose that Y and Y′ differ by a single variable, so that we will write

Y = (B, Y2, . . . , Ys) and Y′ = (A, Y2, . . . , Ys),

with A 6= B, or equivalently

Z = (Z1, . . . , Zr−1, A) and Z′ = (Z1, . . . , Zr−1, B).

Suppose finally that we know a lifting fiber in K[Y] for the input set of algebraic variables
Y. First, we perform a change of order in dimension zero on this lifting fiber, to make it
comply to the order given by

Z1 < · · · < Zr−1 < A < B < Y2 < · · · < Ys,

which we will call the input order. The cost of this operation is given in Subsection 3.2.2:
using the FGLM algorithm, it is at most n(deg W )3 operations in K. Without loss of
generality, we suppose from now on that the input lifting fiber (z,Tz) supports this order.
Accordingly, we let T = (T1, . . . , Ts) ⊂ K(Z)[Y] and R = (R1, . . . , Rs) ∈ K[Z][Y] = K[X]
be the canonical representations associated to this order, coming from Proposition 3.1.
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Let us write z as (z1, . . . , zr) ∈ Kr and let us define Z− = (Z1, . . . , Zr−1). In the com-
putation to follow, all variables in Z− will be specialized at the value z− = (z1, . . . , zr−1) ∈
Kr−1. Hence, we write T− for the triangular set in K(A)[Y] obtained by specializing
Z− at z− in all coefficients of T; we also define R− as the family of polynomials in
K[A,Y] = K[A, B, Y2, . . . , Ys] obtained by cleaning all denominators in T−. Observe that
due to possible simplifications, R− does not have to coincide with the specialization of R

at (z1, . . . , zr−1), see Lemma 3.11 below.
Since (z,Tz) is a lifting fiber for the input order, Newton iteration enables us to use it

to recover T−. Proposition 3.6 shows that the complexity of this operation is

O
(
(n4 + nL) MT(W ) M

(
(deg W )2

)
log(deg W )

)
;

the algorithm chooses one random value a′ in the base field, and all choices except at most
nd2n(n + 16 log d + 11) lead to success.

Knowing T−, we deduce R− by a least common multiple computation and some poly-
nomial multiplications. To be precise, we write

T− = (T−,1, . . . , T−,s) and R− = (R−,1, . . . , R−,s),

with T−,i in K(A)[B, Y2, . . . , Yi] and R−,i in K[A, B, Y2, . . . , Yi]. For i ≤ s, we then let
ℓi ∈ K[A] be the least common multiple of the denominators of the coefficients of T−,i;
hence, R−,i = ℓiT−,i and ℓi is the initial of R−,i for the input order. The following lemma
gives degree bounds for the polynomials in T− and R−; the cost of deducing R− from T−
is given next.

Lemma 3.10. The polynomial ℓi and all coefficients of R−,i have degree bounded by (deg W )
for i = 1, and 2(deg W )2 for i = 2, . . . , s.

Proof: This is Theorem 2 in [32]. 2

Corollary 3.2. Suppose that T− is known. Then one can recover R− using

O(n(deg W )M
(
(deg W )2

)
log(deg W ))

operations in K.

Proof: Let us fix i ≤ s. Since the least common multiple of two polynomials of degree d
can be computed in O(M(d) log(d)) base field operations, in view of the previous lemma,
the cost for computing ℓi is in

O
(
di M

(
(deg W )2

)
log(deg W )

)
.

Then, deducing R−,i requires d1 · · ·di−1 multiplications in K[A] in degree at most 2(deg W )2.
Using the upper bounds d1 · · · di−1 ≤ deg W and di ≤ deg W , this shows that R−,i can be
obtained in

O
(
(deg W )M

(
(deg W )2

)
log(deg W )

)

base field operations. Summing over all i gives the result. 2

To conclude this paragraph, the next lemma makes the relation between the families R =
(R1, . . . , Rs) ⊂ K[Z][Y] and R− = (R−,1, . . . , R−,s) ⊂ K[A][Y] more precise.
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dim. r · · · R ∈ K[Z][Y]

Z−←(z1,...,zr−1)

· · ·

...

dim. 1 · · · T− ∈ K(A)[Y] R− ∈ K[A,Y]

Clean the
denominators

B←b

· · ·

dim. 0 · · · Tz ∈ K[Y]
Change
of order

Lift A

Sz′ ∈ K[Y′]

Inverse the
initials

Uz′ ∈ K[Y′]
Change
of order

· · ·

Figure 3.3: Changing the lifting fiber from (z,Tz) to (z′,Uz′)

Lemma 3.11. For i = 1, . . . , s, there exists mi ∈ K[A] such that the equality

Ri(z1, . . . , zr−1, A, B, Y2, . . . , Ys) = miR−,i

holds.

Proof: Let Li ∈ K[Z1, . . . , Zr−1, A] be the least common multiple of the coefficients of Ti.
Then ℓi divides Li(z1, . . . , zr−1, A), and the requested equality comes by letting mi be their
quotient. 2

Corollary 3.3. Let x = (z1, . . . , zr−1, a, b, y2, . . . , ys) be in K
n
. Then if the point (a, b, y2, . . . , ys)

is a root of R−, the point x is a root of R.

Proof: This is a direct consequence of Lemma 3.11. 2

Corollary 3.4. Let a be in K, such that no denominator of T vanishes at (z1, . . . , zr−1, a).
Then the triangular set T− is well-defined, and x is a root of R if and only if (a, b, y2, . . . , ys)
is a root of R−.

Proof: The first point is immediate. The second follows by using Lemma 3.11, and observ-
ing that for i = 1, . . . , s, mi does not vanish at a, since it would imply that the denominator
Li of Ti (using the notation of the proof of Lemma 3.11) vanishes at (z1, . . . , zr−1, a). 2

3.5.2 Finding the new lifting fiber

We now detail the main operations needed to obtain the lifting fiber for the new set of alge-
braic variables Y′. As input, we take z− = (z1, . . . , zr−1) ∈ Kr−1 as well as the polynomials
R− ∈ K[A, B, Y2, . . . , Ys] obtained in the previous subsection.

Recall that we write Z′ = (Z1, . . . , Zr−1, B). Given a value b ∈ K, writing z′ =
(z1, . . . , zr−1, b), we let Sz′ be the polynomials in K[A, Y2, . . . , Ys] = K[Y′] obtained by
specializing B at b in R−. Defining the target order <′ by

Z1 < · · · < Zr−1 < B < A < Y2 < · · · < Ys,

we will now show that for most values b of B, Sz′ defines a lifting fiber for (F, h, <′), where
F denotes our initial regular chain, and h is the product of its initials.
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Proposition 3.15. There exists a non-zero polynomial Γ1 ∈ K[Z′] of degree at most
dn(6d2n + (9dn + 2)m2), with m = max(n, d), such that, if Γ1(z

′) 6= 0, the following holds:

• Sz′ is a regular chain for the target order <′, and defines a radical ideal.

• Let Uz′ be the triangular set obtained by inverting all leading coefficients in Sz′. Then
(z′, Uz′) is a lifting fiber for (F, h, <′).

Furthermore, if the previous properties hold, Uz′ can be deduced from R− using

O
(
nM
(
(deg W )2

)
log(deg W )

)

operations in K.

Proof: By Proposition 3.3, there exists a non-zero polynomial ∆lift ∈ K[Z] of degree at
most ndn(3dn + n + d), such that, for z = (z1, . . . , zr−1, a) ∈ K

r
, if ∆lift(z) is not zero, then

z is a lifting fiber for (F, h, <); in particular, z then satisfies conditions H1, H2, H3.

Lemma 3.12. If z′ does not belong to πZ′(V (R) ∩ V (∆lift)), then we have the equivalence
(a, y2, . . . , ys) ∈ V (Sz′) ⇐⇒ (z1, . . . , zr−1, a, b, y2, . . . , ys) ∈W.

Proof: Let x = (z1, . . . , zr−1, a, b, y2, . . . , ys) be in W . Since W is contained in V (R), by
Corollary 3.4, (a, b, y2, . . . , ys) is a root of R−. In other words, (a, y2, . . . , ys) is a root of Sz′

Conversely, let (a, y2, . . . , ys) ∈ K
s

be a root of Sz′ and let us define the point x =
(z1, . . . , zr−1, a, b, y2, . . . , ys). By Corollary 3.4, x is a root of R, so by assumption, z =
(z1, . . . , zr−1, a) does not cancel ∆lift. Hence, z satisfies conditions H1, H2 and H3 for the
input order <. We deduce by Corollary 3.4 that x is a root of R. Condition H2 then implies
that x is in W . 2

Lemma 3.13. If z′ does not belong to πZ′(V (R) ∩ V (∆lift)), then Sz′ is a regular chain in
K[Y′].

Proof: Recall that we write R− = (R−,1, . . . , R−,s), where R1 is in K[A, B] and Ri is in
K[A, B, Y2, . . . , Yi] for i > 1. Recall also that by construction, the initial ℓi of R−,i is the
least common multiple of the denominators of the coefficients of Ti; in particular, it is in
K[A]. By construction, the ith polynomial in Sz′ is R−.i(A, b, Y2, . . . , Ys), so for i > 1, its
initial is ℓi as well.

By assumption, none of the points in V (R−)∩V (B−b) cancels ∆lift. Hence, by definition
of ∆lift, none of the denominators of T vanishes on V (R−)∩V (B− b). This implies that no
polynomial ℓi vanishes on V (R−)∩ V (B − b), that is, on V (Sz′). Hence, ℓi is a zero-divizor
modulo the i− 1 first polynomials in Sz′ ; by defintion, it is a regular chain. 2

Lemma 3.14. Let D ∈ K[Z′] be the resultant of R1 and ∂R1/∂A with respect to A. If z′

does not belong to πZ′(V (R) ∩ V (D∆lift)), then Sz′ defines a radical ideal in K[Y′].

Proof: Let (a, y2, . . . , ys) ∈ K
s

be a root of Sz′ , and let us write the polynomials of Sz′

as (Sz′,1, . . . , Sz′,s) ⊂ K[A, Y2, . . . , Ys]. We will prove that none of the partial derivatives
∂Sz′,1/∂A and ∂Sz′,i/∂Yi, for i > 2, vanishes at (a, y2, . . . , ys), which is enough to conclude
by the Jacobian criterion.

Let us define z = (z1, . . . , zr−1, a) and consider the triangular set Tz ⊂ K[B, Y2, . . . , Ys].
By assumption on z′, Tz is well-defined and generates a radical ideal in K[Y]. In other
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words, none of the partial derivatives ∂Tz,i/∂Yi vanishes on the zero-set of Tz. Now, the
point x = (z1, . . . , zr−1, a, b, y2, . . . , ys) ∈ K

n
is in the zero-set of Tz, and at this point, the

values of the partial derivatives ∂Sz′,i/∂Yi and ∂Tz,i/∂Yi coincide, up to the non-zero factor
ℓi(a). Hence, none of the partial derivatives ∂Sz′,i/∂Yi is zero at (a, y2, . . . , ys) for i > 2.

It remains to deal with the partial derivative ∂Sz′,1/∂A of the first polynomial Sz′,1.
Since z− = (z1, . . . , zr−1) does not cancel the leading coefficient of R1, if D(z′) is not zero,
then Lemma 3.11 shows that R−,1(z1, . . . , zr−1, A, b) = Sz′,1(A) has no multiple root, which
is what we wanted to prove. 2

We can now prove Proposition 3.15. Remark that the first polynomial R1 in R belongs
to K[Z, B]. By the definition of R, it admits no factor in K[Z], and has total degree
at most (deg W ). In particular, its resultant with ∆lift with respect to A is a non-zero
polynomial C in K[Z1, . . . , Zr−1, B] = K[Z′]. All points z′ = (z1, . . . , zr−1, b) which belong
to πZ′(V (R)∩V (∆lift)) cancel this resultant C, whose degree is at most (2 deg W deg ∆lift).

We continue by considering the resultant D appearing in the last lemma. Recall that
the polynomial R1 ∈ K[Z1, . . . , Zr−1, A, B] defines the closure of πZ1,...,Zr−1,A,B(W ). Then,
R1 has non-zero degree in A, since otherwise Z′ = Z1, . . . , Zr−1, B would not be a set of
free variables for W . Furthermore, R1 is irreducible in K[Z1, . . . , Zr−1, A, B]; hence, its
discriminant D is non-zero, of degree at most 2(deg R1)

2. Using again Theorem 2 in [32],
we get that the degree of R1 is upper-bounded by (deg W ), so that the degree of D is at
most 2(deg W )2.

To conclude the probability analysis, let ∆′lift ∈ K[Z′] be the polynomial associated by
Proposition 3.3 to the projection πZ′ , so that if ∆′lift(z

′) is not zero, then z′ satisfies the
lifting conditions H1, . . . , H4 for the system (F, h, <′). We then take Γ1 = CD∆′lift, which is
non-zero and of the requested degree. Then, if z′ does not cancel Γ1, z′ satisfies the lifting
conditions. Besides, by the previous lemmas, the monic form Uz′ of Sz′ is a triangular set,
defining a radical ideal, and having for zero-set {z′} ×Wz′ ; this implies that (z′, Uz′) is a
lifting fiber for (F, h, <′).

The final part of the proof is the complexity analysis. As input, recall that we receive the
polynomials R− in K[A, B, Y2, . . . , Ys] obtained in the previous subsection. The first step
consists in specializing B at b in these polynomials: this can be done in time O(deg W ).
Next, we invert all initials ℓi ∈ K[A] modulo the univariate polynomial Sz′,1 ∈ K[A]. All
initials ℓi have degree at most 2(deg W )2 and can be inverted modulo Sz′,1, so this operation
takes O(nM((deg W )2) log(deg W )) operations in the base field. This finishes the proof of
Proposition 3.15. 2

3.5.3 Proof of Proposition 3.14

We conclude this section with the proof of Proposition 3.14 announced in the introduction
of this section. The complexity estimate follows from taking the sum of all contributions
seen previously in this section: using the fact that MT(W ) is at least linear in deg W , the
dominant term comes from the lifting step of Subsection 3.5.1.

The probability analysis comes easily too: a first source of error is in the choice of a
value a′ used to stop Newton’s iteration; the second one comes from the possibility that
(z1, . . . , zr−1, b) cancels the polynomial Γ1 ∈ K[Z1, . . . , Zr−1, B] of the previous proposition.
Since the values a′ that provoke error are in finite number, there is a non-zero polyno-
mial Γ2 ∈ K[A′] having these values as roots. It then suffices to let ∆exchange = Γ1Γ2 ∈
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K[Z1, . . . , Zr−1, A
′, B]; the degree bound comes easily after a few simplifications.

3.6 Proof of Theorem 3.1

We finally turn to the proof of Theorem 3.1. Our analysis will use the so-called Zippel-
Schwartz lemma [106, 123]: if P is a non-zero polynomial in K[V1, . . . , Vt] and if S is a finite
subset of K, then P has at most (deg P )|S|t−1 roots in St.

The algorithm first chooses a specialization value z = (z1, . . . , zr) for the free variables
Z of the input regular chain F; using those, we determine the exchange data Y0, . . . ,Ys.
The cost and probability analysis of this first step are given in Proposition 3.9.

In the second step of the algorithm, we use the exchange data to compute a sequence of
lifting fibers, calling at most s times the subroutine described in Proposition 3.14; we then
use a last change of order in dimension zero to order the algebraic variables Ys in the final
lifting fiber according to the target order <′. The complexity analysis of Proposition 3.14
dominates all other ones and establishes the cost reported in Theorem 3.1. We conclude
with the probability analysis.

Without loss of generality, we can suppose that for all i, Yi and Yi+1 do actually differ,
so that we need to perform exactly s times the operations described in the last section (if
Yi and Yi+1 coincide, there is nothing to do). Hence, the algorithm will chose 2s values in
the base field: s of them, written b1, . . . , bs to match the notation of Proposition 3.14, will
be used as the specialization values in the sequence of lifting fibers, and the s remaining
ones, written a′1, . . . , a

′
s, are used in the stop criterion used in the successive Newton lifting

processes.
Suppose thus that z1, . . . , zr, b1, . . . , bs and a′1, . . . , a

′
s are chosen uniformly at random

in a finite subset S of K; observe that the size of the sample set is then |S|n+s. To ensure
success, we first require that z1, . . . , zr do not cancel the polynomial ∆lin of Proposition 3.9:
by Zippel-Schwartz’s lemma, this discriminates at most n(2d)n+1|S|n+s−1 elements in Sn+s;
for all remaining points, we obtain the correct exchange data.

In the second step, we do s calls to the algorithm presented in Proposition 3.14. For
i ≤ s, let (Zi,1, . . . , Zi,r−1, Zi,r) ⊂ (Z1, . . . , Zr, B1, . . . , Bi−1) be the indeterminates that give
the coordinates of the specialization value (zi,1, . . . , zi,r) used in the ith lifting fiber. The
ith call to Proposition 3.14 involves replacing one of these indeterminates, say Zi,r for
definiteness, by Bi, and do the analogous replacement in the specialization value; we use
the value a′i along the way to stop Newton’s iteration.

Hence, by Proposition 3.14, there exists a non-zero polynomial ∆exchange,i such that if
(zi,1, . . . , zi,r−1, bi, a

′
i) is non zero, the ith step succeeds. Using Zippel-Schwartz’s lemma, the

degree bound given in that proposition shows that this discriminates at most 2dn(3d2n +
m((6 + 13m)dn + m))|S|n+s−1 points in Sn+s, writing m = max(n, d).

Summing all previous estimates concludes the proof of Theorem 3.1.

3.7 Conclusions and future work

We have presented an algorithm to perform change of order on regular chains in positive
dimension, that reduces mostly to a well-identified set of basic operations: lifting techniques
and change of order in dimension zero. As output, we compute a lifting fiber for the target
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regular chain, which enables us to maintain a polynomial complexity, while allowing for the
recovery of the full “expanded” representation of the target if needed. The algorithm is
probabilistic, and we provide a fine control on the probability of failure.

There is an implementation in Maple for which I have not participated, due to X. Jin,
É Schost and M. Moreno Maza; it is now part of the RegularChains library [80]. As of now,
not all of the techniques presented here are implemented: for instance, we still use classical
arithmetic to perform operations modulo a triangular set. It is expected to improve on this
situation in the near future. More work is also planned to obtain an efficient lower-level
implementation in the Aldor language, following the first experiments reported in [43]; in
such an environment, it is expected to make full use of the algorithms described here.

At the conceptual level, our next objective is to lift the primality assumption. Moving
to the more general situation of equidimensional vaieties already raises several difficulty,
since we will then have to split our object into its equiprojectable components [31]. Then,
the study of the possible degeneracies promises to become much more involved, but should
still follow the mains ideas presented here.

As was mentioned in the introduction, another of our projects consists in improving the
multivariate Newton iteration that takes place if one wants to recover the full multivariate
representation of the target regular chain. At the moment, multivariate power series mul-
tiplication remains a difficult problem, with no quasi-linear solution known in general. As
a workaround, sparse lifting and interpolation techniques are expected to improve on the
current generalist approach, inherited from [103].
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Chapter 4

Lifting techniques for triangular

decompositions

This chapter presents lifting techniques for triangular decompositions of zero-dimensional
varieties, that extend the range of the previous methods. This work has been published
in [31] by Y. Xie, W. Wu, M. Moreno Maza, E. Schost and myself; what is presented here
is a slighlty ameliorated version, while not up-to-date (the “Split-and-Merge” algorithm
Section 4.2 does not use new results of dynamic evaluation of Chapter 5). We discuss
complexity aspects, and report on an implementation in Maple 10, realised essentially by
the four other co-authors. The theoretical results are comforted by these experiments.

4.1 Introduction

Modular methods for computing polynomial GCDs and solving linear algebra problems have
been well-developed for several decades, see [117] and the references therein. Without these
methods, the range of problems accessible to symbolic computations would be dramatically
limited. Such methods, in particular Hensel lifting, also apply to solving polynomial systems.
Standard applications are the resolution of systems over Q after specialization at a prime,
and over the rational function field k(Y1, . . . , Ym) after specialization at a point (y1, . . . , ym).
These methods have already been put to use for Gröbner bases [114, 5] and primitive element
representations, starting from [50, 52, 92].Triangular decompositions of algebraic varieties are
well-suited to many practical problems: see some examples in [40, 44, 105]. It permits to split
the problem into smaller systems, with less coefficients swell than lexicaographic Gröbner
bases, whereas they also have the elimination properties. In addition, these techniques are
commonly used in differential algebra [19, 59]. Triangular decompositions of polynomial
systems can be obtained by various algorithms [63, 72, 88] but none of them uses modular
computations, restricting their practical efficiency. Our goal in this chapter is to discuss
such techniques, extending the preliminary results of [105].

Framework We consider 0-dimensional varieties defined over Q. Let thus F = F1, . . . , Fn

be a polynomial system in Z[X1, . . . , Xn]. Since we have in mind to apply Hensel lifting
techniques, we will only consider the simple roots of F, that is, those where the Jacobian
determinant J of F does not vanish. We write Z(F) for this set of points; by the Jacobian
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criterion [38, Ch. 16], Z(F) is finite, even though the whole zero-set of F, written V (F),
may have higher dimension.

We want to triangulate the system F following the hereunder scheme:

Input : Square system
F defined over Q

Triangulation over Q

(costly)

Reduction modulo p
of the coefficients

Output: Triangular sets
T 1, . . . , T s defined over Q

V (T 1) ∪ . . . ∪ V (T s) = Z(F)

Square system
F mod p over Fp

Triangulation performed

modulo p

Triangular sets t1, . . . , ts

T i mod p ≡ ti , i = 1, . . . , s
V (t1) ∪ . . . V (ts) = Z(F mod p)

Newton−Hensel
operator

Figure 4.1: Prototype of a modular method modulo p using Newton-Hensel technique

We note the analogy with the positive dimension situation (Cf. Fig 4.1), where instead
of reducing the coefficients modulo p, we specialize the free variables at a chosen value (we
refer to the discussion for lifting techniques in Ch. 1, § 1.4, for both approaches).

The triangulation algorithm won’t be discussed here, and we will fix one that works over
Q and Fp. The reader can refer to the preliminaries chapter, Ch. 1, § 1.1.3 for mention of
several algorithms. What will be studied is the process of reduction and lifting. The new
difficulty arisen here comparing to previous modular algorithms, is the compatibility of the
triangular sets obtained modulo p and over Q. Indeed, extra factorizations or recombinations
can occur modulo p. Thus, we have no guarantee that there exist triangular sets T 1, . . . , T s

defined over Q, that describe Z(F), and with t1, . . . , ts as modular images. Furthermore, if
we assume no control over the modular resolution process, there is little hope of obtaining
a quantification of primes p of “bad” reduction.

Example Consider for instance the variety V ⊂ C2 defined by the square polynomial
system

F

∣∣∣∣
F2(X1, X2) = 326X1 − 10X6

2 + 51X5
2 + 17X4

2 + 306X2
2 + 102X2 + 34,

F1(X1, X2) = X7
2 + 6X4

2 + 2X3
2 + 12

For the order X2 > X1, the only possible description of V by triangular sets with rational
coefficients corresponds to its irreducible decomposition, that has two components A and
B:

A := V (T 1)

∣∣∣∣
T 1

2 (X1, X2) = X3
2 + 6

T 1
1 (X1) = X1 − 1

B := V (T 2)

∣∣∣∣
T 2

2 (X1, X2) = X2
2 + X1

T 2
1 (X1) = X2

1 + 2

As illustrate in Figure 4.2 the prime p = 7 allows several decompositions, one of which
(consisting of C and D on the picture) leads to an incompatibility between the decomposition
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obtained over Q (named A and B). In fact, the following triangular sets describe the zeros
of F mod 7:

C := V (t1)

∣∣∣∣
t12(X1, X2) = X2

2 + 6X2X
2
1 + 2X2 + X1

t11(X1) = X3
1 + 6X2

1 + 5X1 + 2
D := V (t2)

∣∣∣∣
t22(X1, X2) = X2 + 6
t21(X1) = X1 + 6

,

which are not the reduction modulo 7 of T 1 and T 2:

A
B C

D

Figure 4.2: Incompatible triangular decompositions over Q and modulo 7

A lifting algorithm should discard t1 and t2, and replace them by the better choice:

t′
1

∣∣∣∣
t′12(X1, X2) = X3

2 + 6

t′11(X1) = X1 + 6
and t′

2

∣∣∣∣
t′22(X1, X2) = X2

2 + X1

t′21(X1) = X2
1 + 2

which are the reduction of T 1 and T 2 modulo 7. In [105], this difficulty was bypassed by
restricting to equiprojectable varieties, i.e. varieties defined by a single triangular set, where
no such ambiguity occurs. However, as this example shows, this assumption discards simple
cases. Our main concern is to lift this limitation, thus extending these techniques to handle
triangular decompositions.

Main result 1 Our answer consists in using a canonical decomposition of a 0-dimensional
variety V , its equiprojectable decomposition, described as follows. Consider the map

π : V ⊂ An
k
−→ An−1

k

(x1, . . . , xn) 7−→ (x1, . . . , xn−1)

that forgets the last coordinate. The definition relies on the cardinality of successive pro-
jections fibers. We introduce the following cardinality function, attached to the projection
π:

N : V −→ N

x 7−→ #π−1 ({π(x)})

that is, N(x) the number of points lying in the same π-fiber as x. Then, we split V into the
disjoint union V1 ∪ · · · ∪ Vd, where for all i = 1, . . . , d, Vi equals N−1({i}), i.e., the set of
points x ∈ V where N(x) = i. This splitting process is applied recursively to all V1, . . . , Vd,
taking into account the fibers of the successive projections Ai

k
→ Ai

k
, for i = n − 1, . . . , 1.

In the end, we obtain a family of pairwise disjoint, equiprojectable varieties, whose reunion
equals V , which form the equiprojectable decomposition of V . As requested, each of them
is representable by a triangular set with coefficients in the definition field of V .
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The above algorithm sketch is thus improved by applying lifting only after computing the
equiprojectable decomposition of the modular output. Theorem 4.1 shows how to control
the primes of bad reductions for the equiprojectable decomposition, thus overcoming the
limitation that we pointed out previously. In what follows, the height of x ∈ Z is defined
as h(x) = log |x|; the height of f ∈ Z[X1, . . . , Xn] is the maximum of the heights of its
coefficients; that of p/q ∈ Q, with gcd(p, q) = 1, is max{h(p), h(q)}.

Theorem 4.1. Let F1, . . . , Fn have total degree bounded by d and height bounded by h. Let
T 1, . . . , T s be the triangular description of the equiprojectable decomposition of Z(F). There
exists A ∈ N− {0}, with h(A) ≤ a(n, d, h), and, for n ≥ 2,

a(n, d, h) = n2d2n
(
2h(d + 1) + log(n + 2)(3d + 6) + n log(d)(4 + 2d) + 6 + 5d

)
,

with the following property:
If a prime p does not divide A, then p cancels none of the denominators of the coef-

ficients of T 1, . . . , T s, and these triangular sets reduced mod p define the equiprojectable
decomposition of Z(F mod p).

Thus, the set of bad primes is finite and we have an explicit control on its size. Since we
have to avoid some “discriminant locus”, it is natural, and probably unavoidable, that the
bound should involve the square of the Bézout number; It largely dominates the growth of
the function a(n, d, h).

Main result 2 A second question is the coefficient size of the output. In what follows, we
write deg V and h(V ) for the degree and height of a 0-dimensional variety V defined over Q:
the former denotes its number of points, and the later estimates its arithmetic complexity
(Cf. §. 1.2.2) Let then T 1, . . . , T s be the triangular sets that describe the equiprojectable
decomposition of Z = Z(F). Theorem 2.7 p. 86 shows that all coefficients in T 1, . . . , T s have
height at most in O

(
log(n) deg(Z)2 + deg(Z)h(Z)

)
. Using the alternative representation

denoted by N1, . . . , N s in Chapter 2, Definition 2.3 where for i ≤ s, N i = N i
1, . . . , N

i
n,

N i
ℓ ∈ k[X1, . . . , Xℓ], and defined as follows:

Di
1 = 1 , N i

1 = T i
1 , for 2 ≤ ℓ ≤ n and for 1 ≤ i ≤ s,

Di
ℓ =

∏

1≤j≤ℓ−1

∂T i
j

∂Xj

and N i
ℓ = Di

ℓT
i
ℓ mod (T i

1, . . . , T
i
ℓ−1),

permits to reduce the height to O
(
log(n) degZ + h(Z)

)
. Since T 1, . . . , T s are easily recov-

ered from N1, . . . , N s, our algorithm will compute the latter, their height bounds being the
better.

Theorem 4.2 below states our main result regarding lifting techniques for triangular
decompositions; in what follows, we say that an algorithm has a quasi-linear complexity
in terms of some parameters if its complexity is linear in all of these parameters, up to
polylogarithmic factors. We need the following assumptions:

• For any C ∈ N, let Γ(C) be the sets of primes in [C + 1, . . . , 2C]. We assume the
existence of an oracle O1 which, for any C ∈ N, outputs a random prime in Γ(C),
with the uniform distribution.
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• We assume the existence of an oracle O2, which, given a system F and a prime p,
outputs the representation of the equiprojectable decomposition of Z(F mod p) by
means of triangular sets. We give in Section 4.2 an algorithm to convert any triangular
decomposition of Z(F mod p) to the equiprojectable one; its complexity analysis is
subject of current research (note after revision of the manuscript: this has lead to the
study of the complexity of the D5 principle, tackled in Chapter 5, but yet not applied
to solve this complexity study).

• For F as in Theorem 4.1, we write:

aF = a(n, d, h), bounds the height of the number A of Theorem 4.1

hF = ndn(h + 2 log(n + 1) + 7), bounds the height of the coefficients of the

output polynomials N1, . . . , N s

bF = 5(hF + 1) log(2hF + 1), bounds occuring in the probability analysis of § 4.4

The input system is given by a straight-line program of size L, with constants of height
at most hL.

• C ∈ N is such that for any ring R, any d ≥ 1 and monic t ∈ R[X] of degree d,
all operations (+,−,×) in R[X]/t can be computed in Cd log(d) log log(d) operations
in R [117, Ch. 8,9]. Then all operations (+,−,×) modulo a triangular set T in n
variables can be done in quasi-linear complexity in Cn and deg V (T ) (this result is
precisely discussed in Ch. 5, Prop. 5.2).

Theorem 4.2. Let ε > 0. There exists an algorithm which, given F, satisfying

4aF + 2bF

ε
+ 1 <

1

2
exp (2hF + 1),

computes N1, . . . , N s defined above. The algorithm uses two calls to O1 with

C = 4aF + 2bF/ε,

two calls to O2 with p in [C + 1, . . . , 2C], and its bit complexity is quasi-linear in

L, hL, d, log h, Cn, degZ, (degZ + h(Z)), | log ε|.

The algorithm is probabilistic, with success probability greater than 1− ε.

To illustrate these estimates, suppose e.g. that we have n = 10, d = 4, h = 100, hence
potentially 1048576 solutions; to ensure a success probability of 99%, the primes should
have only about 20 decimal digits, hence can be generated without difficulty. Thus, even for
such “large” systems, our results are quite manageable. Besides, computing the polynomials
N i instead of T i enables us to benefit from their improved height bounds.

In the sequel, we use the following notation. For n ∈ N, for 1 ≤ j ≤ i ≤ n and any field
k, we define:

πi
j : Ai

k
−→ Aj

k

(x1, . . . , xi) 7−→ (x1, . . . , xj).

The cardinality of a finite set G is written #G.
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Chapter 4. Lifting techniques for triangular decompositions

4.2 Split-and-Merge algorithm

We start by reviewing the notion of equiprojectable decomposition of a 0-dimensional variety
V . Then, in preparation for the modular algorithm of Section 4.4, we present an algorithm
for computing this decomposition, given an arbitrary triangular decomposition of V . We
call it Split-and-Merge, after its two phases: the splitting of what we call critical pairs (which
is achieved by GCD computations) and the merging of what we call solvable families (which
is performed by Chinese remaindering). The complexity analysis of the Split-and-Merge
algorithm is work in progress, deducible from results of Chapter 5. We believe that suitable
improvements of the Split-and-Merge algorithm can run in quasi-linear time in the degree
of V .

Let k be a perfect field and k one of its algebraic closures. Let V ⊂ An
k̄

variety V
can be decomposed as the disjoint union of equiprojectable ones in possibly several ways.
Any such decomposition amounts to represent V as the disjoint union of the zeros of some
triangular sets. The equiprojectable decomposition is a canonical way of doing so, defined
by combinatorial means (see Figure 4.3).

Equiprojectable decomposition. Let first W be a 0-dimensional variety in Ai
k
, for some

1 ≤ i ≤ n. For x in Ai−1
k

, we define the preimage

µ(x, W ) = (πi
i−1)

−1(x) ∩W ;

for any d ≥ 1, we can then define

A(d, W ) =
{
x ∈W | #µ(πi

i−1(x), W ) = d
}

.

Thus, x is in A(d, W ) if W contains exactly d points x′ such that πi
i−1(x) = πi

i−1(x
′) holds.

Only finitely many of the A(d, W ) are not empty and the non-empty ones form a partition
of W . Let 1 ≤ i ≤ n. Writing W = πn

i (V ), we define

B(i, d, V ) = {x ∈ V | πn
i (x) ∈ A(d, W )} .

Thus, B(i, d, V ) is the preimage of A(d, W ) in V , so these sets form a partition of V . If V is
i-equiprojectable, then all B(i, d, V ) are (i− 1)-equiprojectable. We then define inductively
B(V ) = V , and, for:

1 < i ≤ n, B(di, . . . , dn, V ) = B(i, di, B(di+1, . . . , dn, V )).

All B(di, . . . , dn, V ) are (i − 1)-equiprojectable, only finitely many of them are not empty,
and the non-empty ones form a partition of V .

The equiprojectable decomposition of V is its partition into the family of all non-empty
B(d2, . . . , dn, V ) (see illustration of this definition on Figure 4.3). All these sets being
equiprojectable, they are defined by triangular sets. Note that we have not proved yet that
the B(d2, . . . , dn, V ) are defined over the same field as V . This will come as a by-product of
the algorithms of this section. To do so, we introduce now the notions of critical pair and
solvable pair.

Critical and solvable pairs. Let T 6= T ′ be two triangular sets. The least integer ℓ such
that Tℓ 6= T ′ℓ is called the level of the pair T, T ′.

If ℓ = 1 let Kℓ := k , otherwise Kℓ := k[X1, . . . , Xℓ−1]/(T1, . . . , Tℓ−1).
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B(2, 2, V )

X

Y

Z

α

β
γ

ε

δ

X
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Z

another splitting

A
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D

α

β
γ

ε

δ

X

Y

Z

projecion on X

projection on (X, Y )
one splitting

(π2

1
)−1(C) = {γ, ε}

(π2

1
)−1(A) = {α}

#(π2

1
)−1(C) = 2

#(π3

2
)−1(β) = #(π3

2
)−1(δ) = 3

#(π3

2
)−1(α) = #(π3

2
)−1(γ) = #(π3

2
)−1(ε) = 2

B(3, V )

B(2, V )

#(π2

1
)−1(A) = 1

B(1, 3, V ) B(1, 2, V )

Figure 4.3: Recursive definition of the equiprojectable decomposition
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Chapter 4. Lifting techniques for triangular decompositions

Since a triangular set generates a radical ideal, the residue class ring Kℓ is a direct product
of fields. Therefore, every pair of univariate polynomials with coefficients in Kℓ has a GCD
in the sense of [89]. The pair T, T ′ is critical if Tℓ and T ′ℓ are not relatively prime in Kℓ[Xℓ]. If
T, T ′ is not critical, it is certified if U, U ′ ∈ Kℓ[Xℓ] such that UTℓ +U ′T ′ℓ = 1 are known. The
pair T, T ′ is solvable if it is not critical and if for all ℓ < j ≤ n we have degXj

Tj = degXj
T ′j .

Introducing the notion of a certified solvable pair is motivated by efficiency consider-
ations. Indeed, during the splitting step, solvable pairs are discovered. Then, during the
merging step, the Bézout coefficients U, U ′ of these solvable pairs will be needed for Chinese
Remaindering.

Solvable families. We extend the notion of solvability from a pair to a family of triangular
sets. A family T of triangular sets is solvable (resp. certified solvable) at level ℓ if every pair
{T, T ′} of elements of T is solvable (resp. certified solvable) of level ℓ.

The following proposition shows how to recombine such families. When this is the case,
we say that all T in T divide S. In what follows, we write V (T) for ∪T∈TV (T ).

Proposition 4.1. If T is certified solvable at level ℓ, one can compute a triangular set S
such that V (S) = V (T), using only multiplications in Kℓ[Xℓ].

Proof: First, we assume that T consists of the pair {T, T ′}. We construct S as follows.
We set Si = Ti for 1 ≤ i < ℓ and Sℓ = TℓT

′
ℓ . Let ℓ < i ≤ n. For computing Si, we see Ti and

T ′i in Kℓ[Xℓ][Xℓ+1, . . . , Xi]. We apply Chinese remaindering to the coefficients in Ti and T ′i
of each monomial in Xℓ+1, . . . , Xi occurring in Ti or T ′i : since the Bézout coefficients U, U ′

for Tℓ, T
′
ℓ are known, this can be done using multiplications in Kℓ[Xℓ] only.

(Kℓ[Xℓ]/(Tℓ)) [Xℓ+1, . . . ,Xi] × (Kℓ[Xℓ]/(T
′
ℓ)) [Xℓ+1, . . . ,Xi] ≃ (Kℓ[Xℓ]/(Sℓ)) [Xℓ+1, . . . ,Xi](

∑
α∈Ni−ℓ

cαXα1
ℓ+1 . . . X

αi−ℓ

i ,
∑

α∈Ni−ℓ

c′αXα1
ℓ+1 . . . X

αi−ℓ

i

)
−→

∑
α∈Ni−ℓ

(cαU ′T ′ℓ + c′αUTℓ mod Sℓ)X
α1
ℓ+1 . . . X

αi−ℓ

i

It follows from the Chinese Remaindering Theorem the following equalities of ideals of
Kℓ[Xℓ, Xℓ+1]:

(Sℓ+1, Tℓ) = (Tℓ+1, Tℓ) and (Sℓ+1, T
′
ℓ) = (T ′ℓ+1, T

′
ℓ),

proving that (Sℓ+1, Sℓ) = (Tℓ+1, Tℓ) ∩ (T ′ℓ+1, T
′
ℓ). By induction, we get (Sn, . . . , Sℓ) =

(Tn, . . . , Tℓ)∩(T ′n, . . . , T
′
ℓ) over Kℓ. Since T and T ′ are of level ℓ, this yields (S) = (T )∩(T ′).

Since they are also assumed solvable, for i > ℓ the equality degXi
Ti = degXi

T ′i holds,
showing that S is monic in Xi, as requested.

Assume that T consists of s > 2 triangular sets T 1, . . . , T s. First, we apply the case s = 2
to T 1, T 2, obtaining a triangular set T 1,2. Observe that every pair T 1,2, T j, for 3 ≤ j ≤ s, is
solvable but not certified solvable: we obtain the requested Bézout coefficient by updating
the known ones. Let us fix 3 ≤ j ≤ s. Given A1, A2, B1, Bj , C2, Cj ∈ Kℓ[Xℓ] such that
A1T

1
ℓ +A2T

2
ℓ = B1T

1
ℓ +BjT

j
ℓ = C2T

2
ℓ +CjT

j
ℓ = 1 hold in Kℓ[Xℓ], we let α = B1C2 mod T j

ℓ

and β = A1CjT
1
ℓ + A2BjT

2
ℓ mod T 1

ℓ T 2
ℓ . Then, αT 1,2

ℓ + βT j
ℓ = 1 in Kℓ[Xℓ], as requested.

Proceeding by induction ends the proof. 2

Splitting critical pairs. Let now V be a 0-dimensional variety over k. Proposition 4.3
below encapsulates the first part of the Split-and-Merge algorithm: given any triangular
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4.2. Split-and-Merge algorithm

decomposition T of V , it outputs another one, without critical pairs. We first describe the
basic splitting step.

Proposition 4.2. Let T be a triangular decomposition of V which contains critical pairs.
Then one can compute a triangular decomposition Split(T) of V which has cardinality larger
than that of T.

Proof: Let T, T ′ be a critical pair of T of level ℓ and let G be a GCD of Tℓ, T
′
ℓ in Kℓ[Xℓ].

First, assume that G is monic, in the sense of [89]; let Q and Q′ be the quotients of Tℓ and
T ′ℓ by G in Kℓ[Xℓ]. We define the sets

A = T1, . . . , Tℓ−1, G, Tℓ+1, . . . , Tn,

B = T1, . . . , Tℓ−1, Q, Tℓ+1, . . . , Tn,

A′ = T1, . . . , Tℓ−1, G, T ′ℓ+1, . . . , T
′
n,

B′ = T1, . . . , Tℓ−1, Q
′, T ′ℓ+1, . . . , T

′
n.

We let Split(T) = {A, B, A′, B′}, excluding the triangular sets defining the empty set. Since
the pair T, T ′ is critical, V (A) and V (A′) are non-empty. Since Tℓ and T ′ℓ are not associate
in Kℓ[Xℓ], at least Q or Q′ is not constant. Thus, Split(T) has cardinality at least 3. Since
〈T 〉 and 〈T ′〉 are radical, if Q 6∈ Kℓ, G and Q are coprime in Kℓ[Xℓ], so V (T ) is the disjoint
union of V (A) and V (B). The same property holds for A′ and B′. Thus, the proposition is
proved.

Assume now that Tℓ, T
′
ℓ have no monic GCD in Kℓ[Xℓ]. Then, there exist triangular

sets C1, . . . , Cs, D1 . . .Ds such that V (T ) is the disjoint union of V (C1), . . . , V (Cs), V (T ′)
is the disjoint union of V (D1), . . . , V (Ds), at least one pair Ci, Dj is critical and Ci

ℓ, D
j
ℓ

admits a monic GCD in Kℓ[Xℓ]. These triangular sets are obtained by the algorithms of
[89] when computing a GCD of Tℓ, T

′
ℓ in Kℓ[Xℓ]. Then the results of the monic case prove

the existence of Split(T). 2

Proposition 4.3. Let T be a triangular decomposition of V . One can compute a triangular
decomposition T′ of V with no critical pairs, and where each pair of triangular sets is
certified.

Proof: Write T0 = T, and define a sequence Ti by Ti+1 = Split(Ti), if Ti contains critical
pairs, and Ti+1 = Ti otherwise. Testing the presence of critical pairs is done by GCD
computations, which yields the Bézout coefficients in case of coprimality. Let D be the
number of irreducible components of V . Any family Ti has cardinality at most D, so the
sequence Ti becomes stationary after at most D steps. 2

Thus, we can now suppose that we have a triangular decomposition T of V without
critical pairs, and where every pair is certified, such as the one computed in Proposition 4.3.
We describe the second part of the Split-and-Merge algorithm: merging solvable families in
a suitable order, to obtain the equiprojectable decomposition of V .

For 0 ≤ κ ≤ n, we say that T satisfies property Pκ if:

∀T, T ′ ∈ T , {T, T ′} is certified , level(T, T ′) ≤ κ , ∀κ < i ≤ n , degXi
Ti = degXi

T ′i .

Observe that if P0(T) holds, then T contains only one triangular set, and that the input
family T satisfies Pn.
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Chapter 4. Lifting techniques for triangular decompositions

The basic merging algorithm. Let 1 ≤ κ ≤ n. We now define the procedure Mergeκ,
which takes as input a family Tκ of triangular sets which satisfies Pκ, and outputs several
families of triangular sets, whose reunion defines the same set of points, and all of which
satisfy Pκ−1. First, we partition Tκ using the equivalence relation T ≡ T ′ if and only if
T1, . . . , Tκ−1 = T ′1, . . . , T

′
κ−1. Assumption Pκ shows that each equivalence class is certified

and solvable of level κ. We then let S(κ) be the family of triangular sets obtained by applying
Proposition 4.1 to each equivalence class.

Lemma 4.1. Let S 6= S ′ in S(κ). The pair {S, S ′} is non-critical, certified, of level ℓ < κ.

Proof: Let T, T ′ ∈ T, which respectively divide S and S ′. Due to assumption Pκ, there
exists 0 ≤ ℓ ≤ κ such that T1, . . . , Tℓ−1 = T ′1, . . . , T

′
ℓ−1 and (T1, . . . , Tℓ) and (T ′1, . . . , T

′
ℓ)

have no common zero. Then, ℓ < κ, since T 6≡ T ′. Thus, T1, . . . , Tℓ = S1, . . . , Sℓ and
T ′1, . . . , T

′
ℓ = S ′1, . . . , S

′
ℓ. Since {T, T ′} is certified of level ℓ < κ, {S, S ′} is also. 2

We partition S(κ) some more, into the classes of the equivalence relation S ≡′ S ′ if and
only if degXκ

Sκ = degXκ
S ′κ. Let S

(κ)
1 , . . . , S

(κ)
δ be the equivalence classes, indexed by the

common degree in Xκ; we define Mergeκ(Tκ) as the data of all these equivalence classes.

Lemma 4.2. Each family S
(κ)
d satisfies Pκ−1.

Proof: Let S 6= S ′ in S
(κ)
d , and let T, T ′ be as in the proof of Lemma 4.1; we now prove

the degree estimate. For κ < i ≤ n, we have degXi
Ti = degXi

Si and degXi
T ′i = degXi

S ′i;
assumption Pκ shows that degXi

Si = degXi
S ′i for κ < i ≤ n. Since degXκ

Sκ = degXκ
S ′κ =

d, the lemma is proved. 2

Proposition 4.4. V (S
(κ)
d ) = B(κ, d, V (Tκ)) for all d.

Proof: We know that V (Tκ) is the union of the V (S
(κ)
d ). Besides, both families {V (S

(κ)
d )}

and {B(κ, d, V (T))} form a partition of V (Tκ). Thus, it suffices to prove that for x in

V (Tκ), x ∈ V (S
(κ)
d ) implies that πn

κ(x) ∈ A(d, W ), with W = πn
κ(V (Tκ)). First, for S in

S(κ), write WS = πn
κ(S). Then Lemma 4.1 shows that the WS form a partition of W , and

that their images πκ
κ−1(WS) are pairwise disjoint.

Let now x ∈ V (S
(κ)
d ) and y = πn

κ(x). There exists a unique S ∈ S(κ) such that

x ∈ V (S). The definition of S
(κ)
d shows that there are exactly d points y′ in WS such

that πκ
κ−1(y) = πκ

κ−1(y
′). On the other hand, for any y ∈ WS′, with S ′ 6= S, the above

remark shows that πκ
κ−1(y) 6= πκ

κ−1(y
′). Thus, there are exactly d points y′ in W such that

πκ
κ−1(y) = πκ

κ−1(y
′); this concludes the proof. 2

The main merging algorithm. We can now give the main algorithm. We start from a
triangular decomposition T of V without critical pairs, and where every pair is certified, so
it satisfies Pn. Let us initially define Tn = {T}; note that Tn is a set of families of triangular
sets. Then, for 1 ≤ κ ≤ n, assuming Tκ is defined, we write Tκ−1 = ∪U(κ)∈Tκ

Mergeκ(U
(κ)).

Lemma 4.2 shows that this process is well-defined; note that each Tκ is a set of families of
triangular sets as well.

Let U be a family of triangular sets in T0. Then U satisfies P0, so by the remarks
make previously, U consists in a single triangular set. Proposition 4.4 then shows that the
triangular sets in T0 form the equiprojectable components of V .
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Figure 4.4: The Split and Merge algorithm on the example

4.3 proof of Theorem 4.1

In this section, we consider the simple solutions Z(F) of a system F = F1, . . . , Fn in
Z[X1, . . . , Xn], that is, those where the Jacobian determinant J of F does not vanish. We
prove that for all primes p but a finite number, the equiprojectable decomposition of Z(F)
reduces modulo p to that of Z(F mod p). These results require to control the cardinality of
the “specialization” of a variety at p. Such questions are easy to formulate using primitive
elements (Ch. 1 § 1.1.2, p. 14).
Geometric considerations. Let now Z = Z(F). For 1 ≤ i ≤ n, let ∆i be a linear
form in Z[X1, . . . , Xi] which is a primitive element for πn

i (Z), let µi ∈ Q[T ] be its minimal
polynomial, and let W1, . . . , Wn ∈ Q[T ] be the parametrization of Z associated to ∆n. Let
finally p a prime. We first introduce assumptions on p (denoted by H1, H2, H3), that yield
the conclusion of Theorem 4.1 in a series of lemmas; we then give quantitative estimates for
these assumptions.

H1. The prime p divides no coefficients in µn, W1, . . . , Wn and µn remains squarefree modulo
p.

Let Fq be a finite extension of Fp such that (µn mod p) splits in Fq, let Qq be the
corresponding unramified extension of Qp [86] and Zq its ring of integers; then, µn splits
in Qq, and has all its roots in Zq; thus, Z lies in Zn

q . Note that p divides no coefficient
in µ1, . . . , µn: the roots of µi are the values of ∆i on πn

i (Z), so they are in Zq, hence the
coefficients of µi are in Zq ∩ Q = Zp. The map Zq → Fq of reduction modulo p extends to
maps a ∈ Zi

q 7→ a ∈ Fi
q for all i. Given A ⊂ Zi

q, A is the set {a | a ∈ A}. The same notation
is used for the reduction of polynomials modulo p.

H2. All polynomials µi are squarefree.

Lemma 4.3. For i ≤ n, #πn
i (Z) equals #πn

i (Z).
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Chapter 4. Lifting techniques for triangular decompositions

Proof: The inequality #πn
i (Z) ≤ #πn

i (Z) is obvious. By assumption H2, all values taken
by ∆i on πn

i (Z) are distinct, so #πn
i (Z) ≥ deg µi = #πn

i (Z). 2

Lemma 4.4. For all d2, . . . , dn, B(d2, . . . , dn,Z) equals B(d2, . . . , dn, Z).

Proof: We prove on ℓ = n + 1, . . . , 2 that for all dℓ, . . . , dn, B(dℓ, . . . , dn,Z) equals
B(dℓ, . . . , dn,Z); taking ℓ = 2 gives the lemma. Since B(X) = X for any variety X,
this property holds for ℓ = n + 1. Assuming it for B(dℓ+1, . . . , dn,Z), we prove it for
B(dℓ, . . . , dn,Z). Let B = B(dℓ+1, . . . , dn,Z), Bℓ = πn

ℓ (B) and Bℓ−1 = πn
ℓ−1(B); Lemma 4.3

implies that reduction modulo p is one-to-one on both Bℓ and Bℓ−1. For y in Bℓ−1 and z in
Bℓ−1, we define

µ(y) = (πℓ
ℓ−1)

−1(y) ∩Bℓ and µ(z) = (πℓ
ℓ−1)

−1(z) ∩Bℓ.

We first prove that µ(y) and µ(y) have the same cardinality for all y in Bℓ−1. To this effect,
observe the equalities

∑

y∈Bℓ−1

#µ(y) = #Bℓ,
∑

z∈Bℓ−1

#µ(z) = #Bℓ.

Let now y in Bℓ−1. Since µ(y) ⊂ µ(y), injectivity of the reduction mod p on Bℓ implies that
#µ(y) ≤ #µ(y). Thus,

#Bℓ =
∑

y∈Bℓ−1

#µ(y) ≤
∑

y∈Bℓ−1

#µ(y).

Injectivity of the reduction mod p on Bℓ−1 implies that
∑

y∈Bℓ−1

#µ(y) =
∑

z∈Bℓ−1

#µ(z) = #Bℓ.

This sum equals #Bℓ. Thus, all inequalities are equalities, giving our claim.
For x in Bℓ, write ν(x) = µ(πℓ

ℓ−1(x)); define similarly ν(z) for z in Bℓ. By the previous
point, ν(x) and ν(x) have the same cardinality. Recalling from Section 4.2 that for d ∈
N, we have defined A(d, Bℓ) as the set {x ∈ Bℓ | #ν(x) = d}, and A(d, Bℓ) as the set
{z ∈ Bℓ | #ν(z) = d}, one can see A(d, Bℓ) = A(d, Bℓ). To conclude, recall that by
definition {x ∈ Z | πn

ℓ (x) ∈ A(d, πn
ℓ (B(dℓ+1, . . . , dn,Z)))} = B(d, dℓ+1, . . . , dn,Z). By the

induction assumption, this equals {x ∈ Z | πn
ℓ (x) ∈ A(d, Bℓ)}, and we have proved that this

equals {x ∈ Z | πn
ℓ (x) ∈ A(d, Bℓ)}. By definition, this is B(d, dℓ, . . . , dn,Z), which is what

we wanted. 2

Lemma 4.5. Let T 1, . . . , T s be the triangular sets that describe the equiprojectable decom-
position of Z. Then p cancels no denominator in the coefficients of T 1, . . . , T s, and the
reduction of these triangular sets modulo p defines the equiprojectable decomposition of Z.

Proof: For i ≤ s, let Zi = Z(T i). By Lemma 4.4, Z1, . . . ,Zs are the equiprojectable
components of Z. For i ≤ s, Z i is described by a triangular set ti with coefficients in
Fp. The coefficients of T i are rational functions of the points in Zi, given by interpolation
formulas [32, §3]. With these formulas, Lemma 4.3 shows that all denominators are non-zero
modulo p. The coefficients of ti are obtained using the same formulas, using the coordinates
of the points in Z i. Thus, ti = T i mod p. 2

H3. The Jacobian determinant of F vanishes nowhere on Z.
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Lemma 4.6. The set Z equals Z(F).

Proof: First, we prove that F vanishes on Z. Indeed, all Fi belong to the ideal generated
by I = (µn, X1 −W1, . . . , Xn −Wn) in Q[T, X1, . . . , Xn]. Now, I is a Gröbner basis, so any
Fi can be written in terms of I. Since p divides no denominator and no leading term in
I, the division equality specializes modulo p, and F vanishes on Z , as requested. Let then
Z ′ = Z(F). By Assumption H3, Z ⊂ Z

′, so it suffices to prove that #Z ′ ≤ #Z . Let Fr

be a finite extension of Fp that contains the coordinates of all these points and let Qr be
the corresponding unramified extension of Qp. By Hensel’s lemma, all points in Z ′ lift to
pairwise distinct simple roots of F in Qn

r . Thus, #Z ′ ≤ #Z = #Z. 2

Quantitative estimates. By Lemmas 4.5 and 4.6, assumptions H1, H2 and H3 imply
Theorem 4.1. Thus, it suffices to give quantitative estimates for these assumptions. Let us
introduice the quantities D, H, h∆ and H∆ verifying:

D ≥ degZ ≥ deg πn
i (Z) , i = 1, . . . , n

H ≥ h(Z) ≥ h(πn
1 (Z)) , i = 1, . . . , n

h∆ ≥ max{h(∆1), . . . , h(∆n)}

H∆ = H + Dh∆ + D log(n + 2) + (n + 1) log D

From height bounds of Chapter 2 Th. 2.2, H∆ bounds the height of any polynomials of the
Kronecker representations of πn

1 (Z), . . . , πn
n−1(Z),Z attached to ∆1, . . . , ∆n.

Lemma 4.7. There exists a in N− {0} such that if p does not divide a, H1 and H2 hold.
Moreover a verifies:

h(a) ≤ n ((2D − 1)H∆ + D log(2D − 1)) .

Proof: Fix i in 1, . . . , n, and let χ, χ′, v1, . . . , vi the polynomials of the Kronecker repre-
sentation of πn

i (Z) associated to the separating linear form ∆i; By Theorem 2.2 all of them
have integer coefficients of height at most H∆. Let now ai be the resultant of χ and χ′; by
Hadamard’s bound, h(ai) ≤ (2D − 1)H∆ + D log(2D − 1).

Suppose that p does not divide ai. Then, χ keeps the same degree and remains square-
free modulo p. Furthermore, p divides no coefficient in any Wj, since all denominators in
1/χ′ mod χ divide ai. Thus, assumption H1 holds. Repeating this argument for all projec-
tions πn

i (Z), and taking a = a1 · · ·an gives assumption H2. The height bound h(a) follows
easily. 2

Lemma 4.8. There exists a′ in N−{0} such that if p does not divide aa′, H1, H2 and H3

hold, and with h(a′) ≤ θ(n, d, h, D, H∆), with θ ∈ O
(
nD(dH∆ + dD + h)

)
.

Proof: Let χ, v1, . . . , vn be the Kronecker representation of Z associated to the separating
linear form ∆n, let Jh be the homogenization of J with respect to a new variable. Define
a′ ∈ Z by:

a′ := Res(χ, Jh(χ′, v1, . . . , vn)).

Since Z is the set of simple roots of V (F), it follows that a′ 6= 0. From Corollary 1.3, the
Jacobian determinant J has coefficients of height at most n(h + log(d) + d log(n + 1)) (in
fact, the polynomial entries have height at most log(d) + h and degree at most d − 1). Its
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specialization at χ′, v1, . . . , vn has degree at most n(d − 1)D, and from Inequality A9 has
height at most:

h(Jh(χ′, v1, . . . , vn)) ≤ h(Jh) + deg(Jh)(H∆ + log(n + 2) + D log(2))

≤ n (h + log(d) + dH∆ + 2d log(n + 2) + (d− 1)D)

The Hadamard’s bound adapted to the case of Sylvester matrix gives:

h(a′) ≤ n(d− 1)DH∆ + Dh(Jh(χ′, v1, . . . , vn)) +
1

2
(D log(n(d− 1)D) + n(d− 1)D log(D))

By replacing by the above bound for the h(Jh(χ′, v1, . . . , vn)):

h(a′) ≤ H∆ (n(d− 1)D + ndD) + nhD + n(d− 1)D2 + 2ndD log(n + 2)

+ D log(d) +
1

2
log(D) (n(d− 1) + D) +

1

2
D log(n) +

1

2
D log(d− 1) (4.1)

This proves the height estimates of θ(n, d, h, D, H∆).
Suppose now that p does not divide aa′. Then the degree of χ does not drop modulo

p, and thus no root of χ cancels Jh(χ′, v1, . . . , vn). In other words, all points described by
χ(T ) = 0 and χ′(T )Xi = vi(T ), 1 ≤ i ≤ n, are simple for F. This set of points equals Z,
giving H3. 2

In view of Lemma 4.8, we prove Theorem 4.1 with A = aa′. We turn now to extrinsic
quantitative estimates for a′, and begin with H∆, using:

H ≤ ndn(h + 2 log(n + 1)) , arithmetic Bézout theorem (Thm. 1.5)

h∆ ≤ n(log(n) + 2n log(d)) by [101, Lemma 2.1]

All linear forms ∆i can be bounded by h∆.

H∆ ≤ H + Dh∆ + D log(n + 2) + (n + 1) log(D)

≤ dn (nh + 2n log(n + 1)) + ndn (log(n) + 2n log(d)) + dn log(n + 2)

+ (n + 1)h? log(d)

≤ ndn

(
h + log(n + 2)(3 +

1

n
) + log(d)(2n +

n + 1

dn
)

)

In Equality (4.1), this gives:

h(a′) ≤ ndn

(
h + log(n + 2)(3 +

1

n
) + log(d)(2n +

n + 1

dn
)

)
+ nhdn + nd2n+1

+ 2ndn+1 log(n + 2) + dn log(d) +
1

2

(
n log(d)(nd + dn) + dn log(n) + dn log(d)

)

≤ n2d2n+1

(
h
(
1 +

1

ndn+1

)
+ log(n + 2)

(
3 +

1

n
+

2

ndn
+

1

2n2dn+1

)

+ log(d)
(
2n +

n + 1

dn
+

1

2d2n
+

1

2ndn+1
+

1

2n2dn+1

)
+

1

n

)

≤ n2d2n+1 (2h + 3 log(n + 2) + 2n log(d) + g(n, d)) ,
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with

g(n, d) = log(n + 2)
2ndn+1 + 4nd + 1

2n2dn+1
+ log(d)

2n2(n + 1)dn + n2 + ndn−1 + dn−1

2n2d2n
+

1

n
.

It is bounded by 5, for (n, d) ∈ N∗ × N∗. As for h(a), we get:

h(a) ≤ n ((2D − 1)H∆ + D log(2D − 1))

≤ n

(
(2dn − 1)ndn

(
h + log(n + 2)(3 +

1

n
) + log(d)(2n +

n + 1

dn
)
)

+ dn(log(2) + n log(d))

≤ 2n2d2n

(
h + log(n + 2)(3 +

1

n
) + log(d)(2n +

n + 1

dn
) +

1

2n2dn
(log(2) + n log(d)

)

≤ 2n2d2n (h + 3 log(n + 2) + 2n log(d) + f(n, d)) ,

where

f(n, d) =
1

n
log(n + 2) + log(d)

(n + 1

dn
+

1

2ndn

)
+

1

2n2dn
log(2).

This function is bounded by 3 over N∗ ×N∗. Finally:

h(a) ≤ 2n2d2n(h + 3 log(n + 2) + 2n log(d) + 3)

h(a′) ≤ n2d2n+1(2h + 3 log(n + 2) + 2n log(d) + 5)

4.4 Proof of Theorem 4.2

We now give the details of our lifting algorithm: given a polynomial system F, it outputs a
triangular representation of its set of simple solutions Z = Z(F), by means of the polynomi-
als N1, . . . , N s defined in the introduction. First of all, we describe the required subroutines,
freely using the notation of Theorem 4.2, and that preceding it. We do not give details of
the complexity estimates for lack of space; they are similar to those of [105].

• EquiprojDecomposition takes as input a polynomial system F and outputs the equi-
projectable decomposition of Z(F), encoded by triangular sets. This routine is called
here for systems defined over finite fields. For the experiments in the next section,
we applied the triangularization algorithm of [88], followed by the Split-and-Merge
algorithm of Section 4.2, modulo a prime. Studying the complexity of this task is
certainly easily deducible form results of Chapter 5, but is still a work in progress;
hence, we consider this subroutine as an oracle here, which is called O2 in Theorem 4.2.

• Lift applies the Hensel lifting algorithm of [105], but this time to a family of triangular
sets, defined first modulo a prime p1, to triangular sets defined modulo the successive
powers p2κ

1 . From [105], one easily sees that the κth lifting step has a bit complexity
quasi-linear in (L, hL, Cn,

∑
i≤s deg V (T i), 2κ, log p1), i.e. in (L, hL, Cn, degZ, 2κ, log p1).

• Convert computes the polynomials N i starting from the polynomials T i. Only mul-
tiplications modulo triangular sets are needed to perform this operation, so its com-
plexity is negligible before that of Lift.
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Chapter 4. Lifting techniques for triangular decompositions

• RationalReconstruction does the following. Let a = p/q ∈ Q, and m ∈ N with
gcd(q, m) = 1. If h(m) ≥ 2h(a) + 1, given a mod m, this routine outputs a. If h(m)
< 2h(a) + 1, the output may be undefined, or differ from a. We extend this notation
to the reconstruction of all coefficients of a family of triangular sets. Using the fast
Euclidean algorithm [117, Ch 5,11], its complexity is negligible before that of Lift.

• We do not consider the cost of prime number generation. We see them as input here;
formally, in Theorem 4.2, this is handled by calls to oracle O1.

modularTriangularize

# Inputs: The system F, primes p1, p2

# Output: The polynomials N1, . . . , N s.

1. T 1,0, . . . , T s,0← EquiprojDecomposition(Z(F mod p1))
2. u1, . . . , us′ ← EquiprojDecomposition(Z(F mod p2))
3. m1, . . . , ms′ ← Convert(u1, . . . , us′)
4. κ← 1
5. while not(Stop) do

T 1,κ, . . . , T s,κ ← Lift(T 1,κ−1, . . . , T s,κ−1) mod p2κ

1

N1,κ, . . . , N s,κ ← Convert(T 1,κ, . . . , T s,κ)
N1,κ

Q , . . . , N s,κ
Q ← RationalReconstruction(N1,κ, . . . , N s,κ)

Stop ←{m1, . . . , ms′} Equals {N1,κ
Q , . . . , N s,κ

Q } mod p2

κ← κ + 1

6. end while

7. r eturn N1,κ−1
Q , . . . , N s,κ−1

Q

Algo 4.1: Computing a triangular decomposition by lifting technique

We still use the notation and assumption of Theorem 4.2. From 2.7, all coefficients of
N1, . . . , N s have height in 5 degZ log(n + 3) + h(Z)), which can explicitly be bounded by
hF. For p1 ≤ exp (2hF + 1), define

d = d(p1) =

⌈
log2

(
2hF + 1

log p1

)⌉
.

Then, p2d(p1)

1 has height at least 2hF + 1. In view of the prerequisites for rational recon-
struction, d(p1) bounds the number of lifting steps. From an intrinsic viewpoint, at the last
lifting step, 2κ is in O(log(n) degZ + h(Z)).

Suppose that p1 does not divide the integer A of Theorem 4.1. Then, Hensel lifting
computes approximations T 1,κ, . . . , T s,κ = T 1, . . . , T s modulo p2κ

1 . At the κth lifting step,
let N1,κ, . . . , N s,κ be the output of Convert applied to T 1,κ, . . . , T s,κ, computed modulo p2κ

1 ;
let N1,κ

Q , . . . , N s,κ
Q be the same polynomials after rational number reconstruction, if possible.

By construction, they have rational coefficients of height at most 2κ−1 log p1. Supposing
that p2 does not divide the integer A of Theorem 4.1, failure occurs only if for some κ in
0, . . . , d− 1, and some j in 1, . . . , s, N j,κ

Q and N j differ, but coincide modulo p2. It happens
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when the two coefficients cj,κ
Q and cj of at least one monomial of one of the polynomials in

N j,κ
Q and N j respectively verifies:

cj,κ
Q 6= cj but p2|c

j,κ
Q − cj.

Writing cj,κ
Q = a/b and cj = a′/b′, p2 divides then a′b−ab′ which is of height hF+2κ−1 log p1+

1.
Now, p1 is supposed not dividing A of Theorem 4.1, hence the lifting process succeeds.

Let i0 ≤ d be the number of iterations required. This implies that the firsts i0 iterations
fail. For each of those, p2 divides a number of height hF + 2κ−1 log p1 + 1, with 1 ≤ κ < i0.
Multiplying them, p2 divides a number Bp1 of height at most (hF + 1)d + 2d log p1. After
simplifications, h(Bp1) ≤ bF.

Let C ∈ N be such that

C =

⌈
4aF + 2bF

ε

⌉
, so that C ≤

1

2
exp (2hF + 1);

let Γ be the set of pairs of primes in [C + 1, . . . , 2C]2 and γ be the number of primes in
C + 1, . . . , 2C; note that γ ≥ C/(2 log C) and that #Γ = γ2. The upper bound on C shows
that all primes p less than 2C satisfy the requested inequality log p ≤ 2hF + 1. We can
then estimate how many choices of (p1, p2) in Γ lead to failure. There are at most aF/log C
primes p1 in C + 1, . . . , 2C which divide the integer A of Theorem 4.1, discriminating at
most γaF/log C pairs (p1, p2). For any other value of p1, there are at most (aF + bF)/log C
choices of p2 which divide A and Bp1 . This discriminates at most γ(aF + bF)/log C pairs
(p1, p2). Thus the number of choices in Γ leading to failure is at most γ(2aF + bF)/log C.
The lower bound on γ shows that if (p1, p2) is chosen randomly with uniform probability in
Γ, the probability that it leads to failure is at most

γ(2aF + bF)

#Γ log C
=

γ(2aF + bF)

γ2 log C
=

2aF + bF

γ log C
≤

4aF + 2bF

C
,

which is at most ε, as requested.
To estimate the complexity of this algorithm, note that since we double the precision at

each lifting step, the cost of the last lifting step dominates. From the previous discussion, the
number of bit operations cost at the last step is quasi-linear in (L, hL, Cn, degZ, 2κ, log p1).
The previous estimates show that at this step, 2κ is in O

(
log(n) degZ + h(Z)

)
, whereas

log p1 is quasi-linear in | log ε|, log h, d, log n. Putting all these estimates ends the proof of
Theorem 4.2.

4.5 Experimentation

We realized a first Maple 9.5 implementation of our modular algorithm on top of the
RegularChains library [41]. Tests on benchmark systems [1] reveal its strong features,
compared with two other Maple solvers, Triangularize, from the RegularChains library,
and gsolve, from the Groebner library. Remark that the triangular decompositions modulo
a prime, that are needed in our algorithm, are performed by Triangularize. This function
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Sys Name n d h h

1 Cyclohexane 3 4 3 4395
2 Fee 1 4 4 2 24464
3 fabfaux 3 3 13 2647
4 geneig 6 3 2 116587
5 eco6 6 3 0 105718
6 Weispfenning-94 3 5 0 7392
7 Issac97 4 2 2 1511
8 dessin-2 10 2 7 358048
9 eco7 7 3 0 387754
10 Methan61 10 2 16 450313
11 Reimer-4 4 5 1 55246
12 Uteshev-Bikker 4 3 3 7813
13 gametwo5 5 4 8 159192
14 chemkin 13 3 11 850088102

Table 4.1: Features of the polynomial systems

Sys p1 d a Ca

1 4423 7 2 15
2 24499 8 4 70
3 2671 7 5 110
4 116663 10 5 162
5 105761 10 3 40
6 7433 7 3 31
7 1549 6 5 102
8 358079 11 7 711
9 387799 11 4 89
10 450367 11 6 362
11 55313 9 2 19
12 7841 7 5 125
13 159223 10 - -
14 850088191 18 - -

Table 4.2: Data for the modular algorithm
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Sys ∆p Ep Lift Total Mem. Output size

1 1 0.3 2 7 5 243
2 3 1 9 20 6 4157
3 8 0.4 6 22 7 5855
4 5 1 5 18 6 4757
5 12 1.5 6 35 6 2555
6 16 1.5 11 43 7 3282
7 66 0.4 4 133 8 4653
8 47 9 232 427 13 122902
9 1515 9 35 2873 11 9916
10 2292 6 82 4686 25 50476
11 3507 1 9 5569 38 2621
12 4879 2 22 8796 63 12870
13 ∞ - - - - -
14 - - - - fail -

Table 4.3: Results from our modular algorithm

Sys Triang. Mem. Size gsolve Mem. Size

1 0.4 4 169 0.2 3 239
2 2 6 1680 504 18 34375
3 512 275 6250 1041 34 27624
4 2.5 4 743 - fail -
5 5 5 3134 9 5 2236
6 3000 250 2695 4950 66 34932
7 - fail - 1050 31 31115
8 - fail - - error -
9 1593 18 55592 - fail -
10 ∞ - - - fail -
11 - fail - - fail -
12 - fail - - fail -
13 - fail - ∞ - -
14 - fail - - fail -

Table 4.4: Results from Triangularize and gsolve
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is a generic code: essentially the same code is used over Z and modulo a prime. Thus,
Triangularize is not optimized for modular computations.

Our computations are done on a 2799 MHz Pentium 4. For the time being our imple-
mentation handles square systems that generate radical ideals. We compare our algorithm
called TriangularizeModular with gsolve and Triangularize;

For each benchmark system, Table 4.1 lists the numbers n, d, h h and Table 4.2 lists
the prime p1, the a priori and actual number of lifting steps (d and a) and the maximal
height of the output coefficients (Ca). Table 4.3 gives the time of one call to Triangularize

modulo p1 (∆p), the equiprojectable decomposition (Ep), and the lifting (Lift.) in seconds
— the first two steps correspond to the “oracle calls” O2 mentioned in Theorem 4.2, for
which a study is a work in progress. Table 4.3 gives also the total time, the total memory
usage and output size for TriangularizeModular, whereas Table 4.4 gives that data for
Triangularize and gsolve.

The maximum time is set up to 10800 seconds; we set the probability of success to be
at least 90%.

TriangularizeModular solves 12 of the 14 test systems before the timeout, while
Triangularize succeeds with 7 and gsolve with 6. Among most of the problems
which gsolve can solve, TriangularizeModular shows less time consumed, less mem-
ory usage, and smaller output size. Noticeably, quite a few of the large systems can
be solved by TriangularizeModular with time extension: system 13 is solved in 18745
seconds. Another interesting system is Pinchon-1 (from the FRISCO project), for which
n = 29, d = 16, h = 20, h = 1409536095e + 29, which we solve in 64109 seconds. Both
Triangularize and gsolve fail these problems due to memory allocation failure. Our
modular method demonstrates its efficiency in reducing the size of the intermediate com-
putations, whence its ability to solve difficult problems.

We observed that for every test system, for which Ep can be computed, the Hensel lifting
always succeeds, i.e. the equiprojectable decomposition over Q can be reconstructed from
Ep. In addition, TriangularizeModular failed chemkin at the ∆p phase rather than at the
lifting stage. Furthermore, the time consumed in the equiprojectable decomposition and the
Hensel lifting is rather insignificant comparing with that in triangular decomposition modulo
a prime. For every tested example the Hensel lifting achieves its final goal in less steps than
the theoretical bound. In addition, the primes derived from our theoretical bounds are of
quite moderate size, even on large examples.

4.6 Conclusions

We have presented a modular algorithm for triangular decompositions of 0-dimensional vari-
eties over Q and have demonstrated the feasibility of Hensel lifting in computing triangular
decompositions of non-equiprojectable varieties. Experiments show the capacity of this
approach to improve the practical efficiency of triangular decomposition.

By far, the bottleneck is the modular triangularization phase. This is quite encouraging,
since it is the part for which we relied on generic, non-optimized code. The next step is to
extend these techniques to specialize variables as well during the modular phase, following
the approach initiated in [50] for primitive element representations, and treat systems of
positive dimension.
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Chapter 5

On the complexity of the D5 principle

The D5 Principle was introduced in 1985 by Jean Della Dora, Claire Dicrescenzo and Do-
minique Duval in their celebrated note “About a new method for computing in algebraic
number fields”. This innovative approach automatizes reasoning based on case discussion
and is also known as “Dynamic Evaluation”. Applications of the D5 Principle have been
made in Algebra, Computer Algebra, Geometry and Logic.

Many algorithms for solving polynomial systems symbolically need to perform standard
operations, such as GCD computations, over coefficient rings that are direct products of
fields rather than fields. This chapter shows how asymptotically fast algorithms for polyno-
mials over fields can be adapted to this more general context, thanks to the D5 Principle.
This chapter provides a big part of the proofs, but is still a preliminary study. An extended
abstract relating to this question has been published in [121] co-authored with Y. Xie, M.
Moreno Maza and É. Schost.

Note after revision of the manuscript: This chapter only puts highlights on the feasibility
of our strategy. In particular brutal simplifications and hiding constants in big-O are done
without more justification. Also, the emphasize is put on the complexity analysis rather
on the proofs of correctness of the algorithms presented. This is particularly true for the
Half-GCD, which needs a careful proof extending the arguments of Yap [122] to the product
of fields situation. Finally, it misses a carefully analysis of the splitting algorithm 5.2 which
is essential and is revealing not easy. The finalization of this work is still in progress.

5.1 Introduction

The standard approach for computing with an algebraic number is through the data of
its irreducible minimal polynomial over some base field k. However, in typical tasks such
as polynomial system solving, involving many algebraic numbers of high degree, following
this approach will require using probably costly factorization algorithms. Jean Della Dora,
Claire Dicrescenzo and Dominique Duval introduced “Dynamic Evaluation” techniques (also
termed “D5 Principle”) as a means to compute with algebraic numbers, while avoiding
factorization. Roughly speaking, this approach leads one to compute over direct products of
field extensions of k, instead of only field extensions.

Applications of Dynamic Evaluation have been made by many authors: [54], [53], [37],
[81] and others. Many algorithms for polynomial system solving rely on this philosophy; see,
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for instance, the work of [72], [63], [34], [88], [87], [21]. Recently, Noro proposed to handle
the splitting for the inverse operation by decomposing the quotient algebra with modular
Gröbner basis computations [91]. An implementation is proposed, but complexity estimates
are not deducible with this method.

This work is aiming at filling the lack of complexity results for dynamic evaluation. The
addition and multiplication over a direct product of fields are easily proved to be quasi-
linear (in a natural complexity measure). As for the inversion, it has to be replaced by
quasi-inversion: following the D5 philosophy, meeting zero-divisors in the computation will
lead to splitting the direct product of fields into a family thereof. It is much more tricky to
prove quasi-linear complexity estimate for quasi-inversion, because the algorithm relies on
other algorithms, for which such an estimate has to be proved: the GCD and the splitting
algorithms.

Direct product of fields will be described using radical triangular sets (as usual in this
thesis, they are Lazard triangular sets, as pointed out in Definition 1.4). In what follows,
we assume that the base field k is perfect. If T is a radical triangular set, the residue class
ring K(T ) := k[X1, . . . , Xn]/〈T 〉 is a direct product of fields. Hence, our questions can be
basically rephrased as studying the complexity of operations (addition, multiplication, quasi-
inversion) modulo triangular sets. The following notation helps us quantify the complexity
of these algorithms.

Definition 5.1. We denote by degi(T ) the degree of Ti in Xi, for all 1 ≤ i ≤ n, and by
deg(T ) the product deg1(T ) · · ·degn(T ). We call it the degree of T .

We recall and generalize the notion of triangular decomposition already introduced for
the Split-and-Merge algorithm of Chapter 4, in § 4.2.

Definition 5.2. A triangular decomposition of a zero-dimensional radical ideal I ⊂ k[X1,
. . . , Xn] is a family T = T 1, . . . , T e of triangular sets, such that I = 〈T 1〉 ∩ · · · ∩ 〈T e〉 and
〈T i〉+ 〈T j〉 = 〈1〉 for all i 6= j.

A triangular decomposition T′ of I refines another decomposition T if for every T ∈
T there exists a (necessarily unique) subset decomp(T,T′) ⊆ T′ which is a triangular
decomposition of 〈T 〉.

Let T be a triangular set, let T = T 1, . . . , T e be a triangular decomposition of 〈T 〉, and define
K(T) := K(T 1) × · · · × K(T e). Then by the Chinese remainder theorem, K(T ) ≃ K(T).
Now let T′ be a refinement of T. For each triangular set T i in T, denote by U i,1, . . . , U i,ei

the triangular sets in decomp(T i,T′). We have the following e isomorphisms:

φi : K(T i) ≃ K(U i,1)× · · · ×K(U i,ei), (5.1)

which extend to the following e isomorphisms, where y is a new variable.

Φi : K(T i)[y] ≃ K(U i,1)[y]× · · · ×K(U i,ei)[y]. (5.2)

Definition 5.3. For h = (h1, . . . , he) ∈ K(T 1)[y]×· · ·×K(T e)[y], we call split of h with re-

spect to T and T′, and write split(h,T,T′) the vector (Φ1(h1), . . . , Φe(he)) ∈
e∏

i=1

ei∏
j=1

K(U i,j).
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Note that if g ∈ K(T )[y], then we have split(g, T,T′) = split(split(g, T,T),T,T′).

We recall the notion of non-critical decompositions (used in Chapter 4). It is mo-
tivated by the following remark. Let T = T 1, . . . , T e be a family of triangular sets,
with T j = (T j

1 (X1), T
j
2 (X1, X2), . . . , T

j
n(X1, . . . , Xn)). For 1 ≤ i ≤ n, we write T j

≤i =

(T j
1 (X1) , T j

2 (X1, X2) , . . . , T j
i (X1, . . . , Xi)) and define the family T≤i by:

T≤i = {T j
≤i | j ≤ e } (with no repetition allowed).

Even if T is a triangular decomposition of a 0-dimensional radical ideal I ⊂ k[X1, . . . , Xn],
T≤i is not necessarily a triangular decomposition of I ∩ k[X1, . . . , Xi]. Indeed, with n = 2
and e = 2, consider T 1 = ((X1− 1)(X1− 2), X2) and T 2 = ((X1− 1)(X1− 3), X2− 1). The
family T = T 1, T 2 is a triangular decomposition of the ideal I = 〈T 1〉 ∩ 〈T 2〉. However, the
family of triangular sets

T≤1 = {T 1
1 = (X1 − 1)(X1 − 2), T 1

2 = (X1 − 1)(X1 − 3)}

is not a triangular decomposition of I ∩ k[X1] since 〈T 1
1 〉+ 〈T

2
1 〉 = 〈X1 − 1〉.

Definition 5.4. Let T be a triangular set in k[X1, . . . , Xn]. Two polynomials a, b ∈ K(T )[y]
are coprime if the ideal 〈a, b〉 ⊂ K(T )[y] equals 〈1〉.

Definition 5.5. Let T 6= T ′ be two triangular sets, with T = (T1, . . . , Tn) and T ′ =
(T ′1, . . . , T

′
n). The least integer ℓ such that Tℓ 6= T ′ℓ is called the level of the pair {T, T ′}. The

pair {T, T ′} is critical if Tℓ and T ′ℓ are not coprime in k[X1, . . . , Xℓ−1]/〈T1, . . . , Tℓ−1〉[Xℓ].
A family of triangular sets T is non-critical if it has no critical pairs, otherwise it is said
to be critical.

The pair {T 1, T 2} in the above example has level 1 and is critical. Consider U1,1 =
(X1 − 1, X2), U1,2 = (X1 − 2, X2), U2,1 = (X1 − 1, X2 − 1) and U2,2 = (X1 − 3, X2 − 1).
Observe that U = {U1,1, U1,2, U2,1, U2,2} is a non-critical triangular decomposition of I
refining {T 1, T 2} and that U≤1 is a triangular decomposition I ∩ k[X1, X2].

This notion of critical pair is fundamental. In fact, fast algorithms for the innocuous
splitting operations Φi of Equation (5.2) are not guaranteed for critical decompositions, as
shown in the following extension of the previous example. Consider a third triangular set
T 3 = ((X1 − 2)(X1 − 3), X2 + X1 − 3). One checks that V = [T 1, T 2, T 3] is a triangular
decomposition of T = ((X1−1)(X1−2)(X1−3), X2(X2−1)). However, splitting an element
p from [T ] to V requires to compute

p mod (X1 − 1)(X1 − 2), p mod (X1 − 1)(X1 − 3), p mod (X1 − 2)(X1 − 3),

whence some redundancies. In general, these redundancies prevent the splitting computation
from being quasi-linear with respect to deg(T ): since the complexity involves the sum
of the degrees of the divisor polynomials, so that redundancies make this degree bigger
than deg(T ). But if the triangular decomposition is non-critical, then there is no more
redundancy, and the complexity of splitting p can be hoped to be quasi-linear.

Removing critical pairs of a critical triangular decomposition in order to be able to
split fast requires to delete the common factors between the polynomials involved in the
decomposition. To do it fast (in quasi-linear time), the coprime factorization or gcd-free basis
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computation algorithm is used. Of course to implement this algorithm over a direct product
of fields, one first need to be able to compute GCD’s over such a product in quasi-linear
time.

Since K(T ) is a direct product of fields, any pair of univariate polynomials f, g ∈ K(T )[y]
admits a GCD h in K(T )[y], in the sense that the ideals 〈f, g〉 and 〈h〉 coincide, see [89].
However, even if f, g are both monic, there may not exist a monic polynomial h in K(T )[y]
such that 〈f, g〉 = 〈h〉 holds:

Example 5.1: Consider for instance f = y + a+1
2

(assuming that 2 is invertible in k) and
g = y + 1 where a ∈ K(T ) satisfies a2 = a, a 6= 0 and a 6= 1 (a possibility is to take
T = (T1) = (X2

1 − X1), then K(T ) ≃ k[X1]/〈T 〉 ≃ k[X1]/〈X1〉 × k[X1]/〈X1 − 1〉, and
a = (1, 0) or (0, 1) in this product). Since f − g = a−1

2
then the degree of any generator h

of the ideal 〈f, g〉 is zero. Hence, such a generator h is monic if and only if it is 1, which
can be easily proved to be impossible.

GCD’s with non-invertible leading coefficients are of limited practical interest; this leads
us to the following definition.

Definition 5.6. Let f, g be two polynomials in K(T )[y]. An extended greatest common
divisor (XGCD) of f and g is the data of a non-critical decomposition T = T 1, . . . , T e of T
and h,u,v sequences of polynomials indexed by the triangular sets in T, such that:

Let [f1, . . . , fe] = split(f, T,T) and [g1, . . . , ge] = split(g, T,T); then:

• hi is monic or null,

• the inequalities deg ui < deg gi and deg vi < deg fi hold,

• the equalities 〈fi, gi〉 = 〈hi〉 and hi = uifi + vigi hold.

For convenience, and especially in Section 5.5, we will simply denote gcd(f, g, T ) the
data of T, g.

One easily checks that such XGCD’s exists, and can be computed, for instance by ap-
plying the D5 Principle to the Euclidean algorithm. To compute GCD’s in quasi-linear
time over a direct product of fields, we will actually adapt the Half-GCD techniques [122]
in Section 5.3.

Our last basic ingredient is to take into account non-critical decomposition and monic
leading coefficients for the inverse operation, as a suitable generalization of the notion of
inverse to direct products of fields.

Definition 5.7. A quasi-inverse of an element f ∈ K(T ) is the data of a non-critical
decomposition T = T 1, . . . , T e of T and a sequence u indexed by the triangular sets in T,
such that:

Let [f1, . . . , fe] = split(f, T,T); then for 1 ≤ i ≤ e we have either fi = ui = 0, or
fiui = 1.

Obtaining fast algorithms for GCD’s, quasi-inverses and removal of critical pairs requires
a careful inductive process (Figure 5.1).

• We first need complexity estimates for multiplication modulo a triangular set and
splitting with respect to triangular decompositions. This is done in Section 5.2.
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level n
gcd in Ln[Xn+1]

in deg. d
4

cop. fact. in Ln[Xn+1]
in deg. d

quasi inv. in Ln

3

split in Ln1 2

3 4

remove crit. pairs in Ln

43

level n− 1
gcd in Ln−1[Xn]

in deg. d
0

1

cop. fac. in Ln−1[Xn]
in deg. d

2

Figure 5.1: The inductive process of the proof: from level n− 1 to level n

• Assuming that multiplications and quasi-inverse computations can be computed fast
in K(T ), and assuming that we can remove critical pairs from critical triangular de-
compositions of 〈T 〉, we obtain in Section 5.3 a fast algorithm for computing GCD’s
in K(T )[y]. In the article [69], it is stated that GCD’s over products of fields can
be computed in quasi-linear time, but with not a clue for a proof, underlying that it
might have been obvious; the author (and the referees) probably missed the problem
arisen by the splitting of an element after a decomposition.

• Assuming that GCD’s can be computed fast in K(T1, . . . , Tn−1)[Xn], we present fast
algorithms for quasi-inverses in K(T ) (Section 5.4), coprime factorization for polyno-
mials in K(T1, . . . , Tn−1)[Xn] (Section 5.5) and refining a triangular decomposition T

of T into a non-critical one (Section 5.6).

More precisely, the way how the proof is built is done through the multiple crossed induction
(Fig. 5.1). The cost of the splitting operation is proved in all generality and is not involved
in the induction hypothesis. What is supposed is the cost of the gcd operation and coprime
factorization modulo triangular set in n − 1 variables (both put in a box in the figure).
Then we deduce quasi-inversion modulo triangular set in n variables (step 1), as well as the
critical pairs removal (step 2). Then the estimate for gcds computation modulo triangular
sets in n variables is obtained (step 3), and finally, so it is for the critical pairs removal in
n variables (step 4). This achieves the proof by induction.

These are the basic blocks for our inductive process, which yields our main results:

Theorem 5.1. There exists a constant C independent of T and of the degree of the polyno-
mials of T such that addition, multiplication and quasi-inversion in K(T ) can be computed
in Cn

∏
1≤i≤n M(di)logp(di)

3 operations over k.

Theorem 5.2. One can compute an extended greatest common divisor of polynomials in
K(T )[y], with degree at most d, using at most Cn

∏
1≤i≤n M(di)logp(di)

3M(d)logp(d).

We now define our key complexity notion, arithmetic time for triangular sets.

Definition 5.8. An arithmetic time is a function T 7→ An(T ) with real positive values and
defined over all triangular sets in k[X1, . . . , Xn] such that the following conditions hold.

(E0) For every triangular decomposition T = [T 1, . . . , T e] of T , we have An(T 1) + · · · +
An(T e) ≤ An(T ).
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(E1) Every addition or multiplication in K(T ) can be done in at most An(T ) operations
in k.

(E2) Every quasi-inverse in K(T ) can be computed in at most An(T ) operations in k.

(E3) Given a triangular decomposition T of T , one can compute a non-critical triangular
decomposition T′ which refines T, in at most An(T ) operations in k.

(E4) For every α ∈ K(T ) and every non-critical triangular decomposition T of T , one can
compute split(α, T,T) in at most An(T ) operations in k.

Our main goal in this paper is then to give estimates for arithmetic times. This is done
through an inductive proof; the following proposition gives such a result for the base case,
triangular sets in one variable.

Proposition 5.1. If n = 1, then T ∈ k[X1] 7→ C M(deg T )logp(deg T ) is an arithmetic
time.

Proof: A triangular set in one variable is simply a squarefree monic polynomial in k[X1].
Hence, (E1), (E2) and (E4) respectively follow from points 2, 6 and 4 in Proposition 1.7.
Property (E0) is clear. Since n = 1, all triangular decompositions are non-critical, and (E3)
follows. 2

5.2 Basic complexity results: multiplication and split-

ting

In this section, upper bounds on the cost of multiplication modulo a triangular set, and the
splitting of an element defined over a triangular set, onto a decomposition of it. In general,
we do not know how to perform this last operation in quasi-linear time; however, when the
decomposition is non-critical, quasi-linearity can be reached.

Proposition 5.2. Let M be a multiplication function, and let CM be the constant from
Proposition 1.7. Let T be a triangular set in k[X1, . . . , Xn]. Then:

• Additions and multiplications modulo T can be done in at most Cn
M

∏
i≤n M(degi T )

operations in k.

• If T is a non-critical decomposition of T , then for any h in K(T ), split(h, T,T) can
be computed in at most n Cn

M

∏
i≤n M(degi T )logp(degi T ) operations in k.

Proof: The first part of the proposition is easy to deal with: the case of additions is
obvious, using the inequality M(d) ≥ d; as to multiplication, an easy induction using point
1. in Proposition 1.7 gives the result. The end of the proof uses point 4. in Proposition 1.7;
the non-critical assumption is then used through the following lemma. 2

Lemma 5.1. Consider a non-critical decomposition T of the triangular set T =
(T1, . . . , Tn). Write T≤n−1 = [U1, . . . , Us], and, for all i ≤ s, denote by T i,1, . . . , T i,ei

the triangular sets in T such that T i,j ∩ k[X1, . . . , Xn−1] = U i (thus T is the set of all T i,j,
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split(a, T,S) ==

Input An element a ∈ K(T ), given as an n-variate polynomial in normal form for T ,
and a non-critical decomposition S of T

Output The sequence res of a mod S for all S ∈ S.

1: Write a(X1, . . . ,Xn) =
∑dn−1

i=0 ai(X1, . . . ,Xn−1)X
i
n

2: for i = 0, . . . , dn − 1 do

3: ai ← split(ai, T≤n−1,S≤n−1)
4: end for

5: res← [ ]
6: for R ∈ S≤n−1 do

7: P ←
∑dn−1

i=0 aR
i Xi

n

8: sR
n ← {Sn , S ∈ S | (S1, . . . , Sn−1) = R}

9: res← res cat multiRem(P, sR
n , R)

10: end for

11: return res

split(a,S,T)

Input A triangular decomposition S of a triangular set T , a sequence
a = [aS , S ∈ S] with aS ∈ K(S), and a non-critical refinement T of S

Output The sequence res of Definition 5.3

1: res← [ ]
2: for S ∈ S do

3: U← decomp(S,T)
4: a← split(a, S,U)
5: res← res cat a

6: end for

7: return res

Algo 5.2: Splitting onto a non-critical decomposition

with i ≤ s and j ≤ ei). Then T≤n−1 is a non-critical decomposition of the triangular set
(T1, . . . , Tn−1). Moreover, for all i ≤ s, we have:

∑

j≤ei

degn T i,j = degn T.

As an illustration, consider again, for n = 2, the triangular sets

T 1 = ((X1 − 1)(X1 − 2), X2)
T 2 = ((X1 − 1)(X1 − 3), X2 − 1)
T 3 = ((X1 − 2)(X1 − 3), X2 + X1 − 3).

These triangular sets form a critical decomposition T of the ideal 〈T 1〉 ∩ 〈T 2〉 ∩ 〈T 3〉, which
is also generated by T = ((X1 − 1)(X1 − 2)(X1 − 3), X2(X2 − 1)).

Here, T≤1 is given by [U1, U2, U3] = [(X1−1)(X1−2), (X1−1)(X1−3), (X1−1)(X1−3)],
so that s = 3. Take for instance U1 = (X1−1)(X1−2); then we have e1 = 1 and T 1,e1 = T 1.
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Note then that deg2(T
1,e1) = 1 differs from deg2(T ) = 2, so the conclusion of the previous

lemma is indeed violated.

Proof of Lemma 5.1 This lemma shows the real interest of using non-critical pairs for
fast splitting. The main task will be for the rest of the chapter to remove critical pairs from
a given triangular decomposition. Let us start the proof of the lemma with two intermediate
results of commutative algebra.

Lemma 5.2. Let J1, . . . , Js be ideals in a ring R, such that Ji +Ji′ = 〈1〉 holds for all i 6= i′.
Then for any ideal I in R, we have the relation

I + (J1 ∩ · · · ∩ Js) = (I + J1) ∩ · · · ∩ (I + Js).

Proof: All ideals I + Ji are pairwise coprime, so their intersection equals their product,
and their product is easily seen to be contained in I + (J1 ∩ · · · ∩ Js). The other inclusion
is clear. 2

Lemma 5.3. Let I1, . . . , Is and J1, . . . , Js be ideals in a ring R, such that

I1 ∩ · · · ∩ Is = J1 ∩ · · · ∩ Js (5.3)

holds. Suppose also that for all i 6= i′, the equalities Ii + Ii′ = Ji + Ji′ = Ii + Ji′ = 〈1〉 hold.
Then Ii = Ji for all i.

Proof: Take the sum of both sides of Equation (5.3) with Ii; applying the previous lemma
to both sides gives the equality Ii = Ii +Ji. Proceeding similarly with Ji yields Ii +Ji = Ji,
concluding the proof. 2

Proof of Lemma ??: Let U i and U j and T i and T j be in T such that U i = (T i
1, . . . , T

i
n−1)

and U j = (T j
1 , . . . , T j

n−1). Since U i and U j differ, the level ℓ of T i and T j is at most n− 1.
Then, coprimality at level ℓ for T i and T j implies coprimality at level ℓ for U i and U j .

The pairwise coprimality of T i,1, . . . , T i,ei modulo 〈U i〉 implies that
⋂

j≤ei

〈T i,j〉 = 〈U i〉+ 〈T i,1 · · ·T i,ei〉.

We write Ai = 〈U i〉+ 〈T i,1 · · ·T i,ei〉. Note that we have the equality Ai + Ai′ = 〈1〉.
Next, from the definition of a triangular decomposition, we have the equality between

ideals in k[X1, . . . , Xn]:

〈T 〉 =
⋂

i≤s

⋂

j≤ei

〈T i,j〉 =
⋂

i≤s

Ai. (5.4)

On the other hand, note the equality in k[X1, . . . , Xn−1]

〈T1, . . . , Tn−1〉 =
⋂

i≤s

〈U i〉,

which extends to an equality in k[X1, . . . , Xn]. Since the ideals 〈U i〉 are pairwise coprime,
Lemma 5.2 gives the equality

〈T 〉 =
⋂

i≤s

〈U i〉+ 〈Tn〉. (5.5)

Applying Lemma 5.3 to Equations (5.4) and (5.5), we deduce that Ai = 〈U i〉+ 〈Tn〉. 2
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5.3. Fast GCD computations modulo a triangular set

5.3 Fast GCD computations modulo a triangular set

GCD’s of univariate polynomials over a field can be computed in quasi-linear time by means
of the Half-GCD algorithm [22, 122]. We show how to adapt this technique over the direct
product of fields K(T ) and how to preserve its complexity class. Throughout this section,
we consider an arithmetic time T 7→ An(T ) for triangular sets in k[X1, . . . , Xn].

Proposition 5.3. For all a, b ∈ K(T )[y] with deg a, deg b ≤ d, one can compute an extended
greatest common divisor of a and b in O(M(d)log(d))An(T ) operations in k.

We prove this result by describing our GCD algorithm over the direct product of fields
K(T ) and its complexity estimate. We start with two auxiliary algorithms.

Monic forms. Any polynomial over a field can be made monic by division through its
leading coefficient. Over a product of fields, this division may induce splittings. We now
study this issue.

Definition 5.9. A monic form of a polynomial f ∈ K(T )[y] is the data of S,u,v,m where
S is a non-critical triangular decomposition of T and u,v,m are sequences indexed by S,
verifying:

Let [fS , S ∈ S] = split(f, T,S), so that fS ∈ K(S)[y] and let lc(fS) the leading coeffi-
cient of fS. Then for all S ∈ S, we have uS = lc(fS), mS = vSfS and either uS = vS = 0
or uSvS = 1.

Observe that for all S ∈ S, the polynomial mS is monic or null.

Algorithm 5.3 shows how to compute a monic form. This function uses a procedure
quasiInverse(f ,T), that will be defined in § 5.4 Definition 5.7.

The number at the end of a line, multiplied by An(T ), gives an upper bound for the total
time spent at this line. Therefore, the following algorithm computes a monic form of f in
at most (8d + 6)An(T ) operations in k.

Division with monic remainder. The previous notion can then be used to compute
Euclidean divisions, producing monic remainders: they will be required in our fast Euclidean
algorithm for XGCD’s.

Definition 5.10. Let f, g ∈ K(T )[y] with g monic. A division with monic remainder of f by
g is the data of S, g,q,v,u, r. where S is a non-critical decomposition of T and g,q,v,u, r
are polynomials in y indexed by the triangular sets in S, such that:

Let f := [fS , S ∈ S] = split(f, T,S) and g := [gS , S ∈ S] = split(g, T,S). Then, for all
S ∈ S, fS = gSqS + uSrS, and S,u,v, r is a monic form of the remainder of the Eucidean
division of f by g.

Algorithm5.4 computes a division with monic remainder of f by g and requires at most
(5M(d) + O(d))An(T ) operations in k. We write (q, r) = div(f, g) for the quotient and the
remainder in the (standard) division with remainder in K(T )[y].
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monic(f, T ) ==

Input Two polynomials f and g defined over K(T )

Output A non-critical triangular decomposition T of T , and some decomposed elements u, v

and m over T as specified in Definition 5.9

1: T← [T ] ; v← [0] ; g ← f
2: while g 6= 0 do

3: u← split(leadingCoefficient(g), T,T) [d + 1]
4: T′,w ← quasiInverse(u,T) [3d + 3]
5: v← split(v,T,T′) ; Write v = [vR, R ∈ T′] [d + 1]
6: for R ∈ T′ do

7: if vR = 0 then vR ← wR ; end if [d + 1]
8: end for

9: T← T′

10: g ← g − leadingTerm(g)
11: end while

12: f ← split(f, T,T) [d]
13: u← leadingCoefficient(f)
14: m← v · f [d]
15: return T,u,v,m

Algo 5.3: Monic form of a polynomial over a triangular set

XGCD’s. We are now ready to generalize the Half-Gcd method as exposed in [122]. We
introduce the following operations. For a, b ∈ K(T )[y] with 0 < deg b < deg a = d, each of
the following algorithms Mgcd(a, b, T ) and Mhgcd(a, b, T ) returns a sequence S,M

(s1) S is a non-critical triangular decomposition of T ,

(s2) M = [MS , S ∈ S] is a sequence of square matrix of order 2 indexed by S. i.e. MS

has coefficients in K(S)[y],

such that, if we define [aS , S ∈ S] = split(a, T,S) and [bS , S ∈ S] = split(b, T,S), then,
for all S ∈ S defining (tS, sS) = (aS, bS) tMS, we have

(s3) in the case of Mgcd, the polynomial tS is a GCD of aS, bS and sS = 0 holds,

(s′3) in the case of Mhgcd, the ideals 〈tS, sS〉 and 〈aS, bS〉 of K(S)[y] are identical, and
deg sS < ⌈d/2⌉ ≤ deg tS holds.

Algorithm 5.5 below implements Mgcd(a, b, T ), and is an extension of the analogue al-
gorithm known over fields. Observe that if the input triangular set T is not decomposed
during the algorithm, in particular if K(T ) is a field, then the algorithm yields generators
of the ideal 〈a, b〉.

Now, we give running time estimates for Mhgcd(a, b, T ) and Mgcd(a, b, T ). For 0 < deg b <
deg a = d, we denote by G(d) and H(d) respective upper bounds for the running time of
Mgcd(a, b) and Mhgcd(a, b), in the sense that both operations can be done in respective times
G(d)An(T ) and H(d)An(T ).
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mdiv(f, g, T ) ==

Input Two polynomials f and g defined over K(T )

Output A non-critical triangular decomposition S of T , and the output as specified in Defini-
tion 5.10

1: (q, r)← div(f, g) [5M(d) + O(d)]
2: T,u,v, r← monic(r, T ) [O(d)]
3: q← split(q, T,T) [d + 1]
4: g← split(g, T,T) [d]
5: return S,g,q, r,u,v

Algo 5.4: Division with monic remainder

The number at the end of an above line, multiplied by An(T ), gives an upper bound of
the running time of this line. These estimates follow from the super-linearity of the arith-
metic time for triangular sets, the running time estimates of the operation mdiv(f, g, T )
and classical degree bounds for the intermediate polynomials in the Extended Euclidean
Algorithms; see for instance Chapter 3 in [117]. Therefore, counting precisely the de-
grees appearing, we have: G(d) ≤ G(d/2) + H(d) + (33/2)M(d) + O(d). The operation
Mhgcd(a, b, T ) makes two recursive calls with input polynomials of degree at most d/2, lead-
ing to H(d) ≤ 2H(d/2) + (33/2)M(d) + O(d). The super-linearity of M implies

H(d) ≤
33

2
M(d) log d + O(d log d) and G(d) ≤ 2H(d) + 2M(d) + O(d).

This leads to the result reported in Proposition 5.3.

Specification of gcd. We conclude with a specification of the gcd function used in the
remaining sections. For a triangular decomposition T = [T 1, . . . , T e] of T , two sequences
f = [f1, . . . , fe] and g = [g1, . . . , ge] of polynomials in K(T 1)[y], . . . , K(T e)[y], the operation
xgcd(f , g,T) returns a sequences S,h,u,v where:

• S is non-critical refinement of T

• for all i = 1, . . . , e, let xgcd(fi, gi, T
i) := Si,ui,vi, and let

S :=removeCriticalPairs(cate
i=1Si)

• then h := split(hi,Si,S), u := split(ui,Si,S), v := split(vi,Si,S).

This specification also extends to the gcd(f , g,T).
Proposition 5.3 implies that if f1, . . . , fe, g1, . . . , ge have degree at most d then

xgcd(f , g,T) runs in at most O(M(d)log(d))An(T ) operations in k.

5.4 Fast computation of quasi-inverses

Throughout this section, we consider an arithmetic time An−1 for triangular sets in n − 1
variables. We explain how a quasi-inverse can be computed fast with the algorithms split,
xgcd, and removeCriticalPairs.
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Mgcd((a,b,T)) ==

Input a, b ∈ K(T )[y], d ≥ deg(a) > deg(b) ≥ 0

Output A non-critical decomposition T′ of T and a sequence of 2× 2 matrices indexed by T′,
verifying properties (s1) and (s2) above.

1: G← [ ] ; T← [ ]
2: [MU , U in U]← Mhgcd(a, b, T ) [H(d)]
3: [aU , U in U]← split(a, T,U) [O(d)]
4: [bU , U in U]← split(b, T,U) [O(d)]
5: for U in U do

6: (tU , sU )← (aU , bU ) tMU [4M(d) + O(d)]
7: if sU = 0 then

8: G← G cat [MU ] ; T← T cat [U ]
9: end if

10: W, s,q, r,u,v ← mdiv(tU , sU , U ) [52M(d) + O(d)]
11: W, [MW , W ∈W]← split(MU , U,W) [O(d)]
12: for W in W do

13: MW ←

(
0 1

vW −qW vW

)
MW [2M(d) + O(d)]

14: if rW = 0 then G← G cat
[
MW

]
; T← T cat [W ]

15: [NS , S in S]← Mgcd(sW , rW ,W ) [G(d/2)]
16: [MS , S ∈ S]← split(MW ,W,S) [O(d)]
17: for S in S do

18: MS ← NS ·MS [8M(d) + O(d)]
19: G← G cat [MS ] ; T← T cat [S]
20: end for

21: end for

22: end for

23: T′ ← removeCriticalPairs(T) ; M← split(G,T,T′) [O(d)]
24: return T′,M

Algo 5.5: Half-GCD Modulo a Triangular Set

Proposition 5.4. Let T = (T1, . . . , Tn) be a triangular set with degi(T ) = di for all
1 ≤ i ≤ n. Let f be in K(T ). Then one can compute a quasi-inverse of f modulo T
in O

(
M(dn) log(dn)

)
An−1(T<n) operations in k.

We consider first the case where f is a non-constant polynomial and its degree w.r.t. Xn

is positive and less than dn; we give the algorithm, followed by the necessary explanations.
Here, the quantity at the end of a line, once multiplied by An−1(T<n), gives the total amount
of time spent at this line. At the end of this section, we briefly discuss the other cases to
be considered for f .

We first calculate an extended greatest common divisor of f and Tn modulo the triangular
set T<n = [T1, . . . , Tn−1]. This induces a non-critical decomposition S of T<n. For further
operations, we compute the images of Tn and f over this decomposition in Step 2. and 3.

Let S ⊂ k[X1, . . . , Xn−1] a triangular set in S. If the value of gS is 1, then uS is the
inverse of f modulo (S, tSn). Otherwise, deg gS > 0, and the computation needs to be split
into two branches.
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quasiInverse(f, T ) ==

Input

Output

1: S, [g,u,v] ← xgcd(f, Tn, T<n)
[
O
(
M(dn) log(dn)

)]

2: tn ← split(Tn, T<n,S) [O(dn)]
3: f ← split(f, T<n,S) [O(dn)]
4: T← [ ] ; u← [ ]
5: for S ∈ S do

6: if deg(gS) = 0 then

7: u← u cat [uS ] ; T← T cat
[
S cat [tSn ]

]

8: else

9: u← u cat [0] ; T← T cat
[
S cat [gS ]

]

10: qS ← tSn quo gS [5M(dn) + O(dn)]
11: W, [1,u′,v′]← xgcd(fS , qS , S) [O

(
M(dn) log(dn)

)
]

12: p← split(qS , S,W) [O(dn)]
13: u← u cat u′ ; T← T cat

[
[W cat [pW ]], W ∈W

]

14: end if

15: end for

16: R<n ← removeCriticalPairs(T<n) [O(1)]
# T<n is by construction a triangular decomposition of T<n

17: tn ← [Sn, the n-th polynomial of the triangular set S in T]
18: rn ← split(tn,T<n,R<n)
19: w← split(u,T<n,R<n)
20: W← cat R∈R<n

[
[R cat [rn]], rn ∈ rR

n

]

21: return W,w

Algo 5.6: Quasi-inverse

In one branch, at line 9., we build the triangular set (S, gS), modulo which f reduces
to zero. In the other branch, starting from line 10., we build the triangular set as (S, qS),
modulo which f is invertible. Indeed since the triangular set (S, qS) generates a radical
ideal, tSn is squarefree modulo S, and gcd(f s, qS, S) must be 1 modulo (S, qS). Therefore we
can simply use the xgcd (Step 11) once to compute the quasi-inverse of f modulo (S, qS).

After collecting all the quasi-inverses, we remove the critical pairs in the new family of
triangular sets. Since no critical pairs are created at level n in the previous computation, the
removal of critical pairs needs only to be performed below level n. Regarding the induction
hypothesis, this step costs O(1)An−1(T<n). At the end, we split the inverses and the top
polynomials w.r.t the last non-critical decomposition.

We also need quasi-inverse computations in two other different situations. One is when
f may not have the same main variable as the triangular set T . Second is to handle the
quasi-inverses in the sense of quasiInverse(f ,T) introduced in Section 5.3 Algorithm 5.4
where T is a triangular decomposition of T , and f is a sequence indexed by the trian-
gular sets in T, of polynomials in k[X1, . . . , Xn]. They are simply built on top of the
quasiInverse(f, T ), with additional splits and removal of critical pairs (Algorithm 5.7). The
dominant cost is the two xgcd calls. Therefore, in each situation, the total cost is bounded
by O

(
M(dn) log(dn)

)
An−1(T<n).
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quasiInverse(f ,T)

1: T′ ← [ ] ; w′ ← [ ]
2: for S ∈ T do

3: W,w ← quasiInverse(fS , S)
4: T′ ← T′ cat W ; w′ ← w′ cat w

5: end for

6: T← removeCriticalPairs(T′)
7: w ← split(w′,T′,T)
8: return T,w

Algo 5.7: Quasi-inverse for a polynomial decomposed over a triangular decomposition

5.5 Coprime factorization

Other fast algorithms for this problem are given by [46], with a concern for parallel efficiency,
and in [17], in a wider setting, but with a slightly worse computation time. Remark that
the research announcement [16] has a time complexity that essentially matches ours.

Definition 5.11. Let A = a1, . . . , ae be squarefree polynomials in k[x]. Some polynomials
b1, . . . , bℓ in k[x] are a gcd-free basis of the set A if gcd(bi, bj) = 1 for i 6= j, each ai can
be written (necessarily uniquely) as a product of some of the bj, and each bj divides one
of the ai. The associated coprime factorization of A consists in the factorization of all
polynomials ai in terms of the polynomials b1, . . . , bt.

Proposition 5.5. Let d be the sum of the degrees of A = a1, . . . , ae. Then a coprime
factorization of A can be computed in O(M(d)logp(d)3) operations in k.

For brevity’s sake, we will only prove how to compute a gcd-free basis of A, assuming without
loss of generality that all ai have positive degree. Deducing the coprime factorization of A
involves some additional bookkeeping operations, keeping track of divisibility relations; it
induces no new arithmetic operations, and thus has no consequence on complexity.

The algorithm relies on three subroutines multiGcd (Algo. 5.8), pairsOfGcd (Algo. 5.9)
and MergeGCDFreeBases (Algo. 5.10), presented in the next paragraphs. Following the
inductive scheme shown in Figure 5.1, we assume in all this section that we are given an
arithmetic function An(T ), as in Definition 5.8.

5.5.1 Computing multiple gcd’s

The first algorithm takes as input p and [a1, . . . , ae] in K(T )[y], and outputs the sequence
of all gcd(p, ai, T ), split over the same non-critical decomposition Ue+1. The idea of this
algorithm is to first reduce p modulo all ai using fast simultaneous reduction, and then take
the gcd’s of all remainders with the polynomials ai (see also Exercise 11.4 in [117]). We
make the assumption that all ai are non-constant in the pseudo-code below, so as to apply
the results of Proposition 1.7. To cover the general case, it suffices to introduce a wrapper
function, that strips the input sequence [a1, . . . , ae] from its constant entries, and produces
1 as corresponding gcd’s; this function induces no additional arithmetic cost. Finally, we
write d =

∑e
i=1 deg ai.
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multiGcd(p, [a1, . . . , ae], T ) ==

Input Polynomials p, a1, . . . , ae, deg p < d, in K(T )[y] for a triangular set T

Output A non-critical triangular decomposition Ue+1 of T , and the sequence r1, . . . , re where
ri is the projection of gcd(p, ai, T ) over the refinement Ue+1 of T

1: [p1, . . . , pe]← multiRem(p, [a1, . . . , ae])
2: U1 ← [T ]
3: for i = 1, . . . , e do

4: ai ← split(ai, T,Ui) [deg ai]
5: pi ← split(pi, T,Ui) [deg pi]
6: Ui+1,gi ← gcd(pi,ai,Ui) [O

(
M(deg ai)logp(deg ai)

)
]

7: end for

8: for i = 1, . . . , e− 1 do

9: ri ← split(gi,Ui+1,Ue+1) [deg gi]
10: end for

11: re ← ge ; return Ue+1, [r1, r2, . . . , re]

multiGcd(p, [b1, . . . ,bℓ],S)

Input A triangular decomposition of S (of an unspecified triangular set), the family p =
[pS , S ∈ S], the sequence b1, . . . ,bℓ, with bi = [bS

i , S ∈ S]

Output A non-critical refinement T of S, and the sequence h1, . . . ,hℓ where hi is the union
over each S ∈ S of the projection of gcd(pS , bS

i , S) over the refinement of S in T

1: T′ ← [ ] ; h′i ← [ ]
2: for S ∈ S do

3: U, [g1, . . . ,gℓ]← multiGcd(pS, [bS
1 , . . . , bS

ℓ ], S)
4: T′ ← T′ cat U ; h′i ← h′i cat gi, 1 ≤ i ≤ ℓ
5: end for

6: T← removeCriticalPairs(T′)
7: hi ← split(h′i,T

′,T), 1 ≤ i ≤ ℓ
8: return T, [h1, . . . ,hℓ]

Algo 5.8: Multiple GCDs Modulo a Triangular Set

Proposition 5.6. Let f be in K(T )[y]. If T is endowed of an arithmetic time An(T ), one
can compute within

O
(
(M(deg f) + M(d) log(d))

)
An(T )

operations in k a non-critical decomposition U of T , as well as gcd(f, ai, T ) split over U,
for i = 1, . . . , e, where d =

∑
i≤r ai.

Proof: The first step is to compute the subproduct tree associated with the polynomials
a1, . . . , ae, and in particular the product a1 · · ·ae. Then, we reduce f modulo a1 · · ·ae,
before reducing it modulo all polynomials ai; this yields the polynomials fi = (f mod ai),
i = 1, . . . , e. From Proposition 1.7, points 3-4 and Lemma 1.6, the cost of these operations
admits an upper bound of the form

O
(
(M(deg f) + M(d) log d) An(T )

)
.
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If K(T ) is a field, it then suffices to successively compute all gcd(fi, ai) as done in the
above. In case K(T ) is not a field, these gcd computations may induce some splittings of
T , which must be taken into account. Setting initially U1 = [T ], we compute successive
refinements U2, . . . ,Ue+1 of U1. To this effect, at the j-th step, given fi = split(fi, T,Ui)
and ai = split(ai, T,Ui) it suffices to compute

Ui+1,hi+1 = gcd(fi, ai,Ui),

and to compute fi+1 = split(fi,Ui,Ui+1) and gi+1 = split(gi,Ui,Ui+1) As viewed in “Spec-
ification of xgcd” page 155 the cost is

O
(
M(deg ai) log(deg ai) An(T )

)

base field operations. Let then T be a non-critical refinement of Ue+1. After performing all
these computations, the final part of the algorithm consists in splitting all hi over T; the cost
for any i ≤ e is at most (deg ai)An(T ). Summing over all i, and using the super-additivity
of the function d 7→ M(d) log(d) finishes the proof. 2

5.5.2 Computing all pairs of gcd’s

The next step is to compute several pairs of gcd’s. On input, we take two families of
polynomials (a1, . . . , ae) and (b1, . . . , bs), where all ai (resp. all bi) are squarefree and pairwise
coprime. The following algorithm computes all gcd(ai, bj). As above, we suppose that all ai

are non-constant; to cover the general case, it suffices to introduce a wrapper function, with
arithmetic cost 0, that removes each constant ai from the input, and adds the appropriate
sequence (1, . . . , 1) in the output. Here, we write d = max(

∑
i deg ai,

∑
j deg bj).

The algorithm uses a divide and conquer strategy, on the subproduct tree built over the
sequence a1, . . . , ae. For convenience, we can assume that e = 2h, by eventually completing
the sequence a1, a2, . . . by polynomials equal to 1. Hence, the trees Tree, Left and Right

of line 6 are complete. To extend it to polynomials defined over a triangular sets T , the
multiGcd Algorithm 5.8 appears at line 2. The remaining of Algorithm 5.9 presents no
difficulty. As usual, the number in brackets denotes, when multiplied by An(T ), the cost at
the corresponding line.

Proposition 5.7. Let us consider Algorithm 5.9 and the notations therein. It computes
within

O
(
M(d)logp(d)2

)
An(T ), with d = max(

∑

i

deg ai,
∑

j

deg bj)

operations over k, a non-critical triangular decomposition W of T as well as the se-
quence of polynomials hi,j indexed by W, such that if Si,j, gi,j = gcd(ai, bj , T ), then
hi,j = split(gi,j,Si,j,T).

Proof: First, we compute the subproduct tree Tree associated with a1, . . . , ae, which cost
fits the required complexity. We focus next to the pairsOfGcd algorithm which takes Tree

in its input. The cost at line 2 comes from Proposition 5.6.
To get an inductive relation to analyze the cost of the algorithm, we introduce the

degrees dα,β =
∑β

i=α deg(ai), and the complexity cost P (d1, . . . , de), whence multiplied by
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pairsOfGcd([a1, . . . , ae], [b1, . . . , bℓ], T )

Input A triangular set T and polynomials a1, . . . , ae and b1, . . . , bℓ over K(T ), such that the
ai’s (respectively the bi’s) are pairwise coprime

Output A non-critical decomposition T′ of T . All the gcds gcd(ai, bj , T ) decomposed over
K(U), U ∈ T′

1: Tree← subProductTree(a1, . . . , ae) [O(M(d)logp(d)]
2: return pairsOfGcd(T, [T ],Tree, [b1, . . . , bℓ])

pairsOfGcd(T,S,Tree, [b1, . . . ,bℓ])

Input A triangular decomposition § of T , a sequence [b1, . . . ,bℓ] of polynomials decomposed
over S, i.e. bj = (bS

j , S ∈ S)
A complete binary tree Tree with polynomials in K(T )[y] at the nodes

Output A non-critical refinement W of S, as well as all the union over S ∈ S of the gcds
gcd(pS

j , bS
i , S) decomposed over the refinement of S in W, where pi is a polynomial

at a leaf of Tree, and pS
i its projection over K(S)

1: f ← split(rootOf(Tree), T,S) [d]
2: U, [g1, . . . ,gℓ]← multiGcd(f , [b1, . . . ,bℓ],S) [O(M(d)logp(d))]
3: if Tree has no child then

4: return U, [g1, . . . ,gℓ]
5: end if

6: Left← leftTree(Tree) ; Right← rightTree(Tree) ; e← #leaves(Tree)
7: R, [hij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ⌊e/2⌋]← pairsOfGcd(T,U,Left, [g1, . . . ,gℓ]) [P (d1, . . . , d e

2
)]

8: gi ← split(gi,U,R), 1 ≤ i ≤ ℓ [d]
9: W, [bij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ⌈e/2⌉]← pairsOfGcd(T,U,Right, [g1, . . . ,gℓ]) [P (d e

2
+1, . . . , de)]

10: hij ← split(hij ,U,W), 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ⌊e/2⌋ [d]
11: return W, [hij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ⌊e/2⌋] cat [bij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ⌈e/2⌉]

Algo 5.9: All Pairs of Gcds

An(T ), bounds the number of arithmetic operations of the pairsOfGcd algorithm, whith
input [a1, . . . , ae] verifying di := deg(ai).

The cost of line 8 is at most
∑ℓ

i=1 deg(gi)
(∑

U∈U An(U)
)
. Since U is non-critical tri-

angular decomposition of T , by the property (E0) of an arithmetic time, this is lower than∑ℓ
i=1 deg(gi)An(T ). For each triangular set U ∈ U, gU

i = gcd(fU , bU), where fU is in
split(f ,S,U), dU is in gi and bU in split(b,S,U). and are indexed by the triangular set
U ∈ U. By hypothesis, the families of polynomials [bS

1 , . . . , bS
ℓ ] are pairwise coprime, hence

so are their decomposition onto the refinement U of S. It follows that the gcd’s computed
at line 2 are also pairwise coprime: for all triangular set U ∈ U, gU

i ∈ gi and gU
j ∈ gj

are coprime. Hence,
∑ℓ

i=1 deg(gU
i ) ≤ deg(fU), for each triangular set U ∈ U, so that∑ℓ

i=1 deg(gi) ≤ deg(f). The cost at line 8 is at most deg(f)An(T ).

A similar analysis shows that line 10 costs at most d1, e
2
An(T ). This leads to the recursive

relation:

P (d1, . . . , de) ≤ d + O
(
M(d) log(d)

)
+ P (d1, . . . , d e

2
) + d + P (d e

2
+1, . . . , de) + d1 + . . . + d e

2
.
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From P (d1, . . . , de)− P (d1, . . . , d e
2
)− P (d e

2
+1, . . . , de) ≤ O

(
M(d)logp(d)

)
, we deduce that:

h−1∑

j=0

2j−1∑

i=0

P (di e

2j +1, . . . , d e

2j (i+1))− P (di e

2j +1, . . . , d e

2j (i+ 1
2
))− P (d e

2j (i+ 1
2
)+1, . . . , d e

2j (i+1))

≤
h−1∑

j=0

2j−1∑

i=0

O
(
M(di e

2j +1, e

2j (i+1))logp(di e

2j +1, e

2j (i+1))
)

By super linearity, it gives:

P (d1, . . . , de)−
e∑

i=1

P (di) ≤
h−1∑

j=1

O
(
M(d)logp(d)

)
≤ O

(
M(d)logp(d)2

)
.

The complexity cost P (di) corresponds to the case where the input sequence is reduced to
[ai]. The algorithm in that case stops after line 2 and the multiGcd call. Its complexity is
in O(M(di)logp(di)). By super-linearity,

∑e
i=1 P (di) ≤ O

(
M(d)logp(d)

)
, which permits to

conclude the proof of the complexity analysis.

5.5.3 A special case of coprime factorization

In the field case, the input of this subroutine are sequences of polynomials [a1, . . . , ae] and
[b1, . . . , bℓ], where all ai (resp. all bi) are squarefree and pairwise coprime. We compute a
gcd-free basis of [a1, . . . , ae, b1, . . . , bℓ]; this is done by computing all gcd(ai, bj), as well as
the quotients δi = ai/

∏
j gcd(ai, bj) and γj = bj/

∏
i gcd(ai, bj).

We denote by removeConstants(L) a subroutine that removes all constant polynomials
from a sequence L (such a function requires no arithmetic operation, so its cost is zero in
our model). In the complexity analysis, we still write d = max(

∑
i deg ai,

∑
j deg bj).

The validity of this algorithm is easily checked. The estimates for the cost of lines 2.2, 2.3,
3.2 and 3.3 come for the cost necessary to build a subproduct tree and perform Euclidean
division, together with the fact that βj (resp. αi) divides bj (resp. ai). The total cost is
thus in O(M(d)logp(d)2).

Proposition 5.8. One can compute a decomposition U of T and a coprime factorization
of a1, . . . , ae, b1, . . . , bℓ over U in

O
(
M(d) log2(d)

)
A(T )

operations in k, where d = max(
∑

i≤e deg ai,
∑

j≤ℓ deg bj).

Proof: We first deal with a special case, when all pairs of polynomials ai, bj admit a monic
gcd in K(T )[y], where the situation is similar to the field case.

Lemma 5.4. Suppose that for all i ≤ e, j ≤ ℓ, ai and bj admit a monic gcd in K(T )[y].
Then given all gi,j = gcd(ai, bj , T ) (note that no splittings occur in this situation), one can
compute a coprime factorization of a1, . . . , ae, b1, . . . , be over K(T ) in

O
(
M(d) log(d)

)
An(T )

operations in k.
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mergeGCDFreeBases([a1, . . . , ae], [b1, . . . , bℓ], T )

1: W, [hij 1 ≤ i ≤ ℓ , 1 ≤ j ≤ e]← pairsOfGcd([a1, . . . , ae], [b1, . . . , bℓ], T )
2: ai ← split(ai, T,W), 1 ≤ i ≤ e
3: bj ← split(bj , T,W), 1 ≤ j ≤ ℓ
4: for W ∈W do

5: for j = 1, . . . , ℓ do

6: LW
j ← removeConstants(hW

1j , . . . , hW
ej )

7: βW
j ←

∏
λ∈LW

j
λ ; γW

j ← bW
j quo βW

j

8: end for

9: for i = 1, . . . , e do

10: LW
i ← removeConstants(hW

i1 , . . . , hW
iℓ )

11: αW
i ←

∏
λ∈LW

i
λ ; δW

i ← aW
i quo αW

i

12: end for

13: AW ← removeConstants(hW
11 , . . . , hW

es , γW
1 , . . . , γW

ℓ , . . . , δW
1 , . . . , δW

e )
14: end for

15: return W, [AW , W ∈W]

mergeGCDFreeBases([a1, . . . ,ae], [b1, . . . ,bℓ],T)

1: T′ ← [ ] ; h← [ ]
2: for S ∈ T do

3: W,u← mergeGCDFreeBases([aS
1 , . . . , aS

e ], [bS
1 , . . . , bS

ℓ ], S)
4: T′ ← T′ cat W ; h← h cat u

5: end for

6: T← removeCriticalPairs(T′)
7: h← split(h,T′,T)
8: return T,h

Algo 5.10: Merge the GCDs of two gcd-free bases

Proof: For all i ≤ e, j ≤ ℓ, we compute the products

αj =
∏

i≤e

gi,j and βi =
∏

j≤ℓ

gi,j.

Recall that gi,j = gcd(ai, bj , T ). Since the polynomials bj are pairwise coprime, for i ≤ ℓ,
βi divides ai; let then δi ∈ K(T )[y] be the quotient. Similarly, since the polynomials ai are
pairwise coprime, we define for j ≤ ℓ γj as the quotient of bj by αj . Let a1, . . . , at be the
all non-constant polynomials in the family of {gi,j, δi, γj}. It is clear by construction that
all polynomials ai and bj can be written as products of the polynomials a1, . . . , at, and that
any polynomial in a1, . . . , at divides either one of the polynomials ai or bj . We finally prove
coprimality by case inspection.

• gi,j and gi′,j′ are coprime: either i 6= i′, in which case this follows from ai and ai′ being
coprime, or j 6= j′, and a symmetric argument applies.

• gi,j and δi are coprime: if not, βi and δi would have a common factor, so ai wouldn’t
be squarefree. The same holds for gi,j and γj.

• gi,j and δi′ are coprime, for i 6= i′: else, ai and ai′ would have a common factor. The
same holds for gi,j and γj′, with j 6= j′.
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• δi and γj are coprime: this is because δi divides mi and γj divides bj .

Let us give cost estimates. For all i, j, the polynomials βi and αj can be computed in
respectively

O
(
M(deg ai) log(deg ai)

)
An(T ) and O

(
M(deg bj) log(deg bj)

)
An(T )

operations in k, using the subproduct trees associated to [a1, . . . , ae] and [b1, . . . , bℓ], and
complexity estimate of Proposition 1.7, 3. Using fast Euclidean division, the polynomials δi

and γj can respectively be deduced in

O
(
M(deg ai)

)
An(T ) and O

(
M(deg bj)

)
An(T )

operations in k (Prop. 1.7, 1.). Summing over all i, j gives the required upper bound. 2

To treat the general case, we follow the lines of Algorithm 5.10. The call to pairsOfGcd
algorithm at line 1 produces a non-critical decomposition W of T . Hence the for loop at line
4, on the triangular sets W of W can be handled by the super-linearity of the arithmetic
times An(W ) and of the costs functions involved by the instructions. This permits to
reduce the complexity analysis to the field case, discussed in Lemma 5.4, where no such
loop occurred. Hence, the only additional cost caused by the decomposition W is the
splitting instructions at lines 2 and 3. Both requires at most 2dAn(T ) operations over k,
fitting the bound stated in Proposition 5.8.

Specification of merging the GCD’s The main algorithm of coprime factorization
requires a generalization of the algorithm merging two coprime factorizations of two families
of polynomials. It is described in the utter half part of Algorithm 5.10. The input is now a
non-critical decomposition T of a triangular set T and two families of lists of polynomials of
cardinality e and s respectively, and indexed by T: [aS

1 , . . . , aS
e ] , S ∈ T and [bS

1 , . . . , bS
ℓ ] S ∈

T. The complexity costs written at the end of each line are easy to prove regarding the
super-linearity of all the costs functions involved.

5.5.4 Conclusion: Proof of the main result

We finally give an algorithm for gcd-free basis. As input, we take squarefree, non-constant
polynomials a1, . . . , ae, with d =

∑
i≤e deg ai. We need a construction close to the subprod-

uct tree: we form a binary tree Sub′ whose nodes will be labeled by sequences of polynomials.
Initially the leaves contain the sequences of length 1 (a1), . . . , (ae), and all other nodes are
empty. Then, we go up the tree; at a node N , we use the subroutine above to compute a
gcd-free basis of the sequences labeling the children of N .

Notations Let MFB(da, db)An(T ) be an upper bound on the number of arithmetic op-
erations necessary to compute mergeGCDFreeBasis([a1, . . . , ae], [b1, . . . , bℓ], T ), where da :=∑

i≤e deg(ai) and db :=
∑

j≤ℓ deg(bj). Let F (d1, . . . , de)An(T ) the same for the gcdFeeBasis
algorithm, with inputs [c1, . . . , ce], list of polynomials in KT [y] with di := deg(ci). First
let us deduce an upper bound for the cost of the specification algorithm written in the
utter half part of Algorithm 5.11. There, we denote by each di := maxU∈T deg(aU

i ), where
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gcdFreeBasis([a1, . . . , ae], T )

1: if e = 1 then return [T ], [ae] ; end if

2: ℓ← e/2
3: U,g← gcdFreeBasis([a1, . . . , aℓ], T )
4: ai ← split(ai, T,U) , ℓ < i ≤ e
5: W,h← gcdFreeBasis([aℓ+1, . . . ,ae],U)
6: u← split(g,U,W)
7: u← removeConstants(u)
8: return mergeGCDFreeBases(u,h,W)

gcdFreeBasis([a1, . . . ,ae],T)

1: T′ ← [ ] ; res← [ ]
2: for U ∈ T do

3: W,h← gcdFreeBasis([aU
1 , . . . , aU

e ], U)
4: T′ ← T′ cat W ; res← res cat [h]
5: end for

6: T← removeCriticalPairs(T′)
7: res← split(res,T′,T)
8: res← removeConstants(res)
9: return T, res

Algo 5.11: Gcd-free Basis Modulo a Triangular Set

ai := [aU
i , U ∈ T] by definition (so that, for all U ∈ T,

∑
i≤e deg(aU

i ) ≤
∑

i≤e deg(ai)).
Then, the for loop of Step 2 requires at most:

∑

U∈T

F (d1, . . . , de)An(U)

arithmetic operations over k. The splitting operation at line 7 holds on a family of lists of
polynomials res indexed by the triangular sets in T. For each of these lists, the sum of the
degrees of the polynomials inside is bounded by

∑
i≤e deg(aU

i ). Hence Line 7, requires at
most dAn(T ) Finally, the utter half algorithm in Algo 5.11 has a cost fitting in:

(
F (d1, . . . , de) + O(1) + d

)
An(T ),

operations over k, if T is such that T is a refinement of T .

This recursive identity follows:

F (d1, . . . , de) ≤ F (d1, . . . , d e
2
) + d e

2
+1,e + F (d e

2
+1, . . . , de) + d e

2
+1,e + O(1) + d1, e

2

+ MFB(d1, e
2
, d e

2
+1,e)

h−1∑

j=0

2j−1∑

i=0

F (di e

2j +1, . . . , d e

2j (i+1))− F (di e

2j +1, . . . , d e

2j (i+ 1
2
))− F (d e

2j (i+ 1
2
)+1, . . . , d e

2j (i+1)) ≤

h−1∑

j=0

2j−1∑

i=0

di e

2j +1, e

2j (i+1) + d e

2j (1+ 1
2
)+1, e

2j (i+1) + O(1)+

MFB(di e

2j +1, e

2j (i+ 1
2
), d e

2j (i+ 1
2
)+1, e

2j (i+1))
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By super-linearity:

F (d1, . . . , de)−
e∑

i=1

G(di) ≤
h−1∑

j=0

d1,e + d e
2
+1,e + MFB(d1, e

2
, d e

2
+1,e)

But F (di) = 0, h ≤ logp(d) , d e
2
+1,e ≤ d and MFB(x, y) ∈

O
(
M(max(x, y)logp(max(x, y))2

)
:

F (d1, . . . , de) ≤ 2dlogp(d) + O
(
M(d)logp(d)3

)
.

5.6 Removing critical pairs

We next show how to remove critical pairs. This is an inductive process, whose complexity
is estimated in the following proposition and its corollary. We need to extend the notion of
“refining” introduced previously. Extending Definition 5.2, we say that a family of triangular
sets T′ refines another family T if for every T ∈ T, there exists a subset of T′ that forms a
triangular decomposition of 〈T 〉.

� Note the difference with the initial definition: we do not impose that the family T forms
a triangular decomposition of some ideal I. In particular, the triangular sets in T do not
have to generate coprime ideals.

Proposition 5.9. There exists a constant K such that the following holds. Let
A1() , . . . , An−1( ) be arithmetic times for triangular sets in 1, . . . , n− 1 variables.

Let T be a triangular set in n variables, and let U be a triangular decomposition of 〈T 〉.
Then for all j = 1, . . . , n, the following holds: given U≤j, one can compute a non-critical
triangular decomposition W of T≤j that refines U≤j using aj operations in k, where aj

satisfies the recurrence inequalities a0 = 0 and for j = 0, . . . , n− 1,

aj+1 ≤ 2aj + KM(dj+1 · · · dn)logp(dj+1 · · · dn)3Aj(T≤j),

and where dj = degj T for j = 1, . . . , n.

Before discussing the proof of this assertion, let us give an immediate corollary, which
follows by a direct induction.

Corollary 5.1. Given a triangular decomposition U of 〈T 〉, one can compute a non-critical
triangular decomposition W of 〈T 〉 that refines U in time

K
(
2n−1M(d1 · · · dn)logp(d1 · · · dn)3 + · · ·+ M(dn)logp(dn)

3An−1(T≤n−1)
)
.

Proof: We only sketch the proof of the proposition. Let thus j be in 0, . . . , n− 1 and let
U = U1, . . . , Ue be a triangular decomposition of 〈T 〉; we aim at removing the critical pairs
in U≤j+1. Let V be obtained by removing the critical pairs in U≤j . Thus, V consists in
triangular sets in k[X1, . . . , Xj], and has no critical pair.

Let us fix i ≤ e, and write U i = (U i
1, . . . , U

i
n). By definition, there exists a subset

Vi = V i,1, . . . , V i,ei of V which forms a non-critical decomposition of (U i
1, . . . , U

i
j). Our

next step is to compute

U i,1
j+1, . . . , U

i,ei

j+1 = split(U i
j+1, (U

i
1, . . . , U

i
j),Vi).
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5.7. Concluding the proof

Consider now a triangular set V in V. There may be several subsets Vi such that V ∈ Vi.
Let SV ⊂ {1, . . . , e} be the set of corresponding indices; thus, for any i ∈ SV , there exists
ℓ(i) in 1, . . . , ei such that V = V i,eℓ(i). We will then compute a coprime factorization of all

polynomials U
i,eℓ(i)

j+1 in K(V )[Xj+1], for i ∈ SV , and for all V .
This process will refine the family V, creating possibly new critical pairs: we get rid of

these critical pairs, obtaining a decomposition W. It finally suffices to split all polynomials
in the coprime factorization obtained before from V to W to conclude. The cost estimates
then takes into account the cost for the two calls to the same process in j variables, hence
the term 2aj, and the cost for coprime factorization and splitting. Studying the degrees of
the polynomials involved, this cost can be bounded by

KM(dj+1 · · · dn)logp(dj+1 · · · dn)
3Aj(T≤j)

for some constant K, according to the results in the last section. 2

5.7 Concluding the proof

All ingredients are now present to give the proof of the following result, which readily implies
the main theorems stated in the introduction.

Theorem 5.3. There exists a constant C1 such that, writing

An(d1, . . . , dn) = Cn
1

∏

i≤n

M(di)logp(di)
3,

the function T 7→ An(deg1 T, . . . , degn T ) is an arithmetic time for triangular sets in n
variables, for all n.

Proof: The proof requires to check that taking C1 big enough, all conditions defining
arithmetic times are satisfied. We do it by induction on n; the case n = 1 is settled by
Proposition 5.1, taking C1 larger than the constant C in that proposition, and using the fact
that logp(x) ≥ 1 for all x.

Let us now consider index n; we can thus assume that the function Aj is an arithmetic
time for triangular sets in j variables, for j = 1, . . . , n−1. Then, at index n, condition (E0)
makes no difficulty, using the super-additivity of the function M. Addition and multiplica-
tion (condition (E1)) and splitting (condition (E4)) follow from Proposition 5.2, again as
soon as the condition C1 ≥ C holds. The computation of quasi-inverses (condition (E2)) is
taken care of by Proposition 5.4, using our induction assumption on arithmetic times A, as
soon as C1 is large enough to compensate the constant factor hidden in the O( ) estimate
of that proposition.

The cost for removing critical pairs is given in the previous section. In view of Corol-
lary 5.1, and using the condition M(dd′) ≤ M(d)M(d′), after a few simplifications, to satisfy
condition (E3), C1 must satisfy the inequality

K(2n−1 + 2n−2C1 + · · ·+ Cn−1
1 ) ≤ Cn

1 ,

where K is the constant introduced in Corollary 5.1. This is the case for C1 ≥ K + 2. 2
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Appendix: merging triangular sets for inversion

This subsection is devoted to prove a complexity result for the Chinese Remaindering the-
orem over a triangular set.

In all that follows, referring to a triangular set T = (T1, . . . , Tn), di denotes the degree of
the polynomial Ti in its main variable Xi. Then, from the previous sections of this chapter,
there exists a constant C1 such that the following holds for any triangular set T:

D51 One can do all operations (+,×) modulo T in time Cn
1

∏
i≤n M(di).

D52 If U(1), . . . ,U(L) is a non-critical decomposition of T, then the reduction map

K[X]/T→
∏

U∈U(1),...,U(L)

K[X]/U

can be computed in time Cn
1

∏
i≤n M(di)logp(di).

D53 Let A ∈ K[X] be reduced modulo T. Then one can test if A is a unit modulo T in
time

Cn
1

∏

i≤n

M(di)logp3(di).

If so, one can compute a non-critical decomposition U(1), . . . ,U(L) of T, as well as a
set of polynomials

{BU ∈ K[X] | U ∈ U(1), . . . ,U(L)},

with BU reduced modulo U and such that BU = A−1 mod U, in the same time.

D54 Let Q be the quotient K[X]/〈T〉. If A, B are polynomials of degrees at most d in
Q[Y ], with B monic, such that 〈A, B〉 = 1, then one can compute a non-critical
decomposition U(1), . . . ,U(L) of T, as well as as a set of polynomials

{CU ∈ K[X][Y ] | U ∈ U(1), . . . ,U(L)},

with CU reduced modulo U and such that ACU = 1 mod (U, B), in time

Cn+1
1

∏

i≤n

M(di)logp3(di) M(d)logp(d).

All that is missing to prove our main assertion is inversion: even if A is a unit modulo 〈T〉,
computing its inverse will induce a decomposition of T.

To fill this gap, we will give an algorithm for recombination, based on Chinese remain-
dering. Recall thus (see for instance [15, Section 23]) that there exists a constant C2 with
the following property.

CRT1 Let A be a ring, let A1, . . . , AL be monic squarefree polynomials in A[Y ], such that
〈Ai, Aj〉 = 1 for all i < j ≤ L. Let A = A1 · · ·AL, and suppose that (A′)−1 modulo A
is known. Let finally d =

∑
ℓ≤L deg(Aℓ).

Given B1, . . . , BL in A[Y ], with deg Bℓ < deg Aℓ for all ℓ, one can compute the unique
B ∈ A[Y ] of degree less than d such that B = Bℓ mod Aℓ holds for all ℓ, in time
C2M(d)logp(d).
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5.7. Concluding the proof

We now present an algorithm for inversion modulo a Lazard triangular set T, assuming
that T generates a radical ideal: To invert A modulo 〈T〉, we will first apply point D53

above, inducing a splitting of T. We will then use recursively the previous result CRT1 to
recombine the results. Without loss of generality, in what follows, we assume that C1 = C2.

Step 1: One level of Chinese remaindering modulo a triangular set. We start by a
simple version of Chinese remaindering, where the triangular set T has been split only
once. Let thus T = (T1, . . . , Tn) be a Lazard triangular set in K[X1, . . . , Xn] that generates

a radical ideal. Let then i be an index ≤ n, and let T
(1)
i , . . . , T

(L)
i in K[X1, . . . , Xi] be such

that Ti = T
(1)
i · · ·T

(L)
i holds modulo 〈T1, . . . , Ti−1〉. Then, since T generates a radical ideal,

the family of Lazard triangular sets

U(1) =
(
T1, . . . , Ti−1, T

(1)
i , Ti+1 mod 〈T1, . . . , T

(1)
i 〉, . . . , Tn mod 〈T1, . . . , T

(1)
i 〉
)

...

U(L) =
(
T1, . . . , Ti−1, T

(L)
i , Ti+1 mod 〈T1, . . . , T

(L)
i 〉, . . . , Tn mod 〈T1, . . . , T

(L)
i 〉

)

is a non-critical decomposition of T.

Lemma 5.5. Suppose that (T ′i )
−1 mod 〈T1, . . . , Ti〉 is known. Given B1, . . . , BL in

K[X1, . . . , Xn] with Bℓ reduced modulo U(ℓ) for all ℓ, one can compute the unique B ∈
K[X1, . . . , Xn] reduced modulo T and such that B = Bℓ mod U(ℓ) holds for all ℓ in

Cℓ
1M(d1) · · ·M(di−1)M(di)logp(di)di+1 · · · dn

operations in K.

Proof: We apply point CRT1 to all coefficients of the polynomials Bℓ, seen in
Q[Xi][Xi+1, . . . , Xn], with Q = K[X1, . . . , Xi−1]/〈T1, . . . , Ti−1〉. 2

Step 2: More complex Chinese remaindering. We continue with a slightly more complex
version of the question, where we perform several instances of Chinese remaindering at the
various branches of a triangular decomposition, but always at the same level.

Let thus T = (T1, . . . , Tn) be a Lazard triangular set in K[X1, . . . , Xn] that generates
a radical ideal. Let i be an index ≤ n and let U(1), . . . , U(L) be a non-critical triangular
decomposition of (T1, . . . , Ti) in K[X1, . . . , Xi], with U(ℓ) = (U

(ℓ)
1 , . . . , U

(ℓ)
i ). Associated with

this decomposition of (T1, . . . , Ti), we have the corresponding non-critical decomposition of
T itself as

A(1) =
(
U

(1)
1 , . . . , U

(1)
i , Ti+1 mod U(1), . . . , Tn mod U(1)

)
...

A(L) =
(
U

(L)
1 , . . . , U

(L)
i , Ti+1 mod U(L), . . . , Tn mod U(L)

)
.

(5.6)

We will also be interested in another non-critical decomposition of T, defined by regrouping
some of the A(L) together at level i. For ℓ ≤ L, let thus V(ℓ) be defined by V(ℓ) =
(U

(ℓ)
1 , . . . , U

(ℓ)
i−1), so that V(ℓ) is a triangular set in K[X1, . . . , Xi−1]. Up to renumbering, we

may assume that there exists integers

M1 = 1 < · · · < MS < MS+1 = L + 1
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such that the equalities
V(M1) = · · · = V(M2−1)

...
V(Ms) = · · · = V(MS+1−1)

hold, with furthermore V(Mi) and V(Mj) pairwise distinct for i 6= j. Then, V(M1), . . . ,V(MS)

form a non-critical triangular decomposition of (T1, . . . , Ti−1), so that

B(1) =
(
V(M1), Ti mod V(M1), . . . , Tn mod V(M1)

)
...

B(S) =
(
V(MS), Ti mod V(MS), . . . , Tn mod V(MS)

) (5.7)

is a non-critical decomposition of T that refines the decomposition (5.6). Indeed, for s ≤ S,
A(Ms), . . . ,A(Ms+1−1) is a non-critical decomposition of B(s).

Let B1, . . . , BL be in K[X1, . . . , Xn], with Bℓ reduced modulo A(ℓ) for all ℓ. In view of
the previous point, there exist unique C1, . . . , CS in K[X1, . . . , Xn], with Cs reduced modulo
B(s), such that Bℓ = Cs mod A(ℓ), for Ms ≤ ℓ < Ms+1.

Lemma 5.6. Assume that the inverse Ki of T ′i modulo 〈T1, . . . , Ti〉 is known. The polyno-
mials C1, . . . , CS can be computed in time

2Ci
1M(d1)logp(d1) · · ·M(di)logp(di)di+1 · · · dn.

Proof: We first reduce Ki modulo V(M1), . . . ,V(MS). This is done coefficient by coefficient;
using point D52, this can be done in time

Ci−1
1 M(d1)logp(d1) · · ·M(di−1)logp(di−1)di.

Then, Lemma 5.5 shows that the cost of computing Cs is

Ci
1M(d1,s) · · ·M(di−1,s)M(di)logp(di)di+1 · · · dn,

where dj,s is the Xj-degree of U
(Ms)
j . Summing over all s gives the requested upper bound,

since the super-additivity of M implies that
∑

s≤S

M(d1,s) · · ·M(di−1,s) ≤ M(d1) · · ·M(di−1)

holds. 2

Conclusion. We prove our main result; we start by giving the cost for Chinese remaindering,
assuming that some inverses are known.

Proposition 5.10. Let T = (T1, . . . , Tn) be a Lazard triangular set in K[X] that generates
a radical ideal, and suppose that for j = 1, . . . , n, the inverse Kj of T ′j modulo 〈T1, . . . , Tj〉

is known. Let U(1), . . . ,U(L) be a non-critical triangular decomposition of T, and consider
a family of polynomials {BU | U ∈ U(1), . . . ,U(L)}, where BU is reduced modulo U.

Then one can compute the unique polynomial B reduced modulo T such that B = BU mod
U holds for all U in time

2nCn
1M(d1)logp(d1) · · ·M(dn)logp(dn).
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5.7. Concluding the proof

Proof: It suffices to apply Lemma 5.6 for i = n, . . . , 1. 2

We continue by working out the complexity of computing the required inverses.

Proposition 5.11. Let assumptions be as in the previous proposition, and let Ki be the
inverse of T ′i modulo 〈T1, . . . , Ti〉. Then K1, . . . , Kn can be computed in time

(3n2 + n)Cn
1

∏

i≤n

M(di)logp3(di).

Proof: Supposing that K1, . . . , Ki−1 are known, we work out the complexity of comput-
ing Ki. Applying point D54 to Ti and T ′i , we can compute a non-critical decomposition
U(1), . . . ,U(L) of (T1, . . . , Ti−1) as well as {Ki mod U | U ∈ U(1), . . . ,U(L)}, in time

Ci
1

∏

j≤i−1

M(dj)logp3(dj)M(di)logp(di).

Then, it suffices to apply Proposition 5.10 to recover Ki, in time

2iCi
1M(d1)logp(d1) · · ·M(di)logp(di).

Summing over all i gives the result. 2

We can then conclude the proof of our main assertion. All notation being as above,
let A be a unit modulo T, and let B = A−1. We first precompute the needed inverses
K1, . . . , Kn using the previous proposition. Applying point D53, we next compute a non-
critical decomposition U(1), . . . ,U(L) of T as well as {B mod U | U ∈ U(1), . . . ,U(L)}, in
time

Cn
1

∏

j≤n

M(dj)logp3(dj).

Since the required inverses are known, applying Proposition 5.10, we can recover B. Putting
all costs together yields a complexity for computing A−1 of

(3n2 + 3n + 1)Cn
1

∏

i≤n

M(di)logp3(di),

which is bounded by

Cn
∏

i≤n

M(di)logp3(di)

for C large enough.
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Conclusion

Les contributions de cette thèse permettent de placer la résolution des systèmes polynomiaux
par triangulation à un niveau plus compétitif et novateur : de part la possibilité d’étendre le
champs d’application des méthodes modulaires, et par l’ébauche d’une étude de complexité
sérieuse des calculs menés selon le principe D5. Les implantations des différents algorithmes,
sauf ceux relevant du principe D5, dans le logiciel Maple ont montré l’efficacité de ces
résultats, surtout quand les données initiales requièrent beaucoup de mémoire. Par ailleurs,
ces contributions ont aussi donné lieu à de nouveaux problèmes.

Bornes sur les coefficients

Nous avons prouvé des bornes sur les degrés en les Y d’ensembles triangulaires de Lazard
T ⊂ k(Y1, . . . , Ym)[X1, . . . , Xn]. Qu’en est-il de la taille des coefficients rationnels dans le cas
où k = Q ? Un résultat dans cette direction permettrait d’améliorer la borne de probabilité
du théorème 3.1 ; seul le cardinal de l’ensemble témoin S est pris en compte, aussi grandes
ses valeurs soient elles, ceci ne joue pas sur cette probabilité. Pour cela, il faut disposer de
ces bornes sur les ensembles triangulaires.

Maintenant que des résultats plus fins existent pour ces bornes, vient la question de leur
optimalité. Il s’agit d’établir un exemple où les quantités grandissent dans le même ordre
que le disent les bornes.

Décomposition équiprojetable

Si l’on enlève l’hypothèse d’engendrer un idéal radical, mais de rester des bases de Gröbner
lexicographiques réduites, zéro-dimensionnelles, avec coefficients dominants égaux à 1, les
multiplicités que peuvent représenter les ensembles triangulaires de Lazard sont simples :
l’idéal monomial de l’escalier en un point multiple est de la forme 〈xr1

1 , . . . , xrn
n 〉.

Pour pouvoir représenter un zéro avec une multiplicité plus complexe, par exemple
〈x2, xy, y2〉 il faut deux ensembles triangulaires U et V :

∣∣∣∣
U2(x, y) = y2

U1(x) = x

∣∣∣∣
V2(x, y) = y
V1(x) = x2

Il serait intéressant de savoir s’il est possible de généraliser la décomposition équiprojetable
du chapitre 4 aux cas de systèmes zéro-dimensionnels non radicaux.

Autres perspectives

En ce qui concerne le changement d’ordre du chapitre 3, nous avons du supposer que la châıne
régulière en entrée engendrait un idéal premier. L’algèbre linéaire en début d’algorithme
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qui détermine les couples de variables appelées exchange data et qui vont conduire les
différentes spécialisations et remontées, doit aussi détecter, dans le cas de plusieurs com-
posantes irréductibles, celles pour qui un jeu de variables sélectionnées est libre, et celles où
ça n’est pas le cas.

Enfin, pour l’algorithmique du principe D5, nous souhaiterions étendre les résultats
obtenus pour l’algorithme du Half-Gcd à tous les algorithmes ne manipulant que des
opérations de base et des tests à zéro. Gageons que ça n’est pas une mince affaire, mais
très prometteuse vue qu’une étape déterminante, l’estimation du coût de l’inversion, a été
accomplie.
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Résumé

Les systèmes polynomiaux sous forme triangulaire, notamment les châınes régulières et
en particulier les ensembles triangulaires de Lazard, sont des structures de données sim-
ples, permettant d’envisager des calculs modulaires (par spécialisation des coefficients, puis
remontée via un opérateur de Newton-Hensel), de “résoudre” les systèmes de polynômes
(méthodes de “triangulations”) et de représenter des tours d’extensions de corps pour cal-
culer avec les nombres algébriques.

Dans ces trois domaines, les méthodes et résultats nouveaux apportés, notamment sur
le plan de la complexité, étendent le champs d’application des ensembles triangulaires, et
leur impact face à d’autres méthodes de manipulation des équations polynomiales, surtout
les bases de Gröbner.

Tout d’abord la complexité en espace des coefficients n’est qu’en croissance quadratique
en fonction de données géometriques naturelles. Conséquence directe en est un opérateur
de Newton (triangulaire) requérant moins d’étapes de remontée, et donc des méthodes
modulaires plus encourageantes. Il en est ainsi pour la décomposition équiprojetable, pre-
mier algorithme de triangulation des systèmes basé sur une méthode modulaire, et pour
le problème du changement d’ordres monomiaux en dimension positive, dans des cas assez
particuliers toutefois pour une première approche.

Par ailleurs, calculer modulo un ensemble triangulaire en suivant le modèle de
l’évaluation dynamique, se voit doté, 20 ans après sa création, d’un premier résultat de
complexité satisfaisant.

Mots-clés. Résolution des systèmes polynomiaux, décompositions triangulaires, évaluation
dynamique, méthodes modulaires.

Abstract

The polynomial systems in their triangular shape, notably the regular chains and espe-
cially the Lazard triangular sets, are simple data structures, permitting to consider modular
computations (by specialization of the coefficients, then lifting through the Newton-Hensel
operator), to “solve” the polynomial systems (“decomposition-triangulations” methods) and
to represent tours of fields extensions to compute with algebraic numbers.

For those three topics, the methods and results provided here, notably on the complexity
front, extend the fields of applications of triangular sets, and their impact compared to other
methods of manipulation of algebraic equations, especially the Gröbner bases.

First of all the space complexity of the coefficients is only on quadratic growth in func-
tion of natural geometric data. Straightforward corollary is a (triangular) Newton operator
requiring less lifting steps, hence more promising modular methods. So it is for the equipro-
jectable decomposition, first algorithm of triangulation of polynomial systems based on a
modular method, and for the problem of the change of monomials orderings in positive
dimension, yet in some quite specific cases for a first approach.

In addition, computing modulo a triangular set by following the dynamic evaluation
model, is now endowed, 20 years after its apparition, of a first statisfaying complexity
study.

Keywords. Polynomial system solving, triangular decompositions, dynamic evaluation,
modular methods.
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