E. Dictionary, . Image, and . Cluster, ANIMALS, All kinds of animals, birds, mammals, alive, animal, green , animal placed in a tree, panoramic views, animals, oiseau, mammifere, unique, Living animals, Cluster 2: any image containing people, people is the main subject, people , costume, activity, men, women, group, seat, walk, stand, one,or,few,persons, human being, art, folklore, child, live, smart, wise, personnages humains, nationalities, traditions, societes humaines ; diversite ; peuples, ce qui fait penser aux vacances, aux lieux touristiques, endroits a visiter Photos of folklore around the world, show; celebrity; costume; disguise , hommes, traditional, costume, performance, people doing something together or alone, wear for special cultural events, social activities Cluster 3: nice scenary that could be taken on holidays, well-known monuments, building, street, electricity, monument, castle, recognizable, landscape with human buildings, towers, monument, batiment, pont, constructions humaines, paysages non naturels, famous sights, monuments, bridges, ce qui fait penser aux vacances, aux lieux touristiques, endroits a visiter, monuments, architecture, ARCHITECTURE, MONUMENTS Famous sites around the world, buildings; beaches; holidays; scenery; castles, castles, famous, old, city landscape, interest object mostly surrounded by sky, Historic buildings, religious buildings Cluster 4: nice scenary that could be taken on holidays, landscape without particular focus, grass, sky, nature, nature, postcard, nature, landscape without visible human presence, landscape,contryside,sea,beach,mountain, paysage, nature, water, tree, sky, earth, coasts, forests, castels, houses, paysage de cartes postales buildings; beaches; holidays; scenery; castles nature , widescreen, water and land separated by a long line, natural landscapes , urban landscapes, panoramic views, animals, eau, montagne, verdure, plage Cluster 5: nice scenary that could be taken on holidays, landscape without particular focus, water, sea, ships, boat, nature, postcard, landscape with human buildings, cars,boats,planes, nature Photos of sports, buildings; beaches; holidays; scenery; castles vehicule, marine, boats, means of transport, panoramic views, animals, machines or instruments

A. Al-ani and M. Deriche, A new technique for combining multiple classifiers using the dempster-shafer theory of evidence, Journal of Artificial Intelligence Research, vol.17, pp.333-361, 2002.

P. M. Atkinson and P. Lewis, Geostatistical classification for remote sensing: an introduction, Computers & Geosciences, vol.26, issue.4, pp.361-371, 2000.
DOI : 10.1016/S0098-3004(99)00117-X

H. Ayad and M. S. Kamel, Cluster-Based Cumulative Ensembles, Multiple Classifier Systems, pp.236-245, 2005.
DOI : 10.1007/11494683_24

C. Barnes, Image-driven data mining for image content segmentation, classification , and attribution, Geoscience and Remote Sensing, IEEE Transactions on, 2007.

A. Barron, J. Rissanen, and B. Yu, The minimum description length principle in coding and modeling, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2743-2760, 1998.
DOI : 10.1109/18.720554

H. Benhadda and F. Marcotorchino, IntroductionàIntroduction`Introductionà la similarité régularisée en analyse relationnelle, Math. Sci. Hum, vol.46, pp.45-69, 1998.

A. Bhattacharya, M. Roux, H. Maitre, I. H. Jermyn, X. Descombes et al., Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth's Surface, 2007 International Workshop on Content-Based Multimedia Indexing, 2007.
DOI : 10.1109/CBMI.2007.385418

C. Biernacki, G. Celeux, and G. Govaert, An improvement of the NEC criterion for assessing the number of clusters in a mixture model, Pattern Recognition Letters, vol.20, issue.3, pp.267-272, 1999.
DOI : 10.1016/S0167-8655(98)00144-5

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

J. Bordes and H. Ma??trema??tre, Semantic annotation of satellite images, Machine Learning and Data Mining in Pattern Recognition, 5th International Conference Poster Proceedings, IBaI publishing, pp.120-133, 2007.

M. Bossard, J. Feranec, and J. Otahel, Corine land cover technical guide -addendum 2000, european environment agency, 2000.

C. Boulis and M. Ostendorf, Combining Multiple Clustering Systems, 8th European conference on Principles and Practice of Knowledge Discovery in Databases(PKDD), LNAI 3202, pp.63-74, 2004.
DOI : 10.1007/978-3-540-30116-5_9

M. Campedel, I. Kyrgyzov, and H. Ma??trema??tre, Sélection non supervisé d'attributs -applicationàplication`plicationà l'indexation d'images satellitaires, 2007.

M. Campedel, E. Moulines, H. , M. Datcu, and M. , Feature selection for satellite image indexing, 2005.

J. Canny, Finding edges and lines in images, 1983.

J. Canny, A computational approach to edge detection, IEEE Transactions on pattern Analysis and Machine Intelligence, vol.8, issue.6, pp.679-698, 1986.

G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, Supervised learning of semantic classes for image annotation and retrieval, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.3, pp.394-410, 2007.

P. K. Chan, M. D. Schlag, and J. Y. Zien, Spectral K-way ratio-cut partitioning and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.13, issue.9, pp.1088-1096, 1994.
DOI : 10.1109/43.310898

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learning, vol.46, issue.1/3, pp.131-159, 2002.
DOI : 10.1023/A:1012450327387

P. Cheeseman and J. Stutz, Bayesian classification (AUTOCLASS): Theory and results, Advances in Knowledge Discovery and Data Mining, pp.153-180, 1996.

G. Coleman and H. Andrews, Image segmentation by clustering, Proceedings of the IEEE, pp.773-785, 1979.
DOI : 10.1109/PROC.1979.11327

D. Comaniciu, An algorithm for data-driven bandwidth selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.2, pp.281-288, 2003.
DOI : 10.1109/TPAMI.2003.1177159

D. Comaniciu and P. Meer, Mean shift analysis and applications, Proceedings of the Seventh IEEE International Conference on Computer Vision, p.1197, 1999.
DOI : 10.1109/ICCV.1999.790416

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

D. Comaniciu, V. Ramesh, and P. Meer, Real-time tracking of non-rigid objects using mean shift, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.142-149, 2000.
DOI : 10.1109/CVPR.2000.854761

M. Costache and M. Datcu, Learning -unlearning for mining high resolution eo images, Geoscience and Remote Sensing Symposium, 2007.

M. Datcu and K. Seidel, Image information mining: exploration of image content in large archives, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484), pp.253-264, 2000.
DOI : 10.1109/AERO.2000.879853

M. Datcu and K. Seidel, Human-centered concepts for exploration and understanding of earth observation images, Geoscience and Remote Sensing, IEEE Transactions on, 2005.

M. Datcu, H. Daschiel, A. Pelizzari, M. Quartulli, A. Galoppo et al., Information Mining in Remote Sensing Image Archives, IEEE Transactions, 2003.
DOI : 10.1007/978-3-642-60105-7_18

J. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by 2d visual cortical filters, pp.1160-1169, 1985.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, pp.1-38, 1977.

R. Deriche, Optimal edge detector using recursive filtering, Proceeding of the First International Conf. on Computer Vision pp, pp.501-505, 1987.

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision, vol.1, issue.2, pp.167-187, 1987.
DOI : 10.1007/BF00123164

I. S. Dhillon, Y. Guan, and B. Kulis, Kernel k-means, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.551-556, 2004.
DOI : 10.1145/1014052.1014118

E. Diday, Optimisation en classification automatique Tome 1, 2. (French) [Optimization in automatic classification, Institut National de Recherche en Informatique et en Automatique (INRIA), 1979.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2000.

D. Dunn and W. Higgins, Optimal Gabor filters for texture segmentation, IEEE Transactions on Image Processing, vol.4, issue.7, pp.947-964, 1995.
DOI : 10.1109/83.392336

D. Dunn, W. E. Higgins, and J. Wakeley, Texture segmentation using 2-D Gabor elementary functions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, issue.2, pp.130-149, 1994.
DOI : 10.1109/34.273736

M. Fashing and C. Tomasi, Mean shift is a bound optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.3, pp.471-474, 2005.
DOI : 10.1109/TPAMI.2005.59

M. Feder and N. Merhav, Hierarchical universal coding, IEEE Transactions on Information Theory, vol.42, issue.5, pp.1354-1364, 1996.
DOI : 10.1109/18.532877

M. Ferecatu and N. Boujemaa, Interactive Remote-Sensing Image Retrieval Using Active Relevance Feedback, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.4, pp.818-826, 2007.
DOI : 10.1109/TGRS.2007.892007

M. A. Bibliography-figueiredo and A. Jain, Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.381-396, 2002.
DOI : 10.1109/34.990138

C. A. Floudas and V. Visweswaran, Quadratic optimization, Handbook of global optimization, pp.217-270, 1994.

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01063327

A. Fred and A. Jain, Combining Multiple Clusterings Using Evidence Accumulation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.6, pp.835-850, 2005.
DOI : 10.1109/TPAMI.2005.113

J. Friedman, H. Trevor, and T. Robert, The Elements of Statistical Learning, Data Mining, Inference and Prediction, Statistics, 2001.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 1990.

A. Gionis, H. Mannila, and P. Tsaparas, Clustering aggregation, pp.341-352, 2005.

A. Giros, Comparison of partitions of two images for satellite image time series segmentation, Geoscience and Remote Sensing Symposium, pp.2592-2595, 2006.

J. Gleyzes, A. Meygret, C. Fratter, C. Panem, S. Baillarin et al., SPOT5: system overview and image ground segment, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), pp.300-302, 2003.
DOI : 10.1109/IGARSS.2003.1293756

B. Gorte and A. Stein, Bayesian classification and class area estimation of satellite images using stratification, IEEE Transactions on Geoscience and Remote Sensing, vol.36, issue.3, pp.803-812, 1998.
DOI : 10.1109/36.673673

C. C. Gotlieb and S. Kumar, Semantic clustering of index terms, J. ACM, vol.15, issue.4, pp.493-513, 1968.

G. Govaert, Analyse des données, 2003.

G. Govaert and M. Nadif, Clustering with block mixture models, Pattern Recognition, vol.36, issue.2, pp.463-473, 2003.
DOI : 10.1016/S0031-3203(02)00074-2

G. Govaert and M. Nadif, An EM algorithm for the block mixture model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.4, pp.643-647, 2005.
DOI : 10.1109/TPAMI.2005.69

G. Govaert and M. Nadif, Clustering of contingency table and mixture model, European Journal of Operational Research, vol.183, issue.3, pp.1055-1066, 2007.
DOI : 10.1016/j.ejor.2005.10.074

L. Gueguen and M. Datcu, Image Time-Series Data Mining Based on the Information-Bottleneck Principle, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.4, pp.827-838, 2007.
DOI : 10.1109/TGRS.2006.890557

I. Guyon, Gene selection for cancer classification using support vector machines, Machine Learning, vol.46, issue.1/3, pp.389-422, 2002.
DOI : 10.1023/A:1012487302797

R. Haralick, K. Shanmugam, and I. Dinstein, Textural features for image classification , CMetImAly77, pp.141-152, 1977.

W. Hardle, W. Hdrdle, and L. Simar, Applied Multivariate Statistical Analysis, 2003.

P. Heas and M. Datcu, Modeling trajectory of dynamic clusters in image time-series for spatio-temporal reasoning, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.7, pp.1635-1647, 2005.
DOI : 10.1109/TGRS.2005.847791

URL : https://hal.archives-ouvertes.fr/hal-00670342

C. Hsu and C. Lin, A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, vol.13, pp.415-425, 2002.

C. Huang, L. S. Davis, and J. R. Townshend, An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, vol.20, issue.4, pp.725-749, 2002.
DOI : 10.1080/01431169408954326

Y. S. Huang and C. Y. Suen, A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.1, pp.90-94, 1995.
DOI : 10.1109/34.368145

H. Imai and M. Iri, Polygonal approximations of a curve (formulations and algorithms ), Computational Morphology pp, pp.71-86, 1988.

A. Jain and R. C. Dubes, Algorithms for Clustering Data, 1988.

A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using gabor filters, Pattern Recogn, pp.1167-1186, 1991.

H. Kang and J. Kim, A probabilistic framework for combining multiple classifiers at abstract level, pp.97-98, 1997.

R. Kannan, S. Vempala, and A. Veta, On clusterings-good, bad and spectral, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.367-377, 2000.
DOI : 10.1109/SFCS.2000.892125

L. Kaufman and P. Rousseeuw, Finding Groups in Data: an introduction to cluster analysis, 1990.
DOI : 10.1002/9780470316801

A. Kuhn, S. Ducasse, and T. G??rbag??rba, Semantic clustering: Identifying topics in source code, Information and Software Technology, vol.49, issue.3, pp.230-243, 2007.
DOI : 10.1016/j.infsof.2006.10.017

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, IEEE Transactions on Neural Networks, vol.18, issue.3, 2004.
DOI : 10.1109/TNN.2007.897478

Y. Kurozumi and W. Davis, Polygonal approximation by the minimax method, Computer Graphics and Image Processing, vol.19, issue.3, pp.248-264, 1982.
DOI : 10.1016/0146-664X(82)90011-9

I. Kyrgyzov, H. Ma??trema??tre, and M. Campedel, Combining clustering results for the analysis of textures of spot5 images, 2005.

I. Kyrgyzov, H. Ma??trema??tre, and M. Campedel, A Method of Clustering Combination Applied to Satellite Image Analysis, 14th International Conference on Image Analysis and Processing (ICIAP 2007), pp.81-86, 2007.
DOI : 10.1109/ICIAP.2007.4362761

I. Kyrgyzov, H. Ma??trema??tre, and M. Campedel, A method of clustering combination, The Journal of the Pattern Recognition Society, 2008.

I. O. Kyrgyzov, O. O. Kyrgyzov, H. Ma??trema??tre, and M. Campedel, Kernel MDL to Determine the Number of Clusters, International Conference on Machine Learning and Data Mining MLDM 4571, pp.203-217, 2007.
DOI : 10.1007/978-3-540-73499-4_16

G. N. Lance and W. T. Williams, A general theory of classificatory sorting strategies: II. Clustering systems, The Computer Journal, vol.10, issue.3, pp.271-277, 1967.
DOI : 10.1093/comjnl/10.3.271

T. Lange and J. M. Buhmann, Combining partitions by probabilistic label aggregation, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.147-156, 2005.
DOI : 10.1145/1081870.1081890

D. T. Larose, Data Mining Methods and Models, 2006.
DOI : 10.1002/0471756482

K. Lau and G. Wade, Spatial-spectral clustering using recursive spanning trees, Communications, Speech and Vision, IEE Proceedings I, vol.138, issue.4, pp.232-238, 1991.

L. Hegarat-mascle, S. Bloch, I. Vidal-madjar, and D. , Application of dempstershafer evidence theory to unsupervised classification in multisource remote sensing, Geoscience and Remote Sensing, IEEE Transactions on, vol.35, issue.4, pp.1018-1031, 1997.

T. Li, M. Ogihara, and S. Ma, On combining multiple clusterings, Proceedings of the Thirteenth ACM conference on Information and knowledge management , CIKM '04, pp.294-303, 2004.
DOI : 10.1145/1031171.1031234

Y. Liu, D. Zhang, G. Lu, and W. Ma, A survey of content-based image retrieval with high-level semantics, Pattern Recognition, vol.40, issue.1, pp.262-282, 2007.
DOI : 10.1016/j.patcog.2006.04.045

D. J. Mackay, Information Theory, Inference & Learning Algorithms, 2002.

R. Manthalkar, P. Biswas, and B. Chatterji, Rotation invariant texture classification using even symmetric Gabor filters, Pattern Recognition Letters, vol.24, issue.12, pp.2061-2068, 2003.
DOI : 10.1016/S0167-8655(03)00043-6

F. Marcotorchino and N. El-ayoubi, Logical paradigm of relational writings of some fundamental measures of association. (Paradigme logique desécrituresdes´desécritures relationnelles de quelques critères fondamentaux d'association, Rev. Stat. Appl, vol.39, issue.2, pp.25-46, 1991.

F. Marcotorchino and P. Michaud, Agrégation de similarités en classification automatique, Rev. Stat. Appl, vol.30, issue.2, pp.21-44, 1982.

M. Campedel, M. Lienou, and I. K. , Vers la construction d'une ontologie appliquéè a l'imagerie satellitaire, 2008.

J. P. Marques-de-sá, Pattern Recognition: Concepts, Methods and Applications, 2001.
DOI : 10.1007/978-3-642-56651-6

G. Mclachlan and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

P. Michaud and F. Marcotorchino, Modeles d'optimisation en analyse des données rélationnelles, Math. Sci. Hum, vol.67, pp.7-38, 1979.

D. M. Muchoney, B. J. Strahler, and A. , Global landcover classification validation issues and requirements, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium, pp.233-235, 1996.
DOI : 10.1109/IGARSS.1996.516301

A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural Information Processing Systems, pp.849-856, 2002.

G. Papakonstantinou, Optimal polygonal approximation of digital curves, Signal Processing, vol.8, issue.1, pp.131-135, 1985.
DOI : 10.1016/0165-1684(85)90094-5

A. Parulekar, R. Datta, J. Li, and J. Z. Wang, Large-scale Satellite Image Browsing using Automatic Semantic Categorization, Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05), p.1873, 2005.
DOI : 10.1109/ICCV.2005.257

W. K. Pratt, Digital Image Processing, 2001.

R. Hanson, J. S. Cheeseman, and P. , Bayesian classification theory, Artificial Intelligence Branch, 1991.

A. C. Rencher, Methods of multivariate analysis, 2002.

J. Rissanen, Modeling by shortest data description, Automatica, vol.14, issue.5, pp.465-471, 1978.
DOI : 10.1016/0005-1098(78)90005-5

J. Rissanen, Universal coding, information, prediction, and estimation, IEEE Transactions on Information Theory, vol.30, issue.4, pp.629-636, 1984.
DOI : 10.1109/TIT.1984.1056936

J. Rissanen, Stochastic complexity and its applications, 1995.

D. B. Rowe, Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing, 2002.
DOI : 10.1201/9781420035261

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization , Optimization, and Beyond, 2001.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

B. Schölkopfsch¨schölkopf, A. Smola, and K. Uller, Nonlinear component analysis as a kernel eigenvalue problem, Max Planck Institute for Biological Cybernetics, 1996.

K. Shanmugan, R. M. Haralick, and I. Dinstein, Textural features for image classification, IEEE Transactions on Systems, Man and Cybernetics, vol.3, issue.6, pp.610-621, 1973.

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

A. Stein, F. Meer, and B. Gorte, Spatial Statistics for Remote Sensing, 2002.
DOI : 10.1007/0-306-47647-9

A. Strehl and J. Ghosh, Cluster ensembles -a knowledge reuse framework for combining multiple partitions, Journal on Machine Learning Research (JMLR), vol.3, pp.583-617, 2002.

J. Suykens and G. Horvath, Advances in Learning Theory: Methods, Models, and Applications, 2002.

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 2003.
DOI : 10.1016/B0-12-227240-4/00132-5

A. Topchy, A. Jain, and W. Punch, A Mixture Model for Clustering Ensembles, Proc. SIAM Conf. on Data Mining, pp.379-390, 2004.
DOI : 10.1137/1.9781611972740.35

A. Topchy, B. Minaei-bidgoli, A. Jain, and W. Punch, Adaptive clustering ensembles, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.272-275, 2004.
DOI : 10.1109/ICPR.2004.1334105

V. N. Vapnik, Statistical Learning Theory, 1998.

V. N. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics, 1999.

M. Vetterli, Filter banks allowing perfect reconstruction, Signal Process, pp.219-244, 1986.

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.
DOI : 10.1007/BF02289263

A. R. Webb, Statistical Pattern Recognition, 2002.

T. Weldon, W. Higgins, and D. Dunn, Efficient Gabor filter design for texture segmentation, Pattern Recognition, vol.29, issue.12, pp.2005-2015, 1996.
DOI : 10.1016/S0031-3203(96)00047-7

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 1999.
DOI : 10.1145/507338.507355

L. Xu, A. Krzyzak, and C. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.3, pp.418-435, 1992.
DOI : 10.1109/21.155943

Y. Qian and C. S. , Clustering combination method, pp.732-735, 2000.

S. Yu and J. Shi, Multiclass spectral clustering, Computer Vision, Proceedings. Ninth IEEE International Conference on, 2003.

O. Zammit, X. Descombes, and J. Zerubia, Assessment of different classification algorithms for burnt land discrimination, Geoscience and Remote Sensing Symposium, IEEE International, pp.3000-3003, 2007.

Y. Zhao and G. Karypis, Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering, Machine Learning, vol.55, issue.3, pp.311-331, 2004.
DOI : 10.1023/B:MACH.0000027785.44527.d6