R. W. Baker, Membrane Technology and Applications, 2004.
DOI : 10.1002/9781118359686

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche et al., Sub-5 nm FIB direct patterning of nanodevices, Microelectronic Engineering, vol.84, pp.5-8779783, 2007.

Y. Ito, M. Inaba, D. J. Chung, and Y. Imanishi, Control of water permeation by pH and ionic strength through a porous membrane having poly (carboxylic acid) surfacegrafted, Macromolecules, issue.26, p.2573137316, 1992.

M. Kim, S. Kiyohara, S. Konishi, S. Tsuneda, K. Saito et al., Ring-opening reaction of poly-GMA chain grafted onto a porous membrane, Journal of Membrane Science, vol.117, issue.1-2, p.3338, 1996.
DOI : 10.1016/0376-7388(96)00026-9

J. Johansson and T. Masuoka, Penetration of pores in membranes by plasma polymer forming species, Macromolecular Rapid Communications, vol.20, issue.1, p.1215, 1999.

A. M. Mika, R. F. Childs, J. M. Dickson, B. E. Mccarry, and D. R. Gagnon, A new class of polyelectrolyte-lled microltration membranes with environmentally controlled porosity, Journal of Membrane Science, vol.108, issue.12, p.3756, 1995.

E. M. Gabriel and G. E. Gillberg, In situ modication of microporous membranes, Journal of Applied Polymer Science, vol.48, issue.12, p.20812090, 1993.

Y. Wang, J. H. Kim, K. H. Choo, Y. S. Lee, and C. H. Lee, Hydrophilic modication of polypropylene microltration membranes by ozone-induced graft polymerization, Journal of Membrane Science, vol.169, issue.2, p.269276, 2000.

C. Y. Shih, K. R. Lee, and J. Y. Lai, 60Co ??-ray irradiation modified poly(4-methyli-pentene) membrane for oxygenator, European Polymer Journal, vol.30, issue.5, pp.629-634, 1994.
DOI : 10.1016/0014-3057(94)90072-8

R. Mazzei, E. Smolko, D. Tadey, and L. Gizzi, Radiation grafting of NIPAAm on PVDF nuclear track membranes. Nuclear Instruments and Methods in, Physics Research B, vol.170, pp.3-4419426, 2000.

L. Liang, X. Feng, L. Peurrung, and V. Viswanathan, Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes, Journal of Membrane Science, vol.162, issue.1-2, p.235246, 1999.
DOI : 10.1016/S0376-7388(99)00145-3

L. Liang, M. Shi, V. V. Viswanathan, L. M. Peurrung, and J. S. Young, Temperaturesensitive polypropylene membranes prepared by plasma polymerization, Journal of Membrane Science, vol.177, issue.12, p.97108, 2000.

Y. J. Wang, C. H. Chen, M. L. Yeh, G. H. Hsiue, and B. C. Yu, A one-side hydrophilic polypropylene membrane prepared by plasma treatment, Journal of Membrane Science, vol.53, issue.3, p.275286, 1990.
DOI : 10.1016/0376-7388(90)80019-I

A. F. Ismail, N. Zubir, M. M. Nasef, K. M. Dahlan, and A. R. Hassan, Physico-chemical study of sulfonated polystyrene pore-lled electrolyte membranes by electrons induced grafting Preparation of composite polymer electrolytes by electron beam-induced grafting : Proton-and lithium ion-conducting membranes, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, p.189196168172, 2005.

R. Spohr and K. Bethge, Ion tracks and microtechnology : principles and applications, 1990.
DOI : 10.1007/978-3-322-83103-3

T. G. Park and A. S. Homan, Synthesis and characterization of pH- and/or temperature-sensitive hydrogels, Journal of Applied Polymer Science, vol.46, issue.4, p.659671, 1992.
DOI : 10.1002/app.1992.070460413

E. S. Gil and S. M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Progress in Polymer Science, vol.29, issue.12, p.11731222, 2004.
DOI : 10.1016/j.progpolymsci.2004.08.003

H. G. Schild, Poly(N-isopropylacrylamide) : experiment, theory and application. Progress in polymer science, p.163249, 1992.
DOI : 10.1016/0079-6700(92)90023-r

O. E. Philippova, D. Hourdet, R. Audebert, and A. R. Khokhlov, pH-responsive gels of hydrophobically modied poly (acrylic acid), Macromolecules, issue.26, p.3082788285, 1997.

S. Åkerman, P. Viinikka, B. Svarfvar, K. Järvinen, K. Kontturi et al., Transport of drugs across porous ion exchange membranes, Journal of Controlled Release, vol.50, issue.1-3, pp.1-3153166, 1998.
DOI : 10.1016/S0168-3659(97)00131-4

I. Y. Galaev and B. Mattiasson, 'Smart' polymers and what they could do in biotechnology and medicine, Trends in Biotechnology, vol.17, issue.8, p.269277, 1999.
DOI : 10.1016/S0167-7799(99)01345-1

A. S. Homan, Hydrogels for Biomedical Applications, Advanced Drug Delivery Review, vol.43, p.312, 2002.

N. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Hydrogels in pharmaceutical formulations, European Journal of Pharmaceutics and Biopharmaceutics, vol.50, issue.1, pp.27-46, 2000.
DOI : 10.1016/S0939-6411(00)00090-4

Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Review, vol.53, issue.3, p.32139, 2001.

D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery???, Advanced Drug Delivery Reviews, vol.58, issue.15, p.16551670, 2006.
DOI : 10.1016/j.addr.2006.09.020

A. Kumar, A. Srivastava, I. Y. Galaev, and B. Mattiasson, Smart polymers: Physical forms and bioengineering applications, Progress in Polymer Science, vol.32, issue.10, pp.1205-1237, 2007.
DOI : 10.1016/j.progpolymsci.2007.05.003

Y. S. Park, Y. Ito, and Y. Imanishi, Permeation Control through Porous Membranes Immobilized with Thermosensitive Polymer, Langmuir, vol.14, issue.4, p.910914, 1998.
DOI : 10.1021/la970866r

H. Alem, A. S. Duwez, P. Lussis, P. Lipnik, A. M. Jonas et al., Microstructure and thermo-responsive behavior of poly (Nisopropylacrylamide ) brushes grafted in nanopores of track-etched membranes, Journal of Membrane Science, 2007.

. Anionic, Cationic Membranes Obtained by a Radiation Grafting Method for Use in Waste Water Treatment, Polymer International, vol.43, issue.4, p.321332, 1997.

S. Barcio, Thermally Responsive Surfaces for Tissue Engineering and Apparel Applications, 2006.

M. Tunc, X. Cheng, B. D. Ratner, E. Meng, and M. Humayun, REVERSIBLE THERMOSENSITIVE GLUE FOR RETINAL IMPLANTS, Retina, vol.27, issue.7, p.938942, 2007.
DOI : 10.1097/IAE.0b013e318042ae81

J. Kost, Pulsed and Self-Regulated Drug Delivery, 1990.

Y. Imanishi and Y. Ito, Glucose-sensitive insulin-releasing molecular systems, Pure and Applied Chemistry, vol.67, issue.12, p.20152021, 1995.
DOI : 10.1351/pac199567122015

A. J. Lovinger, Poly (vinylidene uoride) Developments in Crystalline Polymers, 1982.

R. Hasegawa, M. Kobayashi, and H. Tadokoro, Molecular Conformation and Packing of Poly (vinylidene uoride) Stability of Three Crystalline Forms and the Eect of High Pressure, Polymer Journal, vol.3, issue.5, p.591599, 1972.

K. Matsushige, K. Nagata, and T. Takemura, Direct Observation of Crystal Transformation Process of Poly (vinylidene uoride) under High Pressure by PSPC X-Ray System, Jpn. J. Appl. Phys, vol.17, p.467472, 1978.

W. W. Doll and J. B. Lando, Polymorphism of poly-(vinylidene uoride), 111. The crystal structure of phase 11, Journal of Macromolecular Science-Physics , B, issue.4, p.309, 1970.

J. B. Lando, H. G. Olf, and A. Peterlin, Nuclear magnetic resonance and x-ray determination of the structure of poly (vinylidene uoride) Journal of Polymer Science Part A-1 Polymer Chemistry, p.941951, 1966.

H. Kawai, The piezoelectricity of poly (vinylidene uoride), Japanese Journal of Applied Physics, vol.8, issue.7, p.975976, 1969.

J. G. Bergman-jr, J. H. Mcfee, and G. R. Crane, Pyroelectricity and optical second harmonic generation in polyvinylidene uoride lms, Applied Physics Letters, vol.18, issue.5, p.203205, 1971.

K. Nakamura and Y. Wada, Piezoelectricity, pyroelectricity and electrosctriction constant in PVF, Journal of Polymer Science, vol.9, p.16173, 1971.

M. G. Broadhurst and G. T. Davis, Physical basis for piezoelectricity in PVDF, Ferroelectrics, vol.23, issue.1, p.313, 1984.
DOI : 10.1080/00150198408017504

K. Tashiro, M. Kobayashi, and H. Tadokoro, Elastic Moduli and Molecular Structures of Several Crystalline Polymers, Including Aromatic Polyamides, Macromolecules, vol.10, issue.2, p.413420, 1977.
DOI : 10.1021/ma60056a033

P. B. Price and R. M. Walker, Electron Microscope Observation of Etched Tracks from Spallation Recoils in Mica, Physical Review Letters, vol.8, issue.5, p.217219, 1962.
DOI : 10.1103/PhysRevLett.8.217

R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids, Scientific American, vol.220, issue.6, p.191202, 1975.
DOI : 10.1038/scientificamerican0669-30

V. N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, vol.43, issue.3, p.61102, 2004.
DOI : 10.1016/j.mser.2003.10.001

X. Zhao, Y. Liu, S. Inoue, T. Suzuki, Y. Jones et al., Smallest carbon nanotube is 3 å in diameter, Physical Review Letters, issue.12, p.92125502, 2004.

J. J. Nakane, M. Akeson, and A. Marziali, Nanopore sensors for nucleic acid analysis, Journal of Physics: Condensed Matter, vol.15, issue.32, pp.1365-1393, 2003.
DOI : 10.1088/0953-8984/15/32/203

F. Vial, A. G. Oukhaled, L. Auvray, and C. Tribet, Long-living channels of well dened radius opened in lipid bilayers by polydisperse, hydrophobically-modied polyacrylic acids, Soft Matter, vol.3, p.7578, 2007.

M. Pastoriza-gallego, G. Oukhaled, J. Mathé, B. Thiebot, J. M. Betton et al., Urea denaturation of ??-hemolysin pore inserted in planar lipid bilayer detected by single nanopore recording: Loss of structural asymmetry, FEBS Letters, vol.202, issue.18, p.58133713376, 2007.
DOI : 10.1016/j.febslet.2007.06.036

A. N. Broers, Fabrication Limits of Electron Beam Lithography and of UV, X-Ray and Ion-Beam Lithographies, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.353, issue.1703, p.291311, 1703.
DOI : 10.1098/rsta.1995.0101

A. Storm, . Chen, . Ling, C. Hw-zandbergen, and . Dekker, Fabrication of solidstate nanopores with single-nanometre precision, Nature Materials, vol.2, issue.8, p.537540, 2003.

T. Schenkel, V. Radmilovic, S. J. Stach, A. Park, and . Persaud, Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, p.2720, 2003.
DOI : 10.1116/1.1622935

D. F. Moore, J. H. Daniel, and J. F. Walker, Nano-and microtechnology applications of focused ion beam processing, Microelectronics Journal, vol.28, issue.4, p.465473, 1997.

K. Arshak, M. Mihov, A. Arshak, D. Mcdonagh, and D. Sutton, Novel dry-developed focused ion beam lithography scheme for nanostructure applications, Microelectronic Engineering, vol.73, issue.74, p.144151, 2004.
DOI : 10.1016/S0167-9317(04)00088-7

S. Shingubara, Fabrication of Nanomaterials Using Porous Alumina Templates, Journal of Nanoparticle Research, vol.5, issue.1/2, p.1730, 2003.
DOI : 10.1023/A:1024479827507

C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, vol.266, issue.5193, p.1961, 1994.
DOI : 10.1126/science.266.5193.1961

W. Ensinger, Formation of nanopore membranes and nanowires by high energy ion irradiation of polymer foils, Surface and Coatings Technology, vol.201, issue.19-20, pp.19-2084428447, 2007.
DOI : 10.1016/j.surfcoat.2006.03.060

D. Fink, Nanoclusters and nanotubes for swift ion track technology. Radiation Eects and Defects in Solids, p.151156, 2007.

A. F. Morpurgo, C. M. Marcus, and D. B. Robinson, Controlled fabrication of metallic electrodes with atomic separation, Applied Physics Letters, vol.74, issue.14, p.7420842086, 1999.
DOI : 10.1063/1.123765

F. Hartley and C. Malek, Nanometer X-ray Lithography Proceedings of SPIE-The International Society For Optical Engineering, p.4454, 1999.

E. Ferain and R. Legras, Track-etch templates designed for micro- and nanofabrication, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.208, p.115122, 2003.
DOI : 10.1016/S0168-583X(03)00637-2

C. Trautmann, R. Spohr, and S. Bouard, Etching threshold for ion tracks in polyimide . Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.116, issue.1, p.429433, 1996.

H. Blok, F. Hanappe, F. M. Kiely, B. D. Pate, and J. Peter, Further measurement of the track lengths of heavy ions in mica, Nuclear Instruments and Methods, vol.119, p.307312, 1974.
DOI : 10.1016/0029-554X(74)90770-8

C. Trautmann, K. Schwartz, and O. Geiss, Chemical etching of ion tracks in LiF crystals, Journal of Applied Physics, vol.83, issue.7, p.3560, 1998.
DOI : 10.1063/1.366572

G. Spierings, Wet chemical etching of silicate glasses in hydrouoric acid based solutions, Journal of Materials Science, vol.28, issue.23, p.62616273, 1993.

Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr et al., Ion transport through asymmetric nanopores prepared by ion track etching, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.208, p.143148, 2003.
DOI : 10.1016/S0168-583X(03)00884-X

Z. Y. Zhu, J. L. Duan, Y. Maekawa, H. Koshikawa, and M. Yoshida, Bulk and track etching of PET studied by spectrophotometer, Radiation Measurements, vol.38, issue.3, pp.255-261, 2004.
DOI : 10.1016/j.radmeas.2003.12.032

G. Guillot and F. Rondelez, Characteristics of submicron pores obtained by chemical etching of nuclear tracks in polycarbonate films, Journal of Applied Physics, vol.52, issue.12, p.7155, 1981.
DOI : 10.1063/1.328690

E. Ferain and R. Legras, Pore shape control in nanoporous particle track etched membrane, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.174, issue.1-2, p.116122, 2001.
DOI : 10.1016/S0168-583X(00)00455-9

R. L. Fleischer and P. B. Price, Tracks of Charged Particles in High Polymers, Science, vol.140, issue.3572, p.1221, 1963.
DOI : 10.1126/science.140.3572.1221

R. L. Fleischer and P. B. Price, Charged Particle Tracks in Glass, Journal of Applied Physics, vol.34, issue.9, p.2903, 1963.
DOI : 10.1063/1.1729828

B. E. Fischer and R. Spohr, Production and use of nuclear tracks: imprinting structure on solids, Reviews of Modern Physics, vol.55, issue.4, p.907948, 1983.
DOI : 10.1103/RevModPhys.55.907

H. B. Luck, Mechanism of particle track etching in polymeric nuclear track detectors, Nuclear Instruments and Methods in Physics Research, vol.202, issue.3, p.497, 1982.
DOI : 10.1016/0167-5087(82)90547-6

.. Etude-par-diusion-de-neutrons-aux-petits-angles, 47 2.2.3.2 Isotropie des spectres, p.54

T. Propriétés-de, 55 2.3.1 Perméation gazeuse, p.58

Y. Suzuki, T. Yamaki, H. Koshikawa, M. Asano, K. O. Voss et al., Preparation of ion-track membranes of poly(p-phenylene terephthalamide): Control of pore shape by irradiation with different ion beams, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.260, issue.2, p.260693695, 2007.
DOI : 10.1016/j.nimb.2007.02.091

E. Ferain and R. Legras, Ecient production of nanoporous particle track etched membranes with controlled properties, Radiation Measurements, vol.34, issue.16, p.585588, 2001.

A. Brûlet, D. Lairez, A. Lapp, and J. Cotton, Improvement of data treatment in small-angle neutron scattering, Journal of Applied Crystallography, vol.40, issue.1, p.165177, 2007.
DOI : 10.1107/S0021889806051442

F. W. Altena, H. A. Knoef, H. Heskamp, D. Bargeman, and C. A. Smolders, Some comments on the applicability of gas permeation methods to characterize porous membranes based on improved experimental accuracy and data handling, Journal of Membrane Science, vol.12, issue.3, p.313322, 1983.
DOI : 10.1016/S0376-7388(00)80195-7

D. Wang, K. Li, and W. K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, Journal of Membrane Science, vol.163, issue.2, pp.211-220, 1999.
DOI : 10.1016/S0376-7388(99)00181-7

M. Khayet, C. Y. Feng, K. C. Khulbe, and T. Matsuura, Preparation and characterization of polyvinylidene uoride hollow ber membranes for ultraltration, Polymer, issue.14, p.4338793890, 2002.

V. V. Ovchinnikov, V. D. Seleznev, V. V. Surguchev, and V. I. Tokmantsev, Investigation of eciency of gas separation on nclear track membranes with ultra-small pores, Journal of Membrane Science, issue.3, p.55311323, 1991.

I. M. Yamazaki, L. P. Geraldo, and R. Paterson, Characterization of polycarbonate nuclear track-etched membranes by means of the gas permeation method. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, p.418491496, 1998.

I. David and . Hitchcock, The size of pores in collodion membranes, The Journal of General Physiology, vol.9, issue.6, p.755762, 1926.

M. Knudsen, The law of molecular ow and of inner friction ow of gases through tubes, Journal of Membrane Science, vol.100, p.2325, 1995.

R. A. Noulty and D. G. Leaist, Activity coecients and diusion coecients of dilute aqueous solutions of lithium, sodium, and potassium hydroxides, Journal of Solution Chemistry, vol.13, issue.11, p.767778, 1984.

V. M. Lobo, Mutual diusion coecients in aqueous electrolyte solutions, Pure and Applied Chemistry, vol.65, issue.12, p.26132640, 1993.

J. Luká², K. Richau, H. H. Schwarz, D. Paul, R. Neumann et al., Surface characterization of polyelectrolyte complex membranes based on sodium cellulose sulfate and various cationic components Preparation of synthetic nanopores with transport properties analogous to biological channels, Journal of Membrane Science Surface Science, vol.13114, issue.532, p.394710611066, 1997.

P. Déjardin, E. N. Vasina, V. V. Berezkin, V. D. Sobolev, and V. I. Volkov, Streaming Potential in Cylindrical Pores of Poly(ethylene terephthalate) Track-Etched Membranes:?? Variation of Apparent ?? Potential with Pore Radius, Langmuir, vol.21, issue.10, pp.4680-4685, 2005.
DOI : 10.1021/la046913e

K. Makuuchi, T. Seguchi, T. Suwa, T. Abe, and N. Tamura, Radioinduced crosslinking of poly (vinylidene uoride), Nippon Kagaku Kaishi, issue.8, p.1973, 1973.

K. Makuuchi, M. Asano, and T. Abe, Eect of evolved hydrogen uoride on radiationinduced crosslinking and dehydrouorination of poly (vinylidene uoride), Journal of Polymer Science Polymer Chemistry Edition, vol.14, issue.3, p.617625, 1976.

L. Torrisi and G. Foti, Kev ion beam irradiation of polyvinylidene uoride (PVDF)

N. Betz, A. L. Moël, E. Balanzat, J. Jm-ramillon, . Lamotte et al., A FTIR study of PVDF irradiated by means of swift heavy ions, Journal of Polymer Science Part B: Polymer Physics, vol.32, issue.8, p.3214931502, 1994.
DOI : 10.1002/polb.1994.090320821

E. Balanzat, S. Bouard, A. L. Moël, and N. Betz, Physico-chemical modications induced in polymers by swift heavy ions. Nuclear Instruments and Methods in, Physics Research Section B, vol.91, pp.1-4140145, 1994.

S. Bouard, N. Betz, and E. Balanzat, Swift heavy ion modication of polymers. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.105, issue.1, p.4654, 1995.

V. Chailley, E. Balanzat, and E. Dooryhee, Amorphization kinetics of poly (vinylidene uoride) on high-energy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.105, issue.1, p.110114, 1995.

A. L. Bouedec, N. Betz, S. Esnouf, and A. L. Moël, Swift heavy ion irradiation eects in alpha poly (vinylidene uoride) : spatial distribution of defects within the latent track. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.151, issue.1, p.8996, 1999.

C. Aymes-chodur, Radiogreage de uoropolymères en vue de l'obtention de surfaces hémocompatibles, 1998.

C. Aymes-chodur, S. Esnouf, and A. L. Moël, ESR Studies in-Irradiated and PS- Radiation-Grafted Poly (vinylidene uoride), Journal of Polymer Science : Part B : Polymer Physics, vol.39, p.14371448, 2001.

M. P. Waligorski, R. N. Hamm, and R. Katz, The radial distribution of dose around the path of a heavy ion in liquid water Simulation of the primary stage of the interaction of swift heavy ions with condensed matter, Nuclear Tracks and Radiation Measurements Nuclear Instruments and Methods in Physics Research Section B, vol.11, issue.884, p.309319355364, 1986.

.. De-transfert, Etude de la polymérisation en solution en présence d'agent, p.93

A. Chapiro, Preparation des copolymeres grees du polytetrauoroethylene (Teon) par voie radiochimique, Journal of Polymer Science, vol.34, p.481501, 1959.

A. Chapiro and A. Matsumoto, Inuence de la temperature sur le greage du styrene sur des lms de polytetrauoroethylene et de poly (chlorure de vinyle) par la methode radiochimique directe, Journal of Polymer Science, vol.57, p.743761, 1962.
DOI : 10.1002/polc.5070040236

A. Chapiro, Radiation chemistry of polymeric systems high polymers. Interscience, 1962.

B. Gupta and G. G. Scherer, Proton Exchange Membranes by Radiation-Induced Graft Copolymerization of Monomers into Teon-FEP Films, CHIMIA International Journal for Chemistry, vol.48, issue.5, p.127137, 1994.

K. Yamada, T. Gondo, and M. Hirata, Application of DMAEMA-grafted expanded PTFE lms to positively charged ultraltration membranes and their electrostatic sieve separation properties, Journal of Applied Polymer Science, issue.7, p.8115951604, 2001.

E. S. Hegazy, A. E. Ha, A. M. Ali, H. G. Nowier, and H. F. Aly, Characterization and application of radiation grafted membranes in treatment of intermediate active waste, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, p.393398, 1999.
DOI : 10.1016/S0168-583X(99)00107-X

X. P. Zou, E. T. Kang, and K. G. Neoh, Plasma-induced graft polymerization of poly (ethylene glycol) methyl ether methacrylate on poly (tetrauoroethylene) lms for reduction in protein adsorption, Surface & Coatings Technology, vol.149, issue.2-3, p.119128, 2002.

P. Wang, K. L. Tan, E. T. Kang, and K. G. Neoh, Antifouling poly (vinylidene uoride ) microporous membranes prepared via plasma-induced surface grafting of poly (ethylene glycol), Journal of Adhesion Science and Technology, vol.16, issue.2, p.111127, 2002.

N. Inagaki, Plasma Surface Modication and Plasma Polymerization, 1996.

M. Ulbricht and G. Belfort, Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, Journal of Membrane Science, vol.111, issue.2, p.193, 1996.
DOI : 10.1016/0376-7388(95)00207-3

Y. W. Park and N. Inagaki, Surface modication of poly (vinylidene uoride) lm by remote Ar, H2, and O2 plasmas, Polymer, vol.44, issue.5, p.15691575, 2003.

Y. J. Choi, M. S. Kang, S. H. Kim, J. Cho, and S. H. Moon, Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerization, Journal of Membrane Science, vol.223, issue.1-2, p.201215, 2003.
DOI : 10.1016/S0376-7388(03)00339-9

R. Mazzei, E. Smolko, D. Tadey, and L. Gizzi, Radiation grafting of NIPAAm on PVDF nuclear track membranes. Nuclear Instruments and Methods in, Physics Research B, vol.170, pp.3-4419426, 2000.

V. S. Ivanov, Radiation Chemistry of Polymers, volume 5 of New concept in polymer science, 1992.

N. Betz, Ion track grafting. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, p.5562, 1995.
DOI : 10.1016/0168-583x(95)00911-6

URL : https://hal.archives-ouvertes.fr/hal-01129040

M. C. Clochard, J. Bègue, A. Lafon, D. Caldemaison, C. Bittencourt et al., Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF, Polymer, vol.45, issue.26, p.4586838694, 2004.
DOI : 10.1016/j.polymer.2004.10.052

URL : https://hal.archives-ouvertes.fr/hal-01129036

N. Betz, E. Petersohn, and A. L. Moël, Swift heavy ions eects in uoropolymers : Radicals and crosslinking. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.116, issue.1, p.207211, 1996.

N. H. Taher, A. M. Dessouki, F. H. Khalil, and M. B. , Preparation and properties of cationic membranes obtained by radiation grafting of vinyl monomers onto poly (tetrauoroethylene-peruoropropylvinyl ether)(PFA) lms, Polymer International, vol.41, issue.4, p.383389, 1996.

E. A. Hegazy, A. M. Dessouki, N. B. El-assy, M. A. El-sawy, and N. M. , Radiation-Induced Graft Polymerization of Acrylic Acid onto Fluorinated Polymers. I. Kinetic Study on the Grafting onto Poly (tetrauoroethylene-Ethylene) Copolymer, Journal of Polymer Science, vol.30, 1992.

G. Odian, R. Henry, R. Koenig, D. Mangaraj, L. D. Trung et al., Eect of diusion on rates and molecular weights in graft polymerization, Journal of Polymer Science Polymer Chemistry Edition, vol.13, issue.3, p.623643, 1975.

K. Imre, G. Odian, and A. Rabie, Diusion control in radiation graft polymerization with varying dependence of rate on monomer concentration, Journal of Polymer Science Polymer Chemistry Edition, vol.14, p.30453066, 1976.

B. D. Gupta and A. Chapiro, Preparation of ion-exchange membranes by grafting acrylic acid into pre-irradiated polymer lms. I : grafting into polyethylene, European polymer journal, issue.11, p.2511371143, 1989.

I. Lacík, S. Beuermann, and M. Buback, Aqueous Phase Size-Exclusion- Chromatography Used for PLP-SEC Studies into Free-Radical Propagation Rate of Acrylic Acid in Aqueous Solution, Macromolecules, issue.18, p.3462246228, 2001.

I. Lacík, S. Beuermann, and M. Buback, PLP-SEC study into free-radical propagation rate of nonionized acrylic acid in aqueous solution, Macromolecules, issue.25, p.3693559363, 2003.

F. D. Kuchta, A. M. Van-herk, and A. L. German, Propagation Kinetics of Acrylic and Methacrylic Acid in Water and Organic Solvents Studied by Pulsed-Laser Polymerization, Macromolecules, vol.33, issue.10, p.3336413649, 2000.
DOI : 10.1021/ma990906t

K. S. Anseth, R. A. Scott, and N. A. Peppas, Effects of Ionization on the Reaction Behavior and Kinetics of Acrylic Acid Polymerizations, 28] C. Aymes-Chodur. Radiogreage de uoropolymères en vue de l'obtention de surfaces hémocompatibles, pp.8308-8312, 1996.
DOI : 10.1021/ma960840r

M. Grasselli and N. Betz, Electron-beam induced RAFT-graft polymerization of poly (acrylic acid) onto PVDF. Nuclear Instruments and Methods in Physics Research, pp.1-4201207, 2005.

A. Chapiro and J. Dulieu, Inuence of solvents on the molecular associations and on the radiation initiated polymerization of acrylic acid, European Polymer Journal, vol.13, p.563577, 1977.

N. I. Galperina, T. A. Gugunava, V. F. Gromov, P. M. Khomikovskii, and A. D. Abkin, Radical polymerization of acrylic and uoroacrylic acids in dierent solvents, Polymer Science Series A, vol.17, p.14551460, 1975.

G. Odian, Principles of polymerization, 1991.
DOI : 10.1002/047147875X

E. Jabbari and S. Nozari, Swelling behavior of acrylic acid hydrogels prepared by ??-radiation crosslinking of polyacrylic acid in aqueous solution, European Polymer Journal, vol.36, issue.12, p.26852692, 2000.
DOI : 10.1016/S0014-3057(00)00044-6

.. Localisation-du-radio-greage-par-microscopie-confocale, 114 5.2.1 Localisation par marquage uorescent

.. Chimie-sélective-dans-les-pores, 120 5.2.2.1 Oxydation de la surface, p.122

G. Gebel, E. Ottomani, N. Betz, A. L. Moël, and J. J. , Structural study of polystyrene grafted in irradiated polyvinylidene uoride thin lms. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.105, issue.1, p.145149, 1995.

N. Betz, A. Le-moël, J. P. Duraud, E. Balanzat, and C. Darnez, Grafting of polystyrene in poly (vinylidene uoride) lms by means of energetic heavy ions, Macromolecules, vol.25, issue.1, p.213219, 1992.

C. Aymes-chodur, Radiogreage de uoropolymères en vue de l'obtention de surfaces hémocompatibles, 1998.

R. Spohr and K. Bethge, Ion tracks and microtechnology : principles and applications, 1990.
DOI : 10.1007/978-3-322-83103-3

C. Aymes-chodur, N. Betz, M. C. Porte-durrieu, C. Baquey, and A. L. Moël, A FTIR and SEM study of PS radiation grafted uoropolymers : inuence of the nature of the ionizing radiation on the lm structure, Physics Research Section B : Beam Interactions with Materials and Atoms, p.377385, 1999.

W. W. Eckenfelder, A. R. Bowers, and J. A. Roth, Chemical Oxidationtechnologies for the Nineties, Proceedings of the First International Symposium, Chemical Oxidation : Technology for the Nineties, 1991.

I. Boullier, S. Esnouf, and A. L. Moël, Radiooxidation of uoropolymers : Identication of oxidation products, Journal of Polymer Science, Part B, Polymer Physics, issue.13, p.4115091517, 2003.

C. Annexe and . Microscopie-confocale-de-même-que-l-'objectif, Cette dernière condition permet d'améliorer la qualité des images car l'indice du milieu traversé est constant (n eau =1.33) Dans le cas d'un échantillon sec, il est nécessaire d'utiliser une lamelle d'indice égal à 1.52. Le microscope est équipé d'un laser Argon

]. E. Bibliographie and . Abbe, Betrage zur Theorie der Microscope und der Microscopischen Wahrnehmung, Archiv fur mikroskopische Anatomie, pp.9-1873

M. Minsky and M. Apparatus, US Patent 3,013,467. [1] J.H. Scoeld, Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.129, 1961.

G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers : The Scienta ESCA300 Database, p.1976, 1992.

E. Annexe, Microscopie confocale Figure E.2 Représentation schématique d'un microscope confocal à balayage laser

E. Collectée-par-le-même-objectif, puis focalisée sur un trou de faible diamètre (pinhole), qui joue le rôle de ltre spatial. Seuls les rayons qui émergeront de l'autre côté du ltre spatial seront ceux qui proviennent du plan

U. Détecteur-placé-après-le-pinhole-enregistre-l-'intensité-lumineuse, Ainsi en balayant systématiquement l'échantillon, on reconstitue point par point l'objet observé. L'utilisation d'un microscope confocal nécessite au préalable, la réalisation d'un couplage entre l

]. E. Bibliographie and . Abbe, Betrage zur Theorie der Microscope und der Microscopischen Wahrnehmung, Archiv fur mikroskopische Anatomie, pp.9-1873

R. Lorsque, échantillon présente une densité de longueur de diusioñ b(r) homogène. Dans ce cas, toute l'intensité diusée est "concentrée" à q = 0 (voir la courbe bleue, Fig.F.3) et se confond avec le faisceau transmis à travers l'échantillon

F. Annexe, Diusion de neutrons aux petits angles et son application à l'étude de la structure des membranes

F. Figure, Module de la transformée de Fourier (à droite) de la fonction "porte" ? b(r) (à gauche) dénie par l'Eq.F.8

L. Facteur, est appelé "contraste" entre les objets et le milieu. L'intensité diusée est proportionnelle à ce contraste : peut importe les valeurs de?bde?de?b 0 et?bet?et?b 1 (qui peut être nul

F. Annexe, Diusion de neutrons aux petits angles et son application à l'étude de la structure des membranes

E. Ferain and R. Legras, Characterisation of nanoporous particle track etched membrane, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.131, issue.1-4, p.97102, 1997.
DOI : 10.1016/S0168-583X(97)00194-8

D. Lairez, Résolution d'un spectromètre de diusion de neutrons aux petits angles, J. Phys. IV France, vol.9, p.6781, 1999.

D. F. Mildner and J. M. Carpenter, Optimization of the experimental resolution for small-angle scattering, Journal of Applied Crystallography, vol.17, issue.4, p.249256, 1984.
DOI : 10.1107/S0021889884011468