S. Les-endroits-d, injection de charges sont différents, le centre de la charge négative (le halo) et celui de la charge positive (le nanocristal) doiventêtredoiventêtre séparés. Mais ce n'est pas le cas

L. Figure, 10 (a) montre l'image KFM d'une charge injecté dans un nanocristal intrinsèque avec la tension d'injection est de +12 V. La figure 5.10 montre l'image KFM sur même endroit après une injection d'´ electrons avec la tension d'injection de -12 V dans le même nanocristal. On peut voir que la contraste de potentiel positif trouvé sur l'image (a) est transformé en potentiel négatif. La figure 5

J. Michael and . Pitkethly, Nanomaterials -the driving force, Nanotoday, vol.7, issue.12 1, p.20, 2004.

J. Sohl, The angel investor market in 2006 : The angel market continues steady growth, 2006.

C. Macilwain, Market watch : Nanotechnology stocks, Nature, issue.7089, p.44123, 2006.

J. Bardeen and W. Brattain, The Transistor, A Semi-Conductor Triode

G. Binning, H. Roher-ch, E. Gerber, and . Weibel, Tunneling through a controllable vacuum gap, Applied Physics Letters, vol.40, issue.2, p.178, 1982.
DOI : 10.1063/1.92999

D. Eigler and E. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, vol.344, issue.6266, p.524, 1990.
DOI : 10.1038/344524a0

M. T. Cuberes, R. R. Schlittler, and J. K. Gimzewski, molecules at Cu steps: Operation of a molecular counting device, Applied Physics Letters, vol.69, issue.20, p.3016, 1996.
DOI : 10.1063/1.116824

D. Huang, L. Edward, and . Ginzton, Atomic surface structures from scanning tunnelling microscopy single-atom manipulation. Microscopy and analysis, 2001.

K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian et al., /Ti system, Applied Physics Letters, vol.68, issue.1
DOI : 10.1063/1.116747

P. M. Petrof, A. C. Gossard, R. A. Logan, and W. Weigman, Toward quantum well wires: Fabrication and optical properties, Applied Physics Letters, vol.41, issue.7, p.635, 1982.
DOI : 10.1063/1.93610

Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Applied Physics Letters, vol.40, issue.11, p.939, 1982.
DOI : 10.1063/1.92959

N. N. Ledentsov, W. Richter, and M. Weyers, Self-organized quantum wires and dots: New opportunities for device applications, Progress in Crystal Growth and Characterization of Materials, vol.35, issue.2-4, p.289, 1997.
DOI : 10.1016/S0960-8974(97)00033-8

K. K. Likharev, Single-electron devices and their applications, Proc. IEEE, p.606, 1999.
DOI : 10.1109/5.752518

M. A. Kastner, The single-electron transistor, Reviews of Modern Physics, vol.64, issue.3, p.849, 1992.
DOI : 10.1103/RevModPhys.64.849

T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters, vol.59, issue.1, p.109, 1987.
DOI : 10.1103/PhysRevLett.59.109

J. H. Scott-thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas, Physical Review Letters, vol.62, issue.5, p.583, 1989.
DOI : 10.1103/PhysRevLett.62.583

U. Meirav, M. A. Kastner, and S. J. Wind, Single-electron charging and periodic conductance resonances in GaAs nanostructures, Physical Review Letters, vol.65, issue.6, p.771, 1990.
DOI : 10.1103/PhysRevLett.65.771

C. De-graaf, J. Caro, S. Radelaar, V. Lauer, and K. Heyers, Coulomb-blockade oscillations in the conductance of a silicon metal-oxide-semiconductor field-effect-transistor point contact, Physical Review B, vol.44, issue.16, p.9072, 1991.
DOI : 10.1103/PhysRevB.44.9072

H. Matsuoka, T. Ichiguchi, T. Yoshimura, and E. Takeda, Coulomb blockade in the inversion layer of a Si metal???oxide???semiconductor field???effect transistor with a dual???gate structure, Applied Physics Letters, vol.64, issue.5, p.586, 1994.
DOI : 10.1063/1.111085

H. Ali, M. Ahmed, D. H. Bockrath, P. L. Cobden, N. G. Mceuen et al., Coulomb blockade in a silicon tunnel junction device, Applied Physics Letters, vol.64, issue.16, p.2119, 1922.
DOI : 10.1063/1.111702

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley et al., Individual single-wall carbon nanotubes as quantum wires, Nature, vol.386, issue.6624, p.474, 1997.
DOI : 10.1038/386474a0

URL : http://repository.tudelft.nl/islandora/object/uuid%3A4e58e2bc-5f69-4dbe-9942-aabcc9eaad35/datastream/OBJ/view

K. Ishibashi, D. Tsuya, M. Suzuki, and Y. Aoyagi, Fabrication of a single-electron inverter in multiwall carbon nanotubes, Applied Physics Letters, vol.82, issue.19, p.3307, 2003.
DOI : 10.1063/1.1572537

K. Maeda, M. Sakamoto, N. Kuwahara, Y. Atoda, and . Awano, Single-Electron Transistor with Ultra-High Coulomb Energy of 5000 K Using Position Controlled Grown Carbon Nanotube as Channel, Jpn. J. Appl. Phys, vol.42, p.2415, 2003.

J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan et al., Ge/Si nanowire heterostructures as highperformance field-effect transistors, Nature, vol.441, p.25, 2006.
DOI : 10.1038/nature04796

Y. Ding, Y. Dong, A. Bapat, J. D. Nowak, C. B. Carter et al., Single nanoparticle semiconductor devices, Nanofabrication: Technologies, Devices, and Applications II, p.532525, 2006.
DOI : 10.1117/12.630852

A. Dutta, S. Oda, Y. Fu, and M. Willander, Electron Transport in Nanocrystalline Si Based Single Electron Transistors, Japanese Journal of Applied Physics, vol.39, issue.Part 1, No. 7B, p.4647, 2000.
DOI : 10.1143/JJAP.39.4647

L. Guo, E. Leobandung, and S. Y. Chou, A Silicon Single-Electron Transistor Memory Operating at Room Temperature, Science, vol.275, issue.5300, p.649, 1997.
DOI : 10.1126/science.275.5300.649

R. Dingle, H. L. Störmerst¨störmer, A. C. Gossard, and W. Wiegmann, Electron mobilities in modulation???doped semiconductor heterojunction superlattices, Applied Physics Letters, vol.33, issue.7
DOI : 10.1063/1.90457

A. Yazdani and C. M. Lieber, Up close and personal to atoms, Nature, vol.401, issue.6750, p.227, 1999.
DOI : 10.1038/45709

S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar et al., Centimeter scale atomic force microscope imaging and lithography, Applied Physics Letters, vol.73, issue.12, p.1742, 1998.
DOI : 10.1063/1.122263

K. Ostrikov, Colloquium : Reactive plasmas as a versatile nanofabrication tool, Reviews of Mordern Physics, vol.77, p.489, 2005.

K. Ostrikov and A. Murphy, Plasma-aided nanofabrication: where is the cutting edge?, Journal of Physics D: Applied Physics, vol.40, issue.8, p.2223, 2007.
DOI : 10.1088/0022-3727/40/8/S01

H. Alfvénalfv´alfvén, On the origin of the Solar System, 1954.

O. Ishihara, Complex plasma: dusts in plasma, Journal of Physics D: Applied Physics, vol.40, issue.8, p.121, 2007.
DOI : 10.1088/0022-3727/40/8/R01

Y. Watanabe, M. Shiratani, T. Fukuzawa, H. Kawasaki, Y. Ueda et al., high frequency discharges and the effects of particles on deposited films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.3
DOI : 10.1116/1.580069

Y. Watanabe, Formation and behaviour of nano/micro-particles in low pressure plasmas, Journal of Physics D: Applied Physics, vol.39, issue.19, p.329, 2006.
DOI : 10.1088/0022-3727/39/19/R01

P. Shukla, New collective processes in dusty plasmas: applications to space and laboratories, Plasma Physics and Controlled Fusion, vol.42, issue.12B, p.213, 2000.
DOI : 10.1088/0741-3335/42/12B/316

A. Bouchoule, Dusty plasmas, Physics World, vol.6, issue.8, 1999.
DOI : 10.1088/2058-7058/6/8/30

A. A. Fridman, L. Boufendi, T. Hbid, B. V. Potapkin, and A. Bouchoule, Dusty plasma formation: Physics and critical phenomena. Theoretical approach, Journal of Applied Physics, vol.79, issue.3
DOI : 10.1063/1.361026

V. Suendo, A. V. Kharchenko, P. Roca-i-cabarrocas, S. Nunomura, M. Kita et al., Plasma studies under polymorphous silicon deposition conditions In situ simple method for measuring size and density of nanoparticles in reactive plasmas, Thin Solid Films J, vol.427, p.236, 2003.

Y. Watanabe, M. Shiratani, and M. Yamashita, Observation of growing kinetics of particles in a helium???diluted silane rf plasma, Applied Physics Letters, vol.61, issue.13, p.1510, 1992.
DOI : 10.1063/1.107532

T. Fukuzawa, M. Shiratani, and Y. Watanabe, method to detect subnanometer???sized particles in plasmas and its application to particles in helium???diluted silane radio frequency plasmas, Applied Physics Letters, vol.64, issue.23, p.3098, 1994.
DOI : 10.1063/1.111359

M. Shiratani, H. Kawasaki, T. Fukuzawa, and Y. Watanabe, polarization???sensitive laser???light???scattering method for simultaneous measurements of two???dimensional spatial size and density distributions of particles in plasmas, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.2, p.603, 1996.
DOI : 10.1116/1.580152

A. A. Howling and J. Ch, Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments, Applied Physics Letters, vol.62, issue.12, p.1341, 1993.
DOI : 10.1063/1.108724

L. Boufendi, J. Hermann, A. Bouchoule, and B. Dubreuil, discharge by laser induced particle explosive evaporation, Journal of Applied Physics, vol.76, issue.1, p.148, 1994.
DOI : 10.1063/1.357120

L. Boufendi, J. Gaudin, S. Huet, G. Viera, and M. Dudemaine, Detection of particles of less than 5 nm in diameter formed in an argon???silane capacitively coupled radio-frequency discharge, Applied Physics Letters, vol.79, issue.26, p.4301, 2001.
DOI : 10.1063/1.1425431

U. V. Bhandarkar, M. T. Swihart, S. L. Girshick, and U. R. Kortshagen, Modelling of silicon hydride clustering in a low-pressure silane plasma, Journal of Physics D: Applied Physics, vol.33, issue.21
DOI : 10.1088/0022-3727/33/21/311

A. Fontcuberta-i-morral, R. Brenot, E. A. Hamers, R. Vanderhaghen, P. Roca et al., In situ investigation of polymorphous silicon deposition, Journal of Non-Crystalline Solids, vol.266, issue.269, pp.266-26948, 2000.
DOI : 10.1016/S0022-3093(99)00723-1

A. V. Kharchenko, V. Suendo, P. Roca, and . Cabarrocas, The effects of RF plasma excitation frequency and doping gas on the deposition of polymorphous silicon thin films, Thin Solid Films, pp.451-452259, 2004.

V. Suendo, P. Roca, and . Cabarrocas, Plasma diagnostics in silane???methane???hydrogen plasmas under pm-Si1???xCx:H deposition conditions: Correlation with film properties, Journal of Non-Crystalline Solids, vol.352, issue.9-20, p.959, 2006.
DOI : 10.1016/j.jnoncrysol.2005.12.052

T. Ifuku, M. Otobe, A. Itoh, and S. Oda, Fabrication of Nanocrystalline Silicon with Small Spread of Particle Size by Pulsed Gas Plasma, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 6B, p.4031, 1997.
DOI : 10.1143/JJAP.36.4031

A. Bapat, C. Anderson, C. R. Perrey, C. B. Carter, S. A. Campbell et al., Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications, Plasma Physics and Controlled Fusion, vol.46, issue.12B, p.97, 2004.
DOI : 10.1088/0741-3335/46/12B/009

L. Mangolini, E. Thimsen, and U. Kortshagen, High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals, Nano Letters, vol.5, issue.4, p.655, 2005.
DOI : 10.1021/nl050066y

R. M. Sankaran, D. Holunga, R. C. Flagan, and K. P. Giapis, Synthesis of Blue Luminescent Si Nanoparticles Using Atmospheric-Pressure Microdischarges, Nano Letters, vol.5, issue.3, p.537, 2005.
DOI : 10.1021/nl0480060

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, Laser production of supersonic metal cluster beams, The Journal of Chemical Physics, vol.74, issue.11, p.6511, 1981.
DOI : 10.1063/1.440991

V. Svrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water, Applied Physics Letters, vol.89, issue.21, p.213113, 2006.
DOI : 10.1063/1.2397014

D. Riabinina, C. Durand, M. Chaker, and F. Rosei, Photoluminescent silicon nanocrystals synthesized by reactive laser ablation, Applied Physics Letters, vol.88, issue.7, p.73105, 2006.
DOI : 10.1063/1.2174096

F. Dumas-bouchiat, C. Champeaux, G. Trolliard, F. Rossignol, and A. Catherinot, Plasmas Froids : Astrophysique Aérospatial Environement Biologie Nanomatériaux, p.383, 2006.

M. Ehbrecht, B. Kohn, F. Huisken, M. A. Laguna, and V. Paillard, Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition, Physical Review B, vol.56, issue.11, pp.6958-6964, 1997.
DOI : 10.1103/PhysRevB.56.6958

C. Morante, M. Bonafos, A. Carrada, and . Claverie, Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO 2, J. Appl. Phys, vol.91, p.798, 2002.

Y. Q. Wang, R. Smirani, and G. G. Ross, Nanotwinning in Silicon Nanocrystals Produced by Ion Implantation, Nano Letters, vol.4, issue.10, p.2041, 2004.
DOI : 10.1021/nl048764q

T. Baron, F. Martin, P. Mur, C. Wyon, and M. Dupuy, Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices, Journal of Crystal Growth, vol.209, issue.4, p.1004, 2000.
DOI : 10.1016/S0022-0248(99)00742-3

S. Decossas, F. Mazen, T. Baron, G. Brémond, and A. Souifi, Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication, Nanotechnology, vol.14, issue.12, p.1272, 2003.
DOI : 10.1088/0957-4484/14/12/008

A. Fontcuberta, Croissance, propriétés structurales et optiques du silicium polymorphe, 2001.

V. Suendo, Low temperature plasma synthesis of silicon nanocrystals for photonic applications, 2005.

M. A. Liberman and A. J. Lichtenberg, Principles of Plasma discharges and Material processing, 2005.
DOI : 10.1002/0471724254

W. Luft and Y. S. Tsuo, Hydrogenated Amophous Silicon Alloy Deposition Processes, 1993.

P. Roca and . Cabarrocas, Science des matériaux et technique du réacteur dans le dépôt par procédé plasma RF de photopiles et d'autres dispositifs en silicium amorphe hydrogéné, 1988.

S. Kasouit, Mécanisme de croissance et transport dans le silicium microcristallin flouré. Application aux transistors en couches minces et transfert technologique, 2003.

D. V. Bui, Conception et modélisation de transistors TFTs en silicium microscristallin pour lesécranslesécrans AMOLED

H. S. Butler and G. S. Kino, Plasma Sheath Formation by Radio-Frequency Fields. The physics of fluids, p.1346, 1963.

. Th, P. Nguyen-tran, G. Roca-i-cabarrocas, and . Patriarche, Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas, Appl. Phys. Lett, vol.91, p.111501, 2007.

J. W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, Journal of Applied Physics, vol.51, issue.6, p.3134, 1980.
DOI : 10.1063/1.328060

J. W. Coburn and M. Chen, glow discharges as determined by emission spectroscopy, Journal of Vacuum Science and Technology, vol.18, issue.2
DOI : 10.1116/1.570781

L. Sansonnens, A. A. Howling, C. Hollenstein, J. Dorier, and U. Kroll, The role of metastable atoms in argon-diluted silane radiofrequency plasmas, Journal of Physics D: Applied Physics, vol.27, issue.7
DOI : 10.1088/0022-3727/27/7/011

J. Bohm and . Perrin, Spatially resolved optical emission and electrical properties of SiH4 RF discharges at 13.56 MHz in a symmetric parallel-plate configuration

F. Tochikubo, A. Suzuki, S. Kakuta, Y. Terazono, and T. Makabe, by spatiotemporal optical emission spectroscopy: Influence of negative ions, Journal of Applied Physics, vol.68, issue.11, p.8655532, 1990.
DOI : 10.1063/1.347013

F. J. Kampas and R. W. Griffith, ???Si:H alloys, Journal of Applied Physics, vol.52, issue.3, p.1285, 1981.
DOI : 10.1063/1.329752

J. Remy, Optical diagnostics of dusty plasmas, 2005.

R. Ghidini, C. H. Groothuis, M. Sorokin, G. M. Kroesen, and W. W. Stoffels, Electrical and optical characterization of particle formation in an argon???silane capacitively coupled radio-frequency discharge, Plasma Sources Science and Technology, vol.13, issue.1, p.143, 2004.
DOI : 10.1088/0963-0252/13/1/018

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 1993.

R. and M. Martin, Lattice Vibrations in Silicon: Microscopic Dielectric Model, Physical Review Letters, vol.21, issue.8, p.536, 1968.
DOI : 10.1103/PhysRevLett.21.536

G. Dolling and R. A. Cowley, The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide, Proc. Phys. Soc, p.463, 1966.
DOI : 10.1088/0370-1328/88/2/318

S. J. Clark, G. J. Ackland, and J. Crain, Theoretical study of high-density phases of covalent semiconductors. II. Empirical treatment, Physical Review B, vol.49, issue.8, p.5341, 1994.
DOI : 10.1103/PhysRevB.49.5341

G. Nelin and G. Nilsson, Phonon Density of States in Germanium at 80 K Measured by Neutron Spectrometry, Physical Review B, vol.5, issue.8, p.3151, 1972.
DOI : 10.1103/PhysRevB.5.3151

V. Domnich, Y. Gogotsi, and S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Applied Physics Letters, vol.76, issue.16
DOI : 10.1063/1.126300

G. Viera, S. Huet, E. Bertran, and L. Boufendi, Polymorphous Si thin films from radio frequency plasmas of SiH4 diluted in Ar: A study by transmission electron microscopy and Raman spectroscopy, Journal of Applied Physics, vol.90, issue.8, p.4272, 2001.
DOI : 10.1063/1.1398066

R. Alben, D. Weaire, J. E. Jr, M. H. Smith, and . Brodsky, Vibrational properties of amorphous Si and Ge, Physical Review B, vol.11, issue.6, p.2271, 1975.
DOI : 10.1103/PhysRevB.11.2271

A. Kailer, K. G. Nickel, and Y. G. Gogotsi, Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations, Journal of Raman Spectroscopy, vol.84, issue.10, p.939, 1999.
DOI : 10.1002/(SICI)1097-4555(199910)30:10<939::AID-JRS460>3.0.CO;2-C

I. Md, .. N. Panda, R. N. Pradhan, A. Kumar, and S. , Symmetry-forbidden Raman scattering from porous silicon quantum dots, Phys. Rev. B, vol.65, issue.3, p.33314, 2002.

G. J. Weinstein and B. A. Piermarini, Raman scattering and phonon dispersion in Si and GaP at very high pressure, Physical Review B, vol.12, issue.4, p.1172, 1975.
DOI : 10.1103/PhysRevB.12.1172

A. Kailer, Y. G. Gogotsi, and K. G. Nickel, Phase transformations of silicon caused by contact loading, Journal of Applied Physics, vol.81, issue.7, p.3057, 1997.
DOI : 10.1063/1.364340

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, and A. Fontcuberta, Concerning the 506cm???1 band in the Raman spectrum of silicon nanowires, Applied Physics Letters, vol.91, issue.12, p.123107, 2007.
DOI : 10.1063/1.2786606

R. J. Kobliska and S. A. Solin, Raman Spectrum of Wurtzite Silicon, Physical Review B, vol.8, issue.8, p.3799, 1973.
DOI : 10.1103/PhysRevB.8.3799

J. Bandet, B. Despax, M. Caumont, and L. Date, Raman Analysis of Wurtzite Silicon Islands in Silicon Oxide

Y. Zhang, Z. Iqbal, S. Vijayalakshmi, and H. Grebel, Stable hexagonal-wurtzite silicon phase by laser ablation, Applied Physics Letters, vol.75, issue.18, p.2758, 1999.
DOI : 10.1063/1.125140

J. Bandet, B. Despax, and M. Caumont, Vibrational and electronic properties of stabilized wurtzite-like silicon, Journal of Physics D: Applied Physics, vol.35, issue.3, p.234, 2002.
DOI : 10.1088/0022-3727/35/3/311

. Md, A. Islam, S. Pradhan, and . Kumar, Effects of crystallite size distribution on the Raman-scattering profiles of silicon nanostructures, J. Appl. Phys, vol.98, p.34309, 2005.

G. Viera, S. Huet, and L. Boufendi, Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy, Journal of Applied Physics, vol.90, issue.8, p.4175, 2001.
DOI : 10.1063/1.1398601

M. Kessels and M. C. Van-de-sanden, Determining the material structure of microcrystalline silicon from Raman spectra, J. Appl. Phys, vol.94, p.3582, 2003.

H. A. Macleod, Thin-Film optical filters, 2001.
DOI : 10.1887/0750306882

H. Fujiwara, P. I. Koh-joohyun-rovira, and R. W. Collins, Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films, Physical Review B, vol.61, issue.16, p.6110832, 2000.
DOI : 10.1103/PhysRevB.61.10832

G. E. Jellison-jr and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Applied Physics Letters, vol.69, issue.3, p.371, 1996.
DOI : 10.1063/1.118064

D. B. Williams and C. B. Cater, Transmission Electron Microscopy : A textbook for Material Science, 1993.
DOI : 10.1007/978-1-4757-2519-3

H. Hofmeister, Fivefold twinned Nanoparticles, Encyclopedia of Nanoscience and Nanotechnology, vol.3, p.431, 2004.

S. Kugler, L. Pusztai, L. Rosta, P. Chieux, and R. Bellissent, Structure of evaporated pure amorphous silicon: Neutron-diffraction and reverse Monte Carlo investigations, Physical Review B, vol.48, issue.10, p.487685, 1993.
DOI : 10.1103/PhysRevB.48.7685

J. M. Gibson, M. M. Treacey, and P. M. Voyles, Atom pair persistence in disordered materials from fluctuation microscopy, Ultramicroscopy, vol.83, issue.3-4, p.169, 2000.
DOI : 10.1016/S0304-3991(00)00013-9

P. M. Voyles, M. M. Treacy, J. M. Gibson, H. Jin, and J. R. Abelson, Experimental Methods and Data Analysis for Fluctuation Microscopy, MRS Proceedings, vol.589
DOI : 10.1557/PROC-589-155

P. M. Voyles and J. R. Abelson, Medium-range order in amorphous silicon measured by fluctuation electron microscopy, Solar Energy Materials and Solar Cells, vol.78, issue.1-4, p.85, 2003.
DOI : 10.1016/S0927-0248(02)00434-8

N. Bogle and J. R. Abelson, Fluctuation microscopy evidence for enhanced nanoscale structural order in polymorphous silicon thin films, J. Appl. Phys, vol.100, p.94319, 2006.

A. Fontcuberta-i-morral, H. Hofmeister, P. Roca, and . Cabarrocas, Structure of plasma-deposited polymorphous silicon, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302284, 2002.
DOI : 10.1016/S0022-3093(01)01007-9

J. Perrin, C. , R. Etemadi, and A. Lloret, Possible routes for cluster grpwth and particle formation in RF silane discharges, Plasma Sources Sci

M. Cavarroc, M. Mikikian, G. Perrie, and L. Boufendi, Single-crystal silicon nanoparticles: An instability to check their synthesis, Applied Physics Letters, vol.89, issue.1, p.13107, 2007.
DOI : 10.1063/1.2219395

URL : https://hal.archives-ouvertes.fr/hal-00097674

H. Vach and Q. Brulin, Controlled Growth of Silicon Nanocrystals in a Plasma Reactor, Physical Review Letters, vol.95, issue.16, p.165502, 2005.
DOI : 10.1103/PhysRevLett.95.165502

S. Tchakarov, Les diodes PIN en silicium polymorphe : aspect photodetecteur et aspect photovolta¨?quephotovolta¨?que, 2004.

Y. Watanabe, M. Shiratani, T. Fukuzawa, and H. Kawasaki, modulated RF discharges, Plasma Sources Science and Technology, vol.3, issue.3, p.355, 1994.
DOI : 10.1088/0963-0252/3/3/018

L. Boufendi and A. Bouchoule, Particle nucleation and growth in a low-pressure argon-silane discharge, Plasma Sources Science and Technology, vol.3, issue.3, p.262, 1994.
DOI : 10.1088/0963-0252/3/3/004

J. Arbiol, B. Kalache, P. Roca-i-cabarrocas, J. R. Morante, and A. Fontcuberta, Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour???solid???solid mechanism, Nanotechnology, vol.18, issue.30, p.305606, 2007.
DOI : 10.1088/0957-4484/18/30/305606

B. Delley and E. F. Steigmeier, Quantum confinement in Si nanocrystals, Physical Review B, vol.47, issue.3, p.1397, 1993.
DOI : 10.1103/PhysRevB.47.1397

R. Neuendorf, R. E. Palmer, and R. Smith, Low energy deposition of size-selected Si clusters onto graphite Highdensity optical interconnects within large-scale systems, Proc. SPIE, p.304222, 2001.

G. Masini, L. Colace, and G. Assanto, Si based optoelectronics for communications, Materials Science and Engineering: B, vol.89, issue.1-3, 2002.
DOI : 10.1016/S0921-5107(01)00781-4

G. Masini, L. Colace, and G. Assato, Germanium on silicon pin photodiodes for the near infrared, Electronics Letters, vol.36, issue.25, p.2095, 2000.
DOI : 10.1049/el:20001448

L. T. Canham, T. I. Cox, and A. Loni, Progress towards silicon optoelectronics using porous silicon technology, Applied Surface Science, vol.102, p.436, 1996.
DOI : 10.1016/0169-4332(96)00094-3

A. J. Keynon, Recent developments in rare-earth doped materials for photonics, Progress in Quant. Electron, p.2235, 2002.

M. H. Nayfeh, N. Barry, J. Therrien, O. Akcakir, E. Gratton et al., Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles, Applied Physics Letters, vol.78, issue.8, p.1131, 2001.
DOI : 10.1063/1.1347398

G. Cocurullo, M. Iodic, and I. Rendina, Silicon thermooptical micromodulator with 700-kHz -3-dB bandwidth, IEEE Photonics Technology Letters, vol.7, issue.4, p.363, 1995.
DOI : 10.1109/68.376803

B. Li, Z. Jiang, X. Zhang, and X. Wang, SiGe/Si Mach???Zehnder interferometer modulator based on the plasma dispersion effect, Applied Physics Letters, vol.74, issue.15, p.2108, 1999.
DOI : 10.1063/1.123771

L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, vol.57, issue.10, p.1046, 1990.
DOI : 10.1063/1.103561

Y. De-la-torre, ´ Etude des propriétés optoélectroniques de structures et de composantsàcomposantsà base de nanostructures de Si, 2003.

R. W. Fathauer, T. George, A. Ksendzov, and R. P. Vasquez, Visible luminescence from silicon wafers subjected to stain etches, Applied Physics Letters, vol.60, issue.8, p.995, 1992.
DOI : 10.1063/1.106485

P. C. Prokes, S. M. Glembocki, O. J. Bermudez, V. M. Kaplan, R. Friedersdorf et al., sih x excitation : An alternate mechanism for porous Si photoluminescence, Phys. Rev. B, issue.23, pp.4513788-13791, 1992.

M. Sacilotti, B. Champagnon, P. Abraham, Y. Monteil, and J. Bouix, Properties of type II interfaces in semiconductor heterojunctions, application to porous silicon, Journal of Luminescence, vol.57, issue.1-6, p.33, 1993.
DOI : 10.1016/0022-2313(93)90102-S

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, The origin of visible luminescencefrom ???porous silicon???: A new interpretation, Solid State Communications, vol.81, issue.4, p.307, 1992.
DOI : 10.1016/0038-1098(92)90815-Q

F. Koch, V. Petrova-koch, and T. Muschik, The luminescence of porous Si: the case for the surface state mechanism, Journal of Luminescence, vol.57, issue.1-6, p.271, 1993.
DOI : 10.1016/0022-2313(93)90145-D

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Optical Properties of Si Nanocrystals, physica status solidi (b), vol.215, issue.2, p.871, 1999.
DOI : 10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9

C. Delerue, G. Allan, and M. Lannoo, Theoretical aspects of the luminescence of porous silicon, Physical Review B, vol.48, issue.15, p.11024, 1993.
DOI : 10.1103/PhysRevB.48.11024

J. Heitmann, F. M-¨-uller, L. Yi, and M. Zacharias, Excitons in Si nanocrystals:???Confinement and migration effects, Physical Review B, vol.69, issue.19, 2004.
DOI : 10.1103/PhysRevB.69.195309

P. D. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, Identification of radiative transitions in highly porous silicon, Journal of Physics: Condensed Matter, vol.5, issue.7, p.91, 1993.
DOI : 10.1088/0953-8984/5/7/003

K. J. Nash, P. D. Calcott, L. T. Canham, and R. J. Needs, Spin-orbit interaction, triplet lifetime, and fine-structure splitting of excitons in highly porous silicon, Physical Review B, vol.51, issue.24, pp.5117698-17707, 1995.
DOI : 10.1103/PhysRevB.51.17698

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Physical Review Letters, vol.82, issue.1
DOI : 10.1103/PhysRevLett.82.197

V. Suendo, G. Patriarche, and P. , Luminescence of polymorphous silicon carbon alloys, Optical Materials, vol.27, issue.5, p.953, 2005.
DOI : 10.1016/j.optmat.2004.08.042

J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar, Deposition and imaging of localized charge on insulator surfaces using a force microscope, Applied Physics Letters, vol.53, issue.26, p.2717, 1988.
DOI : 10.1063/1.100162

B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Contact electrification using force microscopy, Physical Review Letters, vol.63, issue.24, p.2669, 1989.
DOI : 10.1103/PhysRevLett.63.2669

M. Nonnenmacher, M. P. O-'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.58, issue.25, p.2921, 1991.
DOI : 10.1063/1.105227

T. D. Krauss and L. E. Brus, Charge, Polarizability, and Photoionization of Single Semiconductor Nanocrystals, Physical Review Letters, vol.83, issue.23, p.4840, 1999.
DOI : 10.1103/PhysRevLett.83.4840

E. A. Boer, L. D. Bell, M. L. Brongersma, H. A. Atwater, M. L. Ostraat et al., Charging of single Si nanocrystals by atomic force microscopy, Applied Physics Letters, vol.78, issue.20
DOI : 10.1063/1.1371783

E. A. Boer, L. D. Bell, M. L. Brongersma, and H. A. Atwater, Models for quantitative charge imaging by atomic force microscopy, Journal of Applied Physics, vol.90, issue.6, p.2764, 2001.
DOI : 10.1063/1.1394896

S. Banerjee, M. A. Salem, and S. Oda, Conducting-tip atomic force microscopy for injection and probing of localized charges in silicon nanocrystals, Applied Physics Letters, vol.83, issue.18, p.3788, 2003.
DOI : 10.1063/1.1624469

T. M-´-elin, H. Diesinger, D. Deresmes, and D. Stí-evenard, Electric force microscopy of individually charged nanoparticles on conductors: An analytical model for quantitative charge imaging, Physical Review B, vol.69, issue.3, p.35321, 2004.
DOI : 10.1103/PhysRevB.69.035321

S. Decossas, J. Vitiello, T. Baron, F. Mazen, and S. Gidon, Few electrons injection in silicon nanocrystals probed by ultrahigh vacuum atomic force microscopy, Applied Physics Letters, vol.86, issue.3
DOI : 10.1063/1.1829779

URL : https://hal.archives-ouvertes.fr/hal-00394713

J. M. Weaver and D. W. Abraham, High resolution atomic force microscopy potentiometry, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.3, p.1559, 1991.
DOI : 10.1116/1.585423