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Abstract

The aim of the thesis is the face and facial animation tracking in video sequences.
After introducing the topic, we propose a method to track the 3D pose and facial
animations from a face detected at the beginning of a video sequence. We will
then present a method to initialize the face tracking, estimating pose and form of
an unknown face, based on a data base containing several faces. To achieve these
two objectives (initialization and tracking), different approaches are described,
using a geometric model of the face and matching two sets of variables: the per-
turbations of the geometric model in terms of the 3D pose parameters and the
deformation and corresponding residues (errors between the current observation
and appearance model of the face to be tracked). The relationship between the
two sets of variables is described through a canonical correlation. We will show
how to improve detection of the 3D pose and the shape of the face, using an incre-
mental supervised learning. The effectiveness of these methods will be evaluated
from a large number of video sequences, and tracking results will be compared
to ground truths.

Français :

L’objectif de la thèse est le suivi de visages et d’animations faciales dans des
séquences vidéo. Après avoir introduit le sujet, nous proposerons une première
méthode permettant de suivre la pose 3D et les animations faciales du visage
détecté au début d’une séquence vidéo. Nous présenterons ensuite une méthode
permettant d’initialiser le suivi du visage, en estimant la pose et la forme d’un vis-
age inconnu, à partir d’une base de visages vus de face. Pour atteindre ces deux
objectifs (initialisation et suivi), différentes approches seront décrites, utilisant un
modèle géométrique de visage et unemise en correspondance de deux ensembles
de variables: les perturbations du modèle géométrique en terme de pose 3D et de
déformations, et les résidus correspondant (erreurs entre l’observation courante
et le modèle d’apparence du visage à suivre). La relation de dépendance entre
les deux ensembles de variables est décrite à l’aide d’une analyse canonique des
corrélations ou d’une analyse canonique régularisée noyaux. Nous montrerons
enfin comment améliorer la détection de la pose et de la forme du visage, à l’aide
d’un apprentissage supervisé incrémental. L’efficacité des méthodes sera évaluée
à partir d’un grand nombre de séquences vidéo, et les résultats de suivi seront
comparés à des vérités terrain.
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1.1 Forme standard du modèle Candide . . . . . . . . . . . . . . . . . . . 3
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1

Chapter 1

Resumé.

Ce travail s’inscrit dans le cadre de la détection et du suivi 3D des visages.

Le visage est un objet tridimensionnel très complexe qui nous apporte beau-
coup d’informations, comme l’identité de la personne, le genre, l’âge, la position
relative par rapport à la caméra, les mouvements, etc.

Avec le développement d’applications telles que la reconnaissance des expres-
sions d’un visage ou la reconnaissance d’un individu à partir de son visage, et
puis des ordinateurs de plus en plus puissants, de nombreux chercheurs se sont
intéressés au problème de la détection et du suivi de visages ainsi que l’estimation
de leur pose 3D.

Parmi les travaux les plus importants on va seulement citer ceux qui utilisent
un modèle pour faire le suivi des visages.

Tout d’abord citons [88], où les auteurs proposent un algorithme qui se sert
d’un modèle 2D pour suivre de différents objets. Dans ce cas les auteurs font le
suivi de bateaux, de livres, et de visages, à l’aide d’un modèle 2D. Pour faire le
suivi, les auteurs se servent d’une approche de type ”Relevant Vector Machine”
(RVM) pour obtenir les paramètres 2D du modèle.

Ensuite nous pouvonsmentionner le travail [48], pour lequel les auteurs utilisent
des modèles géométriques 3D. Ils proposent de faire le suivi du visage avec un
cylindre. Pour l’algorithme de suivi les auteurs utilisent une approche de moin-
dres carrés.

Egalement dans [51], dans ce cas les auteurs utilisent un modèle rigide 3D du
visage. Ils emploient une méthode de détection des points caractéristiques. Puis
ils font une classification de ces points pour assigner leur appartenance à une
région du visage et ensuite ils s’en servent pour estimer la pose 3D du visage.

Un autre travail qui continue dans cette progression est [31], dans lequel les
auteurs se servent d’un modèle géométrique 3D du visage pour suivre la pose
et les mouvements faciaux. Pour ces expérimentations, les auteurs utilisent une
méthode de descente du gradient.

Enfin nous devons citer les approches dı̂tes d’analyse par synthèse. Parmi ces
approches les deux plus connues et utilisées sont les ”Active Appearance Mod-
els” (AAM) et les ”3D Morphable Models” (3DMM).

Les AAM’s ont été proposés dans [21] et ont ouvert un large champ de recherches



2 1. RESUMÉ.

qui ont donné lieu à de nombreuses publications. L’idée principale est de noter
plusieurs images qui contiennent l’objet à suivre. Cette notation consiste à in-
diquer la localisation des points caractéristiques de l’objet, dans ce cas, des vis-
ages. Une fois que les visages de la base d’apprentissage sont enregistrés, on
utilise l’analyse en composantes principales pour obtenir deux sous-modèles :
un modèle de forme et un modèle d’apparence.Pour aboutir au suivi nous ten-
tons de reconstruire l’image originale avec une image synthétique créé à partir de
ces modèles.

Dans le cas des 3DMM’s décrites dans [70] la façon de procéder est similaire,
excepté que nous utilisons des scanners 3D pour effectuer l’apprentissage des
visages.

Dans notre cas, nous présentons une méthode dite d’apprentissage super-
visé, dont l’objectif global est de proposer une méthode pour estimer et suivre
les paramètres de pose 3D ainsi que les paramètres des gestes faciaux. Pour cela,
nous utilisons deux outils. Tout d’abord nous utilisons le modèle géométrique 3D
du visageCandide [2], avec lequel nous créons des images du visage synthétiques,
et ensuite nous prenons le formalisme CCA (Canonical Correlation Analysis)
pour résoudre le problème de l’estimation et du suivi 3D de visages ainsi que
l’analyse des mouvements faciaux (déformations de la zone des yeux et de la
zone de la bouche). Nous allons aussi montrer plusieurs utilisations de ce for-
malisme pour faire du suivi : des paramètres d’animation faciale, de l’estimation
de pose 3D et de forme de visages inconnus.

Ainsi ce résumé se structure de la façon suivante : dans un premier temps,
nous exposerons notre représentation du visage. Pour cela, nous allons par-
ler du modèle Candide et comment s’en servir pour aboutir à un visage nor-
malisé. Ensuite nous formulerons notre problème pour faire l’estimation de la
pose et des actions faciales. Dans cette partie nous allons présenter trois algo-
rithmes : un premier pour faire uniquement le suivi de la pose, un second pour
faire le suivi de la pose et des paramètres d’animation, et un troisième pour
faire l’initialisation automatique. Finalement nous présenterons un algorithme
d’apprentissage incrémental.

1.1 Représentation du visage.

Pour représenter le visage, nous utilisons le modèle Candide décrit en [2].
Il est constitué de n sommets tridimensionnels. Ce modèle peut être écrit

comme un vecteur de dimension 3n de la façon suivante :

g(τa, τs) = g + Sτs + Aτa.

Ici le premier terme g représente la forme standard du modèle Candide et on peut
le voir dans la figure 1.1. Le deuxième terme Sτs représente les caractéristiques
statiques (morphologie) du visage, telles que la position verticale des sourcils, du
nez, des yeux et de la bouche, distance entre les yeux, etc, et qui sont représentées
dans la figure 1.2.



1.1. REPRÉSENTATION DU VISAGE. 3

Figure 1.1: Forme standard du modèle Candide

Figure 1.2: Caractéristiques statiques (morphologie) du visage

Finalement, le troisième termeAτa représente les caractéristiques dynamiques,
telles que l’ouverture et fermeture des yeux, de la bouche, etc, et qui sont repre-
sentées dans la figure 1.3. C’est avec ces deux termes que nous pouvons modifier
la forme standard du modèle Candide.

Figure 1.3: Caractéristiques dynamiques

Comme nous nous intéressons à faire le suivi du visage dans un espace 3D,
nous considerons des paramètres de rotation et de translation pour pouvoir mod-
ifier la pose 3D du modèle. On peut alors définir notre vecteur d’état comme :
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b =
[

θx, θy, θz, tx, ty, tz, τ
T
a

]T
.

Ici les paramètres θ de notre vecteur d’état correspondent aux paramètres de ro-
tation, les paramètres t de notre vecteur d’état correspondent aux paramètres
de translation et τ

T
a correspondent aux paramètres d’animations faciales. Les

paramètres d’animations faciales choisies correspondent aux principaux mouve-
ments des yeux, ainsi qu’aux mouvements de la bouche.

C’est avec ce modèle que nous créons notre vecteur d’observation. Pour cela,
nous plaçons le modèle sur le visage de la personne, modèle que nous adaptons
aux caractéristiques de ce visage. Puis nous utilisons la texture de l’image et
l’appliquons au modèle 3D. Ensuite, nous faisons la projection du modèle vu de
face, avec tous les paramètres de rotation ainsi que les paramètres d’expression τa

fixés à zero, autrement dit avec une expression neutre. Finalement, nous ajoutons
deux vues de profil, qui vont nous permettre de suivre le visage dans une plage
de rotations plus importante. Un exemple du vecteur d’observation xt, de taille
6912, est montré dans la figure 1.4.

Figure 1.4: Visage sans forme ni expression.

Maintenant que nous avons exposé notre façon de représenter le visage, nous
pouvons poursuivre sur les problématiques de l’estimation de la pose 3D.

1.2 Formulation du problème.

Il consiste à trouver la relation qui existe entre une variation du vecteur d’état
∆bt, qui correspond au placement du modèle Candide sur une image contenant
un visage, et le résidu qui existe entre le visage sans expression obtenu avec ce
vecteur d’état perturbé comparé avec une référence ∆xt. Nous proposons qu’il
existe cette relation linéaire entre les deux vecteurs :

∆bt = G∆xt

avec ∆xt = xt − x
(ref)
t et ∆bt = bt − bt−1.
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Cette relation est alors obtenue avec une méthode d’apprentissage supervisé.
Dans une méthode d’apprentissage supervisé on a deux ensembles d’exemples
qui vont être utilisés pour apprendre la relation qui existe entre ces deux ensem-
bles :

A1 = [∆x1, ∆x2, . . .∆xm]

A2 = [∆b1, ∆b2, . . .∆bm]

Dans notre cas, nous avons choisi l’analyse canonique des corrélations (CCA).
Pour cela on va créer la matrice A2 qui contient les variations de notre vecteur
d’état et la matrice A1 qui contient les visages sans expression comparés avec la
référence. C’est ainsi que nous obtenons la matrice G qui fait le lien entres ces
deux vecteurs.

1.3 Analyse canonique des corrélations.

L’analyse canonique des corrélations est un formalisme mathématique qui est
utilisé pour trouver la relation qui existe entre deux ensembles de données. Dans
notre cas, ces deux ensembles sont :

A1 = [∆x1, ∆x2, . . .∆xm]

qui contient des résidus obtenus de la différence entre le visage sans expression
créé synthétiquement avec un vecteur d’état perturbé et une référence qui cor-
respond au visage sans expression par conséquent au vecteur d’état sans pertur-
bation, et

A2 = [∆b1, ∆b2, . . .∆bm]

qui contient les perturbations du vecteur d’état utilisé pour la création des visages
synthétiques. Ces vecteurs sont de dimensions différentes :

A1 ∈ R
d×m et A2 ∈ R

p×m

L’idée principale derrière ce formalisme consiste à trouver des couples de di-
rection w1 et w2 dans lesquels on va projeter nos données originales de la façon
suivante :

z1 = A1w1 et z2 = A2w2

La corrélation entre ces projections s’écrit alors :

ρ =
zT

2 z1
√

zT
2 z2

√

zT
1 z1

Avec les contraintes :
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‖z1‖ = 1 et ‖z2‖ = 1

On obtient au maximun k = min(d, p) couples de directions. On résout le
problème avec trois SVD de la façon suivante:

A1 = U1D1V
T
1 , A2 = U2D2V

T
2 et VT

1 V2 = UDVT

De façon que les k couples de direction qui maximisent la corrélation sont
donnés par l’expression :

W1 = U1D
−1
1 U et W2 = U2D

−1
2 V

Si on revient à la formulation du problème on peut montrer que la matrice qui
fait le lien entre nos deux matrices peut s’écrire :

G = U2D2VUTD−1
1 UT

1

Ce formalisme existe aussi dans une version à noyau, qui est utile dans le cas
où nos données présentent un comportement non linéaire.

1.4 Analyse canonique des corrélations à noyau.

L’idée principale derrière les méthodes à noyau consiste à faire la projection des
données originales dans un espace de dimension plus grande, tel que dans ce
nouvel espace on peut trouver plus facilement une relation linéaire entre les données.

φ : Rp 7→ R
s, s > p.

De la même façon que pour la CCA nous pouvons écrire :

wφ1 = φ1(A1)
T fφ1

et

wφ2 = φ2(A2)
T fφ2

Dans notre cas, nous utilisons le noyau Gaussian :

K(xi,xj) = exp

(

−‖xi − xj‖2

2σ2

)

, i = 1 . . .m et j = 1 . . .m.

Avec cette méthode, si on utilise la même formulation que dans le cas de la
CCA nous pouvons exprimer la mise à jour du vecteur d’état ainsi :

∆bt = KtfφG.

Ici le vecteur Kt est estimé à chaque instant comme cela:
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Kt(xt,xi) = exp

(

−‖xt − xi‖2

2σ2

)

, i = 1 . . .m

L’inconvénient de cette méthode est que nous devons garder tous les vecteurs
utilisés pendant l’entraı̂nement et comparer à chaque instant le vecteur observé
avec tous ces vecteurs.

1.5 Suivi des paramètres de pose.

Une fois que nous avons montré la CCA et comment s’en servir pour lier les
variations des paramètres du modèle Candide avec le résidu entre le vecteur
d’observation et la référence, nous allons présenter l’algorithme de suivi.

Il se décompose en trois parties :

⋆ Initialisation.

⋆ Entraı̂nement.

⋆ Suivi.

1.5.1 Initialisation (manuelle).

L’initialisation consiste à placermanuellement lemodèleCandide sur le visage de
la personne, et de l’adapter aux caractéristiques morphologiques de la personne

à l’image. De cette façon nous obtenons alors le vecteur de réference x
(ref)
t .

Figure 1.5: Initialisation du modèle Candide.
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1.5.2 Entraı̂nement.

Pendant l’entraı̂nement nous allons créer des images de synthèse à partir de
l’image de référence. Pour cela, nous ajoutons des perturbations au vecteur d’état,
qui sont stockées dans unematrice. A chaque perturbation correspond une image
sans expression comme celle montrée en haut à gauche de l’image 1.6. On fait la
soustraction de l’image de référence et on stocke les résultats dans une deuxième
matrice. Les perturbations ont été choisies dans une grille symétrique non uni-
forme, qui est plus dense près de l’origine et moins dense quand on s’éloigne
de l’origine. Une fois les images exploitables, on utilise la CCA pour obtenir la
relation linéaire entre ces données.

1.5.3 Algorithme de suivi des paramètres de pose.

L’algorithme résultant est donné par la relation suivante :

b̂t = b̂t−1 + GPose(xt − x
(ref)
0 )

Nous avons constaté que si nous gardions la référence constante pendant tout
le suivi, au bout d’un moment le suivi devenait moins précis, tel que nous pou-
vons le voir dans la figure 1.7.

Nous avons constaté que le fait de faire une mise à jour de la référence perme-
ttait d’améliorer la netteté du suivi, ce qui rend notre algorithme :

b̂t = b̂t−1 + GPose(xt − x
(ref)
t )

On fait la mise à jour de la référence avec α = 0.99 :

x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t

1.5.4 Résultats.

La vérification du suivi a été faite sur les 45 séquences vidéo de La Cascia 1 [48].
Ces séquences représentent 5 personnes différentes. Pour chaque personne exis-
tent 9 séquences de 200 trames à 30 fps, de taille 320 × 240 pixels. Ces séquences
sont fournies avec des données correspondantes aux rotations et translations,
et ont été obtenues avec un capteur posé sur la tête de chaque individu. En
conséquence, il y a une différence entre l’origine du système de coordonnées car
le modèle Candide à son origine au nez, tandis que la vérite de terrain fournie
à son système sur la tête. Autrement dit, ce qui correspond dans un système à
une rotation, équivaut dans l’autre système à une rotation ajoutée à une transla-
tion. On peut regarder les résultats dans la figure 1.8, où on observe les valeurs
estimées comparées à la vérité terrain fournie. Dans ces séquences, les visages ne
sont pas expressifs (pas d’animations faciales).

1http : //www.cs.bu.edu/groups/ivc/HeadTracking/

http://www.cs.bu.edu/groups/ivc/HeadTracking/
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Figure 1.6: Exemples de perturbations dans les paramètres de rotation utilisés
pour l’entraı̂nement. En haut à gauche on peut voir les vecteurs d’observation
obtenus avec ces perturbations.

Les résultats obtenus avec cet algorithme pour l’estimation de la pose nous
ont mené à étendre cet algorithme pour estimer aussi les paramètres d’animation
faciale.
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Figure 1.7: Facteur d’oubli utilisé pour la mise à jour de la référence.

1.6 Suivi des paramètres de pose et d’animation fa-

ciale.

Nous avons fait l’extension de notre algorithme pour estimer conjointement des
paramètres de pose 3D et des paramètres d’animation faciale. Cela a donné lieu
à notre algorithme de suivi avec un seul modèle.

1.6.1 Suivi avec un modèle.

L’algorithme de suivi ressemble ainsi à celui utilisé pour l’estimation seule de la
pose 3D. Sauf que, dans ce cas, la matrice G est calculée pour estimer conjointe-
ment des paramètres de pose 3D et des paramètres d’animation faciale.

b̂t = b̂t−1 + GGeneral(xt − x
(ref)
t )

On fait la mise à jour de la référence avec l’équation :

x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t

Néanmoins, nous avons constaté que le fait de réaliser conjointement les paramètres
de pose 3D et les paramètres d’animation faciale rendaitmoins précise l’estimation
de la pose 3D. C’est la raison pour laquelle nous avons décidé de séparer l’estimation
de la pose 3D des paramètres d’animation faciale. C’est à dire nous faisons, dans
un premièr temps, l’estimation de la pose 3D du visage et, dans un second temps,
nous estimons les paramètres d’animation faciale.

1.6.2 Suivi avec deux modèles.

Pour cela, nous avons donc utilisé deux modèles : l’un qui contenait exclusive-
ment les perturbations aux paramètres de pose, et l’autre avec les perturbations
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Figure 1.8: Comparaison de la vérité de terrain contre les paramètres de pose
estimés.

aux paramètres d’animation. L’algorithme de suivi est devenu alors :

b̂t = b̂t−1 + GPose(xt − x
(ref)
t )

et

b̂t = b̂t−1 + GAnimation(xt − x
(ref)
t )

On fait la mise à jour de la référence, qui demeure la même pour les deux
modèles:
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x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t

Dans ce cas, les résultats obtenus étaient beaucoup plus nets, et on a décidé de
découper encore une fois les paramètres d’animation en deux ”sous-modèles”.

1.6.3 Suivi avec trois modèles.

Dans ce cas nous avons décidé de découper les paramètres d’animation cor-
respondant à la région de la bouche, des paramètres correspondant à la région
des yeux. Nous en avons profité pour augmenter la résolution des vecteurs
d’observation pour ces régions, ce qui a donné une nette amélioration surtout
au niveau de la bouche, comme cela sera montré dans la partie des résultats.
L’algorithme de suivi devient alors :

b̂t = b̂t−1 + GPose(xt − x
(ref)
t )

b̂t = b̂t−1 + GBouche(xt − x
(ref)
t )

b̂t = b̂t−1 + GY eux(xt − x
(ref)
t )

On fait la mise à jour de chaque référence :

x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t

Dans la figure 1.6.3 nous pouvons voir ces trois modèles qui correspondent au
paramètres pour l’estimation de la pose 3D, pour l’estimation des paramètres de
la bouche, et finalement pour l’estimation des paramètres des yeux.

a) 96 × 72, b) 88 × 42, c) 86 × 28.

1.6.4 Suivi avec des points d’interêt.

L’utilisation des points d’intérêt, aussi appelé méthode locale, présente plusieurs
avantages, tels que mentionnés dans [51] et [24]. Parmi les avantages par rapport
à uneméthode globale comme celle présentée précédemment, nous pouvons citer
les suivantes :

⋆ Robustesse par rapport aux variations d’échelle,
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⋆ robustesse par rapport aux variations de point d’observation,

⋆ robustesse par rapport aux variations d’illumination,

⋆ robustesse par rapport aux bruits du fond,

⋆ robustesse par rapport aux occultations partielles,

⋆ robustesse face aux variations de pose de l’objet par rapport aux images de
l’ensemble d’apprentissage.

Dans notre cas, nous avons utilisé des points du modèle Candide qui cor-
respondent aux points les plus importants du visage. Ces points peuvent être
visualisés dans la figure 1.9, où on peut comparer l’image pour l’approche locale
comparée à l’image utilisée pour l’approche globale. Dans le cas de l’image pour
cette approche locale nous avons decidé de ne pas ajouter les deux images de
profil.

On peut alors dire que la différence entre cette approche et l’approche décrite
précédemment est la façon dont on construit le vecteur xt = W(g(bt),yt). Dans ce
cas, nous utilisons le modèle 3D Candide pour créer une image du visage vu de
face sans expression, c’est-à-dire, avec tous les paramètres de rotation fixés à zéro
et les paramètres d’expression τa égalementmis à zéro. Ensuite nous utilisons des
fenêtres de taille 6 × 6 pixels autour de 96 points choisis du modèle. Cette taille
à été obtenue de façon expérimentale. De plus, on normalise chaque fenêtre de
façon indépendante. Finalement nous effectuons la concaténation de ces fenêtres
dans un seul vecteur xt de taille 3456.

(a) (b)

Figure 1.9: (a) Image du visage stabilisée pour une approche locale (b) Image du
visage stabilisée pour une approche globale.

Pour le suivi, l’algorithme reste le même que celui décrit précédemment.

1.6.4.1 Résultats.

Le premier test que nous avons fait a été de vérifier l’estimation correcte des
paramètres 3D de la pose. Le résultat peut être apprécié dans la figure 1.10. Ici
sont montrés les résultats quand sont estimés les paramètres 3D de pose dans les
séquences de LaCascia, également quand sont estimés les paramètres de pose et
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d’animation faciale. On peut voir que les résultats obtenus avec les deux algo-
rithmes sont similaires, ce qui montre que le fait d’estimer tous les paramètres
affecte peu l’estimation de la pose.
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Figure 1.10: Comparaison de l’algorithme sans et avec paramètres d’animation
faciale.

En revanche ces séquences vidéo ne contiennent pas d’animation faciale. Pour
vérifier le comportement de cet algorithme face aux animations faciales, nous
avons utilisé la séquence vidéo ”Talking Face” du Réseau européen FGnet2. Cette
séquence est celle d’une personne engagée dans une conversation. Il y a 5000
trames de taille 720 x 576 pixels. Il est fourni avec une vérité terrain qui contient
des coordonnées 2D de 68 points du visage. Nous avons choisi 52 points qui
étaient les plus proches des points du modèle Candide. Dans la figure 1.11 on
voit l’erreur moyenne pour chaque point. On montre la comparaison quand on
utilise un, deux et trois modèles pour faire le suivi des paramètres de pose et
d’animation. Dans ce cas, on peut voir une nette amélioration quand on passe
d’un à deux modèles, et le fait de passer à trois modèles améliore le suivi de la
bouche. On montre aussi dans cette figure les 52 points du modèle Candide le
plus proche des points fournis comme vérité de terrain.

Dans l’image nous pouvons apprécier l’évolution de l’erreur moyenne dans
une partie de la séquence talking face. On voit l’apparition de sommets dans la
courbe qui correspond aux images où des fortes rotations ont lieu. Si on regarde
en détail le visage qui correspond à ces images, on voit que le suivi est assez net.

L’évolution temporelle de l’écart type aux sommets dans la figure 1.12 cor-
respond aux paramètres de rotation :

⋆ Au temps 476 : Rx = −3.6◦, Ry = 11.2◦, Rz = 2.8◦

⋆ Au temps 993 : Rx = −3.7◦, Ry = 36.6◦, Rz = −1.4◦

⋆ Au temps 1107 : Rx = −14.42◦, Ry = 18.8◦, Rz = −10.83◦

2http : //www − prima.inrialpes.fr/FGnet/data/01− TalkingFace/talking face.html

http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
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Figure 1.11: Écart type de 52 points sur la séquence vidéo ”talking face”.
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Figure 1.12: Écart type pour la séquence ”talking face”. On montre à droite les
visages correspondants aux sommets dans la courbe à l’image 476, 993, et 1107.

On peut voir que malgré le fait d’avoir des sommets qui correspondent à de
très fortes variations de pose et d’animation, le suivi du visage est assez précis. En
revanche, si on essaie d’aller plus loin au niveau des rotations, comme l’apprentisage
a été fait pour une vue de face, l’algorithme ne fonctionnera pas.

Finalement nous avons observé la robustesse de l’estimation des paramètres
d’animation quand on introduit à l’estimation de la pose un bruit Gaussian. Pour
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faire cela, nous avons bruité les paramètres de pose avec un écart type de 1◦ pour
les rotations et de 1% de la largeur du visage pour les translations. Ensuite nous
avons estimé avec les paramètres de pose bruités les paramètres d’animation fa-
ciale. On peut voir les résultats dans l’image 1.13. En haut nous remarquons
le paramètre de translation correspondant au paramètre tz avant et après le fait
d’avoir ajouté le bruit, et en bas, le paramètre qui contrôle les mouvements des
sourcils quand il est estimé avec les paramètres de pose bruités. On voit que
malgré le bruit ajouté aux paramètres de pose, les résultats obtenus sont très
ressemblant à ceux obtenus quand on n’ajoute pas de bruit.

Dans l’image 1.14 nous pouvons voir des images qui correspondent à plusieurs
séquences vidéos différentes, parmi celles de LaCascia, la ”talking face”, et nos
séquences vidéos propres.

Pour faire la validation de l’algorithme local, nous avons utilisé la séquence
vidéo ”talking face”. nous pouvons apprécier dans la figure 1.15 que l’écart type
moyen est très similaire entre les deux approches, néanmoins, il y a des sommets
qui correspondent aux mouvements importants du visage ou à des expressions
faciales. On peut bien voir que le sommet dans l’image 992 correspond à une rota-
tion en y de 36.62◦. Pour le sommet correspondant à l’image 1102, les rotations en
x, y et z correspondent dans l’ordre à−13.3◦, 18.9◦ et−10.5◦. On peut voir dans la
figure que les deux approches présentent un comportement similaire, mais dans
le cas de l’approche locale, il y a plus d’oscillations. Cela est dû au fait que cette
approche locale est plus sensible aux fortes rotations et aux expressions faciales.

La figure 1.15 présente aussi l’écart type pour chaque point. Nous pouvons
apprécier que les points qui présentent un écart type plus important correspon-
dent aux points du contour du visage. On peut voir que le comportement de
l’approche locale est inférieur au comportement de l’approche globale. Cela est
dû au fait que dans l’approche globale nous utilisons plus d’information que
dans le cas local, surtout si on considère que deux vues de profil sont ajoutées
pour le cas global. Ces vues de profil améliore la robustesse face aux rotations,
ce qui est montré dans la figure 1.16. Au niveau du temps de calcul, l’approche
locale est plus rapide avec un temps moyen de calcul par image de 26 ms tan-
dis que l’approche globale à un temps moyen de 46 ms. Aussi au niveau de
l’apprentissage on voit une amélioration car les temps sont de 29.1 et 33.2 secon-
des pour l’approche locale et globale.

Finalement pour voir la robustesse face aux variations d’illumination, nous
avons utilisé la séquence vidéo de l’Université Polytechnique de Madrid qui con-
tient 967 images [11]3. Quelques images sont présentées dans la figure 1.16. Avec
ces images nous constatons encore une fois que l’approche globale est plus ro-
buste que l’approche locale.

3http://www.dia.fi.upm.es/∼pcr/downloads.html

http://www.dia.fi.upm.es/~pcr/downloads.html
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Figure 1.13: En haut : paramètre tz avec et sans bruit. En bas : paramètre
d’animation faciale qui contrôle les sourcils.

1.7 Initialisation automatique.

Dans cet algorithme on s’est proposé d’estimer de façon automatique la pose 3D
des visages dans les séquences vidéos. Pour cela, nous avons utilisé une base
de données publique qui contient 37 visages vus de face avec un éclairage ho-
mogène. La figure 1.17 nous présente quelques exemples. Cette base de données
contient les visages de 7 femmes et de 30 hommes vus de face, avec une expres-
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Figure 1.14: Résultats obtenus avec quelques séquences vidéos différentes.

sion neutre. Chaque image est de dimension 640 × 480.
Pour faire cet apprentissage, nous devons appliquer une normalisation, qui

doit adapter les visages de telle façon que toutes les parties des visages se trou-
vent toujours à la même place, c’est à dire, nous allons placer le nez, la bouche
et les yeux dans la même position pour tous les visages, tel que nous pouvons le
voir dans la figure 1.18. Dans cette image on voit bien la modification du visage
due à cette normalisation.

L’entraı̂nement a été réalisé de la même façon que dans le cas de suivi expliqué
précédemment, sauf que nous utilisons une grille autour de l’origine, comme il
a été expliqué précédemment, mais on a ajouté du bruit blanc Gaussian pour
chaque paramètre, de façon à ne pas avoir les mêmes points pour toutes les per-
sonnes. Dans ce cas, on a estimé un visage moyen à partir de toutes les images
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Figure 1.15: En haut: Evolution temporelle de l’écart type moyen. En bas: Écart
type pour chaque point.

utilisés pour l’entrainement. Ce visage ne contient que la vue de face, car nous
proposons un algorithme qui estime la pose pour des visages vus de face. En
plus on utilise la version de l’algorithme Adaabost distribué dans OpenCV pour
les visages vus de face. Les visages moyens obtenus pour chaque modèle, à par-
tir des 37 visages utilisés pour l’apprentisage sont montrés dans la figure 1.19. Le
vecteur moyen obtenu pour chaque région est de dimension 58 × 72, 88 × 42 et
86 × 28 respectivement.
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Figure 1.16: En haut: Images obtenues avec l’approche locale. Milieu: Images
obtenues avec l’approche globale, En bas: Images obtenues de la séquence talking
face avec l’approche locale et globale en alternance.

Figure 1.17: Exemples des visages utilisés pour l’apprentissage.

Figure 1.18: Visage sans forme ni expression.

La procédure utilisée pour faire l’initialisation automatique est illustrée dans
la figure 1.20.

Elle se compose en plusieurs étapes. La première consiste a détecter la posi-
tion d’un visage dans une image. Pour cela, nous faisons appel à l’algorithme
Adaboost de Viola et Jones [86], qui est distribué avec la bibliothèque OpenCV.
Avec cet algorithme on obtient une fenêtre. Avec cette fenêtre on fait ensuite une



1.7. INITIALISATION AUTOMATIQUE. 21

Figure 1.19: Visage moyen obtenu pour chaque modèle.

Détection

Régression

Gpose Gforme

Figure 1.20: Procédure pour l’initialisation automatique.

régression linéaire pour obtenir les paramètres de translation du modèle Can-
dide, tel que nous pouvons l’apprécier dans l’équation suivante :

[tx, ty, tz]
T = A [x1, y1, x2, y2]

T

Avec ces paramètres on place le modèle Candide dans la fênetre où se trouve
le visage détecté avec l’algorithme Adaboost.

Une fois que nous avons placé notre modèle, nous utilisons notre algorithme
pour faire l’estimation des paramètres de pose tel que nous le voyons dans l’équation
suivante :
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b̂i = bi−1 + Gpose(xi − x)

Une fois que nous appliquons notre algorithme pour estimer les paramètres
des poses du modèle Candide nous estimons les paramètres de formes appris
pendant l’apprentissage dans un modèle indépendant des paramètres de pose.
Dans ce cas, nous avons découpé en deux regions : une region pour la bouche et
une autre pour les yeux :

b̂i = bi−1 + Gforme(xi − x)

1.7.1 Résultats

Pour l’estimation de visages inconnus, on montre des résultats des séquences
vidéo de LaCascia. On a vu que l’estimation de la pose dans chaque image était
proche de la vérité de terrain fournie, mais dans le cas où on s’éloigne d’une
vue frontale, l’algorithme ne parvient pas à suivre ces déplacements, comme on
peut le voir dans l’image 1.7.1. On observe, quand la rotation est supérieure à 5
degrées, que l’algorithme ne parvient plus à estimer la pose de la personne. Cela
est dû au fait qu’on utilise une plage plus réduite de points pour l’entrainement
de cet algorithme qui va de -5 à +5 degrés. Ceci correspond à une vue de face,
pour laquelle nous avons construit cet algorithme.
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Ensuite nous avons utilisé la séquence talking face. Dans ce cas on voit qu’il
existe un offset par rapport à la version de suivi, où l’adaptation du modèle est
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effectué à la main et le plus soigneusement possible pour approcher les points du
modèle Candide aux points donnés avec la séquence. On voit que la forme cor-
respond aussi avec les sommets obtenus dans le cas de suivi. Ce qui nous montre
que l’algorithme obtenu pour des visages inconnus est assez robuste, comme il
peut l’être apprécié dans la figure 1.21.
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Figure 1.21: V1 : visage inconnu. V2 : suivi basé sur une seule image.

1.8 Un algorithme incrémental

L’idée principale sur laquelle se base notre algorithme incrémental est sur le fait
que si à un instant t on a des nouvelles données qui arrivent, et que l’on veut
ajouter ces données à une matrice déjà existante, on peut faire une mise à jour de
la SVD de cette matrice tout en conservant la SVD déjà estimé à l’instant t − 1.

A(total) =
[

A(old)A(new)
]

= U(total)D(total)V(total)T

Pour appliquer cette idée nous avons utilisé l’algorithme de la SVD incrémentale
décrit dans [72], de façon qu’on effectue la mise à jour de la SVD en terme de la
SVD estimée précédemment :

U(total) = f1(U
(old),U(new))

D(total) = f2(D
(old),D(new))

V(total) = f3(V
(old),V(new))
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Alors, comme la méthode pour résoudre la CCA est basée sur la SVD des
deux matrices de données, nous allons utiliser la SVD incrémentale pour calculer
les coefficients de la CCA de façon incrémentale, pour faire la mise à jour des
coefficients.

On applique alors la SVD incrémentale aux matricesA1 etA2 et on fait la mise
à jour des coefficients de la CCA de la façon suivante:

W1 = U
(total)
1 D

−1(total)
1 U(total)

et

W2 = U
(total)
2 D

−1(total)
2 V(total)

1.8.1 Résultats

Pour l’algorithme incrémental, on a utilisé les séquences vidéo de Lacascia, néanmoins,
du fait qu’elles n’ont que 200 images, aucun résultat important n’a pu être obtenu
de ces images. En revanche, dans le cas de la talking face, on voit une légère
amélioration de l’erreur moyenne obtenue autour de l’image 1400. Cependant,
visuellement, les résultats entre l’un et l’autre algorithmes sont identiques.
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Figure 1.22: Erreur moyenne point par point.

En utilisant l’algorithme incrémental



1.9. CONCLUSION ET PERSPECTIVES 25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
x 10

5

Frame

C
om

pu
tin

g 
tim

e 
[m

s]

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Frame

C
om

pu
tin

g 
tim

e 
[m

s]

1.9 Conclusion et perspectives

Ce travail de recherche nous a amené à développer un algorithme de suivi parti-
culièrement robuste aux mouvements de rotation comme aux mouvements de
translation du fait qu’on a ajouté deux vues de profil synthétisées au vecteur
d’observation. De plus, nous estimons le modèle de suivi pendant la phase
d’apprentissage contenu dans une matrice G. Cette matrice G, qui fait le lien
entre les vecteurs d’observation et les paramètres de suivi des poses, est con-
servée sans aucun changement pendant tout le suivi. De ce fait, l’algorithme est
très rapide.

Dans toutes les implémentations, les résultats simplement visuels sur les sé-
quences vidéos semblent identiques. Néanmoins si on compare avec une vérité
terrain nous avons vérifié l’intérêt de décomposer le visage en plusieurs ”sous-
modèles”, dans notre cas : trois.

Sans ajout de mécanisme ou modèle spécifique pour prendre en compte les
changements de variations de lumière ou d’éclairage, notre algorithme est rel-
ativement robuste. Egalement, les mouvements de caméras ne semble pas per-
turber le processus. L’algorithme qui fait le positionnement du modèle Candide
automatiquement sur les visages inconnus est relativement robuste et améliore
donc considérablement la détection de la pose et de la forme du visage. En con-
tinuité de ce projet, il serait possible d’accoupler l’algorithme d’initialisation au-
tomatique avec le suivi, ainsi il serait possible d’obtenir la pose automatique du
modèle sur le visage à l’initialisation du processus sans l’intervention d’un utili-
sateur. Alors il serait possible d’utliser cet algorithme en cas d’occultation, gêne
ou masquage partiel du visage et n’importe quel autre facteur qui pourrait en-
traı̂ner la perte du suivi.

La version incrémentale de notre algorithme possède de nombreux avantages.
Notamment, en exploitation, il s’enrichit sans cesse dans l’apprentissage et l’acqui-
sition de données nouvelles relevées au fur et à mesure du traitement de nou-
veaux visages caractéristiques. Autrement dit quand l’algorithme découvre un
visage pour lequel l’apprentissage à été incorrect alors, après correction, il peut
être ajouté à la base de données.



26 1. RESUMÉ.
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Chapter 2

Introduction

Object tracking is an important part of modern complex systems. It permits to
enhance the performance of a person in doing some specific labor (augmented
reality or people identification), to make tedious labors automatically (counting
vehicles passing in a crossway), to locate persons in the crowd, vehicles in the
traffic jam or stolen vehicles, following merchandise, etc. To do this, there exists
a panoply of features that can be tracked from the interest object, as following
sounds, in the case of people following the voice, or electric signals from devices
fixed to, or making part of the object, and more recently from video sequences.
The latest have developed in the last decades with the growing computer power
and with the reduction in cost and size of digital video cameras, especially be-
cause the video vision offers a non-intrusive solution. In consequence, many ap-
plications based on video object tracking have seen the day, as face-based biomet-
ric person authentication, human computer interaction, teleconferencing, surveil-
lance, augmented reality, behavior understanding, vehicle tracking, etc.

The problem of object tracking in a video sequence can be defined as knowing
the object’s location relative to the camera, its shape and trajectory from frame
to frame. To do this there are three processes involved in object tracking: track
initialization, track update, and track termination [13].

⋆ Track initialization consists in saying whether or not there is an instance of
the object we want to detect, and if it is the case, to determine its location.

⋆ Track update consists of two components: Object detection and finding
the correspondences between the detected objects across frames, sometimes
called filtering step. These two tasks can be performed separated or jointly.
For the first case, possible object regions in each frame are obtained by
means of an object detection algorithm, which can be the same algorithm
used for initialization, and then the tracker looks for correspondences of
the objects across frames. In the second case, the object region and the cor-
respondences can be estimated jointly by iteratively updating the object lo-
cation obtained from previous frames [100]. The objective of the filtering
component is to add temporal continuity constraints across frames and to
deal with dynamics of the tracked object, as in [7; 42; 59; 61; 65; 82]. The
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principal advantage of using this component is that in case of complete oc-
clusions, we can estimate the object position as a function of the dynamic
model, or limit the wrong estimations to go far away from the real position
of the tracked object.

⋆ Track termination consists in detecting when a tracked object gets out off
the camera visual region.

To deal with the tracking problem, vision research groups have used in the last
years several approaches. These approaches can be classified in terms of the ob-
ject’s description, in terms of the object’s feature used for the tracking, or in terms
of the method used for tracking. Some examples of the object’s description are
points, primitive geometric shapes, textures, colors, etc. For the features used to
perform the tracking we can find edges, gray level intensities, color histograms,
interest points, etc. Finally for the tracking methods we can find deterministic
ones, like gradient descent based methods, Kalman filters, and stochastic ones,
like the particle filter also known as Sequential Monte Carlo (SMC) algorithm,
and learning-based approaches. In chapter 3 we will talk about these character-
istics of a tracker.

The nature of the tracked object is of great influence in the choice of the tracker.
If we want a general tracker, we will choose to track for example a specific color
present on the desired object. However, if we want a specific tracker, we can
introduce a geometric or a parametric model that will perform better for tracking
this kind of objects but that will be useless if there is an object that can not be
described with our model. This model can be a 2D or a 3D model and depending
on that we can track our object not only as a 2D projection over an image but also
in real world coordinates. In our case the object of interest is the human face.

The face is a very complex three dimensional surface, that is flexible, usually
contains creases, and it has color variations, and it conveys many pieces of infor-
mation such as identity of a person, the gender, his age, the relative position with
respect to the camera. It is because of this that faces have aroused the interest of
computer vision community, besides they are very familiar to us, i.e., we have a
well developed sense of what expressions and motions are natural for a face. So,
human face image processing is currently an active research area in the computer
vision community. There exist several classes of image processing, being some of
the most important nowadays[3]:

⋆ Face Detection: It consists in determining the presence of faces in images,
and the localization of it. For the case of localization, several parameters
can be obtained depending on the representation of the face, going from a
simple window containing the face, to 3D pose parameters as well as ex-
pression parameters, as for the case when a 3D geometric model is used.
A face detection algorithm is vital for most face image processing applica-
tions. Face detection has been the subject of research by numerous groups
as it lies at the core of many applications.
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⋆ Facial Feature Extraction: The principal features that can be obtained from
faces are specific points and contours. These features can be used to deter-
mine the shape, motion and expression of the face. To obtain these features,
it is necessary to know the location of the face.

⋆ Face Tracking: Tracking of a face is the process of following a detected face
or extracted facial features through an image sequence. The algorithm used
in this process can be identical to face detection or facial feature extraction
(by applying those techniques on each image in the sequence). However,
as previously explained we can perform jointly the detection and tracking
by taking into account the knowledge acquired from the earlier image(s) in
the sequence. There is a panoply of applications behind face tracking, like
biometrics, human-computer interactions, behavior analysis, driver moni-
toring systems, marketing and advertising, interactive information system,
computer games, etc.

⋆ Face Synthesis: Face synthesis is the task of rendering (moving) images of
faces from a set of parameters. Recently face synthesis has been used for
face tracking and face detection, as the Active Appearance Models and 3D
Morphable Model. The applications are several, going from video coding to
multimedia modeling and cinema special effects. In order to do that a para-
metric model should be available and it will fix the quality of the results.

⋆ Face Recognition: Given the location of a face in an image, the face recogni-
tion task consists in identifying a person or verifying the person’s identity
(face authentication).

2.1 Contributions and publications.

In this thesis, we will present a method for tracking faces. This method uses
a parametric 3D model to estimate the 3D pose and the facial gesture parame-
ters. It uses the Canonical Correlation Analysis (CCA) as a supervised learning
method that finds the regression parameters between the model parameters and
the residual between an input vector and a reference image. We extend also this
method to estimate the 3D pose and the facial shape parameters for initializing,
to perform automatically the 3D model’s initialization. Finally, we will present
an incremental method to estimate the CCA coefficients as the data arrives.

We can compare our work with the work realized in [25; 30; 31], where the
Candide 3D head model is also used to track people’s 3D head pose and facial
expressions, but in their case, the tracking method used is based on a gradient de-
scent to determine the perturbations. Our approach can also be compared with
the Active Appearance Model described in [21; 22; 23; 32]. For the AAM’s, they
use a linear regression to estimate the relation between the parameters of a model
learned from a training set, and the difference between a synthesized image and
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the input image. To obtain the model, they use a set of multiple manually la-
beled images. Then they train this model to estimate 2D parameters, represented
by horizontal and vertical translation, scale and rotation. In [29] they improve
this algorithm by using the Canonical Correlation Analysis instead of the linear
regression to learn the relationship between the parameters of a model and the
difference between a synthesized image and the input image. Finally, we can
compare our work with the 3D morphable models explained in [68]. In this case
3D scans are used to obtain a general model to describe variations of illumination,
pose, and facial gesture. This method performs also the analysis by syntheses,
where the input image is compared with the synthesized one until there is not
improvement of the error.

The principal difference is that in our work we do not estimate a shape model
from the training images, but we used the Candide 3D geometric model that we
adapt for the person we want to track. We use the 3D model to create a synthetic
training database containing perturbations based on the first image of the video
sequence. We use the Canonical Correlation analysis to obtain a linear relation-
ship between the 3D pose perturbation and facial gesture parameters, and the
difference between a reference normalized patch and the patch obtained from the
current image at the last known position. We will show that our proposition per-
forms well in estimating the 3D pose and up to eleven facial gesture parameters
using for training the first video frame that is manually initialized. It is impor-
tant to remark that our work uses the input image to create the normalized patch
contrary to analysis by syntheses schema used by the AAM’s and the morphable
models.

Another important contribution of our work is the development of an incre-
mental algorithm for the Canonical Correlation Analysis, based on the incremen-
tal Singular Value Decomposition (SVD) proposed in [10; 57; 72]. Although this
algorithm is slower than the CCA, because we update the CCA coefficients ev-
ery m frames, it has the advantage of adding new information as the tracking
evolves.

Finally, we have extended this work to 3D face and shape detection. To do
this, we use the Adaboost algorithm to detect the 2D window containing a face,
and then we use an algorithm similar as the one used for tracking, but training
over a database of several people, to estimate the 3D pose parameters and the
shape parameters of the face.

We restrict this work to the use a single fixed webcam, because multi-camera
approaches require calibration of all the cameras and stereo cameras are more
expensive than traditional webcams, and moving cameras are not only more ex-
pensive but they require an additional alignment as explained in [90]. We have
tested our tracking algorithm with moving cameras and the results are encourag-
ing.

The structure of this thesis is the following: in chapter 3 we will present the
object’s representation used for tracking, the most important features that are
used for this, and finally the most important methods used for tracking objects,
and particularly faces. In chapter 4 we will present our algorithm published in
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[96], where we compare the use of a linear method based on the Canonical Cor-
relation Analysis and a non-linear method based on the Kernel Canonical Corre-
lation Analysis. In this case we limit the tracking to the pose parameters only. In
chapter 5, we extend the algorithm to track not only the pose, but also the facial
gesture, as explained in [98]. Then we propose a local based approach that uses
small patches around some facial regions of interest to track the 3D pose and fa-
cial gesture, as described in [99]. Finally we compare both methods and study
the robustness of the algorithm with respect to noise in the pose estimation, as
described in [97]. In chapter 6, we propose an algorithm that estimates the 3D
pose and the shape of faces in images. This algorithm is a complement to the
tracking algorithm, as it can be used for automatic initialization and recovery.
The principal advantage of this algorithm is that the model is general enough to
work with persons that are not present in the training database. Finally, in chap-
ter 7 we present an iterative algorithm to update the CCA coefficients as new data
arrives. Our motivation is to improve the efficiency of our tracking algorithm.
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Chapter 3

Tools and Methods for Object
Tracking.

Object tracking through the frames of a video sequence is required in many ap-
plications of computer vision, such as augmented reality, surveillance devices,
biometrics, visual servoing of robot arms, computer-human interfaces, smart en-
vironments, meteorological andmedical imaging, etc. Moreover, with the always
increasing computing power and the cost and size reduction of high quality cam-
eras, computer vision offers solutions that are cheap, practical and non intrusive
to the tracking problem. This has developed the use of video analysis not only to
track objects, but also to use the object tracks to recognize their behavior.

Tracking an object in a video sequence can be defined as knowing the object’s
location relative to the camera. To do this, there are two processes involved in
object tracking. Object detection and finding the correspondences between the
detected objects across frames. These two tasks can be performed separately or
jointly. For the first case, possible object regions at each frame are obtained by
means of an object detection algorithm and then the tracker looks for correspon-
dences of the objects across frames. In the second case, the object region and
the correspondences can be estimated jointly by iteratively updating the object
location obtained from previous frames [100].

The approach that will be used to track a specific object must take into account
the characteristics and degrees of freedom of the object and the camera, and the
features that we want to track of the object for a specific application. This means
that the combination of tools used to accomplish a given tracking task will de-
pend on whether we want to track a kind of objects, like cars, people, faces, etc,
groups of these objects, like black cars, walking people, persons, or unknown ob-
jects with a particular characteristic, like moving objects in a security area. The
problem of tracking can be further simplified if we have more priors about the
object, like a velocity model, an acceleration model, etc.

For any case, it will be necessary to compare the input video frame with a
given representation that describes the object of interest. This representation can
be based on image points, on contours, on geometric models, on appearance,
on skeletal models, on articulated shape models, on geometric models, etc. All
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these approaches can refer us to a 2D tracking or to a 3D tracking. 2D tracking
consists in following the projection of the 3Dmovements of an object by means of
a transformation. This kind of tracking requires a model that can handle with the
appearance changes due to perspective effects, self occlusions and deformations.
However this kind of tracking can not recover the true position in the space. In
the other hand, 3D tracking aims at recovering the six degrees of freedom that
define the position of an object with respect to the camera [52], as well as the
degrees of freedom that describe a non-rigid tracked object.

Different approaches exist for tracking moving objects, two of them being
feature-based and model-based. Feature-based approaches rely on tracking lo-
cal regions of interest, like key points, curves, optical flow, or skin color [24; 54].
Model-based approaches use a 2D or 3D object model that is projected onto the
image and matched to the object to be tracked [31; 48]. These approaches estab-
lish a relationship between the current frame and the information that they are
looking for. Some popular methods to find this relation use a gradient descent
technique like the active appearance models (AAMs) [22; 91], others a statisti-
cal based technique using support or relevant vector machines (SVM and RVM)
[5; 88; 89], or a regression technique based on the Canonical Correlation Analysis
(CCA) (linear or kernel based).

In this chapter we will present relevant tools and methods for tracking. To do
that, we will start showing some of the possible ways to represent the object that
we want to track. An important characteristic for tracking is to determine if we
are working with a rigid or non-rigid object. This will be determinant to choose
the object representation. Moreover, sometimes we can approximate deformable
objects with rigid models, as it is the case of faces. After these object represen-
tations, we will talk about the more common features that the computer vision
community has used to track these objects. Finally we will present some of the
principal methods used to perform the tracking task.

3.1 Representation of an object.

The representation of an object is of great importance for the choice of the tracking
approach that we will use, because some representations that are robust for a
kind of object can be useless when we use them to track another kind of object.
This is why the first important thing to do when implementing a tracker is to
choose how to represent the tracked object. Before introducing the most common
object’s representation, we will talk about rigid and non rigid objects, because
this property of the objects will determine the choice of the way to represent it.
After that, we will present some of the most common representations of an object
by means of points, of primitive geometric shapes, of silhouette and contours, of
models, and of appearance.
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3.1.1 Rigid and deformable objects.

Tracking rigid and non-rigid objects are two very different tasks, especially from
a complexity point of view. Rigid objects present the advantage of having only
six degrees of freedom when working in a 3D space. Some examples of rigid
objects are cars, detached pieces in a production line, trains, etc. In the other
hand, non rigid objects have more degrees of freedom depending on the object
and the degrees of freedom inherent to it. In addition, the deformation that can be
present for a non rigid object, can be confused as a 3D movement if it is not taken
into account. Some examples of non rigid objects are living beings, especially
persons. It is because of this difference in complexity that the first thing that we
should know about an object is to classify it in either of these categories.

In [90] a method for determining if an object is rigid or non rigid in a video
sequence is proposed. The central idea to distinguish between this kind of objects
is that over short time intervals, the appearance of rigid objects, under viewing
conditions similar to orthographic projection, changes more much slowly than
this of most non-rigid objects. In their case, they have compared humans and
vehicles. The results reported show that the variations in non-rigid objects, walk-
ing humans in this case, present a periodic motion with sharp peaks, while the
rigid objects vary in a more stable curve. However, as they compare pixels to
pixels within a motion window, movements toward or away from the camera are
reported to present an unpredictable behavior.

Some examples of works trackingmovements of non-rigid objects can be found
in [18; 67; 74]. In [67] they propose an algorithm to track deformable objects of
any kind, based on feature points and classification trees. Given an input image,
they look for correspondences between the features learned of a given object.
They use 2D meshes that are deformed in order to follow highly textured sur-
faces, and can cope with a high number of outliers. In [18], points are matched
between brain MRI images to find geometric correspondences of these points,
and in synthesized 2D objects. They propose an approach that takes soft deci-
sions. This means, instead of discarding a relation between two points, it assigns
a score that will be improved in further iterations. Finally we can talk about the
work presented in [74], where the author proposes the active blobs. He uses a
texture-mapped triangular mesh model for tracking deforming shapes in color
images. It uses a gradient approach to estimate the variations.

3.1.2 Points.

We can represent an object by a point or by a set of points. In the case of a single
point, it can represent the centroid of the object, and this kind of representation is
generally used when the object to be tracked is small with respect to the image.
This kind of representation usually models translations. We can use this repre-
sentation for both, rigid an no-rigid objects as the object represents a small area
of the image. Examples of this are presented in [84] for a rigid turning object with
points drawn over its surface and tracked independently, and in [85] for points of
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faces, and in this case also each point is tracked independently of the others. For
the case of multiple points, they can be interest point distributed over the object
to be tracked. In this case the points have a geometric relation between them. One
example for rigid objects can be found in [54] where interest points are detected
and compared with a geometric model to determine the 3D pose. In [67] we can
find the extension to deformable objects of a similar tracker. The use of a relation
between several points permits the estimation of translations and rotations in 2D
and 3D spaces, as well as the estimation of non rigid movements. One advantage
of using a set of points is that we are not suppose to detect all points, but the
maximum number of them that gave a valid configuration, making this kind of
approaches robust with respect to outliers.

3.1.3 Shapes.

In this case the object is represented by primitive geometric shapes, like rectan-
gles, ellipses, etc. This kind of representation can be used to estimate rotations,
translations, affine, or projective transformations, but in a 2D space. More com-
plex representations can be achieved if several of these geometric shapes are used
together to represent a specific kind of object. In [102], the authors use ellipses to
represent the human body. In [47] moving objects are tracked with rectangles
across multiple non overlapping cameras. Also a rectangle is used in [62] to track
hockey players. In [46] a polygon is used to represent the persons in a particle
filter context.

3.1.4 Silhouette and contour.

The boundary of an object is the contour. The region inside the contour is the
silhouette. Contour or silhouettes are suitable for tracking complex non rigid
shapes. To track these non-rigid objects active contour models, also known as
snakes, are used. Nevertheless the presence of partial occlusions can diminish
the tracker performance.

In [14] the authors perform a segmentation and look for regions that are clas-
sified as foreground. Then they use these regions to match previously detected
objects. In this case the motion blobs are used as silhouettes to represent moving
cars. In [75] a machine learning approach is used to detect texture transition and
then the contour is obtained to track rigid and non-rigid objects. In [1] the authors
use a relevance vector machine to estimate the pose of a human body represented
in terms of silhouettes.

3.1.5 Geometric models.

Another common method used for representing objects is by means of a model.
This model approximates the geometry of the object, as for instance, boxes for
cars, ellipsoids for heads, or a geometrical model that can take into account the
possible deformations of non-rigid objects. For the particular case of non-rigid
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objects there exists also the use of articulated models and skeletal models, where
every part of the object is represented by simple geometric shapes that are held
together with joints. For example, the human body can be represented by ellipses,
or cylinders, for the torso, head, and limbs. These models can be used for 2D or
3D movements depending on the application.

For the case of rigid objects we can cite [54], where planar objects as the sail
of a ship and the face of a book are represented by a 2D model, or a box and
a human face are represented by means of a 3D model. We can also cite [53],
where the 3D model of a teddy tiger is obtained from several images, all of them
used for the training of a classifier. Another example of rigid object tracking
is the work of [78], where three car models are used to determine the vehicles
that pass through a certain road by means of a Monte Carlo approach. As an
example of non-rigid objects we can cite the 2D model presented in [45], where
a shape model is used to track the contour of a hand by means of a Monte Carlo
approach. In the shape model used they implemented twelve degrees of freedom
for the fingers and possible hand movements. In [67], the authors use features of
the image to determine the shape of a deformable object, in this case a t-shirt with
a logo. In [101] the authors use a skeletal model to represent the locomotion of
walking people, in order to decide whether or not a person is walking, running
or standing in a video sequence.

The principal advantage of using models to represent objects is that we can
be very discriminative, and add some robustness to the tracker when facing oc-
clusions, outliers, changes of illumination, etc. However, this kind of approach
limit the tracker to a very specific kind of object, and had to be initialized and
well adapted to the application that it is intended to do. They are also expensive
in computational cost, because of the transformations that the model can be sub-
ject to, as scaling, rotations, translations, and deformation in the case of non rigid
objects.

Human face models will be explained more precisely in the chapter 4, where
we will present the parametric model used in our approach.

3.1.6 Appearance models.

It is possible to represent the appearance of objects in several ways. One of the
most popular methods consists in using the active appearance models, where
shape and appearance are combined to track faces. To do this, a training database
containing manually placed landmarks is used. The shape and the appearance
are associated by means of the principal Component Analysis [20; 21; 22; 23; 32].
Another way to represent the appearance is by means of templates, which are
simple geometric shapes containing spatial and appearance information. How-
ever, this kind of approaches is generated for a simple view, limiting it to objects
whose appearance does not change during the course of tracking. In [72], the
authors propose an algorithm that makes an update of the template, allowing the
tracking of complex object under varying conditions.
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3.1.7 Others.

It is important to say that a combination of these representations can be used as
in [50], where an articulated body model of 10 joints and 14 segments is used
to represent the torso, the limbs and the head, having 32 degrees of freedom.
To estimate and adapt a human body model, the silhouette is used, and a head
shoulder contour is used as a template to locate the head from the silhouette
obtained. This information is combined by means of a particle filter.

As we have seen, there exist several ways to represent an object, and depend-
ing on the application and the characteristics of the object and on the tracking
information needed, we have to choose between these multiple representations.

3.2 Features used for tracking.

The feature selection, as well as the object representation, plays a critical role in
the implementation of a tracker. Both are closely related, because the choice of a
way of representing an object will limit the features that we can use to track the
object. However, many of the recent tracking approaches use a combination of
features in order to have more robust results. In this section we will present the
most important features used for tracking objects as well as some of the advan-
tages and disadvantages of using them.

3.2.1 Color.

Color is a feature that is frequently used to track objects. There are several ad-
vantages of describing an object by a color. It lets us track any kind of object
independently of its geometry, if it is rigid or not. It is robust with respect to self
occlusions when strong pose variations are present. Color based processing is
often faster than processing other features. Finally, under certain lighting condi-
tions, color is orientation invariant, which means that the motion model required
will consider only translation parameters and scale. However, the principal dis-
advantage of this kind of tracking arises when a same color object moves close
to the object we are tracking, or even worse, when the background has a similar
color.

To describe a color, the more usual approach is to estimate a reference color
histogram of a fixed-shape window, as those depicted in figure 3.1. Then, we will
look for scaled windows of the same shape that contain a color histogram close to
the reference. Typically the Bhattacharyya distance is used in order to determine
whether or not a color histogram is close to another one. In [65], the authors use
a Monte Carlo approach that uses color as the principal cue to track objects in 2D.
They apply a kind of geometry model that divides the fixed-shape window in
rectangles where each rectangle has a particular reference color histogram. They
use then the color histogram distances of the sample windows to obtain the color
likelihood for the particle filter they use. The principal advantage of using this
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kind of approaches, as explained in 3.3.3, is that the tracker is more robust to dis-
tractions and to occlusions, even if they are partial or total. Color histograms have
the property of being stable object representations unaffected by occlusions and
changes in view, and they had been used to differentiate among a large number
of objects.

We can also use the a priori knowledge of the tracked object, to look for par-
ticular colors, like skin’s color, as in [94; 95], or more specifically lips’ color as in
[34] by means of transformations of the color input image.

In [94] we can find an extensive report presenting a statistical skin-color model
and its adaptations to different lighting conditions. An important remark of this
report is that tracking a specific color, such as skin color presents several prob-
lems. For example, the color representation of the skin obtained by a camera is
influenced by many factors as ambient light, movement, etc. Moreover, different
cameras produce different color values even under the same external conditions.
Finally skin colors are different from one person to another. Nevertheless, the
authors use their approach to track faces and report a good performance in real
time, with 30 frames per second with 305 × 229 input sequences.

In [34] the authors propose a color transformation for lips segmentation. The
motivation of this work is that skin and lip colors are more characterized by
chromatic than by brightness components. That means that under varying il-
luminations, chromatic skin features are relatively constant. Thus, the proposed
transformation separates the lips from the skin. One application of this kind of
algorithms is for lip reading in noisy environments.

It is known that the RGB representation has the disadvantage of not being uni-
form from a perceptually point of view [34], and also there is a high correlation
between the different components of this space, which makes the images stored
in this format to have a big size. This is why other color spaces have been pro-
posed, as the Lab, HSV, YCrCb. Lab is a space created to be perceptually uniform,
with dimension L for luminance and a and b for the color-opponent dimensions,
while HSV (hue, saturation, value) is another space created to be perceptually
uniform. These two spaces are reported to be more sensitive to noise. YCrCb is
a transformation of the RGB space where the Y component stands for the luma,
and it contains the most of the image information, that corresponds to a grayscale
image. The Cr and Cb stand for the red and blue chroma components. This space
was designed to compress digital images. Frequently, we transform the color im-
age to a grayscale image, by means of this transformation, and we keep only the
Y component. Depending on the object to be tracked, the choice of one or other
space, or even other particular transformation will be used.

An important algorithm used for color segmentation and color tracking is the
mean shift algorithm. It was first proposed by Fukunaga in [35] and then re-
sumed by Cheng in [17]. It is a non parametric approach for the estimation of
gradient of density function and it was developed to find modes in a set of data
samples. Although the method has been applied for clustering, segmentation,
background subtraction, more recently it has been applied to track objects based
in the color histograms and the Bhattacharyya distance. In [19] the authors use
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Figure 3.1: Top images: Two rectangles containing a color reference. Bottom im-
ages: Corresponding color Histograms.

the mean-shift algorithm to track faces, hands, football players, people in the sub-
way, and a mug. They probe the robustness of this approach and it convergence
properties. In [16], the authors use the mean shift algorithm as a key part of
an autonomous vehicle navigation to detect the road. They use the mean shift
algorithm to segment the incoming image, and then, they apply a threshold to
discriminate between the road and the other objects present in the image.

3.2.2 Motion.

Motion tracking can be described in a simplified form as detecting changes be-
tween images. These changes can be produced due to illumination changes, from
moving objects, or from cameramovements. Thismeans that motion-based track-
ers tend to be simple and fast, but they do not guarantee that the tracked regions
have any meaning.

One widely technique used for change detection, due to its simplicity, is frame
differencing, which consists in subtracting two images and obtaining a binarised
difference map. These two images can be the incoming frame with a background
image or two or three consecutive frames of a video sequence. The resulting
frame difference will classify then those pixels presenting a significant variation
into foreground for the first case or as motion blobs for the second, as can be
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seen in figure 3.2. The difference map is generally binarised by thresholding it
at some predetermined value to obtain a change/no-change classification. Thus,
the value assigned to thresholding is of great importance, because giving a very
low threshold will include spurious changes while a high value will suppress
changes [71].

Background subtraction is a core component in applications where stationary
cameras are used, and where the background scene is a static structure. In this
case one has to obtain a representation of the background, or reference image,
update this representation over time and compare it with the input image. The
reference image is a frame of the sequence where no foreground objects appear in
the scene. This kind of approach is not always practical, because for some appli-
cations a reference image without foreground objects is not available. Moreover,
if the background corresponds to an outdoor sequence, the principal problems
are due to illumination changes and oscillating objects like trees. To cope with
that, recent works have modeled the background as a dynamic image. In [92]
and in [79] the authors model the background as a mixture of adaptive Gaus-
sians, in order to cope with global and local illumination changes, positions of
the light sources and moving objects in the background of an outdoor scene. The
principal advantage of this approach is that it uses several Gaussians in order
to describe multiple backgrounds, and it allows long standing objects to become
part of the background without forgetting the last background, and then, when
the objects moves, recover the original background. In [61] the authors propose
a method for modeling the background dynamically by means of the principal
component analysis and an autoregressive model. They use an iterative PCA to
describe all the possible background’s movements by predicting the following
frame.

In [12], to update the background, the authors propose an iterative process
that assigns a probability to 5 × 5 pixels’ window to belong or not to the back-
ground by means of an error map that takes into account changes with respect to
previously computed background and with respect to the previous frame.

In [42] the pixels of some regions are considered as clusters and used to pre-
dict the object motion, where adjacent clusters following the same trajectory are
considered as an object hypothesis. However, they consider only parallel move-
ment, which restricts this particular tracker to rigid objects that do not present
rotating movements about the optical axis. This algorithm was used for cameras
on moving vehicles to detect other vehicles and to detect pedestrians. In this
case, they did not consider a preprocessing for the case of a moving camera, but
sometimes the blob detection may be accomplished using background alignment
techniques and change detection algorithms as in [90], where a three image differ-
encing method is used to detect motion blobs when the camera moves. However,
using consecutive images can pose several problems when the the object is not
sufficiently textured.

In general one important problem of this kind of tracking is when there are
multiple objects, because there are four important tasks that should deal with:
appearance, disappearance, splitting and merging. To deal with them, in [7] the
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authors add a kinematic model as well as color model for each target, in order to
discriminate them after a merging process or a splitting.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: (a)Background image, (b-c) two consecutive frames of a video se-
quence, (d) resulting motion Map of the difference between the background im-
age and a frame,(e) resulting difference map between two consecutive images,
and (f) resulting difference map between two consecutive images taking into ac-
count the gradient of the image.

In [44] the authors present a general study for tracking motion of multiple
objects without the assumption of motion constancy, this means, they consider
noisy images due to camera vibrations and noise added due to the quality of
the camera. The motion estimation they propose takes into account the fact that
between two frames, the difference will not give the moving objects but the con-
tours of these moving objects, and will consider that pixels lying inside the object
are static.

In [59] the authors propose a 2D appearance-based approach, that fuses mo-
tion and the obtained model, and that uses Kalman filters to robustly predict the
position, motion and shape of the desired object.

3.2.3 Contours.

The contour of an object is another characteristic that is often used for tracking.
Object boundaries usually generate strong changes in image intensity. An impor-
tant property of edges or contours is that they are less sensitive to illumination
changes compared to color features or motion. For this feature, the objective is
to track outlines, from foreground objects, that are modeled as curves, while they
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are moving through clutter. This clutter makes the problem more challenging,
because elements of the background clutter may look like parts of the tracked
object. What can be worst, the background could be a collection of objects like
the one being tracked, like for example, a person being tracked when passing a
crowded place.

In [45], the CONDENSATION algorithm is used to track object’s contours. To
have a more robust tracker, the authors use models of shape and motion, in order
to obtain a more robust tracker, but they do it taking particular care of not losing
generality of application for this model. They train the tracker with sequences
where there is not clutter and once they have estimated the coefficients of their
models, they use them in sequences where clutter is present.

The principal problem when working with contours is that they must be ap-
plied in cases where there is a good contrast between the object to be tracked and
the background. They are also sensitive to highly textured surfaces and clutter.
To deal with these problems, in [75], the authors propose a model-based method
to track contours of rigid and deformable objects by means of a machine learning
approach. With this method they estimate the conditional probability of a texture
discontinuity, which let them to enforce a connectivity of contours in a quanti-
tatively way. When tracking a rigid object, they use the geometry of the object
to find the optimal pose, while in the case of the deformable models, they use a
Hidden Markov Model to calculate the joint law of the conditional probabilities
of contour points. They train weak classifiers in order to obtain a final weight to
determine if there is a cut in the middle of a image band or not. Depending on
the complexity of the video sequence, they report to have used between 4 and 10
classifiers.

3.2.4 Interest points.

Interest points are often employed for 3D reconstruction and absolute localiza-
tion 3D environment, as well as initial pose estimation for tracking purposes.
The principal characteristics of these points are that they must be invariant to
illumination, to 3D projective transforms, and common object variations. They
should be also sufficiently distinctive to identify objects among multiple alterna-
tives. This is why they allow an object to be tracked independently of background
clutter and partial occlusions. To handle partial occlusions, we can consider that
having a subset of the interest points is enough to estimate its location. This can
be done with the aid of a 3D model of the object, or by geometric constrains.

To do that, we should match interest points extracted from gray level or color
images. A work very used to detect interest points is [40], where corners are
estimated in gray level images. In order to do that, it uses a moving window
to estimate the gradient of each pixel in 8 directions and then, by means of a
threshold, it determines if it corresponds to a corner or not. This work has been
widely used in the computer vision community, because the features obtained
with this algorithm were not only corners, but points with large gradients in all
directions at a predetermined scale. The principal disadvantage of this approach
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is that it is sensitive to scale variations.
In [83] the authors extend the work of [40] to color images, and improve the

algorithm to make it more robust. They use a bilateral filter in a smoothing step
in order to reduce noise present in the image taking into account not only the
distance between pixels, but also the chromatic information between them. They
also proposed an iterative version of their filter. The advantage of this kind of fil-
ter is that it reduces the localization error generally presented when a smoothing
filter is applied to an image.

Other work that uses interest points and that is also based on [40] is [54],
where the authors use a classification approach, based on K-means and nearest
neighbor, to determine if a point detected is member of a class learned during a
training. They use a geometric model to perform the training, and a RANSAC-
based method to estimate the 3D pose of the objects. They also propose in [51] an
ameliorated version of their algorithm but using classification trees to perform
more efficiently the classification of the features obtained with their own algo-
rithm to obtain interest points, based in pixels inside a circle, and comparing the
characteristics of all the neighbor pixels. Finally [67] proposes a method similar
to the last one, but oriented to deformable objects. They use not only the Harris-
corner estimator, but also the one proposed in [58], where the author proposes a
method for generating image features invariant to translation, rotation, scaling,
and partially invariant to illumination changes and affine or 3D projections. With
these features, he makes an index of objects that allows different objects in images
to be identified. The principal advantage of this kind of method is that it is more
robust to scale changes, because the corners detected at different scales with the
Harris detector, as we said before, are not necessarily the same.

3.2.5 Other features.

Some preprocessing of the image can give interesting information about the ob-
ject that we want to track. Some of these methods include the use of many ex-
amples of the object in order to obtain good descriptors of it, like the Principal
component Analysis. Another example can be found in the Adaboost, where a
preprocessing step creates features that are then used to determine whether or
not a face is present in an image window.

As we have seen, there is a panoply of features that can be extracted from an
image. All of them imply a preprocessing of the image in order to highlight the
desired characteristic. However, for most of the cases, a simple feature can not
guarantee the robustness of a tracker for all the possible cases. This is why hybrid
trackers are used to fuse information of multiple features.

3.3 Tracking methods.

Once we have defined the principal representations of an object, as well as the
most common features used to characterize it, we will present the methods used
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to perform the tracking of the object. There exist several methods for tracking,
but we are going to present the most popular for face tracking. We will start pre-
senting the gradient descent method, which is widely used because it is simple
and easy to implement. Then we will talk about the supervised learning meth-
ods, which need a training step to learn the desired object characteristics. For this
supervised learning part we will talk about the classification and the regression
methods. For the regression methods we will talk about the CCA, the Active Ap-
pearance Models, and the morphable models. Finally we will present the particle
filter, which is used to model non linear and non Gaussian processes.

3.3.1 Gradient based approaches.

Using the gradient is a very common and easy technique to be implemented.
In the case of a known model of the problem treated, we can obtain a closed
form of the gradient, indicating us the direction where the maximum variation is
located. Gradient descent is an optimization algorithm. To find a local minimum
(or maximum the algorithm is then called gradient ascent) of a function using
gradient descent, one takes steps proportional to the negative (when looking for
the minimum) of the gradient, or the approximate gradient, of the function at the
current point. Gradient descent works in spaces of any number of dimensions,
even in infinite-dimensional ones.

In [25; 31] the authors propose a method based on the gradient descent algo-
rithm to track the motion and facial gesture of faces. To accomplish this, the au-
thors use a geometric face model coupled with a gradient approach to handle the
transition model of the face tracker. They compare the fact of using a fixed gradi-
ent matrix with a gradient matrix that evolves over time. They use the geometric
model to estimate the gradient matrix, by adding some perturbations to the pose
and animation parameters of the geometric model. They showed that their ap-
proach when the gradient was estimated only at the first time is not robust to out
of plane rotations nor to facial animation, while their approach that estimates the
gradient matrix every n frames is more robust to these variations. This method
can be compared with ours, but in our case we use the geometric model and the
perturbations in a supervised learning context, that will be explained further.

Another example that uses a gradient descent technique is the active blob al-
gorithm proposed in [74]. In this example the object to be tracked is modeled by
a triangular mesh and a color texture, and it can handle non-rigid objects. The
optimization criterion uses a gradient approach to estimate some partial deriva-
tives with respect to the model parameters, and the result of this gradient is then
used in addition to a Hessian matrix to converge to the desired solution.

However there are some known drawbacks to the gradient descent approach.
Some of them are that it can need many iterations to converge toward a local
minimum, if the curvature in different directions is very different, and finding
the optimal step at each iteration can be time-consuming. Conversely, using a
fixed step can yield poor result if it is too big, or to a very slow convergence if the
step is too small.
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3.3.2 Supervised learning.

Supervised learning is a method that has three components. A set of learning
images containing different views of the selected object features to be learned, a
set of labels that are manually assigned to every image in the set of images, and
a mechanism to learn the relation between these object features and the labels
assigned. Basically it consists in creating a function that maps inputs to desired
outputs [100]. This mapping can be of two forms. If we have an output in the
form of a class label, then we will talk about a classification. In the other hand, if
the output parameters can take continuous values we will talk about a regression.
These two approaches are next explained.

3.3.2.1 Classification.

Classification consists in determining whether or not an object is an element of
a class. This object can be a point, a patch, or a whole image. This kind of ap-
proaches presents the advantage of being very fast to determine the belonging of
an object to a class, but to have this classifier, it is required to perform a training.
During the training we can use two sets, one containing examples of the target
object or objects, and one with other kind of objects, such that we can have at
least two classes. Selection of these classes represents a hard task, and the train-
ing of the classifier also, because we need to have a lot of information, images
in our case, that contain the object or feature class, and also lot of information of
non-objects. Additionally, this input information must be aligned, which is often
done manually.

A widely used classification method is the Adaboost algorithm [100]. Adap-
tive Boosting is an iterative method of finding a very accurate classifier by com-
bining many weak classifiers. For each weak classifier, a weight is associated and
it depends on the misclassified data. The classifiers are put together in a cascade,
so that the classifiers that are highly discriminant are used at the first stages. The
following stages are chosen to be more discriminant for the misclassified data
that can be obtained from previous stages. In this way an image that does not
correspond to a given object has a very high probability of being rejected in the
first stages of the test and thus, further computation is not performed. Viola and
Jones proposed in [86] the most known version of the Adaboost algorithm. It
uses Haar-like features as weak classifiers. This classifier has been used to detect
frontal view faces, profile faces and some other objects and features. The result-
ing detection is commonly used for tracking purposes, as an initialization step or
for recovery, as we will present in chapter 6.

Another widely used classifier approach is the support vector machine (SVM).
It consists in finding the maximum marginal hyperplane that separates one class
from the other. A certain measure is obtained from the distance between the hy-
perplane and the data points. The data points that are closer to the hyper plane
are called the support vectors. This method can be extended to a non linear by
means of the kernel trick and a kernel function, that will project the data to a
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high dimensional space where an hyperplane could be estimated when the linear
version can not estimate this hyperplane. In [5], the author proposes the support
vector tracking (SVT) that uses the classification scores of the support vector ma-
chine (SVM) in order to track optical flow. To accomplish this, the author fuses
the tracking and the classification in such a way that the cost function optimizes
the score of the classification rather than the brightness difference between two
consecutive images. The SVT algorithm uses a kind of iterative gradient descent
optimized over the SVM’s scores. This algorithm is used to track vehicles from a
cameramounted inside a car and it estimates the horizontal and vertical displace-
ment of the target. The principal advantage that is reported of doing this, is that
fusing the classifier and the tracker information gives better results than doing
it sequentially, tracking first and then obtaining classification scores, because the
tracker can lead to regions where the classification scores are trapped in a local
minimum.

However, the task of tracking can also be done using a regression scheme in-
stead of a classification and in [88], the authors improve the work of [5]. First,
they perform a training of the SVM by moving a known object of some pixels in a
four dimensional space, corresponding to 2D vertical and horizontal translation,
scale and rotation. Then, with the SVM scores obtained, the authors perform a
linear regression in order to link the SVM scores to location’s variation. They im-
prove also this algorithm and propose to use the relevance vector machine (RVM)
in [89]. The principal advantage of RVM is that it is well fitted for regression task
and introduces automatically a probabilistic measure of the results. They com-
plement this tracker with a SVM for initialization and recovery. This approach is
used to track faces and car plates.

In [51] the authors use a feature point detector based on [40], and use a classifi-
cation to determinewhether or not each feature point detected corresponds to one
of the class selected during training. The selection of the classes during training is
done by choosing those feature points more representative and present over the
whole set of training images. Then, only those that do not lead to a misclassifica-
tion over a certain limit are kept. In order to reduce the dimension of the patches,
a principal component analysis is performed and then a k-mean estimation is
used to compact the representation of the view-set. This algorithm was reported
to be very fast and accurate. In order to ameliorate their approach, a classification
tree method is proposed in [52; 53]. This kind of approach is more complicated
to implement, but it is more robust and adapted to classification problems. They
also proposed in this approach their own feature detector, that quickly deter-
mines if a pixel is a feature point or not. This point detector is reported to be
fast and stable, with a reduced complexity with respect to the traditional meth-
ods. To do this, the authors scan a circle around a point, and if they find that the
neighbors have a similar intensity, then it is not an interest point. This method
attributes also an orientation to each point, in order to introduce robustness to 2D
rotations. The results reported show the robustness of the method for 2D affine
movements in real-time applications.

As we have shown, classification is used to locate objects in video sequences,
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and as previously explained, a filtering step is needed to find the correspondences
between the detected objects across the frames. However, in the approaches pro-
posed by [52; 53; 88], they do not use this component to find the correspondences,
but assume that only one instance of the object is present in the image, so they
approach the tracking process by the detection of the object in each image inde-
pendently of the previous results.

3.3.2.2 Regression.

The regression is a statistical tool widely used to describe the relation existing
between two variables. The mathematical model of their relationship is the re-
gression equation. This equation contains estimates of one or more hypothesized
regression parameters. To obtain these parameters, we have to use samples of
both variables.

Uses of regression include curve fitting, prediction (including forecasting of
time-series data), modeling of causal relationships, etc.

CCA. Due to the high dimensionality that arises when working with images,
the use of a linear mapping to extract some linear features is common in the com-
puter vision domain. One of the most prominent methods for dimensionality
reduction is Principal Component Analysis (PCA) which deals with one data space
and identifies directions of high variance. However, faces represented by prin-
cipal components are sensitive to illumination, scale, translation and rotation.
Moreover, using first a PCA for dimensionality reduction and then trying to find
the linear relation between the reduced data set and the corresponding paramet-
ric data set can lead to a loss of information, from a regression point of view, as
PCA-features might not be well suited for regression tasks, as is demonstrated in
[60]. In our case we propose to use a Canonical Correlation Analysis (CCA) to find
linear relations between two sets of random variables, because the dimensional-
ity reduction is performed jointly with the two data sets. [6; 9; 87].

Canonical correlation analysis (CCA) is a very powerful and statistical tool
that is especially well suited for relating two sets of measurements, that has been
little known in the field of signal processing and pattern recognition until recently.
CCA can be seen as the problem of finding the direction vectors for two sets
of variables such that the correlations between the projections of the variables
onto these direction vectors are mutually maximized. The number of direction
vectors is equal to or less than the smallest dimensionality of the two variables.
These direction vectors are calculated by using jointly the two data sets in order
to obtain the relationship that exists between them.

CCA has recently been used for appearance based 3D pose estimation [60],
appearance-based localization [76] and to improve the AAM search [29]. These
works highlight the advantages of the CCA to obtain regression parameters that
outperform standardmethods in speed,memory requirements and accuracy (when
the parameter space is not too small).
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An important property of canonical correlations is that they are invariant with
respect to affine transformations of the variables. This is the most important dif-
ference between CCA and ordinary correlation analysis which highly depends
on the basis in which the variables are described [8]. We will present more in
detail the definition of the CCA, and then we will present the formulation of the
problem and the procedure to obtain the solution, in the chapter 4, where we will
present our approach. A detailed optimization formulated by [87], is presented
in appendix A which due to the nature of our data, was the formulation used for
our implementation.

Kernel Canonical Correlation Analysis (KCCA). The principal idea behind
kernel methods is better understood if we consider a simple binary classifica-
tion problem in Rp with non-overlapping classes, i.e. we have two classes that
can be perfectly delimited by a hyper plane of dimension p− 1. In this case, a lin-
ear method will perform correctly the classification task. However, if the training
data xi ∈ Rp is not linearly separable, we can still perform a linear classification
but first we need tomap this training data into a higher dimensional feature space
[37; 38; 39; 43; 60]:

φ : Rp 7→ R
s, s > p. (3.1)

Thus, using kernel-functions we can formulate our problem as a non-linear
version of the original one with the advantage that the complexity of the trans-
formed problem is not linked to the feature space dimension, but to the training
data set dimension, which means that we can use kernel transformations to fea-
ture spaces of high dimensionality.

We can apply the kernel-trick if we can express the classifier in such a way that
it only uses dot products of the transformed input data. This is useful because we
can express the dot product in the feature space in terms of kernel functions in
input space, i.e., φ(x)Tφ(y) = k(x,y). A sufficient condition for a kernel-function
to correspond to a dot product in a feature space is given by Mercers Theorem. In
[60], it is shown that CCA can be completely expressed in terms of dot products.

KCCA is used in[43] to measure the independence between two data sets, in
[37] to learn a semantic representation of web images and their associated text,
in [38] to infer brain activity by learning a semantic representation of functional
magnetic resonance imaging of brain scans and their associated activity signal,
in [60] it is used to create appearance models in order to estimate the pose of
different objects and in [103] it is used to estimate the facial expression.

Like for the CCA, we will describe more explicitly the KCCA in chapter 4.

3.3.3 Particle Filter.

Particle Filter is a Monte Carlo methodology for sequential signal processing that
has become of great interest in the last decades with the fast advances in com-
puters. The principal advantage of this kind of approach is that it can cope with
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difficult nonlinear and/or non-Gaussian models, or when an analytical solution
can not be easily obtained, or can not be obtained at all. The underlying principle
of this methodology consists in approximating relevant distributions with ran-
dom measures composed of particles (samples from the space of the unknowns)
and their associated weights. A tracking example is depicted in figure 3.3. A very
complete tutorial explaining particle filters can be found in [28].

In [82], the authors propose an algorithm that can cope with multiple targets,
by using the number of targets as a component of the state vector that is esti-
mated at each iteration as well as an occlusion variable. To do this, the algorithm
decouples the sampling process in two parts, one local used to track the motion
of individual objects, and one global, used to track addition or deletion of ob-
jects. This algorithm uses 300 particles and is capable of processing one frame
per second on video frames of size 320x240.

In [46], the authors propose also an algorithm capable of tracking multiple
people, and in this case the number of moving objects is also unknown. The
difference is that in this algorithm there is an observation model which accu-
rately reflects the likelihood of differing numbers of objects being present. Once
this model is present, the particle filter obtains the posterior distribution over the
number and configuration of the objects.

In [31], the authors use a geometric model and a particle filter to track the 3D
pose of human faces in a 3D environment. They obtain good results for the six
parameters of the 3D pose tracking, but to extend the work to track facial gesture
they were constrained to use another approach. The principal inconvenient of
this kind of approaches is that they are not well adapted to conditions where
the state vector to be tracked is of high dimensionality, because the number of
particles required to do that increases exponentially.

Figure 3.3: Results from a particle filter that uses color to track a person. From
left to right, reference image and two tracking frames where the blue rectangle
represent the particles and the red rectangle represents the tracking estimation.

3.3.4 Some examples.

In recent years there have beenmultiple propositions used for tracking faces. Two
of the most popular are the Active Appearance Models (AAM) and the 3D Mor-
phable Model. These approaches model the shape and the appearance of faces.
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The principal difference between these two approaches is that for the AAM, 2D
images are used to create the shape model, while in the case of the 3D morphable
model, 3D laser scans are used [91].

3.3.4.1 Active Shape Models and Active Appearance Models.

The description of Active Shape Models (ASM) can be found in [20], where the
characteristics of objects are learned during a training phase by building a com-
pact statistical model representing shape variation of the object. During the train-
ing phase, local features are annotated by hand in several images, intended to
contain all the possible variations that can perturb the shape of the object. The
chosen features are in this case corners and some of the boundary points lying
between these corners, which can be found in all the image samples. These points
are put together in a vector, for each image, and all the vectors are used to create
a training dataset. Then, the principal component analysis (PCA) is performed
to reduce the dimensionality and to obtain a reduced set of parameters that de-
scribes the perturbations of the model from a reduced number of eigenvectors.
The goal of ASM is to find the model parameters that best match the shape of the
object in a new image. To do this, the first step is to use a feature detector, and
then try to find the model configuration that best fits the feature points obtained.
This is done iteratively until the fit measure is not improved.

Active Appearance Models (AAM) can be seen as an extension of ASM [21].
This method obtains not only a statistical model of the shape, but also one of the
appearance (grayscale texture), and these models are fused to create one that de-
scribes the variation in shape and texture that an object in an image can be subject
to. In this case the training step consists in using the notated face images as ex-
plained before, to obtain a statistical shape model, and also the texture that lies
under this model. From this texture another model is obtained. As these two
models are highly correlated, they are put together and by means of a PCA a new
set of parameters is obtained. With this model the relation between displacement
of a synthesized face and the original image is learned by means of a linear re-
gression. In this way the algorithm performs an analysis by synthesis, creating
a frame that tries to be as similar as the original frame by means of the learned
AAM, estimating the perturbation of the parameters that corresponds to the dif-
ference between the frame and the synthesized image. In [29], they use the CCA
to obtain the linear model between the perturbations parameters and the error
between the synthesized image and the current frame.

Constrained Local Model described in [24] is a very similar method, but the
principal difference is that only particular features of the face are used, and the
model is learned only for patches around these local features.

There are some similarities between AAM and our approach, especially be-
cause both methods find the regression between a residual and pose parameters,
and in our case this regression is performed by means of the CCA. However, our
approach uses a geometric model to model the shape, and that extends the track-
ing capabilities to 3D pose parameters. Another key difference is that we do not
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perform an analysis by synthesis, but we compare the face in the current image
with a reference face to correct the pose parameters.

3.3.4.2 3DMorphable Model.

The idea behind the 3D Morphable Model (3DMM) is to synthesize an image of
a face that resembles as much as possible as the face of the input image [68], by
means of a parameterized model. It consists then of two parts, a model and a
fitting algorithm. The model should handle the conditions that modify the ap-
pearance face image.

In order to construct the 3Dmorphable model, it is required to have a set of 3D
faces obtained from several persons. In his work, Romdhani [68] uses 3D laser
scans. Then, he finds correspondences between the scans of one chosen as the
reference model and the other, and then the principal component analysis is per-
formed to estimate the statistics of the 3D shape and the texture of the faces. This
model intends to describe the parameters in such a way that they are indepen-
dent. These parameters should describe the principal sources of these variations,
which are, as described in [69]:

⋆ Pose changes produce changes of faces images. They produce also occlu-
sions of inner features.

⋆ Illumination changes alter also the face image. Even with a fixed pose,
changes of illumination produce important changes in a face image.

⋆ Facial expression can also produce significant changes on the face appear-
ance.

⋆ Aging in the longterm is also a source of image changes.

To take into account model changes due to illumination and pose, morphable
models impose the physical laws of nature based on the 3D geometry of faces and
the interaction of their surfaces with light. The other parameters are obtained by
exploiting the statistics of faces.

Once we had this model, we use it to synthesize faces. This is a method of
analysis by synthesis. This means, given an image containing a face, we synthe-
size an image until we obtain an image that is close to the original one. This will
give us a set of parameters of the morphable model that could be used for multi-
ple purposes next. This approach is used in [70], to estimate the pose, the texture
and the variations in illumination.

In [91] we can find amethod that compares the AAMand the 3DMM, and that
creates a method that is a mix of both approaches, extending the AAM approach
for 3D models.

The principal differences between the 3DMMand our approach are that we do
not use 3D scans, but 2D images to construct a representation of the face bymeans
of a 3D geometric model and we do not use an analysis by synthesis approach.
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3.4 Conclusions.

We have presented the principal criteria that need to be considered before build-
ing a tracker, which are the choice of the object representation, the choice of the
features to be used for tracking purposes, and some of the most used tracking
methods. The choice between these criteria choice will depend on the kind of
analysis that we want to perform from the obtained data. The selection of the
method will then depend on the characteristics and the possibility to model the
tracked object and the possible movements that it is expected to do. Another
characteristic that should be considered for the implementation of the tracker is
to decide if the tracker will be specific, or general, i.e., if we want to track a par-
ticular kind of objects, as persons for instance, or a more general tracker able to
track every moving object in the visual area of the camera. Finally, but not less
important, we have to know the external factors that will face our algorithm. We
need to know if the tracker will be used in outdoor or indoor environments, or if
it will be applied to the video obtained from a fixed or a moving camera, because
these factors will also determine the choice of the approach.

In our case we have selected an appearance representation for the face that is
obtained by means of a 3D geometric model. With this representation and the
parametric model we create synthesized face images by adding some perturba-
tions to themodel parameters. The use of a model makes the tracking of a specific
object more robust and discriminant. In our case, we also use the model to create
synthetic views of the face using a single face image Then, we use a supervised
learning approach that uses the CCA to find the linear relationship that exists be-
tween the constructed face images and the model parameters perturbations. The
CCA is a statistical tool with very interesting characteristics that has not been
used in signal processing until last years, that finds the linear relations between
two data sets. We will present our approach in more detail in the following chap-
ters as well as the principal advantages of it.

It is important to say that although there are algorithms with very good per-
formances, there is a lot of work to do, and the fact that the technology evolves
every day, will led us to develop algorithms more and more complex that will be
applied in real time applications. These applications are also growing as the algo-
rithm become more and more complex, letting us not only to estimate simple 3D
parameters, but also detect emotions or strange behaviors, and they will change
the way human interact with computers.
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Chapter 4

3D Pose Tracking of Rigid Faces.

Nowadays video face processing is a popular component in video applications,
especially because a facial image conveys many pieces of information such as
identity of a person, the gender, his age, the relative position with respect to the
camera, the deformation of an individual face due to changes in expression and
speaking, variations in the lighting, etc. This is why faces has aroused the interest
of computer vision community, besides they are very familiar to us, i.e., we have
a well developed sense of what expressions and motions are natural for a face,
and also because human faces are very complex three dimensional surfaces, that
are flexible, usually contain creases, and they have color variations, and thus,
they represent a real challenge. So, human face perception is currently an active
research area in the face image processing community.

There are several related topics of analysis, synthesis and processing of images
containing human faces [3], but in our study we are more interested in locating
and tracking faces in video sequences. The interest of locating and tracking hu-
man faces is that it is a prerequisite for face recognition and or facial expression
analysis, even if it is assumed in most of the cases that a normalized face image
is available. There is a panoply of applications behind face tracking, like face-
based biometric person authentication, human-computer interactions, behavior
analysis, driver monitoring systems, marketing and advertising, interactive in-
formation system, computer games, teleconferencing, surveillance or behavior
understanding, etc.

So, in order to deal with face tracking, vision research groups have proposed
in the last years several approaches that can be classified in two main groups:
model-based and learning-based approaches. In the first category, tracking al-
gorithms rely on a parametric model of the object to be tracked. In the second
category, algorithms presuppose the availability of a training set of object exam-
ples, and use pattern recognition/classification techniques. We can also make a
classification by the data derived from the video frame, as edges, interest points,
gray level intensities or color histograms, etc, that were briefly presented in chap-
ter 3.

Nearly all parametric facial feature tracking techniques (ASMs, AAMs, etc.),
also introduced in chapter 3, operate the central idea of finding a relationship
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between shape and appearance. Some people do this explicitly through gradient
techniques or others have done this through learning techniques like regression
(linear or kernel based).

Due to the high dimensionality that arises when working with images, the
use of a linear mapping to extract some linear features is common in the com-
puter vision domain. One of the most prominent methods for dimensionality
reduction is Principal Component Analysis (PCA) which deals with one data set and
identifies directions of high variance. In our case, we are interested in identifying
and quantifying the linear relationship between two data set: the change of the
pose parameters of the Candide model and the residuals of the face appearance
normalized to a neutral pose. If we use first a PCA to reduce the dimensional-
ity of the data sets and then we try to find the linear relation between them, a
loss of information containing the relationship between these two data sets may
be produced, as PCA-features might not be well suited for regression tasks. In
our case we propose to use a Canonical Correlation Analysis (CCA) to find linear
relations between two sets of random variables and make the dimensionality re-
duction of both data sets jointly [9; 87]. CCA finds pairs of directions for two
sets of vectors, such that the projections of the variables onto these directions are
maximally correlated. CCA is a statistical method which relates two sets of obser-
vations, and that is well suited for regression tasks. CCA has recently been used
for appearance based 3D pose estimation [60], appearance-based localization [76]
and to improve the AAM search [29]. These works highlight the advantages of
the CCA to obtain regression parameters that outperform standard methods in
speed, memory requirements and accuracy (when the parameter space is not too
small).

When tracking a rigid object in a 3D space, the pose of an object may be ex-

plained by a state vector b̂t at frame t of dimension six, three translation param-
eters and three rotation parameters. This chapter addresses the problem of track-
ing in a video the global motion of a face as a rigid object. In our case, we propose
a deterministic approach based on Canonical Correlation Analysis (CCA), on raw
brightness images, and in a similar way as in [25], we use a 3D face model to track
people’s 3D head pose.

Although model-based methods and CCA are traditionally used in the com-
puter vision domain, these two methods together were not already used in the
tracking context until very recently [29; 60]. We will show experimentally on dif-
ferent public and own video sequences that, indeed, our CCA approach is well
suited to obtain a simple and effective facial pose estimation.

A tracker, as explained in chapter 3, usually consists of two components: a
detecting component, and a filtering component to add temporal continuity con-
straints across frames and to deal with dynamics of the tracked object. As we said
before, these components can be done jointly or separately [100]. In our case we
do it jointly by taking into account the last known position in order to estimate
the variation of this position with respect to a reference vector, which is updated
from frame to frame.

This chapter is structured as follows. In the first section we will talk about
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the geometric models, and particularly about the Candide model that is a crucial
piece of our work, then we will introduce the Canonical Correlation Analysis
and Kernel CCA used in our work. After that, we will present how we link these
concepts to track a face in a video sequence to finally present experiments on long
video sequences.

4.1 Parameterized geometric models.

Geometric facial models for computerized facial animation were proposed by
Parke [63; 64] for computer graphics purposes in the 70’s. To obtain these kinds
of models, the author drew on a person polygons and took frontal and profile
photos of the drawn face to obtain a 3D model. In this early work the author al-
ready suggested that facial models might be used for data compression, previews
of the effects of corrective surgical or dental procedures, interactive applications,
tracking, etc. This makes people to get interested in representing facial move-
ments in a parametric way, in order to code all the possible deformations of a
face with a very reduce number of parameters. This interest gave origin to pa-
rameterized models which became powerful tools for facial image synthesis and
analysis. Geometric face models have been used in the computer vision commu-
nity for several purposes, from 3D synthesis, compression of video sequences, to
human behavior analysis.

As the use of these geometric models grew, also did the necessity of a stan-
dard for facial movements, and this gave origin to the Facial Action Coding Sys-
tem (FACS) [33] as a method for measuring and describing facial behaviors. Paul
Ekman and W.V. Friesen developed the original FACS in the 1970s by determin-
ing how the contraction of each facial muscle (singly and in combination with
other muscles) changes the appearance of the face. They examined videotapes
of facial behavior to identify the specific changes that occurred with muscular
contractions and how best to differentiate one from another. They associated the
appearance changes with the action of muscles that produced them by studying
anatomy, reproducing the appearances, and palpating their faces. Their goal was
to create a reliable mean to determine the category or categories in which to fit
each facial behavior. It is the most popular standard currently used to system-
atically categorize the physical expression of emotions, and it has proved useful
both to psychologists and to animators.

FACS measurement units are Action Units (AUs), not muscles, for two rea-
sons. First, for a few appearances, more than one muscle was combined into a
single AU because the changes in appearance they produced could not be distin-
guished. Second, the appearance changes produced by one muscle were some-
times separated into two or more AUs to represent relatively independent actions
of different parts of the muscle.

FACS defines 32 AUs, which are a contraction or relaxation of one or more
muscles. It also defines a number of Action Descriptors, which differ from AUs
in that the authors of FACS have not specified the muscular basis for the action
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and have not distinguished specific behaviors as precisely as they have for the
AUs.

Using FACS, human coders can manually code nearly any anatomically pos-
sible facial expression, decomposing it into the specific AUs and their temporal
segments that produced the expression. As AUs are independent of any interpre-
tation, they can be used for any higher order decision making process including
recognition of basic emotions, or pre-programmed commands for an ambient in-
telligent environment.

With the success of the MPEG-4 standard for face animation which provides
a standardized way for storing and transmitting animation parameters, model-
based coding and face animation have been increasingly popular research topics.
The basic idea of model-based coding is that the appearance and motion of a hu-
man face are analyzed, in order to extract compact parameters. These parameters
can be transmitted at very low bit rates, potentially allowing video face-to-face
communication over narrow channels.

Thus, at the beginning, the purpose of the face models was to represent the
face with the minimum amount of complexity, using the least quantity of points
and polygons, to reduce the computing time of deforming it. One example of
these models can be seen in the model developed by Rydfalk [73], known as
the original Candide model. Candideis a parameterized model consisting of
some vertices, that are connected by means of polygons. Its low number of
polygons, approximately 100, allows fast reconstruction with small computing
power. Based on this version, Ströemberg [81] created the standard Candide
model, which is a slightly modified model with 79 vertices, 108 surfaces and 11
Action Units AUs. In our work, we used the wireframe model Candide 3, pro-
posed by Jörgen Ahlberg[2]. This model consists of a small number of vertices,
114, and a small number of triangles, 178 after some personal modifications, and
it represents a face statically and dynamically by means of shape animation units
with an acceptable realism. Candide model is still widely used, since its simplic-
ity makes it a good tool for image analysis tasks and low complexity animation.
It was used in the head and facial tracking context in [31], in [36] to restore human
faces in noisy video sequences, in [4] it was modified automatically from a profile
and a frontal view in order to capture the physical characteristics of a person, in
[15] to estimate the 3D pose from planar images. In the following section we will
describe in detail the Modified Candide model used in our work and how we
used it to obtain a facial texture.

4.1.1 Candide model.

In figure 4.1 we can see the extended Candide model. The principal difference
between our version and that proposed by Jörgen Ahlberg [2] is that we added
some points to better describe the eyebrows, and the nose, as well as some shape
units, to better adapt it to face characteristics. The resulting model consists of
120 3D vertices, that are used to form 198 triangles. They can be modified by 69
animation units and 16 shape units.
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Figure 4.1: Extended Candide model.

The Candide model consists of a group of 3D vertices interconnected to de-
scribe a face by means of the triangles formed between these vertices. We can
write these 3D vertices as Pi, i = 1, ..., n being n the number of vertices. Thus, we
have a 3n-vector g which is the concatenation of all the vertices Pi. This vector
can be written in terms of the modifications that can be applied as:

g(τs, τa) = g + S · τs + A · τa (4.1)

where g is the standard shape of the Candide model, τs and τa are shape and
animation control vectors, and the columns of S and A are the Shape and Ani-
mation Units respectively [73], [2]. Thus S · τs accounts for the shape variability
and A · τa accounts for the facial animation, both of them assumed to be inde-
pendent. The model (4.1) can be seen as one static part and one dynamic part
acting independently. The model’s static part corresponds to characteristics such
as nose size, eye separation distance, eyebrows vertical position, etc, and can be
written as:

gs(τs) = g + S · τs (4.2)

and it is inherent to a given person. An example of these parameters is shown in
figure 4.2, where some shape units corresponding to eyebrows and eyes vertical
position are illustrated.

To acquire the static part, it is necessary to obtain τs. In this part of our study
τs is obtained manually. This can also be done automatically as proposed in [4],
and as we will present in chapter 6.

To perform the manual initialization, we place the Candide model over the
first video frame y0. Then we modify the control vectors τs and τa, by fitting the
Candide shape over the face in the first video frame.

Once the mask is modified to the person’s characteristics, we can simplify our
model equation (4.1) as:



60 4. 3D POSE TRACKING OF RIGID FACES.

Figure 4.2: Example of shape units. From left to right, standard shape of the Can-
dide model, eyebrows’ vertical position set to maximum, eyes’ and eyebrows’
vertical position set to maximum.

g(τs, τa) = gs + A · τa (4.3)

It is important to say that there is also a difference between the proportions
of the face for every people, so it is necessary to adapt also the vertical, hori-
zontal and deep proportions by a scalar factor in each direction. Although this
is adapted at the initialization step with the shape parameters, this scaling also
affects the animation parameters. We can then write equation (4.3) as:

g̃(τs, τa) = P(gs + A · τa) (4.4)

being P = P (px, py, pz) a scale matrix that modifies each 3D point of the Candide
model.

Since we also want to perform global motion, we need a fewmore parameters
for rotation and translation. Thus we replace (4.4) by:

ǧ(tx, ty, tz, θx, θy, θz, τs, τa) = RP(gs + A · τa) + t (4.5)

where R = R(θx, θy, θz) is obtained from a rotation matrix and t = t(tx, ty, tz) is
obtained from a translation vector.

As gs, S and P remain constant after the initialization step, we can state that
given the Candide model, our 3D tracking problem consists in estimating the 3D
head pose and the control vector τa, what makes the state vector to be written as:

b =
[

θx, θy, θz, tx, ty, tz, τa
T
]

(4.6)

For simplicity when referring to the Candide model we will use the notation
g(bt), where the t stands for the time index.

When positioning theCandide model over the current frame yt, we can obtain
the texture that lies under it, in order to warp it to the 3D Candide model. To
do this, we used a well known technique called texture mapping. It consists
in mapping a source 2D image onto a 3D surface, which is then mapped to the
destination 2D image by means of a perspective projection. This means that we
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have three coordinate spaces. The 2D texture space labeled as (u, v), the 3D object
space labeled as (xo, yo, zo) and the 2D screen space that is labeled (x, y) [41]. In
other words, taking the Candide’s 3D vertices we estimate for each vertex the
corresponding screen coordinates (x, y). Then from these screen coordinates (x, y)
we estimate also for each vertex the texture coordinates of the current frame (u, v).
Finally, we warp the texture contained in each triangle of the texture image to
each triangle of the 3D Candide model.

To verify that the texture obtained is correct, we draw the obtained 3D model
with the texture warped on it in a frontal view, as can be seen in top of figure
4.3(b) and in a three rotated views, as can be seen in the bottom of figure 4.3 (b).
The three synthesized rotated views are useful to adjust the z-component and the
parameters of τs and τa. The vector τa is supposed to be constant for the pose
estimation: the face is seen as a rigid object during the pose estimation process,
with a fixed expression.

(a) (b)

Figure 4.3: (a): Candide model placed over the target face in the first video frame.
(b): frontal texture views of the target face in the top and profile synthesized
texture views of the target face in the bottom, used to help the initialization step.

4.2 Normalized face’s texture.

Although normalization process is often treated as a separate preprocessing step,
it is an inherent part of face recognition. The ability of a system to produce nor-
malized face sequences implies that it recognizes faces as a unique class of ob-
jects in a manner which exhibits invariance under many possible factors, such as
changes in illumination, orientation, position in a 3D space, etc.

In our case we performed a geometrical normalization as described in [3] and
later in [31]. In our case, we use the geometric model to produce a normalized
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face. To proceed like this we use a transformation of the texture obtained at each
frame. It consists in several steps:

⋆ First we take the 2D texture lying underneath the 3D Candide model, and
warp it to the 3D model.

⋆ Then, we draw the 3D Candide model with the texture warped, with all
the rotations and translations fixed to a predefined value, in this case, zero,
except for the scale parameter, for the frontal view. Then, we add two syn-
thesized profile views at each side with a rotation of±60 with respect to the
vertical axis. All the expression parameters τa are set to zero.

⋆ Next, we load a fixed size window containing this draw and transform it to
a greyscale image, obtaining finally an expression-free patch of size 58 × 72
pixels as the one depicted in figure 4.4.

⋆ This patch is then normalized by the norm of all the pixel values and re-
shaped, giving the vector xt = W(g(bt),Yt) of size d = 4176 by taking each
column and putting it under the previous one (W can be seen as the texture
mapping operator).

The reason of doing this geometrical normalization is to obtain the face fea-
tures, for instance the eyebrows and the lips, always at the same place.

Figure 4.4: Expression-free patch.

In our case we have used the OpenGL library to implement the texture map-
ping between the frame image and the Candide model to create the expression-
free patch.

This vector xt = W(g(bt),Yt) is called stabilized face images (SFI), and it will
be considered as our observation. The vector obtained from the initialization step

will be called reference vector and it is denoted as x
(ref)
0 = W(g(b0),Y0), where

b0 corresponds to the vector state manually initialized, g(b0) corresponds to the
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geometric model placed at position b0 and y0 corresponds to the first video frame
where initialization takes place.

To make this observation model robust to most of the environment variations
during the tracking process, due to lightning changes, grimaces, occlusions, and
even the pose, it was then necessary to introduce an adaptation to the reference.
In order to do that, we perform an update of the reference at each time using the
following expression:

x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t (4.7)

where x̂t denotes the vector resulting from the estimation of the state vector b̂t

and α denotes a forgetting factor. This forgetting factor has been determined
from experiments and fixed to 0.99 for all the tests, proving to be robust in all the
video sequences tested.

The advantage of this kind of normalization is that the resulting vector presents
always the same characteristics, giving us a facial textures that encodes the char-
acteristics of one person, but with all the facial features, such as nose and eyes
position, always in the same place. This will show to be useful when working
with multiple people in order to obtain a general model.

4.3 Canonical Correlation Analysis

In a video sequence depicting a moving face, the tracking consists in estimating

the state vector b̂t at frame t that best matches the measurements in the current
image Yt. To perform this, we consider two approaches, to learn a relation be-
tween a set of perturbed state parameters and the associated image patches. One
is based on Canonical Correlation Analysis, and the other one on kernel CCA. In
this section we will briefly introduce CCA and KCCA, as well as the way we use
them for face tracking.

4.3.1 Canonical Correlation Analysis

Canonical correlation analysis is a way of identifying and quantifying the linear
relationship between two data sets of random variables. CCA can be seen as the
problem of finding pairs of directions for two sets of variables, one for A1 rep-
resenting m examples of the d-dimensional vector ∆xi and the other for A2 rep-
resenting m examples of the p-dimensional vector ∆bi, such that the correlation
between the projections of the variables onto these direction vectors are mutually
maximized. Let us notice that for this training, i denotes the index of the database
examples, with i = 1 . . .m. In our case the ∆xi vectors will represent the residual
between the face vectors with respect to a reference ∆xi = xi − x(ref), and ∆bi

the corresponding perturbation of the state vector parameters ∆bi = bi − bj ,
i 6= j. The canonical correlation coefficients can be calculated directly from the
two data sets. An important property of canonical correlations is that they are
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invariant with respect to affine transformations of the variables. The maximum
number of correlations that can be found is equal to the minimum of the data
sets’ row dimension min(d, p). If we map our data to the directions w1 and w2 we
obtain two new vectors defined as:

z1 = AT
1 w1 and z2 = AT

2 w2 (4.8)

These vectors are called the scores or the canonical variates [9; 26; 87] and we
are interested in maximizing the correlation between them, which is defined as:

ρ =
zT

2 z1
√

zT
2 z2

√

zT
1 z1

(4.9)

We must point out that ρ is not affected if we scale the canonical variates,
which means that we can maximize (4.9) subject to the constraints ‖z1‖ = ‖z2‖ =
1 and formulate our problem in a Lagrangian form. This can be expressed as the
following optimization problems:

{

min ‖z1 − z2‖2

‖z1‖ = ‖z2‖ = 1
⇔

{

max zT
2 z1

‖z1‖ = ‖z2‖ = 1
(4.10)

which are equivalent. The detailed optimization can be found in the appendix A,
in this section we will present only the most important equations.

Our problem consists in finding the vectors w1 and w2 that maximize (4.10).
In order to do that, we can define the product between the data matrices as:

Σ11 = A1A
T
1 , Σ22 = A2A

T
2 and Σ21 = A2A

T
1

The matrices Σ11, Σ22, and Σ21 have a statistical interpretation if we consider
the column vectors ofA1 andA2 matrices as outcomes of an independent random
vector, then Σ11/(m − 1), Σ22/(m − 1), and Σ21/(m − 1) may be considered as the
unbiased estimator of the covariance matrices.

Assuming Σ11 and Σ22 invertible, we obtain the relation that exists between
the two direction vectors w1 and w2:

Σ−1
11 Σ12w2 = ρw1 and Σ−1

22 Σ21w1 = ρw2 (4.11)

which take us to the equations:

Σ−1
11 Σ12Σ

−1
22 Σ21w1 = ρ2w1 (4.12)

Σ−1
22 Σ21Σ

−1
11 Σ12w2 = ρ2w2 (4.13)

Using these two equations we can calculate the direction vectors w1 and w2

that correspond respectively to the eigenvalues of the matrices Σ−1
11 Σ12Σ

−1
22 Σ21 and

Σ−1
22 Σ21Σ

−1
11 Σ12. The number of non zero eigenvalues to these equations are lim-

ited to the smallest dimensionality of A1 and A2 (min(n, p)) [9] and the corre-
sponding eigenvectors w1 and w2 are the canonical correlation basis vectors. These
equations can be also formulated as one single eigenvalue equation:
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B−1Aw = ρw (4.14)

where w =

(

w1

w2

)

, and

A =
1

m − 1

(

0 AT
1 A2

AT
2 A1 0

)

, B =
1

m − 1

(

AT
1 A1 0
0 AT

2 A2

)

(4.15)

are the estimates of the covariance matrices.

As is explained in [60], ρ corresponds also to the solution of the Rayleigh quo-
tient, which will be useful at a later stage. It can be defined in terms of the esti-
mates of the covariance matrices defined in equation (4.15) as:

r =
wTAw

wTBw
(4.16)

Solution of the Canonical Correlation Analysis equations from data matrices
As we have the data matrices A1 and A2 we can use the numerically more robust
method proposed in [87] to reduce the number of matrix operations. In this ap-
proach, we perform firstly the singular value decomposition of the data matrices
A1 = U1D1V

T
1 and A2 = U2D2V

T
2 . If we replace in (4.13) we obtain after some

manipulations:

((VT
1 V2)

T (VT
1 V2) − ρ2I)D2U

T
2 w2 = 0 (4.17)

Introducing the singular value decomposition: VT
1 V2 = UDVT , we can solve

the last equation, and after some rearrangement we arrive at:

(D2 − ρ2I)VTD2U
T
2 w2 = 0 (4.18)

Because D2 is a diagonal matrix, equation (4.18) shows that w2 are the column
vectors of (VTD2U

T
2 )−1 = U2D

−1
2 V. With a similar procedure we can show that

w1 are the column vectors of (UTD−1
1 UT

1 )−1 = U1D
−1
1 U. We denote then W1 and

W2 as the matrices containing respectively the direction vectors w1 and w2 that
maximize the correlation of (4.9), and these matrices can be written as:

W1 = U1D
−1
1 U and W2 = U2D

−1
2 V (4.19)

The principal advantage of this procedure, reported in [87], is to avoid the
calculation of the covariance matrices, the matrix multiplications in (4.15) and
the calculation of the two inverses. Instead of that, it is necessary to perform
three singular value decompositions.



66 4. 3D POSE TRACKING OF RIGID FACES.

4.3.2 Kernel Canonical Correlation Analysis.

As explained in chapter 3, kernel methods are used when a linear relationship
can not be found in the original data. They map the data into a high dimensional
feature space, in order to find a linear relations between the data in that space.

φ : Rp 7→ R
s, s > p. (4.20)

The use of a kernel approach depends on whether or not the kernel-trick can
be applied. That means that the optimization criterion must be expressed in such
a way that it only uses dot products of the transformed input data. If this is true
we can express the dot product in the feature space in terms of kernel functions
in input space, i.e., φ(x1)

T φ(x2) = k(x1,x2). A sufficient condition for a kernel-
function to correspond to a dot product in a feature space is given by Mercers
Theorem. In [60], it is shown that CCA can be completely expressed in terms of
dot products and that vector w1 and vector w2 lie in the span of the training data.
With this and if as in section 4.3, we define A1 and A2 as the centered data sets
of dimension n × m and of dimension p × m respectively, we can write vectors
f1, f2 ∈ Rm,so that w1 = AT

1 f1 and w2 = AT
2 f2. Thus, we can reformulate equation

(4.16) as:

r =

(

fT
1 fT

2

)

(

0 AT
1 A1A

T
2 A2

AT
2 A2A

T
1 A1 0

) (

f1
f2

)

(

fT
1 fT

2

)

(

AT
1 A1A

T
1 A1 0

0 AT
2 A2A

T
2 A2

) (

f1
f2

) (4.21)

From equation (4.21) we can see that the Rayleigh quotient can be expressed
in terms of dot products, so we can apply the kernel trick to it. What we are

looking for is to apply the CCA to the vectors φ1(A1) = (φ1(a
(1)
1 )...φ1(a

(1)
m )) and

φ2(A2) = (φ2(a
(2)
1 )...φ2(a

(2)
m )), which are two non linear mappings as described in

(4.20).
The formulation obtained in (4.21) makes the application of the kernel trick

straightforward. To do this we define the kernelmatricesK1,K2 asK1ij = φ1(a
(1)
i )φ1(a

(1)
j )T

and K2ij = φ2(a
(2)
i )φ2(a

(2)
j )T , and substitute them in (4.21), obtaining:

r =

(

fφ1

T fφ2

T
)

(

0 K1K2

K2K1 0

) (

fφ1

fφ2

)

(

fφ1

T fφ2

T
)

(

K2
1 0

0 K2
2

) (

fφ1

fφ2

) (4.22)

where fφ1 and fφ2 are the coefficients of the linear expansion of the principal vec-
tors wφ1 and wφ2 in terms of the transformed data, i.e., wφ1 = φ1(A1)

T fφ1 and
wφ2 = φ2(A2)

T fφ2 .
We can formulate this problem as one simple eigenvalue equation as in (4.14),

and then solve it as the traditional CCA problem to obtain fφ1 and fφ2 .
However, KCCA frequently yields to useless results because we work with

a finite number of points in a high dimensional feature space. To force useful
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solutions a method consists in introducing a penalizing factor depending on K

in the norms of the associated weights (for more details see [39]). If we introduce
this penalizing factor, we obtain from (4.9):

ρ =
fT
φ2

KT
2 K1fφ1

√

fT
φ2

K2
2fφ2 + κfT

φ2
K2fφ2

√

fT
φ1

K2
1fφ1 + κfT

φ1
K1fφ1

(4.23)

where κ is an scalar that was determined empirically based on the approach pre-
sented in [60]. After a development similar as the previously done for the CCA,
we arrive to equations equivalent to (4.13) and (4.12):

(K1 + κI)−1K2(K2 + κI)−1K1fφ1 = ρ2fφ1 (4.24)

(K2 + κI)−1K1(K1 + κI)−1K2fφ2 = ρ2fφ2 (4.25)

We can then obtain the vectors fφ1 and fφ2 as the eigenvectors of these equa-
tions.

4.4 Pose estimation and tracking.

Once we have introduced the CCA and the KCCA, we can proceed to describe
our algorithm to estimate the 3D pose. It consists of three steps: Initialization,
Training process, and Tracking process. It is important to say that in this case, the
vector τa is supposed to be constant: the face is seen as a rigid object, with a fixed
expression.

The facial 3D pose state vector b is then given, as stated in (4.6), by:

b = [θx, θy, θz, tx, ty, tz] (4.26)

where the θ elements stand for the rotations and the t elements stand for the
translations.

4.4.1 Initialization.

Initializing consists in placing and fitting manually in the first frame the Can-
dide model onto the person’s face, obtaining the initial state vector b0, and the

reference vector x
(ref)
0 = W(g(b0),Y0), as described in section 4.2, and showed

in figure 4.3. This vector will be kept during all the tracking process and will
be updated accordingly to equation (4.7). This reference is also used to generate
synthesized views of the face for the training process, as next explained.
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4.4.2 Training process based on the first image.

The training process consists in finding a relationship between the variations in
the state vector ∆bt and the corresponding variations in the input vector with

respect to the reference ∆xt = xt − x
(ref)
t . We assume that:

∆bt = bt − bt−1 = G∆xt (4.27)

whereG explains the linear relationship between the variations in the state vector
and the corresponding variations in the input vector with respect to the reference.
The learning of G has been obtained through CCA and KCCA approaches. For
that, we consider m different variation vectors ∆b

training
i from a non-regular grid

chosen empirically around the vector state obtained at initialization. A represen-
tation of this grid is depicted in Figure 4.5, where we can see the points for a two
dimensional vector. This non regular grid is dense close to the state vector b0,
corresponding to the origin of the grid, and as we get away from it, it becomes
sparse. Then, from equation (4.27) we can write the following expression:

b
training
i = b0 + ∆b

training
i ; i = 1 . . .m (4.28)

Figure 4.5: 2D representation of the sampled Candide parameters.

From these training state vectors we acquire m observation vectors x
training
i =

W(g(btraining
i ),Y0), obtained from patches similar to those depicted in figure 4.6.

It is with these two sets of data that we create the matrix A1 =
{

a
(1)
1 , . . . , a

(1)
m

}

,

of dimension d × m, whose columns contain the difference between the training

observation vectors and the reference vector, a
(1)
i = x

training
i − x

(ref)
0 , and the ma-

trix A2 =
{

a
(2)
1 , . . . , a

(2)
m

}

, of dimension p×m with p = 6, whose columns contain

the variation in the state vector a
(2)
i = ∆b

training
i . For this particular case these

variations correspond to the three rotations and three translations of the 3D pose.



4.4. POSE ESTIMATION AND TRACKING. 69

Figure 4.6: Examples of training images. Top: examples of rotations. Bottom:
examples of translations. In the top left corner of each image we can see the
corresponding expression free-patch used to obtain the observation vector xt.

Training the CCA As it is stated in equation (4.27), we want to find a relation-
ship between the variations in the state vector ∆bt and the corresponding vari-

ations in the input vector with respect to the reference ∆xt = xt − x
(ref)
t . Based

on the optimization used to obtain the CCA in equation (4.10), and using the
matrices A1 and A2 containing the training data, we can assume that:

wT
1 A1 = wT

2 A2 (4.29)

We know that the optimization in equation (4.10), if developed, can be written
as ‖AT

1 w1 −AT
2 w2‖2 = 2(1− ρ). In our case, we assumed ρ ≈ 1 which means that

there is a high correlation between the two projected sets [38].

As the training examples are chosen to describe all the possible variations of
themodel parameters, we can consider that the learned CCAdirection vectors are
valid not only for the training data, but for also for ∆bt and xt, so if we substitute
them in (4.29) we come to:

wT
2 ∆bt = wT

1 (xt − x
(ref)
t ) (4.30)

This is true for all the canonical variates, so WT
2 ∆bt = WT

1 (xt − x
(ref)
t ) is also

true, and matrices W1 and W2 contain the full set of canonical correlation direc-
tion vectors. We can replace equations (4.19) in the last equation, and after some
mathematical manipulation we arrive to:

∆bt = U2D2VUTD−1
1 UT

1 (xt − x
(ref)
t ) (4.31)
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where the matrices correspond to those explained in Section 4.3.1. From equation
(4.31), we can conclude that the training process consists in computing:

G = U2D2VUTD−1
1 UT

1 (4.32)

that will be used during the tracking process for estimating the variation vector.
It is important to notice that the matrixG is strongly dependent of the training

points selected. This means that this matrix will only valid for a certain rotation
and translation interval and it will be also dependent of the correctness of the
initialization. From experiments we have seen that indeed there exists a linear
relationship that is well explained by means of the CCA approach. However,
we wanted to see if a non linear approach could improve the results already ob-
tained. This is why we have decided to use a KCCA approach, that is presented
next, based on the approach given by [60].

Training the KCCA For the training process, we need to obtain vectors fφ and
gθ as described in the last section, using the same data matrices as the ones de-
scribed for the CCA approach. It is important to point out that in the case of the
variation vectors, we did not use any kernel. Once this is done, the starting point
is equation (4.29) that can be developed according to the KCCA as:

Ktfφ1 ≈ A2A
T
2 fφ2 (4.33)

With a similar development, we can assume that the tracking data satisfies
also this equation and after some mathematical manipulation we obtain:

∆bt = Ktfφ1(A
T
2 fφ2)

−1 (4.34)

Here we can see that theKt corresponds to the kernel matrix at time t obtained
between the training vectors x

training
i = W(g(btraining

i ),Y0), i = 1..m and the
current stabilized face image xt = W(g(bt−1),Yt). However, for the algorithm
implementation, we perform a linear regression between the result of the product
of the matrix kernel Ktfφ1 and the variation vector A2, so that we have the update
equation:

∆bt = Ktfφ1G (4.35)

being the matrix G obtained from the training kernel matrix K. The kernel used
in our work was the Gaussian Radial Basis Function:

K(xi,xj) = exp(−‖xi − xj‖2

2σ2
) (4.36)

In our experiments, the two parameters σ (eq. (4.36)) and κ (equation (4.23))
are set respectively to 0.009 and 0.003. They were obtained empirically from sim-
ulations using training sequences, and based on the method used in [60] to esti-
mate a starting point.
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4.4.3 Tracking process.

We can then formulate our tracking process as the estimation of the state vari-

ation ∆bt from the current expression-free patch vector xt = W(g(b̂t),Yt), ob-
tained from the current frame Yt by means of the state at the preceding time bt−1,

and compared to a reference x
(ref)
t that is updated at each time once the pose is

correctly estimated.

This is done by using the matrix G obtained during the training process (Eq.
(4.32)) for the linear case, or using the matrix G obtained during the training
process, and matrix Kt, obtained at each frame arrival. So, we can write our
update equation as:

b̂t = bt−1 + G(xt − x
(ref)
t ) (4.37)

for the CCA, and for the KCCA:

b̂t = bt−1 + KtfφG (4.38)

This b̂t is the estimate of the state vector and we use it to obtain a new ob-
servation vector x̂t = W(g(b̂t),Yt). Then we compare this observation vector xt

with the reference x
(ref)
t to obtain a measure of the error:

e(b̂t) =
d

∑

i=1

(

x̂t,i − x
(ref)
t

)2

. (4.39)

Before presenting the algorithm, we need to remember equation (4.7):

x
(ref)
t+1 = αx

(ref)
t + (1 − α)x̂t.

and then we can present the algorithm as:

1. Initialize e(b̂t−1) = 1, and a counter i = 0.

2. Estimate b̂t with the equation (4.37) for the CCA or (4.38) for the KCCA.

3. Estimate x̂t = W(g(b̂t),Yt).

4. Estimate e(b̂t) with equation (4.39).

5. Increase i by one.

6. If e(b̂t−1) − e(b̂t) > 0 and i < 5, then e(b̂t−1) = e(b̂t) and b̂t−1 = b̂t and
return to 2

7. Else update the reference accordingly to equation (4.7).
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As we can see we continue this loop until there is not an improvement of the
error, or a certain number of iterations are performed, as other algorithms do, like
in [5]. In our case we have found from experiments that 5 iterations represent a
good choice, as will be showed below.

We have fixed the forgetting factor in the update equation (4.7) to α = 0.99
and it gives good experimental results for all the video sequences used to test the
algorithm.

It can be seen that the proposed algorithm is easy to implement and from a
practical point of view, it is intended to perform very fast, at least in the linear
version of the algorithm, as will be corroborated with the results presented in the
following section.

4.5 Implementation and results

The algorithm has been implemented on a PC with a 3.0 GHz Intel Pentium IV
processor and a NVIDIAQuadro NVS 285 graphic card. Our non optimized code
uses OpenGL for texture mapping and OpenCV 1 for video capture.

Based on the algorithm described in section 4.4, we have implemented, for
comparison purposes, the two algorithms to estimate six head pose parameters.
The first version uses the CCA, and the second version uses the KCCA. The size
of the stabilized face image is of of 96 × 72 pixels, thus, the resulting observation
vector is of size d = 6912.

For training, we use m = 317 training state vectors with the corresponding
appearance variations for the pose, obtained synthetically by means of 3D Can-
dide model, the first frame and the OpenGL library. These vectors correspond to
variations of ±20◦ for the rotations, ±10.5% of the face width for translations. We
chose these points empirically, from a symmetric grid centered on the initial state
vector. The sampling is dense close to the origin and coarse as it moves away
from it (see Figure 4.5). Due to the high dimensionality of our state vectors, we
did not use all the combinations between the chosen points. In this implementa-
tion, we consider the head as a rigid object only. The facial animation parameters
were not implemented to be tracked.

To test the tracker we have used the 45 video sequences used in [48] 2, the an-
notated talking face video made available from the FGnet Working Group3, as well
as some video sequences made with a Winnov analog video camera XC77B/320.

Video sequences provided in [48] are 200 frames long, with a resolution of
320×240, 30 fps, taken under uniform illumination. There are 5 subjects perform-
ing free head motion including translations and both in-plane and out-of-plane
rotations, in 9 different video sequences for each person. Ground truth has been
collected via a “Flock of Birds” 3D magnetic tracker. Figure 4.7 shows the esti-
mated pose obtained with the CCA algorithm compared with the ground data.

1http : //www.intel.com/technology/computing/opencv/index.htm
2http : //www.cs.bu.edu/groups/ivc/HeadTracking/
3http : //www − prima.inrialpes.fr/FGnet/data/01− TalkingFace/talking face.html

http://www.intel.com/technology/computing/opencv/index.htm
http://www.cs.bu.edu/groups/ivc/HeadTracking/
http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
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Temporal shifts can be explained because the center of the coordinate systems
used in [48] and ours are slightly different. In our case, the three axes cross close
to the nose, due to the Candide model specification, and in the ground truth
data, the 3D magnetic tracker is attached on the subject’s head. In other words,
for our system the origin is the nose while for the other it is the top of the head.
This induced some small differences because what in one system represents a
rotation, in the other system represents a rotation and a translation. We check
experimentally (on all the provided video sequences) the stability and precision
of the tracker and do not observe divergences of the tracker.
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Figure 4.7: Ground truth compared with the CCA algorithm’s results.

Figure 4.8 depicts some video frames taken from two of the 45 tracked videos
from LaCascia [48], of 200 frames and a webcam video that corresponds to a long
video sequence of 734 frames. The CCA and the KCCA algorithm performance
did not present any problem when tracking the head in the LaCascia’s video se-
quences, especially because there are not facial gestures involved. In the case of
the webcam video, we succeeded in tracking correctly rotations in the y plane
going as far as±35◦ (nodding-no head movements). However, when trying to go
further, the algorithm could not estimate the correct variation of the angle and got
lost. However, we observed from simulations that the effectiveness of this kind of
tracker depends on the mask initialization, i.e., the 3D pose of the mask must be
correctly initialized in the first frame. Otherwise, the tracker can get lost because
the profile of the model affects directly the texture extraction and consequently
the state vector predictor.

Another test has been performed using a part of the talking face video. The
talking face video sequence consists of 5000 frames, with a resolution of 720×576,
taken from a video of a person engaged in conversation. This corresponds to
about 200 seconds of recording. The sequence was taken as part of an experiment
designed to model the behavior of the face in natural conversation. For practical
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Figure 4.8: Results from tracking three video sequences using the CCA algorithm
in the first two rows, and the KCCA algorithm in the last one. For the KCCA-
based (bottom raw) tracking results correspond from left to right to: frames 305,
332 and 691.

reasons (to display varying parameter values on readable graphs) we used 1720
frames of the video sequence, where the ground truth consists of characteristic 2D
facial points annotated semi-automatically. From 68 annotated points per frame,
we select 52 points that are closer to the corresponding Candide model points, as
can be seen in Figure 4.9. These points are not exactly the same as the ones given
in the ground truth, so there exists an initial distance between the points.

In order to evaluate the behavior of our algorithmwe calculated for each point
the standard deviation of the distances between the ground truth and the esti-
mated coordinates divided by the face width. Figure 4.10 depicts the standard
deviation over the whole video sequence for each point using the two implemen-
tations of our algorithm. We can see that the points with the greater standard
deviation correspond to those on the contour of the face. The precision of these
points is strongly related to the correctness of the estimated pose parameters.

In Figure 4.11 we can see the result of tracking the talking face over 1720
frames. The importance of this figure is that we can see the evolution of the
error during the video. We have seen that the peaks appearing in this figure cor-
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Figure 4.9: Candide model with the corresponding talking face ground truth’s
points used for evaluation.

respond to the moments when there is a facial gesture or an important rotation.
However, as it can be seen in the frames 378 and 991, we can consider that these
peaks do not represent a significant error between the state vector estimated and
the real head pose. If we look at frame 712, where a minimum error is located, we
can appreciate that the 3D pose of the person is close to that used as reference.

In figure 4.12, we show the influence of the α parameter in the long term evo-
lution. The fact of keeping the reference vector untouch, leads to an important
error accumulation that leads to tracking errors and in the long term could lead
to divergences of the pose estimation. However if we update this reference with
a low factor we see that it drives also to the degradation of the pose estimation in
the long term. We have seen that using a value of α = 0.99 was a good compro-
mise in performance and stability for this implementation. This parameter was
tested for all the video sequences and it probed to be robust independently of the
video sequence used.

The time required per frame processing depends on the video size, as can be
seen in the table 4.1. In that table we show also the comparison between the CCA
and the KCCA implementation. The presented results include the time required
for write/read operations. For the CCA algorithm, themean value of the 720×576
pixels talking face video was of only 50 ms. The rest of the time was expended
principally in the read/write process, and it was dependent on the choice of the
video codecs used for both, input and output video. We can also see from this
table that the KCCA is more expensive from a computing time point of view.

This time however depends in the number of iterations that the algorithm per-
forms at each step. The maximum number of iterations is fixed to 5. In figure 4.13
we can see the behavior of our algorithm when we vary the number of iterations.



76 4. 3D POSE TRACKING OF RIGID FACES.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Point

M
ea

n 
er

ro
r

   Contour      Eyebrows       Eyes        Nose              Mouth

0 5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

0.015

0.02

0.025

0.03

Point

S
ta

nd
ar

d 
de

vi
at

io
n

 Contour       Eyebrows      Eyes        Nose               Mouth

Figure 4.10: Mean and standard deviation of the error for each point provided for
the talking face video sequence.

Table 4.1: Comparison of time performance per frame.
Video’s size [pixels] time per frame [s]

CCA 640 × 480 0.15
CCA 720 × 576 0.18
KCCA 320 × 240 2.49

We can see that the more iterations we perform the better the result we obtain,
but we have to trade off between correctness and computing time, and we have
found that 5 iterations is a good trade off. This number of iterations was founded
to be robust because there is a little difference between two consecutive frames,
however, if we want to use this algorithm in a real time application where some
frames are skipped, the number of iterations should be augmented in order to
allow the algorithm to reach the convergence.

We have observed from simulations that this kind of tracker is very dependent
of the mask initialization, i.e., for some variations in the mask adaptation we can
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Figure 4.11: Mean point to point error, and three frames of the sequence corre-
sponding to frame 378, to frame 712, and to frame 991 respectively, using the
CCA algorithm.

see sometimes the tracker that does not work as expected, especially in low res-
olution video sequences. The principal problems arrive when there are rotations
in θx and θy, because the profile of the model affects directly the texture extraction
and consequently the state vector predictor. To make the algorithm more robust
we had introduced a depth’s scale factor, and this gave more robustness to the
initialization and rotation.

Figure 4.14 displays the six pose parameter estimates against time t, for the
face sequence in the last row of figure 4.8, using the CCA and KCCA-based track-
ers. These plots reveal few differences between the two trackers. We observe that
the results obtained with the KCCA-based tracker are slightly more precise and
robust for head rotations close to 40 degrees around the y axis. However, this
amelioration implies a more complex algorithm that requires more time between
frame processing. For the cases where there is not a strong head rotation, both
algorithms present the same results.

4.6 Conclusions.

We have seen that the algorithm proposed in our work estimates correctly the 3D
pose of faces using the CCA and the KCCA version that were implemented. This
pose estimation is correctly conducted in long video sequences of 5000 frames, as
the full talking face sequence, but in order to make the graphics more readable,
we present the results obtained with the 1700 frames version of the talking face
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Figure 4.12: Influence of α values in (4.7) over the point to point error and the
standard deviation of a long video sequence.

sequence. This confirms the stability in time of this approach, even if the matrix
obtained during the training is not updated. This presents the advantage that the
resulting implementation is simple, fast and reliable, and supports some pertur-
bations that are not included during training, such as facial gesture. The results
obtained in small video sequences with more important 3D pose variations but
without facial gesture also confirmed the robustness of this algorithm in the lim-
its of the training process. Indeed, we have seen that the algorithm can track
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Figure 4.13: Influence of the maximum number of iterations over the point to
point error and the standard deviation in a long video sequence.

rotations in Ry corresponding to ±30◦.

However, we observed from simulations that the effectiveness of this kind of
tracker is dependent, first on the training set used, and secondly on the mask ini-
tialization. The process of choosing the training set is laborious and was obtained
empirically. What we have seen of this set is that we have to do a trade off be-
tween the span of the perturbations, because if we choose a little span, wewill not
be able to track video sequences containing fast movements, or sequences where
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Figure 4.14: Left column: graphics showing rotations in plane x, y and z. Right
column: Translations in x, y and z axes.

some frames are dropped to achieve a tracking in webcam input sequences. In
the other hand, if the span is too large, the resulting algorithm will not be very
robust neither for the large perturbation, nor for the small perturbations, because
of the synthetic faces, that contains more distortions when the perturbations are
larger. In our case we can cite as an example the rotation corresponding to the
vertical axis, Ry, which was trained with perturbations going as far as 20 degrees.

For the case of the 3D mask initialization, the pose and the facial features
must be as realistic as possible at the first frame, otherwise, the tracker can get
lost because the model affects directly the texture extraction and consequently
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the state vector predictor, especially for the out of plane rotations.
Another important choice that has to be done is the size of the stabilized face

images ( Figure 4.4). If we chose a patch too small, we will have a very fast
training process, and a fast tracker, but wewill lose detail that can give robustness
to our estimation matrix. In the other hand, if we use a too big image, the training
will be slower aswell as the tracking, andwewill also be constrained in the vector
points that we can use for training purposes.

The results obtained by means of the CCA and the KCCA did not present a
significant difference. However, if we consider the computation time required
for the KCCA algorithm, which was more than 16 times slower than the CCA
algorithm, we can conclude that for the type of data we use, it is better to use the
linear approach.

In the following chapter we will show how we introduced the gesture track-
ing, based on the CCA approach, principally for tracking the mouth, eyes, and
eyebrows.
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Chapter 5

Extension to Facial Gesture
Estimation in Video Sequences.

In the last chapter we have presented an algorithm that estimates a head’s 3D
position based on a geometric model. Although this tracker appears to be robust
with respect to facial gesture, there are some applications that will require to es-
timate the facial gesture for more complex analysis of the face. This will also give
more robustness to the tracker, because it can lose track if there is a considerable
amount of facial gesture.

Some of the computer vision applications where the head pose and facial ges-
ture estimation are crucial tasks can be video surveillance, human-computer in-
teraction, biometrics, vehicle automation, etc. It poses a challenging problem
because of the variability of facial appearance within a video sequence. This vari-
ability gets increased when we consider not only the changes in head pose (par-
ticularly out-of-plane head rotations), lighting, occlusions, but also the changes
in facial expression, or a combination of all of them.

We shall show experimentally on different video sequences that, indeed, our
CCA approach is well suited not only to obtain a simple and effective facial pose
estimation but also the facial animation. We decided to keep the linear version
of the CCA, given that the non linear method did not present a big difference in
robustness, but was a lot more expensive from a computational point of view.

In this chapter we present an extension to our model-based approach that
incorporates CCA for monocular 3D face pose and facial animation estimation.
This approach fuses the use of a parameterized 3D geometric face model with
the CCA in order to correctly track the facial gesture corresponding to the lip,
eyebrow and eye movements and the 3D head pose encoded in 17 parameters.

5.1 Joint 3D pose tracking and facial gesture estima-

tion

We have seen in the last chapter that CCA is a powerful tool well suited to re-
gression task. It was demonstrated in [76] that using the CCA to estimate few
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parameters resulted in noisy parameter estimation, because the number of canon-
ical variates used in CCA is fixed by the minimum dimension of the two data sets.
Having this in mind, we use the same algorithm as the described before, but in
this case what we want is to estimate the complete facial 3D pose and animation
state vector b given in (4.6), by:

b =
[

θx, θy, θz, tx, ty, tz, τa
T
]

where τa is a 11 dimensional vector, containing some of the Candide model’s
animation parameters that control eyebrows’, eyes’ and lips’ movements, that
will be listed below when describing the implementation. In that case, the state
vector has 17 components, b ∈ R

17.
To accomplish this, we have modified the training part, that in this case will

include the animation parameters corresponding to the facial animation of the
eyebrows, the eyes and the mouth. We added the resulting state vector perturba-

tions ∆b
training
i and the corresponding input image residuals x

training
i − x

(ref)
0 to

the corresponding matrices to perform the explained CCA.
Even if this method showed to work efficiently, the fact of using a larger ma-

trix, with all the operations relative to the algorithm, proved to become very ex-
pensive for the training process with the new dimension of the vector state. We
have also seen that the 3D pose estimation was estimated less precisely than in
the case where no facial gesture was estimated. In order to avoid this penalty,
given that the objective of this tracker was to be light, simple, and robust, we de-
cided to estimate separately the 3D pose and the facial gesture, as we will explain
in the following section.

5.2 Independent 3D pose and facial gesture estima-

tion.

Given that in chapter 4 we proved that our tracker performed well when we es-
timate the 3D pose in presence of facial animation, we decided to prove that esti-
mating some facial gesture just after the estimation of the pose could be as robust
as the joint estimation of them. We do that because the facial gesture was not very
precise, especially for the eyeballs’ rotation. So, to cope with this, we proceed to
train two trackers, one for the pose and the facial gesture corresponding to the
mouth’s region, and other corresponding to the facial gesture of the eyes’ region,
as depicted in figure 5.1, where we can see the difference between the joint and
independent pose and facial gesture estimation based in two trackers.

As expected, the results obtained showed to be more accurate for the eyes’
region, so we decided to test if going to a three model tracker could further im-
prove the performance of the facial gesture estimation. For this, we proposed to
use a third tracker to estimate the facial gesture corresponding to the mouth’s re-
gion. The resulting algorithm uses three different stabilized face images (SFI), as
showed in figure 5.2. The assumption of independence of the upper part of the
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Figure 5.1: Diagrams showing the joint and independent pose and facial gesture
estimation.

face with respect to the lower part proved to be a good choice, since we could use
a stabilized face image for each region with more resolution that the one used for
the pose estimation. This lead us to a more precise estimation of the state vector
as we will show in the section 5.6.

SFI 1 SFI 2 SFI 3

Figure 5.2: Stabilized face images (SFI) used for tracking the pose: SFI 1, the
eyebrows and the eyes: SFI 2, the mouth: SFI 3, respectively.

Finally, we wanted to see if we could use an approach based on local feature
of the face, in order to reduce the size of the input vector used, as is explained in
the following section.

5.3 Local approach

Local features, as explained in section 3.2, have been widely used to locate and
track objects. The principal advantage that is reported from this kind of local ap-
proach, as in [51], where a classification of feature points is used, or in [24] where
the Constrained Local Model is described, with respect to global approaches, is
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that they are more robust to scale, viewpoint, illumination changes, clutter back-
ground, partial occlusions or the fact that the pose of the target object may be
very different from the ones in the training set. One important point to remark is
the fact that for normalization, as each point is normalized independently of each
other, local methods are supposed to be more robust to important illumination
variations.

In our local approach, we used some points of theCandide model correspond-
ing to important face features. These features can be seen in figure 5.3, where the
local stabilized face image is compared with the global stabilized face image used
in the previous proposition. As we can see from the figure, in the local image we
did not synthesize the profile views.

The change of this approach with respect to the previous is basically the con-
struction of the vector xt = W(g(bt),yt). It consists, as explained in 4.2, in taking
the texture obtained by placing the 3DCandide model and drawing it with all the
rotations and translations fixed to a predefined value, in this case, zero, except for
the scale parameter in a frontal view, and all the expression parameters τa set to
zero. Then, around the 96 selected vertices of the Candide model we extract in-
dependently normalized greyscale image patches of size 6 × 6 pixels. This size
was obtained experimentally, using the smaller window size that gives the best
results. Then, we concatenate all these patches to get the observation vector xt of
size 3456.

(a) (b)

Figure 5.3: (a) Local stabilized face image compared to the (b) global stabilized
face image used in the previous versions.

The remaining of the algorithm is the same as that explained for the jointly
estimation of the pose and facial gesture in section 5.1.

5.4 Use of the mean vector.

To perform the processing related to the correlation , as the CCA, it is necessary
to use centered data. In practice two possibilities exist. Either, we known the
mean value, or we have to estimate it from the data. In our case, we were faced
to study the two choices. The first was to utilize the first image, that we used to
create the synthetic training images, to center the data matrix, assuming that this
image corresponds to the true mean of the database. This assumption is based
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on the fact that it was the only image where no modifications were introduced.

So we use this image as a reference vector x
ref
t obtained at the first frame and

updated accordingly to (4.7). The second one consisted in estimating the mean
vector of the synthetic training database. This is whywe have decided to estimate
the mean of the training database created from a single person, and compare the
results obtained with this mean estimate with respect to the results obtained with
the reference vector. The mean computation is then written as:

x0 =
1

N

N
∑

i=1

x
training
i (5.1)

and it is updated in a similar way as the reference vector:

xt+1 = αxt + (1 − α)x̂t (5.2)

where α is the forgetting factor. The results obtained with this approach are dis-
cussed below.

5.5 Implementation.

We have used the same equipment as explained in 4.5, and for all the implemen-
tations used in this chapter, we have retained the following eleven animation
parameters for facial gesture tracking, that are also depicted in figure 5.4:

(1) upper lip raiser
(2) jaw drop
(3) mouth stretch
(4) lip corner depressor
(5) left eyebrow lowerer
(6) right eyebrow lowerer

(7) left outer eyebrow raiser
(8) right outer eyebrow raiser
(9) eyes closed
(10) left eyeball’s yaw
(11) right eyeball’s yaw

Based on the algorithm described in this chapter, we have implemented, for
comparison purposes, four versions of the tracker combining different stabilized
face images and a local approach.

⋆ The first version of the algorithm uses a stabilized face image (SFI 1, in
Figure 5.2) to estimate simultaneously the 6 head pose parameters and the
11 facial animation parameters.

⋆ The second version uses a stabilized face image (SFI 1) to estimate simul-
taneously the head pose and the lower face animation parameters (parame-
ters (1) to (4)) and then, starting from the previously estimated state param-
eters, we use a stabilized face image (SFI 2, in Figure 5.2) to estimate the
upper face animation parameters (5) to (11).
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Figure 5.4: Animation units used for tracking purposes. From left to right, Top
row: (1) upper lip raiser (2) jaw drop, (3) mouth stretch. Middle row:(4) lip corner
depressor, standard shape of the Candide model, (5-6) left and right eyebrow
lowerer. Bottom row:(7-8) left and right outer eyebrow raiser, (9) eyes closed,(10-
11) left and right eyeball’s yaw.

⋆ The third version of the tracker uses three stabilized face images sequen-
tially: one to track the head pose (SFI 1), one to track the lower face ani-
mation parameters (SFI 3, in Figure 5.2), and a last one (SFI 2) to track the
upper face animation parameters. SFI 1, SFI 2 and SFI 3 are respectively
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composed of 96 × 72, 86 × 28, and 88 × 42 pixels.

⋆ Finally the local approach uses 96 selected vertices to extract patches of size
6 × 6 pixels, as shown in figure 5.3.

For training, we use 317 training state vectors with the corresponding appear-
ance variations for the pose, 240 for the upper face region and 200 for the mouth
region. The same points are used in the three implemented versions. This means,
for the onemodel algorithmwe used 757 training state vectors. For the twomodel
algorithm we used 517 training state vectors for the mouth’s facial gesture and
pose estimation, and 240 training state vectors for the eye’s facial gesture. Finally
we used 748 training state vectors for the local approach.

These vectors correspond to variations of±20◦ for the rotations, ±10.5% of the
face width for translations, and animation parameter’s values corresponding to
valid facial expressions. We chose these points empirically, from a symmetric grid
centered on the initial state vector as explained in 4.4. The sampling is dense close
to the origin and coarse as it moves away from it (see Figure 4.5). Due to the high
dimensionality of our state vectors, even after the separation into three models,
we did not use all the combinations between the chosen points. It is important
to say that we consider the lower and the upper face animation parameters as
mutually independent.

Finally, to limit divergences when important out of plane rotations are present,
we test the estimated space vector bt, and if a parameter is bigger than a threshold
fixed for each parameter, we fix it to that limit and do not let it go farther. This
threshold was important for the rotation parameters, especiallyRy which was set
to ±60◦.

5.6 Experimental results

For validation purposes, we use the video sequences described in section 4.5. We
have structured this part in order to present the comparison of the first three al-
gorithms that use one, two and three models respectively. Then we will compare
the best approach with the local model. Afterward, we will present the use of
the mean instead of the reference vector. Then, we will consider the use of the
components of the most common color representations, to model the face, and
finally we will talk about the CCA’s coefficients.

5.6.1 3D pose tracking.

To test the 3D pose estimation we used the 45 video sequences provided by La-
Cascia [48] as well as the talking face. The fact of estimating the facial gesture
did not improve significantly the pose estimation. This can be seen in figure 5.5,
where we compare the best tracker’s results with the tracker that only estimates
the pose, and we can see that the difference can be considered almost null. As a
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consequence we have decided to implement separately the facial animation and
the pose estimation, as it is explained below.
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Figure 5.5: Comparison of the pose estimation when no facial gesture is estimated
andwhenwe estimate it with the three model version and both of them compared
to the ground truth.
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5.6.2 Simultaneous pose’s and facial animation’s tracking.

To test the performances of the three versions of the tracker we employ the talk-
ing face video sequence. We use the same characteristic points as those described
in 4.5. In order to evaluate the behavior of our algorithm we calculate for each
point the standard deviation of the distances between the ground truth and the
estimated coordinates divided by the face width. Figure 5.6 depicts the standard
deviation over the whole video sequence for each point using the three imple-
mentations of our algorithm. We can see that the points with the greater stan-
dard deviation correspond to those on the contour of the face. The precision of
these points is strongly related to the accuracy of the estimated pose parameters.
The best performance, as expected, is obtained with the third version of our al-
gorithm based on three stabilized face images to estimate first the pose, then the
lower face animation parameter and finally the upper face animation parameters.
When using a single model, the tracker presents some imprecisions, not only in
the facial animation parameters, but also in the pose estimation, making its per-
formances worst than in the case when no facial animation was estimated. This
is due principally to the fact that the region representing the eyes and the mouth
has not an enough amount of pixels to correctly describe the movements of lo-
cal features, making the pose and the facial animation parameters sensitive to
each other. The second version of the algorithm (based on the two stabilized face
images SFI 1 and SFI 2) improves the estimation of the upper face animation
parameters. Using three instead of two models brings an improvement only for
the points corresponding to the mouth, but no further improvements were ob-
tained for the pose estimation. Based on these results, we retain the third version
of the tracker to explore its robustness.

In figure 5.7 we compare the evolution in time of the mean standard deviation
of the 52 points used. From the image we can see that the fact of estimating the
facial gesture with the three model gives a more accurate tracking.

The α parameter affects the waywe update the reference stabilized face image
in equation (4.7). From experiments we find that α = 0.99 is a good choice. It is
important to say that when there is no update, i.e. α = 1, the tracker diverged
in long video sequences like the talking face. We see that the mean standard
deviation of the 52 facial points stays approximately constant with some peaks.
These peaks correspond to important facial movements. In the case of frame 993
the rotation around the y axis corresponds to 36.62◦. In frame 1107, the rotations
around on the x, y and z axes are respectively −13.3◦, 18.9◦ and −10.5◦. We ob-
serve on the whole video sequence that even if peak values are large, the tracker
still performs correctly. Figure 5.9 shows sample frames extracted from the whole
talking face video sequence and from different video sequences part of the data
set in [48] and from a webcam. We can appreciate the robustness of the tracker
even in the case of cluttered backgrounds.

Experiments were conducted to evaluate the sensitivity of the facial anima-
tion tracker in the case of erroneous 3D pose estimations. To do that we assumed
that the 3D pose estimation was correctly performed. Then, as the facial anima-
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Figure 5.6: Standard deviation of the 52 facial points w.r.t. the face width, using
the three versions of our algorithm, to track both the pose and facial animation
parameters. It is obtained from the 5000 frames of the talking face video sequence.
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Figure 5.7: Evolution in time of themean standard deviation of the 52 facial points
for each video frame comparing the one model and three model approaches.

tion is estimated after the 3D pose, we added some Gaussian noise to the six pose
parameters before estimating the facial animation, with a noise’s variance into
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Figure 5.8: Standard deviation of all the points w.r.t. the face width for each
video frame, and three frames of the sequence corresponding, to frame 476, 993,
and 1107 respectively, using the CCA algorithm.

the following intervals: ±10% of the estimated head width added to the three
translation parameters, and ±3◦ added to the three rotation parameters. Figure
5.10 shows the stability of the “eyebrow lowerer” animation parameter estima-
tion even if the six pose parameters have been previously altered, as well as the
perturbed rotation along the z axis.

Features like eyebrows and eye closure tend to change rapidly during emo-
tional expressions. We show in Figure 5.11 the time evolution of the “eye closed”
animation parameter, and observe on the graph that 18 eye blinks and one long
period with closed eyes around frame 100 are correctly detected. This is con-
firmed when looking at the talking subject in natural conversation in the talking
face video sequence going from frame 140 to frame 1850.

5.6.3 Local approach.

For validation purposes, we use the talking face video. As in the previous evalua-
tions, we used the 52 points previously described to evaluate the performances of
this approach. In order to evaluate the behavior of our algorithms we calculated
for each point the standard deviation of the distances between the ground truth
and the estimated coordinates.

We see in figure 5.12 that the mean standard deviation of the 52 facial points
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Figure 5.9: Frames from different video sequences showing the pose and gesture
tracking. From left to right: Talking face video sequence, two LaCascia’s video
sequences and two video sequences from a webcam.

stays around a constant value for both trackers with some peaks. These peaks cor-
respond to important facial movements. In case of frame 992 the rotation around
the y axis corresponds to 36.62◦. In frame 1102, the rotations around on the x, y
and z axes are respectively −13.3◦, 18.9◦ and −10.5◦. The tracker using the local
model, presents slight oscillations when visually compared to the global model
tracker, that can also be see from results depicted in this figure. This is because the
local model tracker is more sensitive to out-of-plane rotations and facial gestures.

Figure 5.12 also depicts the standard deviation over the whole video sequence
for each point. The points with the greater standard deviation correspond to
those on the outer contour of the face. The precision of these points is strongly
related to the correctness of the estimated pose parameters. In this figure we can
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Figure 5.10: Top: Estimated eyebrow lowerer animation parameter with and
without perturbations applied on the previously estimated pose parameters. Bot-
tom: rotation in the z-plane with and without noise.

see that except for some points, the behavior of the global model tracker out-
performs that of the local model one. This can be explained from the fact that
the global model uses more information about the face than the local model, es-
pecially if we consider that we synthesize two profile views of the face for the
global model. This makes the global model more robust to rotations, as can be
seen in the frames shown in figure 5.13. The average time for pose and facial ani-
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Figure 5.11: Temporal evolution of the ”eye closed” animation parameter.

mation tracking is about 26 ms per frame for the local model tracker and about 46
ms per frame for the global model tracker if we exclude the time for video read,
decompression and write/display operations. The average time for training is
29.1 and 33.2 seconds for the local and global model tracker respectively.

Finally, to test the robustness of the trackers to illumination changes we used
the challenging 967 frame long video sequence given at that time by the Poly-
technic University of Madrid [11]1. Sample results with both trackers are shown
in figure 5.13. We observe the same behaviors as before: the global appearance
based tracker is more robust to significant pose variations, and the local appear-
ance based tracker works more accurately for the facial features if the pose is
correctly estimated.

5.6.4 Use of the mean vector.

Till now, we have used the reference vector obtained at the beginning of the track-
ing, and we updated it at each frame with the new estimated state vector. How-
ever, we wanted to compare the behavior of the algorithm when using the mean
of the synthetic data with respect to the use of the reference vector to center the
data. In order to do that we estimate the mean of the synthetic data during the
training, and we center the data with respect to this mean. We obtain then the
relation existing between this mean vector and the perturbation parameters.

We tested the behavior of the facial pose and face animation over almost the
5000 frames of the talking face video sequence. We perform this additional test to

1http://www.dia.fi.upm.es/∼pcr/downloads.html

http://www.dia.fi.upm.es/~pcr/downloads.html
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Figure 5.12: Top: Mean standard deviation evolution in time. Bottom: Standard
deviation of each point.

see the stability of the pose and facial animation estimations when there was an
update of the mean, and when wee keep it untouched. The results are shown in
figure 5.14

We can appreciate that unlike the case when we use a reference vector, in this
case the update of the mean does not improve the performance of the tracker,
but it introduces perturbations and can make it diverge. This implied that if we
have an application where the video conditions can be assured to be almost con-
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Figure 5.13: Top row: frames obtained with the local model. Middle row: frames
obtained with the global model, Bottom row: frames from the talking face ob-
tained with the local and global model alternatively.

stant or where we have a database with the examples of variations that can affect
our tracker; we don’t need to update the mean vector. This will increment the
robustness of our tracker in case of some track lost, because the model will be
kept untouched, and if a recovery algorithm is implemented, it could perform
the tracking with the same parameters estimated during training.

We compared the behavior between the mean and the reference based algo-
rithm. The results can be seen in figure 5.15, where we can see that the use of the
mean performs slightly better than the reference based algorithm, but not enough
to discard the reference based algorithm.

Finally, we have tested our algorithm in video sequences where the camera
was moving as well as the person to be tracked. Due to the fact that we only
analyse the arriving video frame in the last known position, the fact of adding
the camera movement did not present a problem for our tracker.

5.6.5 Results using different color spaces

As explained in 3.2.1, there exist transformations of the color space RGB different
as the grayscale transformation, as the Lab, HSV, YCrCb. In this part we present
the results obtained when we use only one component in any of these different
color spaces. We perform this test to verify that the grayscale conversion was well
adapted to our approach. To evaluate the performance we used the 5000 frames
of the talking face video sequence, given that we have the ground truth to verify
the real performance in a long video sequence.
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Figure 5.14: Top:Point to point mean error evolution in time when the α parame-
ter is modified. Bottom: Mean point to point error.

YCrCb components. The first transformation that we have tested was from
the RGB space to the YCrCb space. YCrCb is a transformation of the RGB space
where the Y component stands for the luma, and it contains the most of the image
information, that corresponds to a grayscale image. The Cr and Cb stand for the
red and blue chroma components. In table 5.1 we present the mean point to point
error for different face regions normalized with respect to the face width and in
percentage.
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Figure 5.15: Comparison between the mean and the reference vector approaches.
Top:Point to point mean error evolution in time. Bottom: Mean point to point
error.

From these results we can conclude that using the other components of this
space transformation does not improve the results obtained with the grayscale
transformation. We can see that the results for the two chroma components have
an inferior performance. This is because themost of the image information is con-
tained in the luma component Y. The Y component is equivalent to the grayscale
transformation.
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Y Cr Cb

General 5.03 5.18 5.18

Contour 6.34 6.56 6.86

Eyebrow 4.29 3.94 4.16

Eyes 2.31 3.44 2.83

Nose 6.02 7.25 6.68

Mouth 5.30 4.83 5.06

Table 5.1: Experimental using the YCrCb different color channels. The Y compo-
nent is equivalent to the grayscale transformation.

RGB channels. In this part we have used a single channel of the RGB image to
perform the tracking instead of the grayscale transformation.

R G B

General 5.32 5.03 4.98

Contour 7.26 6.56 6.14

Eyebrow 4.49 4.38 3.96

Eyes 2.53 2.31 2.45

Nose 6.20 6.03 6.34

Mouth 5.42 5.10 5.28

Table 5.2: Experimental using the three different color channels.

It can bee seen in the table 5.2 that the use of each channel independently
improves the results obtained, particularly in the case of the green channel for
the mouth, or the blue channel in general. It is important to say that in the RGB
representation of an image there is a high correlation between the different com-
ponents, what makes the images stored in this format to have a big size.

HSV components. We have also used the HSV transformation. HSV (hue, sat-
uration, value) is another space created to be perceptually uniform. We have
observed that the H component leads to higher dispersions than the grayscale
representation. In the other hand our algorithm does not work properly with the
S component. We have found no explanation for this behavior.

However, the results for the V component are better to those obtained with
the grayscale transformation, as can be seen in the table 5.3, particularly for the
contour tracking.

Lab components. Finally we used the Lab transformation. Lab is a space cre-
ated to be perceptually uniform. From results displayed in table 5.4, we can see
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H S V

General 6.83 105.4 4.98

Contour 9.64 102.5 6.10

Eyebrow 6.47 111.1 4.07

Eyes 3.07 107.3 2.35

Nose 6.90 104.4 6.22

Mouth 6.89 102.6 5.33

Table 5.3: Experimental using the three different HSV space’s components.

that the a component presents a performance that is a little better that the one pre-
sented by the grayscale transformation for the mouth points. However, for the b
component the algorithm does not work whenever there is a high head rotation
in the video sequence.

L a b

General 5.04 5.58 77.6

Contour 6.39 7.46 67.7

Eyebrow 4.35 5.64 128.8

Eyes 2.34 3.38 112.4

Nose 6.03 6.24 72.2

Mouth 5.25 4.92 34.8

Table 5.4: Experimental using the three different Lab space’s components.

Mixture of color transformations. As we have seen, from tables 5.3 and 5.1,
the grayscale transformation and the V component of the HSV transformation
presented the best performances for the pose tracking, specially if we see the con-
tour points. For the eyes region also these two transformations performed better.
However, for the mouth region the a component of the Lab transformation and
the Green component of the RGB representation presented the best performances,
as can bee seen in tables 5.4 and 5.2. From these results we decided to test the fact
of using one space color component for the mouse region and other for the eyes
and the 3D pose.

After using the four possible combinations the best performance is obtained
with that using the V component of the HSV transformation for the pose track-
ing, and the a component of the Lab transformation for the mouth facial gesture
tracking.

In table 5.5 we can see the comparison of the grayscale tracker against the
proposed algorithm. We can see that the performance for the mouth tracking
is better, and as there are more points for the mouth than for the other parts of
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the face, this reduces the global error. However, for the contour tracking the
performance of the grayscale tracker is better.

Grayscale Combination

General 5.03 4.69

Contour 6.34 6.47

Eyebrow 4.29 4

Eyes 2.31 2.47

Nose 6.02 6.48

Mouth 5.30 4.03

Table 5.5: Experimental using the YCrCb different color channels.

This results can also be seen in figure 5.16, where the evolution in time for
the error and the standard deviation are depicted. We can see that the general
behavior of this algorithm outperforms slightly the performance of the grayscale
algorithm.

In figure 5.17 we can see the mean error and the standard deviation for each
point. We can see that the points corresponding to the mouth region present a
better performance, but some of the nose points and the contour points present a
worst behavior.

If we see the tracking results in the video sequence, the differences are slight
and both algorithms can be considered to work properly.

5.6.6 The CCA coefficients obtained

As we have explained, the CCA is a very powerful tool that obtains the relation-
ship between two data sets. It is able to obtain a set of vectors that will relate,
the variation of an input vector, in our case the stabilized face images, and the
parameters that produce this kind of variations. In figure 5.18, we show the coef-
ficient for the pose and the facial gesture estimation. We can see from them that
some features, as the nose, the mouth or the eyes, are those that will determine
more strongly the movement that has been detected, in the case of translation
and rotation estimation. For the eye’s region, we can clearly see the parameters
that correspond to the eyebrows movements and the eye’s movements, and fi-
nally for the mouth’s region we can see the different parameters modifying the
mouth’s shape.

It is interesting to see that the parameters corresponds to the face model, not
as in the case in [59] where the eigenfaces, obtained with a PCA approach, are not
related to the human face.
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Figure 5.16: Top: Evolution in time of the mean error for the algorithm using the
grayscale for the pose estimation and the L component of the Lab color space for
the mouth and eye parameters. Bottom: corresponding standard deviation.

5.7 Conclusion

We have presented a method that is capable of tracking both 3D pose and fa-
cial animation parameters from individuals in monocular video sequences. The
tracking approach is simple from the training and tracking points of view, robust
even to slight illumination changes and precise when the out-of-plane face rota-
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Figure 5.17: Top: Mean error for each point of the algorithm using the grayscale
for the pose estimation and the L component of the Lab color space for the mouth
and eye parameters. Bottom: corresponding standard deviation.

tion angles stay in the interval ±30◦, as it has been proved with the simulation
results.

We have presented several tests to verify the robustness and behaviour of our
algorithm under different situations to track both 3D pose and facial animation
parameters of individuals in monocular video sequences. The first thing we have
seenwas that estimating separately the pose and the facial gesture did not worsen
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the global tracking result. This presents two principal advantages: Firstly we
have three smaller training sets to estimate the CCA coefficients instead of only
one huge set, which represents a gain of computation time during the training
phase, and secondly, we have different resolutions to analyze the local move-
ments corresponding to facial gesture. The advantage of this approach is that the
tracking results for the gesture animation can be improved greatly because we
can use a bigger resolution to determine the correctness of the tracking for the
mouth and eyes parameters.

From the comparison with respect to the local model we can conclude that
using a local model presents the advantage of being faster and has good per-
formances, nevertheless, this approach is more sensitive to strong out-of-plane
rotations and important facial gesture. Another advantage of using the local ap-
proach is that it also presents a robust behaviour when faced to important illu-
mination changes, especially because each local feature is normalized indepen-
dently of the others features. However, we can conclude that the global approach
represents a better solution for real world conditions, where important rotations
can appear and facial gestures are expected. To make more robust the local ap-
proach, we should implement an approach similar to those explained before in
5.3, particularly in [53; 54] where the local features are treated independently one
from each other, and then a geometric model is used to find the best configura-
tion of the model that contains the most of the feature points detected, making
this approach robust to outliers.

The use of the mean or of the reference vector in the algorithm will depend
on whether or not we want a model that can be updated. The principal advan-
tage of the mean-based algorithm is that we make all the computations once and
our model can be stored, to track the same person under the same conditions
without changing or re-estimating these parameters. However, if we want to use
our algorithm in an application that must be initialized each time because the ex-
ternal factors change widely, we will need to train each time our algorithm and
depending on the extrinsic characteristics of the environment we will chose to
use the reference base or the mean base algorithm. If we know that the video
conditions will not make our algorithm to diverge, then both algorithms are well
suited. However, if we know that our algorithm can diverges or have some bad
estimation, and then it would be better to use the mean based algorithm, because
these bad estimations will undermine the performance of the reference based al-
gorithm because of the update step. Another advantage of using the mean based
vector, as will be explained in chapter 6, is that we can build a general model
based on several training images that are not related with the first frame of a
video sequence.

When analyzing the results from different color space’s components, we can
conclude that the fact of only applying a color space transformation to the RGB
image and working with one of the component of the new space, does not gives
a better result than the one obtained if we work in the grayscale space, or not
for all the parameters. We have seen that using a mixture of the V component
of the HSV transformation for the pose and eyes region, and a component of the
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Lab transformation for the mouth’s region resulted in a slight amelioration of the
tracker performances, but due to the complexity that it adds to the algorithm, we
can consider that using this mixture of spaces is not worth.

Finally, it is important to say that there exists another kind of processing to
use the three components of an RGB image in order to highlight some specific
characteristics of the video images, as the belonging of a pixel to a skin region or
a lip region as in [34] and [56], or some feature detector, as contours or interest
points. However, as the principal objective of our algorithm is to be kept light and
fast, we keep the grayscale transformation without adding an additional step to
the image process.

In this chapter we have then introduced an algorithm which is able to follow
the face’s 3D pose and facial gesture using as a starting point the first frame that
is initialized by hand. From this initial frame we create three models with the aid
of the CCA, which probed to cope with long video sequences.
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Figure 5.18: Stabilized face image corresponding to the (a) 3D pose (b) Eye’s re-
gion facial gesture and (c) Mouth’s region facial gesture. (d-f) Coefficients for the
rotation, (g-i) Coefficients for the translation. (j-k) Coefficient for the eyebrows’
parameters, (l-n) Coefficient the eyes’ parameters, (o-r) Coefficients for mouth’s
parameter.
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Chapter 6

3D pose and shape estimation in
images of unknown faces.

While there are multiple effective approaches for tracking, they all require an
initial pose estimate, as stated in chapter 4, which remains a difficult task to pro-
vide automatically, fast and reliably. The processes of initialization and tracking
are complementary, since all trackers require initialization and, even those with
better performance, will lose track as a result, for example of severe occlusions
or severe illumination changes. To cope with this problem, several methods to
detect objects exist, like point detection, background subtraction, segmentation,
supervised learning, etc. In our case we are interested in supervised learning
applied to object detection.

Supervised learning consists in having a set of learning images containing
different views of the selected object features to be learned, some object class that
are manually given to each learning image, and a mechanism to learn the relation
existing between these object features and the object class. Basically it consists in
creating a function that maps inputs to desired outputs [100]. This mapping can
be of two forms. If the output parameters can take continuous values we will talk
about a regression. In the other hand, if we have an output in the form of a class
label, then we will talk about a classification.

Some examples of methods using the classification approach to detect objects
in images can be found in [15; 54; 67; 86]. In all these approaches, the features
obtained are classified as belonging or not to a certain geometric model. In the
case of [15], they also use the Candide model. The use of a model gives a robust-
ness with respect to outliers. In [54] a feature detection algorithm is used to track
rigid objects in video sequences, using the classification of the feature points as
specific points of the interest object, taking each video frame as an independent
image, and [67] is an extension to track non-rigid objects.

Maybe one of the most popular approaches, presented in chapter 3, is the one
described in [86], where the Adaboost algorithm is used to detect faces, but can
be extended to any object. This work is used in [75] to train a contour tracker, or
in [77] to track faces in indoor environments combining a color approach to track
the whole human body. In [62] the Adaboost is trained to detect hockey players
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and the tracking is performed by means of a particle filter to keep track of the
multiple objects.

From these works we have seen the advantage of the classification methods
to estimate an initial position. However, to tune this initial estimation to a 3D ge-
ometric model, a regression method appears to be more adequate. This is why in
this chapter we will propose an algorithm to estimate the 3D pose and the face’s
shape in images based in a first classification approach and then in a regression
approach. This algorithm uses the Adaboost algorithm [86] to detect a face in
frontal view. Then based on this first location, we adapt the 3D Candide model
to obtain the correct 3D pose of the face. Then we proceed to adapt the shape of
the face based on the shape units of the Candide model. The algorithm used is
based on the CCA algorithm that we have already explained, but the principal
difference is the training of our algorithm, which is explained in the following
section. The structure of this chapter is the following. First, we will present the
principal changes of the training process, showing a different normalization used
to create an expression and shape free patch. Then we will describe our algo-
rithm for images. Finally we will present the implementation, the results and the
conclusions.

6.1 Training process based on multiple images.

As explained in chapter 4, the training process consists in creating a matrix that
explains the perturbations of the state vector, 3D parameters for the pose and
shape parameters in this case, in terms of the residual of the difference between
an image vector and a reference or mean vector. In order to obtain this matrix we
need to create two databases. The first containing the faces with multiple varia-
tions in pose and the second containing the pose variations applied to each face.
We need to highlight that we have proceeded as for the facial gesture tracking
algorithm, i.e. we have separated the face’s shape from the 3D pose estimation
as three separated models. First we estimate the pose, and then we estimate the
shape parameters for the eyes-eyebrow region and then the parameters for the
mouth region.

The main difference in this algorithm with respect to the previous one is that
instead of using the first frame of a video sequence we use a database of several
people [80], and we create in a similar way as before, multiple images containing
variations of the pose around the original 3D pose. This is because our algorithm
is intended to work on images, or as an initialization/recovery process in video
sequences.

To cope with this challenging problem the first thing we have to do is to make
a normalization of the faces. In our case we performed a geometrical normaliza-
tion as described in [3] and later in [31]. The reason for this geometrical normal-
ization is that face features of different people are not placed in the same place.
This means that the shape of people’s faces varies from one person to another. For
instance, if we see the eyes of several people in a database, we will discover that
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Figure 6.1: Representation of the geometrical normalization of the face space.

the eyes have different sizes, different separation between them, different align-
ment, and different vertical position with respect to the face. In order to cope with
this variability, we can use the geometric model to produce a normalized face. To
proceed like this we use a transformation of the texture obtained at each frame.
It consists of taking the texture obtained by placing the 3D Candide model, as
described before, and then, drawing it as if it was at a distant point (as in the
frontal view of figure 4.4) with all the rotations fixed to a predefined value, in this
case, zero for a frontal view. In this case, we will not include the two synthesized
profile views. Then we will set all the expression parameters τa and shape pa-
rameters τs to zero, in order to find all the face features at the same place in all the
resulting face patches. Then we load a fixed size window containing this draw
and transform it to a grayscale image, obtaining finally an expression-and-shape-
free patch of size 58 × 72 pixels. In figure 6.2 we show the difference between
two expression-free patches and two expression-and-shape-free patches. We can
see that some distortions are introduced due to this normalization of the shape,
but without this normalization the parameters obtained would not be general
enough.

Figure 6.2: Expression-free and Expression-and-Shape-free patches.

From this figure we can see that in general the distortions correspond to the
vertical displacement of the eyes, eyebrows and mouth. The advantage of doing
this transformation is that independently of all the different faces that we have
used from the database, we can find all the features at the same locations, i.e.,
the eyebrows, the nose, the eyes and the mouth are always at the same position,
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which is a requirement to have a general model able to detect people that are not
in the database.

Once we have performed the normalization, we proceed with the construc-
tion of the synthesized images in order to create two databases for each model,
containing the possible perturbations and the synthesized images, similarly as
described in the previous chapters, but there is a difference in the grid chosen
to create the synthesized faces. In this case, we have used a grid with fewer
points, but also we have introduced a random component to each parameter.
This was done to have different perturbations for each individual, and to have a
more dense global grid. The random noise used was Gaussian with zero mean,
andwith a particular variance for each component, that was about the magnitude
of the smallest perturbation used in the training grid for each component.

After building the six matrices, we center them, to then obtain, by means of
the CCA, a G matrix for each model, as described in chapter 4. It is important to
say that in this case we used the mean vector x to center the data, as described
in chapter 5, when we described the use of the mean vector instead of a refer-
ence. This mean is necessary in this case, because we are working with faces of
multiple people, and in order to have a general algorithm we need to center the
data with respect to this mean face. The resulting mean face vector, as well as
the corresponding mean of the eyes’ region and mouth’s region are depicted in
figure 6.3.

Figure 6.3: Mean face obtained from several people.

With these mean vectors and with the G matrices containing the CCA coeffi-
cients for each model we can then proceed to the 3D pose and shape estimation.

6.2 3D pose and shape estimation algorithm.

This algorithm, although similar in construction to the algorithm described in
chapter 4, presents the difference of estimating the pose and the shape parameters
of the Candide model, for faces that are not present in the training set of images.

In order to do that, we used first the Adaboost algorithm to detect a face in
the image. This algorithm gives us a rectangular window, defined by two points
with coordinates (x1, y1) and (x2, y2) respectively, where there is a face in frontal
view. We proceed then to interpret this window parameters to 3D parameters by



6.2. 3D POSE AND SHAPE ESTIMATION ALGORITHM. 113

means of a linear transformation, in order to approximate the position of the Can-
dide model to be over the detected face. As the Adaboost algorithm is intended
to detect frontal view faces, we fixed all the rotation parameters to zero and the
parameters to be obtained from this window are those corresponding to the tx,
and ty displacements and to the scale,tz. This linear model is obtained by moving
the Candide model in the 3D space of our program, and by doing a linear regres-
sion between the pixel coordinates and the 3D pose parameters, as expressed in
the following equation:

[tx, ty, tz]
T = A [x1, y1, x2, y2]

T (6.1)

The A matrix finds the relation between the pixel coordinates corresponding
to the vertical axis an the scale factor tz, and then it finds the relation between
the horizontal components in the pixel domain and the tx and ty, taking into
account the scale factor. Once we have estimated the initial position and scale of
the Candide model, we proceed to iterate with the CCA algorithm. In this case
the state vector for the pose estimation is of dimension seven, being it:

b(pose) = [θx, θy, θz, tx, ty, tz, hx] (6.2)

where hx denotes the horizontal scaling of the geometric model, because we have
seen that between different people the face shape varies considerably, so we kept
the vertical and deep scale factors hy and hz untouched, and we added the hori-
zontal factor as a parameter of the state vector.

In the case of the shape parameters, the state vector is separated in two, the
part corresponding to the eyes’ shape b(eyes) containing four parameters, and the
part corresponding to the mouth’s shape b(mouth) containing two parameters.

The CCA algorithm, as was described before, consists in using the matrix G,
obtained during the training, to estimate the perturbation of the state vector ∆bi,
where the index i stands for the iteration of the CCA algorithm, and the update
equation is written as in chapter 4

b̂i = bi−1 + G(xi − x) (6.3)

This equation is valid for the three models, denoting G1, G2, and G3 the pose,
the eye shape parameters and the mouth shape parameters respectively.

At each iteration the algorithm updates the state vector until it converges to
the 3D pose estimation, and then it updates the shape parameters. To declare the
apparent convergence we see the variation of the error at each iteration. When
there is not an improvement of the error we can consider that we arrived to the
desired position. To determine this improvement of the error we stored the pre-
vious and the current error, and when the difference is negative, we assume the
convergence of the algorithm. However, experimentally we have seen that it was
not enough to this criterion to arrive to the desired solution, so, we let our algo-
rithm reach five times the criterion of having the current error bigger than the one
estimated in the previous iteration, for the pose estimation, and two for the shape
parameters estimation, to assure that the solution was the correct one. Once we
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have estimated the 3D pose, we proceed to estimate the shape parameters. This
is because we need to know the final 3D pose to correctly estimate the shape
parameters.

A

(x2,y2)

(x1,y1)

(x1,y1)

(x2,y2)

[tx,ty,tz]

G1

G2&G3

Figure 6.4: Diagram of the detection algorithm. Top left: Window detected with
the Adaboost algorithm. Top right: The window coordinates are transformed to
Candide model translation parameters by means of the A matrix. Bottom right:
The pose is estimated with the G1 matrix. Bottom left: The shape parameters are
estimated with the matrices G2 and G3.

The process of estimating the pose and the shape parameters is explained
graphically in figure 6.4, where we show the window resulting from the Ad-
aboost algorithm, then the resulting pose estimated by the linear transformation,
the convergence of the Candide model to the correct 3D pose of the face, and
finally the estimation of the shape parameters.

6.3 Implementation.

We have used the same equipment as explained in section 4.5. The pose parame-
ters that were estimated consisted, as previously described, of the six 3D param-
eters containing the rotations and translation that will be applied to the Candide
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model, and of the horizontal scaling of the geometric face model. The shape pa-
rameters estimated for the eyes and the mouth were:

(1a) eyebrows’ vertical position
(2a) eyes’ vertical position
(3a) eyes’ separation distance
(4a) eyes’ vertical difference

(1b) mouth vertical position
(2b) mouth width

In this case, for training purposes we use the database containing 37 different
people described in [80]. In figure 6.5 we show some of the 37 different photos
used to create the database. For each person we have adapted the Candide model
manually, so we could then create synthesized images that were close to the real
face.

Figure 6.5: Example of faces used for training.

We used only the frontal neutral faces, where no expression and no light vari-
ations were taken into account. For each person we have 319 different points for
the pose training, 134 for the eyes region and 111 for the mouth region. These
points have been chosen from a random non-symmetric grid around the origin,
but in this case, as the Adaboost algorithm is intended for frontal view faces, we
limited the span of the training points described in previous chapters. In this case
the maximum rotation, for the y-axis was of 10◦, and of 5◦ for the other two pa-
rameters. We have tested two versions of our algorithm. The first one without
estimating the shape parameter, and the second estimating them.

The Adaboost algorithm used is distributed with the OpenCV library 1, and it
is based on the work of [55], that is an extension of the work presented in [86]. To
train the classifier 5000 positive frontal face patterns and 3000 negative patterns
have been used.

It is important to say that in order to make the matrix A in equation (6.1) in-
dependent to different input images sizes, we have performed a normalization of
the input image in order to have the values of the detected face window in the
interval [0, 1] for the vertical and horizontal component. In this way, the linear
model obtained to transform the Adaboost coordinates to OpenGL coordinates
is independent of the size of the input image. This linear model was obtained,
as previously described, by looking for the relation that exists between the pixel
coordinates of the Candide model’s center and the variations of the OpenGL pa-

1http : //www.intel.com/technology/computing/opencv/index.htm

http://www.intel.com/technology/computing/opencv/index.htm
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rameters. Then some little adjustments have been performed because the refer-
ence point of the Candide model it is not exactly at the center of it.

Due to the computing time of the algorithm of more than 48 hours, we have
stored in a file the mean vectors after they were calculated off-line, as well as the
three G matrices containing the corresponding CCA coefficients, to be used for
the pose and shape estimation of the first frame in video sequences or for still
images.

Another important factor for the implementation is the number of iterations
performed before assuming convergence or well, until a certain number of iter-
ations is performed. This number, in our case, was fixed to 30. This is done to
prevent divergence problems when no face is detected due to an occlusion or to a
false face detection of the Adaboost algorithm. We have seen that for the talking
face video sequence the mean number of iterations was 18, and for the LaCascia
video sequences it was between 11 and 15 depending on the person.

To probe the robustness and behavior of this algorithmwe have used the same
video sequences described before, but we consider each frame independently of
the precedent, i.e. we consider each video frame as a standing alone image and
we set to zero all the parameters when a new frame is loaded. Then we apply our
method to detect the 3D pose of the face and the shape parameters as it is shown
in the following section.

6.4 Results.

The first test we have performed, uses the video sequences of LaCascia, [48],
where the ground truth is provided. From these sequences we have seen that the
algorithm is robust to estimate faces when close to the frontal view. However,
when there is a rotation it can not follow it beyond the 6◦ used for the training.
This can be easily explained if we compare the input patch used for training and
pose estimation, where we use only the frontal view and not the two synthesized
views as in the tracking implementation. Moreover, the training uses less points,
especially in the regions far from the origin, making this tracker less robust to
strong face rotations. In this case we have done a trade off between the amount
of different people used and the robustness to rotations and movements. As our
intention was to implement an algorithm able to initialize and to recover in the
presence of a frontal view, we have decided that it would be more important to
have more people variance than robustness to rotation. It is also important to say
that the Adaboost algorithm that gives the first estimation of the face pose is also
constructed to localize frontal view faces, so it was incoherent to try to go beyond
the Adaboost capabilities. This is why when there is not an estimation given by
the Adaboost algorithm, we can not obtain results with our algorithm. For this
special case we put the Candide model in the center of the frame. This can be
seen in figure 6.6, where the dark regions correspond to the frames where no face
was detected by the Adaboost algorithm. When the face is close to the center
the algorithm estimates correctly the pose, but when the face is far enough of the
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face, the algorithm diverges.

Figure 6.6: Results from a LaCascia’s video. The dark regions show the frames
where the Adaboost algorithm did not found a face.

In figure 6.7 we can see some of the parameters estimated from the LaCascia
video sequences compared to the ground truth provided. We can see that some
parameters are very robustly estimated, as the horizontal translation, while some
others, as the rotations in general, are more sensible to the correct estimation of
the initial window as well as the characteristics of the person appearance. If we
look carefully at the rotation parameters, we can see that the rotation parameter
Ry can not follow movements beyond the ±5◦, corresponding to the values used
for training. When this happens, the rotation parameter Rz is wrongly estimated,
even if the ground true values are into the training dataset. Let us recall the
differences existing between the ground truth and the data obtained with the
Candide model, as it is explained in chapter 4.

From these experiments we have seen that the fact of adding the random part
to the training grid improved the performance of the pose estimation, i.e., the fact
of using different training points for each person introduces a more robust pose
estimation as we have more possible perturbations in the database. The fact of
having different data for two different parameters was already addressed in [11],
where the authors create images containing variations of the facial gesture, and
for only one facial gesture they introduced the variation of illumination. They
have proved that this approach produced almost the same results that creating
a huge database containing all the possible combinations of facial gesture and
illumination variation. In our case we use different faces for the training and for
each face we use different training points.

To see the correctness of the pose and shape estimation we have used the
full talking face video sequence, consisting of 5000 frames. We have used this
video sequence to first estimate the 3D pose only and then the pose and the shape
parameters. These experiments have also been used to determine the number of
iterations explained for the convergence criterion. It can be seen in figure 6.8
that the performances of the pose and shape estimation were better when the
number of times that we could have a negative difference between the current
error and the error in the precedent iteration was bigger. From experiments we
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Figure 6.7: Results obtained from some LaCascia videos showing the ground
truth against the estimated pose of each frame.

have fixed this number to be five for the pose estimation and two for the shape
parameters. We can see in the figure that the pose estimation is more accurate and
robust in the case where the criterion was fixed to five than when it was fixed to
three. In the case of fixing the parameter to three, we can see from the figure
that sometimes we arrived to the correct solution, and sometimes the algorithm
declared convergence before arriving to the correct solution.

From figure 6.9 we can see that estimating also the shape reduced the mean
error for some points of the eyes. In the case of the contour points and the nose
points the error was almost the same. In the case of the mouth and the eyebrows,
the error was slightly bigger, but this is due to the fact that in the video sequence
the person is engaged in a conversation, producing facial gesture that is not in-
tended to be estimated in this approach.

When we analyze the evolution in time of the mean point to point error, we
can see that the behavior is almost the same for both cases, the pose and the shape
estimation, or the pose-only estimation. This is depicted in figure 6.10. We can see
however that there are some peaks that correspond to important facial gesture.
This facial gesture produced some error estimation, especially for the mouth’s
vertical position estimation, mainly because the training phase for this parameter
considers only the case where the mouth is closed.

Finally we wanted to compare the performances of this approach in a tracking
context. To do that, we have compared the results of the tracking algorithm that
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Figure 6.8: Results obtained from the talking face video. V1 stands for the itera-
tion criterion fixed to three, and V2 for the iteration criterion fixed to five.
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Figure 6.9: Comparison of the mean error for each point, between the pose-only
and the pose-and-shape estimation at each frame. V1 stands for the pose and
shape estimation and V2 stands for the only pose estimation.

uses the first image for the training process with the results of the pose and shape
estimator presented in this chapter.

The results are shown in figure 6.11. We can see from this figure that the global
mean error is more important than in the case of the tracking performed with the
model obtained from the first frame that uses the two synthesized profile views.
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Figure 6.10: Comparison of the mean point to point error between the pose-only
and the pose-and-shape estimation at each frame. V1 stands for the pose and
shape estimation and V2 stands for the only pose estimation.
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Figure 6.11: Comparison between the normal tracking V1, and the pose and
shape estimation at each frame V2.

This is the result of using a general model that estimates only the pose and the
shape and does not takes into account the variations of the facial gesture. We
also see that there are some parts of the graphic where the pose estimation is not
optimal, giving as a result some peaks in the graphic. This peaks corresponds
to wrong estimations produced by extreme face rotations, or to some errors due
to facial gesture that produced a wrong estimation of the pose. The off-set that
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we can appreciate between the two curves is also due to the initialization that
we perform in the tracking contexts, where we initialize carefully all the shape
and facial animation parameters, and also some points of the Candide model.
For the case of tracking unknown faces we use the standard model without this
fine initialization. However, we can see that this offset remains practically con-
stant for all the images of the video sequences, what confirms the robustness and
correctness of the pose and shape estimation.

6.5 Conclusions.

We have presented an algorithm able to automatically estimate the 3D pose and
shape of faces in images, where the face is close to a frontal view. The princi-
pal characteristics of this approach are that it is simple, fast and robust. This
algorithm uses two databases containing synthesized images created from sev-
eral people and another with the pose and shape perturbations applied to each
face. From them we calculate the coefficients that give the relation between the
residual of a mean face vector and the current observed patch. These coefficients
are estimated once and stored in a file with the mean face vector. This approach
uses the Adaboost algorithm present in the OpenCV library.

We have seen from experiments that using different random points for each
people improved the performance of the training, improving the tracker robust-
ness. For most of the tested video sequences the algorithm presented a good
performance. However, it is important to say that we have seen that for some
tested video sequences containing a particular person, the algorithm presented
some difficulties to estimate correctly the pose and the shape, arriving to subop-
timal solutions. This was the case for a person who was very different from the
persons used for the training. To overcome this, an extended database should
be created, containing more subjects from different origins, because the database
used contains Caucasian people only.

This algorithm can be used as a robust method to automatically initialize a
tracker that uses the Candide model, or to recover after lose of tracking due to
severe occlusions. In the case of the recovery after track losing, we have two
options. The first is to use the algorithm described here, as an initialization prob-
lem, this means, use the CCA coefficients estimated from multiple persons and
the Adaboost algorithm. The second is to only use the Adaboost algorithm, and
the linear model that converts the pixel window to OpenGL 3D position param-
eters, as explained in this chapter and keep the CCA coefficients obtained from
the first image training, explained in chapters 4 and 5. This means that we will
keep the CCA coefficients obtained for a particular person only when the person
disappears in the current frame as a result of an occlusion, in a region of the frame
where he can not get out of the scene. However, if the person is close to the bor-
ders or to a region where the person can disappear, for instance a door, the first
option seems to be a better choice.

As it has been said at the beginning of this chapter, object detection algorithm
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can also be used to track objects. We can also use the approach presented in this
chapter as a tracking algorithm, estimating the pose at each frame independently
of the previous seen results. However, using this algorithm for tracking purposes
presents some disadvantages with respect to the algorithm presented in previous
chapters. Themost important is that it was not implemented to estimate the facial
gesture, which leads to bad shape estimation. Moreover, we do not take into
account the previous results, which makes this algorithm to need more iterations
to arrive to convergence, 18 for the talking face for this approach while only 5
for the tracking algorithm. Additionally, the span of this algorithm is narrower,
because we use a face vector without the synthesized profile views, and because
we do not add the same perturbations as in the case of the tracker of chapters 4
and 5. This limits the range of this algorithm as a tracker to be very close to a
frontal view. As we have seen, when we go further in rotations as for example in
the Ry rotation (see figure 6.7), the algorithm may go in the opposite sense of the
real variation.

We can then conclude that this algorithm is a simple and robust 3D pose and
facial shape estimator, whose principal application is to initialize our tracker and
it can also be used to recover when tracking is lost.
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Chapter 7

Estimation with an Incremental
Training Algorithm.

The appearance of a target object may change drastically due to intrinsic and
extrinsic factors. Then, we have to adapt the appearance model on-line, while
tracking, to reflect these changes. This is true for most of real life tracking situa-
tions, where extrinsic factors as changes in illuminations or occlusions due to the
configuration of the video scene are present. This problem has been an important
issue in recent years[10; 25; 31; 57; 72], especially because of the computing power
of modern computers that let the implementation of real time application in the
computer vision domain.

In order to cope with these possible variations, people had performed incre-
mental algorithms, that learn on-line how to track the object. We can consider
two approaches to these algorithms. In one hand the algorithms that at each time
learn the new model based on the last observation, as in [25; 31], where a gra-
dient matrix variations of a face appearance with respect to 3D pose changes is
recalculated at each iteration, but the appearance is only updated. In the other
hand, we can cite the algorithms that uses an update of the tracking coefficients
keeping the knowledge already obtained previously, as described in [10; 57; 72].

In [10], the author proposes a method to update the SVD of a matrix from
arriving data. The keypoint of this update consists in obtaining a decomposition
of the new data such that there is an orthogonal matrix in this decomposition. To
do that the author proposes a QR decomposition. Once we obtain this matrix, we
use its properties to update the SVD matrices. However this approach did not
take into account the fact that the data could be not centered. In [57], the authors
take into account the fact that the data can be non centered, and introduce a SVD
update that also considers the mean update applied to a visual tracker.

In [72] the authors use an incremental principal component analysis algorithm
that also takes into account the variation of the mean. For this, the authors project
the new data matrix over the eigenspace already obtained, and they obtain a
residual from this projection. This residual is then used to update the eigenspace
giving a faster algorithm. Indeed, creating a new matrix containing the eigenvec-
tors and the new data, and then performing the orthogonalization of it is slower
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than using only the reduced size new data residual, and keeping the previous
eigenvectors, which are already orthogonal. These two last approaches are used
in visual trackers and use particle filter to estimate the motion parameters, in-
stead of the gradient method that often gets stuck in a local minima.

In this chapter we will focus in these approaches that used the prior knowl-
edge and the current observation to update the tracking criteria, by means of an
incremental update. In order to present this approach, this chapter is structured
as follows. First we will present the incremental update of the CCA coefficients.
For that, we will introduce an incremental SVD algorithm and the way we ap-
ply it for the CCA. Then we will propose an approximation used to make this
algorithm faster. Finally we will present the results obtained.

7.1 Incremental update of the CCA coefficients.

As we have said, the fact of updating the coefficients of a tracker algorithm has
been recently used as a method to make more robust the tracking process with
respect to important changes of the object appearance. These changes are pro-
duced by extrinsic factors, such as illumination changes, occlusions, and for the
case of face tracking and biometry in very long time periods, aging and changes
in the person appearance.

The principal idea behind the incremental CCA consists in adding the faces
that have been estimated during the tracking process. This means that when a
new frame arrives, we will store the patch obtained from the last known position

in a new matrix A
(new)
1 of dimension d × n, as well as the perturbation estimated

from this patchA
(new)
2 of dimension p×n, andwhenwe arrive to a certain number

of new observations we introduce this set to the original database. This can be
formulated as:

A
(total)
1 =

[

A
(old)
1 A

(new)
1

]

(7.1)

A
(total)
2 =

[

A
(old)
2 A

(new)
2

]

(7.2)

whereA
(old)
1 is the original data matrix of dimension d×m containing the training

faces and A
(old)
2 is the original data matrix of dimension p × m containing the

perturbations. The new matrices become then A
(total)
1 of dimension d × (m + n)

and A
(total)
2 of dimension p × (m + n).

There are two approaches that we have used to study the advantages of this
approach. The first one consists in directly using the resulting matrices from
equations (7.1) and (7.2), that we call direct approach, and the second approach,
that consists in using a sequential singular value decomposition, in order to up-
date more efficiently the CCA coeffients. These methods are next explained .
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7.1.1 Direct update of the CCA coefficients.

The departing point is the CCA algorithm described in chapter 4, where we create

the training matrices A
(old)
1 and A

(old)
2 . With these matrices we estimate the CCA

coefficients. To update these CCA coefficients, we store the matrices A
(old)
1 and

A
(old)
2 and every n frames, we introduced the new data stored in matrices A

(new)
1

and A
(new)
2 that we introduce into the matrices A

(total)
1 and A

(total)
2 accordingly to

equations (7.1) and (7.1). With these new matrices we estimate again the CCA
coefficients, but every time we make this update the dimension of the matrices is
increased of n elements.

This approach, evidently, is not the optimal from a computing time of view.
Every time we update the data matrices the computing time grows exponentially
as the matrices get bigger. The amount of memory used for storage grows also,
but linearly as well as the computing time to estimate the mean vector. However,
the interest of developing and implementing this approach is that it is simple,
and it gives us the certitude that it works and that it is worth to ameliorate it by
means of an algorithm that takes into account the previous SVD. In order to do
this amelioration we have studied how to perform the SVD sequentially, as it is
explained in the following section.

7.1.2 Sequential Singular Value Decomposition.

For any rectangular matrix A the singular value decomposition is defined by:

A = UADAVA
T (7.3)

where UA and VA are two unitary matrices and DA is a ”diagonal” matrix. This
decomposition is a powerful and widely used technique used for many matrix
computations, particularly when we have to use properties related to the matrix
rank. However, this decomposition is very time consuming, because all the data
should be processed at the same time, and when the size of matrix A become
important, it could be difficult to perform (SVD algorithm perform O(dm2+d2m+
m3) operations for a d×m matrix). This is why, we are interested in the use of an
incremental way of performing this decomposition keeping it robust.

Based on the algorithms presented in [10; 57; 72], we will present the incre-
mental SVD algorithm that we have retained. The starting point is then an ex-
isting SVD of a d × m data matrix A = {I1, ..., Im} whose columns Ii contain the
training data, and whose singular value decomposition is expressed as in equa-
tion (7.3). When a new matrix B of dimension d× n arrives, we want to correctly

estimate the SVD of the concatenation of both matrices [A B]
SV D
= UCDCVC

T .
We will call this concatenated matrix C.

Let L be the projection of B onto the orthogonal basis UA described by

L = UA
TB (7.4)

And let H be the component of B orthogonal to the subspace spanned by UA:
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H = (I −UAUA
T )B = B − UAL (7.5)

Then we need to perform a decomposition of the matrix H such that an or-
thogonal matrix is obtained from this decomposition. Commonly the QR decom-
position is used in the literature because it is faster. However, in our case we per-
formed the SVD decomposition, because of implementation facility, as we used
the OpenCV library where only the SVD is implemented. We could have used
another library containing the QR decomposition, but as we have already mixed
the OpenGL and the OpenCV library, this could led us to a even more complex
code. The decomposition is then:

H = UHDHVT
H (7.6)

We can then write the following identity

[

UA UH

]

[

DA L

0 UT
H

H

] [

VA 0

0 I

]T

=
[

UA HVHD
−1
H

]

[

DA L

0 UT
H

H

] [

VA 0

0 I

]T

=
[

UADA UAUA
T B+(I−UAUA

T )B
]

[

VA 0

0 I

]T

= [A B]
(7.7)

where we will call R =

[

DA L

0 UT
HH

]

, the square matrix that we need to decom-

pose as R = URDRVT
R. From this decomposition and from equation (7.7) we can

then write the SVD of [A B] as

[A B] = (
[

UA UH

]

UR)DR(VT
R

[

VA 0

0 I

]T

) (7.8)

In order to take into account the varying mean, and based on the algorithm
presented in [57; 72], it is necessary to add some steps to this algorithm to in-
troduce this variation to the SVD matrices. In [57; 72] the proofs are presented.
We must then introduce the mean vector for each which are estimated as ĪA =
1
m

∑m

i=1 Ii, ĪB = 1
n

∑m+n

i=m+1 Ii and ĪC = m
m+n

ĪA + n
m+n

ĪB. The centred matrices are

then denoted Â = A − ĪA11×m, B̂ = B − ĪB11×n and Ĉ = C − ĪC11×m+n, being
1a×b a matrix of dimension a × b containing only ones. Finally, it is necessary to

add the vector
√

mn
m+n

(̄IB − ĪA) to the B̂ matrix, in order to take into account the
mean variation. We can then resume the complete algorithm as described below.

We start with thematrix decomposition of Â = UADAVA
T and thenwe know

ĪA and m. Then, when the new matrix B arrives we proceed to:

1. Compute the mean vectors ĪB and ĪC.

2. Form the matrix B̂ =
[

Im+1 − ĪB . . . Im+n − ĪB
√

mn
m+n

(̄IB − ĪA)
]
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3. Compute the matrixH = I − UAUA
T B̂ and its SVD decomposition H =

UHDHVT
H

4. Form the matrix R =

[

DA L

0 UT
HH

]

5. Compute the SVD decomposition of R = URDRVT
R.

6. Finally UC = (
[

UA UH

]

UR), DC = DR and VC = (

[

VA 0

0 I

]

VR)

This algorithm can be also extended to the case when a forgetting factor is
introduced, to take into account that the model evolves in time and that what
was learned at the beginning can be incoherent with the data that is obtained
after some time. To introduce this forgetting factor we have firstly to modify the
mean update. It can be rewritten as:

ĪC =
fm

fm + n
ĪA +

n

fm + n
ĪB (7.9)

where f denotes the forgetting factor. Finally, to modify the influence of the old
vectors, we need to introduce f in the R matrix to reduce the effect of the old
vectors with respect to the new vectors. That is written as:

R =

[

fDA L

0 UT
HH

]

(7.10)

We will apply now incremental SVD to the CCA.

7.1.3 Application of the incremental SVD to the CCA.

In order to develop the CCA, we recall from section 4.3.1 the equations A1 =
U1D1V

T
1 , A2 = U2D2V

T
2 , the matrix VT

1 V2 = UDVT , that in this case needs to
be stored, and the equation (4.32), G = U2D2VUTD−1

1 UT
1 .

These equations represents all the matrices involved in the CCA, that we want
to update using the incremental SVD described before. Then, according to the
algorithm described above, we proceed with the incremental CCA.

1. Every n new images we form two new matrices B1 and B2 containing re-
spectively the new images Ii and the corresponding perturbations ∆bi.

2. We compute the mean vectors ĪB1
, Ī

(new)
A1

, ∆̄bB2
, and ∆̄b

(new)
A2

.

3. Thenwe form thematrix B̂1 =
[

Im+1 − ĪB1
. . . Im+n − ĪB1

√

mn
m+n

(̄IB1
− Ī

(old)
A1

)
]

and B̂2 =
[

∆bm+1 − ∆̄bB2 . . .∆bm+n − ∆̄bB2

√

mn
m+n

(∆̄bB2
− ∆̄b

(old)
A2

)
]

4. Compute the matrices H1 and H2, as defined in equation (7.5), and their
SVD decompositions H1 = UH1DH1V

T
H1

and H2 = UH2DH2V
T
H2
.
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5. Form the matrices R1 =

[

DA1
L1

0 UT
H1

H1

]

and R2 =

[

DA2
L2

0 UT
H2

H2

]

6. Compute the SVDdecompositions ofR1 = UR1DR1V
T
R1

andR2 = UR2DR2V
T
R2
.

7. Update thematrices as: U
(new)
1 = (

[

U1 UH1

]

UR1),D
(new)
1 = DR1 ,U

(new)
2 =

(
[

U2 UH2

]

UR2) and D
(new)
2 = DR2 .

8. Compute the SVD of

VT
R1

[

VA1

TVA2
0

0 I

]

VR2 = U(new)D(new)V(new)T

9. Finally update the matrix G = U
(new)
2 D

(new)
2 V(new)U(new)TD

(new)−1
1 U

(new)T
1

We can see that in this case we can store the multiplication VT
A1

VA2 at each
update in order to save onematrixmultiplication. As it is discussed inmore detail
in the appendix B, we used the truncated SVD decomposition, i.e. we take into
account only the most important singular values, and the dimensional analysis
is presented in this appendix. This truncation is in order to limit the size of the
matrices as new data arrives, keeping only the most important eigenvalues and
the corresponding reduced matrices. We have chosen to keep the eigenvectors
such as the ratio between the minimum and the maximum eigenvalue was of
5× 105. This value was obtained empirically by testing a dozen video sequences.

7.2 Implementation and results.

We have used the same equipment as explained in 4.5. In order to prove the sta-
bility and robustness of the tracker we have used the talking face video sequence
as well as the LaCascia video sequences. It is important to say that we have tested
two versions of the algorithm, the direct approach described in 7.1.1, and the ap-
proach described in 7.1.3. Both approaches were implemented to update the six
pose parameters only, keeping the facial gesture parameters unchanged. This
update is performed every five frames, in a similar way as it was done in [72], as
a trade-off between computational efficiency and effectiveness of modeling ap-
pearance change during fast motion.

We have first tested our algorithm with the LaCascia video sequences, but the
size of these videos is not great enough to see if there is an improvement of the
performance or not. This is because we updated the CCA coefficients every 5
frames and these video sequences contain only 200 frames.

Then, we have used the talking face video sequence, but in this case we have
used only 2000 frames, instead of the 5000 frames. The reasons to do this are that
using the 2000 frames is enough to understand the behavior of the algorithm,
and the direct approach becomes unfeasible when we use a very big amount of
data. For the direct approach, the computing time behaves exponentially w.r.t.
the amount of data used.
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The first test we have performed is, as previously explained, the implementa-
tion of the incremental CCA using the data matrices. This approach, although led
us to see the interest of updating the CCA coefficients, presents the disadvantage
of being very slow for the training update, especially as more data arrive. The
behavior of the computing time can be seen in figure 7.1. We can see that the
computing time as a function of the number of frames presents an exponential
growth.
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Figure 7.1: Computing time for the CCA updated recalculated every 5 frames.

By contrast, if we see the computing time for the i-CCA algorithm, we can
appreciate that the updating computing time is almost constant. The figure 7.2
shows this computing time.

Finally, we have compared the mean point to point error between the CCA
and the incremental CCA. Results are reported in figure 7.3. We see that the in-
cremental property introduced to the CCA algorithm improves the robustness in
long sequences. This can be seen from frame 1500, where the mean point to point
error performs better than for the case where no CCA update is not performed.
However, the cost to be paid for this amelioration is that the algorithm has to be
used off-line, because introducing new data into the CCA coefficients takes more
than 16 seconds.

However, special care should be taken when using this algorithm in video
sequences with occlusions and drastic illumination changes, because our tracker
is not robust in the presence of outliers. In the presence of outliers our tracker
becomes unstable and diverges even in easy situations just after some updates
with this erroneous data. To avoid that, we should test if the estimation obtained
gave us a correct solution or not, and in the case of determining that the solution
is correct, then we can use this data to update the coefficients.
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Figure 7.2: Computing time for the i-CCA updated every 5 frames.

7.3 Conclusions.

We have shown in this chapter the interest of updating the CCA coefficients. The
principal advantage of this algorithm is that we can introduce the external varia-
tions to the CCA coefficients, corresponding to slow changes in illumination and
pose, in order to adapt it to the changing conditions of a video sequence. We
have proposed an algorithm to perform the CCA update of the parameters such
that every time we update the CCA coefficients, the computing time can be con-
sidered constant. Although this method makes this algorithm slower and thus,
inappropriate for real-time applications, it can be applied in two ways.

The first option is to analyze each image result in order to determine if it is
worth to use this image to update the CCA coefficient or not, depending on the
difference between this image and the database. If the image does not contribute
significantly with respect to the learned database, then this image should be dis-
carded for the CCA coefficients update. In this way, we will store only images
that contribute with new data and only when an important change is present, so
the computing time is not constant but evolves depending on the variations of
the video sequence. However, special care should be taken to avoid using wrong
estimations, because this can introduce errors to the coefficients, and make the
algorithm diverge.

The second option consists in obtaining the CCA coefficients by means of the
incremental CCA. In this way we can reduce the complexity of the algorithm
explained in chapter 6, where a database containing multiple faces was used.
Using the algorithm in this way, we can also learn more people sequentially and
also include aging and evolution parameters for applications where the tracker
is optimized to recognize a specific person. In other words, we can update the
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Figure 7.3: Results of the CCA incremental compared with the normal CCA.

CCA coefficients each time that we find a person for whom the CCA coefficients
are not well adapted.
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Chapter 8

Conclusions and Perspectives.

In this thesis we have presented a supervised learning method based on the
canonical correlation analysis (CCA), to perform:

⋆ the tracking of rigid faces (chapter 4),

⋆ the tracking of the 3D pose and facial animation (chapter 5),

⋆ the estimation of the pose and shape of unknown faces (chapter 6),

⋆ and the tracking by means of an incremental algorithm (chapter 7).

In order to do that, we use the 3D parametric face model Candide. With this
parametric model, we create a normalized expression-free face patch that corre-
sponds to our observation vector xt. The parameters used to manipulate this face
model are set inside a state vector bt. We use then these parameters to create two
data sets. One data set contains synthesized images created by modifying the 3D
pose parameters, and the shape and animation parameters, and the other data set
contains the parameter’s perturbations ∆bt used to create the synthesized faces.
Then, by means of the CCA, we obtain the linear relation that exists between the
variations in the state vector ∆bt and the corresponding variations in the input

vector with respect to the reference ∆xt = xt −x
(ref)
t such that this relation can be

expressed as ∆bt = G∆xt.
In chapter 4, we have proposed two versions of our approach. A linear ver-

sion where the matrix G is learned by means of the CCA and a non linear where
the matrix G is learned by means of the kernel-CCA (KCCA). We have seen that
these two approaches estimate correctly the 3D pose of faces. However, we have
noticed that there is not an significant improvement when we use the KCCA,
and the computing cost is too high, in terms of time and memory requirements.
Therefore, we have extended the CCA algorithm to track some facial gesture pa-
rameters of the 3D face model in chapter 5.

We have tested the robustness and behavior of our algorithm under different
situations to track both 3D pose and facial animation parameters of individuals
in monocular video sequences. The first thing we have seen was that we can
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track independently the 3D pose and the facial gesture. Based on this, we have
proposed to use three different models. One to track the 3D pose, one to track
the facial animation of the mouth, and another to track the facial animation of the
eyes. This presents two principal advantages. Firstly we have three smaller train-
ing sets to estimate the CCA coefficients, making the training faster, and secondly,
we have used different resolutions to analyze the local movements corresponding
to facial gesture, which improves the facial gesture tracking.

Then we have compared the algorithm with a local approach that uses small
windows around some characteristic points. This local model presents the advan-
tage of being faster and robust enough when there are neither strong out-of-plane
rotations nor important facial gesture. It also presents a robust behavior when
faced to important illumination changes, specially because each local feature is
normalized independently of the others features. However, we can conclude that
the global approach represents a better solution for real world conditions, where
important rotations can appear and facial gestures are expected.

We have then compared the behavior of the algorithm when using a reference
vector, corresponding to the first image, with respect to the use of the mean vec-
tor of the training process. The results obtained showed that both approaches
perform well, and the only difference was that no update step was required for
the approach using the mean vector. Depending on the kind of application we
can then use one approach or the other.

Afterward, we have tested the use of the components of different representa-
tion color spaces. The fact of using a transformation of the RGB space to another
representation of the image can ameliorate the tracking results, especially for the
mouth region. We have seen that the use of the V component of the HSV transfor-
mation for the tracking of the 3D pose and eyes facial gesture, and the a compo-
nent for the tracking of the mouth’s facial gesture performed slightly better than
the use of the grayscale transformation. However, this increases the complexity
of the tracker, and visually we can not see a big difference between the tracking
results. This is why we have decided to keep the grayscale transformation to
represent the appearance of the face.

It was proved with the simulation results that the proposed approach gives
a fast and simple tracker, that is robust and accurate when the out-of-plane face
rotation angles stay in the interval ±30◦ and when there are slight illumination
changes. However, we observed from simulations that the effectiveness of this
kind of tracker is dependent, first on the training set we use, and secondly on the
initialization of the geometric model. For the training we have chosen a small
dataset that was obtained empirically, and that proved to be robust for the de-
sired purposes. For the case of the 3D mask initialization, the pose and the facial
features must be as realistic as possible at the first frame, especially if we want to
keep the robustness for the out of plane rotations.

From simulations, we have seen that introducing a limit for each parameter
could improve the performance of the tracking. This means that instead of taking
the estimation of the vector state’s update as we get it, we compare it to a given
limit, such that the resulting pose estimate was not an incoherent one with re-
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spect to the algorithm design. What we observe, is that the resulting algorithm is
more robust when track is lost, because it keeps at least a small portion of the face
in track, specially for out-of-plane rotation along the y axis, and when the person
returns to a more neutral position, the model comes back to the correct pose and
continues the pose estimation. This takes us to conclude that including a tempo-
ral continuity constraints across frames and to deal with dynamics of the tracked
object could improve the performance of this approach, as in [7; 42; 59; 61; 65; 82],
specially doingmore smooth the tracking, which corresponds more to the natural
movements of a person. This can be obtained by means of a Kalman filter or a
particle filter, for example.

Then, we have presented in chapter 6 an algorithm capable of automatically
estimating the 3D pose and shape of unknown faces in images, where the face is
close to a frontal view. In this case we have used the Adaboost algorithm present
in the OpenCV library to obtain an initial approach of the face position. This
algorithm was similar to the algorithm used for tracking, but the data used for
training and the state vector changes. We have seen from experiments that using
different random points for each people improved the performance of the train-
ing, giving a more robust tracker.

This algorithm can be used as a robust method to automatically initialize a
tracker that uses the Candide model, or to recover after tracking loss due to se-
vere occlusions. In the case of the recovery after track losing, we have two op-
tions. The first is to use the algorithm described here, as an initialization problem.
The second is to use the Adaboost algorithm, and the linear model that converts
the pixel window to OpenGL 3D position parameters, and use the coefficients
estimated from the first image. To decide which of these approaches is better to
be used will depend in whether or not the person goes out of the camera’s vision
region, or if it was occluded, which implies that other algorithm that takes into
account the geometry of the camera’s vision region should be used.

Finally we have shown the interest of updating the CCA coefficients. The
principal advantage of this algorithm is that we can introduce the external vari-
ations to the CCA coefficients in an efficient way. To this purpose, we had pro-
posed an incremental CCA algorithm that uses the incremental SVD to update
the CCA coefficients.

As we have seen, human face processing, and more particularly human face
tracking is a very challenging domain that still have a very big amount of re-
search to be done. Even if there are people trackers that perform well and help
people to perform some tasks, they still being far from the human visual discrim-
ination capacity. Moreover, the ever growing computer’s processing power is
pushing the research community to improve and propose new computer vision
methods. Among the research areas that are currently in process of exploration
there are the sequential principal component analysis, multidimensional space
decomposition, the use of 3D scans instead of traditional 2D images for tracking,
stereo-vision based trackers,etc.
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One research line that can improve our approach is the use of the 2D Principal
Component Analysis and 2D Singular Value Decomposition. Traditionally, 2D
objects, as images or matrices, are converted into 1D vectors and then are packed
together as a large matrix, to then apply a low rank approximation method as the
SVD. Although this approach is widely used, as in the case of the eigenfaces, or
our algorithm, the fact of rearranging images as vectors creates matrices of very
high dimensions that are ill conditioned and produces a 2D lose of information.
We can cite for example the work presented in [93], where a 2D PCA approach
is proposed for face reconstruction and it is compared with the eigenfaces ap-
proach. It is shown that the 2D approach requires less principal components to
reconstruct correctly faces from a dataset. It uses for these, the image covari-
ance matrix, and it estimates from it the eigenvectors that will represent the face.
Another example can be found in [27], where the authors propose an approach
to use a 2D SVD to reconstruct faces and map images. This is extended in [49]
where the authors propose a multilinear SVD, that is a generalization of the SVD
problem but for N dimensions.

Another approach that is being used because of its application to non linear
and non Gaussian problems is given by the particle filters. Particle filters, as ex-
plained in chapter 3 consist in using multiple samples of the state vector that
have a weight associated to it, and that evolve in time. This can be used to im-
prove the tracking when severe occlusions are present, because some particles are
supposed to be close to the true face position when the occlusion will end.

Fusion of several cues can also be used as in [104] where contour information
and color are fused in order to track shapes. The morphable model described in
[68; 69; 70] also uses multiple cues to obtain a cost function that is better behaved,
as the 3D model information, the appearance and the edges. We can also talk
about the work presented in [66], where color, motion and sound are fused to
track talking people.

As we can see there have been a lot of improvements in the face tracking
algorithms, and the fact that the technology evolves every day, will led us to de-
velop algorithms more and more complex that will be applied in real time appli-
cations. These applications are also growing as the algorithm become more and
more complex, letting us not only to estimate simple 3D parameters, but also de-
tect emotions or strange behaviors, and they will change the way human interact
with computers.
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Appendix A

Canonical Correlation Analysis
(CCA).

A.1 Introduction

The signification of the correlation can be viewed as the linear relation that exists
between two variables. When the correlation is zero, that means that there is not
a linear relation between these two variables, nevertheless it can be a non linear
relation between these variables.

The correlation depends very much on the coordinate system used. We can
rotate the coordinate system such that the projections in the new system are maxi-
mally uncorrelated. That is achieved by the principal component analysis (PCA).
Nonetheless, we are interested in finding the correlations between two sets of
variables.

Canonical correlation analysis (CCA) is a way of identifying and quantifying
the linear relationship between two data sets. CCA can be seen as the problem
of finding direction vectors for two data sets such that the correlation between
the projections of the variables onto these direction vectors are mutually maxi-
mized. The dimensionality of these new bases is equal to or less than the smallest
dimensionality of the two variables. The canonical correlation coefficients can be
calculated directly from the two data sets.

An important property of canonical correlations is that they are invariant with
respect to affine transformations of the variables. In this appendixwewill present
the formulation of the CCA problem and the procedure to obtain the solution.
Finally, the formulation presented by [87] will also be introduced.

A.1.1 Definition and Derivation of Canonical Correlation Anal-

ysis equations.

As we have stated, CCA aims to maximize the correlations between two data
sets. Let A1 and A1 be two centered data sets of dimension d × m and p × m
respectively. The maximum number of correlations that can be found is equal to
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the minimum of the data sets’ column dimension min(d, p). If we project our data
in the directions w1 and w2 we obtain two new vectors defined as:

z1 = A1
Tw1 (A.1)

and

z2 = A2
Tw2. (A.2)

These vectors are called the scores or the canonical variates. It is important
to mention that in the literatures these definitions could be found in a different
way, being the canonicals defined in terms of the transposed vectors w1 and w2,
[8],[26], or with the matrices A1 and A1 containing row vectors, as in [87]. In our
case we use column vectors for the data matrices and for the direction vectors.

Once we have defined the canonical variates, we are interested in finding the
correlation between them, which is defined as:

ρ =
z2

T · z1√
z2

T · z2

√
z1

T · z1

. (A.3)

We must bold that ρ is not affected if we scale the canonical variates. This
implies that we can use the following constraints:

z1
T · z1 = w1

TA1A1
Tw1 = w1

T Σ11w1 = 1 (A.4)

and

z2
T · z2 = w2

TA2A2
Tw2 = w2

T Σ22w2 = 1. (A.5)

This can be expressed as the following optimization problems:

{

min ‖z1 − z2‖2

‖z1‖ = ‖z2‖ = 1
⇔

{

max zT
2 z1

‖z1‖ = ‖z2‖ = 1
. (A.6)

If we define Σ21 = A2A1
T we can write our problem in a Lagrangian form:

L(ρ1, ρ2,w1,w2) = w2
T Σ21w1 −

ρ1

2
(w1

T Σ11w1 − 1) − ρ2

2
(w2

T Σ22w2 − 1). (A.7)

Taking the derivatives of (A.7) with respect to w1 and w2 we arrive to:

∂L

∂w1

= Σ12w2 − ρ1Σ11w1 = 0 (A.8)

and

∂L

∂w2

= Σ21w1 − ρ2Σ22w2 = 0. (A.9)

Taking these equations and multiplying (A.8) by w1
T and subtracting the re-

sult from w2
T times (A.9), we arrive to:
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w2
T Σ21w1 − w1

T Σ12w2 + ρ1w1
T Σ11w1 − ρ2w2

T Σ22w2 = 0

Since the correlation is symmetric, we can reduce the expression to:

ρ1w1
T Σ11w1 − ρ2w2

T Σ22w2 = 0

and using the constrains of equations (A.4) et (A.5) we can see that ρ1 = ρ2 = ρ. If
Σ11 is invertible, we can obtain from equation (A.8) the relation between w1 and
w2:

w1 =
Σ−1

11 Σ12w2

ρ
. (A.10)

and if we replace w1 in (A.9) we obtain the equation:

(Σ21Σ
−1
11 Σ12 − ρ2Σ22)w2 = 0. (A.11)

In the same way, if Σ22 is invertible, we can obtain from (A.9)

w2 =
Σ−1

22 Σ21w1

ρ
(A.12)

and replacing it in (A.8) we arrive to:

(Σ12Σ
−1
22 Σ21 − ρ2Σ11)w1 = 0. (A.13)

As we have assumed that Σ11 and Σ22 are invertible, we can accommodate
these equations as:

Σ−1
22 Σ21Σ

−1
11 Σ12w2 = ρ2w2 (A.14)

and

Σ−1
11 Σ12Σ

−1
22 Σ21w1 = ρ2w1. (A.15)

Using the equations (A.14) and (A.15) we can obtain the canonical variates by
obtaining the eigenvalues and the eigenvectors of this equation. The number of
non zero eigenvalues of this equation are limited to the smallest dimensionality
of A1 and A2 [8] and the corresponding eigenvectors w1 and w2 are the canonical
correlation direction vectors.

From these equations, we can see that to obtain these vectors first we need
to perform three matrix multiplications to obtain the covariance’s matrix, and
then we have to do two matrix inversions and then three matrix multiplication.
Finally one Singular Value Decomposition is needed. However, as we have the
datamatricesAx andAy wewill develop themethod proposed in [87] that reduce
the number of operation and thus, is supposed to be more robust numerically.
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A.1.2 Solution of the Canonical Correlation Analysis equations

from Data Matrices.

The first thing that we need to do is to perform a singular value decomposition
of the data matrices A1 and A2:

A1 = UA1DA1V
T
A1

(A.16)

A2 = UA2DA2V
T
A2

(A.17)

We use these decompositions to obtain the matrices:

Σ11 = A1A1
T = UA1D

2
A1

UT
A1

Σ22 = A2A2
T = UA2D

2
A2

UT
A2

Σ12 = A1A2
T = UA1DA1V

T
A1

VA2DA2U
T
A2

Σ21 = A2A1
T = UA2DA2V

T
A2

VA1DA1U
T
A1

,

(A.18)

and the inverse of the covariance matrix are obtained using the property that
A1

−1 = VA1D
−1
A1

UT
A1
, what gives:

Σ−1
11 = (AA1A

T
A1

)−1

= A−T
A1

A−1
A1

= UA1D
−1
A1

VT
A1

VA1D
−1
A1

UT
A1

= UA1D
−2
A1

UT
A1

.

Similarly we obtain that Σ−1
22 = UA2D

−2
A2

UT
A2
. If we replace in (A.11) we obtain

(UA2DA2V
T
A2

VA1DA1U
T
A1

UA1D
−2
A1

UT
A1

UA1DA1V
T
A1

VA2DA2U
T
A2
−ρ2UA2D

2
A2

UT
A2

)w2 = 0

After simplifying we arrive to:

(UA2DA2V
T
A2

VA1V
T
A1

VA2DA2U
T
A2

− ρ2UA2D
2
A2

UT
A2

)w2 = 0. (A.19)

If we multiply from the left by D−1
A2

UT
A2

we obtain:

(D−1
A2

UT
A2

UA2DA2V
T
A2

VA1V
T
A1

VA2DA2U
T
A2

− ρ2D−1
A2

UT
A2

UA2D
2
A2

UT
A2

)w2 = 0

that reduces to

((VT
A1

VA2)
T (VT

A1
VA2) − ρ2I)DA2U

T
A2

w2 = 0 (A.20)

We obtain then the singular value decomposition of VT
A1

VA2 = UDVT and
we solve the equation as:

0 = ((UDVT )T (UDVT ) − ρ2I)DA2U
T
A2

w2

= (VD2VT − ρ2I)DA2U
T
A2

w2,

and after some rearrangement takes us to:



A.1. INTRODUCTION 141

(D2 − ρ2I)VTDA2U
T
A2

w2 = 0 (A.21)

This equation has eigenvalues D2 and the eigenvectors can be obtained from
the columns of UA2D

−1
A2

V

With a similar procedure we can obtain the simplification of (A.13).

(UA1DA1V
T
A1

VA2V
T
A2

VA1DA1U
T
A1

− ρ2UA1D
2
A1

UT
A1

)w1 = 0

(D−1
A1

UT
A1

UA1DA1V
T
A1

VA2V
T
A2

VA1DA1U
T
A1

− ρ2D−1
A1

UT
A1

UA1D
2
A1

UT
A1

)w1 = 0

(VT
A1

VA2V
T
A2

VA1 − ρ2I)DA1U
T
A1

w1 = 0

((VT
A1

VA2)(V
T
A1

VA2)
T − ρ2I)DA1U

T
A1

w1 = 0

0 = ((UDVT )(UDVT )T − ρ2I)DA1U
T
A1

w1

= (UD2U
T − ρ2I)DA1U

T
A1

w1,

to finally obtain:

(D2 − ρ2I)UTDA1U
T
A1

w1 = 0 (A.22)

where the eigenvectors are the columns of UA1D
−1
A1

U.
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Appendix B

Implementation details.

In this chapter we present the details of the matrix dimensions, in order to make
straightforward the implementation of the proposed algorithms. In order to do
that, we will present first the dimensions of the data matrices, then the dimen-
sions of the matrices involved in the computation of CCA coefficients and finally
the dimensions of the matrices involved in the computation of the i-CCA coeffi-
cients. As an important remark, we have used the truncated SVD for the incre-
mental CCA, that consists in taking only the most important eigenvalues of the
data matrices. Let the SVD of a matrix be (A){d×m} = (U){d×k}(D){k×k}(V

T ){k×m}.
We have taken only the biggest k eigenvalues and the corresponding column vec-
tors of the U and V matrices, being k ≤ min(d, m). Although this is an approx-
imation of the original data matrices, we have seen that it was a more robust
approach especially because of the matrix inversion that must be performed for
the CCA coefficients computation.

B.1 Data matrices

Lets the data matrices be written as:

(A1){d×m} = (UA1){d×k}(DA1){k×k}(V
T
A1

){k×m} (B.1)

and

(A2){p×m} = (UA2){p×l}(DA2){l×l}(V
T
A2

){l×m}. (B.2)

Aswe have said before, we have retained the k more representatives eigenvec-
tors forA1 and the l more representatives eigenvectors forA2, with k ≤ min(d, m)
and l ≤ min(p, m). It is from these matrices that we will obtain the CCA coeffi-
cients.
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B.2 CCA coefficients.

For the computation of the CCA coefficients the first thing we have to do is the
multiplication of the matrices VA1 and VA2 and obtain the SVD of this product.

(VT
A1

){k×m}(VA2){m×l} = (U){k×j}(D){j×j}(V
T ){j×l} (B.3)

with j ≦ min(k, l).
With these matrices and those containing the data we can thus obtain the CCA

coefficients encoded in the G matrix given by:

(G){p×d} = (UA2){p×l}(DA2){l×l}(V){l×j}(U
T ){j×k}(D

−1
A1

){k×k}(U
T
A1

){k×d} (B.4)

Now, based on these results, we will present the matrices involved in the com-
putation of the incremental CCA.

B.3 Incremental CCA coefficients.

In order to perform the computation of the incremental CCA, we will use the
algorithm presented in 7.1.3.

1. Every n new images we will form two new matrices

(B1){d×n} (B.5)

and

(B2){p×n} (B.6)

containing respectively the new images (Ii){d×1} and the corresponding per-
turbations (∆bi){p×1}.

2. We compute the mean vectors

(̄IB1
){d×1} =

1

n

m+n
∑

i=m+1

(Ii){d×1}, (B.7)

(̄I
(new)
A1

){d×1} =
n

m + n
(̄IB1

){d×1} +
m

m + n
(̄IA1

){d×1}, (B.8)

(∆̄bB2
){p×1} =

1

n

m+n
∑

i=m+1

(∆bi){p×1}, (B.9)

and
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(∆̄b
(new)
A2

){p×1} =
n

m + n
(∆̄bB2

){p×1} +
m

m + n
(∆̄bA2

){p×1}. (B.10)

3. Then we form the matrix

(B̂1){d×n+1} =
[

(Im+1−ĪB1
){d×1}...(Im+n−ĪB1

){d×1}

√
mn

m+n
(̄IB1

−Ī
(old)
A1

){d×1}

]

(B.11)

and

(B̂2){p×n+1} =
[

(∆bm+1−∆̄bB2
){p×1}...(∆bm+n−∆̄bB2

){p×1}

√
mo

m+n
(∆̄bB2

−∆̄b
(old)
A2

){p×1}

]

(B.12)

4. Compute the matrices

(H1){d×n+1} = ((I){d×d} − (UA1){d×k}(U
T
A1

){k×d})(B̂){d×n+1} (B.13)

and

(H2){p×n+1} = ((I){p×p} − (UA2){p×l}(U
T
A2

){l×p})(B̂){p×n+1} (B.14)

and their SVD decomposition

(H1){d×n+1} = (UH1){d×s}(DH1){s×s}(V
T
H1

){s×n+1} (B.15)

and

(H2){p×n+1} = (UH2){p×t}(DH2){t×t}(V
T
H2

){t×n+1}. (B.16)

5. Using

(L1){k×n+1} = (UA1

T ){k×d}(B̂1){d×n+1} (B.17)

and

(L2){l×n+1} = (UA2

T ){l×p}(B̂2){p×n+1} (B.18)

we form the matrices

(R1){k+s×k+n+1} =

[

(DA1
){k×k} (L1){k×n+1}

(0){s×k} (UT
H1

){s×d}(H1){d×n+1}

]

(B.19)

and

(R2){l+t×l+n+1} =

[

(DA2
){l×l} (L2){l×n+1}

(0){t×l} (UT
H2

){t×p}(H2){p×n+1}

]

(B.20)
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6. Compute the SVD decomposition of

(R1){k+s×k+n+1} = (UR1){k+s×e}(DR1){e×e}(V
T
R1

){e×k+n+1} (B.21)

and

(R2){l+t×l+n+1} = (UR2){l+t×f}(DR2){f×f}(V
T
R2

){f×l+n+1}. (B.22)

7. Update the matrices

(U
(new)
A1

){d×e} = (
[

(UA1
){d×k} (UH1){d×s}

]

(UR1){k+s×e}), (B.23)

(D
(new)
A1

){e×e} = (DR1){e×e}, (B.24)

(U
(new)
A2

){p×f} = (
[

(UA2
){p×l} (UH2){p×t}

]

(UR2){l+t×f}), (B.25)

and

(D
(new)
A2

){f×f} = (DR2){f×f}. (B.26)

8. Compute the SVD of

(VT
R1

){e×k+o+1}

[

(VA1

T ){k×m}(VA2
){m×l} (0){k×n+1}

(0){n+1×l} (I){n+1×n+1}

]

(VR2){l+n+1×f}

= (U(new)){e×g}(D
(new)){g×g}(V

(new)T ){g×f}

(B.27)

9. Finally we update the matrix

(G){p×d}=(U
(new)
A2

){p×f}(D
(new)
A2

){f×f}(V
(new)){f×g}(U(new)T ){g×e}(D

(new)−1
A1

){e×e}(U
(new)T
A1

){e×d}.
(B.28)

B.4 Video sequences and C libraries.

Here we present the links to the video sequences and the OpenCV library used
for the implementation and development of the algorithm.

⋆ The OpenCV library that can be found at:
http : //www.intel.com/technology/computing/opencv/index.htm

http://www.intel.com/technology/computing/opencv/index.htm
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⋆ To test the tracker we have used the video sequences used by Lacascia in
[48]:
http : //www.cs.bu.edu/groups/ivc/HeadTracking/.

⋆ The annotated talking face video made available from the FGnet Working
Group:
http : //www − prima.inrialpes.fr/FGnet/data/01 − TalkingFace/talking face.html,

⋆ The video sequences from Buenaposada in [11]:
http://www.dia.fi.upm.es/∼pcr/downloads.html.

http://www.cs.bu.edu/groups/ivc/HeadTracking/
http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
http://www.dia.fi.upm.es/~pcr/downloads.html
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Linköping University, Sweden, January 2001.

[9] Magnus Borga, Tomas Landelius, and Hans Knutsson. A unified approach
to PCA, PLS, MLR and CCA. Report LiTH-ISY-R-1992, Linköping Univer-
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