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Abstract

The use of multiple antennas has been recognized as a key technology to significantly
improve the spectral efficiency of next-generation, multiuser wireless communication net-
works. In multiuser multiple-input multiple-output (MIMO) networks, the spatial degrees
of freedom offered by multiple antennas can be advantageously exploited to enhance the
system capacity, by scheduling multiple users simultaneously by means of spatial division
multiple access (SDMA). A linear increase in throughput, proportional to the number of
transmit antennas, can be achieved even by using linear precoding strategies if combined
with efficiently designed scheduling protocols. However, these promising gains come under
the often unrealistic assumption of close-to-perfect channel state information at the trans-
mitter (CSIT). Therefore, at the heart of the downlink resource allocation problem lies that

of feedback acquisition.

In this thesis, we focus on linear beamforming techniques relying on low-rate partial
CSIT. Several methods that allow the base station (BS) to live well even with coarse,
limited channel knowledge are identified. One first key idea is based on splitting the design
between the scheduling and the final beam design stages, thus taking profit from the fact
the number of users to be served at each scheduling slot is much smaller than the total
number of active users. This two-stage approach is applied to a scenario in which random
beamforming (RBF) is exploited to identify good, spatially separable, users in the first stage.
In the second stage, several refinement strategies, including beam power control and beam
selection, are proposed, offering various feedback reduction and significant sum rate gains,

even in sparse network settings (low to moderate number of users).

In channels that exhibit some form of correlation, either in temporal or in spatial do-
main, we point out that significant useful information for the SDMA scheduler lies hidden in
the channel structure. We show how memory-based RBF can exploit channel redundancy
in order to achieve throughput close to that of optimum unitary beamforming with full
CSIT for slow time-varying channels. In spatially correlated channels, long-term statistical
CSIT, which can be easily obtained with negligible per-slot or no feedback overhead, reveals
information about the mean spatial separability of users. A maximum likelihood (ML) chan-
nel estimation framework is proposed, which effectively combines slowly varying statistical
CSIT with instantaneous low-rate channel quality information (CQI). User selection and
beamforming techniques suitable for such settings are also proposed. It is demonstrated
that in systems with reasonably limited angle spread at the BS, feeding back a single scalar
CQI parameter per user is sufficient to perform SDMA scheduling and beamforming with
near optimum performance.

iii



iv Abstract

Limited feedback strategies utilizing vector quantization codebooks are also investigated.
In particular, the problem of efficient, sum-rate maximizing CQI design is addressed and
several scalar feedback metrics are proposed. These metrics are built upon inter-user in-
terference bounds and can be interpreted as reliable estimates of the received signal-to-
interference-plus-noise ratio (SINR) at the receiver side. It is shown that scalar CQI feed-
back combined with channel directional information (CDI), zero-forcing beamforming, and
greedy user selection algorithms can achieve a significant fraction of the capacity of the
full CSIT case by exploiting multiuser diversity. An efficient technique that provides the
BS the flexibility to switch from multiuser (SDMA) to single-user (TDMA) transmission is
provided, exhibiting linear sum-rate growth at any range of signal-to-noise ratio (SNR).

Further feedback compression can be achieved if the CSIT information utilized by the
scheduler is represented by ranking-based feedback. We show that an integer value is often
sufficient in order to identify users with favorable channel conditions. In parallel, it equalizes
the channel access probability in networks where users’ channels are not necessarily iden-
tically distributed and mobile terminals experience unequal average SNRs due to different
distances from the BS and the corresponding different path losses (near-far effects).



Contents

Acknowledgements . . . . . ... L. i
Abstract . . . . . .. iii
List of Figures . . . . . . . o . o e ix
List of Tables . . . . . . . . o xiii
Nomenclature . . . . . . . . . . e XV
Résumé . . . . . e e 1
1 Introduction 3
1.1 Background and Motivation . . . . . .. .. ... oL oo 3
1.2 From Single-user to Multiuser MIMO Communications . . . . . . . ... ... 4
1.3 Assumptions . . . . . ..o 5
1.4 Contributions and Outline of the Dissertation . . . . . ... ... .. .. ... 6
2 Multi-antenna Broadcast Channels 11
2.1 The Wireless Channel . . . .. .. ... ... .. . 11
2.1.1 Pathloss . .. .. .. .. . .. 12
2.1.2 Shadowing . . . . . . . . L 12
213 Fading . . . . . . L 12
2.1.4  Channel Selectivity . . . . . . .. o o 13

2.2 Multiple-Input Multiple-Output Channels . . . .. . . ... ... .. .. ... 15
2.3  Multiuser Multi-Antenna Systems . . . . . . . .. .. oL 16
2.3.1 Multi-antenna Channel Modeling . . . . .. .. ... ... ... .... 17

2.4 Capacity of MIMO Broadcast Channels . . . . ... ... ... ........ 20
2.4.1 Capacity with perfect CSI at the transmitter . . . . . .. .. .. ... 20
2.4.2 Capacity with no CSI at the transmitter . . . . . . . ... . ... ... 22

2.5 Multiuser MIMO Schemes with perfect CSIT . . . . . ... ... ... .... 23
2.5.1 Non-linear Precoding . . . . . .. .. .. ... 0oL 23
2.5.2 Linear Precoding . . . . . . . .. ... .. oo 24

2.6 The cardinal role of Channel State Information . . . . .. ... ... ... .. 27
2.6.1 Channel Knowledge at the Transmitter . . . ... ... .. ... ... 27
2.6.2 Capacity scaling laws in MIMO BC systems . . . . . . ... ... ... 28
2.6.3 Partial Channel State Information . . . . .. ... .. ... ... ... 30
2.6.4 Statistical Channel Knowledge at the Transmitter . . . . ... . ... 30

2.7 Scheduling and Multiuser Diversity . . . . . .. ... ... . ... ... . ... 31
2.7.1 Asymptotic Sum-rate Analysis with Opportunistic Scheduling . . . . . 32

2.8 Living with partial CSIT: Limited feedback approaches . . . . . . . . ... ... 34



vi Contents
2.8.1 Quantization-based techniques . . . .. ... ... ... L. 34
2.8.2 Dimension reduction and projection techniques . . . . . . . ... ... 34

2.9 Linear Precoding and Scheduling with Limited Feedback . . . . . .. .. ... 35
2.9.1 Finite Rate Feedback Model for CDI . . . . . . ... ... ... .... 35
2.9.2 Codebook design . . . ... ... ... 36
2.9.3 Random Opportunistic Beamforming . . . . . . ... ... .. .. ... 38

3 Enhanced Multiuser Random Beamforming 41

3.1 Imtroduction . . . . . . . . . . . . e 41

3.2 Sum-Rate Analysis of Random Beamforming . . . . ... ... .. ... ... 43

3.3 Capacity scaling laws for high SNR . . . . ... ... ... ... ... ..., 46

3.4 Two-Stage Scheduling and Linear Precoding . . . . . . ... ... ... .... 49

3.5 Enhanced Multiuser Random Beamforming . . . . . . ... ... ... ... . 50

3.6 Enhanced Precoding with perfect second-stage CSIT . . . . .. .. ... ... 51

3.7 Beam Power Control with Beam Gain Information . . .. ... .. ... ... 51
3.7.1 Optimum Beam Power Allocation for Two Beams . . . . . .. .. ... 52
3.7.2 Beam Power Allocation for more than two beams . . . . . .. .. ... 54
3.7.3 Beam Power Control in Specific Regimes (B>2) . . . ... ... ... 57

3.8 Beam Power Control with SINR feedback . . . .. .. ... ... ... ... 59

3.9 Performance Evaluation . . . ... ... ... ... o 60

3.10 Conclusion . . . . . . oo 64

3.A Proof of Lemma 3.1 . . . . . .. .. 66

3.B Proof of Lemma 3.2 . . . . .. . . ... 66

3.C Proof of Lemma 3.3 . . . . . . . . ... ... 67

3.D Proof of Corollary 3.2 . . . . . . . ... 67

3.E Proof of Theorem 3.1. . . . . . . . . ... 67

3.F Proof of Theorem 3.2. . . . . . . . . . . .. 68

3.G Proof of Lemma 3.4 . . . . . ... 69

3.H Proof of Lemma 3.5 . . . . . . . . . ... 69

3.1 Proof of Proposition 3.3 . . . . . . ... ... 70

4 Exploiting Channel Structure in MIMO Broadcast Channels 71

4.1 Introduction . . . . . . . . . .. 71

4.2 Exploiting redundancy in time-correlated channels . . . . . ... ... ... 72
4.2.1 User Selection in time-correlated channels . . . . . .. .. .. ... .. 72
4.2.2 Beamforming and Scheduling exploiting temporal correlation . . . . . 72
4.2.3 Memory-based Opportunistic Beamforming . . . . .. .. .. .. ... 73

4.3 Performance evaluation . . . . . . .. .. ... oo 76

4.4 Exploiting Statistical CSIT in Spatially Correlated Channels . . . . ... .. 7
4.4.1 System Setting . . . . . . . .. L 78
4.4.2 User Selection with ML Channel Estimation . . . . . . .. .. .. ... 79
4.4.3 ML coarse Channel Estimation with CQI Feedback . . . . . . .. ... 80
4.4.4 Interference-bounded Multiuser Eigenbeamforming with limited feed-

back . . ... 85
4.4.5 Performance Evaluation . . . . . .. ... ... o000 86



Contents vii

4.5 Conclusions . . . . . . . . . . e e 92
4.A Proof of Proposition 4.1 . . . . . . . . ... 93
5 Limited Feedback Broadcast Channels based on Codebooks 95
5.1 Imtroduction . . . . . . . . . . L 95
5.2 Systemmodel . . . .. 97
5.3 CQI Feedback Design . . . . . . . .. .. L 97
5.3.1 Problem formulation . . . . .. ... ... 0oL 97
5.3.2 Bounds on average received SINR . . . . .. ... ... ... .. ... 98
5.3.3 Lower bound on instantaneous received SINR . . . . . ... ... ... 100
5.3.4 SDMA/TDMA transition with limited feedback . . . . . . ... .. .. 104
5.4 User Selection Schemes . . . . . . . . . .. ... o 105
5.4.1 Greedy-SUS algorithm . . . . .. ... ... o oo 105
5.4.2 Greedy-US algorithm . . . . .. ... ... o o0 106
5.5 Performance Analysis . . . . . .. ... o 107
5.5.1 Asymptotic (in K) sum-rate analysis . . . ... ... ... ... .... 107
5.5.2  Sum-rate analysis in the interference-limited region . . . . . . . . . .. 108
5.6 MIMO Broadcast Channels with Finite Sum Rate Feedback Constraint . . . 109
5.6.1 Multiuser Diversity - Multiplexing Tradeoff in MIMO BC with Lim-
ited Feedback . . . . . . . . ... 109
5.6.2 Finite Sum Rate Feedback Model . . . . . . . . ... ... ... .... 110
5.6.3 Problem Formulation . . ... ... .. ... ... ... ..., 111
5.6.4 Decoupled Feedback Optimization . . . .. .. ... ... ... .... 112
5.7 Performance Evaluation . . ... ... ... .. ... ... .. .. ....... 113
5.8 Conclusion . . . ... 119
5.A Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . e 121
5.B Proof of Lemma 5.1 . . . . . ... ... 122
5.C Proof of Theorem 5.2. . . . . . . . . . . .. ... 122
5.D Proof of Lemma 5.2 . . . . . . ... 123
5.E Proof of Theorem 5.3. . . . . . . . . . . ... . .. . e 124
5.F Proof of Theorem 5.4 . . . . . . . . . . . . . . . . e 125
6 Feedback Reduction using Ranking-based Feedback 127
6.1 Introduction . . . . . . . . . . . e e e e e 127
6.2 Ranking-based Feedback Framework . . .. .. .. ... ... ... ... ... 129
6.2.1 Two-stageapproach . . . . ... ... . ... ... .. 129
6.2.2 Ranking-based CQI Representation . . . . . . .. .. ... .. ... .. 130
6.3 Performance analysis . . . . . . ... L L L 131
6.3.1 Asymptotic optimality of ranking-based feedback for large window
size W o o o e e e e e e 131
6.3.2 Throughput for infite observation window size W . . . . . . . .. ... 132
6.3.3 Throughput for finite observation window size W . . . . . . ... ... 133
6.3.4 Performance reduction bound for finite window size W . . . . . . . .. 134
6.3.5 Window size versus feedback reduction tradeoff . . . . . . ... . ... 135

6.4 Ranking-based CDI Model . . . . . . . . . ... ... ... .. 135



viii Contents
6.5 Scheduling with Heterogeneous Users . . . . . . ... ... ... ... .. ... 136
6.6 Performance Evaluation . . . . .. ... .. .. ... . 137
6.7 Conclusion . . . . . . . .. 141
6.A Proof of Proposition 6.1 . . . . . . .. ... L 142
6.B Proof of Proposition 6.3 . . . . . . .. ... 142
6.C Proof of Proposition 6.5 . . . . . . . .. . ... 143

7 System Aspects in Multiuser MIMO Systems 145
7.1 Introduction . . . . . . . . . . . e 145
7.2 Channel State Information Acquisition . . . . . .. . . ... ... ... ... 146

7.2.1 CSI at the Receiver . . . . . . . . . . . ... ... ... ... 146

7.2.2 CSI at the Transmitter . . . .. .. .. ... ... ... .. .... 146

7.3 Codebook-based Precoding . . . . .. ... ... ... .. L. 147
74 CQI feedback metrics and Link Adaptation . . . . .. .. ... ... ... .. 149
7.5 Opportunistic Scheduling: System Issues . . . . . . . . ... ... ... .... 149
7.6 Fairness . . . . . . .. e 150
7.6.1 Definition of Fairness in Scheduling . . . . . . ... ... .. ... ... 150

7.6.2 Proportional Fair Scheduler (PFS) . . . ... ... ... ........ 151

7.6.3 Multiuser Proportional Fair Scheduler (M-PFS) . . . . ... ... ... 152

8 Conclusions and Perspectives 155
9 Résumé en francgais 159



List of Figures

2.1
2.2

2.3
24

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

Multiple-Input Multiple Output Channel Model. . . . .. .. .. ... .. ..

Downlink of a multiuser MIMO network: A BS/AP communicates simulta-
neously with several multiple antenna terminals. . . . ... .. ... .. ...

Analytical channel model with local scatterers at mobile station . . . . . . . .

Schematic of Random Opportunistic Beamforming. . . . . . . .. .. .. ...

Comparison between simulated and analytical achievable sum-rate of RBF
with M = 4 antennas and SNR =20dB. ... ... ..............
Achievable sum rate comparison vs. average SNR for RBF with M = 4
antennas. Both analytic expressions approximate accurately the simulated
performance at high SNR. . . . .. . ... ... ... .. L
Achievable sum rate comparison between simulated and analytical results for
RBF with M =4 antennas and SNR =-15dB. . . . .. .. ... .. .. ...
Sum rate versus the number of users for Optimal Beam Power Control with
M = 2 transmit antennas and SNR =20dB. . ... .. ... .. ..., ...
Sum rate versus average SNR for Optimal Beam Power Control (strategy 3)
with M = 2 transmit antennas and K =10 users. . . . . . . .. . .. .. ...
Sum rate comparison of different second-stage precoders (strategy 1) versus
the number of users for M =2 and SNR=10dB. . ... ...........
Sum rate versus the number of users for Iterative Beam Power Allocation and
Optimal Power Control with M = 2 transmit antennas and SNR = 10 dB. . .
Sum rate versus the number of users for Iterative Beam Power Allocation
with M = 4 transmit antennas and SNR =10dB. . .. .. ... ... .. ..
Sum rate versus the number of users for On/Off Beam Power Control with
M = 2 transmit antennas and SNR =20dB. . ... ... ...........
Sum rate versus average SNR for On/Off Beam Power Control with M = 4
transmit antennas and K =25 USers. . . . . .« . v v v v e e e e

Sum rate versus the number of users for On/Off Beam Power Control with
M = 4 transmit antennas and SNR =20dB. . ... ... ... ... ...

Sum rate vs. the number of transmit antennas M of MOBF with K = 20
users and various Doppler spreads. . . . . . . . ... .. o000

Sum rate as a function of number of users K of MOBF for different Doppler
spreadsS. . . ... .

ix

76



List of Figures

4.3

4.4

4.5

4.6

4.7

4.8

4.9
4.10

5.1
5.2

3.3

5.4

9.5

5.6

5.7

5.8
3.9
5.10

6.1

6.2

Sum rate performance versus angle spread of proposed ML estimation method
for M = 2 and K = 50 users. Full CSIT is obtained for the selected users at
asecond Step. . . . ... . L e e e 88
Sum rate performance versus the number of users of ML channel estimation
method for M = 2 and o9 = 0.27r. Full CSIT for the selected users is obtained
for precoder design. . . . . . . ... 88
Sum rate performance versus angle spread of proposed ML estimation frame-
work for M = 2, and K = 50 users. Partial CSIT is employed for precoding

design. . . . . .o 89
Sum rate as a function of the number of users for various user selection
schemes with M = 2, antenna spacing d = 0.5\ and 09 =0.17. . . . . . . .. 89
Sum rate as a function of antenna spacing for various user selection schemes
with M =2,0p =0.1mand K =50wusers. . . . ... ... . ... ....... 90
Sum rate as a function of angle spread for various user selection schemes with
M = 2, antenna spacing d = 0.5\ and K =50 users. . . . ... ... .. ... 90
Sum rate as a function of the number of users for M =2, and 09y = 0.17. . . 91
Sum rate as a function of angle spread for M = 2, antenna spacing d = 0.4\
and K =100 users. . . . . . . . . .. 91
Finite Sum Rate Feedback Model. . . . . . .. ... .. ... .. ... ... 110
Sum rate versus the average SNR for Bp = 4 bits, M = 2 transmit antennas
and K =30 users. . . . . . . ... 114
Sum rate as a function of the number of users for Bp = 4 bits, M = 2
transmit antennas and SNR =20dB. . . ... ... ... ... ... ... 114

Sum rate performance as a function of the average SNR for increasing value
of the number of users, with Bp = 4 bits of feedback per user and M = 2
transmit antennas. . . . . .. ... L Lo Lo e e 115
Sum rate as a function of the average SNR for increasing codebook size,
M = 2 transmit antennas, and K =50 users. . . . . .. .. ... ... ... 116
Sum rate performance as a function of the number of users for increasing
codebook size, M = 2 transmit antennas, and SNR =10dB. . . ... .. .. 116
Sum rate versus the number of users for with SNR, = 20 dB, M = 2 transmit
antennas and 10-bit total feedback bits. Bp = 5 bits are used for codebook
indexing and (Bg = 10 — Bp bits) for CQI quantization. For metric IV, 2

bits are used for quantization of the channel norm and 3 bits for the alignment.117

Sum rate vs. number of users for M =2 and SNR =10dB.. . . . ... ... 118
Sum rate vs. number of users for M =2 and SNR =20dB.. ... ... ... 118
Sum rate vs. number of users in a system with optimal Bp/Bg balancing
for different SNR values. . . . . . . .. . .. ... ... 119
Throughput comparison as a function of window size W for single-beam RBF

with M = 2 antennas, SNR — 10 dB and K = 10 active users. . .. .. ... 138
Average rate as a function of the number of users for single-beam RBF with
M =2 antennas, SNR = 10 dB and different values of window size W. . . . . 139



List of Figures xi

6.3 Average rate as a function of the number of users for single-beam RBF with

M = 2 antennas, SNR = 10 dB, W=1000 slots, and ranking-based CQI

metric quantized with different resolutions. . . . . . .. .. ... ... .. 139
6.4 Sum rate as a function of the number of users for multi-beam RBF with

M = 2 antennas, SNR = 10 dB and W = 1000 slots. . . . . . .. .. .. ... 140
6.5 Sum rate as a function of users for multi-beam RBF in a heterogeneous net-

work in which users’ average SNRs range from -10 dB to 30 dB, M = 4

antennas and W =1000slots. . . . . . . .. ..o 140
6.6 Normalized scheduling probability vs. user index for multi-beam RBF with

M = 4 antennas and K = 10 users. The users are sorted from the lowest to

the highest average SNR and the SNR range is from -10 dB to 30 dB. . . . . 141



xii List of Figures




List of Tables

3.1

4.1
4.2
4.3

5.1
5.2

Iterative Beam Power Control Algorithm for Sum-Rate Maximization . .. . 55
Memory-based Opportunistic Beamforming Algorithm . . . . . ... ... . ... 74
Greedy User Selection with Statistical CSIT . . . . . . . . .. . ... ... ... 81
Resource Allocation Algorithm with Statistical CSIT . . . . . . . . . . ... ... 87
Greedy Semi-orthogonal User Selection with Limited Feedback . . . . . . . . . .. 120
Greedy User Selection Algorithm with Limited Feedback . . . . . . . . ... ... 120

xiii



xiv List of Tables




Nomenclature

In this section, the notational convention of the thesis is summarized. First, we provide a
list of abbreviations, followed by an overview of the notation of more general nature. We

conclude with the notations that are more specific for this thesis.

Abbreviations and Acronyms
The abbreviations and acronyms used throughout the thesis are summarized here. The

meaning of an acronym is usually indicated once, when it first occurs in the text.

3GPP Third Generation Partnership Project

AMC Adaptive Modulation and Coding
AoA Angle of Arrival

AoD Angle of Departure

AP Access Point

AWGN Additive White Gaussian Noise
BC Broadcast Channel

BD Block Diagonalization

BER Bit Error Rate

BF Beamforming

BGI Beam Gain Information

bps bits per second

BS Base Station

CCI Channel Covariance Information
CDMA Code Division Multiple Access
CDF Cumulative Distribution Function
CDI Channel Direction Information
CMI Channel Mean Information

CQI Channel Quality Information

CSI Channel State Information

CSIR Channel State Information at Receiver
CSIT Channel State Information at Transmitter
DMT Diversity Multiplexing Tradeoff
DPC Dirty Paper Coding

EVD Eigenvalue Decomposition

FDD Frequency Division Duplex
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GEV Generalized Eigenvalue
HSDPA  High-Speed Downlink Packet Access
iid. independent and identically distributed
ini.d. independent and non-identically distributed
KKT Karush-Kuhn-Tucker optimality conditions
l.d. Limit Distribution
LOS Line-of-Sight
MAC Multiple Access Channel
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
ML Maximum Likelihood
MMSE Minimum Mean-Square Error
NLOS Non Line-of-Sight
OFDM Orthogonal Frequency Division Multiplexing
OFDMA  Orthogonal Frequency Division Multiple Access
PDF Probability Density Function
PFS Proportional Fair Scheduling
QoS Quality of Service
RBF Random (opportunistic) Beamforming
RHS Right Hand Side
rms root mean square
RVQ Random Vector Quantization
SDMA Space Division Multiple Access
SINR Signal-to-Interference-plus-Noise Ratio
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
S.t. Subject to
STC Space-Time Code
SVD Singular Value Decomposition
TDD Time Division Duplex
TDMA Time Division Multiple Access
THP Tomlinson-Harashima Precoding
UCA Uniform Circular Array
ULA Uniform Linear Array
UMTS Universal Mobile Telecommunications System
VQ Vector Quantization
WLAN Wireless Local Area Network
WMAN  Wireless Metropolitan Area Network
7F Zero Forcing
WloG Without loss of Generality



Nomenclature

xvii

Notations

The notations used in this dissertation are listed in this section. We use boldface upper (e.g.
X) and lower case (e.g. x) letters for matrices and column vectors, respectively. Plain letters
are used for scalars and uppercase calligraphic letters (e.g. S) denote sets. No notational

distinction is used for a random variable and its realization. Other notational conventions

are summarized as follows:

exp(-)
log(-)
10%2(')

The sets of complex and real numbers, respectively.

The absolute value of a scalar.

The phase of a complex scalar (in radians).

The Euclidean (¢?) norm of vector x

The Frobenius norm of matrix X

The ceiling operator, i.e. the smallest integer not less than x.

The angle between two vectors x and y.

The cardinality of the set X', i.e. the number of elements in the finite
set X.

The expectation operator.

The circularly symmetric complex Gaussian distribution with mean x
and covariance matrix X.

The complex conjugate operator.

The transpose operator.

The complex conjugate (Hermitian) transpose operator.

The Moore-Penrose pseudoinverse of matrix X.

The inverse of matrix X.

The identity matrix.

The trace of matrix X, i.e. the sum of the diagonal elements.

The vector obtained by stacking the columns of X.

The Kronecker matrix product.

The big-O notation, i.e. f(z) = O(g(z)) as z — oo iff Jxg, ¢ > 0 such
that |f(z)| < ¢lg(x)] for & > xo.

The exponential function.

The natural logarithm.

The base 2 logarithm.

Thesis Specific Notations

We summarize here the symbols and notations that are commonly used in this thesis. We
have tried to keep consistent notations throughout the document, but some symbols have

different definitions depending on when they occur in the text.

M Number of transmit antennas

N, Number of receive antennas at user k.

K Number of active terminals, i.e. the set of users simultaneously asking

for service during one given scheduling window.

h;  The channel from base station to user k (frequency flat).
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Nomenclature

cozsx

ng

Tk
Ck

The channel of user k normalized by its amplitude, i.e. hy = hy/ [|hg]|.

The precoding matrix.
The beamforming vector of user k.
An isotropically distributed unitary matrix.

An orthonormal vector (beam), i.e. column of Q.

The AWGN noise vector of user k.

The achievable rate of user k.

The maximum transmit power.

The set of selected (scheduled) users.

The number of active beams.

The CQI feedback of user k.

The scheduling (decision) metric for user k.



Résumé 1

Résumé

L’utilisation des antennes multiples a été reconnue comme une technologie-clé qui peut
considérablement améliorer I'efficacité spectrale des futurs réseaux de communication multi-
utilisateurs sans fil. Dans les systémes a entrées multiples sorties multiples (MIMO) multi-
utilisateurs, les degrés de liberté spatiaux offerts par les antennes multiples peuvent étre
avantageusement exploités afin d’augmenter la capacité du systéme. Cela est fait en or-
donnancant plusieurs utilisateurs simultanément par une méthode d’accés multiple avec ré-
partition spatiale (SDMA). Une augmentation linéaire de débit, proportionnelle au nombre
d’antennes de transmission, peut étre réalisée méme en utilisant des stratégies du précodage
linéaire si elles sont combinées avec des protocoles d’ordonnancement efficaces. Cependant,
ces gains prometteurs relévent de I’hypothése souvent irréaliste qu’une information du canal
parfaite a ’émetteur (CSIT) est disponible a la station de base (SB).

Dans cette thése, on considére des techniques de formation linéaire de faisceaux (beam-
forming) et d’ordonnancement basées sur des CSIT partielles & bas débit. Plusieurs méth-
odes qui permettent & la SB de bien vivre méme avec une connaissance du canal limitée
sont identifiées.

On propose de dédoubler la conception entre ’ordonnancement et les étapes finales de
formation de faisceaux, afin de bénéficier du fait que le nombre d’utilisateurs & servir dans
chaque créneau d’ordonnancement est beaucoup plus bas que le nombre total d’utilisateurs
actifs dans la cellule. Cette approche a deux étapes est appliquée dans un contexte de forma-
tion de faisceaux aléatoires (RBF) afin d’identifier des utilisateurs spatialement séparables
durant la premiére étape. Dans la deuxiéme étape, plusieurs stratégies d’ameélioration suc-
cessive, y compris le controle de puissance de faisceau et la sélection de faisceaux, sont
proposées, en offrant une réduction importante du feedback ainsi que des gains significatifs
en débit somme, méme dans des réseaux avec un nombre d’utilisateurs faible & modéré.

Dans des canaux MIMO temporellement ou spatialement corrélés, on identifie que 1’ in-
formation extrémement utile pour 'ordonnanceur SDMA se trouve cachée dans la structure
du canal. On montre comment le RBF peut exploiter la redondance du canal et atteindre
un débit proche de celui du beamforming unitaire optimal avec CSIT compléte pour des
canaux qui varient lentement avec le temps.

Dans des canaux spatialement corrélés, la CSIT statistique a long terme, qui peut étre
facilement obtenue avec un taux de rétroaction négligeable, révéle des informations sur
la séparabilité spatiale moyenne des utilisateurs. Une technique d’estimation du canal &
maximum de vraisemblance (MV) est proposée, qui combine efficacement la CSIT statistique
a long terme avec l'information de qualité de canal (CQI) instantanée a bas débit. Des
techniques de sélection d’utilisateurs et de beamforming sont également proposées. Il est
démontré que dans des systémes avec étalement angulaire & 1’émetteur raisonnablement
faible, méme un seul parameétre scalaire de CQI par utilisateur est suffisant pour accomplir
d’ordonnancement et beamforming avec une performance proche de 'optimale.

Des stratégies de feedback limité en utilisant des codebooks de quantification sont égale-
ment étudiées. En particulier, le probléme de la conception de CQI est adressé et plusieurs
métriques scalaires de rétroaction sont proposés. Ces métriques sont basés sur des bornes de
I'interférence multi-utilisateur et peuvent étre interprétés comme une estimation crédible du

rapport signal-sur-interférence-plus-bruit (SINR) au niveau du récepteur. Il est démontré
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que ces métriques scalaires de CQI, combinés avec l'information sur la direction du canal
(CDI), forcage a zéro et des algorithmes de sélection d’utilisateur 'greedy’, peuvent atteindre
une partie significative de la capacité optimale en exploitant le gain de la diversité multi-
utilisateur. Une technique efficace qui offre a la SB la flexibilité nécessaire afin de passer de
la transmission multi-utilisateur a la transmission mon-utilisateur est aussi proposée. Cette
méthode présente une croissance linéaire du débit-somme & fort rapport signal-sur-bruit
(RSB) (région limitée par 'interférence).

Le taux de la voie de rétroaction peut étre de plus diminué en représentant le feedback
par une métrique basée sur le rang (ranking-based feedback). On montre qu’une valeur
entiére est souvent suffisante pour identifier les utilisateurs avec les conditions du canal les
plus favorables. En paralléle, cette représentation de la rétroaction égalise la probabilité
d’accés dans les réseaux ou les canaux des utilisateurs ne sont pas nécessairement identique-
ment distribués et les terminaux mobiles ont des RSBs moyens inégaux due aux différentes

distances de la SB et aux différentes pertes de chemin.



Chapter 1

Introduction

1.1 Background and Motivation

The last decade the wireless industry has been confronted with a galloping demand for
higher data rates and enhanced quality of service (QoS). The applications offered to cus-
tomers nowadays are no longer limited to voice transmission, but new types of services,
such as streaming multimedia, internet browsing, file transfer and video telephony, each
with different QoS requirements, are provided. The success story of cellular telephony has
opened the way to the development of various types of wireless systems, such as local and
metropolitan area networks (LAN, MAN), ad-hoc and sensor networks, short-range wireless
protocols, etc. The variety of wireless protocols combined with the increasing demand for
data services have amended the wireless service vision to an anywhere-anytime basis.

The introduction of new data services is one of the underlying reasons for the transition
from circuit-switched systems to packet-switched networks. Networks accommodating delay-
tolerant, best-effort traffic have now evolved, offering flexibility to the resource allocation
unit to schedule transmissions in slots where the communication link exhibits favorable
channel conditions. This gives rise to the so-called multiuser diversity gain [1], which aims
at a better utilization of the spectrum inside each cell at the expense of user fairness and
delay.

In addition to multiuser diversity, another key technology that efficiently utilizes the
scarce bandwidth resource is multi-antenna communications. Multiple-Input, Multiple-
Output (MIMO) techniques have generated a great deal of interest due to their potential for
high spectral efficiency, increased diversity, and interference suppression capabilities. As a
result, the use of multiple antennas is envisioned in most of next-generation wireless proto-
cols, including 3GPP Long Term Evolution (LTE) [2], High Speed Downlink Packet Access
(HSDPA), IEEE 802.16e (WiMAX) [3], and IEEE 802.11n [4].

3
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1.2 From Single-user to Multiuser MIMO Communica-

tions

The high throughput and diversity gains promised by point-to-point (single-user) MIMO
communications are essentially achieved via the use of diversity gain-oriented techniques
(e.g. space-time coding [5]) combined with rate maximization-oriented techniques (e.g.
spatial stream multiplexing). In such a traditional single-user view of MIMO systems, the
extra spatial degrees of freedom brought by the use of multiple antennas are exploited to
expand the dimensions available for signal processing and detection, thus acting mainly as
a physical layer performance booster. In this approach, the link layer protocols for multiple
access indirectly reap the performance benefits of MIMO antennas in the form of greater
per-user rates, or more reliable channel quality, despite not requiring full awareness of the
MIMO capability.

Recently, there has been a vivid interest in the role of multiple antennas in multiuser net-
work settings, and especially in broadcast and multiple access scenarios. The multiple access
channel (MAC), also referred to as the uplink, applies to settings where many transmitters
send signals to one receiver in the same frequency band. The broadcast channel (BC), also
referred to as downlink, models a network in which a base station (BS) communicates (sends
data) to many users sharing the same medium. Investigation of the more challenging broad-
cast channel lies at the core of this thesis. In multiuser MIMO networks, the spatial degrees
of freedom offered by multiple antennas can be advantageously exploited to enhance the
system capacity, by scheduling multiple users simultaneously by means of Space Division
Multiple Access (SDMA). Such a multiple access protocol requires more complex scheduling
strategies and transceiver methodologies, but does not involve any bandwidth expansion.
In spatial multiple access, the resulting multiuser interference is handled by the multiple
antennas, which in addition to providing per-link diversity also give the degrees of freedom

necessary to separate users in the spatial domain.

Recent information theoretic advances reveal that the capacity-achieving transmit strat-
egy for the MIMO broadcast channel is the so-called dirty paper coding (DPC) [6-8]. How-
ever, this optimum transmit strategy, which involves a theoretical pre-interference cancel-
lation technique combined with an implicit user scheduling and power loading algorithm,
is highly complex to implement and sensitive to channel estimation errors. The capacity-
achieving technique in MIMO broadcast channels revealed the fundamental role played
by the spatial dimension on multiple access and scheduling, replacing the simplistic view
of MIMO as a pure physical layer technology. This gave rise to the development of the
so-called cross-layer approaches, which aim at the joint design of the physical layer’s mod-
ulation/coding and link layer’s resource allocation and scheduling protocols.

Multiuser MIMO techniques and their performance have begun to be intensely investi-
gated because of several key advantages over single-user MIMO communications. In partic-
ular, multiuser MIMO schemes allow for a linear increase in capacity, proportional to the
number of transmit antennas, thanks to their spatial multiplexing capabilities. They also
appear more robust with respect to most of propagation limitations plaguing single-user
MIMO communications, such as channel rank loss or line-of-sight. Furthermore, the spatial
multiplexing gains promised by information theory can be achieved without the need for
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multi-antenna terminals, thereby allowing the development of small and cheap terminals
while intelligence and cost is kept on the infrastructure side.

As everything good in life, nothing comes for free. All these promising results unfor-
tunately come at the critical assumption of good channel state information at transmitter
(CSIT). Multiuser MIMO systems, unlike the point-to-point case, benefit substantially from
CSIT, the lack of which may significantly reduce the system throughput. This is because
without CSIT, the BS does not know in which direction to send the beams. If a BS with M
transmit antennas communicating with K single-antenna receivers has perfect channel state
information (CSI), a multiplexing gain of min(M, K') can be achieved. Although the approx-
imation of close to perfect CSI at the receiver (CSIR) is often reasonable, this assumption is
often unrealistic at the transmitter side. If the BS has imperfect channel knowledge, the full
multiplexing gain may be reduced, and in settings with complete absence of CSI knowledge,
the multiplexing gain collapses to one. CSIT acquisition seems to be the most substantial
cost to pay in order to properly serve the spatially multiplexed users and boost the sys-
tem capacity of multiuser MIMO systems. In systems where channel reciprocity cannot be
exploited or is prone to errors, the need for CSIT feedback places a significant burden on
uplink capacity, exacerbated in wideband communications (e.g. OFDM) or high mobility
systems (such as 3GPP-LTE, WiMAX| etc.).

In this dissertation, we focus on the multi-antenna downlink channel and aim at iden-
tifying what kind of partial CSIT, also referred to as limited feedback, can be conveyed to
the BS in order to achieve capacity close to that of the full CSIT case. Motivated by recent
key findings, which show that linear precoding strategies with partial CSIT can achieve a
significant fraction of the full CSIT capacity if combined with efficient scheduling proto-
cols [9-12], we focus on low-complexity, linear beamforming techniques. We try to shed
some light on the problem of partial CSIT design by proposing several low-rate feedback
strategies that allow the BS to cope well with limited channel knowledge and achieve near-
optimal sum rate. As we will see in the following chapters, the role of multiuser diversity
and opportunistic scheduling is instrumental in our approaches. Our thesis is that thanks
to the multiuser diversity gain, it is generally sufficient to feed back one or two properly
designed scalar feedback parameters in order to perform beamforming and user selection

that achieves throughput relatively close to the optimum one.

1.3 Assumptions

In an effort to provide a clear and concise framework to this work, we make the following

standard assumptions:

e Single cell network.

A single cell is considered and the inter-cell interference is treated as noise.

e Perfect channel state information at the receiver.
Users can estimate perfectly their channels, so that full channel state information at
the receiver (CSIR) is always assumed. CSIR is often obtained from pilot symbols
and blind channel estimation techniques, especially in downlink channels, where pilot-
symbol-based channel estimation is more efficient as the terminals share a common
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pilot channel. This assumption may be questioned in high-mobility settings and results
in significant overhead in wideband systems.

e Narrowband channels
Flat-fading channels are considered, i.e. the signal bandwidth is much less than the
reciprocal of the propagation time of the wavefront across the antenna array. Our
proposed methods can be easily applied on a per subcarrier basis in wideband OFDM

systems.

e [deal link adaptation.
Ideal link adaptation protocols are assumed and the continuous-rate, continuous-power
Shannon capacity formula is calculated as user throughput measure. This is a reason-
able assumption since current powerful coding schemes can perform close to Shannon
limit. Furthermore, the SNR-gap if practical coding and modulation schemes are used
does not affect the sum-rate scaling of the proposed techniques.

o Infinite backlogged users.
An infinite backlog of packets in each queue is assumed, thus the base station has
always data to transmit to the selected (scheduled) users. Since the resource alloca-
tion policies are studied from a throughput maximization point of view, queue state
information and traffic arrival processes have been neglected.

1.4 Contributions and Outline of the Dissertation

Foreword: This dissertation stems from an ANRT CIFRE (Convention Industrielle de
Formation par la Recherche/Industrial Agreement for Training through Research) agreement
between Telecom ParisTech / EURECOM, Sophia-Antipolis, and the Radio Access Networks
(RESA) group at France Telecom Research and Development, Paris. The conducted research
work was fully funded by France Telecom Research and Development (Orange Labs).

The main focus of the thesis is user selection and linear precoding in multiuser multi-
antenna systems with limited feedback. We provide below an outline of the dissertation and

describe the contributions made in each chapter.

Chapter 2 - Multi-antenna Broadcast Channels

In this chapter, we review recent fundamental findings in MIMO broadcast channels. The
general multi-antenna system model is introduced and capacity results for the broadcast
channel are presented under different assumptions on the quality /amount of CSIT. We em-
phasize on the cardinal importance of CSIT and the role of multiuser diversity for achieving
close to optimum capacity. Capacity scaling laws for opportunistic scheduling under differ-
ent channel statistical distributions are provided. The capacity growth for networks with
path loss and fading is a contribution of this chapter. Finally, we present in detail lin-
ear precoding strategies combined with scheduling using limited feedback, which forms the
building block of the dissertation. The advantages and drawbacks of this setting are iden-
tified, motivating our work and the solutions proposed in the subsequent chapters. Part of
this chapter has been published in a tutorial paper:
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e D. Gesbert, M. Kountouris, R.W. Heath, Jr., C.-B. Chae, and T. Sélzer, "From Single
User to Multiuser Communications: Shifting the MIMO Paradigm," in IEEE Signal
Processing Magazine, Special Issue on Signal Processing for Multiterminal Commun.
Systems, vol.24, no.5, pp. 36-46, Sept. 2007.

Chapter 3 - Enhanced Multiuser Random Beamforming

The contributions of this chapter are two-fold: In the first part, we provide an unpublished
exact sum-rate analysis of conventional random beamforming (RBF) [9]. Capacity scaling
laws for the interference-limited region (high SNR) are derived using extreme value theory,
showing the cardinal importance of multiuser diversity in this regime. In the second part, a
limited feedback-based scheduling and beamforming scenario that builds on RBF is consid-
ered. We introduce a two-stage framework that decouples the scheduling and beamforming
design problems in two phases. Several refinement strategies, including beam power con-
trol and beam selection, are proposed, offering various feedback reduction and performance
tradeoffs. The common feature of these schemes is to restore robustness of RBF with respect
to sparse network settings (low to moderate number of active users), at the cost of moderate
complexity increase.

The work in this chapter has been published in:

e M. Kountouris and D. Gesbert, "Robust multi-user opportunistic beamforming for
sparse networks," in Proc. 6th IEEE Workshop on Signal Processing Advances in
Wireless Communications (SPAWC 2005), pp. 975 - 979, New York, USA, June 5 - 8,
2005 (invited paper).

and will appear in:

e M. Kountouris, D. Gesbert, and T. Silzer, "Enhanced Multiuser Random Beamform-
ing: Dealing with the not so large number of users case," IEEE Journal on Sel. Areas
in Communications (JSAC), Special Issue on Limited Feedback Wireless Comm. Net-
works, Oct. 2008.

Chapter 4 - Exploiting Channel Structure in MIMO Broadcast Channels

In this chapter, we consider multiuser MIMO channels correlated in either time or spatial
domain, and provide several techniques that increase the system throughput by exploiting
the channel structure. In time correlated channels, an opportunistic beamforming scheme
exploiting channel memory is proposed. This scheme is shown to fill the capacity gap with
optimum unitary precoding with full CSIT for slow time-varying channels. In spatially
correlated channels, a maximum likelihood (ML) coarse channel estimation framework is
established, which effectively combines slowly varying statistical CSIT - assumed available
at the transmitter - with instantaneous low-rate feedback. A greedy user selection scheme
and a low-complexity SDMA eigenbeamforming technique based on multiuser interference
bounds are also proposed and evaluated. It is demonstrated that, in wide-area cellular
networks, scalar CSIT feedback is sufficient to achieve near-optimal throughput performance
if it is properly combined with long-term statistical knowledge.

The work in this chapter has been published in:

e M. Kountouris and D. Gesert, "Memory-based opportunistic multi-user beamforming,"
in Proc. of IEEE International Symposium on Information Theory (ISIT 2005), pp.
1426 - 1430, Adelaide, Australia, September 4 - 9, 2005.
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e M. Kountouris, D. Gesbert, and L. Pittman, "Transmit Correlation-aided Oppor-
tunistic Beamforming and Scheduling," in Proc. of 14th European Signal Processing
Conference (EUSIPCO), Florence, Italy, September 4 - 8, 2006 (invited paper).

e D. Gesbert, L. Pittman, and M. Kountouris, "Transmit Correlation-aided Scheduling
in Multiuser MIMO Networks," in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2006), Vol.4, pp. 249-252, Toulouse, France,
May 14-19, 2006.

e M. Kountouris, R. de Francisco, D. Gesbert, D.T.M. Slock, and T. Séilzer, "Low
complexity scheduling and beamforming for multiuser MIMO systems," in Proc. 7th
IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC
2006), Cannes, France, July 2 - 5, 2006.

Chapter 5 - Limited Feedback Broadcast Channels based on Codebooks

This chapter deals with limited feedback strategies utilizing vector quantization codebooks.
In particular, the problem of efficient, sum-rate maximizing channel quality information
(CQI) feedback design is addressed. We proposed several scalar feedback metrics that
incorporate information on the channel gain, the channel direction, and the quantization
error. These metrics are built upon bounds on the instantaneous inter-user interference, and
can be interpreted as reliable estimates of the received SINR. It is shown that scalar CQI
feedback combined with channel directional information (CDI) and efficient user selection
algorithm can achieve a significant fraction of the capacity of the full CSIT case by exploiting
multiuser diversity. An adaptive scheme transiting from SDMA to TDMA transmission
mode is proposed and is shown to achieve linear sum-rate growth at any SNR range.

The work in this chapter has been published in:

e M. Kountouris, R. de Francisco, D. Gesbert, D.T.M. Slock, and T. Silzer, "Efficient
metrics for scheduling in MIMO broadcast channels with limited feedback," in Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2007), Honolulu, USA, April 15 - 20, 2007.

e M. Kountouris, R. de Francisco, D. Gesbert, D.T.M. Slock, and T. Salzer, "Multiuser
diversity - multiplexing tradeoff in MIMO broadcast channels with limited feedback,"
in Proc. of 40th Asilomar Conference on Signals, Systems & Computers, Pacific Grove,
CA, USA, Oct. 29 - Nov. 1, 2006 (invited paper).

and accepted to:

e M. Kountouris, R. de Francisco, D. Gesbert, D.T.M. Slock, and T. Silzer, "Exploiting
Multiuser Diversity in MIMO Broadcast Channels with Limited Feedback," accepted
to IEEE Trans. on Signal Processing, August 2007 (under revision).

Chapter 6 - Feedback Reduction using Ranking-based Feedback

In this chapter, a low-rate representation of CSIT feedback parameters, referred to as
ranking-based feedback, is identified as a means to further compress the reported channel
feedback. This representation enables the scheduler to identify users that are instanta-
neously on the highest peak with respect to their own channel distributions, independently
of the distribution of the other users. Furthermore, we show that temporal fairness is also
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restored in heterogeneous networks with i.ni.d. channel statistics among users. The work

in this chapter has been published in:

e M. Kountouris, T. Silzer, and D. Gesbert, "Scheduling for Multiuser MIMO Downlink
Channels with Ranking-based Feedback," EURASIP Journal on Advances in Signal
Processing, Special Issue on MIMO Transmission with Limited Feedback, March 2008.

Chapter 7 - System Aspects in Multiuser MIMO Systems

This chapter focuses on several system issues and design challenges that arise in real-world
wireless systems. We discuss the main practical and implementation challenges that one
may face when deploying techniques as those proposed in Chapters 3-6. Emphasis is put on
fairness issues and the proportional fair scheduling (PFS) rule is generalized for multiuser
system settings, including OFDM, SDMA, multicell networks, etc. Part of these results has
been published in:

e M. Kountouris and D. Gesbert, "Memory-based opportunistic multi-user beamform-
ing," in Proc. of IEEE International Symposium on Information Theory (ISIT 2005),
pp. 1426 - 1430, Adelaide, Australia, September 4 - 9, 2005.

Patents

In addition to the above publications, our research work resulted in the following patents:
e PCT WO 2007057568, "Information encoding for a backward channel," (assigned)

e FR 2893474, "Method of information encoding for a backward channel of a SDMA

system, user terminal and base station of such a system," (assigned).

e "Feedback communication from a terminal to a transmitter to reduce inter-beam in-
terference," (filed, Jan. 2008).
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Chapter 1

Introduction




Chapter 2

Multi-antenna Broadcast

Channels

In this chapter, we review multiuser MIMO communications focusing on the more chal-
lenging downlink, the so-called broadcast channel (BC). The general multi-antenna system
model is introduced and known capacity results for the broadcast channel are presented un-
der different assumptions regarding the amount of CSIT. Information theoretic results shed
light on the cardinal importance of CSIT and scheduling, as well as on the role of multiuser
diversity for achieving the optimum system capacity. Capacity scaling laws for opportunistic
scheduling under different channel models are investigated. Several approaches including
non-linear and linear channel-aware precoding are reviewed, discussing design choices and
performance tradeoffs. Emphasis is given on low-complexity, linear precoding strategies
combined with scheduling using limited feedback, which form the building block of the dis-
sertation. The limited feedback model that we adopt and investigate in subsequent chapters

is presented in detail and its limitations are identified.

2.1 The Wireless Channel

The wireless radio channel is a particularly challenging medium for reliable high-rate com-
munications. Apart from being subject to noise, interference and several other impairments,
the wireless medium is above all a multipath time-varying channel. A signal transmitted
over a radio channel is subject to the physical laws of electromagnetic wave theory, which
dictate that multiple paths occur as a result of reflection on large surfaces (e.g. buildings,
walls, and ground), diffraction on edges, and scattering on various objects. Therefore, a
received signal is a superposition of multiple signals arriving from different directions at
different time instances and with different phases and power. These paths may combine
constructively or destructively, creating a multi-tap channel impulse response, with each

11
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tap having random phase and time-varying amplitude. We first review the physical phe-
nomena that attenuate the signal power. For a more detailed presentation, the interested
reader is referred to [13].

2.1.1 Path loss

Path loss is a range-dependent effect and is due to the distance d between the receiver and the
transmitter. In ideal free space, the received signal power is described by the Friis equation
and follows an inverse square law power loss. Several deterministic and empirical models
have been developed for various cellular environments (microcells, macrocells, picocells,
etc.), such as Okumura-Hata, Walfisch-Tkegami, and their COST-231 extensions, plane-
earth and clutter factor model [13]. A generic path loss model is given by

L=pd* (2.1)

where € is the path loss exponent and [ is a scaling factor that accounts for antenna char-
acteristics and average channel attenuation. The path loss exponent varies normally from
2 to 6, depending on the propagation environment. For the case of full specular reflections
from ground is 4, while for buildings and indoor environments it can take values from 4 to
6.

2.1.2 Shadowing

Shadowing, also known as macroscopic or long-term fading, results from large obstacles
blocking the main signal path between the transmitter and receiver, and is determined by
the local mean of a fast fading signal. The random shadowing effects, which are influenced
by antenna heights, operating frequency and the features of the propagation environment,
may be modeled as log-normal distributed with probability density function (PDF):

1 (og  —un)”

p(z) = e 2 x>0 (2.2)
To\ 2T

where 1 and o are the mean and standard deviation of the shadowing’s logarithm.

2.1.3 Fading

Fading, often referred to as microscopic or small-scale fading, results from the constructive
or destructive superposition of multipaths and describes the rapid signal fluctuations of the
amplitudes, phases, or multipath delays. The statistical time varying nature of the received
envelope is commonly described by the following three fading distributions:

Rayleigh fading

Rayleigh fading is a reasonable model when there is no dominant propagation path (non
line-of-sight, NLOS) between the transmitter and the receiver and is used to describe the
amplitude of a signal when there is a large number of independent scattered components.
Applying the central limit theorem, the channel impulse response can be considered as a
complex-valued Gaussian process irrespective of the distribution of the individual compo-
nents. In a NLOS configuration, this random process is assumed to have zero mean and
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phase evenly distributed between 0 and 27 radians. The envelope of the received signal will
therefore be Rayleigh distributed with PDF given by

2 22
p(x) = ﬁxefﬁ x>0 (2.3)

where ) = E{z?} is the average received power.

Ricean fading

If a direct, possibly a line-of-sight (LOS), path exists, the assumption of a zero-mean fading
process does no longer hold and the distribution of the signal amplitude is modeled as
Ricean. The Ricean distribution is often defined in terms of the Ricean factor K which
denotes the ratio of the power in the mean component of the channel (direct path) to the
power in the scattered paths. The Ricean PDF is given by

p(z) = 217(1;4— 1) -k e L <2x K<I§2+ 1)) >0 (2.4)

where Q = E{z?} and Iy(z) is the zero-order modified Bessel function of the first kind

defined as

1

2m
Iy(z) = %/0 e reosbap (2.5)

Nakagami fading

A general fading distribution that fits well with empirical measured data is the Nakagami

distribution given by
2mma?mTl 2 0 9
: = ¢
p(z;m) T e x> (2.6)

where () is the average received power and m = mmgijm}- The m factor determines the
severity of fading, i.e. for m = oo there is no fading. For m = 1 the distribution in (2.6)
reduces to Rayleigh fading, while for m = (K +1)?/(2K +1) the distribution is approximately

Ricean fading with factor K.

2.1.4 Channel Selectivity

Multipath propagation results in the spreading of the signal in different dimensions affecting
significantly the received signal. These dimensions are time (Doppler spread), space (angle
spread) and frequency (delay spread).

Doppler spread and time selective fading

The motion of the transmitter, the receiver or the scatterers results in time selectivity, i.e.
a single tone spreads in frequency over a finite spectral bandwidth. The variations due
to Doppler shifts are specific to each path and depend on their angle with respect to the
moving direction of the transmitter/receiver. Different Doppler shifts lead to the so-called
Doppler spread, which is the maximum frequency spread among all Doppler shifts, and is
given by

fm - (27)

v
Ac
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where v is the mobile speed and ). is the carrier wavelength.

How fast the channel decorrelates with time is specified by the temporal autocorrelation
function. The Doppler power spectrum pg(fq) is defined as the Fourier transform of the
temporal autocorrelation function of the channel response to a continuous wave

0 elsewhere

1 B
pd<fd>={ s Wa €= ol o

The most commonly used model for the autocorrelation function is the Clarke-Jakes’ model,

which assumes uniformly distributed scatterers on a circle around the antenna

pa(T) = Jo(27 finT) (2.9)

where Jj, is the k-th order Bessel function of the first kind and 7 is the sampling interval.
A measure of the time selectivity is the channel coherence time T, defined as the interval

over which the channel remains strongly correlated. The shorter the coherence time, the

faster the channel changes over time. The coherence time is a statistical measure and satisfies

T~ (2.10)

As we show in Chapter 4, the scheduler can take advantage of the time selectivity and benefit
from the resulting channel redundancy (time diversity), as a means to further compress the

channel feedback or successively refine the scheduling decisions.

Delay spread and frequency selective fading

Delay spread is caused when several delayed and scaled versions of the transmitted signal
arrive at different time instants at the receiver. The time difference between the maximum
multipath delay 7,4, (typically the arrival time of the LOS component) and the minimum
path delay 7,,, is called delay spread. Delay spread causes frequency selective fading as the
channel acts like a tapped-line filter. The range of frequencies over which the channel can be
considered ‘flat’ defines the coherence bandwidth B, and depends on the form of the power
delay spectrum (rms delay spread). A channel is characterized as flat or frequency non-
selective if the signal bandwidth B is significantly small compared to the channel coherence
time, i.e. B << B. = 1/Timaz. In the subsequent chapters, only flat fading channels are

considered.

Angle spread and space-selective fading

Angle spread at the receiver/transmitter refers to the spread in angles of arrival (AoAs) /
angles of departure (AoDs) of the multipath component at the receive/transmit antenna
array, respectively. The different directions of arrival lead to spatial selectivity that implies
that signal amplitude depends on the spatial location of the antenna array. Space selective
fading is characterized by the coherence distance d., which is the maximum distance between
two antenna elements for which the fading remains strongly correlated. An upper bound
for the coherence distance is given by

d, < Ac

c S m (2.11)
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where A6, is the maximum angle separation, i.e. the range in which the power azimuth
spectrum is non zero.

2.2  Multiple-Input Multiple-Output Channels

Multiple-Input Multiple-Output (MIMO) channels arise in many different scenarios such as
multi-antenna wireless systems or wireline systems (e.g. DSL), and can be represented in an
elegant, compact, and unified way by a channel matrix. The basic discrete-time, narrowband
signal model for a point-to-point MIMO channel with M transmit and N receive antennas
is given by

y=Hx+n (2.12)

where x € CM*! is the transmitted symbol, H € CV*M is the channel matrix, y € CV*! is

(CN><1

the received signal, and n € is the noise vector. We assume zero-mean circularly sym-

metric complex Gaussian noise with covariance matrix R,,!. For convenience, a whitened
channel H = Ry */?H is often used such that the white noise w = Rp*/*n has a unitary
covariance matrix, i.e. E{ww!} = I. Due to the noise normalization, the transmit power
constraint P = Tr(E{xx!}) takes on the interpretation of the average signal-to-noise ratio
(SNR) per receive antenna under unity channel gain. Knowledge of the channel gain matrix
H at the transmitter and receiver is referred to as channel state information at the trans-

mitter (CSIT) and channel state information at the receiver (CSIR), respectively.

Figure 2.1: Multiple-Input Multiple Output Channel Model.

In the case of a frequency-flat MIMO system, the channel has only one tap and can be

represented as a discrete-time channel matrix

hll[n] h12[n] e th[Tl]
th[n] hNQ[n] hNM[n]

LA complex random vector x is circularly symmetric if its distribution is the same with the distribution
of eix, V0 € [0,27]. For § = 7 we have E{x} = 0 and for & = 7/2, x is a proper random vector, i.e.
E{xx"} = 0.
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in which h;;[n] is the spatio-temporal signature (channel gain) induced by the j-th transmit
antenna across the i-th receive antenna and n is the discrete-time index. Each channel
element may have different amplitude and phase due to spatial selectivity.

When the bandwidth-delay spread product of the channel is larger than 0.1, the channel

is generally characterized as frequency-selective, and its received signal is given by

c
y[n] = Z H[l]x[n — ] + n[n] (2.14)
1=0

where L is the channel order. To simplify the notation in the subsequent parts of the thesis,
we drop the time index n assuming the channel at a given time instant.

When M = 1, the MIMO channel reduces to a single-input multiple-output (SIMO)
channel, and when N = 1, the MIMO channel reduces to a multiple-input single-output
(MISO) channel. When both M = N = 1, the MIMO channel simplifies to a simple scalar
or single-input single-output (SISO) channel.

2.3 Multiuser Multi-Antenna Systems

A multiuser channel is generally any channel that must be shared among multiple users.
There are two types of multiuser channels: the uplink and the downlink channel. An uplink
channel, also referred to as multiple access channel (MAC) or reverse channel, has many
transmitters sending signals to one receiver in the same frequency band. A downlink channel,
also referred to as broadcast channel or forward channel, has one transmitter sending signals
to many receivers. In this section, we present both multiuser multi-antenna channels (uplink
and downlink), however the dissertation focuses solely on the challenges associated with
the downlink channel. In a multi-user setting, we consider communication between a BS
equipped with M antennas and K active terminals, where each active user k is equipped
with Nj antennas. Among all terminals, the set of active users is roughly defined by the
set of users simultaneously downloading or uploading packets during one given scheduling
window. The length of the scheduling window can be arbitrary but should not exceed the
maximum latency expected by the service (likely as small as a few tens of ms to several
hundred ms). By all means the active users over one given window will be a small subset of
the connected users, themselves forming a small subset of the subscribers.

In the uplink, the received signal at the transmitter can be written as

K
y=> Hixi+n (2.15)

k=1
where x; € CV#*1 is the k-th user signal vector, possibly encompassing power-controlled,
linearly combined, constellation symbols. H;, € CN«XM represents the channel matrix and
n ~ CN(0,0°I) is the complex circularly symmetric additive white Gaussian noise vector
(AWGN) at the transmitter. The transpose operator is simply used by convention for

consistence with the downlink notation and does not presume a reciprocal link.

In the downlink, illustrated in Fig.2.2, the received signal y;, € CV+*! of the k-th user

can be mathematically described as

yr =Hpx+n; for k=1,....K (2.16)
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where Hy € CM+*M represents the downlink channel response and nj, € CN+*! is the
complex circularly symmetric AWGN at receiver k with ny ~ CA(0,0:I). The transmitted
signal x is a function of the multiple users’ information data, an example of which takes the

superposition form

X=X (2.17)
k

CMx1 ig the transmitted vector signal carrying, possibly non-linearly encoded,

where x;, €
message for user k, with covariance ) = E{x,x}}. The power allocated to user k is

therefore given by P, = Tr(Xj). Two power constraints are commonly used:

e individual power constaint, also referred to as per antenna power constraint, where
Prin < P < P Yk and Py > 0.

e sum power constraint, where the power allocation needs to maintain ), P < P.
- = YL user 1

j . feommoo-> W; user k

base station (M antennas)

YL user K

NK

K users (user k has Nk antennas)

Figure 2.2: Downlink of a multiuser MIMO network: A BS/AP communicates simultane-

ously with several multiple antenna terminals.

In broadcast channels the available transmit power is divided among the different users,
whereas in the uplink each user has an individual power constraint associated with its
transmitted signal. In this thesis, unless otherwise stated, we assume a short-term average
sum power constraint, which implies that the transmitter has to use the power P at each

channel use.

2.3.1 Multi-antenna Channel Modeling

The modeling of MIMO channels is a multi-step procedure of essential importance in system
analysis, deployment and network planning since it enables performance prediction and
comparison of different system configurations in various propagation environments. The
various channel models one can find in the literature can be classified in two categories:
propagation-based models and analytical models.

The first category aims at reproducing the physical wave propagation in a deterministic
or stochastic way. In deterministic models, the channel matrix is generally generated based
on a geometrical description of the propagation environment employing ray-tracing tech-
niques combined with knowledge about the propagation environment. In stochastic models,
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the channel behavior is considered as a random variable with a certain statistical distribu-
tion depending on the propagation environment. Empirical models, which are based on real
channel measurements, also fall into this category.

Analytical channel models focus on modeling only the spatial structure (MIMO channel
matrix) of the channel. They are narrowband models since Doppler shifts and delay spreads
are neglected. An important category of analytical models is the so-called correlation-based
models, presented below.

Correlation-based models

Correlated channels are characterized by the channel correlation matrix which captures the
spatial correlation among the elements of MIMO channel matrix H. A full-correlation model
is described as

H = unvec(R%vec(H,)) (2.18)

where H,, is the i.i.d. spatially white (zero-mean circularly symmetric complex Gaussian
with unit variance), and R is the MN x M N positive semi-definite Hermitian covariance
matrix defined as

R = E {vec(H)vec(H)" } (2.19)

The vec(-) operator stacks the columns of a matrix to a vector. An underlying assumption
is that vec(H) is Rayleigh distributed.

The full-correlation model is the most accurate - yet very complex - model. For simplicity,
the correlation matrix is often assumed to have a less general, separable structure, the so-
called Kronecker structure. In this model, the covariance of the scalar channels seen from
all the transmit antennas to a receive antenna is assumed to be the same for any receive
antenna. The same applies for the receive antenna correlation matrix. The channel model
is described as

H = R}/’H,R}/? (2.20)

where Ry = E{H”H} and Ry = E{HH"} is the transmit and receive correlation matrix,
respectively. They are related by R ~ mRR ® RL, where ® denotes the Kronecker
product. The Kronecker model is satisfied for few antennas or large antenna spacing.

The most simple, yet with no physical relevance, model is the i.i.d. (canonical) model

where the channel matrix H = H,, is considered i.i.d. spatially white.

LOS component model In the presence of a LOS component, the MIMO channel matrix
can be generally modeled as the sum of a fixed or LOS component H and a scattered or

NLOS component H,, given by

K _ 1
H-= H H, 2.21
\/K-i-l +\/K-i-l ( )

where E{H} = \/K/(K + 1)H is the complex channel mean (LOS component) and K =

il
!T(LF) is the Ricean factor. K = oo corresponds to non-fading channel and K = 0 cor-

responds to pure fading. The LOS component is assumed to be rank one and generated
as

H= aR(QR)a¥ (QT) (2.22)
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where ag(Q) and ar(Q) are the receive and transmit array responses, respectively, and
Qr and Qp are the AoAs/AoDs corresponding to the LOS component at the receiver and
transmitter sides, respectively.

Propagation-based analytical model

We present here a finite scatterer analytical model that is used for simulating the spatially
correlated MIMO channels in Chapter 4. The fundamental assumption of the finite scatterer
model is that propagation can be modeled in terms of a finite number P of multipath
components. Thus, the channel impulse response is a superposition of P spatially separated
paths (rays) given by

P
H = % ; bpar (67) Al (01) (2.23)

where ¢, is the gain of the p-th path seen at the receiver, 9]’; and 6, are the AoDs and AoAs,

respectively of the p-th path. The array responses (steering vectors) are given by
. + . 1T
a; (08) = [1,e7%1 %), ed®r-10})] (2.24)
. r . r T
a, (07) = {1,6391(‘%),...,eJGN*I(QP)} (2.25)

where ©,, is the phase shift of the m-th array element with respect to the reference antenna
and depends on the array configuration. The two most commonly used uniform array
configurations are: the uniform linear array (ULA) and the uniform circular array (UCA).
A ULA consists of M elements which are aligned linearly. The spacing between two antenna
elements is denoted by d and is identical for all elements. In UCA the elements are uniformly
placed on a circle with radius . ULA facilitates the estimation of the angles of incidence,
but it has the drawback that its beamwidth varies with the main direction. Therefore, if
a ULA is used for beamforming, it is done so in sectorized systems with a range limited
to 120°. In UCA, the propagation delay between two adjacent elements is not identical.

Taking the antenna element 0 as reference point, the transmit steering vector for a ULA is

Figure 2.3: Analytical channel model with local scatterers at mobile station
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given by

a, (92) _ [17 oI2m cos(eg), L pi2m(M—1)4 COS(Q;)}T (2.26)

while for a UCA the transmit array response is given by
T
a; (9;&)) _ |:efj27r§ cos(GL)j o 7€j27'r§ COS(GL*QTK’%)} (227)

The AoA and AoD can be well modeled by a truncated Laplacian PDF or a truncated
Von Mises distribution. For our simulations in Chapter 4, we assumed that the angles of
incidence with respect to the transmitter broadside 0, follow a Gaussian distribution with

27-periodic continuation and mean 6. The angle spread around its mean is given by the

root mean square (rms) deviance og = /E { ’6‘,, — 5’2}. The channel gain of each path ¢,

is assumed to be zero-mean complex Gaussian distributed and all paths have unit variance.

2.4 Capacity of MIMO Broadcast Channels

The complete characterization of the capacity region of multi-antenna broadcast channel was
the foremost theoretical challenge in multiuser information theory over the last five years.
The analysis of broadcast channels was initiated by Cover [14] and their capacity is generally
known only in special cases, where the signals sent to the users can be ordered according to
their ‘strength’. In contrast to single-user systems where the capacity is a single number,
the capacity of a multiuser system with K users is characterized by a capacity region, i.e.
a K-dimensional rate region, where each point is a vector of rates achievable by all the K
users simultaneously. A rate vector is achievable if there exists a coding scheme for which
the error probability for all users is arbitrary small as the code block length increases. The
maximum of the sum of the communication rates is the so-called sum-rate point and lies on
the boundary of the capacity region. Clearly, since the K users share the same bandwidth, a
tradeoff arises between the reliable communication user rates: if one wants to communicate
at a higher rate, the other users may need to lower their rates.

A large class of broadcast channels, known as ‘more capable’ channels [15], contains
two important categories as special cases: ‘degraded’ and ‘less noisy’ channels. Roughly
speaking, a broadcast channel is degraded when the users can be ordered from the strongest
to the weakest in a natural order. For instance, a SISO broadcast channel is degraded, since
the users can be ordered according to their | Hy, |2, and the capacity region can be achieved by
superposition coding [14]. However, MIMO broadcast channels are generally non-degraded

as there is not a natural way to order channel matrices.

2.4.1 Capacity with perfect CSI at the transmitter

Although the characterization of the general (fading) broadcast capacity region is a long
standing problem in multiuser information theory, substantial progress has been made for
Gaussian MIMO channels. Despite not being degraded, the Gaussian MIMO BC offers
significant structure that can be exploited to characterize its capacity region. The key
theoretical tool for characterizing the MIMO BC capacity region with full CSI, the Dirty
Paper Coding (DPC), was revealed by the seminal work of Caire and Shamai (Shitz) [7].
Therein, it was shown that the idea of interference pre-subtraction at the transmitter (DPC)
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does indeed achieve the capacity of a 2-user MISO broadcast channel. The results of [7] were
extended and generalized by [16-18], until the full characterization of MIMO Gaussian BC
capacity region (for any compact set of input covariances and not only under a total power
constraint) by Weingarten et al. [8], establishing the optimality of DPC as capacity-achieving
strategy.

Assuming noise with unit variance and given a set of positive semi-definite matrices
P > 0,VEk that satisfy the power constraint Tr {21}({:1 Py < P} and a permutation function
7 on the user set {1,..., K}, the following rates are achievable using DPC [8]:

k T
1 ‘ I+Hp(> 1, Pry)Hy ’
CEPC(W,leK) = —log ( )

2 ‘ (I +H (D) P’T(”)Hg) ‘

(2.28)

The DPC region is given by the convex hull of all the achievable rates as

CDPC = conv {U U CkDPC(TF, PlK)} (229)

T Pi.k

and is shown to be equivalent to the capacity region of MIMO broadcast channel [8].

} (2.30)

The concept of dirty paper coding was introduced by Costa [6], who showed that for a scalar

The capacity expression (2.29) can be simplified as follows:

K
I+ H/P.H,

Copc = En { max log
k=1

P.>0Tr{3" K  P,<P}

Dirty Paper Coding

Gaussian channel with AWGN and an interfering Gaussian signal known non-causally at the
transmitter (but not at the receiver), the capacity is the same as if there was no additive in-
terference, or equivalently as if the receiver also had knowledge of the interference. In other
words, dirty paper coding allows non-causally known interference to be ‘pre-subtracted’ at
the transmitter with no increase in the transmit power. Assume, without loss of generality,
that the encoding process is performed in ascending order. The encoder first picks a code-
word for i-th receiver, and then chooses a codeword for receiver (i + 1)-th receiver with full
(non-causal) knowledge of the codeword intended for receiver i. Thus, the encoder considers
the interference signal caused by users j < i as known non-causally and subsequently, the
i-th decoder treats the interference signal caused by users j > 7 as additional noise.

Uplink-Downlink duality

The main tool that facilitated the extension of the work in [7] and simplified the problem
of finding the capacity region of MIMO BC was the uplink-downlink duality, introduced
in [17-19]. The concept of uplink-downlink duality can be seen, in general, as the equivalence
between the performance of a class of receive and transmit strategies when the role of
transmitters and receivers are reversed. This equivalence has been observed in seemingly
different contexts in the literature. For instance, in point-to-point links, the duality is
nothing else but the channel reciprocity. In multiuser information theory, the duality implies
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that the capacity region of the MIMO BC, Cppc with power constraint P is equal to the
capacity region of the so-called dual MIMO MAC, Cyiac with sum power constraint P.

Copc(P Hi. k) = U Cuvac(Pr i, HY ) (2.31)
Tr{Y K, Py<P}

where the union is taken over all matrices Py > 0 Vk such that Tr {lele P, < P}.

The major benefit of the uplink-downlink duality is that the capacity region of the
downlink can be calculated through the union of regions of the dual uplink, which is convex
and whose boundary can be calculated using interior-point methods [20]. An additional
benefit is from an optimization theory point of view, since by exploiting the duality the
dimensionality of the optimization problem is significantly reduced. In many practical cases,
the number of transmit antennas in the broadcast channel is greater than the number of
receive antennas of any of the receivers. Therefore, instead of optimizing over K matrices
of size M x M, we need to optimize over K matrices of sizes N x N. Note that the uplink-
downlink duality only holds under a total power constraint, and extensions of the DPC
optimality to general constraint settings (e.g. per-antenna power constraint) are based on
the more general concept of min-max duality [8,21].

On the optimal number of users with non-zero allocated power

Multiuser information theory advocates for transmitting to multiple users simultaneously
by properly distributing the spatial dimensions among the best group of users as a means
to boost the system throughput. A natural question that arises is how many users can
be simultaneously active, and how the spatial dimensions are distributed among them. Yu
and Rhee [22] obtained a theoretical upper bound on the number of simultaneously active
users by counting the number of variables and unknowns in the set of Karush-Kuhn-Tucker
(KKT) optimality conditions for the sum-rate maximization problem. This bound indicates
that in the downlink channel maximizing the sum rate entails scheduling at most M? users
simultaneously. In practice, simulations show that typically the number of active users
is four times the number of transmit antennas in the high SNR regime using optimum
covariance matrices, and that scheduling up to M users, although suboptimal, results to a
small capacity loss. In [23], it was independently shown that under certain conditions in a
vector downlink with K users and a BS with two transmit antennas, the number of users
that can be simultaneously served can be higher than two. The power allocated to the k-th
user is no longer a water-filling procedure, but it is found by the KKT conditions. Note
that when restricting to linear precoding techniques, as we do in this thesis, the number of

served users is directly limited by the number of degrees of freedom at the BS, i.e. M.

2.4.2 Capacity with no CSI at the transmitter

The Gaussian MIMO BC with no CSIT is still degraded no matter whether the receivers
have CSIR or not, assuming that the transmitter or the receivers are equipped with multiple
antennas [7]. In that case, the capacity region is achieved by superposition coding [24].
When the users have the same number of antennas, it can be shown that superposition
coding is the same as time sharing. In this case, the sum capacity is the same as if there

is only one user in the system and no gains can be expected from serving multiple users
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simultaneously. The capacity region of fading MIMO BC is an open problem of theoretical
interest. The capacity region is not explicitly characterized, and only asymptotically tight
bounds currently exist. The fading MISO BC is considered in [25] assuming the distribution
of the fading coefficients is isotropic. It was shown that the capacity region is equivalent to
that of the fading scalar BC, resulting in a multiplexing gain of one. When the transmitter
has incomplete CSI on the fading realization, the pre-log factor (multiplexing gain?) at high
SNR of a two-user real-valued fading MISO BC is upper bounded by 2/3 [26].

2.5 Multiuser MIMO Schemes with perfect CSIT

Although DPC is shown to achieve the entire capacity region of MIMO broadcast chan-
nel, this technique, apart from being theoretical and conceptual, it is very difficult to be
implemented in practice. One of the major difficulties is that DPC does not indicate how
the spatial resources should be shared among users. One class of practical dirty paper
codes is the nested lattice codes [27]. Excellent performance on DPC has been also reported
in [28,29], and in [30], where a new approach which invokes superposition coding is proposed.

The question of what rate region can be achieved without relying on dirty-paper coding
has been widely addressed, mainly in terms of linear and non-linear types of precoding.
Many recent publications have shown that for a limited number of users, even techniques
that do not invoke DPC are useful, and sometimes provide close to optimum capacity
region performance [31]. Precoding works similarly to equalization with the difference that
it inverts the fading at the transmitter side instead of the receiver side. The main drawback
of precoding is the need for accurate channel estimates of the fading gains of each user at the
transmitter side. Although CSIT can be achieved through channel estimation or feedback,
it is difficult to be obtained in rapidly-varying channels.

2.5.1 Non-linear Precoding

Several sub-optimal and simplified DPC variants are reported in the literature, such as
non-linear scalar versions [32,33] and high dimensional simplified strategies [34], in which
a regularized channel inversion is attempted. An attractive non-linear precoding technique
useful for the MIMO BC is proposed in [35] where the processing at the receiver requires
a simple one-dimensional modulo operation. Other improved techniques resort on lattice
reduction [36] and integer coding [37].

Two popular and representative non-linear precoding methods are based on vector per-
turbation [38] and on a spatial extension of Tomlinson-Harashima precoding (THP) [27].
Vector perturbation uses a modulo operation at the transmitter to perturb the transmitted
signal vector in order to avoid the transmit power enhancement incurred by channel inver-
sion schemes [38]. Finding the optimal perturbation involves solving a minimum distance
type of problem and thus can be implemented using sphere encoding or full search based
algorithms. THP [39,40], which is dual to Decision Feedback Equalization (DFE), was orig-
inally proposed as a non-linear temporal equalization method that applies a scalar integer

offset at the transmitter enabling interference cancellation after application of a modulo

c(P
2The multiplexing gain m is defined as m = lim (P)
P—oo 10g2 P
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function at the receiver. While in the original THP, a single channel is equalized with re-
spect to time, spatial equalization is required for MIMO channels. THP has generally lower
encoder complexity than vector precoding since it computes the components of the transla-
tion vector sequentially. For the case of multiuser MISO systems, a THP-based technique,

known as trellis precoding, was also proposed by Yu and Cioffi [33].

2.5.2 Linear Precoding

The considerable complexity required by non-linear techniques as well as the fact that lin-
ear beamforming combined with efficient user selection exhibits the same asymptotic per-
formance as DPC [7, 11, 12] revitalized the interest for linear precoding schemes. Linear
precoding is a generalization of traditional SDMA, where users are assigned different pre-
coding matrices at the transmitter. The precoders are designed jointly based on CSIT from
all users and following a number of design and optimization criteria. The transmit precod-
ing optimization problem can be approached under different assumptions, such as power
constraints (total or individual), and with different performance criteria (e.g. maximizing
SINR, sum rate, error probability, effective bandwidth, assigned SINR targets, minimum
power, peak-to-average ratio). The difficulty in designing capacity-optimal downlink pre-
coding, mainly due to the coupling between transmit power, beamforming, and user or-
dering, has lead to several different approaches ranging from transmit power minimization
while maintaining individual SINR constraints to worst-case SINR maximization under a
power constraint. Duality and iterative algorithms are often employed in order to provide
efficient solutions [41,42].

Let s, € CV#*! denote the k-th user (normalized) transmit symbol vector (which is a
scalar symbol for beamforming) and S be the set of selected users (among all K active ones)
that will be assigned non-zero rate, with cardinality |S| = M < M. Under linear precoding,
the transmitter multiplies the data symbol for each user £ by Wy (or wy, in the case of
beamforming) so that the transmitted signal is a linear function x =}, s Wys, where
W), € CM*Nk is the precoding matrix for user k designed to maximize some performance

measure. The resulting received signal vector for user k is given by

vi = HyWygsy, + Z H,W;s; +ny (2.32)
JES,j#k

where the second term in (2.32) represents the multiuser or inter-user interference. We
assume that each user will decode S < Nj streams that constitute its data. The goal of
linear precoding is to design {Wy}71, based on the channel matrix knowledge, so that a
given performance metric is optimized for each stream. If user codes drawn from an i.i.d.

Gaussian distribution are used, the achievable rate of user k is

‘I+ H, (Zfil zj) HkH‘

B (03, ) B

Rk = Z(Sk; yk) = 1Og2 (233)

where X, = WiE{sys?}W denotes the transmit covariance matrix of user k.
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Channel Inversion - ZF Precoding

Precoding design problems incorporating measures such as maximization of SINR or sum
rate usually lead to intractable optimization problems. A standard suboptimal approach
providing a promising tradeoff between complexity and performance is channel inversion,
also known as zero-forcing beamforming (ZFBF). For ease of explanation, we assume Nj =
1,Vk. In ZFBF, the precoder W = [w;...wg] is designed to achieve zero interference
between the users, i.e. [HW] g = 0forj # k For a group of selected users S, we denote
H(S) and W(S) the corresponding submatrices of H and W respectively. If N, = N < M
and rank(H) = N, the ZFBF matrix is given by the Moore-Penrose pseudoinverse of H(S)

W(S) = H(S) = H(S)" (H(S)H(S)") ! (2.34)

The achievable sum rate is given is by

Rer(S)= __ max Y log, (1 + P) (2.35)
Z NP < Pkes
keS
where
1 1
(2.36)

T P T (ESOHGS)T) T, ,
can be interpreted as the effective channel gain of the k-th user. The transmit powers
can be allocated according to different criteria and depending on the system performance
target. If the objective is to maximize the achievable system throughput, the optimum
power allocation P is given by water-filling

1 +
Py = n |:,u - 77_:| Vk e S (237)
k

where [z]* = max(0, ) and p is obtained by solving the water-filling equation

dln—1/mlt =P

keS

The sum-rate of ZFBF with optimal power allocation is given by [7]

Rur(S) =Y [log, (umi)] ™ (2.38)
kesS

The maximum achievable sum rate of ZFBF is found by exhaustive search, i.e. checking

every possible choice of user groups S, however greedy user selection algorithms are shown
to achieve near optimal performance [11,12,43].

When the channel is ill-conditioned, at least one of the singular values of (H(S)H(S)#)~!
is very large, resulting in a very low SNR at the receivers. Note also that channel inversion, in
contrast to ZF (least-squares) equalization that causes noise enhancement when the channel
is nearly rank-deficient, incurs an excess transmission power penalty (signal attenuation
at the transmit side). Therefore, the capacity of channel inversion with no user selection
does not increase linearly with M, unlike the optimum capacity. User selection offers an
important degree of freedom that can be exploited in order to improve the performance of
ZFBF by selecting group of users with mutually orthogonal spatial signatures, leading to
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rank(H(S)) = M < M (no power penalty). For asymptotically large K, ZFBF with user
selection is shown to achieve both the spatial multiplexing and the multiuser diversity gain,
i.e. Rzr ~ Mlog, (14 4 log K) [12,44]. Finally, when ZFBF with equal power allocation
is performed in a system with K users with N > 1 receive antennas each (with M > KN),
it converts the system into K'N parallel MISO channels and can be viewed as equivalent
(in terms of ergodic sum rate) to performing ZFBF in a channel with KN single-antenna

receivers.

Regularized Channel Inversion - MMSE Precoding

For rank-deficient channels, the performance of ZFBF can be improved by a regularization
of the pseudo-inverse, which can be expressed as:

W(S) =H(S)TH(S)H(S)? + 1) ! (2.39)

where 3 is the regularization factor. The above scheme is often referred to as Minimum
Mean Square-Error (MMSE) precoding due to the analogous with MMSE beamforming
weight design criterion if the noise is spatially white. However, at the receiver side the mean-
squared error (MSE) between the received vector and the symbol vector is not minimized.

Similarly to MMSE equalization, a non-zero § value results in a measured amount of
inter-user interference. The amount of interference is determined by 4 > 0 and an optimal
tradeoff between the condition of the channel matrix inverse and the amount of crosstalk
ought to be found. In practice, the regularization factor is commonly chosen as 3 = Mo?/P
motivated by the results in [34] showing that it approximately maximizes the SINR at each
receiver, and leads to linear capacity growth with M. The performance of MMSE is certainly
significantly better at low SNR and converges to that of ZF precoding at high SNR. However,
MMSE does not provide parallel and orthogonal channels, thus power allocation techniques

cannot be performed in a straightforward manner.

Block Diagonalization

If the terminals have each multiple antennas, the additional degree of freedom at the receiver
side can be exploited in various ways. For instance, multiple data streams can be transmitted
to a user or some level of inter-user interference may remain after precoding, which is
canceled using the multiple receive antennas. However, several design challenges arises,
such as signal gain and interference cancellation coordination between the transmitter and
the receiver, and appropriately allocating resources among all users and all spatial channels
of each user.

Block diagonalization (BD) [45] is a generalization of channel inversion techniques when
there are multiple antennas at each receiver. When BD is employed, the precoding matrices
W, Vj are chosen such that HyW; = 0, Vk # j, thus eliminating the multiuser interference
so that yr = HyWgsk + ng. This requires to determine an orthonormal basis for the left
null space of the matrix formed by stacking all H;, Vj # k£ matrices together.

Assume that N, > 1 with Ele Ny, = N’ and up to Sk data streams are transmitted to
user k. Define Hy, as a (N’ — Si) x M matrix

H,=|H] ... B[, H, - H} (2.40)
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then any suitable Wy lies in the null space of H;. Let the singular value decomposition
(SVD) of Hy, be

~ - . ~ ~ H
He = 0D, [ V() v (2.41)

where Uy, and Dy, are the left singular vector matrix and the matrix of singular values of
I:Ik, respectively, and \7](61) and \7](60) denote the right singular matrices each corresponding
to non-zero singular values and zero singular values ((M —rank(Hy},)) singular vectors in the
nullspace of ﬁk)), respectively. Any precoder Wy, that is a linear combination of the columns
of \7,(60) will satisfy the null constraint, since it produces zero interference to the other users.
Assuming that H,, is full rank, the transmitter requires that the number of transmit antennas
is at least the sum of all users’ receive antennas to satisfy the dimensionality constraint
required to cancel interference for each user [45]. The sum rate of block diagonalization can
be further enhanced by performing water-filling on each Dy,.

2.6 The cardinal role of Channel State Information

Knowledge of the channel state by the transmitter of a communications system has been
demonstrated to be beneficial to wireless communications, particularly in multiuser MIMO
systems. The major importance of the availability of channel knowledge has been already
recognized in [7], by pointing out that lack of perfect CSIT results in total loss of degrees
of freedom, in contrast to what happens in single-user or multiple access MIMO schemes.
The MIMO BC with no CSIT is degraded no matter whether the receivers have CSIR
or not. Hence, when the users have the same number of antennas, it can be shown that
superposition coding is the same as time-sharing. Therefore, the sum capacity is the same
as if there is only one user in the system and no multiuser diversity gains can be expected.
The significant difference on the sum rate behavior between multiuser and single-user MIMO
reveals the cardinal role of CSIT in multiuser MIMO downlink systems, presented in detail
in the following sections.

2.6.1 Channel Knowledge at the Transmitter

In multiuser MIMO literature it is often assumed that the receiver enjoys close-to-perfect
channel knowledge, whereas the transmitter has different levels of CSIT, ranging from no
CSIT at all to full CSIT. The assumption that the receiver has accurate channel information
is often reasonable especially in the downlink, where pilot symbol-based channel estimation
is more efficient since the terminals can share a common pilot channel. Channel acquisition
at the transmitter relies on channel measurements at a receiver, since the transmitter is
informed by the receiver on the channel state in an implicit or explicit way. The methods
available to gather CSI at the transmitter mainly rely on channel reciprocity or feedback.
In systems for which channel reciprocity cannot be exploited, the need for CSIT feedback
places a significant burden on uplink capacity. The feedback load is further exacerbated
in high-mobility systems (such as 3GPP-LTE, WiMAX, etc.) where the channel conditions
change rapidly and in wideband systems, where more feedback training is required due to
frequency selectivity.
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2.6.2 Capacity scaling laws in MIMO BC systems

The dominant role of CSIT in multiuser multi-antenna systems can be identified by study-
ing the asymptotic capacity growth under different assumptions on CSIT. Specifically, the
fundamental role played by the multiple antennas in expanding the channel capacity is best
apprehended by examining how the sum rate scales with the transmit power and the number
of active users.

Full CSI at the Transmitter

High Power Regime: The scaling law of the sum-rate capacity of MIMO BC for fixed
Ni =N, M, and K and large P is given by [44,46|

m Cprc
P—oo log P

= min(M, max(N, K)) (2.42)

The above result implies that at high SNR, the capacity exhibits linear growth with the
number of transmit antennas. Furthermore, the number of receive antennas per user plays
very little role in the capacity of MIMO broadcast channels compared to M (provided that
K > M).

Large K Regime: The scaling law of the sum-rate capacity of MIMO BC for fixed
Ni =N, M, and P and large K is given by [44]

Cprc

lim —————— = 24
Koo loglog KN (2:43)

The result in (2.43) indicates that, with full CSIT, the system can enjoy a multiplexing
gain of M, obtained by the BS selecting and sending data to M carefully selected users out
of K (multiuser diversity). Since each user exhibits N independent fading coefficients, the
total number of degrees of freedom for multiuser diversity is K N, thus giving the extra gain
loglog KN.

In contrast, if the BS selects and transmits only to the user with maximum rate, the
capacity of time-sharing, Crg, is given by [44]

lim Crs =1
K—oco min(M, N) loglog K

(2.44)

From the above results, it is evident why the capacity scaling laws provide the necessary
justification for the great appeal of multiuser MIMO systems. The spatial multiplexing gain
of M, which is the pre-log factor of the sum rate, implies a linear (in the number of transmit
antennas) increase in capacity for no additional power. The corresponding gain is realized
by simultaneously transmitting independent data streams in the same frequency band to
spatially separable users.

No CSI at the Transmitter

In the absence of CSIT, user multiplexing is generally not possible, as the BS does not know
in which ‘direction’ to form beams.



2.6 The cardinal role of Channel State Information 29

High Power Regime: The scaling law of the sum-rate capacity of MIMO BC for fixed
N =N, M, and K, satisfies

Jim. f;f;; = min(M, N) (2.45)
which implies that at high SNR the capacity is essentially the same as that of a point-to-
point MIMO system. In other words, TDMA is optimal in this regime.

Large K Regime: The scaling law of the sum-rate capacity of MIMO BC for fixed
N =N, M, and P and large K is

Cppc

li —_— = 2.46
Koo loglog KN ( )

In contrast to (2.43), there is no multiuser gain since the transmitter has no knowledge of
the users channels in order to exploit them.

Note that the above results hold under the assumption of perfect CSIR. The impact of lack
of CSI at both ends of the MIMO network and in the asymptotically high SNR regime is
studied in [25,47], where it is shown that both the multiuser downlink and the single user
capacity scale double logarithmically with the SNR.

Information theoretic design guidelines

The above capacity growth results highlight several fundamental aspects of multiuser MIMO
systems, which come in much contrast with the conventional single-user MIMO setting. The

design guidelines that can be extracted are summarized as follows:

e Capacity scaling laws advocate for serving multiple users simultaneously in an SDMA
fashion, with a suitably chosen precoding scheme at the transmitter. Although the
multiplexing gain is limited by the number of transmit antennas, the number of si-
multaneously served users is in principle arbitrary. How many and which users should
effectively be served with non-zero power at any given instant of time is the problem

addressed by the resource allocation strategy.

e Unlike in the point-to-point MIMO setting, the spatial multiplexing of different data
streams can be done while users are equipped with single-antenna receivers, thus en-
abling the capacity gains of MIMO while maintaining low cost for user terminals.
Having multiple antennas at the terminal can thus be viewed as optional equipment
allowing extra diversity gain for certain users or giving the flexibility toward interfer-
ence canceling and multiplexing of several data streams to such users (reducing though

the number of other users served simultaneously).

e The multiplexing gain of M in the downlink comes at the condition of close to perfect
CSIT. In the absence of CSIT, user multiplexing is generally not possible, as the BS
just does not know in which ‘direction’ to form spatial beams. Thus, the complete lack
of CSI knowledge reduces the multiplexing gain to one. This is a key difference with
point-to-point MIMO, in which the asymptotic capacity is not sensitive to CSIT, and
even in the absence of CSIT, the full multiplexing gain (of one) can be preserved. An
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exception lies in scenarios with terminal devices having enough antennas to remove
co-stream interference at the receiver (Ny > M). In the latter case, the BS may decide
to either multiplex several streams to a single user or spread the streams over multiple
users, achieving an equivalent multiplexing gain in both cases. This is conditioned

however on the individual user channels to be full rank.

2.6.3 Partial Channel State Information

The often unrealistic assumption of close to perfect CSIT, as well as the considerable gap
between the achievable sum rate of full CSIT compared to the no CSIT case, have motivated
research work on schemes employing partial CSIT. Partial CSIT or limited feedback refers
to any possible form of incomplete information on the channel. This term includes, but is
not limited to, scalar CQI feedback (e.g. estimate of received SINR), quantized CSIT (quan-
tization of channel vector), channel direction information, statistical CSIT, etc. Multiuser
MIMO schemes relying on partial CSIT lie at the heart of this dissertation.

The practical, though suboptimal, approaches described in Section 2.5.1 are shown to be
highly sensitive to channel estimation errors, thus difficult to be implemented with partial
CSIT. The low-complexity alternative of downlink beamforming and scheduling, despite
being less sensitive to CSIT imperfections, requires full CSI as a means to minimize the
multiuser interference [12]. Fortunately, work like [9] demonstrates that the optimal capacity
scaling of MIMO BC (i.e. M loglog K') assuming K single-antenna users, can be achieved for
K — oo even though the transmitter relies on scalar CQI. Several schemes based on partial
CSIT are shown to achieve close to DPC sum-rate performance in some asymptotic regimes.
However, the majority of these approaches become inevitably interference dominated at high
SNR since the error introduced (and the increase in inter-user interference) due to partial
CSIT scales with SNR. Hence, in the large power regime, such schemes exhibit a sum rate
ceiling behavior and fail to achieve full multiplexing gain.

It would have been flawed to conclude that partial CSIT leads necessarily to a collapse
of multiplexing gain. This multiplexing gain loss can be mitigated by using a variable - yet
finite - rate feedback channel. In [10], Jindal showed that the feedback load per user must
increase approximately linearly with the number of transmit antennas as well as with the
transmit power (in dB) in order to achieve the full multiplexing gain. In this thesis, we try
to shed some light on these issues, by proposing several robust linear beamforming schemes
with limited feedback. The interference dominated behavior of such schemes is studied in

detail and several of our proposals provide means to circumvent the sum-rate ceiling effect.

2.6.4 Statistical Channel Knowledge at the Transmitter

Another kind of partial channel state knowledge that can be obtained at the BS with little or
no feedback overhead is the statistical CSIT. As second-order channel statistics vary much
slower in time compared to the channel realization itself, explicit statistical CSIT can be
conveyed periodically to the BS resulting in little uplink overhead. Implicit knowledge on
the channel statistics can be obtained without any additional feedback by averaging uplink
measurements (statistical reciprocity).
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In the literature, two common models for statistical CSIT are:

e Channel Mean Information (CMI), which refers to the case where the mean of the
channel distribution is available while the covariance matrix is unknown and often

assumed as white.

e Channel Covariance Information (CCI), which refers to the case where the mean is
assumed zero (as it is assumed to vary rapidly) and the information regarding the
relative geometry of the propagation paths is available through a non-white spatial

covariance matrix.

Channel knowledge acquisition using covariance feedback can be applied to both time di-
vision duplex (TDD) and frequency division duplex (FDD) systems. In contrast to deter-
ministic reciprocity in TDD systems, the channel statistics of the uplink and the downlink
remain related in FDD and the difference between the frequency bands can be overcome by
using frequency calibration matrix. Long-term statistical channel knowledge is assumed in
Chapter 4, where we show how statistical CSIT can be combined with instantaneous low-
rate CQI feedback to increase system throughput by selecting spatially compatible users
with large channels gains.

2.7 Scheduling and Multiuser Diversity

In Section 2.5, we presented schemes that deal with the optimization of the input covariance
matrices or the precoding design. In this section, a different approach is followed and we try
to identify the optimal selection of users to be served. Following the seminal work of Knopp
and Humblet [1], multiuser diversity received an increase attention in the field of resource
allocation for wireless networks, shattering the traditional view of fading as detrimental.
In this work, the authors provided novel insights to the question of ‘which user should be
served in order to maximize the sum rate’ and gave rise to a novel set of techniques, coined
as opportunistic communication. Simply speaking, opportunism recommends scheduling
the best user (i.e. the user with the most favorable channel conditions) in each coherence
interval in order to maximize the system throughput.

Consider a MISO K-user broadcast channel, for which the sum rate capacity is upper
bounded by

K
Cpc <E { max log, <1 + ZPk ||hk||2> } (2.47)
P

P,>0,2 K | P,< 1

Clearly, the sum rate is maximized when only the strongest user is assigned non-zero power

. 2
P, =P,ie Cgc=E {log2 <1 + PlISI}CaSXK ||| > }

Traditionally, channel fading was viewed as a source of unreliability that has to be
mitigated. An important means to cope with fading is diversity, which can be obtained over
time (interleaving of coded bits), frequency (combining of multipaths in spread-spectrum
or frequency-hopping systems) and space (multiple antennas). The basic idea is to improve
performance by creating several independent signal paths between the transmitter and the
receiver. The seminal work of [1] gave the idea that in the context of multiuser diversity,
fading can be considered as a source of randomization that can be exploited. This is done
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by dynamically scheduling transmissions (resources) among the users as a function of the
channel state and serve users only when their instantaneous channel qualities are near to
their peaks. In one phrase, under opportunistic transmission, we transmit when and where

the channel is good.

2.7.1 Asymptotic Sum-rate Analysis with Opportunistic Schedul-
ing

Multiuser diversity is a form of diversity inherent in wireless networks, provided by the
independent time-varying channels across the different users. The multiuser diversity gain
comes from the fact that the effective channel gain, denoted as g, is improved from gy to
maxi<k<k gk- Lhe amount of multiuser diversity gain depends crucially on the tail of the
distribution of gi, implying that the heavier the tail, the more likely there is a user with
a very strong channel, and the larger the multiuser diversity gain. Therefore, the channel
statistics has an impact on system throughput. In the following, we derive the sum-rate
growth for different channel gain distribution.

Fading
We consider that the channels of all users are i.i.d. Rayleigh fading, thus g is chi-squared
distributed with 20 degrees of freedom, ie. gp ~ X%y, if gr = |y or gr ~ Xpy if
gk = |hk|2. The limiting distribution (l.d.) of a chi-square random variable is of Gumbel
type and it can be shown that the maximum value of K i.i.d. gx ~ X?2 M) random variables
satisfies [9]

Pr{ log K + (M —2)loglog K + O(logloglog K)

< <
< 1;1}%)(ng <log K + M loglog K + O(logloglog K)}

>1-0 (loglK) (2.48)

Therefore, for large K, JBAX gk behaves as log K with high probability, thus R ~ loglog K+

log P+ o(1). The larger the number of users, the stronger tends to be the strongest channel
and the larger the multiuser diversity gain.

It can be easily shown that the limiting distribution of Ricean and Nakagami fading is
of Gumbel type. However, the multiuser diversity gain is significantly smaller in the Ricean
case compared to the Rayleigh case. Exponential and gamma distributions also belong to
the maximum domain of attraction of a Gumbel distribution.

Log-normal Shadowing

We consider now that the effective channel gain g5 is dominated by log-normal shadowing.
It can be shown that the maximum value of K ii.d. log-normal distributed r.v. with
logarithmic mean ps and variance o2, satisfies [48]

1
_ < < =1-
Pribx axloglogK_lg}caSXng <bg +axloglog K} >1 O<10gK>

where b = exp{v2log Ko, + ps} and ax = bgos//2log K.
Hence, the throughput scales like R ~ v/2log Ko, + s
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Pathloss

Consider now a more realistic scenario, in which the users are located randomly over a
cell given by a disk of radius R around the serving BS. The channel gain consists in the
product between a variable representing the path loss and a variable representing the fast
fading coefficient, i.e. gp = L7k, where Ly is the path loss between user k and the BS (cf.
Sect. 2.1), and 4 is the corresponding normalized complex fading coefficient.

We consider a uniform distribution of the population in each cell. Thus the distance

between user k and the BS, di, is a r.v. with non-uniform distribution fp(d) given by
fp(d) =2d/R?, del0,R] (2.49)

Further, the random process dj, can be considered i.i.d. across users and cells, if users in each
cell are dropped randomly in each disk. The considered coverage region can be assimilated
with the inside area of each disk, in a disk-packing region of the 2D plane. Users dropped
outside the disks can dropped from the analysis, as these will not affect the scaling law.
Assuming R = 1 for normalization, the distribution of Ly = 3d, © is given by

2(2)=21  with o 00
fL(x):{ 2(2)=%1  with z € [3,00)

0 with = ¢ [3, 00) (2.:50)

The distribution of L is remarkable in that it differs strongly from fast fading distribu-

tions, due to its heavy tail behavior. Formally, Lj follows a Pareto-type distribution and is

1-F
a regularly varying random variable with exponent —2/¢, i.e. lim 70‘(33) — t¥/¢. An
t—oo 1 — F,(tx)
interesting aspect of regularly varying r.v. is that they are stable with respect to multi-
plication with other independent r.v. with finite moments as pointed out by the following

theorem:

Theorem 2.1 [49]: Let X and Y be two independent r.v. such that X is regularly varying
with exponent —n. Assuming Y has finite moment E{Y "}, then the tail behavior of the
product Z = XY is governed by:

1—Fz(z) > E{Y"}(1 — Fx(z)) when z — o0 (2.51)

The idea behind this theorem is that when multiplying a regularly varying r.v. with another

one with finite moment, one obtains a heavy tailed r.v. whose tail behavior is similar to
the first one, up to a scaling. Since 4 has finite moments, the tail behavior of g can be
characterized by:

2 e
1 —Fy(x) = E{v;} (é) when x — oo (2.52)
x
Therefore, gy, is also regularly varying with exponent —2, which implies that [50]
. 2/e €/2 1< g2
< = .
Klgnoo Pr{lg}cang gr < PE{~, " }/*K2z} =e Vo > 0, (2.53)

Using the above result, we can show that the throughput scales for asymptotically large K
as
R~ % log K (2.54)

Observe that a much greater throughput growth than in the case of fading is obtained.
This is due to the amplified multiuser diversity gain due to the presence of unequal path



34 Chapter 2 Maulti-antenna Broadcast Channels

loss across the user locations in the cell. As the distribution of pathloss belongs to the
maximum domain of attraction of Fréchet type, a logarithmic capacity growth with K is
achieved. However, the scheduling decisions are taken in a quite unfair fashion admittedly,
since the scheduler tends to select users closer to the access point as more users are added

to the network.

2.8 Living with partial CSIT: Limited feedback approaches

Limited feedback schemes employing SDMA transmission and efficient scheduling are key

topics of this dissertation. In this section, we try to categorize the many possible limited
feedback strategies and briefly expose the ones that will be extensively discussed in the
following chapters.

2.8.1 (Quantization-based techniques

Quantization is the first idea that comes to mind when dealing with source compression,
in this case the random channel matrices or the corresponding precoders being the possible
sources. The amount of CSIT depends on the frequency of feedback reporting (generally a
fraction of the coherence time), the number of parameters being quantized, and the resolu-
tion of the quantizer. Most research focuses on reducing the number of parameters and the
required resolution. The feedback design problem has been studied in single-user MIMO
communication systems using a concept known as limited feedback precoding [51]. The key
idea of this line of research has been to quantize the MIMO precoder and not simply the
channel coefficients. The challenge of extending this work to multiuser channels is that the
transmit precoder depends on the channels of the other users in the system. Simplifying
the transmit precoding structure, e.g. using ZF or MMSE precoding, is one of the simplest
means to reduce feedback requirements.

In approaches assuming single-antenna receivers, the random codebook and Grassman-
nian quantization ideas are used to quantize the direction of each user’s channel [10,52].
The main observation in [10] is that the feedback load should scale approximately linearly
both with the number of transmit antennas and the SNR (in dB), unlike the single-user
case. The reason is that quantization error introduces an SINR, floor since it prohibits per-
fect inter-user interference cancellation. Thus this error must diminish for higher SNRs in
order to allow for a balancing between the noise and the residual interference due to channel
quantization. As we see in Chapter 5, an improvement can be obtained by feeding back the
quantized channel vector and a certain SINR-like scalar value that is - among others - a

function of the error between the true and quantized channel.

2.8.2 Dimension reduction and projection techniques

Dimension reduction techniques involve projecting the matrix channel onto one or more
basis vectors known to the transmitter and receiver. In that way, the CSIT matrix Hy of
size Ny x M is mapped into an ¢-dimensional vector with 1 < ¢ < N x M, thus reducing the
dimensionality of the CSIT to ¢ complex scalars (which in turn may be quantized). Once
the projection is carried out, the receiver feeds back a metric v, = f(Hy) that is typically
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related to the square magnitude of the projected signal. For instance, antenna selection
methods fall into this category with the projection being carried out by the receiver itself.
Alternatively, the projection can be the result of using a particular precoder W at the
BS. A good example of this approach is given by a class of schemes using unitary precoding
matrices. We now review this approach for N = 1 where the BS designs an arbitrary
unitary precoder W = Q of size M x M, further scaled in order to satisfy the power
constraint. Each terminal identifies the projection of its vector channel onto the precoder
by h;Q, and reports an index and a scalar metric expressing the SINR measured under an
optimal beamforming vector selection:
k= max lhy.q:|?
1<isM Mo?/P + 3%, [hiq;|?

(2.55)

where q; denotes the i-th column of Q. The scheduling algorithm then consists in oppor-
tunistically assigning to each beamformer q; the user which has selected it and has reported
the highest SINR.

When the unitary precoder must be designed without any a priori channel knowledge,
a scaled identity matrix can be used (per-antenna SDMA scheduling). In this case, the
algorithm falls back to assigning a different selected user to each transmit antenna. In
the small number of user case, the performance of such scheme is plagued by inter-user
interference, however interference tends to decrease as the number of active users becomes
large. In low-mobility system settings (slow fading), the use of a fixed set of precoders may
result in severe unfairness between the users due to the limited channel dynamics. This
problem can be alleviated by the randomization of the precoders. The idea of random
opportunistic beamforming (RBF) [9, 53], which is presented in detail in Section 2.9.3, can
be recast in the context above, assuming that Q is randomly generated at each scheduling

period, according to an isotropic distribution, while preserving the unitary constraint.

2.9 Linear Precoding and Scheduling with Limited Feed-
back

We review here two of the main building blocks of the dissertation: the finite rate feed-
back model and random opportunistic beamforming. The first model will be used for the
codebook-based SDMA beamforming and scheduling techniques that we propose in Chapter
5, while the latter is the main building block for approaches in Chapters 3 and 4. We also

discuss the common characteristics and particularities of both approaches.

2.9.1 Finite Rate Feedback Model for CDI

Probably the most popular partial CSIT model when a bandwidth constraint on the uplink
channel is imposed is the so-called finite rate feedback model in the multiuser literature. This
is often referred to as limited feedback model in works focusing on point-to-point MIMO
communications. It is initially proposed for single-user MIMO [51,54-57] and extended to
multiuser MIMO settings in [10,52]. The finite rate feedback model is linked to vector
quantization: with a feedback rate constraint of Bp bits, the receiver can report Np = 25p
different channel representations. This implies that the channel space at the receiver is
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generally partitioned in Np non-overlapping regions, with each region represented by a
distinct codeword. Partial CSIT under finite rate feedback model corresponds to informing
the BS in which region the current channel realization lies.

In this approach, a quantization codebook V = {v1,Va,..., vy, } containing Np = 25
unit-norm vectors {v;}5 € CM is utilized. The codebook is assumed to be known to both
the transmitter and the receivers and we set N = 1 Vk. At each feedback reporting slot
t, each receiver k, based on its current channel realization hy, determines its ‘best’ vector
from the codebook, i.e. the codeword that optimizes a certain cost function. In settings
where the BS exploits the quantized CSI to design the downlink beams, it is often assumed
that each receiver quantizes its channel to the vector that maximizes the following inner
product [10,54,56, 58]

h, =v, = arg max |hflvi|? = arg ma{j{cos2(4(l_1k,vi)) (2.56)
Vi€ Vi€

where the normalized channel vector hy, = hy/ ||hy| corresponds to the channel direction,
and we refer to ﬁk as the k-th user channel quantization.

Once the channel vector is quantized, each terminal sends the corresponding quantiza-
tion index n back to the transmitter using Bp = [logs Np] bits. In the research literature,
it is often assumed for simplicity that the feedback reporting stage is accomplished instan-
taneously and with no errors. The error-free assumption can be well approximated using
sufficiently powerful error-correcting codes over the feedback link, whereas the zero-delay
assumption may be valid when the processing and feedback delays are small relative to the
channel coherence time. However, these assumptions can be challenged in practical scenar-
ios (cf. Chapter 7), e.g. the feedback delay can be significant in fast fading channels with
typical user speeds of 30-50 km /h (large Doppler spread).

2.9.2 Codebook design

The performance of a system relying on quantized CSIT depends heavily on the codebook
structure and the design criterion considered. The quantization problem exhibits several
similarities with classical source coding problems. As the vector hy € CM can be represented
by a 2M-dimensional vector of real coefficients, the codebook design is equivalent to a
source coding problem, where the encoder describes a random source s € R* by one of
the entries 8; € R?>M of a finite alphabet codebook. The codebook and the quantizer are
designed to minimize the distortion between the source and its unquantized representation.
However, there are several key differences when considering the quantization problem in
limited feedback MIMO systems.

In point-to-point MIMO systems, the codebook design problem is explicitly related to
the Grassmannian line packing problem [59], as a codevector can be viewed as the coor-
dinates of a point on the surface of a hypersphere with unit radius centered around the
origin. This point dictates a straight line in a complex space CM that passes through the
origin. The inner product (2.56) is related to the chordal distance, defined as the distance
denora(hy, vi) = /1 — |PlkHVi|2 = sin(Z(hy, v;)) between two lines generated by hy, and v;.
In this dissertation, the chordal distance (2.56) is considered as codeword selection criterion
(distortion measure), despite the fact that considering an Euclidean distance metric (and
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quantizing the non-normalized channel hy) may result in increased performance. Quan-
tizing the channel direction and using the chordal distance is motivated by the fact that
beamforming on the quantized spatial information is generally used. As the transmitter
requires information on the channel direction in order to form beams, quantizing directly
the channel realization can be viewed as redundant operation.

Another key difference with source problems is that the channel realization and the
variable to be quantized may lie in different spaces and may have different dimensions. For
instance, one can typically assume that the vector hy is constrained to be unit-norm and
invariant to arbitrary phase rotation e/?; hence it lies on the unit hypersphere, whereas the
channel instantiation hy could be anywhere in the CM space.

The problem of optimum codebook design is not yet fully solved, and since the optimal
channel vector quantizer is generally difficult to obtain and analyze, one typically resorts to
approximate or heuristic codebook design. The complexity of the problem lies on the fact
that codebook design depends on various system parameters, including the channel proper-
ties and statistics, the antenna configuration and correlation, etc. Furthermore, a codebook
can be considered as optimum for a specific distortion metric. Apart from the chordal and
Euclidean distances, more general non-mean-squared error functions can be considered in
limited feedback MIMO systems (e.g. average received SINR or mutual information loss).
However, an efficient and general codebook design rule is the following: for random channels
with i.i.d. CNV(0,1) entries, hy, is independent of ||hy|| and uniformly distributed over the
unit-norm sphere Fy; = {u € CM : ||u|| = 1}, i.e. hy ~U(Fur). An efficient quantizer has
to satisfy the following two conditions:

e Nearest Neighborhood Condition (NNC): For given codevectors {v;,i = 1,...,Np},

the optimum partition cell (Voronoi region) H; of the i-th codevector v; satisfies
H; = {hy € Far : |hlv;| > |hilv;|,Vj # i}, fori=1,...,Np (2.57)

e Centroid Condition (CC): Given the partitions {H;,i = 1,...,Np}, the optimum
codevectors v; satisfy
Vi = arg max E{|hfv|?hy € H;} (2.58)

In multiuser MIMO systems, simple codebook structures, including random vector quantiza-
tion (RVQ) [57,60] and approximate cell vector quantization (ACVQ) [56], are often utilized
to model the CDI, since the single-user Grassmannian approach has not been extended yet
to multi-antenna broadcast channels. In practical systems, several codebook designs have
been reported offering good performance under certain channel settings (cf. Chapter 7).

Random Vector Quantization

Random vector quantization has been proposed for CDMA signature optimization with
limited feedback in [60] and applied to point-to-point MIMO systems with limited feedback
in [57]. In this scheme, each of the Np codevectors is independently chosen from an isotropic
distribution. RVQ provides a lower bound in terms of performance, due to the fact that
any structured codebook should perform at least as well as RVQ. The sharpness of the
lower bound is decreased, when the codebook size is decreased, due to the fact that a
RVQ codebook does not uniformly cover the M-dimensional space. For the statistics of
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quantization error, defined as sin(Z(hy,hg)) = 1 — ’flkHﬁklz under RVQ), the interested
reader is referred to [10,61]. Nevertheless, performance analysis of multiuser MIMO schemes
employing RVQ, despite its simplicity, does not often result in simple calculations and
integrals with closed-form solution. In such case, the following codebook design framework
might be of interest.

Approximate Cell Vector Quantization

A geometrical framework for vector quantization was presented in [56]. Therein, in order

to evaluate the area of no-outage regions, the authors defined spherical caps on the surface
of the hypersphere, which yields a good approximation for the area of no-outage regions.
Assuming that each codeword is isotropically distributed in C, the unit norm sphere U/
where a random vector hy, lies is partitioned into Np ‘quantization regions’ (decision regions)
{Hii = 1,...,Ng}, where H; = {hy € U : |hfv;|> > |hfv;|?,Vj # i,1 < j < Np}.
If the channel hy € H;, the receiver k feeds back the index i. Approximate cell vector
quantization results assuming that each quantization cell is a Voronoi region of spherical
cap with the surface area 1/Np of the total surface area of the unit sphere [62]. Since hy, is
uniformly distributed over U, we have that Pr{hy, € H;} ~ 1/Np, Vi, and the (approximate)
quantization cell is given by [55,56,63,64]

Hi={hy € U:1—|uf'vi|> <5}, Vik

for § = (1/ND)ﬁ = 27 Bo/(M=1) " Although generally there are overlaps in the approxi-
mate quantization cells, this approximation is shown through numerical results to be quite
accurate even for small Np [63]. Furthermore, it can be shown that ACVQ yields an accurate
lower bound to the quantization error for any vector quantization codebook [55,56].

2.9.3 Random Opportunistic Beamforming

If we consider that each user is allowed to use only Bp = log, M bits for CDI quantization,
the optimal choice for a randomly generated codebook is one that contains orthonormal
vectors. Therefore, the above vector quantization-based techniques can be viewed as ex-
tension to a popular, alternative low-rate feedback scheme, coined as random opportunistic
beamforming (RBF).

In RBF, 1 < B < M mutually orthogonal random beams are generated at the transmit-
ter. The single-beam RBF (B = 1) was proposed in [53], while multi-beam RBF (B = M) is
proposed in [53] and analyzed in [9]. A unitary precoding matrix Q is generated randomly
according to an isotropic distribution. Its M columns (vectors) q,, € CM*! can interpreted
as random orthonormal beams. An isotropically distributed (i.d.) unitary matrix can be
generated by first generating a M x M random matrix X whose elements are independent
circularly symmetric complex normal CA/(0,1), and then perform the QR decomposition
X = QR, where R is upper triangular and Q is an i.d. unitary matrix. At time slot ¢ the
transmitted signal is given by

B
X(H) = > am(t)sm(t) (2.59)
m=1
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where s,,(t) is a scalar signal intended for the user served on beam m. The SINR of user k
in beam m is equal to
hy gl
SINRy m = | & | . m=1,....B (2.60)
> |hiq,[* + Bo?/P

j#m

Each user, say the k-th, calculates the SINRs over all beams, i.e. SINRy, ,, form =1,..., B,
finds the beam by that provides the maximum SINR, i.e. b, = arg max SINRk m, and

feeds back the value of SINRy;, in addition to the corresponding beam index br. An
underlying assumption here is that the users know their own channel coefficients. In turn,
the transmitter assigns each beam m to the user k,, with the highest corresponding SINR,
ie. k, =arg 11<Iia<xK SINRk m. Since the users have i.i.d. channels, the CDF of the SINR of

a selected user (after scheduling) Fs(z) is given by [9]:

K e—aBo”/P K
Fy(z) = (Fsinr ()" = (1 - W) (2.61)
The achievable sum rate (assuming Gaussian signaling) is given by
B
Regr ~ E {mz_:l log, (1 + max SINRka)} (2.62)

where the approximation is used since there is a probability that user may be the strongest
user for more than one beam.

Asymptotic sum-rate analysis showed that, for fixed M, P and K — oo, the average sum
rate of RBF scales as M loglog K, which is the same as the scaling law of the capacity when
perfect CSI is available. This is due to the fact that the . E}iXK SINR . behaves like log K,

which is the behavior of the numerator (maximum of K Lid. xé) r.v.’s), as the interference
terms become arbitrary small. In other words, in the large K regime, RBF with partial CSIT
does not suffer any capacity loss due to inter-user interference despite relying on imperfect
(scalar) CSIT. The intuition behind that scheme is that for large K, there exists almost
surely a user well-aligned to each beam, as well as with very little interference from other
beams. Thus, we have M data streams being transmitted simultaneously in orthogonal
spatial directions and as a result, full spatial multiplexing gain is exploited. Furthermore,
the authors in [9] show that if M = O(log K), then a linear capacity scaling with M is
guaranteed, and fairness is achieved as a byproduct. Here, the term fairness implies that
the probability of choosing users with unequal SNRs is equalized.

A limitation of [9] is that it is optimal for a very large, typically unrealistic number of
users. The performance is quickly degrading with decreasing number of users. Furthermore,
this degradation is amplified when the number of transmit antennas increases. The reason is
intuitive: as the number of active users decreases and M increases, it becomes more and more
unlikely that M randomly generated, equipowered beams will match well the vector channels
of any set of M users in the cell. In Chapters 3 and 4 we propose several enhancements

in order to restore robustness and increase the sum-rate performance of RBF in sparse

R
networks. Moreover, RBF is highly sub-optimal at high SNR, i.e. Plirn IOZB]E

becomes interference dominated. As interference scales with P and cannot be eliminated due

=0, as it
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to partial channel knowledge of fixed rate, the multiplexing gain of M cannot be achieved
at high SNR.
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Step 3
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the user with the maxSINR for

this beam .

Figure 2.4: Schematic of Random Opportunistic Beamforming.



Chapter 3

Enhanced Multiuser Random

Beamforming

3.1 Introduction

In this chapter, we consider the downlink of a wireless system with a M-antenna base
station and K single-antenna users. A limited feedback-based scheduling and beamforming
scenario is studied that builds upon the multi-beam RBF framework [9] presented in detail
in Section 2.9.3. The popularity of RBF has been spurred by the fact that it yields the
same capacity scaling, in terms of multiplexing and multiuser diversity gain, as the optimal
full CSIT-based precoding scheme. The optimal capacity scaling of M loglog K is achieved
when the number of users K is arbitrary large, with only little feedback from the users, i.e.
in the form of individual SINR. RBF-based approaches have in fact evolved in a topic of
research in its own right and many possible strategies can be pointed out [65-68].

The intuition behind the RBF concept is that although the beams are generated ran-
domly and without any a priori CSIT, for large K, the selected group of users exhibit large
channel gains as well as good spatial separability, and the probability that the random beam
direction is nearly matched to certain users is increased. However, a major drawback of this
technique is that its performance is quickly degrading with decreasing K. Furthermore, this
degradation is amplified when the number of transmit antennas increases. As the number
of active users decreases and M increases, it becomes more and more unlikely that M ran-
domly generated, equipowered beams will closely match the vector channels of any set of
M users. This situation could easily be faced as traffic is normally bursty with frequent
silent periods in data-access networks, thus the scheduler may not count on a large number
of simultaneously active users at all times. Another limitation of RBF is that it becomes
interference dominated at high SNR, and its multiplexing gain vanishes since interference -
which scales with SNR - cannot be eliminated with fixed-rate partial CSIT.

41
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In the first part of this chapter, we provide analytic sum-rate expressions for conventional
random beamforming [9] and derive capacity scaling laws at high SNR. Main implication
of our results is that in certain asymptotic regimes, it is beneficial to reduce the number of
active beams, i.e. the beams allocated non-zero power.

In the second part of this chapter, we investigate solutions to circumvent the limitations
of RBF for K decreasing. We introduce a new class of random unitary beamforming-
inspired schemes that exhibits robustness in cells with - practically relevant - low to moderate
number of users (sparse networks), while preserving the limited feedback and low-complexity
advantages of RBF. One first key idea is based on splitting the design between the scheduling
and the final beam computation (or "user serving") stages, thus taking profit from the fact
the number of users to be served at each scheduling slot is much less than the number of
active users (i.e., B < M << K). In the scheduling phase, a finite feedback rate scheduling
scheme is presented exploiting the concept of RBF. We use the SINR reported by all users,
which is measured upon the initial precoding matrix as a basis on which to further improve
the design of the final beams that will be used to serve the selected users. In general, the
initial precoder can be designed based on any a priori channel knowledge; however here we
assume that the first-stage beams are generated at random as in [9] since no a priori CSIT
is assumed. Once the group of B(1 < B < M) users is pre-selected using the SINR, feedback
on the random beams, additional CSIT may be requested to only the selected user group in
order to design the final precoder. More specifically, we make the following proposals and

contributions:

e The second-stage precoding matrix may require variable levels of additional CSIT feed-
back to be computed, depending on design targets, and the final beams will improve
over the random beamforming used in [9]. In particular, while we expect little gain
over [9] for large K, significant throughput gain appears for sparse networks in which
the initial random beamformer may not provide satisfactory SINR for all M users.

e If we restrict ourselves to the case that the initial beam directions do not change, we
propose then to adapt the power and the number of active beams according to the
number of users, the average SNR and the number of transmit antennas as a means

to maximize the system throughput.

e In one variant of the proposed designs, we study a power allocation scheme across the
B (initially equipowered) random beams showing substantial capacity improvement
over [9] for a wide range of values of K. The scheme requires B < M real-valued
scalar values to be fed back from each of the B pre-selected users. For a 2-beam
system, the global optimal beam power solution is provided in closed-form, whereas
for the general B-beam case, solutions based on iterative algorithms are proposed and

numerically simulated.

e In another proposed robust variant of RBF, no additional CSIT feedback is required
during the second stage. Instead, we exploit the SINR information obtained under
the random beams in the first stage in order to not only perform scheduling but also
to refine the beamforming matrix itself. An on/off beam power control is proposed
as a low-complexity solution, yielding a dual-mode scheme switching from TDMA
transmission (only one beam is allocated non-zero power) to SDMA where all beams



3.2 Sum-Rate Analysis of Random Beamforming 43

are active with equal power. The throughput gains over [9] are shown to be substantial
for high SNR and low K values.

3.2 Sum-Rate Analysis of Random Beamforming

We first consider the conventional multiuser random beamforming [9], for which Sharif and
Hassibi provide capacity scaling laws for asymptotically large K using extreme value the-
ory. In this section, we complement their throughput analysis by calculating analytically
the average sum rate for any values of K and M. In addition to an exact throughput char-
acterization, a simple, closed-form expression is provided that approximates very accurately
the throughput for relatively high and low SNR levels. Furthermore, using extreme value
theory, we derive the capacity growth in P up to the second order revealing the beneficial

role of multiuser diversity in the interference-limited region (P — o0).

Exact throughput of multiuser RBF

We consider the system model described in Section 2.9.3 and for notation convenience we
define p = %.

Lemma 3.1: For any values of P, M, and K, the average sum rate of multiuser RBF

satisfies
A—a<Rrpr <A (3.1a)
with
K (M—-1)k—1
M K e P L
A= Tog? ; <k>(_1)k+1egkp (;) Wm;évf)qﬁku;zu) (;) (3.1b)
K (M-1)k
M K e [k k L
= —1)F*ter (= T(k(1— M), Z) = T(k(1 - M), — 1
10g2]§(k>( ) e <p> < (A( )’p) (k( )’2p)> (3.1c)

where Wi m (2) is the Whittaker function and I'(a,z) = [7°t*"Le™"dt is the upper incomplete

gamma function.

Proof. The proof is given in Appendix 3.A. O

Approximate throughput of multiuser RBF

Although the closed-form expression (3.1a) is accurate, it is unfortunately involved and
offers no insight. For that, we derive the following simple, approximate expression for the

average sum rate, which proves to be accurate.

Lemma 3.2: For any values of P, M, and K, the average sum rate of multiuser RBF is

approzimately given by
N M pHK
T log2 (M —1)p+1

(3.2)

K
1
where Hg = Z % is the K -th harmonic number.
k=1

Proof. The proof is given in Appendix 3.B. O
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Figure 3.1: Comparison between simulated and analytical achievable sum-rate of RBF with
M = 4 antennas and SNR = 20 dB.

Average sum rate at high SNR

In the high power regime (P — o0), the throughput is given by the following corollary,

which is a direct result of Lemma 3.2 for p — oo (i.e, Rpigh = Plim RRBF).

Corollary 3.1: The average sum rate of multiuser RBF for any K, M at high SNR is
upper bounded by

M
Rhigh =~ mHK log, e (3.3)

The upper bound is sharp for asymptotically high SNR values. Similar result can be found

in [68]. The above corollary can be alternatively derived by approximating the received
2

SINR as SINRj, ,,, = Lmlﬁ with CDF given by F'(z) = 1— W The approximate

o X m|bas
average sum rate is given by

0 M ! 1 M
~ K _ _
Rhigh ~ /0 logy (1 +&)dF™ = —— /0 logy T——7ede = 3 Hrlogze  (3.4)

The tightness of the approximate closed-form expressions (3.2) and (3.3) is compared with
simulated results in Figures 3.1 and 3.2.

Average sum rate at low SNR

In the low power regime (P — 0), the throughput is characterized by the following lemma:

Lemma 3.3: The average sum rate of multiuser RBF for any K, M at low SNR is given
by
MK = (K -1 o k1
ow N —— ) (D) ———Bi(——— :
Riow g > (* 1)1 i< (35
k=0
with Ei(x) = — [ CTftdt is the exponential integral.

Proof. The proof is given in Appendix 3.C. O



3.2 Sum-Rate Analysis of Random Beamforming 45

K =100 users

K =20 users

Sum rate (bps/Hz)

—— Simulation
sk —9— Analysis eq.(3.3)
—&— Analysis q.(3.2)

| 1
-20 -10 0 10 20 30 40 50
average SNR (dB)

Figure 3.2: Achievable sum rate comparison vs. average SNR for RBF with M = 4 antennas.
Both analytic expressions approximate accurately the simulated performance at high SNR.

Corollary 3.2: In the low power regime, the average sum rate of RBF can be approwxi-
mated as

p p
Riow ~ o Hic (1= 51+ Hx)) < 2ol .
! log 2 K 2( +Hi)) = log 2 K (36)
Proof. The proof is given in Appendix 3.D. O

The tightness of the above sum-rate approximation is examined in Figure 3.3.
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Figure 3.3: Achievable sum rate comparison between simulated and analytical results for
RBF with M = 4 antennas and SNR = -15 dB.
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On the Optimal Number of Active Beams

From the above closed-form sum-rate expressions, we can conclude that the achievable
throughput is not always an increasing function with the number of beams for all average
SNR ranges. In this section, we provide the optimal number of active beams, i.e. the beams
that are assigned non-zero power, for different operating average SNRs. The obtained results
provide an additional motivation for the techniques presented in the subsequent parts of this
chapter, in which we adjust the number of active beams and/or the power allocated to them
as a means to maximize the achievable throughput (beam selection).

We denote the number of active beams as B and we try to identify the optimal value of
B* that maximizes the sum rate for fixed K, i.e.

B* = 1%%8;(]\/[ RRBF (B) (37)

When RBF operates at low SNR, then

Proposition 3.1: At low SNR (P — 0), it is optimal to allocate power to all beams, i.e.
B* =M.

Proof. Differentiating (3.5) with respect to B, we see that 87;% > 0 which implies that
Riow is increasing with B. The result can be shown alternatively considering the CDF of
SINR at low SNR, i.e. Fiop(x) =1— e—o"@B/P and showing

aRlow o 8 ~ K
aB - W {B/O 1Og2(]‘ + x)dF‘low}
2 1
> _ﬁ/ logZ(1 — 2/ %)dz > 0 (3.8)
0

O

On the other side, when the system operates at asymptotically high SNR, we have that

Proposition 3.2: At high SNR (P — o), it is optimal to allocate non-zero power to only
one beam, i.e. B* =1.

Proof. As % < 0, we have that Rpign is a monotonically decreasing function with
B. O

To summarize, in the low power regime, it is beneficial from a sum-rate maximizing point
of view to allocate non-zero power to a higher number of beams, whereas in the interference-
limited region (P — oo) with fixed K, scheduling only one user (TDMA) is the transmission
strategy that maximizes the system throughput.

3.3 Capacity scaling laws for high SNR

The asymptotic throughput analysis in [9] was focused on the large K regime with fixed
P. However, when P is increasing, random beamforming is highly sub-optimal since it
becomes interference dominated. The achievable sum rate saturates, as it does not scale
logarithmically with the power. Therefore, the multiplexing gain collapses to zero, i.e.



3.3 Capacity scaling laws for high SNR 47

i RrBr
P—co log P
power regime. In this regime, the SINR becomes

= 0. Here we investigate the asymptotic behavior of  Jax SINRy, , in high

2
|thm|2 N X(2)
S el Xarr—z)

lim SINRy i, = SIRjom = (3.9)

which is a canonical F-distributed r.v. as it is the ratio of two independent chi-squared
random variables. Let Xy ,,, = SIRy , for K =1,..., K be a sequence of K ii.d. r.v. with
common parent distribution F(z) = 1 — W and PDF f(z) = (11\1_;)11” Let Fj.x(z)
denote the CDF of the j-th largest r.v. among {X1,..., Xk}, denoted as X;.x, where the
beam index is omitted for notation convenience. The asymptotic sum rate performance

depends on the limiting distribution of the variate Xx.x = 113&3{ Xj.x, whose CDF is
<<

given by Fi.x(z) = [F(2)]". The distribution F(z) is of Pareto-type and it belongs to the
class of regularly varying functions.

Definition 3.1: A non-negative r.v. X and its distribution are said to be regularly varying
with index o > 0 if the right distribution tail F(z) = 1— F(x) is reqularly varying with index
—a, €.,

F(tz)

lim — =t Vt>0

Since Fx(x) is a regularly varying function at oo with exponent —(M — 1), the necessary
and sufficient condition for maximal attraction to the limit law of the Fréchet type D(G1),
i.e. Fx(z) € D(G1), is satisfied [50]. Hence, the distribution F'(x) belongs to the maximal
domain of attraction of Fréchet type, with limit distribution (l.d.)

(M—1)
M>1
Gr (5 M — 1) = e x>0,M >
0 z <0
meaning that there is a sequence ax > 0 such that
lim Pr{Xg.x <agx}= hm FX(agz) — Gy (M —1) (3.10)

K—oo K—oo

The fact that the SIR distribution lies in the domain of attraction for maxima of Fréchet

type can be alternatively proved using Smirnov’s theorem [69,70]. For normalizing sequences
ag = KYM=1 and by = —1, we have that

Khm FK:K(CLKZZ? + bK) = Tf(I) (3.].].)
K— 1
—logG M -1
with Y (z) = Gy (z; M — 1) Z 08 G (a; )
=0 !

In order to derive the second-order terms of the capacity growth, we need to measure the
rate of convergence of the distribution of the sample maximum. For that, the uniform
distance metric, defined as dx = sup,, ]F}f(a;(x) -Gy (x; M - 1),

considered, resulting
in the following theorem.
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Theorem 3.1: Let X;.x denote the 3t largest random variable in a random sample of K,

then
_1
logvVK\ " M1 1
EVE 1< X, <(K1 K) “1¥s1-0 3.12
( K ) < Xjue < (Klog VK = oeic) 1%
Proof. The proof is given in Appendix 3.E O

Therefore, it readily follows that at large K, the sum rate of multiuser random beam-
forming in the interference-limited region scales (and a fortiori its average) as

M M
Rhigh ~ m 10g2 K —+ m ].Og2 ].Og \/E + 0(1) (313)

Theorem 3.1 establishes rigorously the sub-optimality of RBF in the high power regime.
As the interference scales with P, the scheme becomes interference dominated at high SNR,
and the multiplexing gain vanishes. Interestingly, multiuser diversity gain becomes more im-
portant in this regime, since the sum rate exhibits logarithmic growth with K (in contrast
to the double logarithmic loglog K). Although only a fraction of the spatial multiplex-
ing gain is achieved (r = %), multiuser diversity increases the sum rate by a factor of
log K, compensating thus for the loss in degrees of freedom. Simply speaking, having more
active users to choose from, it ‘pushes’ the interference-limited region to higher SNR val-

ues. Another implication of the above theorem is the optimality of TDMA at high SNR:
ORhigh
as 5t

tion with M, implying that at high SNR the sum rate is maximized by using only one beam.

< 0 (either (3.4) or (3.13)), the throughput is a monotonically decreasing func-

The first-order term in capacity growth of RBF with respect to P can be alternatively
derived using the following, more intuitive way. From the convergence of F'¥(z) to a Fréchet
distribution we have

e (M—1)

Pr{Xk.x <ugz} — G (&;M —1)=e (3.14)

with normalizing sequence ux = F~'(1 —1/K) = K'/(M=1) _ 1. The average sum-rate at
high SNR is given as
M (™1 (/D"

Rhion = M log, (1 dFE(z) = d 3.15
i = M [ ogy 1+ 2)aP¥ (@) = o [T (19)

where the RHS of the equation is obtained through integration by parts. By using the
change of variable y = 1/x for « € (0,00) and the approximation e~ ¢ & 0 for some positive

value ¢, we have

1
cM—1 )A{—l

M w1 — e (uxe > 1
Rhigh =~ / dy—l—/ L ———dy (3.16)
" log2 | o y(1+y) T y(1+y)
1
. . M—1 K—o0o
Therefore, for K asymptotically large, Khm =0asux — oo and
—0o0 UK
Rhigh 1cf\g42 log (cl/%f(—l) +1)

lim ————— = 1i =1 3.17
Ko Mlog,(uk + 1) Koo Mlogy(uk + 1) (8.17)
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which implies that the average sum-rate scales (in the ratio convergence sense) as Rpign ~
Mlogy(ux + 1) = 724 log, K.

3.4 Two-Stage Scheduling and Linear Precoding

In this section, we propose a MIMO downlink scheduling and beamforming framework in
which the design is split into two stages. In the first stage, a coarse beamforming matrix
is used (possibly selected even at random) and user group (of size |S|) selection is per-
formed among all K active users. In the second stage, possibly additional channel quality
information is collected for the selected user group, and an improved beamforming matrix
is designed to serve them. The fact that |S| << K is instrumental in reducing the total

feedback requirement in this scenario. The two-stage framework can be described as follows:

Stage 1: User Selection

The transmitter generates a linear precoding matrix W based on any a priori channel in-
formation it may has. Here, since we consider that the channel conditions of the users are
not known a priori, a B x B (B < M) unitary precoding matrix Q is drawn randomly and
equal power allocation is used (P, = %,Vm), as a means to reduce the feedback burden
and complexity requirements, i.e. W = Q = [q1...qp]. The B columns q,, € CM*! of
the precoder can be interpreted as random orthonormal beams, generated according to an
isotropic distribution, as proposed in [9]. Each of the K users, say the k-th, calculates the

SINRs over all equipowered beams, i.e.

|hkqm|2
S i P+ Bo?/P
j#m
finds the beam by that provides the maximum SINR, and feeds back v, = SINR;;, in
addition to the corresponding beam index. A simple and low-complexity user selection

SINRy, =

m=1,....B (3.18)

scheme is employed at the BS by selecting the users that have the highest SINR on each
beam q,,. The group of selected users is denoted as S. In [9] B = M beams are activated.

In the general case however, we could decide to activate the B < M best beams only.

Stage 2: Final Precoding design

In our proposed framework, we follow up with a second stage where the B users in S may be
allowed to report back to the BS additional limited feedback, denoted as 7,;, k € S. Based on
the feedback information, the transmitter designs the final precoding matrix W' (S) = f(7,.),
where f(-) is some feedback-based beamforming design function. Note that in [9] there is
no second stage, in other words W' (S) = Q. The second-stage feedback can take on among

others the following forms, depending on the system feedback rate constraint:
e Strategy 1: 7]; = hy, (full CSIT)
o Strategy 2: ”y,; = hy, (quantized channel vector)
o Strategy 8: v, = |hiqm|® (BGL: beam gain information)

o Strategy 4: ”y,; = 7 (no additional feedback)
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Note that anyone of these two-stage schemes represents an efficient feedback reduction strat-
egy considering the number of selected users B is typically very small in comparison with K.
For instance B = 2 or 3 in practical standardized systems while K could be a few tens even
for moderately sparse networks. The optimal way of splitting the feedback load across the
stage 1 (scheduling) and the stage 2 (beam design) is an interesting open problem, beyond
the scope of the thesis, although some design rules for ZFBF systems where ”y,; is given by
a quantized version of the quantization error of the channel and ZFBF have been already
suggested [71].

Note that the design of a two-stage feedback scheme will inevitably introduce a longer
hand-shaking delay before the actual payload data can be sent to the mobile. For an efficient
operation of feedback-based approach (whether single stage or two-stage), the total duration
spent on feedback together with payload transmission must be significantly less that the
coherence time of the channel T,,,. Therefore, for the 2-stage approach to be applicable,
we envision a framing structure that encompasses the two stages of feedback, back to back,
as an overall feedback preamble, prior to payload transmission. This preamble (minislot) of
short duration 7,,,, during which users report their feedback messages is thus followed by a
larger slot of duration 75 >> 7,,, which is dedicated to pilot and data transmission. The
total framing interval duration should be kept less than the coherence time of the channel,
ie. Ts + T < Teon- Note that the second stage of feedback collects fresh CSIT, so that the
precoder design does not suffer from extra outdating degradation (compared with a single
stage feedback).

3.5 Enhanced Multiuser Random Beamforming

When the number of active users K is large (dense networks), RBF can benefit from mul-
tiuser diversity by scheduling users with favorable channel conditions (highest SINR), im-
proving thus the system capacity. The selected group of users exhibit large channel gains
and good spatial separability among them and the probability that the random beam direc-
tion is closely matched to certain users is increased with increasing K. For low to moderate
number of users (sparse networks), the probability that all B users enjoy a reasonable SINR
is lower since the selected users may not be fully separable under a randomly generated uni-
tary beamforming matrix Q. Nevertheless, we point out that this user set, the user group
selected by the scheduler under the initial random orthogonal beams, is likely to exhibit
good separability conditions relative to the rest of the users, since it is at least the best user
group for one orthogonal precoder Q. Therefore, we argue that a design based on random
Q could be kept for the purpose of scheduling. In strategies 1-3, we propose to augment the
random beamforming step (stage 1) with an additional yet low-rate CSIT feedback (stage
2), as a means to restore robustness and improve sum-rate performance. Note that the
second stage only involves the B pre-selected users. In this chapter, we present results for
strategy 1, but we focus on strategies 3 and 4 in particular due to their low-rate feedback
merits. Results for strategy 1 are also presented in the following section.
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3.6 Enhanced Precoding with perfect second-stage CSIT

We first consider the case where, once the set of scheduled users is determined, perfect
CSIT feedback is requested for the B selected users (strategy 1). Note that this results in
an overall feedback requirement much inferior to that of [12]. Based on the second-stage
CSIT, for any set of transmission powers P = [P, ..., Pg], the beamforming matrix W'(S)
that maximizes the SINR of each user is given by

W/(S) = H(S)" (H(S)H(S)" + 1)~

Note that the optimal precoding matrix in the downlink is derived from the uplink MMSE
beamformer, based on the uplink-downlink duality. Therefore, using the RBF as a user
pre-selection scheme, a set of quasi-orthogonal users is revealed to the transmitter. The BS
in turn applies MMSE precoding in order to serve the selected users. The suboptimality of
this strategy depends on the sparsity of the system. The more users are in the cell, the more
likely is to select an orthogonal user group at the first step. Note that the performance of
MMSE downlink precoder can be enhanced using power allocation. However, the solution to
this optimization problem is not trivial, even if the duality is exploited. Another key message
of this technique is the effective channel (SINR) is a powerful user selection metric, since it

reveals the set of users with high channel gains and quasi-orthogonal channel directions.

3.7 Beam Power Control with Beam Gain Information

We consider now that strategy & is adopted during the second stage, thus the scheduler gains
knowledge of 7y, m = |hi. Qm|” for each k, € S. Without loss of generality (WloG), we
order the users such that nx,;; > ng;;j, Vi < j is assumed, and unless otherwise stated B = M.
Note that the extra feedback load is minimal because it concerns only B users. If a moderate
number of users exist, some of the random beams may not reach a target. This is measured
at the BS in terms of the BGI 7, . In turn, the beam power control is used to reduce
the resource allocated to the low-quality beams, to the benefit of the good-quality beams.
As a result, we choose not to change the direction of the initial random beams. Based on
this beam gain information (BGI) ny,. . we propose to design the beamforming matrix by
applying a power allocation strategy across the beams of {qm}n]\le, ie. Wi =V Prndm.

Define the vector of transmit powers P = [P ... Py] where P, is the transmit power on
beam m. The SINR of the selected user k,, € S over its preferred beam m can be expressed
as:

Pm m
SINRy,, m(P) = i (3.19)

o+ > Pk,
iFm

The beam power allocation problem for RBF in order to maximize the sum rate subject to

a total power constraint can be formulated as:

M
maxR(S, P) = max mz::l log, (14 SINRy,, . (P))
M
$t.Y Pn<P Pp>0,m=1,..,M (3.20)

m=1
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We first remark that the power constraint is always satisfied with equality. This is easily
verified by noting that any power vector P’ with >om Pz,w < P cannot be the optimum
' m =1,...M such that

> €Pv = P increases the sum rate R(S,P), since it increases all user rates.

power vector. For any € > 1, a power vector P with P,, = €P,,,
In what follows we search for the optimal beam power allocation (power vector P*) by
finding

P* = R(S,P 3.21
arg max R(S,P) (3.21)

where PM = {P|Y. P, < PP, > 0,m = 1,...,M} is the constraint set, which is a
closed and bounded set. Although the sum rate function is concave in SINR, it is not
strictly concave in power. Thus, the optimization problem is hard to solve due to non-
convexity of the objective function, plus no transformation into convex by relaxation seems
doable. This problem is however typical of sum-rate maximizing power control [72]. In
the following sections, we investigate a closed-form optimal solution for a 2-beam system
and iterative solutions for the general case. Moreover, the above beam power control setup
can be seen as an instance of the interference channel, the analysis of which is a famously
difficult problem in information theory. Our power allocation solutions can be therefore

used to any communication network that can be modeled as an interference channel.

3.7.1 Optimum Beam Power Allocation for Two Beams

For RBF scheme with B = 2 beams, the optimum beam power allocation policy under
strategy 3 can be derived analytically. The sum rate for user set S = {ki,ka2} is given in
terms of Py € [0, P] by:

2
R(S,P1) = Y logy(1+SINRk, m) (3.22)

m=1
P, ) ( (P — P1)77k22)]
= log, |1+ 14 S Ulke2
&2 K o + (P — P1)ng,2 02 + Ping,1

Since the logarithm is a monotonically increasing function, we can consider the following

objective function:

J(P) = (14 SINRg,1)(1+ SINRy,2)

P, P-P
_ (1+ U ) <1+ ( i 1)77k22>
0% + (P — P1)n,2 0% + Pk,

(3.23)

By Fermat’s theorem, the necessary conditions for maxima of the continuous objective
function can occur either at its critical points or at points on its boundary. Therefore, the
global maximizer of the above generally non-convex optimization problem is given by the
following alternatives:

e boundary points of P2: P, =0 or P, = P.

e extreme points on the boundary of P2: i.e., the values P; € [0, P] resulting from

oJ (P1) __
~or =0

Specifically, we have the following result:
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Theorem 3.2: For the two-beam RBF, the optimum sum-rate mazimizing beam power
allocation P* = (Py, Py) is given by:
Pf=arg max J(Py)
P,={0,P,P'} (3.24)
Py =P — Py

where Py € [0, P] and

, —B+vB2—-4AT")/2A if A#£0
P )24 i A (3.25a)

-I'/B if A=0

A= 77k1177k21(77k21 - 77k22)(P77k12 + 02) + 77k2277k12(77k11 - 77k12)(P77k21 + 02>
B = (P2 + )01 (Pey1niy2 + 205,107 — Niy20°)
+ M2 (202 — My 1) (Pt + 02) (P2 + 07)

r= 77k110'2(P77k12 + 02)(P77k22 + 02> - 77k22(P77k21 + 02)(P77k12 + 02)2 (325b)
Proof. The proof is given in Appendix 3.F. O

Hence, the optimal power control is either TDMA-mode (only one user/beam is allocated
non-zero power) or SDMA-mode in which the transmit power values to multiple users are
positive and allocated according to (3.25a).

Beam power control in extreme interference cases

To gain more intuition on the optimal power allocation scheme, we investigate two extreme

. . . 2 jtm Memi
cases in terms of interference. Define the interference factors ay,, = % In the
mm
2-beam case, we have oy, = 212 and ap, = —=2L, For non-interfering beams (i.e., oy, =

ULTRY MNko2
ay, = 0), the optimal beam power allocation is given by the water-filling power allocation

P - 217
P =min | P, [— + M] and Pf=P— P} (3.26)
2 277k1 1Mko2
where [z]7 = max(0,z). Note that SDMA with equal power allocation is optimal when

both users experience the same channel conditions (7x,1 = Mk,2)-
In the case of fully-interfering beams (i.e., ax, = ag, = 1), TDMA mode is of course optimal
as the solution to (3.20) under the assumption wlog 7,1 > Mk,2 is

Pf=P and P;=0 (3.27)

Optimality conditions for TDMA transmission mode

The beam power solution stated in Theorem 3.1 implies that the optimum transmission
mode is either TDMA (P, = 0 or P) or SDMA with P, = P'. It is therefore interesting
to identify the region of TDMA optimality and provided the relevant conditions. We first
derive conditions requiring knowledge of the interference factors ay, € (0,1] only. These
conditions can be used as practical design rules, especially in distributed resource allocation
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scenarios. Formally, we have that

Lemma 3.4: If ax, > 0.5, the optimum power allocation is P = P and Py =0 (TDMA

transmission mode).
Proof. The proof is given in Appendix 3.G. (|

Corollary 3.3: A sufficient condition for TDMA optimality is

_ 1 \? 1\’
ag, + ak, > 1 or equivalently (6082 91> + <6082 92> >3 (3.28)

where 0; = £ (l_lki,qi) is the angle (misalignment) between the direction of the normalized
channel hy, = hy,/ ||hy,

and beam q;.

Proof. The first condition is a trivial result of Lemma 3.4 by summing up the interference
factors and the equivalent second relation is derived by using oy, = tan? 6;. O

Additionally, if BGI knowledge is allowed (strategy 3), a (sharper) sufficient TDMA
optimality condition is the following:

Lemma 3.5: The optimum power allocation is TDMA mode (P = P) if

Pnkll > 1—Oék1 —Oékz

(3.29)

o2 = oy Uy

Proof. The proof is given in Appendix 3.H. O

3.7.2 Beam Power Allocation for more than two beams

For the general case of B > 2 beams, an analytical treatment of (3.20) does not unfortunately
seem tractable, because of the lack of convexity. Therefore, we propose here a suboptimal
- yet efficient - iterative algorithm that aims to increase system throughput by allocating
power over the beams. The algorithm tries to identify the extreme points of the sum rate and
find the power vector P that maximizes (3.20). The extremum of the sum rate function can
be found analytically using Lagrangian duality theory and considering the Karush-Kuhn-
Tucker (KKT) conditions. Let WloG B = M and define the objective function

M
Pmnk m
P) = lo 1+ = 3.30
o)~ g2< 02+Z#mpjnm) (330)

In order to solve the optimization problem

M
a P), subject to P > 0, P, =P 3.31
max G(P),  subj > mZ::l (3.31)

we may formulate the Lagrangian function as

M M
L, 1,v) =G(P) + Y VP — o <Z Py — P) (3.32)
m=1
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where v > 0 and p > 0 are dual variables. The cost function is neither convex not concave
with respect to { P, }M_,, therefore a global optimal solution for any channel model is hard
to obtain. However, KKT conditions are necessary for extremum, whether local or global,

of G(P). By differentiating with respect to Py, we find

oG(P)
0P,

FUn—p=0 1<m<M (3.33)
Pp>0 1<m<M

P—mezo

The KKT conditions are necessary and sufficient if and only if the Hessian of (3.32) is a
negative definite matrix. For such class of channels, a global maximum is identified through
the KKT conditions above. For general channels, the KK'T points can be a global or local

maximum, a saddle-point, or even a global or local minimum.

Iterative Beam Power Control Algorithm

Performing transformation of the primal problem (3.20) into its dual and solving the latter
by KKT conditions does not guarantee global optimal primal solution. As the primal is not
a convex optimization problem, there could be a duality gap. Nevertheless, we propose an
iterative algorithm, inspired by the iterative water-filling (IWF) algorithm [73] and the KKT
solution of (3.31), as a means to identify the extreme points on the boundary of PM. In
this Iterative Beam Power Control Algorithm, each user iteratively maximizes its own rate
by performing single-user water-filling and treating the multiuser interference from all the
other users (beams) as noise. Clearly, our algorithm does not seek to find a global optimum,
however it can provide significant sum-rate improvement.

Algorithm I Let P(*) be the initial point and Z(P®) = 0%+ Y., P\, ; be the inter-

ference function at i-th iteration. The steps of the algorithm are summarized in Table 3.1.

Iterative Beam Power Control Algorithm

Step 1 (Initialization) Set P(©) =0

Step 2 For iteration i = 1,2,..., compute Vk,, € S:
)\](C’L) _ Nkmm _ Nkmm

m  Z(PG-D) T Y PJ(iil)”]kjj

Step 3 (Water-filling): let 7(9) be the solution of:
7 = arg max Z log, (1 + Trl’ﬂ)‘fji)
k€S

7"20;2 m Tm <P
m

Step 4 (Update): let P = 7()

Table 3.1: Iterative Beam Power Control Algorithm for Sum-Rate Maximization

Some observations are in order:
(1) _ Ny m.
= -
fern (02+Zj¢7n Pj(l )nknlj)

Pj(i_l), j # m, it is kept fixed and treated as noise. Given the total power constraint P, the

At each iteration 7, once A is calculated for each user k,, using
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‘water-filling step’ is a convex optimization problem similar to multiuser water-filling with
common water-filling level. Thus, all transmit powers in P assigned to beams are calculated
simultaneously in order to maintain a constant water-filling level. The algorithm computes
iteratively the beam power allocation that leads to sum rate increase and converges to a
limit value greater or equal to the sum rate of equal power allocation. Formally, the power

assigned to beam m at iteration i yields P = =[u—1/N; l) , with Z — 1/ l) =P,

km€S
where 1 is the common water-filling level. The beam power control for strategy 3 assigns

transmit powers over the beams according to the iterative solution when the achieved sum
rate is higher than that of the boundary points.

Convergence Issues As stated before, no global maximum is guaranteed due to the
lack of convexity of sum-rate maximization problem. Therefore, we do not expect that the
convergence point of the iterative algorithm be generally a global optimal power solution.
Interestingly, it can be shown that the convergence leads to a Nash equilibrium, when
considering that each user participates in a non-cooperative game. The convergence to an
equilibrium point can be guaranteed since Z(P) is a standard interference function [73,74].
The proof of existence of Nash equilibrium follows from an easy adaptation of the proof
in [75]. However, the uniqueness of these equilibrium points cannot be easily derived for the
case of arbitrary channels.

Let us now derive analytically the convergence point of the 2-beam case using the itera-
tive algorithm and compare it with the optimal beam power solution given by Theorem 3.2.

At the steady state, say iteration s, we have that

(=) _ () M) =
Brl=mn= 0 o B et (3.34)
P(S) = - 1/)\(5) )\(5) _ Mko2
2 ko k2 = PED, o2
and p = £ 5t o >\k +5x— from the sum power constraint. Upon convergence of the algorithm,

we have that Pl-(s) = Pi(S D i = 1,2, which results into a system of equations AP” = b
with

2 1 1

A — 2_77k21/77k22 77k12/77k11 and b = P+o Mka2 Nyt
77k21/"7k22 2_nk12/nk11 P+U2 1 — 1

M1 Mko2

For det(A) # 0 — oy, # 1 and ag, # 1, we have that P7 = A~!b, giving the following
‘water-filling’ solution

Py (M1 — Mia2) + 02 (Mg 1 — Miey2)

P =
20k 1Mk22 — Mheo2Mkr2 — Mo 17ky 1

and P,=P— P (3.35)

It can be observed that (3.35) is different from (3.25a). Fortunately, it still provides a
heuristic power allocation algorithm and as shown through simulations in Section 3.9, there
is not a significant reduction in sum rate by allocating the power over beams using this

algorithm.

Reinterpretation in terms of Successive Convex Approximation

In this section, we resort to Geometric Programming (GP) [72] which represents the state
of the art in continuous power control for non-convex problems. The GP approach has
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become a very popular and powerful technique as it provides efficient solutions in power
control problems with non-linear objective functions and specific SINR, constraint, by re-
vealing the hidden convexity structure. Furthermore, the proposed solutions are very fast
and numerically efficient, often exhibiting polynomial time complexity. In particular, we
capitalize on the so-called successive convex approzimation (SCA) technique [72,76], which
is shown to be convergent and turns out that it often computes the globally optimal power
allocation. Interestingly, the heuristic iterative algorithm proposed in Table 3.1 finds an
equivalent interpretation, since applying SCA to our beam power control problem results in
the same iterative algorithm. We first lower bound log(1 + SINR) in the objective function
for some a and b [76]:

log(1 + SINR) > alog(SINR) + b (3.36)

Applying (3.36) into the optimization problem (3.20) results in the relaxation

M M
. - _
max Tog 2 mZ:l (amlog (SINRk, m(P)) + b))  subject to mZ:l P, <P (3.37)

which still remains a non-convex problem since the objective function is not concave in P.
However, using the transformation P,, = log(P,,) we have the following concave maximiza-

tion problem:

M M
max Z (am log (SINkam(eP)) + bm) subject to Z efm < p
P m=1 m=1

Defining the Lagrangian function as

M ~ M -
DEPA) =Y (am log (SINkam(eP)) + bm) - Amz::l (er - P) (3.38)

m=1

we consider the dual problem (3.38) that is In/\in max D(P, \). The dual solution of the inner
P

maximization problem is given by the stationary point of the Lagrangian function (3.38)

with A fixed. Differentiating wrt P,, and applying the inverse transformation P, = e/ we
form the following fixed-point equation
oD a
—_—= = O = Pm - m»,]k ™
P, m

A+ R SR TR

(3.39)

Remarkably, this fixed point-equation provides the same power allocation algorithm as in
Table 3.1 for a,, = 1,¥m (wlog) where the powers can be updated iteratively using (3.39).
However, we note that a zero duality gap cannot be guaranteed formally due to lack of con-
vexity, implying that no theoretical argument can show convergence to the global optimum
for general class of channels.

3.7.3 Beam Power Control in Specific Regimes (B > 2)

The apparent non-convexity of the B-beam case can be alleviated in certain SINR, (inter-
ference) regimes, as a hidden convexity of the beam power allocation problem appears. We
shall consider the beam power allocation for B = M beams in four cases: 1) the high
SINR regime, 2) the low SINR regime, 3) approximation by the arithmetic-geometric means
inequality, and 4) the symmetric interference regime.
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High SINR regime

In the high SINR regime, which corresponds to SINR values higher than 0 dB, the ap-
proximation log(1 4+ z) & log(x) can be applied. In that case, the objective function G(P)
becomes

M M
1
G(P) =~ Tog2 mz::llog (SINRg, m) = log, (H SINkam>

m=1

— log ﬁ P m (3.40)
— log, .
et Y Py, +0°

j#m

A similar result has previously observed in [72] in the case of code division multiple ac-
cess (CDMA) power control. The optimum power allocation solution can be found using
Geometric Programming, as the approximate high-SINR sum rate is a concave function of

log P,,,.

Low SINR regime

In the low SINR regime, the sum rate is approximated by applying Taylor first-order series
expansion, i.e. log(1 + x) ~ 2. In that case, the objective function becomes

M M
G(P) = > log,(1+SINRy,m)~logye Y  SINRk,,m
m=1 m=1
M
Pmnk m
= logye Z — (3.41)
m=1 Z Pjnkmj + 02
j#m

The objective function (3.41) is convex in each variable P, since
P < Pty 2P 2,
3 M = Pt > (3.42)
Pz, it PjMhj + 02 : 2
m=1 = mti (Zj;ém Pjiiej +0 )

Therefore, the optimal beam power control strategy is found by the KKT conditions and

can be solved numerically using efficient interior-point methods [20].

Arithmetic-geometric means approximation

From the arithmetic-geometric means inequality [77], the sum rate can be upper bounded
as

m=1

M
R(P) = log2<H(1+SINka7m(P))>

1 M Pmnkmm

4+ _ "~ miFmm
M m=1 o? + Z Pjnkmj
Jj#m

IN

Mlog, | 1 =Gacum(P) (3.43)

where the inequality is sharp for SINRy,; = SINRy,;,Vi,j € S. Since the logarithm is
a monotonically increasing function and the argument of the log-function of Gagn (P) is
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convex wrt each P, (similarly to the low SINR regime), a closed-form global optimal solution
can be derived. The sharpness of the above sum-rate approximation is quantified by the

difference § = Gagu(P) — R(P). For h = % > 1 the following inequality
stands !
M
0<6 < —K'(h1) (3.44)
log,

1
where K (h,1) = log [ —2"——
eloghh—=1
The upper bound is tight for equal SINR values, and the approximation is better when the

spread of (1+SINR) values is small (h — 1).

is the first derivative of the Kantorovich constant [78].

Symmetric interference regime

We restrict here ourselves to the case of symmetric interference networks, in which all users
have the same interfering beam gains. This scenario corresponds to the case where the
selected users are situated at about the same distance from the interfering beams. Hence,

for ny,. ;i = Nk,.i, Vi, j # m, the achievable sum rate is given by

M P
R(S,P) = > log, (1 + - ) (3.45)

O [Mem + Qb Dot L

with ay,, = Xmi 4 - m. Since the objective function (3.45) is concave in P, and the fea-

-

sible region is convex, the KKT conditions imply that there exist a unique Nash equilibrium

that can be achieved using iterative water-filling.

3.8 Beam Power Control with SINR feedback

Suppose now that we have a harder rate constraint for the second-stage feedback. Specifi-
cally, we adopt strategy 4 in the second stage, assuming thus that the scheduler has access
only to the same amount of feedback information as in [9], namely 7,; = v, = SINRg, m
(1 scalar). Nevertheless, we further exploit this scalar information in view of rendering the
precoding matrix more robust with respect to cases where not all M users can be served
satisfactorily simultaneously with the same amount of power. This can be viewed as a
low-complexity, low-feedback variant of the two-stage linear beamforming framework. The
major challenge here is that when only SINR feedback is available, the transmitter does not
have access to BGI and thus it cannot estimate the precise received SINR and inter-user
interference if the transmit beam powers had been allocated differently. Therefore, it can-
not explicitly maximize the instantaneous sum rate by allocating the power unequally over
the beams. We then resort to a power control strategy based on the maximization of the

expected sum rate.

On/Off Beam Power Control

We propose a simple power allocation scheme, coined as On/Off Beam Power Control, in

which the transmitter takes a binary decision between:

e TDMA mode toward one selected user (the one with maximum ~; from stage 1).
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e SDMA where all random equipowered beams are active, as in [9)].

The scheduler, based only on SINR feedback, compares the instantaneous achievable SDMA
sum rate with the expected TDMA rate, and selects the transmission mode that maximizes
the system throughput.

M

Let Rspma = Z log(1 + SINRg, ) denote the achievable SDMA sum rate that can be

explicitly calculg‘;eld at the BS, and Rrpma denote the expected TDMA transmission rate.

The expected TDMA rate can be efficiently calculated by considering the statistics of the

BGI of the user, say ki, with maximum ~,, conditioned to the feedback information g, .

Formally, the distribution function of s = Ln,1 (BGI of the highest SINR user) is given

by

Fy (% (x/7, — M)
Fsinr (Vky )

Fy(x) =Pr{s < |y, } = (3.46)

— 202
where Fy (x) is the CDF of the interference Y = 2#1 Mk, and Fgnp(z) =1 — w
The On/Off Beam power control scheme results in the following binary mode decision de-
noted as F:

TDMA if AR >0
{ Ak (3.47)

] SDMA if AR<0

where AR = Rrpma — Rspma-
For the expected TDMA rate Rrpuma = E {log, (1+ Lnk,1)} with Fp () = (1 - e*””)K,
the following closed-form expression can be derived:

Proposition 3.3: For any values of P, M, and K, the average rate of TDMA -based random

beamforming is given by

K

1 K 2
R =— —1)kekr”/PEi(—ko? /P 3.48
TDMA log2;<k>( )e i(—ko”/P) ( )
where Ei(x) = — [7 eTftdt is the exponential integral.
Proof. The proof is given in Appendix 3.1. (|

3.9 Performance Evaluation

We evaluate the sum-rate performance of the proposed beam power control algorithms
through Monte Carlo simulations assuming i.i.d. flat fading Rayleigh channels across users
and transmit antennas. We also consider that B = M beams are generated. The achieved
sum rate is compared with conventional SDMA-based random beamforming [9] where equal
power is allocated over the beams.

We first assess the performance of enhanced RBF with perfect second-stage CSIT feed-
back (strategy 1). In Figure 3.6 we compare the sum rate performance of the two-approach in
which the second-stage precoding is calculated based on full CSIT. As expected, the MMSE
precoder applied to a set of quasi-orthogonal users outperforms significantly the single-stage
random beamforming. The performance gain of 1.7 bps/Hz of MMSE beamformer can be
further increased if optimal power allocation is used.



3.9 Performance Evaluation 61

Sum Rate [bps/Hz]

—6— single-stage RBF
6 —&— Two-stage RBF with Optimal Power Allocation|

——~— Single-stage single-beam RBF

30 40
Number of Users

Figure 3.4: Sum rate versus the number of users for Optimal Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB.
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Figure 3.5: Sum rate versus average SNR for Optimal Beam Power Control (strategy 3)
with M = 2 transmit antennas and K = 10 users.

We then assess the performance of beam power control with BGI second-stage feedback
(strategy 3). In Figure 3.4 we present the sum rate achieved using optimal power allocation
versus the number of active users K for the 2-beam case and SNR = 20 dB. Single-beam
random beamforming refers to the scheme proposed in [53] where only one random beam is
generated (TDMA) at each slot. The gains of optimally allocating power across beams are
more pronounced for systems with low to moderate number of users (up to 30), whereas for
K increasing, the benefits of beam power control vanishes as the optimal solution advocates
expectedly the use of equipowered beams. Figure 3.5 shows a sum-rate comparison as a
function of the average SNR for K = 10 users, illustrating that beam power allocation
prevents the system from becoming interference-limited. Power control allows us to switch
off beams, thus keeping a linear capacity growth in the interference-limited regime at high
SNR by converging to TDMA.
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10

A AN A
A A A A A A A
PN

Sum rate (bps/Hz)
)

—%— Two-stage with full CSIT and MMSE
—%— Two-stage with full CSIT and ZFBF
—&- Single-stage RBF

—£~ TDMA (single-beam RBF)

2 I I I I
0 50 100 150 200 250

Number of users

Figure 3.6: Sum rate comparison of different second-stage precoders (strategy 1) versus the
number of users for M = 2 and SNR — 10 dB.
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Figure 3.7: Sum rate versus the number of users for Iterative Beam Power Allocation and
Optimal Power Control with M = 2 transmit antennas and SNR = 10 dB.

In Figure 3.7 we compare the achieved sum rate difference between the optimal power
allocation and the power solution given by our iterative algorithm at SNR = 10 dB. Use
of the iterative algorithm, despite suboptimal, results in negligible throughput loss at all
ranges of K. The performance of the iterative power control is further evaluated in Figure
3.8 for a 4-beam downlink showing substantial sum-rate enhancements for practical number
of users.

We then evaluate the results of the on/off beam power control (strategy 4), which uses
the same amount of feedback as the conventional RBF [9]. In Figure 3.9 we plot the
sum rate versus the number of users for M = 2 transmit antennas and SNR = 10 dB.
The scheme is switching from TDMA mode at low K (all transmit power is given to the
highest SINRy, . user) to SDMA-based RBF with equal power allocation. We also observe
that the sum-rate gap between the optimal power control (with second-stage feedback)
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Figure 3.8: Sum rate versus the number of users for Iterative Beam Power Allocation with
M = 4 transmit antennas and SNR = 10 dB.
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Figure 3.9: Sum rate versus the number of users for On/Off Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB.

and on/off power control (no additional feedback) for K < 20 users is approximately 0.4
bps/Hz. In Figures 3.10 and 3.11 we consider a 4-beam RBF scheme and show the sum rate
performance of on/off beam power control as a function of average SNR and the number
of users, respectively. Although the throughput curve of conventional RBF converges to a
finite ceiling at high SNR, the TDMA-SDMA binary decision capability of the beam on/off
scheme provides a simple means to circumvent the interference-limited behavior of RBF with
no extra feedback. We note also that TDMA mode is generally preferable from a sum-rate
point of view in sparse networks, and the range of K in which TDMA is beneficial increases
for SNR increasing.
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Figure 3.10: Sum rate versus average SNR for On/Off Beam Power Control with M = 4
transmit antennas and K = 25 users.
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Figure 3.11: Sum rate versus the number of users for On/Off Beam Power Control with
M = 4 transmit antennas and SNR = 20 dB.

3.10 Conclusion

This chapter focused on SDMA-based random beamforming techniques. We first studied
conventional random beamforming and provided an exact characterization of the expected
sum-rate, as well as of the capacity growth in the interference-limited region. Main outcome
of this analysis is that the number of beams that should be allocated non-zero power has to
be adapted depending on the system average SNR and the number of active users K in the
cell.

Then, we introduced a two-stage scheduling and linear precoding framework, which
divides the scheduling and the precoding design stages into two steps. Based on this de-
coupled approach, we proposed a scheme coined as enhanced random beamforming. In the
scheduling phase, RBF is exploited to identify good, spatially separable performing low-rate
feedback user selection. In the second stage, additional finite rate CSIT may be requested
to only the pre-selected users in order to refine the final precoder. Several beam power con-
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trol strategies, with various levels of complexity and feedback load, are proposed in order
to restore robustness of RBF in sparse networks. Their sum-rate performance is assessed,
revealing substantial gains compared to RBF for systems with low to moderate number of
users, at a moderate or zero cost of extra feedback.

Throughout this chapter, the users’ channels were considered temporally and spatially
uncorrelated. In the following chapter, we investigate how information and redundancy hid-
den on the channel structure can be exploited by the scheduler in temporally and spatially-
correlated channel.
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APPENDIX

3.A Proof of Lemma 3.1

From Lemma 3 in [9], we have that for any values of P, M, and K, the average sum rate of
multi-beam RBF satisfies

Il S RRBF S IQ (349&)
with

I = M/ logy(1+2)dF¥(z) I, = M/ logy (1 + x)dF ¥ (2) (3.49b)
1 0

We first evaluate the upper bound as follows

o @ M [*1-FE(2)
L, = M log, (1 d(FE(2) - 1) ¥ d
2 /0 0gy (1 +z)d(F™ (z) — 1) g2 J, P

K
e~ /P
M oo 1 — (1—W)
dx

log2 J, 1+
K
w M K ,m/oo e~tk/p
= — -1 ——d 3.50
10g2,§<k>( A A T (3.50)

where (a) is obtained by using the integration by parts and (b) follows from binomial
expansion. The closed-form expressions of the integral in (3.50), which then gives (3.1b),
can be obtained by the following formula (Schlémilch function) [79]:

S(v,z) = / (1+t) Ve ?dt = 221" T (1 —v,2) = z_”/2_162/2W,l,/27(1,,,)/2(z) (3.51)
0
where Wy, ., (2) is the Whittaker function and I'(a, z) the upper incomplete gamma function.

To obtain a lower bound, we use the fact that Iy = I, — M fol logy (1 + 2)dFE (2) = A — «,

which results in (3.1c) using similar steps as for Is.

3.B Proof of Lemma 3.2

Starting from (3.50), we have

K
M K > ek/p
R & -1 k+1/ ——d
HBE 1og2kz_0(k>( ) o (1+ )1k z
@ M &K (14 a)k/e
< = k+1/ Ara) 7
) 1°g2,§<k>( UL e aoere®
_ M XK: K (=11 P _ M pH i
log2 &=\ k E(M—-1p+1) log2(M—-1)p+1

where (a) follows from (1 4 z)” < e" for any real x,r > 0.
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3.C Proof of Lemma 3.3

When P — 0, the approximation SINRy, ,,, = p |hkqm|2 with CDF Fj(z) =1 — e~*/P. The

average sum rate is given as follows

- MK [ . .
Riow = M/ log, (1 + 2)dF (x) = logy(1 4+ z)e” 7 (1 —e #)"ld
0 plog2 J,
K
(a) MK K k/oo _ @(kt1)
= —F -1 I 1 d 3.52
plongZ_%)(k)( ) 0 oga(l+a)e” 7 dz (3.52)
K ~SRi(— kst
_ _MKZ K (_1)k+1Ll(p)
log2 =\ k k+1

where (a) follows from binomial expansion.

3.D Proof of Corollary 3.2

Expanding the logarithm in (3.52) to second-order Taylor series, i.e., log(1 + z) ~ z — 22 /2

K
MK K > z?
R ow = —1 k N 7I(k+1)/pd
: plog?z_:(k>( )/0 <x 2>e !
P
2

0
p
log 2 K

we have

where (a) is obtained by neglecting the second-order term.

3.E Proof of Theorem 3.1

We use Dziubdziela’s Theorem [80] with ax = K/ (=1 and bx = —1. We first evaluate
the following functions:

- 1

and B
3 e—K6K(LE) ] -1
9, Kok (2)) =< g5 oo ([Kox@] ™" [Kéx@] 2\ . (3.54)
e s (L éfl))]! = (§f2>]! jz2
and
1 7logG1(z) - 1 x—MJrl -
O(z) = |—— I le Ydw| = |[—— Ile™vdw| =0 (355
(=) G — 1) /stm woeo (j—l)!/“m woe (3.55)

In the following, we apply the theorem to find out how Fj.x(z) is close to its 1.d. at
z = (log VK)/M=1 and 2 = (logvV/K)~1/(M-1),
Substituting = (log vVK)M=1 and z = (log vK)~ /M=) in I (z), we obtain

1

7] ((log VE) 1) = % > oy~ O/ e ) (3.56a)
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and
i LN v’ (ogVE) ((log VE)!)
Thus,
}T{' ((10g\/§)ﬁ) -1 ((logﬁ)fﬁ)} >1-0(1/1log K) (3.56¢)
Then, for z = (log VK)Y/™=1  we have dx ((log VEK)/(M-1) = __1 hence

Klog VK’
K5 ((log V) /M=) g(j, Ko ((log VE)/M~1)) = o(1/K)

Therefore, we have

Fi.xc (K log VE) ™7 1) = T{((log VK)

M11)+o(%>‘ =0 (%) (3.57)

_ - - N — - _ logvVK
In the same way, for z = (log VK)™V/M=Y we have g ((log VK)~V/(M-1)) = levk
hence
Kb ((log VE) ™M= D)g(j, Ko ((log V) /M=) = o(1/K)

Therefore, we have

Fae <%> - —T{((bg\/?)_”fll)jto(%) :o(@)

(3.58)
Using (3.56¢),(3.57), and (3.58), we obtain

1

Fix ((Klog VE) 7T — 1) B <logﬁ> R >1-0(1/logK) (3.59)

K

or equivalently

1
logvVK) " 1 1
—1< e < — > 1 — [ .
Pr ( ) 1< X,k < (K log \/K) 1y>1-0 g i (3.60)

3.F Proof of Theorem 3.2

Since J(P1) is not always concave in P;, the P that maximizes the objective function
is either the boundary points (P4 = 0 and P; = P) or the solutions corresponding to
0J /0P, = 0. By differentiating the objective function with respect to P;, we have

oJ

-~ — AP?+ BP, +T 61
aPl 1+ 1+ (36)

where

A= 77k1277k22(77k11 - 77k12)(P77k21 + 02) =+ 77k1177k21(77k21 - 77k22)(P77k12 + 02)

B = i1 (P2 + 0%) (Piky1Nky2 + 203107 — 1ky207)
+ 77k22(P77k12 + 02)(P77k21 + 02)(2777612 - nkll)



3.G Proof of Lemma 3.4 69

[ = 0102 (Piigy2 + 02) (Pligy2 + 02) = Nig2(Piigy1 + 02) (P2 + 02)?

Setting 5 aj = 0, the possible values of P; that maximize the throughput are the real-valued
roots of the second-order polynomial AP? + BP, + T = 0 (for A # 0) that satisfy the
constraint Py € [0, P] or P, = —T'/B for A = 0. Hence, the optimum P is the value among
the boundary points (P, = 0 and P, = P) and the extreme points (roots of the polynomial)
that maximizes J(Py), which concludes the proof.

3.G Proof of Lemma 3.4

Let J;(P;)(i = 1,2) represent the individual rate of user k; given as

Ping,i P L,
i(P) =1 1+ - =1 1+ ,
j( ) 082 ( 02+(P_Pi)nkij) 082 < 02/nkii+aki(P_‘Pi)) ! 7&1
(3.62)

The sum-rate maximizing beam power allocation problem can be rewritten as

gla;)xz jl(Pl) + jQ(PQ) subject to P1 + PQ =P
€

We investigate now the behavior of the individual user rate objective function. By calculat-
ing the first and second derivative of J;(F;) we have

op, _AGa+p) " oPz @ (3.63)

3

with A = ay, (P — P;) + 0% /g, di = (2o, — 1)A + ay, P;, and dy = A?(A + P)Q. The
sign of dy determines the convexity or concavity of J;(P;). If dy >0 — P; >

Ji(P;) is a convex function of P;, and concave otherwise. Since A > 0, for ak > 0. 5
the objective function J;(P;) is convex Vi, i.e. 8‘77'(13) > 0, hence the sum of two convex

functions J1(Py) + J2(P,) is maximized for P = P and Py =0.

3.H Proof of Lemma 3.5

Let Rtpma = logs (1 + Rm“l) denote the system throughput for TDMA mode. TDMA is

optimal when Rrpyma > R(P) = log, (CEP ;) > 0, where

B(Pl) = (1 + Pﬁkll/Uz)(Paklnkﬂ + 02)((P - Pl)aklnkll + 02)
C(P1) = (Par, k1 + Pine1 (1 — ag,) + 0%) (Prky2 + Pinjkg2 (i, — 1) + 07)

The region of TDMA optimality depends on the convexity of U(P;) = B(Py) — C(P1). By
differentiating twice we have that

0% (P, P
7(21) = 21702 | e 1Oz + Qg1 Uz — 1 (3.64)
0Pf o

For 2 ;’1551) < 0, U(Py) is concave with respect to P; (¥(P;) > 0), since ¥(0) > 0 and

U (P) = O which results in (3.29).
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3.1 Proof of Proposition 3.3

The average sum rate of TDMA-based random opportunistic beamforming is given by

_ P |hyq|?
R=E {10g2(1 + max el

} = [ togs(1+ ) (a)ds -
0

(a) 1 >~ 1 K /OO 1 —20?/P\K
Q 1— FE(2))de =1 1—(1—e® d
o5 | TR0 FE @) = togye [ - (1= e s
K zko? K
(b 1 K k/"oe_ P 1 K p ko ko?
v 1 dz = _ ke Ei(—-Z
1og2kz_%<k>( A P 1og2k§ p )1 T B

where integration by parts is applied to obtain (a) and (b) follows from binomial expansion.



Chapter 4

Exploiting Channel Structure in
MIMO Broadcast Channels

4.1 Introduction

Exploiting multiuser diversity by selecting at each scheduling window the user(s) with the
most favorable channel realizations is known to maximize the sum rate of multiuser systems.
However, several practical implications may limit the applicability of such opportunistic
scheduling schemes. Several opportunistic schemes required complete channel knowledge in
order to fully benefit from multiuser diversity gains. This may lead to prohibitive feedback
requirements in FDD systems and/or lack of robustness to CSIT errors in TDD setups. The
significant feedback overhead in the uplink channel can be alleviated by feeding back coarse,
quantized CSIT. The feedback load can be also reduced by allowing only users likely to be
selected, i.e. users with large CQIs, to access the feedback channel.

For simplicity, many contributions in the limited feedback literature adopt a spatially
white, block fading channel model, in which each channel realization remains constant over
one block and changes independently in the next block. Nevertheless, the block fading
channel model is rather pessimistic in practice, since temporal and spatial correlation often
exists. In this chapter, we focus on such correlated channel scenarios and show that this
channel structure, either in time or in space domain, can be seen as an additional degree
of freedom to be exploited during the scheduling phase. We show this additional channel
information can be used for significant throughput increase and/or feedback reduction and
compression.

In time-varying channel configurations, the inherent temporal redundancy can be ex-

ploited for:

e Feedback aggregation: information derived from low-rate feedback channel can be
cumulated over time to approach the performance of full CSIT scenario.

71
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e Feedback compression: the channel can be seen as a Markov source and redundancy
is exploited to reduce feedback close to rate of innovation.

In spatially-correlated channels, long-term statistical channel knowledge can reveal infor-
mation about the mean spatial separability of users, thus it contains relevant information
for the SDMA scheduler. For instance, two users in very different areas of the cell are more
likely to be separable than closely located users because their channels lie in two distinct
cones of energy as seen by the BS, if reasonably limited angle spread at the BS is assumed.
Note that the angle information is implicit in the transmit correlation matrix of the user’s
channel and needs not be estimated. Moreover, statistical CSIT can be easily obtained by
the mobile and fed back to the transmitter while causing almost negligible per-slot feedback
overhead.

The remainder of the chapter is organized as follows: in the first part, we focus on time-
correlated channels and address the question how temporal correlation can significantly
improve user scheduling decisions and achieve near optimal sum rate. Specifically, we pro-
pose a scheme that builds on random multi-beam beamforming [9], in which channel memory
is exploited as a means to successively refine the random precoder selections. In the second
part, we address the problem of SDMA scheduling and beamforming with limited feedback
in spatially-correlated channels. Several user selection strategies exploiting statistical CSIT
are investigated. We show how second-order statistical information is combined with in-
stantaneous CQI and derive a coarse channel estimation framework. Finally, we propose
a low-complexity, interference-bounded SDMA eigenbeamforming scheme, which relies on
multi-user interference estimates (bounds).

4.2 Exploiting redundancy in time-correlated channels

4.2.1 User Selection in time-correlated channels

Consider that the channel exhibits correlation from one scheduling time slot to the other.
Evidently, in such configurations, the scheduling decisions exhibit in turn some form of
correlation over successive intervals. In other words, channel correlation in the time domain
creates temporal redundancy, which can be exploited as means to either reduce feedback
rate or increase the system throughput. If the channel varies slowly, then clearly the best
user in terms of channel quality at current time slot 7 is highly likely to be the best user
at the subsequent time slots 7 4+ T,.. Therefore, the fact that previously selected users
are highly likely to remain good can be further exploited during the user selection process.
Temporal correlation has been exploited in packet switch design, either by using a maximum
weight matching algorithm [81] or by a randomized algorithm exploiting temporal correlation
of queue states [82]. In [83], the authors proposed a randomized scheduler that exploits
temporal correlations in slow fading channels.

4.2.2 Beamforming and Scheduling exploiting temporal correlation

Since scheduling and linear precoding is the leitmotiv of this dissertation, we address the
problem how to exploit temporal correlation and enhance the sum-rate performance of low-
complexity multiuser transmission techniques in MISO broadcast channels. We present a
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novel SDMA scheduling/precoding scheme, coined as Memory-based Opportunistic Beam-
forming (MOBF). The scheme builds on multi-beam random beamforming [9] presented in
Section 2.9.3, and exploits memory in the channel as a means to fill the gap to sum-rate
optimality.

In a nutshell, MOBF replaces the random selection of precoding matrices with a combi-
nation of random and past feedback-aided beamforming matrices that are kept in memory.
The scheme can be seen as successive refinement of the precoding matrix inside the coher-
ence time of the channel. When the coherence time of the channel is high (e.g. large Doppler
spread), MOBF approaches the sum capacity of optimal unitary precoder with perfect CSIT.
For uncorrelated i.i.d. channels, the performance of the proposed scheme remains superior
to that of [9] at the expense of moderate additional feedback (two SINR values per user
instead of one).

Interestingly, the scheme can be seen to also relate to recent useful results [84], presented
to improve the delay performance of the single-beam opportunistic beamforming [53]. In [84]
scheduling is limited to one user and temporal channel correlation is exploited through the
use of a fixed set of beams determined in advanced. This scheme does not automatically
reach the performance of a full CSIT scenario, since the temporal correlation was used to
restore fairness and users with long waiting times are prioritized. Another scheme that
exploits temporal correlation in orthogonal frequency division multiple access (OFDMA)
systems have been proposed in [85].

4.2.3 Memory-based Opportunistic Beamforming

As stated before, MOBF builds on random beamforming (cf. Section 2.9.3), in which the
transmitter generates at each time slot ¢t a B x B (B < M) unitary precoding matrix Q(¥)
randomly, as a means to reduce the feedback burden and complexity requirements, i.e.
W(t) =Q(t) =[qi(t)...qs(t)]- In conventional RBF [9], a new random unitary precoding
is generated and used for serving the selected users at each time slot. Hence, any kind of
structure in the physical channel is not exploited. Memory-based Opportunistic Beamform-
ing attempts to exploit memory in the channel by making at each time slot an improved
selection of the unitary precoding matrix based on past CQI information. Temporal corre-
lation is exploited by memorizing the previous best scheduling decision(s), i.e. the group
of selected users S for a random precoder Q(t), and comparing it with the next random
matchings Q(t+ i) for i =1,...,T..

Specifically, we consider that the BS has a codebook (set) of ‘preferred’ unitary matrices of
size U:

Q:{Q17Q27"'7QU} (41)
with @ CU(M, M), where U(M, M) denotes the unitary group of degree M, i.e. the group

of M x M unitary matrices defining the complex Stiefel manifold. The notion of ‘preferred’
is used in the sense of (relative) maximization of the sum rate among past used random
beamforming matrices.

At each time instant ¢, the unitary matrix of the preferred set, denoted Q and defined as the
precoder that has provided the highest sum rate in previous time slots, is applied and its sum
rate is measured (updated) under current channel conditions. The achievable sum rate of Q
at time slot ¢ + 1 is compared with that of a new, randomly generated unitary matrix Q,.,
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and the beamforming matrix that offers the highest sum rate is selected for transmission. In
the phase of updating the codebook Q, the sum rate value of Q in the codebook is updated,
and the newly generated random precoder Q, is added into the codebook if and only if its
sum rate is higher than the sum rate of the codebook matrix with the minimum sum rate.
Let S; denote the set of selected users at each scheduling window ¢ and H(S;) be the
corresponding submatrix of H = [hY ... hZ]T. With R(Q, S;) we denote the sum rate when
unitary beamforming matrix Q is used for serving the users belonging to &;. The steps of
the proposed algorithm are outlined in Table 4.1.

Table 4.1: Memory-based Opportunistic Beamforming Algorithm

Memory-based Opportunistic Beamforming (MOBF) Algorithm

First phase: (‘best’ unitary matrix selection)

Step 0 Initialize codebook Q = {Q1,Qq,...,Qu},
each with sum rate R(Q;),i=1,...,U

At each time slot ¢,

Step 1 Generate a new random precoder Q,.

Step 2 Select Q € Q: Q = arg anzené R(Q:)

Step 3 Apply Q, collect updated feedback from the users

and calculate R(Q, S;11)

Step 4 If R(Q,S;11) > R(Q,,81), Q* — Q , else Q* — Q,
Second phase: (Update of codebook Q)

Step 5 Update the value R(Q) in the set Q

Step 6 If [R(Qr) > R(Qmm ]7 Qmin - Qr; where Qmin = arg énéng R(Ql))

Some comments are in order: The algorithm outlined in Table 4.1 presents a general
framework for memory-based, randomized scheduling in slow time-varying channels. First,
in practice, at each time slot ¢ the set Q contains only one precoder matrix (U = 1), i.e.
the one that has provided the highest system throughput up to the current time instant.
Secondly, although MOBF is based on RBF for precoding and user selection, our proposed
scheme is not only restricted to such systems. The idea of memory-based precoding can be
also applied to systems where the users utilize a codebook to quantize their channels and
feed back quantized CDI. If the channel is strongly correlated, the above concept can be
used to reduce the feedback load by decreasing the feedback reporting rate. At each slot,
additional CDI is then fed back only if it is sufficiently different than the one previously
reported. Alternatively, if we enforce CDI reporting at each time instant, users may have the
possibility to refine their CDI information at each time slot, using hierarchical codebooks.
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Performance Analysis

The underlying idea behind the sum-rate analysis of MOBF is the following: the process
of memorizing at each scheduling slot the sum-rate maximizing precoding matrix can be
seen as a random search of beamforming configurations in the space of orthogonal unitary
precoders. Evidently, the performance of such scheme depends on the distribution of the
sum rate conditioned to a certain channel realization H(S) for the selected group of users
S. To simplify our analysis, we fix the channel of the selected users to a certain realization
H and we analyze the properties of X; = R(Q;, H), which represents the sum rate provided
by random unitary matrices Q; for a given channel H. Therefore, {X;};°, is a random
process whose distribution depends on the underlying random variable Q,. For fixed channel
realization, X; is i.i.d. for ¢ with associated PDF fx(:) and CDF Fx(-). If the channel is
quasi-static, memory-based beamforming aims at finding the unitary beamforming matrix
Q* from the feasible set of unitary matrices U that maximizes the sum rate. This can be
mathematically written as:
Q" = arg 31%)1/{{ R(Q;) = arg 1;12@‘ X (4.2)
Note that this optimization returns one out of possibly many global maximizers Q* since
the global maximizer is not unique, i.e. R(Q*) = R(Q*Q’H), for any Q' € U. However,
the maximum value of the sum rate, X* = R(Q*, H), is unique over the set .
Assuming that the set of unitary matrices U is finite with cardinality ||, then for ||
i.i.d. random unitary matrices {Qi}‘izi‘l, the achievable sum rate X* is given by
oo
X*:lggﬁ”Xi: ; xdF)‘(ul(:E) (4.3)

For asymptotically large ||, the distribution of ma:l)( IXi converges - after proper shifting
1<i<|U

and scaling - to a limiting distribution (1.d.) of Gumbel, Fréchet or Weibull type. However,
as the exact form of the CDF Fx (z) is difficult to obtain, the exact l.d. is difficult to be
inferred. Hence, we resort to the following result in order to derive the asymptotic (in |U])

convergence of our algorithm.

T
T_s7

coherence time, and Ty is the slot duration. For L — oo, the sum rate of memory-based

Proposition 4.1: Consider a channel with memory L = where T, is the channel
beamforming Ryjopr converges to the capacity of optimum unitary beamforming R* for a
given channel H:

R R = R(Q;, H 4.4
MOBF — Iélgi{( (Q ) ( )

Proof. The proof is given in Appendix 4.A. O

The above result implies that the maximum of the sum rate offered by using various
precoders Q; converges asymptotically to the optimum capacity of unitary beamforming R*.
As a result, the corresponding unitary precoding matrix, denoted Q*, which corresponds
to the matrix that maximizes the sum rate converges to one of the possibly many optimum
unitary precoders. Therefore, if the channel is quasi-static (very large £), the codebook of
MOBF will contain an optimal beamforming matrix, i.e. a unitary matrix that maximizes

the sum rate for a certain channel realization.
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4.3 Performance evaluation

For the evaluation of MOBF, we consider a time-varying Rayleigh fading channel where the
fading channels hy(¢) are i.i.d. among users and transmit antennas. We consider that the
channel evolves according to the Clark-Jake’s Doppler model, with autocorrelation function
E{h(t)h(t + (Ts)} = Jo(2n falTs) where fq denotes the one-sided Doppler bandwidth (in
Hz). We set Ts=1 ms and carrier frequency equal to 2GHz. The average SNR is set to 0
dB for all users.

In Figure 4.1, we plot the sum rate of MOBF versus the number of transmit antennas M
for different Doppler spreads and K = 20 active users. Expectedly, the capacity of MOBF
increases as the channel order (memory) increases. Furthermore, MOBF exhibits the same
capacity scaling as that of RBF. The worst performance is achieved for a rapidly time-
varying channel with memory £ = 1, where the probability that the ‘preferred’ matrix will
be valid if reapplied falls to 1/2. In this case, MOBF benefits from selection diversity gain
as compared to conventional RBF. This means that MOBF is equivalent to a RBF scheme
where two randomly generated precoders are generated and the one with the highest sum
rate is applied. The sum rate of MOBEF is also plotted for a static channel (£ — oc0). In
that case, the tracking capability of our algorithm is increased and the transmitter is able
to successively ‘learn’ the channel directions of users, approaching thus the case of complete
CSIT. Note also that MOBF achieves high sum rate even for fixed, but not necessarily large,
number of users.

Sum Rate [bps/Hz]
o

—+— Conventional RBF
—— 200Hz Doppler (100km/h)
—*— 60Hz Doppler (30km/h)
—<— 10Hz Doppler (5km/h)
~©- Memoryless chan. (L=0)
—— Static channel (infinite L)
i i i i R H H H
1 2 3 4 5 6 7 8 9 10
Number of Tx antennas

Figure 4.1: Sum rate vs. the number of transmit antennas M of MOBF with K = 20 users
and various Doppler spreads.

In Figure 4.2 we evaluate the system throughput as a function of number of users for M
= 8 antennas. As expected, the gap between MOBF and RBF is bigger for small number of
users. For K increasing, the sum rate of RBF improves as it is more likely that the random
beams will find users with high channel gains and closely aligned with the random beam
directions.
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11

Sum rate [bps/Hz]

—%— Static channel
—— Conventional RBF
~S— Memoryless channel

—— 200Hz Doppler
—— 60Hz Doppler
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I I I I I
20 40 60 80 100 120 140 160 180 200

Number of users

Figure 4.2: Sum rate as a function of number of users K of MOBF for different Doppler
spreads.

4.4 Exploiting Statistical CSIT in Spatially Correlated

Channels

Apart from exhibiting temporal correlation, in real wireless systems, users’ channels are often
correlated in the space domain. In the following sections, we consider an outdoor cellular
(wide-area) network, for which the i.i.d. spatially white channel model used so far in this
dissertation does not hold. In practice, each user tends to exhibit different spatial channel
statistics, which is captured by its channels correlation matrix. For ease of exposition, no
temporal channel correlation is considered below.

We assume that the transmitter has statistical CSIT, i.e. information of the statistics of
the wireless stochastic propagation channel. This is a reasonable and practical assumption
since statistical CSIT has the advantage of longer coherence time as compared to that of the
fading channel, thus it can be easily obtained by the mobile and fed back to the BS at low
rate. Furthermore, several forms of statistical CSIT are even reciprocal, e.g. the second-
order correlation matrix, the power of Ricean component, etc., and do not necessitate any
feedback to be revealed to the transmitter. A key observation here is that useful information
relevant to the scheduler lies untapped in the long-term statistical information of the user’s
channels. Second-order statistical channel knowledge reveals a great deal of information on
the macroscopic nature of the underlying channel, including the multipath’s mean angle of

arrival/departure and its angular spread.

On the other hand, in order to exploit multiuser diversity during the scheduling proce-
dure, the transmitter must have some form of instantaneous CQI for each user as a means to
distinguish favorable from unfavorable channel realizations. The question we try to answer
here is which type of low-rate CQI is relevant and sufficient in order to minimize the feedback
load, while allowing the scheduler to extract multiuser diversity gain. A generic maximum
likelihood (ML) coarse channel estimation framework is established, which let the BS to
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efficiently select users combining statistical CSIT and instantaneous CQI. Low-complexity
user selection metrics and algorithms are also proposed. Finally, in order to better estimate
the inter-user interference, we augment the per-slot CQI feedback with instantaneous scalar
CDI on beamforming alignment. We demonstrate the merit of channel /beamforming align-
ment information and propose SDMA eigenbeamforming based on inter-user interference
estimates.

Combining the second-order channel statistics with instantaneous CQI for resource al-
location was also considered in [86] for point-to-point systems. In [87,88], Hammarwall et
al., proposed a minimum mean squared error (MMSE) estimation framework for combining
CQI and long-term CSIT. The signal/interference power estimates, which are computed
by the conditional moments of the channel, are used for SINR estimation, scheduling and
transmission.

4.4.1 System Setting

We consider the downlink of a cellular FDD system with single-antenna mobiles and correla-
tion between the channels gains of different antennas. This scenario models an environment
where transmit antennas are placed for instance at an elevated high-point base station, i.e.
the near-field scattering at the transmitter is limited [89]. We assume that the receivers are
located in a rich-scattering surrounding, thus correlation appears only at the transmitter
side.

Channel Model

The channel vector of k-th user is modeled as satisfies hy ~ CN(B;C, Ry;). This means that
the complex random vector h, € CM*1 is circularly-symmetric Gaussian distributed, with
mean h, = E{h;} and covariance matrix Ry, = E{(hy — hy)(h;, — h;)?}. Its multivariate
PDF is given by

fn (hk) = ﬁexp {—(hk — ljlk)HRlzl(hk - flk)} (4.5)

The correlation matrix Ry, € CM*M

, which is perfectly known at both ends of the link, is
assumed to be dominated by one or a few eigenvalues. This is a valid assumption since the
statistical channel information changes slower than the small-scale fading of the channel,

and can be obtained with low or no additional feedback.

Instantaneous CQI Feedback

At each scheduling slot, the users feed back instantaneous information on their channel
quality (CQI), denoted as . A general representation of CQI utilized in this chapter is

Ve = HthZk||2 (4.6)

where Zj, € CM*T can be seen as a training matrix containing 7" vectors {zx; } ., resulting
in a weighted norm of the channel vector. The CQI feedback can take on among others
the following forms, depending on the system feedback rate and pilot signaling overhead
constraints:
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o Strategy 1: ~, = }thzl ’2 (beam gain information - T=1)
e Strategy 2: vi = ||hx||* (channel norm feedback - Zj, = I)

In what follows, we focus on the above two CQI feedback strategies.

4.4.2 User Selection with ML Channel Estimation

Optimal User Selection

If we restrict ourselves to the case of joint linear beamforming and scheduling, the optimal
user selection policy is to exhaustively search over all the user sets for all combination of
feasible beamformers and select the one that maximizes the system throughput. Formally,
the optimal group of selected users is determined as

S = argvrgl%R(S, W) (4.7)

where R(S, W) is the achievable sum rate when the user set S is served using precoder W.
The problem may be extremely complex for dense networks, since the search complexity
increases exponentially with the number of users. The complexity can be reduced by taking
into account a smaller group of pre-selected users. This group may be defined based on

coarse channel knowledge, which is obtained by very low-rate feedback.

MSE User Selection Metric

Here we reduce the complexity of optimal user selection by restricting the choice of the
precoding matrix to be the one that minimizes the mean-square error (MSE) between the
received and symbol vectors. Thus, the objective here is to find the optimal group of users
under MMSE precoding Wymse(S). We first derive the solution assuming full CSIT in
order to gain insight. Let H € CK*M denote the concatenation of all channels, H =
[hy,..., hK]H, where the k-th row is the channel of the k-th receiver (hf'). Mathematically
the problem can be expressed as

Wiinsi(S) = arg min E {||s(S) - y(S)II*} (4.8)
[WIz<P

which results in the following optimal precoding matrix
-1
Winnise(S) = (H(S)H(S)" + A1) (4.9)

where 3 is the non-negative Lagrange multiplier tuned to fulfill the transmit power con-
straint. When the criteria is to maximize the sum rate, the regularization constant takes
the value 8 = Mo?/P [34]. Inserting this solution into to the MSE minimization problem
(with cost function Jvmsk, it can be shown that the MMSE level is given by

jMMSE(S) = M- 2Re{Tr (WMMSE(S)H(S))
+ Tr(WamseH(S)H(S)? (S)Whnse(S)H) + Mo?}

where Re{-} denotes the real part. We should remark that the downlink MMSE precoders
do not in fact minimize the MSE at the receiver side, since the precoder affects all received
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signals before noise is introduced. The MSE user selection metric that minimizes the MSE
for the selected group of users S$* is given by

S* = argm§x2Re{Tr{‘I’(5)(‘I’(8)+5I)71}}

- Tr{(\v(8>(\1'<8>+61>1)2}

argmin Tr { ((H(S)H(S)H - 51)‘1)2} (4.10)

where ¥(S) = H(S)H(S).

If we consider that the scheduler has only statistical knowledge of the channels, i.e. relies
only on the correlation matrices, eq. (4.10) can be approximated by replacing ¥(S) by its
statistical estimate W(S). In this chapter, we consider that ¥(S) may take the following

two forms:

e ¥(S) = R(S) if no additional instantaneous CQI is available at the scheduler. The
concatenated correlation matrix is defined R(S) = 3, . Ri = E{H(S)H(S)" }.

o U(S) =H(S)H(S)H, where H is the concatenation of channel estimates hy, combining
long-term statistical knowledge and instantaneous CQI feedback.

In that case, the MSE minimizing group of users S;, based on channel estimates (CE) is
given by

SéE :argmsin’I‘r{<(\il(8)+ﬁI)l)2} (4.11)

Greedy User Selection

In the previous section, determining the optimal set of spatially separable users, $*, requires
exhaustive search over the entire user set. However, when is K large, the complexity of
optimal user selection becomes prohibitively high, since the size of its search space Ef\il (If )
is large. A suboptimal, yet efficient, greedy user selection scheme can be used instead, similar
to the approach in [11]. Here we extend this scheme for MMSE linear beamforming with
long-term spatial information and instantaneous scalar CQI feedback ~4. The proposed
greedy user selection algorithm is given in Table 4.2. In this algorithm, users are added one
by one to the set. The complexity can be reduced by considering only users exceeding a
threshold 7¢,. The user with the highest CQI is examined at each time, and it is added
to the set of scheduled users S only if it results in sum-rate increase. We should note that
the overall performance of greedy user selection depends heavily on whether the precoding
matrix can be reprocessed each time a user is added, which in turn depends on the form of
the channel feedback available at the transmitter.

4.4.3 ML coarse Channel Estimation with CQI Feedback

As stated before, the correlation matrix provides useful information about the spatial chan-
nel characteristics, especially if it is ill-conditioned, however it does not reveal any infor-
mation about the quality of the current channel realization. In order to exploit multiuser
diversity, the scheduler requires properly designed instantaneous low-rate feedback ~y, which
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Table 4.2: Greedy User Selection with Statistical CSIT

Greedy User Selection with statistical CSIT

At each time slot ¢
1. Initialize S =0 and G = 0.
2. Select the users that exceed the threshold 4

G={Vke{l,...,K}|w >y}

3. Select the user with the highest CQI value

k = arg max
mazx ngkSK Tk

SHSU{kmaI}v g<_g\8

4. Repeat
. -1\ 2
k*_arglgleigTr{((\Il(S)—l—ﬂI) > }
S—SuU{k"}, G—G\S
until [S| = M

5. Return user set S

can be a measure of the quality of the current channel. In this section, we restrict ourselves
to Rayleigh fading correlated channels, i.e. h, = 0, and we propose a simple framework in
which long-term statistical channel knowledge is combined with short-term partial CSIT as

a means to provide a coarse channel estimate at each slot.

ML Estimation with Beam Gain Information

We adopt here the feedback strategy 1 and consider that each user k feeds back the squared
magnitude of the channel with a beamforming vector z; € CM*! ie. v, = ’thzkf. The
beamforming vectors can be interpreted as pilot signals during the training phase or as
the preferred beamformer in a two-stage precoding and scheduling approach (see Section
3.4). This beamformer can be chosen randomly or it can be optimized based on long-term

statistical information.

Optimized training vectors As the correlation matrix of each user is known at the
transmitter side, the training vectors z; can be optimized. Briefly speaking, an efficient
training codebook can contain N = N, + N; + N, vectors, where the indices p,l,r indicate
principal, local, and random, respectively as explained below. The codebook construction
follows a three-step procedure:
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1) Based on each user’s statistical CSIT, the codebook will contain N, principal eigenvectors
of the covariance matrix Ry (N, = 1 for MISO channels).

2) In this step, we select N; vectors in the local area of each principal statistical direction vy,
as a means to account for those channel realizations that steer the principal singular vector
in a locality of the principal statistical direction. The local area of the principal statistical
direction is defined by a cone around v; and is characterized by the angle between the
training and the principal statistical vectors.

3) During the third step, we generate N, vectors that are outside the cone defined in step 2
and account for the channel realizations in which the direction of the principal right singular
vector (or vector channel) is far from the statistical (mean) channel direction. These vectors
can be chosen randomly or as the ones that covers optimally the remaining space, outside
the cone, which is related to the Grassmannian line packing problem. In the ideal case, the
size of N, should be adapted based on the strength of correlation, as it gives a measure on
the frequency that these deviations occur.

Random training vectors For simplicity, we rather adopt a low-complexity approach
and consider a random opportunistic beamforming setting [9]. In this setting, we assume
that the vectors zj are isotropically distributed and chosen randomly, i.e. z;x = q,, where
{qm}M_, are the columns of the unitary matrix Q. We combine the information ex-
tracted from the correlation matrix with a scalar instantaneous feedback in the form of
v, = |hf q|?, where the vector z; = q is chosen by user k as

qr = arg max Ihflq.,|? (4.12)

Clearly, this type of scalar CQI provides a joint instantaneous measure of the quality of the
current channel realization and its direction of the channel instantaneously. Although the
amount of spatial information encapsulated into this metric cannot be decomposed from
the channel gain information, it is particularly useful for users with strong channels, i.e.
users that are very likely to be scheduled. It can be also shown that the choice of qy is
equivalent to selecting the beam over which user k experience the highest received SINRy
in [9]. Assume that user k£ has its maximum SINR on beam i out of the j € {1,..., M},
defined as:

i = arg max % (4.13)
] C=Xj

’2 with 0 < z; < ¢, and ¢ = Efle ‘thqm|2 + Mo?/P is a positive
X
c—x’

J— H .
where z; = ‘hk q;

constant. Defining the function f(x) = we have that lin% f(z) = 0 and lim f(z) — oo.

Since f(z) is always monotonous positive for = € (0, ¢), we have that

i = argmaxf(x;) = maxx; (4.14)
j j

or equivalently argmax SINRy; = arg max |hy/q; ‘2
] j

Constrained Maximum Likelihood Optimization
We propose a ML estimation framework that combines long-term statistical knowledge
and instantaneous CSIT provided by the feedback metric v4. This feedback allows us to pick



4.4 Exploiting Statistical CSIT in Spatially Correlated Channels 83

users whose channels span spatially separated cones of multipath and have good channel
gains. This so-called Constrained Maximum Likelihood (CML) channel estimate is the
one that maximizes the log-likelihood function of the PDF (4.5) conditioned to the scalar
feedback constraint v, = [hi qx|?:

hy, = argmax f(h|y,) (4.15)
This results to the following optimization problem:

max thRkhk
hi i (4.16)
s.t. |thqk|2 = Yk

It can be easily shown that (4.16) is equivalent to solving the following generalized eigenvalue

problem (GEV): Ryhy = A®;hy, where &), = qquH. The maximum generalized eigenvalue
of the Hermitian matrix pair (R, ®x), with ®; > 0 is defined as

h”R;h
Amaz (R, 1) = sup{A|det(A®), — Ry) = 0} = sup ——2F

o 417
a0 hy! @ihy (*.17)

The solution of (4.16), in the view of the generalized Rayleigh-Ritz quotient, is given by

- hilR;h
h; = argmax i B

B 4.18
hy hE‘I)khk ( )

which corresponds to the dominant generalized eigenvector, denoted as uy, associated with
the largest positive generalized eigenvalue of the Hermitian matrix pair (Ry, ®5). Therefore,

the ML channel estimate is given by

h; = }/V_’“ u (4.19)
|y u
Orthogonal Basis expansion
The solution of the CML estimate as a generalized eigenvalue problem requires the com-
putation of the principal generalized eigenvector at each time slot, thus it may exhibit
remarkable computational complexity in practice. In order to facilitate the calculation of
the coarse estimate, we derive an equivalent channel estimation framework in which the
channel of the k-th user is expressed as a linear combination of orthogonal vectors. Al-
though any orthogonal basis can be used, in the case of random training vectors it is more
natural to choose the beamforming vectors {q,, }*£, as our orthonormal basis. In that case,
the channel vector can be expressed as

M
hi' = > anall (4.20)
m=1

where «,,, are the (complex) weights of the orthogonal expansion.

Consider, without loss of generality, that q; corresponds to the best beam chosen by
user k. Substituting (4.20) into (4.16), and solving the optimization problem (4.16) using
Lagrange multipliers, we obtain that the optimal weights by = [, -+ , & M]T equal to

bop = —a1 A~ e (4.21)



84 Chapter 4 Exploiting Channel Structure in MIMO Broadcast Channels

where
1« _ T
c= [ R 'a}, - ,ay R, 'q]]

_ |4 Ry a3
A= T —1 %
q; R, "4
and a1 = /7% so that the instantaneous CQI feedback constraint is satisfied.
Observing the similarity in the structure of matrix A with that of QTR,ZlQ*, the computa-
tional complexity of the matrix inversion of A can be further reduced through use of block

matrix decomposition. Denote F = QTR;Q*, then

alR;'q; ofR;'qs - alRy'ay,
@GR, qf

aiR; af
The inverse A~! can be easily obtained using the equation:

1 —cA-L

=F!
—A~lc S’XlA_l + A lecHA?

Syt

where S4 = g R, 'q} — ¢ A~ !c is the Schur complement of A and F~! = QTR Q" as Q

is unitary.

ML Channel Estimation with Channel Norm Feedback

Consider now that the instantaneous CQI metric takes on the form of the channel norm, i.e.
vk = ||hy||*. Clearly, the above direction independent CQI feedback provide less instanta-
neous spatial information than v, = |h,€H zk‘Q. However, for users with large channel gain,
thus for users that are more likely to be selected, channel norm feedback provide some form
of additional spatial information (especially in Ricean channels). Moreover, the larger the
channel gain, the more accurate this channel directional information. There is however a
difference between Rayleigh and Ricean channels. In the Rayleigh case, the sign ambiguity
on the direction cannot be eliminated, whereas in Ricean channels (non-zero mean) there is
additional CDI on the sign of large channel realizations.

Similarly to Section 4.4.3, we formulate a coarse ML channel estimate assuming that the
channel norm of user k is known, which results in the following constrained optimization

problem:

II%laX th Rk hk
k

(4.22)
st |hg|? =y,
The solution of (4.22) is given by
hy = Arux (4.23)

where uy is the eigenvector associated with the largest eigenvalue of Ry and ~j is chosen
such that the constraint on the instantaneous channel norm is satisfied.
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4.4.4 Interference-bounded Multiuser Eigenbeamforming with lim-
ited feedback

In the previous sections, we dealt with the problem of defining an efficient type of instan-
taneous CQI to be combined with long-term statistical channel knowledge. The proposed
coarse ML channel estimate framework is mainly useful for the purpose of user selection.
Although precoding design based on the channel estimates is feasible, providing good per-
formance for small angle spreads, it is in general sensitive and prone to sign ambiguities.

In this paragraph, we exploit the long-term statistical information in a different way
for the problem of joint scheduling and beamforming with limited feedback and focus on a
practical, low-complexity scheme. In brief, each user k£ has a fixed, predefined beamforming
vector, matched to the principal eigenvector of its channel correlation matrix Ry. At each
scheduling slot, the users are allowed to feed back two scalar values: the alignment between
the channel and their predefined beamforming vectors and their channel norms. In turn, the
scheduler selects the group of users that maximizes the system throughput using greedy user
selection and by estimating of the received SINR based on inter-user interference bounds.
Once the users to serve are identified, the precoding matrix contains the preferred beam-
forming vectors (principal eigenvectors) of the selected users. The proposed scheduling and
precoding algorithm is outlined in Table 4.3.

Feedback Strategy We propose that each user feeds back the following two scalar values:
e its channel norm ~\" = |/h]|.

e the alignment (angle) between its instantaneous channel vector and a preset normalized

. . 2 hHWk
beamforming vector wy, i.e. 7,(6 ) = | ”khk” |

The intuition behind this feedback policy is two-fold: in MIMO BC with partial CSIT
an efficient scheduling set should contain users with large instantaneous channel gains and
mutually quasi-orthogonal channel spatial signatures, as means to achieve both spatial mul-
tiplexing and multiuser diversity gains. The first scalar CQI 7121) allows to select users with
high channel gains as a means to benefit from multiuser diversity. In contrast to a feedback
metric of type v, = ’th kaz, large 7121) clearly identifies the users with the most favorable
conditions, whereas the latter metric can be large even for users with moderate gains but
whose vector channels are perfectly aligned with their beamforming vectors. The second
scalar metric 7122) provides a measure of the misalignment between the channel and the
beamformer, and can be interpreted as a measure of the channel quantization error due
to limited CSIT knowledge. In single-user settings, the quantization error affects only the
received signal and is translated to a power offset. However, in multiuser SDMA settings,
it can be shown that 7122) plays a vital role in the estimation of the inter-user interference.
Therefore, both 7121) and 7122) can be used as a means to estimate the inter-user interference

due to limited feedback.

User Selection If a perfectly orthogonal set of beamforming vectors can be found, the
above limited feedback is sufficient to achieve the same asymptotic sum rate as that of DPC.
However, in practice, this is highly unlikely to be fulfilled and the remaining interference
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cannot be calculated explicitly. For that, approximate expressions and bounds on the inter-
user interference based on limited channel knowledge are of interest. For user k € &, the
interference can be expressed as [y (S) = Y ,cs i Pilbf wil? = |hy]|> Tx(S), where T1(S)
denotes the interference over the normalized channel hy,. Let TkUB (8) denote an upper bound
on I;(S), a lower bound on the SINR assuming is given by

s P ( (1) <2>)2
_ Pk ||th COS (th,wk) _ E\ Ve Vg (4 24)

SINR;B(S) - -
2T, (S) + 02 [T, (S) + 02

where TEB(S) is also a function of *y,(cl) and *y,(f). The scheduler aims to select the group of

users that maximizes a lower bound on the sum rate as follows
§* = argmax > log (1 + SINRL®(S)) (4.25)
keS

Analytic low and upper bounds on the inter-user interference under linear precoding are
presented in detail in the following chapter. At this point, we propose to use the following
upper bound [90]

Tus.(8) = () 2ar($)+ (1= (1)) Be(S)+20\/1-(V)20u(5)  (4.26)

where a(S) = wf (Zies)#k wiwf{> Wi, Or(S) denotes the largest eigenvalue of the

matrix Uf (Zies)#k wiwf{> Uy and 6;(S) = HUkH (Zies)#k wiwf{> W

CM*(M=1) i5 an orthonormal basis spanning the null space of wy.

, where Uy, €

Linear Precoding Let the eigenvalue decomposition of the transmit correlation matrix
be Ry, = E{h;hf} = V3, VH  where ¥ is a diagonal matrix with the eigenvalues of
Ry in descending order and V, is a unitary matrix with the eigenvectors of Ry. As a low
complexity approach, we propose a system where each user has a preferred beamforming
vector known both by the BS and the mobile terminal. As shown in [91], for single-user
MIMO communications, given a certain user k£ with correlation matrix Ry, the average rate is
maximized by matching the beamforming vector to the principal eigenvector of its correlation
matrix, wg = v (eigenbeamforming). Hence, we design each user’s beamforming vector
inspired by this single-user strategy. This multiuser eigenbeamforming transmission scheme
can be seen as an equivalent codebook-based system where each user has a trivial codebook
of size one. The codebook contains a single codevector, i.e. the principal eigenvector, and
is updated at very low rate equal to the coherence time of the second-order statistics. We
should also remark that under the prism of channel estimation framework, the interference-
bounded eigenbeamforming can be seen as a method where the transmitter designs the

precoder based on a coarse channel estimate given by

hy, = It || cos(lhk,v,lc)v,lC = 7121)71(62)"11« (4.27)

4.4.5 Performance Evaluation

For the system evaluation, we assume that the channel evolves according to a specular
model where the channel impulse response is a superposition of a finite number of paths, as
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Table 4.3: Resource Allocation Algorithm with Statistical CSIT

At each time slot
At receiver side
Compute & Feedback fy,(cl) = ||hx|| — BS Vek=1,--- K

(2) _ |hi Wi
M = e — BS

At transmitter side

User selection

Step 1 Preselect users with 7\ -4 > 1, Q — Q'
Set Rig =0and S* =10

For all S € Q' repeat

Step 2 Compute
Tun, (8) = (P ar(8)+ (1-()?) 56(5) + 200/ 1 (07 )26(5)

S LB % (V£1)W£2))2

tep 3 Compute SINRIB(S) = M\ k& &k ]

v ' <) £ () Tup, ()41
Step 4 Compute Rip = Y, 5108, [1 4 SINRLE(S)]

Step 5 If R > Rip, Ris — Rig and S — S*

Beamforming

Construct beamforming matrix W (S)

described in Section 2.3.1. We consider ULA at the transmitter with antenna spacing d =
0.4X, where A = 0.15m is the wavelength (here for 2GHz). We consider a narrowband, flat-
fading Rayleigh (spatially correlated) channel where each user k has a different covariance
matrix Ry. The assumption that the receivers do not have the same correlation matrix is
well motivated by the fact that in broadcast channels, the angle-of-arrival is different for
each user because they are not physically co-located. The covariance matrix is computed
using the assumption of Gaussian distributed scattering with angular spread oy (standard
deviation of the distribution) and is averaged over 60 time slots. Note that the angular
spread corresponds to an angular spread sector of 209 degrees. Unless otherwise stated, the
BS is equipped with M = 2 antennas and the transmit SNR is set to 10dB.

ML Estimation with Beam Gain Information

We compare the sum rate achieved using the coarse ML channel estimate with BGI with
that of optimal MMSE beamforming with full CSIT and with a random beamforming-based
scheduling approach [9].

Figures 4.3 and 4.4 show the performance comparison as a function of the angle spread
and the number of users, respectively. Once the group of selected users S is identified
based on each user’s coarse channel estimate, the transmitter obtains full CSIT only for the
selected M users and designs the MMSE precoding matrix of user set S. In RBF approach,
the users are selected based on the maximum SINR [9]. We observe that the scheduler,
despite using only coarse only channel estimate, is able to identify a better group of users
than RBF for all angle spreads. When the angle spread is close to zero, our method closes
the throughput gap with respect to the MMSE precoding with full CSIT. Note also that both
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Figure 4.3: Sum rate performance versus angle spread of proposed ML estimation method
for M = 2 and K = 50 users. Full CSIT is obtained for the selected users at a second step.

Sum Rate [bits/s/Hz]

=»~ MMSE Precoding with full CSIT

~©- Constr. ML channel estimation with BGI
<+ Orth. Basis Expansion method with BGI
=9~ Random Beamforming

6.5, .

4

6 I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Number of users

Figure 4.4: Sum rate performance versus the number of users of ML channel estimation
method for M = 2 and gg9 = 0.27. Full CSIT for the selected users is obtained for precoder
design.

estimation methods exhibit exactly the same performance as they are equivalent solutions
for the same optimization problem, differing only in terms of computational complexity.

In Figure 4.5, we evaluate the performance of the channel estimation methods when
user selection and beamforming design are performed in one step based on coarse channel
estimates. Evidently, MMSE precoding design based on the estimated channel is robust only
in highly correlated channels, for which the channel estimate is closer to the real channel.
Nevertheless, both estimation methods show - with no additional feedback - a significant
throughput gain over RBF for angle spread less than 35 degrees.
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Figure 4.5: Sum rate performance versus angle spread of proposed ML estimation framework
for M = 2, and K = 50 users. Partial CSIT is employed for precoding design.
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Figure 4.6: Sum rate as a function of the number of users for various user selection schemes
with M = 2, antenna spacing d = 0.5\ and og = 0.17.

ML Estimation with Norm Feedback

In Figures 4.6 - 4.8 we evaluate the ML channel estimation framework with norm feedback
and greedy user selection algorithm (Table 4.2) as a function of K, antenna spacing d, and
the angle spread oy, respectively. As a benchmark, we also plot the sum rate of MMSE
beamforming with full CSIT and RBF. In all methods, once the group of users to be sched-
uled is identified, the BS obtains full CSIT for the selected users in order to design the
MMSE precoding matrix. Our methods show a clear gain over RBF for angle spread less
than 35 degrees making it practical approach for cellular outdoor systems, as typical mea-
surements in outdoor networks report angle spreads in the region less than 5-20 degrees at
the BS [89]. Interestingly, the antenna spacing can be optimized and it is found that about
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Figure 4.7: Sum rate as a function of antenna spacing for various user selection schemes
with M =2, g9 = 0.17 and K = 50 users.
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Figure 4.8: Sum rate as a function of angle spread for various user selection schemes with
M = 2, antenna spacing d = 0.5\ and K = 50 users.

0.4\ gives optimal results, as it gives the best tradeoff between resolution and suppression
of spatial aliasing. Note that a small antenna spacing reduces transmit antenna diversity,

however multiuser diversity can compensate for that during the phase of scheduling.

Interference-bounded Eigenbeamforming

We evaluate now the performance of interference-bounded multiuser eigenbeamforming
(Interf.-bounded MU EigenBF). Figures 4.9 and 4.10 show the achieved sum rate of our
proposed scheme as a function of the number of users and the angle spread, respectively.
For comparison, we also plot the performance of optimal MU eigenbeamforming with per-
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fect CSIT and that of interference-bounded multiuser eigenbeamforming using full CSIT
for user selection. As we can see, the performance of the proposed low-complexity scheme
exceeds that of RBF but depends on the level of antenna correlation, i.e. angle spread

og. Expectedly, gains are more pronounced for angle spread less than 45 degrees (outdoor
cellular networks).
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Figure 4.9: Sum rate as a function of the number of users for M = 2, and oy = 0.17.
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Figure 4.10: Sum rate as a function of angle spread for M = 2, antenna spacing d = 0.4\
and K = 100 users.
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4.5 Conclusions

In this chapter, we showed that the redundancy that arises in temporally and spatially
correlated channels can be exploited in order to increase the system throughput by opti-
mizing the SDMA scheduling decisions. In the first part, motivated by the fact that the
performance of random beamforming degrades severely with low number of users, we show
how exploiting channel time correlation we can alleviate this problem at minimal cost. The
proposed memory-based opportunistic beamforming provides a way to close the gap to op-
timality for arbitrary number of users when the channel coherence time is large, e.g. in low
mobility (indoor) settings. In the second part, we investigated spatially-correlated MISO
channels and showed how statistical channel knowledge can be efficiently combined with
instantaneous scalar channel feedback for the purpose of scheduling and linear precoding.
Specifically, it was demonstrated that, in SDMA systems with channel-aware scheduling, it
is sufficient to feed back a single scalar CSIT parameter - either the channel norm or beam
gain information - in order to achieve near optimal sum-rate performance. We derived new
scheduling metrics that have the advantage of accommodating statistical channel informa-
tion and limited instantaneous channel feedback. A ML channel estimation framework has
been established that is suitable for resource allocation in wide-area multi-antenna cellular
systems. Finally, a low complexity precoding/scheduling algorithm, based on interference-
bounded SDMA eigenbeamforming for spatially correlated MISO channels. All the above
schemes exhibit performance close to that of complete CSI when the multipath angular
spread per user at the BS is small enough, making these approaches suitable to wireless
systems with elevated BS such as outdoor cellular networks, in which the elevation of the

BS above the clutter decreases the angle spread of the multipath.
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APPENDIX

4.A Proof of Proposition 4.1

To prove this statement, we can equivalently show that for the set of i.i.d. random uni-

tary matrices, {Q1,...,Qu} C U, ingﬁqu converges to R* for |U| sufficiently large
1<i<

and fixed number of users K. Thus, we want to show that Ve,d > 0, 3|U| such that
Pr {max1§i§|u| < R* — 6} <9

As the sequence of unitary matrices {Qi}‘lu‘ are i.i.d. r.v.’s, and {Xi}llu‘ are also i.i.d. for
1, using order statistics we have that

Pr{ max X; <R* — e} = [Fx(R* — &)Y (4.28)
1<i<|u|

For a channel with memory £, it is evidently meaningful to have || > £. As 0 < Fx(z) <1,

asymptotically for £ — oo, we have that

Pr{ max X; <R" — 6} —0 (4.29)
1<i<|u|
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Chapter 5

Limited Feedback Broadcast
Channels based on Codebooks

5.1 Introduction

In the previous chapters, we investigated limited feedback approaches that can be mainly
categorized as dimension reduction or projection techniques (cf. Section 2.8.2). The major-
ity of our proposed solutions were built on - although not limited to - a random beamforming
context. Conventional RBF [9] was mainly employed as a pre-scheduling technique, while
the random beamformer were optimized during the precoding design phase. A limitation
of RBF is that the resolution of CDI is fixed to Bp = logaM, thus the scheme cannot
be extended for the case where additional CDI bits can be utilized. On the other hand,
recent findings suggest that CDI is of particular importance in limited feedback multiuser
multi-antenna systems, especially in the high power regime. As it was shown in [10], if
channel inversion (zero-forcing) is employed as transmission strategy, the feedback load per
user must increase approximately linearly with M and the transmit power (in dB) in order
to achieve the full multiplexing gain. Moreover, up to now, we considered schemes where a
random unitary precoder is first generated with no a priori CSIT and the BS collects low-
rate (scalar) CQI from each user as a means to select a group of good users and potentially
re-design the precoding matrix for the selected group.

In this chapter, we take on a quantization-based approach (cf. 2.8.1). The precoding
matrix is not pre-designed (before the feedback phase), but is generated based on partial
CSIT obtained by all active users. In other words, each user first reports some form of
quantized CSIT, which in turn is used at the BS for user selection and precoding design.
Several limited feedback approaches, imposing a bandwidth constraint on the feedback chan-
nel have been studied in point-to-point MIMO systems [54-56,58]. In this context, each
user feeds back finite precision (quantized) CSIT on its channel direction by quantizing its

95
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normalized channel vector to the closest vector contained in a predetermined codebook. In
this chapter, we consider a multi-antenna broadcast channel with K > M users, in which
each user is allowed to report feedback back to the BS via a finite rate feedback channel.
This CSIT consists of Bp-bit quantized information on its channel vector direction, referred
to as CDI, complemented with additional instantaneous CQI. CDI information is mainly
employed for the purposes of precoding design, while CQI serves as a means to intelligently
select M spatially separable users with large channel gains. This approach can be seen as an
extension of RBF to a codebook containing Np > M beamforming vectors (not necessarily
orthonormal). It has the ability to tune the feedback load per user, providing more flexibil-
ity in realistic finite rate feedback scenarios, in which the few feedback bits need to be split
between channel directional and channel quality information. Our model is on the lines of
work in [62] which extended the finite feedback rate model [10,52] for the case of K > M.
As transmission strategy, several beamforming methods have been investigated in the liter-
ature, including orthogonal unitary beamforming [92], transmit matched-filtering [93], and
zero-forcing beamforming [64,93-95]. Note that in the above contributions, the channel gain
feedback is considered unquantized for analytical simplicity.

A major part of this chapter focuses on the following question: "What type of scalar
CQI information needs to be conveyed in order to achieve close-to-optimum performance?"
Recent results show that if the scalar CQI contains information only on the channel norm,
the sum rate growth is independent of the average SNR and the number of active users
K [62,64]. Therefore, the system becomes interference-limited for high SNR, and fails to
achieve the optimum sum rate growth, even when the number of users goes to infinity
(no multiuser diversity gain). This is due to the fact that an estimate on the inter-user
interference is needed, and thus additional knowledge in the form of channel quantization
error is necessary in order to achieve both multiplexing and multiuser diversity gains and
approach the capacity with perfect CSIT.

The problem of efficient CQI design for sum-rate maximization with scheduling and linear
precoding in the above finite rate feedback setting is addressed here. Our main contributions

can be summarized as follows:

e We propose several scalar feedback metrics based on inter-user interference bounds,
which encapsulate information on the channel gain, the channel direction, as well as on
the quantization error. These metrics can be interpreted as estimates of the received
SINR, which is generally unknown to the individual users that have knowledge only

on their own channels.

e We employ these metrics in a system employing linear ZF beamforming on the quan-
tized channel directions and greedy user selection. For that, we extend the greedy
scheduling algorithm of [11] for the limited feedback case. This algorithm has the
advantages that it does not depend on any a priori defined system parameter (such
as quantized channels’ orthogonality [62]) and is able to switch from multiuser to

single-user transmission.

e Using the above precoding setting, we derive upper bounds on the instantaneous mul-
tiuser interference that allows us to analytically predict the worst case interference
and a SINR lower bound in a system employing zero-forcing on the quantized channel

directions.
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e The system throughput is analyzed and its asymptotic optimality in terms of capacity
growth (i.e. M loglog K) is shown for K — oco. Sum rate upper bounds for the high
SNR regime are also derived.

e Scheduling metrics suitable for switching the transmit mode from multiuser (SDMA)
to single-user (TDMA) are proposed, based on a refined feedback strategy. We show
that expectedly single-user mode is preferred as the average SNR increases, whereas

multiuser mode is favored when the number of users increases.

5.2 System model

We consider a multi-antenna broadcast channel consisting of M antennas at the transmitter
and K > M single-antenna receivers. The finite rate feedback model presented in Sec-
tion 2.9.1 is adopted and users quantize their channel directions using (2.56). The channel
quantization of user k is denoted as hy. For analytical simplicity, we adopt the ACVQ
codebook design [63,64] (cf. Section 2.9.2).

As linear precoding scheme, we use ZF beamforming on the quantized channel directions
available at the BS. The beamforming matrix is then given by

W(S) = H(S)! = F(S)! (IA{(S)PI(S)H)% (5.1)

where I:I(S) is a matrix whose columns are the quantized channels hy, (codevectors) of the
users belonging to the group of selected users, denoted by S. The normalized beamform-
ing vector intended for the k-th user is denoted by wj and equal power allocation across
users is assumed. Clearly, non-linear precoding schemes or regularized inversion (MMSE
precoding) can achieve a better sum rate than ZFBF. However, we use ZFBF for two main
reasons. First, ZFBF is a linear precoding technique that can be implemented with reduced
complexity and is asymptotically optimal at high SNR or for large K [11,12]. Secondly,
a significantly simpler and more tractable theoretical analysis can be accomplished using
ZFBF, resulting in closed-form expressions for performance.

Some terms that will be used extensively in the following sections are:
e channel direction (normalized channel): hy, = hy/ ||hy||

e quantized channel: hy,

e quantization error: sin? ¢y = sin?(Z(hy,, hy))

e channel alignment: cos @ = ’Bkwk’

5.3 CQI Feedback Design

5.3.1 Problem formulation

In multiuser SDMA downlink systems with more active users than transmit antennas (K >
M), user selection has to be performed based on some properly chosen channel side infor-
mation. The scheduling decisions depend in turn on the optimization criteria considered,
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e.g. maximization of system throughput, maximization of user rates, fairness, delay min-
imization, etc. If the sum-rate maximization is considered as optimization criterion, the
scheduled users need to exhibit:

e mutually orthogonal channel directions
e high channel gains

for close to optimum throughput performance. The spatial separability among users allows
the BS to form non-interfering beams with no significant power penalty, whereas the impor-
tance of CQI is two-fold: it is used for identifying users with favorable channel conditions
and it indicates the rate (coding and modulation order) at which the BS can transmit data
to a particular user (link adaptation).

One challenge when designing feedback metrics is that information on received SINR
is in principle not available to the individual users that only have knowledge of their own
channels. The SINR measurement depends, among others, on the channel as well as on the
number of other mobiles being simultaneously scheduled along with the user making the
measurement. As user cooperation is not considered, the number of simultaneous users and
the available power for each of them will generally be unknown at the mobile. However, in
the large number of user case, simplifications arise, which give the user the possibility of
estimating its SINR. This SINR estimate feedback enables the scheduler to identify users
with large channel norms, as well as small quantization errors. In the following paragraphs,
we study the problem of efficient design of channel quality feedback. Our objective is to
derive scalar feedback metrics, denoted as i, that allow us to exploit the multiuser diversity
and achieve close to optimum sum-rate performance.

5.3.2 Bounds on average received SINR

The SINR of user k£ € S under equal power allocation and ZFBF on the quantized channels
is given by
Plhywg|? _ P |y By wg|?
|2 - —
Ljes\ioy PIwws P+ M5y (P Il [haws[2) + M

SINRy, = (5.2)

The channel direction hy, can be expressed in reference to its quantized version via the cross
~ — |2 _ N R N

correlation indicator 7, = sin? ¢y, = 1 — ‘hkth‘ as hy = /1 —mhy, + «/mghé-, where hi‘

is the normalized projection of hy onto the orthogonal complement of hy. Note that the

actual phase information in h;. is omitted since it is not relevant for SINR computation.
Then, for the terms that appear in the interference we have that

lhew;|? = (1 — m) [hew;|? + m[hjrwy|? = mo w2, Yk #£j (5.3)

since the ZF beamforming vector w; is chosen orthogonal to the quantized channel vectors
of all other users, i.e. flkwj =0 for all k # j, k € S. Then, using (5.3), eq. (5.2) can be
written as 9 =
P|h h 2
SINRy, = P hell” iwe -
Pl 7 32 e s oy 1hew; [ + M

(5.4)
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Lower bound on the average received SINR

The received SINR can be normally measured at the received side. However, in a multiuser
system, mobile terminals cannot calculate their received SINR in advance. This is due to the
fact that each receiver k cannot estimate the inter-user interference since it does not have
access to the beamforming vectors w;, j € S and the group of selected users. Although the
received SINR cannot be calculated explicitly at the receiver side, as all beamforming vectors
w;, j # k would lie in the null space of hy,, each receiver can calculated a bound on the
expected interference caused by the other users. Therefore, a lower bound on the expected
SINR with respect to the expected inter-user interference can be derived. Conditioned on
hy and hy and taking the expectation with respect to the interference terms w;, j € S\ {k}
we have [64]:

E{SINR;} — E{Z Plhywy|? }

jes\gry PIhew;[2 + M

_ { P e fhuwa }
P [ bgl[* e 3 oy [Bwy |2 + M

(@) P || E {|hpwy|?}

> -
Pl ll* 7B { e sy w2} + M
®  Pllh|*E {|hywi|?

P ||hy|| sin? ¢p, + M

where (a) results from applying Jensen’s inequality. The unit vectors fli‘ and w; are both
isotropically distributed on the (M — 1) dimensional hyperplane orthogonal to hy. As the
distribution of w; on this hyperplane depends only on h; fori € S \ {j, k}, then w; is
independent of ljlé‘, for j # k. Thus, the inner product |f1kwj| follows a beta distribution
B(1, M — 2). Hence, the expected interference is given by

1
<1, for|S| <M (5.6)

ES D hwyf? § = (18I - 1) 57— <

jeS\{k}

When M users are scheduled simultaneously, i.e., |S| = M, inequality (b) (cf. eq.5.5)
becomes tight.

Upper bound on the average received SINR

The inter-user interference is minimized by performing orthogonal transmission and select-
ing users with near-orthogonal quantized channel directions. In that case, we have that

4(}1;@, wy) ~ 0, and the average received SINR can be upper bounded by

P ||y ||* cos® g,
P ||hy||*sin? ¢p, + M

E {SINR;} < (5.7)

The above upper bound becomes tight when a set of perfectly orthogonal users can be found,
in which case the received SINR is given by

P ||h;€H2 cos? ¢y,
P by ||* sin® ¢ + M

(5.8)
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This is the actual received SINR, under the assumption that M = M perfectly orthogonal
users are scheduled.

CQI feedback metric I

In the previous paragraph, we saw that although the receivers do not have knowledge of the
scheduling decisions and thus of w;, simple (upper) bounds on the expected received SINR
can be obtained. Motivated by that, we consider that that each user can calculate and feed

back information on its effective channel (SINR) by feeding back the following scalar metric

P ||hy||? cos? ¢
P||hy||? sin? ¢y, + M

Ve = (5-9)
proposed in parallel in [62,94,96,97]. This type of CQI encapsulates information on the
channel gain as well as the CDI quantization error, sin® ¢. The above metric results from
an upper bound on the average received SINR, which in turn is calculated based on the
expected value of the inter-user interference due to quantized CSIT and using an upper
bound on the expected received signal power. This CQI metric can be interpreted as an
upper bound on each user’s received SINR under the assumption that exactly M users will
be served by M equipowered beams, designed based on quantized CDI. We should remark
that this CQI value cannot be used directly for link adaptation. Clearly, it is not achievable
and the only case where the received SINR equals the one predicted by (5.9) is when the M
beamforming vectors at the transmitter are perfectly orthogonal (i.e. the columns of H(S)
are orthogonal), i.e. H(S) is unitary and W(S) = H(S)". Despite this design limitation, it
does however provide an efficient estimate of the multiuser interference at the receiver side
and of the average SINR, allowing the scheduler to identify users with large channel gains
and near-orthogonal channel directions. Moreover, this bound becomes more accurate when

the number of active users K is increasing.

5.3.3 Lower bound on instantaneous received SINR

In the previous section, we studied bounds on the average received SINR and identified an
efficient CQI metric. However, from a practical point of view, metric I has the limitation
that is not achievable (upper bound), since in general the beamforming vectors are not
perfectly orthogonal, especially in networks with low to moderate number of users. As a
result, metric I may be useful for user selection purposes; however it cannot be employed
for rate adaptation. If the system matches the coding rate and modulation order based on
the 7L value (cf. eq. (5.9)), the link will suffer from significant outage events since CQI
metric [ overestimates the received SINR. To circumvent that, the BS is required to ask for
additional feedback from the selected users to perform rate allocation. This second step of
feedback may be detrimental in terms of signaling overhead and protocol delays, and it is
rather impractical in fast time-varying channels.

In order to avoid the need for this second step and to guarantee outage-free transmissions,
we aim at finding a feedback metric that can be efficiently utilized for both scheduling and
rate allocation simultaneously. For that, we propose to feedback a lower bound on the SINR,
rather than an upper bound. Additionally, we derive bounds on the instantaneous SINR
and not on the average one. Our lower bound is based on:
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e a lower bound on the received signal power.

e an upper bound on the actual multiuser interference.

Note also that the SINR estimated by (5.9) does not take into account the fact that a specific
precoder is used for transmission scheme. Therefore, it neglects the effect of precoding
and that of the corresponding misalignment between the quantized channel direction and
the beamforming vector. In this paragraph, assuming that ZFBF is employed, we derive
interference bounds that incorporate the power loss introduced by the misalignment between
the instantaneous channel and the ZF beamformers.

Notation: The following orthogonality constraints, which that are used extensively below,

can be imposed:

e Two quantized channel vectors h; and ﬁj are e-orthogonal if flzﬁf } <e.

e The orthogonality between the quantized channel and the zero-forcing beamformer is
defined as: £ < ’flkwk’

e The worst-case orthogonality between two zero-forcing beamformers is defined as ezp =
max ‘WZH W | .
i,jES

Lower bound on received signal power

The quantity |hywy|? = cos?(Z(hg, wy)) that appears in the numerator of (5.4) can be
bounded as follows: using the inequality Z(hy, wy) < Z(hg, hy) + Z(hg, wi), and the fact
that the function cos z is monotonically decreasing in z for the interval of interest, we have
cos?(£ (g, wi)) > cos(Z (g, hy)+Z(hy, wi)). Therefore, the received signal power of user

k, denoted as Sy, can be lower bounded as
Sy, = Plhywy|? > P |hy||” cos® (¢, + £ (hy, wy)) = (5.10)

Note that if the BS is able to find perfectly orthogonal user channels, the quantized channel
direction hy, and zero-forcing beamforming vector wy, coincide, and hence Z(hy, wy) = 0,
yielding the following simple expression for the lower bound in (5.10): Sy = P ||lhy||* cos? ¢
As the above lower bound cannot be calculated explicitly at the receiver side, we are obliged

to use the orthogonality constraint £, which results in the following lower bound:
SEBL > P ||lhy||? cos® (¢ + arccos(€)) (5.11)

A different lower bound on the received signal can be derived as follows:

B R R 2
cos? O = |hywy|* = ‘\/1 — mprhywy + \/théwk‘
(@) . - 2

> ’|\/1 — thkwk| — |w/7Tkhk Wk|‘

=(1- Wk)|flkwk|2 — 24/ (1 — Wk)ﬂk|flkwk||fléwk| + wk|f1éwk|2
where for (a) the inverse triangle inequality ||z| — |y|| < |z — y| is used.

Since the receivers cannot calculate the above lower bound (as they do not have access
in the quantity |hpwy|), the received signal power needs to be further bounded as:

SEP2 = P[by||* (&2 cos? g, — £3/1— €2/ sin(21)]) (5.12)
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Bounds on Instantaneous Multiuser Interference

The inter-user interference of the k-th user can be expressed as:
— 2 —
I(S) = Plhe)* D [hew;|” = Plhg | Ti(S) (5.13)
JES,j#k

where I,(S) denotes the multiuser interference experienced by the k-th user over the nor-
malized channel. Since the zero-forcing beamformers satisfy the orthogonality constraint
flkwj =0,V # k, we have that

L(S)=m Y

JES,jF#k

~ 2 _
hiw,| = ml (S) (5.14)

. . . =1
In order to bound the inter-user interference, we need to bound either the term I, (S) or
1(S) that cannot be calculated at the receiver side (since w; are not known in advance
to mobile terminals). Let us define the matrix Wi(S) =3 cs s w;wil, the operator
Amaz {-}, which returns the largest eigenvalue, and Uy, € CM>(M=1) an orthonormal basis
spanning the null space of wy. We recall that the ZF beamformers are considered as unit-

norm vectors.

Theorem 5.1: Given a set of normalized beamforming vectors {wy},k € S, the normalized

interference term I (S) is upper bounded by

1(S) < cos? Ora(S) + sin’ 0,01 (S) + 2 sin Oy, cos Orwi(S) (5.15)
where
ak(S) = W}:I‘I’k(S)Wk
B1(S) = Amas{ U O1(S)UL | (5.16)
wi(S) = "UkH\Ilk(S)wk H
Proof. The proof is given in Appendix 5.A. O

For notation simplification, we drop below the dependence on S.

Lemma 5.1: The worst-case orthogonality of a set of M zero-forcing beamforming vectors
and the alignment with the normalized channel (cos 8y ) are bounded as a function of cos ¢y

for e < ﬁ as follows:

cos ¢, — VIO
COS 6‘;€ 2 1—#7’[9 (518)
. €
Proof. The proof is given in Appendix 5.B. (|

It is worth noting that the above lemma provides another lower bound on the received

signal power, given by:

SLB3 > ﬁ I 2 (cos 65— v/d) (5.19)
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Based on this result, we have:

Theorem 5.2: Given a group of e-orthogonal users with cardinality |S| = M, the received

SINR in a system employing zero-forcing beamforming is lower bounded by

P ||hy]|? cos? 6y

SINRy > —UBIL (5.20)
P|h’T, +M
where
—UB1 ) 2 .9
I, =(M—1)(Ycosby +sinby)” — (M —2)(1 — ) sin” 0y (5.21)
with COS@k = M’ii;\/’sl and 9 = m
Proof. The proof is given in Appendix 5.C. O

An additional inter-user interference upper bound TEBQ can be derived by trying to upper
—L
bound the term I, (S).

CQI feedback metric I

Motivated by the above lower bound on the instantaneous SINR (cf. Theorem 2), we propose

that each user feeds back to the BS the following scalar metric

LBx
7T _ Sk

Tk = —UBx

—k (5.22)
T, +M

where the wildcard ‘x’ can be replaced by 1, 2 or 3 for the received signal (LB) and 1 or 2
for the interference (UB). In the numerical results section, we only simulate the following

metric:

i SE o el (cos i - VOP?
L+ M PP T + M

(5.23)

In order to calculate (5.23), the receiver has to know the orthogonality system parameters
e and ¢ and to assume that M = M exactly users will be scheduled. The basic difference
between (5.9) and (5.23) is on the estimation of the inter-user interference and the received
signal power. In (5.9) the interference is replaced by an upper bound on its average value,
ie. E{Ejes\{k} L |n|? |ﬁkwj|2} < L ||n||*sin? ¢y, where for CQI metric II an upper
bound on the instantaneous multiuser interference (cf. eq. 5.21) is used instead.

CQI metric I can be viewed as an estimation of received SINR assuming that the quan-
tized channel flk and the zero-forcing beamformer wy, coincide, i.e. 4(f1k,wk) = 0. This
assumption becomes valid for large number of users K. Therefore, in metric I, the approxi-
mation cos?(Z(hy, wy)) ~ cos?(Z(hy, hy)) is used, whereas in CQI metric II the power loss
introduced by the angle shift due to the misalignment of flk and wy, is taken into account
(usong Lemma 5.1).

Evidently, the two proposed metrics coincide for € = 0 since we have cos? ), = cos? ¢,
thus Iyp, = sin®@; = sin? ¢, and % = cos? ¢p. Hence, metric II (5.23) takes
exactly the form of metric I (5.9).
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5.3.4 SDMA /TDMA transition with limited feedback

In the previous paragraphs, we tried to derive efficient scalar CQI metrics. An upper bound
on the expected SINR as well as a lower bound on the actual received SINR have been
proposed as useful metrics that allow the BS to benefit from multiuser diversity and achieve
near-optimal sum rate. A common underlying assumption of both ”y,(gl) and *y,(CH) is that
M = M users are necessarily scheduled. However this can be a major drawback as in MIMO
broadcast channels with partial CSIT, it is not guaranteed that multiuser transmission (full
SDMA) always outperforms single-user transmission (TDMA). There are several contexts in
which it is beneficial from a capacity point of view to softly transit to TDMA by switching
off beams and communicating with M < M users, especially in the high SNR regime and/or
for low number of users. The inaccuracy in the multiuser interference calculation introduced
by limited channel knowledge is detrimental in the high power regime, in which the system
becomes interference-limited and its sum rate saturates. Motivated by the above claim, we
are interested here to find a feedback strategy that offers the desirable flexibility between
SDMA of various orders and TDMA, as a means to achieve linear capacity growth at any
SNR range.

CQI feedback strategy for adaptive SDMA /TDMA

In order to obtain flexibility on estimating the resulting inter-user interference and hence
the users’ SINRs for various values of M, a different form of CQI feedback needs to be
considered. In [90] we already presented the idea of decomposing the CQI feedback in two
scalar values, which was further exploited in [94]. In addition to the codevector index (CDI),

we propose that each user feeds back:

e the channel norm *y,(cl) = || hg||

e the square of the alignment 7122) = cos? ¢,
The decomposition of the CQI into two scalars enables the BS to calculate more accurate
SINR estimates for any set of scheduled users with cardinality M < M. This is due to the
ability of calculating more accurately the inter-user interference by having the CQI in the
form of channel gain and quantization error. Note that under a certain finite and fixed rate
feedback constraint, each scalar value is quantized with reduced accuracy compared to the
case of only one scalar CQI metric (e.g. metric I and II). The effect of CQI quantization is
studied through simulations in Section 5.7, where it can be seen that the reduced precision
of the two scalar CQIs does not reduce the sum-rate performance compared to the one scalar

CQI case.

Scheduling metrics

At the transmitter side, the scheduler based on the decomposed CQI and CDI informa-
tion estimates the received SINR. User selection can be performed based on the following

scheduling metric, referred to as metric I

Igll _ P||hk|\2pi
P|hy)* Tusa, + M

(5.24)
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where
P = cos®(¢r, + Z(hg, wg)) (5.25)

and
Tusa, = pro(S)+(1—p3) Be(S)+2pry/1— pRwi(S) (5.26)
which can be explicitly calculated at the transmitter using (5.16).

The scheduling decision metrics are denoted with (i in order to distinguish them from the
CQI feedback metrics denoted with 7. The values (/! and ¢}V are calculated on the BS
and are not fed back to the BS from the users, whereas vé and 7,? are reported back by the
mobile and also serves as user selection decision metrics from the scheduler.

In the ideal case of ¢ — 0, we have that iUBdk — sin? o1, and when € = 0 the following
scheduling metric IV, interpreted as an upper bound on the received SINR, can be used at
the BS

2
]gv: P||hk|| Pi
P ||hy||? sin? ¢y, + M

Actually, setting e to be inversely proportional to K, it can be seen from Lemma 5.1 that

(5.27)

as K — o0, ezp — 0, and cosf — cos¢y. Thus, for K — oo, IUBk = sin? ¢, and hence
(5.27) converges to (5.9) for M = M.

Note that scheduling metric (5.24) provides a more accurate SINR estimate compared to
(5.23) as pi > % and Iypg, < Iyp,. Furthermore, as pi < cos? ¢, we have that
vE >~V > ¢ > (7. An important difference with practical implications is that v// and
¢HT calculate SINR values that can be supported by the user channel and can be used for
outage-free rate allocation, whereas ng and Cév are upper bounds that are not achievable
in general. A major advantage using the decomposed CQI feedback strategy is that the BS
can adapt the number of scheduled user M depending on the average SNR, the number of
users K and the amount of multiuser interference. This results in a adaptive multi-mode
scheme where the transmitter switches between single-user transmission mode (TDMA with

M = 1) and multiuser mode (SDMA with 2 < M < M).

5.4 User Selection Schemes

At the transmitter side, the CQI metrics proposed in Section 5.3 are employed in order to
select users with favorable channel conditions and orthogonality properties. We present here
two user selection algorithms for scheduling in systems employing linear beamforming. Our
optimization objective is to maximize the system capacity, therefore the optimum scheduling
policy is to select through exhaustive search, the M < M among K users that maximize the
system throughput. Nevertheless, since the complexity of such a combinatorial optimization
problem is prohibitively high for large K, we resort to low-complexity scheduling strategies
based on greedy user selection (see e.g. [11,12,62]).

5.4.1 Greedy-SUS algorithm

We first review a heuristic scheduling algorithm based on semi-orthogonal user selection
(SUS) proposed in [12,62]. Using CQI,, defined in equations (5.9), (5.23), (5.24), and (5.27),
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and CDI, = flk, k= 1,...,K, the BS selects up to M out of K users at each time
slot. The algorithm is outlined in Table 5.1. The first user is selected from the set
Q" = {1,...,K} of cardinality |Q°| = K as the one having the highest channel qual-
ity, i.e. k1 = argmaxyego CQI,. The (i + 1)-th user, for ¢ = 1,...,M — 1, is selected
as k41 = argmaxycgi 7k among the user set Q' with cardinality ‘Ql| < K, defined as
Q= {k € Qi |f1kf1]1{| <eVje S}. The orthogonality € between the quantized chan-
nels is system parameter that has to be set in advance. Evidently, if € is very large, the
selected user group may experience significant multiuser interference, reducing the system
sum rate. Conversely, if € is too small, the scheduler cannot find enough semi-orthogonal
users to transmit to, and less than M users are multiplexed.

We should remark that greedy user selection results in multiuser diversity reduction.
The metric CQI,, of the selected user at the i-th step of the algorithm, k; is not always
selected among K users. At each step, CQI,, is equal to the maximum of K; = |Q'"!
iid. random variables with common CDF F,(z). Obviously, the multiuser diversity gain
of log|Q°| = log K is experienced only from the first selected user and decreases with the

user index.

5.4.2 Greedy-US algorithm

A limitation of the previous scheduling algorithm is that it does not generally adapt the
number of selected users and forces to select M users. As a result, full SDMA transmit
mode is always supported independently of the system operating points, namely K and
SNR. Therefore, it is more appropriate to be used with metrics of the type of v/ and 7i!. In
contrast with MIMO broadcast channels with complete CSIT, in limited feedback systems
it is not guaranteed that multiuser transmission (SDMA) always outperforms single-user
transmission (TDMA). There are several contexts in which it is beneficial from a capacity
point of view to softly transit to TDMA by switching off beams and communicating with
M < M users. Soft SDMA/TDMA switching can be realized by feeding back two scalar
values (strategy 3 and 4). In order to exploit the flexibility of this decoupled feedback
approach and adapt the number of scheduled users, we need to modify the greedy selection
procedure. For that, we generalize a standard greedy user selection (GUS) algorithm with
perfect CSIT [11] for the case of quantized CSIT, summarized in Table 5.2. We denote S;
the set of selected users up to the i-th step, and R(S;) = 3, s, logo(1 4+ CQIy), with CQL,
being: i, v1, ¢}*1 or ¢}V. The user with the highest rate (equivalently SINR metric)
among K users is first selected, and at each iteration, a user is added only if the sum rate
(based on the estimated SINR) is increased. At each step, it is important to re-process the
set of previously selected users (thus, re-calculating the zero-forcing beamformers) once a
user is added to the set S;. We should note that if v/, vZ! are used, the algorithm becomes
trivial and coincides with greedy-SUS algorithm, since the one scalar CQI information does

not allow us to re-process the precoding strategy each time a user is added.

As stated before, the value of the orthogonality constraint e affects the performance of the
greedy-SUS algorithm. If € is set too small, the multiuser diversity gain decreases, and
the user set Q' can be empty before M quasi-orthogonal users are found. The optimal
value decreases with K, as the probability of finding M semi-orthogonal users among K is
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larger, however it is difficult to be optimized analytically. A main advantage of Greedy-US
algorithm compared to Greedy-SUS is that it does not require to predetermine any system
parameter €, as it can be calculated and optimized at each step based on the feedback values

71(:)7 7122) and the candidate users.

5.5 Performance Analysis

We analyze the sum-rate performance of the above CQI feedback metrics combined with
user selection algorithms under the ollowing system configurations:

e Strategy 1: CQI feedback and scheduling metric v/ combined Greedy-SUS algorithm.
e Strategy 2: CQI feedback and scheduling metric /! combined Greedy-SUS algorithm.

o Strategy 3: CQI feedback metrics ”y,(gl) and ”y,(f) combined Greedy-US algorithm and
scheduling metric (/7.

o Strategy 4: CQI feedback metrics ”y,(gl) and ”y,(f) combined Greedy-US algorithm and
scheduling metric ¢/V.

Closed-form throughput expressions can be derived using similar tools as in Section 3.2;
however little or no insight is gained from these involved expressions. For that, we focus
on two practically relevant regimes: the large number of users regime (K — oo) and the
high power regime (P — 00). XX We decide to investigate the performance using the lower
bound on the received SINR, 7,? , since it provides a lower bound on the achievable sum

rate of strategy 1 as well.

5.5.1 Asymptotic (in K) sum-rate analysis

We consider the asymptotic case of K — oo and M fixed. As (5.23) is a lower bound on the
user’s SINR, the exact received SINR that can be supported by the channel is unknown at
the BS (but higher than v£!). Thus, the expected sum rate R of strategy 2 is lower bounded

M M
R > E{Zlog2 (1+7£f)} =E{Zlog2 (1+kme%m,?)} (5.28)

i=1 i=1

as

where K; = }Qi_l} captures the multiuser diversity gain reduction due to Greedy-SUS
algorithm. A bound on the cardinality of ’Qi‘ can be calculated through the probability
that a user 7 in Q' is e-orthogonal to users in Q'~', which is equal to I.2(; pr—;), where
I,(a,b) is the regularized incomplete beta function. The k;-th user is the one that has the
maximum CQI metric among Q°~!, whose cardinality converges to the following value (by

using the law of large numbers) [98,99]:
|Q |~ KPr{he Q7 '} > Klo(i—1,M —i+1)
with }Qoy =K.
Note that for large number of users K and choosing ¢ = 1/log K, so that Klgnoo KI-(i—
I,M —i+1)=o0and lim e=0, we have that v}/ — ~L. Therefore, before establishing

K—o00

the asymptotic sum-rate optimality of strategy 2, we need to derive the statistics of 7}.
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Distribution of 7/ For the statistics of the upper bound on the expected received SINR
we have:

Lemma 5.2: The distribution function of F,(z) of the CQI feedback metric ~{ is given by

—Ma/P

1 — Np x> 120
Py (z) = { D(”f}ﬁpl — 0 (5.29)
1= Npigm=+7 0<z <3
Maz/P T
where T = F(]V}_l) |:ND(1+I)M r (T'(M = 1,6(z +1)v) = T'(M — 17“))}’ v = %’
and T'(a, x) is the (upper) incomplete gamma function.
Proof. The proof is given in Appendix 5.D. O

Note that the first branch of the CDF was first derived in [62]. In the Appendix, we

provide a different proof for = > % as well as the expression of F,(z) for z < 19

Asymptotic Sum-rate Optimality If we denote 8 = - (P/M)M ! the following
results the asymptotic optimality of the proposed limited feedback scheme (strategy 2):
Theorem 5.3: The sum rate of the proposed scheme R converges to the optimum capacity
of MIMO broadcast channel Ry, for K — oo, i.e.

1+ Llog K
lim (Ropt — R) = lim |Mlogy, — M8 | _ g (5.30)
with probability one.
Proof. The proof is given in Appendix 5.E. O

The above theorem implies that the optimal M loglog K capacity growth can be achieved
for K — oo by using the proposed metric (5.23) with greedy user selection algorithm and
ZF beamforming on the channel quantizations. Note also that this notion of sum rate
convergence is stronger than that capacity ratio convergence, i.e. limg_, R =1, as the
latter cannot guarantee that there is unbounded SINR gap between the proposed scheme
and the optimal one (full CSIT case).

5.5.2 Sum-rate analysis in the interference-limited region

In this section, we study the sum rate achieved by strategy 2 in the high-power regime

(interference-limited region). For P — oo, it can be shown that

Theorem 5.4: The sum rate of strategy 2 at high SNR with finite Bp and K is upper
bounded by

R

M 1
< B H 31
_M_1<D+1g2 K> (5.31)

where Hy = Zszl % is the harmonic number (K-th partial sum of the harmonic series).

Proof. The proof is given in Appendix 5.F. O
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The above theorem implies that the system becomes interference-limited and its sum
rate converges to a constant value at high SNR, even for arbitrary large but finite Bp and
K. This behavior is inherited to all finite fixed-rate feedback-based MISO systems due to the
quantization error, which results to loss of the multiplexing gain at high SNR. Furthermore,
as OR/OM < 0, the sum rate is a monotonically decreasing function with M, implying that
at high SNR the sum rate is maximized by using M = 1 beam.

The asymptotic behavior of Hy is given by the standard Euler expansion as Hx ~

1 1
log K + Yem — z:l — ~y+logK + — 2K e 4—0(1201{4
is the Euler-Mascheroni constant and B,, denotes the n-th Bernoulli number. A sharp lower

), where e, ~ 0.57721566...

and upper bound of the harmonic sequence for any natural K > 1 is derived in [100] as

fOllOWS:
— K g ,7677’7/ 2P7 :1)) .

Therefore, for large number of users (K — o0), hm Hy =log K4 7em. Thus, the sum rate
at high SNR and K — oo exhibits logarithmic growth with K due to the multiuser diversity
gain. In other words, for fixed Bp, although only a fraction of the full multiplexing gain is
achieved (r = %), the sum rate scales as log K, compensating for the loss in degrees of

freedom and ‘shifting’ the interference-limited region to higher SNR values.

5.6 MIMO Broadcast Channels with Finite Sum Rate
Feedback Constraint

In the previous paragraphs, the term quantization refers to the CDI feedback since we
implicitly consider that the reported CQI values are not quantized. In other words, each
user uses Bp bits for CDI feedback and infinite number of bits for reporting the scalar CQI
value. In this section, we impose a finite sum rate feedback constraint, which implies that
each user can only utilize By, bits to report both CDI and CQI channel knowledge.

5.6.1 Multiuser Diversity - Multiplexing Tradeoff in MIMO BC
with Limited Feedback

We present here a tradeoff between multiuser diversity and spatial multiplexing gain that
arises in SDMA downlink with finite sum rate feedback constraint, where each user sends
CDI (based on a codebook) and CQI feedback. This is mainly due to the following fact: on
one hand, CDI is sufficient to achieve the full multiplexing gain, but cannot simultaneously
exploit multiuser diversity gain of order loglog K. Furthermore, CDI feedback load needs to
scale appropriately depending on system parameters (e.g., operating SNR, number of active
users, etc.) in order to guarantee throughput that scales linearly with the number of transmit
antennas [10]. On the other hand, in order to achieve the optimal double logarithmic
capacity scaling with K, CQI has to be conveyed at the transmitter as a means to perform
efficient user selection and control the effect of CDI quantization error. Therefore, in a
system where only a finite number of feedback bits per user can be conveyed, the amount of
bits used for CSIT quantization has to be shared between CDI (multiplexing gain) and CQI
quantization (multiuser diversity). While CDI quantization incurs in loss of multiplexing
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gain, CQI quantization leads to a degradation of the multiuser diversity benefit. Therefore,
assuming that each user is allowed to feed back a finite number of bits results in a tradeoff
between the spatial multiplexing gain

R(P)
" Ph—I>I<1>o log P (5:33)
and the multiuser diversity gain
R(P, K
m= lim D) (5.34)

~ K—oo rloglog K

Although the term is inspired by the popular diversity-multiplexing tradeoff (DMT) in
MIMO point-to-point systems [101], there are several fundamental differences. The mul-
tiuser diversity differs from single-user diversity in the sense that the latter refers to the
ability for the multiple antennas to receive the same information across different paths,
while in multiuser systems, different information is transmitted and received by different
users. The multiuser diversity gain increases with the number of active users in the cell,
while the available multiplexing gain remains equal to min(M, K), regardless of the value
of K. Hence, with full CSIT both multiuser diversity and multiplexing gain can be attained
since they scale with different magnitudes, K and SNR respectively. In contrast, in the
DMT for single-user MIMO systems, both diversity and multiplexing gain scale with the

SNR, thus the above two gains cannot be fully achieved simultaneously.

5.6.2 Finite Sum Rate Feedback Model

We present here a general framework which is referred to as finite sum rate feedback model.
Each receiver k is constrained to have a limited total number of feedback bits By, available
for quantizing its channel vector and feeding back its quantized CSIT back to the BS. From
this total amount of bits, Bp bits are used to represent the CDI h = h/|/h| based on a
predetermined codebook, and Bg bits are used for scalar quantization of the real-valued
CQI. This model is depicted in Fig. 5.1. In [10] it was shown that channel directional

CSIT—) CDI caQl

Bt = Bo + Ba

Figure 5.1: Finite Sum Rate Feedback Model.

information can be used to achieve the full multiplexing gain when the feedback load Bp
scales appropriately. In a multiuser context with K > M, the CDI does not provide any
information on users’ channel gains, thus it is not sufficient to be used for efficient user
selection and to exploit multiuser diversity gain. Hence, additional instantaneous, low-rate
CQI is required. We try here to reveal the interplay between K, SNR, and feedback load
Bp and Bg, in order to exploit in the best possible way the degrees of freedom available in
a multiuser MIMO downlink, i.e. the multiuser diversity and spatial multiplexing gain. We
aim at characterizing the tradeoff that results from the sum feedback rate constraint per
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user (Biot), by identifying the optimal feedback rate allocation (split) in order to achieve
both gains. Simply speaking, we try to quantify how many feedback bits are worth CDI
and CQI.

CQI Quantization

As channel quality indicator, we consider instantaneous scalar feedback, denoted as g,
which can take on various forms and is evidently a certain function of the current channel
realization hy (i.e., vz = f(hy)). We assume that v are i.i.d. random variables with
probability density function (PDF) f,(y).

Let X = {qo < <...< qNQ} and Y = {qu <...< 'quval} be the input decision
levels and the output representative levels (reconstruction values), respectively, of an Na-
level quantizer Q(-) defined as:

Q) =74 if i <v<gq1 0<i< Ng-—1

with o = 0 and gy, = co. A partition region (quantization level) is defined as Q; =
[9is¢i+1),0 < i < Ng — 1. Each user sends the corresponding quantization level index
i back to the transmitter using Bg = [logy Ng| bits. In order to minimize the outage
probability, we assume the following conservative but reliable quantization rule v,, = ¢;.

The distortion D introduced by the quantizer is given by

Ng—1
Drg =B, @) = 3 [ ety (5.35)
i=0 JQi
where e(-, ) is an error weighting function. Necessary conditions for optimal quantizer Q:
oD
e g i=0,...,Ng
qi
oD
22N — 0 i=0,...,No—1
Yq:

5.6.3 Problem Formulation

Our objective is to dynamically allocate bits to CDI and CQI feedback (as shown in Fig.
5.1) given a total amount of feedback bits B¢, so that the capacity of the multiuser MIMO
downlink R(Bp, Bg) is maximized. In the described finite sum rate feedback model, the
optimal feedback rate allocation that maximizes the capacity can be formulated in the

following constrained optimization problem:

max R(BD, BQ)
Bp,Bq (5.36)
s.t. BD + BQ = Btot

Let Wi, ., be the event that a user £ is selected for transmission among K users over beam m.
Capitalizing on the analysis of [102], we calculate the probability of this event conditioned
on the fact that v falls into the quantization level @Q);

n:0n+1

K
1 K—-1
Pr (Wk1m|”yk S QJ) = Z ( n ) '731 'PQ
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where
Py = Pr{n users other than user k € Q;} = (Pr(y € @;))"

and
Py = Pr{(K —n — 1) users other than user k € Q,,,w < j}
K—-n—1

= | Pr ’yGUQw

w<g

We assume here that if more than one user lie in ();, a random user is scheduled for
transmission. Note also that for i.i.d. channels, Pr (Wi |7 € Q;) is not dependent on k
and m. Using that (Pr(y € Q;)) = Fy(¢j+1) — F,(q;), and after some manipulations, one
can show that

1B (q540)]" = [Fy(g)]"
K (Fy(qj+1) — Fy(q5))
Consider now that the quality indicator v is a function of each user’s SINR. In that case,
the effect of CDI quantization will be reflected on the distribution of . Hence, the CQI
contains information both on channel gain and CDI quantization error. For instance, the

Pr (Wk,m|'7k € Q]) = (5.37)

value v can be a lower or an upper bound on the achievable SINR, or even the achievable
SINR value itself. Suppose now that the metric « represents a lower bound on the SINR.
Then, the rate of the selected user k, Ry is given by

I \%

Q
> / o PrOVinbi € Q) logs(L+ 1) 0y
Y J

7=0

S (B (g )] = [Fy(g))™
Z0 /j 0gy(1+7) - K (Fy(qj+1) — Fy(g5)) Fy(v)dy

The system throughput R(Bp, Bg) can be lower bounded by

R(Bp,Bq) =Y Ri >

kesS
N [Py (g1 — [Py (g1
kezg JZO / logs( 1+7 K (Fy(qj+1) — Fy(q;)) Jy(v)dy (5.38)

where Bp is contained both in F(y) and fy (7).

Unfortunately, the optimization problem (5.36) does not seem to accept closed-form solution.
Additionally, the solution depends on the quantization levels ¢;,0 < i < Ng — 1 to be
considered, thus different CQI quantization strategies will yield different solutions. To
circumvent the complexity of numerical brute force optimization and the non-linearity of this
optimization problem, numerical algorithms based on dynamic programming and providing
a global optimum can be used [103,104].

5.6.4 Decoupled Feedback Optimization

In this section, instead of determining jointly the optimal feedback bit split, we follow a
low-complexity approach. The problem is decomposed in a two-step optimization procedure:
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we first find the optimal number of CDI bits required to guarantee full multiplexing gain,
implying that the feedback load allocated to CQIL is Bg = (Bt — Bp), and optimizing the
2B¢ quantization levels by using (5.38). This approach is motivated by results showing that
lack of accurate CDI feedback in the high SNR regime results in loss of multiplexing gain. As
the loss of the pre-log factor of M is more detrimental on the achievable sum-rate than the
loss in multiuser diversity, we believe that for such kinds of feedback rate optimizations, an
efficient rule of thumb is to guarantee appropriate CDI feedback rate to achieve close-to-full
spatial multiplexing gain.

To illustrate this feedback optimization technique, we apply this decoupled approach
to feedback optimization of strategy 1. Based on the asymptotic growth of (5.9) for large
K given in [64], we derive the scaling of CDI feedback load, which in turn determines the
remaining CQI feedback bits. We define the power gap (per user) between the SINR of

the above scheme, SINR, and that of zero-forcing with perfect CSI, SINRyzp as the ratio

SINR1
SINRzp

full multiplexing gain for finite K, the number of CDI bits Bp per receiver k should scale

= «. Note that this power gap is translated to a rate gap. In order to achieve

according to:
Bp = (M —1)log, (P/M)— (1 —b)logy K + ¢ (5.39)

where ¢ = log,(K/K;) is a constant capturing the multiuser diversity reduction at each
step ¢ of the greedy-SUS algorithm due to the e-orthogonality constraint between scheduled
users. As b < 1, having more users in the cell, a smaller number of feedback bits Bp per
user is required in order to achieve full multiplexing gain. For example, in a system with
M = 4 antennas, K = 30 users and SNR = 10 dB, when a 3-dB SINR gap is considered,
each user needs to feed back at least Bp = 9 bits.

Scaling of CDI feedback bits at high SNR regime

In the high SNR regime, the role of CDI is more critical due to the effect of quantization
error [10]. For P — oo and fixed K, based on asymptotic results of [64], we can show that
the feedback load should scale as

Bp = (M —1)logy, P —logy, K (5.40)

For instance, for a system with M = 4 antennas, SNR = 20 dB and K = 60 users, Bp = 14
bits are required to guarantee full multiplexing gain. Expectedly, the feedback load Bp at
high SNR is larger than that of (5.39). Thus, it is more beneficial to allocate more feedback
bits on the quantization of channel direction (Bp) at high SNR, and assign less bits for CQI

(Bq).

5.7 Performance Evaluation

In order to assess the sum-rate performance of the proposed schemes, simulations have
been performed under the following conditions: M = 2 transmit antennas, orthogonality
constraint € = 0.4 and codebooks generated using random vector quantization (RVQ) [10,61].
The achieved sum rate is compared with two alternative transmission techniques for the
MIMO downlink, random beamforming [9] and zero-forcing beamforming with perfect CSI
(and equal power allocation).
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Figure 5.2: Sum rate versus the average SNR for Bp = 4 bits, M = 2 transmit antennas
and K = 30 users.
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Figure 5.3: Sum rate as a function of the number of users for Bp = 4 bits, M = 2 transmit,
antennas and SNR = 20 dB.

Unquantized CQI

In Figure 5.2 we compare the sum rates of the proposed CQI metrics as a function of the
average SNR, for K=30 users and Bp = 4 bits per user for CDI quantization. Strategy 1
(metric I) and strategy 2 (metric IT) offer similar throughput, exhibiting however the same
bounded behavior at high SNR, where the system capacity converges to a constant value.
Given a fixed number of CDI bits Bp, the system becomes unavoidably interference-limited
at high SNR and the rate curves flatten out. This is due to the fact that the accuracy

of knowledge (resolution) of the quantization error remains constant for SNR increasing,
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as well as due to that Greedy-SUS forces the system to schedule always M users. On the
contrary, the scheme using strategy 3 (with feedback of two scalar values) provides higher
flexibility by transmitting to M < M users, thus keeping a linear sum-rate growth in the
interference-limited region and converging to TDMA for P — oo (where M = 1 is optimal).

In Figure 5.3 we plot the sum rate as a function of K for average SNR = 20dB and
codebook of size Bp = 4 bits. It can be seen that all scalar metrics can efficiently benefit
from the multiuser diversity gain. The gap with respect to the full CSIT case can be
decreased by increasing the feedback load Bp. However, the slightly different scaling of
strategy 4 (scheduling metric IV) is due to the fact that the user selection based on sum-
rate estimates decides that M < M beams ought to be used. Since the calculations are
performed using incomplete CSIT, erroneous or loose estimations can sometimes lead to
sub-optimal decisions in terms of the number of users to be scheduled. Furthermore, in a
system with fixed orthogonality factor €, the accuracy of the lower bound (y/!) does not
improve as K increases. On the other hand, the upper bound (y!) becomes more realistic
due to a higher probability of finding orthogonal quantized channels, hence yielding slightly
better performance.
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Figure 5.4: Sum rate performance as a function of the average SNR for increasing value of
the number of users, with Bp = 4 bits of feedback per user and M = 2 transmit antennas.

We study now the performance of strategy 1 with different number of users and CDI
feedback bits in order to obtain an insight on the CQI feedback metric design and the results
of our asymptotic analysis. Figures 5.4 and 5.5 show a sum-rate comparison as a function of
the average SNR, illustrating the multiplexing gain achieved by strategy 1. In both figures, it
can be seen that given a fixed number of feedback bits Bp, the system becomes unavoidably
interference-limited at high SNR and the rate curves flatten out. Given a fixed codebook
size, Figure 5.4 shows the performance improvement of the proposed CQI metrics as the
number of active users increases. Indeed, it can be seen that the performance gap between
the scheme with perfect CSIT and strategy 1 with partial CSIT is narrower for K increasing.
Although the scheme enters the interference limited regime for large values of P, the larger
the number of users, the higher the SNR value for which the sum rate converges to a bound.
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Figure 5.5: Sum rate as a function of the average SNR, for increasing codebook size, M = 2
transmit antennas, and K = 50 users.
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Figure 5.6: Sum rate performance as a function of the number of users for increasing code-
book size, M = 2 transmit antennas, and SNR = 10 dB.

For fixed number of active users in the cell (Fig. 5.5), by increasing the number of codebook
bits, strategy 1 converges to ZFBF with perfect CSIT, while providing considerable gains
with respect to RBF. Note also that increasing the number of bits for channel direction
quantization at high SNR is more beneficial than at low SNR. The sum rate as a function
of the number of users K is shown in Figure 5.6. As the size of the codebook increases,
the performance of scheme I approaches that of the scheme with perfect CSIT, showing
the expected scaling with the number of users. This is due to the fact that metric I can
efficiently exploit multiuser diversity.
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Effect of CQI quantization

In order to evaluate the effect of CQI quantization, we consider a system in which each user
has in total 10 bits available for feedback reporting. A sum-rate comparison as a function
of the number of users for SNR = 20 dB is shown in Figure 5.7. We use Bp bits for feeding
back the index of the quantized channel and the remaining By = (10 — Bp) bits for CQI
quantization. For Strategy 4 (two scalar values of feedback), 2 bits are used for quantization
of the channel norm (y(")) and 3 bits for the alignment (v(?)). The random beamforming
scheme uses Bp = 1 bits in order to specify the chosen transmitted beam (Bp = [logy M)
and the remaining (9 bits) for SINR quantization. A simple quantization technique has been
used that minimizes the mean squared distortion (max Lloyd algorithm). For this amount
of available feedback, it can be seen that for the simulated range of K, 6 bits are enough
to capture a large portion of multiuser diversity and preserve the scaling (case Bp = 4).
Note also that the performance is similar to that of Figure 5.3, in which the CQI metrics
are considered unquantized.
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Figure 5.7: Sum rate versus the number of users for with SNR = 20 dB, M = 2 transmit
antennas and 10-bit total feedback bits. Bp = 5 bits are used for codebook indexing and
(Bg = 10 — Bp bits) for CQI quantization. For metric IV, 2 bits are used for quantization
of the channel norm and 3 bits for the alignment.

Finite sum rate feedback constraint

We evaluate now the sum rate performance of strategy 1 under a finite sum rate feedback
constraint. The total number of available feedback bits is Bi,: = 7 bits. CQI quantization
is performed through Max-Lloyd’s algorithm. Once both the input quantization levels g;
and output representative levels v, are found, the quantizer sets v4, = ¢;, 0 <7 < Ng — 1
in order to avoid information outage events.

Figures 5.8 and 5.9 show the sum rate as a function of the number of users for SNR
= 10 dB and SNR = 20 dB respectively for different CDI and CQI feedback allocations.
As expected, it is more beneficial to allocate more bits on channel direction quantization
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Figure 5.8: Sum rate vs. number of users for M = 2 and SNR = 10 dB.

in a system with low number of active users. On the other hand, as the number of users
increases, it becomes more beneficial to allocate bits on CQI quantization instead. The black
curve Bp = 1 bit corresponds to the RBF for M = 2 transmit antennas [9]. In a system
with optimal quantization, i.e. matched to the PDF of the maximum CQI value among K
users, the amount of necessary quantization levels is reduced as the number of users in the
cell increases. Thus, fewer amounts of feedback bits are needed for CQI quantization in
order to capture the multiuser diversity.
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Figure 5.9: Sum rate vs. number of users for M = 2 and SNR = 20 dB.

In Figure 5.10, the envelope of the curves in the two previous figures is shown, which
corresponds to a system that chooses the best Bp/Bg balance for each average SNR and
K pair. In this figure, we compare how this best pair of (Bp, Bg) changes as the system
average SNR increases. Both curves are divided in different regions, according to the optimal
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Figure 5.10: Sum rate vs. number of users in a system with optimal Bp/Bg balancing for
different SNR, values.

(Bp, Bg) pair in each region. It can be seen that the optimal threshold for switching from
Bp — Bp — 1 bits (and thus Bg — Bg + 1) is shifted to the right for higher average SNR
values (upper curve). This means that as the average SNR increases, more bits should be
allocated on channel direction information. Summarizing, given a pair of average SNR and

K values, there exists an optimal compromise of Bp and B, given that By, = Bp + Bg.

5.8 Conclusion

In this chapter, we study multi-antenna broadcast channels, in which each user reports back
to the BS quantized CDI and real-valued scalar CQI through a limited rate feedback channel.
We proposed various scalar CQI feedback and scheduling metrics that, if combined with
efficient joint scheduling and zero-forcing beamforming, can achieve a significant fraction of
the capacity of the full CSI case by means of multiuser diversity. These metrics are built
upon inter-user interference bounds and incorporates information on both channel gain and
quantization error as a means to estimate satisfactorily the received SINR. A novel feedback
strategy is also identified, which allows for adaptive switching between multiuser (SDMA)
and single-user transmission (TDMA) mode was also identified as a means to compensate
for the sum-rate ceiling effect at high SNR. Our scheme is shown to achieve linear sum-rate
growth in the interference-limited region by dynamically adapting the number of scheduled
users. Under a practically relevant fixed feedback rate constraint per user, we formulated
the problem of optimal feedback balancing in order to exploit spatial multiplexing and
multiuser diversity gains. A low-complexity optimization approach has been suggested in
order to identify the necessary CDI and CQI feedback load scaling, revealing an interesting
interplay between the number of users, the average SNR and the number of feedback bits.
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Table 5.1: Greedy Semi-orthogonal User Selection with Limited Feedback

Step 0set S=0,0°=1,.... K
Fort=1,2,..., M repeat
Step 1 ki = argkreng)fl CQIL,
Step 2 S=8SUEk;

Step 3 Q' ={ke Q| [hhf| <}

Table 5.2: Greedy User Selection Algorithm with Limited Feedback

Step 0 Initialization: Set Sy =0, R(Sp) =0, and Q° =1,..., K

Step1l k= CcQI
ep 1= arg max QI

Set 81 = SO U {kl}
While ¢ < M repeat
g—1+1
St 2 k; = R(S;i—1 Uik
ep arg _ max (Si-1 U {k})

Step 3 Set S; = Si—1 U{ki}

if R(S;) < R(Si-1)
Step 4 finish algorithm and 4 «— i — 1

Step 5 Set S=38; and M =1
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APPENDIX

5.A Proof of Theorem 5.1

Before proceeding to the proof of Theorem 5.1, we first state the following result.

Lemma 5.3: Let U, € CM*XM=1) pe an orthonormal basis spanning the null space of wy.
Then,

B UL[|* = 1 = cos® 6, (5.41)

Proof. Define the orthonormal basis Zj of CM obtained by stacking the column vectors of
Uy, and wy: Zj, = [Upwy]. Since Z,Z2 =T and hy, has unit power

|B4Zi|” = 0,24 2[R, =Bk, =1 (5.42)
Then, by definition of Z;, we can separate the power of hy, as follows
B Zy || "= |[B [Upwal = RO+ [Bews = 1 (5.43)

— 2 — 2
Setting ‘hkwk’ =cos? 6, and solving the above equation for Hh;CU;C H we obtain the desired
result. O

Now we can proceed to the proof of Theorem 5.1. Using the definition of ¥ (S) and
defining w} = cos? 6, the interference over the normalized channel for user k and index set

S, denoted as I;(S), can be expressed as

— 2 — —H = —H
Ix(S) = § [hew;|” = E: h,w;wih, =h,¥,(S)h, (5.44)
i€S,i#k i€S,i#k

The normalized channel hy, can be expressed as a linear combination of orthonormal basis
vectors. Using Lemma 5.3, all possible unit-norm hy, vectors with |kak| = wy can be
written as follows

hy, = wpe 7 wi 4+ 1/1-w?UByey (5.45)
where By, is a diagonal matrix with entries e/% i = 1,...,M — 1 and e}, is an arbitrary
unit-norm vector in CM~1. The complex phases 3; and oy, are unknown and lie in [0, 27].
Substituting (5.45) into (5.44) we get

(a) + (1-wp) el B U}/ ¥,(S)UBrey, 516
(b) —|—w;m/1—w,% [e‘jo‘kwkH\Ilk(S)UkBkek

+eBIU W, (S)wyel ]

Since the first term in (5.46) is perfectly known, the upper bound on I (S) is found by joint
maximization of the summands (a) and (b) with respect to a, By and e,. We use a simpler
optimization method, which consists of bounding separately each term.
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(a) Defining Ax(S) = U ¥, (S)U; for clarity of exposition, the second term can be
bounded as follows

énax (1-wp) e’BYAL(S)Brey, = (1—w?) Amaaf Ak(S)}
K€k

st |leg] =1 (5.47)

where the operator A {-} returns the largest eigenvalue. The maximum in (5.47) is
obtained when the vector Biey equals the principal eigenvector of the matrix Ag(S).
(b) Defining q;, = By U ¥, (S)wre’** and noting that the matrix ¥, (S) is Hermitian by

construction, the bound on the third term in (5.46) can be written as follows

max wiy/1—w? [quek + equk} = n(llaXka 1—w? ||yl
k

q;.€k
st e =1 (5.48)
The left hand side is maximized for e; = Hg—’“”, which satisfies the unit-norm constraint,
k

yielding the modified bound in (5.48). The solution is given by

max 2wy /1—w? [|q,| = max 2w;m/1—w,%HB,CILIU,CH\II;C(S)wkejo"c
q;. B o

= 2wy /1 w? HUkH\Ilk(S)wkH (5.49)

Finally, incorporating into (5.46) the bounds obtained in (5.47) and (5.49) we obtain the
desired bound.

5.B Proof of Lemma 5.1

By noting that ezp corresponds to the maximum possible amplitude of the off-diagonal
terms of (I:IkI:IkH) ' and under the non restrictive assumption e < ﬁ, the bound on
ezr is found by boundinng the amplitude of the off-diagonal terms in the Neumann series
oo offdiag (ﬂkﬂkH) , where offdiag(-) takes the off-diagonal part setting the elements in
the diagonal to zero. By representing the non-normalized zero-forcing beamforming vectors
as the sum of ﬁk and its orthogonal complement wy, i.e. wy :nﬁk + w and bounding
the amplitude of the diagonal terms of I+ Y ° | offdiag (I:IkI:IkH) , we obtain the desired

bound on the channel alignment cos .

5.C Proof of Theorem 5.2

By using the definition of each user’s SINRy, cosfy and equal power allocation, we have
that

P|h/€W1€|2 o PHhk||2COS2 Hk

SINRy, = = —
Yjes.ir PIewil* =M png P sy ;| + M

(5.50)

We aim to find an upper bound on the multiuser interference given by Theorem 5.1 that
takes into account the worst-case orthogonality ezp. Expressing the worst-case interference
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received by the k-th user in terms of cosfy and ezp, the following bounds can be easily
derived for equation (5.16)
ar < (M —1)egp
Br <1+ (M —2)ezp (5.51)
wi < (M —1)ezr

Hence, by substituting these values in equation (5.15), we obtain the upper bound I =
cos? O, (M — 1)ezp + sin? @y [1 4 (M — 2)ezp] + 2sinby, cos O (M — 1)ezp < sin?6. By
substituting ezr = ¥ and cos §), = %7;\/5' (i.e. inequalities (5.17) and (5.18), respectively
become equalities), where ¢ = m in the previous expression, we have the upper bound
given by (5.21). Using this bound on the SINRy, expression derived in (5.50), we obtain the

SINR bound in equation (5.20).

5.D Proof of Lemma 5.2

Before proceeding to the proof, we first state some preliminary calculations that are useful
in the derivation of the CDF of "y,g. To simplify the notation, we define the random variable
v := |hy||* which is Gamma distributed with parameter M and mean E{||h;|*} = M;

hence, its PDF is given by
M1

v = — - . 2
£@) = Far® (552
where I'(M) = (M — 1)! is the complete gamma, function.

In [62], it is shown that under the ACVQ framework, the interference Y = ||hy||* sin? ¢y,
follows a chi-square x%Q M—2) distribution with (2M — 2) degrees of freedom weighted by ¢,
ie. Y~ dox%,), . Similarly, the distribution of the received signal X = [/hy|* cos? ¢, =
[l (1 — sin® @) is the sum of two independent weighted chi-square distributions X%2) +
(1- 5)X%2M—2)'

Define the following changes of variables

.2 1
= = sv(l —
1 1= sin Gﬁ’“ U is1/( ) (5.53)
v:=|hgl vi= vy
Then, the metric in equation (5.9) can be expressed as
u
= 5.54
Ll (5.54)

The Jacobian of the transformation u = f(v,v), v = g(v, 1) described in (5.53) is given by

ou du
e ., 14
J(v,0) = | A | == (5.55)
v oy
Expressing v and 1 as a function of u and v, we have v = é(u + v) and ¢ = wiy- Sub-
stituting in the Jacobian, we get J(u,v) = @. Since v and 1 are independent ran-

dom variables for i.i.d. channels, the joint PDF of u and v is obtained from fy,(u,v) =

ﬁfy [0(u+v)] fy [uiv] The PDF f, is given by eq. (5.52) and f is given by [62]

(5.56)

£ (33)_{ Np(M —1)aM=2 0<a2<$

0 >0
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Hence, we get the joint density

g —6(utv), M—2

uv\ WU, - N urv 5.57
funl,) = Fegpmgye (5.57)

The CDF of the CQI metric I is found by solving the integral
= / / Juv(u,v) dudv (5.58)

u,v €Dy

The bounded region D, in the uv-plane represents the region where the 1nequahty <
holds. In addition, since the domain of ¢ is Dy = [0,6], we also obtain the 1nequa11t1es

v >0

ut+v —

» o < 6 and thus u > 1=0y. Hence, F, () is obtained by integrating f.(u,v) over
the first quadrant of the wv-plane, in the region defined by u < z (v + %) and u > %U.
Depending on the slopes of these linear boundaries, the integral in (5.58) is carried out over

different regions

Jo S s §’+P“ Fuo(u,v) dudv r> =2
By (o) = (5.59)
= pz(v+ %) s
J"P(léé)f #5) Juw(u,v) dudv O§:U<1T

The upper integration limit along the v axis in the region 0 < z < 1%5, corresponds to the
value of v in which the linear boundaries intersect, v =
above, we obtain the CDF of the SINR metric.

%. Solving the integrals

5.E Proof of Theorem 5.3

Let *y,gi denote the upper bound on the achieved SINR of user k; (i.e. the user selected at
the i-th iteration, for ¢ = 1,2,..., M. From Theorem 1 in [64], we have that

P P 1
Pr {ux, — 1 loglog VE <, < e, + 12 loslog VI | 21-0 (1)

with ux, = 57 1og(%) - w loglog(%).

For+=2,..., M, we obtain

P P 1
Pr{u,ci - Mloglogx/? < *y,gi <wug, + Mloglogx/?} >1-0 <10gK>

with w, = 47 log(%) — P loglog (&),

From Greedy-SUS procedure, we have that v/ >~[ > ... >~/ , and after some manipu-

lations it can be shown that for large K, we have

P P 1
Pr{u;ci — Mloglog\/f < v,ﬁi < ui, + Mloglogx/?} >1-0 (@>

Since log(+) is an increasing function, we have that
Pr{log, <1 +uk, — — log log \/_) log, (1 + ”yk )

1
< log, (1 + ux, + log log \/_>} (logK> (5.60)
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Hence,

log, (1 + ur, — % loglog \/F)
log2(§ log K)

log, (1 +u, + % log log \/f)
logg(% log K)

>1-0 (bglK) (5.61)

By substituting uix, and ux, in the above equation, we conclude that the LHS and the RHS

lim P
Kgnoo r{

- log, (1 + 7,@)

log, (47 log K)

of the inequalities both converge to one as K — oo, therefore

R

lim ———+ =1 5.62
ot log, (ﬁlogK) ( )

with probability one. Assuming equal power allocation and that M perfectly orthogonal
users can be found, as Pr{|S| = M} K1, we have that the proposed scheme achieves a
sum rate of M log, (% log K)

An upper bound on R,pt is given in [44], where
Ropt P 1
Pr{ =2 <lo 1+ — (log K + O(lo 10K>}21—O(—>
{M g2( M(g (loglog K)) log2K
Thus,

Pr {loga(1+44,) — Bgpt >
log, (1 + ux, — £ loglog \/E) —log, (1+ £ (log K + O(loglog K)))}

210 (k) -0 )

where the RHS of the inequality inside the Pr goes to zero for K — oco. As a result, for
large K, we have that

Ropt

i=1,...,M

with probability one, which results to (5.30) for K — 00, as Rept is an upper bound on the
sum rate of our proposed scheme.

5.F Proof of Theorem 5.4

For P — oo, we have

I . (HL&)2 by | (cos dr, — VD)2 (cos ¢, — VD)2
v, = lim _

~ - _ < cot? ¢y, (5.63)
P—co P|hg|*Tus, + M (1+9)2Tys,

whose PDF is given by feo2 ¢(2) = (](wl;%, for x > (1 — 9)/d and zero elsewhere |64].

The expected sum rate for a user set S (of cardinality M) is given by

M M oo
2 _ Ki
R<E {;_1 logy(1 + max cot %)} = ;_1 /0 log, (1 + 2)dFX:,  (x)dz
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Ki—1
> 2p(M — 1) 25 1
1;10g21—i—:1c) L 1—(14_17)]\471 dx

uM:

—1)k h log, (1 + x) 200! dx
15 82 (1 + 2)FM=1)+M

B

IIA
R
le)
M

1ogzezlc Z< > D' [BJSJI:)?ZJF(kjl)?}

M
1
O oge > (Bplog2 + Hy,) (5.64)

where (a) follows from binomial expansion and to get (b) the Norlund-Rice integral repre-
sentation is applied [105]. Combining (5.64) with IC; < K, we get (5.31).



Chapter 6

Feedback Reduction using
Ranking-based Feedback

6.1 Introduction

In the previous chapters, we investigated several scheduling and linear beamforming tech-
niques and tried to identify low-rate feedback measures that provide the transmitter with
sufficient yet partial channel knowledge, as a means to achieve near optimal system through-
put. It was shown that if some form of implicit channel knowledge (e.g. channel correlation)
is exploited, it sufficient to feed back one or two scalar feedback parameters in order to
achieve satisfactory performance. In this chapter, we take a different approach to the prob-
lem of feedback reduction and aim at finding a representation of feedback metrics that allows
for further compression. Using the promising two-step scheduling and precoding approach
proposed in Chapter 3, we point out that the channel information to be conveyed to the
scheduler can be further decreased. As the first-stage channel information is mainly utilized
for the purposes of user selection and not for beam design or rate allocation, we propose
a new type of feedback representation, coined as ranking-based feedback. In this approach,
each user - instead of reporting a quantized version of CSIT feedback - calculates and feeds
back the ranking, an integer between 1 and W+ 1, of its instantaneous CSIT among a set of
W past CSIT measurements. This representation enables the BS to select users that are on
the highest peak (quantile) with respect to their own channel distribution, independently of
the distribution of other users. When W is sufficiently large, the selected users are also the
ones with the most favorable channel conditions. An interesting property of this method is
that temporal fairness is restored in heterogeneous networks, i.e. systems in which users’
channels are not identically distributed and mobile terminals experience different average
SNRs.

127
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Feedback reduction in SDMA systems has in fact evolved in a topic of research in its
own right and many possible strategies can be pointed out. Apart from the approaches
already presented and proposed in the previous chapters, a few selected additional ones
are briefly exposed here. A popular approach, referred to as selective or threshold-based
feedback, allows a user to send back information depending on whether its current channel
conditions exceed a certain threshold or not. This concept was first proposed in [106] for a
downlink single-input, single-output (SISO) system and SNR-dependent thresholds, and is
shown to reduce statistically the required total amount of feedback by means of multiuser
diversity. The feedback rate can be further reduced, at the cost of feedback delay, by using
an adaptive threshold [107]. The selective feedback idea was extended for MISO systems
in [108]. In [109], a scheme based on [53] and one bit feedback was shown to achieve
the optimal capacity growth rate when K — oco. A scheme based on multi-beam random
beamforming was proposed in [110,111], where it was shown that a deterministic feedback of
log, (1 4+ M) bits per user is enough to guarantee the optimal capacity scaling law for fixed
M and single-antenna receivers. A common limitation of the above feedback reduction
techniques is that the total feedback rate grows linearly with the number of users, thus
reducing the effective system throughput when the number of users is large. SDMA under
a sum feedback rate constraint is considered in [112], in which threshold-based feedback
on the channel quality and the channel direction is used for feedback reduction in order
to satisfy a sum feedback rate constraint. Differently from the previous approaches in
which users are assumed to send feedback through dedicated channels, the authors in [113]
consider a contention-based feedback protocol, in which users compete to gain access in a
shared medium. In this system, the feedback resources are fixed random access minislots,
and active users attempt to convey feedback messages only if their channel gain is above a
threshold.

In this chapter, we adopt a two-stage SDMA downlink technique. During the scheduling
phase, all active users K are allowed to feedback some kind of finite rate CQI, whereas in the
second step, information on the transmission rate is requested only from the M < K selected
users. Our work builds upon recently proposed ideas in the context of scheduling [114].
Therein, a so-called ‘score-based’ opportunistic scheduler was proposed for realistic scenarios
with asymmetric fading statistics and data rate constraints. Similar channel distribution-
based schedulers have also been proposed in [115-117] as a means to schedule a user whose
instantaneous rate is in the highest quantile of its distribution. Interestingly, these works
were solely focused on scheduling at the transmitter side, and neither in the context of
feedback reduction nor that of MIMO systems. The contributions of this chapter are the

following:

e We propose a new concept of CSIT representation, coined as ‘ranking-based feedback’,
for the sole purpose of user selection as a means to reduce the required feedback load.
The ranking-based CSIT consists of an integer value that represents the rank of each
user’s instantaneous CQI among a number of stored CQI values observed over the W

past slots.

e The key advantage of the proposed method is two fold: 1) ranking-based feedback is
already in digital form, which helps for further compression and simple scalar quan-
tization, 2) ranking-based feedback provides not only information about the channel
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quality but also about the relative quality level, in a way that is independent of the
users’ fading statistics, hence providing inherent fairness. This type of limited feed-
back representation enables the BS to select users that are on the peak of their own

channel distribution, independently of the channel conditions of other users.

e We analyze the sum-rate performance of a modified MISO downlink system with
random orthogonal beams as in [9,53], in which users are selected based on ranking-
based CSIT. Furthermore, we provide analytic expressions for the sum rate when W
is finite. We quantify the effect of finite W and the error introduced in the scheduling
decisions compared to the optimal case of W — oc.

e We study the additional merit of ranking-based CSIT in heterogeneous networks by
showing that such form of feedback information is able to offer temporal fairness among
users, since the probability of a user to be selected is 1/ K, independently of the other

users’ channel distributions and its own average SNR.

6.2 Ranking-based Feedback Framework

We present here the concept of ranking-based feedback and show its intrinsic advantages
when it is used as a user selection metric during the scheduling stage in a broadcast channel

with M transmit antennas and K > M single-antenna users.

6.2.1 Two-stage approach

We assume a two-stage feedback approach by splitting the feedback resource into two stages
(scheduling followed by transmission). In the scheduling stage, all K active users compete
for medium access and each user k is allowed to report instantaneous CQI, denoted as 7y,
which is a certain function of its channel, i.e. vx = f(hg). This CQI metric can generally
take on any form of channel information representation. For instance, in a TDMA context,
~r may represent the SNR or the transmission rate of user k, whereas in a SDMA setting, the
CQI may be the channel norm or the received SINR (achievable or estimated). Actually,
all the feedback metrics that we presented in the previous chapters can be used here as
CQI feedback. However, as in this chapter the CQI is used solely for purposes of user
selection, coarser channel information can possibly be used. Given a set of selected users &
with cardinality |S| = M < M, a second step exploiting precoding is applied to serve the
selected users. During the second step, the transmitter may request for variable levels of
additional CSIT feedback from the M << K pre-selected users. The second-step precoding
matrix may require variable levels of additional CSIT feedback to be computed, depending
on design. The second-stage CSIT feedback can be used for precoding design as well as for
link adaptation. For simplicity of exposition, we consider a system where a random, unitary
precoder is generated at each time slot during the first stage. Moreover, the second-step
precoder is the same as the one used in the scheduling step and the selected users feed
back their transmission rates for the purposes of link adaptation. Alternatively, the need
for a second stage in order to inform the BS on the transmission rate can potentially be
circumvented by assuming that the CDFs of different users’ channels are known a priori at
the transmitter. This assumption can be justified in systems, where the statistical reciprocity
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between the downlink and uplink channels allows the BS to estimate the distributions by
aggregating each user’s CQI feedback.

6.2.2 Ranking-based CQI Representation

At time instant ¢, each user measures its CQI on each of B randomly generated beams
(columns of the first-stage precoding matrix). In addition to the instantaneous CQI value
on each beam m, {W%W(t)}i:l’
denoted as Wj, ., observed over a window of size W, i.e.

each user also keeps record of a set of past CQI values,

Wk,m = {Fykﬁm(t - 1)57k,m(t - 2)7 cee ,'Yk,m(t -W+ 1)}

Then, each user, say the k-th, calculates the ranking (order) ry ., (t) € {1,...,W + 1} of
its current CQI metric vy, (t) on beam m among the W past values contained in the set
Wi m- In other words, if vy, (%) is the third largest value within the set of W latest measured
values, 7y, (t) = 3. The rank value of user k at slot ¢ on beam m is mathematically given
by [114]

W—1 W-1
rem(t) =1+ Z 1 {k,m(t) < Yem(t —w)} + Z 1{ve,m(t) = Yem(t —w)} Zy  (6.1)

where Z,, are i.i.d. random variables on {0,1} with Pr{Z, = 0} = 1/2 corresponding to
the case where the instantaneous CQI is equal to one or several of the past values, in which
either rank value is randomly chosen with equal probability.

The key ideas are as follows:

1) each user selects its minimum rank value over the beams, i.e.,
rp(t) = H%in Brk’m(t) (6.2)

2) each user, instead of reporting directly its maximum CQI value over the beams, feeds
back a quantized value 7« (t) of the integer 7« (t), along with the beam index m in which the
ranking value is minimum, i.e.

7i(t) = Q(ri(t)) (6.3)

where Q(-) represents a N = 2B-level quantizer. Thus, the feedback load per user is [logy, N
bits for the ranking and [log, M| bits for the index of its preferred beam.

At the transmitter side, the scheduler assigns each beam m to the user k), with the
minimum reported ranking value, that is,

kr (t) = arg 12}(121}( Tk (t) (6.4)

As stated before, once the users {k;‘n(t)}i:l are selected based on ranking-based CSIT,
they are polled and requested to report the transmission rate that can be supported by
their instantaneous channel conditionss.

The W past CQI measurements are samples of each user’s CQI empirical process. There-
fore, the length of the observation window provides a measure of how accurately the CQI
distribution is monitored by the user. The larger the W, the better a user can track the
distribution of its CQI process, thus identifying more accurately the peaks with respect to
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its own distribution. In other words, ranking-based CSIT enables each user to have an esti-
mate of the quantile of its CQI using W previous CQI samples, where the sample quantile
of order p is defined as the statistical functional ﬁ‘v{,l (p) = inf {x Fw(x) > p} for p € (0,1)

and FW() denoting the empirical distribution function of W samples. In the asymptotic
case of W — oo, the observation window captures the entire CQI distribution and corre-
sponds to the case in which ranking-based CSIT provides exact information on the CDF of
the CQI process. In this case, the user with the minimum ranking-based CQI value is the

one whose instantaneous CQI is in the highest quantile.

6.3 Performance analysis

We evaluate the average rate of a system employing random opportunistic beamforming in
which ranking-based feedback is used as user selection metric. We assume that the CQI takes
on the form of user rate, i.e., Yk m = logy(1 + SINR ). Let X} ,,, denote the rate process
of the k-th user rate on the m-th beam with CDF denoted as FX, , (-). The distribution
function is assumed to be strictly increasing and continuous, such that its inverse ngl’m()
exists. Unless otherwise stated, we assume a homogenous network where all users have

identical average SNR (i.i.d. channel statistics).

6.3.1 Asymptotic optimality of ranking-based feedback for large
window size W

For finite window size W, ranking-based CSIT enables each user to estimate the quantile
of its instantaneous CQI based on W samples of its empirical CQI process. For fixed =
the number of r.v.s X; such that X; < z follows a binomial distribution with probability
of ‘success’ p = F(z), hence the r.v. F}?/ (2) follows a binomial distribution with possible
values 0,1/W,..., 1. We examine here the behavior of the empirical function FY () for W
increasing and show how likely is F (z) to be close to F(z) for arbitrary large W and z
fixed.

Let the collection of r.v. X = {X;:t € N*} be a discrete-time stochastic process for
each user defined on the same probability space. X is assumed stationary and ergodic
and for exposition convenience we omitted the user index & from the stochastic process.
The random sample of i.i.d. r.v. Xi, X5, ..., Xy is an empirical process, whose empirical
distribution F}?/() is defined as the CDF that puts mass 1/W at each sample point X;, i.e.

W
- 1
w — )
FX () = W ;H{Xz <z} (6.5)
where T{X,; < 2} is an indicator function defined as
I{X; <z} = - 6.6
X<} { 0 X;>a (6.6)

We can show that for W — oo, the empirical CDF converges to the CDF of the CQI

distribution, which implies that the user with minimum ranking feedback value is the user

"More formally, for a process (Y (t),t > 0) with stationary and independent increments with Y (0) = 0,
the p-quantile of (Y (s),0 < s <t) for 0 < p < 1 is defined by M(p,t) = inf {gc : fot 1(Y(s) < s)ds > pt}.
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with the maximum CQI value.

Proposition 6.1: In a system where users have i.i.d. channel statitics, user selection
based on ranking-based feedback converges to the capacity-optimal max-rate scheduling for
W — oo.

Proof. The proof is given in Appendix 6.A. O

6.3.2 Throughput for infite observation window size W

In this section, we study the average sum rate in the large W regime. Assuming W to
be infinitely large, we can easily see that user selection based on ranking-based CSIT is
equivalent to minimum complementary CDF (CCDF) scheduling. This means that if ry p,
captures the distribution of received SINR process, denoted as I'y ,,, then lim Thim

— 00

F‘phm (Vk,m ), where F‘phm (Ye,m) = 1= Fr, . (Yk,m) is the CCDF of the CQI metric vy ,,. As
shown in Proposition 6.1, selecting on each beam m the user &}, with the minimum ranking

value is equivalent to selecting the user with the minimum tail of CDF, i.e.

ko = arg min Tym(t) =arg min 1-—Fr,, (5m(t)
= arg 12?3)(}{ Fron(m() m=1,....8 (6.7)

where 7 (t) = 7g,m (t)/W is the normalized ranking value and vy ., (¢) is the realization of
T'ym at slot t.
The rate of user k£ on beam m, prior to channel-aware scheduling, is given by

00 1
Rim = [ logy (1 2wm) fr)y = [ oy (14 F5! () dr (6.8)
0 0

where fr, () is the PDF of CQI metric 7. If we assume i.i.d. channel statistics and that
the user on the highest quantile is scheduled on each beam m, then the average sum rate is
given by the following proposition:

Proposition 6.2: The average sum rate R of a symmetric network (i.i.d. users) where
user selection is performed based on ranking-based feedback is given by

1
R = BK/ log, (14 F'(2)) 2% 'dz (6.9)
0

Proof. The proof is straightforward by changing the variable Fr(y) = z in the sum rate
given by R = Bfooo logy (1 +7)dF, where Ff is the CDF of the best user selected among

K i.i.d. users with common parent distribution Fp(v). O

Note that similar result has been derived in [115]. Therein, the authors derive the average
user rate for the general case where the channel distributions are not necessarily identically
distributed and B = 1. Proving that the probability that user k is selected at time slot ¢
given that the user rate X (t) = zy is Pr{k*(t) = k| X, (t) = a1} = F;{{k_l(:tk), they showed
that the average rate of a user is given by Ry = fol uK T E () du.

Unfortunately, equation (6.9) does not always result in closed-form expressions. For in-
stance, the sum rate of multi-beam RBF given by Rrpr = BK fol Fg: (u)u~tdu, where
Fy!(u) is the inverse of Fi, (u) =1— % requires numerical calculation. Analytic

expressions can be derived in specific regimes, such as the high and low power regions.
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6.3.3 Throughput for finite observation window size W

Let Xg- (t) denote the rate process of the user k selected on beam m with distribution
function Fx,, (z) = [Pr{Xgm < 2}]®. The expected rate Ry, of k-th user when scheduled

on beam m is given by

Riem = E{ Xy (1)} = /Pr{ max X () > x}d:c (6.10)

1<k<K

Proposition 6.3: The average sum rate R of a system generating B random orthonormal

beams and scheduling B users among K active users based on ranking-based feedback with

“’)K/Ooo Fw,m(x)dx> (6.11)

observation window W is given by

R = XB: </Oo (1= (Fx,, ( x))W)da:_wi:l(W_

=1

W—w

where Fyy () = (va) (ka* (x)) (1 — Fx,. (x)) .
Proof. The proof is given in Appendix 6.B. O

Using the above proposition, we can show that the throughput Rtpuma of single-beam
RBF [53] is given by

Rrpma = i ll - (WM—/w)Kl (T:) /OOO(FX% ()1 - Fx,. (z))"dz  (6.12)

w=0

o\ K i w—w\"
with Fx,. (z) = (1 —e P ) . The constant term G = Z 1— (7> can be

w

w=0
evaluated analytically as G = 1 + W + (=) KW —K(¢(-K) — ((=K,—W)), where ((s) and
¢(s,a) are the Riemann zeta function and Hurwitz zeta function, respectively. Equation

(6.12) does not seem to have closed-form representation for exponentially distributed channel

gains. However, in the high power regime the following series representation can be obtained:

Corollary 6.1: At high SNR, the average sum rate R%qh of multi-beam RBF with B = 2

beams, finite W and ranking-based user selection is given by

oo (1) ()

For large enough W, a good approximation of the binomial distribution is given by the
normal distribution (De Moivre-Laplace Theorem). Let ¢ = Fx,. (z) and p = 1— Fx,. (),
then Fy ., (x) can be approximated by

F ( ) 1 _ (w27VVWP)2 (6 14)
w.m\T ~ ——¢€ Pq .

' \V2mWpq
which simplifies the calculation of the integral in (6.11) as fo wom(x)dr = Q ( 2Wp/q),

where Q(-) is the standard normal CDF.
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6.3.4 Performance reduction bound for finite window size W

In the previous two sections we evaluated the throughput performance for finite and infinite
observation window size W. In order to quantify the system throughput reduction due
to finite values of W, a bound on the difference between the rate when each user knows
perfectly its CDF and the throughput when ranking-based feedback is based on the empirical
distribution of each user’s channel distribution over W is of interest. Intuitively, the sum
rate performance is a monotonically decreasing function with W, thus for W decreasing, the
performance degradation is increased. However, a bound on the difference does not seem
tractable. The main difficulty is that the user rate distribution, as F, , () is not a linear
function of the CQI distribution, ie. Fx, , (z) = Fr,,, (2 —1). Nevertheless, a bound
on the the ratio F (W, K) = F)‘?;jn (z)/Fx,, (), where 13')‘?;% (-) is rate distribution seen by
user k when is scheduled based on ranking-based feedback estimated using W samples is
derived in [117].

Proposition 6.4: For a system with K active users employing ranking-based CSIT observed
over W past values, the ratio F (W, K) is lower bounded as

WO\ W1 W+1
W,K)>|1- <(1—e KW= 1
f<,>_< (W+1>>K_( ey WA (6.15)
- T : w
where the Bernoulli inequality is used for bounding (W—H)
Expanding e~ %/" in Taylor series, we have that (1 — e ®/W)&Hl — (1 — %)% Pe
1- WLH Hence, for fixed throughput reduction, the number of samples W required to be

stored in memory has to scale almost linearly with the number of active users K in the
system.

In addition to the previous bound, a sharp non-asymptotic bound can be derived based on
the Dvoretsky-Kiefer-Wolfowitz (DKW) inequality [118,119]:

Theorem 6.1: Let X1, Xo,..., Xw ~ Fx, ., then for any e >0

Pr {sup ‘F‘)‘?;m () = Fx, ., (x)‘ > 6} < 2¢72W¢ (6.16)

Based on Theorem 6.1, we can construct a confidence set that gives us a measure of the
required window size W. Given « € (0, 1), say that a random set S(x) is a (1 —«) confidence
set for the parameter 6 if

Pr{fe S(x)}>1-a (6.17)

Then, for any F', we have that

Pr{l(z) < Fx,,,(z) < l(z), Va} >1-a (6.18)

where the two sequences £ (z) = max {F)‘g () —ew, O}, ly(x) = min {F)V(Z () + ew, 1}

and ew = /3> log (2/c). This implies that if one wishes to draw a large enough sample
to ensure that the deviation between the empirical distribution and the actual CDF is less
than or equal to 10%, with 90% confidence, then for ¢ = 0.1 in (6.16), a sample size of
approximately W =150 samples is needed.
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6.3.5 Window size versus feedback reduction tradeoff

In the previous section, it has been shown that the performance difference between ranking-
based user selection and max-rate scheduling is decreased for W increasing. In practical
systems, the feedback channel shared by all users has a fixed bandwidth and thus the rate
of reporting 7 (t) is finite and generally fixed. As a result, under a fixed feedback rate
constraint of B = [log, N bits, when W is increased, the accuracy of 7 (t) is decreased as
the distortion of the quantizer Q(-) is increased. This is evidently due to the fact that the
dynamic range of the integer values r(¢) € (0, W+1] to be quantized by B bits is increased.
In order to guarantee the same throughput performance for increasing W, the number of
feedback bits B should scale accordingly so that the quantization error is fixed. This results
in an interesting tradeoff between:

e the capacity performance
e the window size W
e the number of feedback bits B

Consider that uniform scalar quantization is used to quantize a source R that is uniformly
distributed over [0,1]. The error variance (distortion) is given by:

+o0 2

o =e{r- o)} = [ - Q) fatryar = L peml ag)
where fr(r) is the PDF of the uniform source R, and 7,4, and 7., are the maximum
and minimum value of ranking-based feedback, respectively. For fixed variance of the quan-
tization error 0(2;) = 62, Tmin = 1 and 7 = W + 1, the number of bits B should scale
proportionally to B ~ (log, (W/&) — 1.8) bits. This feedback requirement can be decreased
if non-uniform quantization (e.g. optimal entropy-constrained) is employed. The problem
of optimum quantization design for ranking-based feedback has not been investigated in the
thesis.

6.4 Ranking-based CDI Model

The concept of ranking-based feedback, as presented above, is not restrictive to RBF
schemes; it can be generalized to other downlink precoding configurations. The ranking-
based concept can indeed be applied to any kind of feedback information of interest utilized
for user selection purposes. In codebook-based SDMA downlink systems, for instance, it can
be additionally used to represent some kind of CDI as a means to select near orthogonal user
with large channel gains. Consider a system in which each user can report CDI feedback
based on a predefined codebook in addition to the CQI value that can take on the form of
channel norm or estimate of SINR [64,94]. If we assume that the quantization codebook
V = {v1,Va,..., VN, } containing Np unit norm vectors v; € CM, for i = 1,...,Np is
known to both the transmitter and receivers, each receiver k quantizes its channel to the

codevector that maximizes the following inner product:

h; = arg max cos? (£ (hy, vi)) (6.20)
Vi€
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where the normalized channel vector h;, = hy/ ||hg|| corresponds to the channel vector
direction, and ﬁk is the k-th user channel quantization.

Denote rg 1 as the k-th user ranking of its CQI among W past values, and let r4 1 be the
ranking-based CDI given by the alignment between the directions of the actual channel and
the quantized one, i.e. cos?(Z(hy, flk)) In a centralized approach, each user reports back
to the transmitter both 7,4 and 74 and the scheduler selects the user set with minimum
ranking values in both CQI and CDI, thus selects the users with high instantaneous channel
gain and small quantization error. In a distributed protocol, the set of scheduled users
can be constructed such that only the subset £ of users whose ranking values are below a

threshold is allowed to report their CSIT to the BS. This pre-selection protocol is given by
L‘,:{lSkSK:Tg)kSTQ and Td,kSTd} (6.21)

where 7,4, 74 are thresholds for the channel norm and channel alignment, respectively. The
fact that r4 k, 74,5 are uniformly distributed facilitates the calculation of optimal threshold

values.

6.5 Scheduling with Heterogeneous Users

Up to this point, we considered a system with statistically identical users and studied the
system throughput when all users exhibit identical average SNRs. However, in a typical
wireless network, user channels are not necessarily i.i.d. and mobile terminals experience
unequal average SNRs due to different distances from the BS and the corresponding different
path losses (near-far effects). Hence, if a max-rate scheduler is used, the throughput will
be maximized by transmitting to the users with the strongest channels. As the selected
users are highly likely to be the ones closest to the BS, the issue of fairness arises. Restoring
fairness requires considering a different scheduling policy that sacrifices capacity for the sake
of equalizing the probability that a user is scheduled.

In heterogeneous system configurations, the sum rate is no longer an appropriate perfor-
mance metric, as it cannot guarantee any fairness constraints and rate balancing among users
with non-symmetric average SNRs. We focus on the problem of maximizing the weighted
sum rate, in order to reflect the potential fairness issues that arise. Assume that the channel
vector of each user can be written as hy, = \/p_kflk, where pj denotes the k-th user average
SNR and hy, ~ CN(0,1). The equivalent channel model becomes

yk:,/pkflkx—i-nk, k=1,....K (6.22)
We consider a weighted sum-rate maximization criterion, which results in the optimization
problem
ma R
nax ) wiRa
keS
s.t Z WE = 1
keS
wy, > 0 VEk (6.23)

where Ry and wy are the rate and weighting factor of the k-th user, respectively. Let ¢y
be the fraction of time slots allocated to user k, with Eszl pr = 1. A general CCDF-based
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user selection policy on m-th beam is defined as:
—— — 1/¢x
i = arg max (1—Fx, ., (Xem)) (6.24)

In other words, using the minimum tail scheduler, user £ can gain access to the channel with
probability . In [115], it has been shown that this scheduling policy can guarantee equal
access to the channel for heterogeneous users. This can be also achieved if ranking-based
feedback is employed during the scheduling stage. More formally, let Ay ,,, be the event that
user k is selected on beam m based on ranking-based feedback. If all users have the same
time fraction, i.e. ¢, = 1/K, then following the proof in [115] we have

PI‘{Ak,m} / Pr{Ak,m|Xk,m = .I}kam (I)dll?
0

- [0 Frw)
0

Interestingly, the probability that the k-th user is selected Pr{ Ay, = 1} does not depend
on the distribution of the other users, even if the users’ channels are independent but

1-K

4Py, (= 1/K (6.25)

not necessarily identically distributed. The independence of the selection probability from
the other users’ statistics can be inferred from the fact that the ranking of each user’s CQI
follows a uniform distribution independently of the other users’ fading characteristics. Thus,
in addition to its feedback reduction merits, ranking-based metric can also restore temporal
fairness by sharing the scheduling time slots in a fair manner among users. The average user
throughput for independent non-identically distributed (i.ni.d) channel statistics with B =1
and max-CDF scheduling is studied in [115]. In the appendix, we provide an additional proof
of following result [115]:

Proposition 6.5: The average sum rate, R, of a heterogeneous system in which ranking-

based feedback is used for the purposes of user selection is given by

B 1
R=> K/ Fyl (2)2K1dz (6.26)
m=1 0 ’
Proof. The proof is given in Appendix 6.C. O

6.6 Performance Evaluation

In this section, we compare the performance of following schemes:

e Scheme I: RBF employing quantized ranking-based CQI for user selection in the
scheduling stage.

e Scheme II: RBF in which users are selected based on quantized SNR/SINR feedback
in the scheduling stage.

Using two-stage approach, the proposed CSIT representation is used solely for selecting the
group of scheduled users. Thus, in both schemes, once the group of users (among all active
K ones) is identified in the first stage, the BS requests the transmission rate of the M
selected users in order to perform link adaptation.
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In the first set of simulations, we consider single-beam RBF [53] as downlink transmission
scheme with M = 2 transmit antennas and SNR = 10 dB. In Figure 6.1 the throughput
difference between scheme I and II is plotted as a function of observation window size
W. Expectedly, for small values of W, ranking-based feedback cannot capture sufficiently
the CQI distribution, failing to select the users that are on their highest quantile of their
distribution. This results in a rate reduction penalty as the system does not exploit multiuser
diversity and does not schedule users with large channel gains. For W increasing, the
performance of ranking-based system converges to that of max-rate scheduler (for W — o),
as stated in Proposition 6.1.
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Figure 6.1: Throughput comparison as a function of window size W for single-beam RBF
with M = 2 antennas, SNR = 10 dB and K = 10 active users.

Figures 6.2 and 6.3 show the effect of feedback quantization on the system throughput. In
Figure 6.2 the SNR feedback value is quantized with B = 5 bits using the optimal Max-Lloyd
algorithm, whereas the ranking-based CQI is quantized using B = 3 bits. For different values
of W, the proposed feedback representation is able to identify correctly the users with the
highest instantaneous rate as compared to the quantized SNR feedback, resulting in capacity
gain even with a feedback load reduction of 40%. This is mainly due to the inherent digital
form of ranking-based CQI and its dynamic range, which allows for efficient compression.
In Figure 6.3 the performance of ranking-based user selection for different quantization bit
rates is compared with that of SNR-based CQI for fixed observation window size. The
feedback load can be reduced up to 40% with negligible capacity reduction (~ 0.1bps/Hz).

In the second set of simulations, the multi-beam variant of RBF [9] is used as transmis-
sion scheme. The SINR feedback is quantized using B = 5 bits, whereas only 3 bits are
used for ranking-based CQI quantization. As shown in Figure 6.4, the proposed feedback
representation in an SDMA downlink with M = 2 antennas provides similar results as in
the single-beam case by representing more efficiently the user selection metric, thus reducing
the uplink channel rate with no compromise on the system throughput.
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Figure 6.2: Average rate as a function of the number of users for single-beam RBF with
M =2 antennas, SNR = 10 dB and different values of window size W.
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Figure 6.3: Average rate as a function of the number of users for single-beam RBF with
M = 2 antennas, SNR = 10 dB, W=1000 slots, and ranking-based CQI metric quantized
with different resolutions.

In the last part of numerical results, we study a multi-beam RBF system with M = 4
antennas and users with i.ni.d. channels, whose average SNRs are uniformly distributed
from -10 to 30 dB. The loss in sum rate observed in Figure 6.5 is expected since in the het-
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Figure 6.4: Sum rate as a function of the number of users for multi-beam RBF with M = 2
antennas, SNR = 10 dB and W = 1000 slots.
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Figure 6.5: Sum rate as a function of users for multi-beam RBF in a heterogeneous network
in which users’ average SNRs range from -10 dB to 30 dB, M = 4 antennas and W = 1000
slots.

erogeneous network case, the users with the minimum ranking-based CQI are not generally
the ones with the highest absolute instantaneous CQI values, but those whose instantaneous
CQI values are near to a peak with respect to their own distribution. Nevertheless, cell-
edge users that enjoy lower average SNRs have equal probability of being selected, if their
channels are instantaneously on the highest quantile. Selecting users with higher pathloss
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Figure 6.6: Normalized scheduling probability vs. user index for multi-beam RBF with
M = 4 antennas and K = 10 users. The users are sorted from the lowest to the highest
average SNR and the SNR range is from -10 dB to 30 dB.

(lower average SNR) results in system throughput reduction, however temporal fairness is

restored as the access time per user is equalized independently as shown in Figure 6.6.

6.7 Conclusion

In this chapter, the problem of feedback reduction is addressed under a different perspec-
tive. We proposed a novel type of CSIT representation, coined as ranking-based feedback,
as a means to further reduce the required feedback load during the scheduling stage in
multi-antenna broadcast channels. Based on a two-stage scheduling/random beamforming
approach, we analyzed the performance of a system in which users are preselected based
on ranking-based feedback. When users exhibit i.i.d. channel statistics, it was shown that
ranking-based user selection can reduce substantially (up to 40%) the uplink feedback load
with negligible or no decrease in multiuser diversity gain and system throughput. In hetero-
geneous networks (i.ni.d. channels), temporal fairness can be achieved at little expense of
throughput due to the fact that users have equal access probability to the channel medium,
irrespective to the distribution of other users. In other words, users at cell edges or in deep
fades (i.e. in poor channel conditions) have the same chances of being served as users that

enjoy favorable channel conditions.
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APPENDIX

6.A Proof of Proposition 6.1

The ranking 74 ., (t), measured over W past samples, provides information about the em-
pirical distribution of the rate process, i.e. T’“W(t) ~1-— F}?;m (). We want to show that the
difference between F}?;m (z) and the actual cdf F¥x,  (z) vanishes to zero when W — oo.
A measure of closeness of the two functionals, called mazimum discrepancy (Kolmogorov-

Smirnov statistic), is given by

Dw= sup |FY  (x)—Fx,,(x) (6.27)

—oo<r <o

whose probability density function is independent of F(-) provided that F(-) is continuous.
Considering the above distance metric as a measure of the difference, Proposition 6.1 is a

direct consequence of the following theorem:

Theorem 6.2 (Glivenko-Cantelli [120]): Let X1, X»,...,Xw ~ Fx, , (x), then the sample
paths of F)‘/(Z . get uniformly closer to Fx, , as W — oo, i.e.

|P¥, . @) - Px,... )

=sup |FY, (z) - Fx, ()| 30 (6.28)

o0
The above theorem implies that for large W the empirical distribution converges to the

distribution function almost surely (as). Hence F)‘?Ii _, which is observed over a window of
size W, is almost surely a good approximation for kaﬂn, and the approximation becomes
better as the number of observations increases. In this case, user selection based on ranking-
based CSIT becomes equivalent to max-CDF scheduling, which in turn is equivalent to
max-rate scheduling for large W and i.i.d. channel distributions, i.e.

kr (t) = arg min ri(t) = arg min (1 —Fx, . (xx,m)(t)) = arg max Xem(t)  (6.29)

6.B Proof of Proposition 6.3

Let Fx,. (z) =Pr {Xk;fn (t) < z} be the rate distribution of the selected user k over beam m
and Fy, ,(z) be the probability that in beam m, the w largest values among W are greater

than z, then for a selected user k¥, over beam m conditioning on F, ., (z) we have

w—-1 Ww—-1 W —w K
Pr{Xy. (t) <a}= > Prirg () >w} Fym(@) = > ( T ) Fum(z)  (6.30)
w=0 w=0

— : _ K _ (w—w\K
where Pr{r. (t) >w} = Pr {1£111€1<DK Thom () > w} = [1-F(w)]" = (%) as the
ranking-based CSIT is uniformly distributed with CDF F,.(w) over the set of W past values.

Using results from order statistics [121], we have that

Foym(@) = (Vu[)/) (Fx,, ()" 7" (1 = Fx,, ()" (6.31)
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Therefore, the expected sum rate R is given by

B oo B o
R_mz_l/o Pr{Xk;n(t) >:1:} d:c—mz_l/o (l—Pr{Xk;n(t) Sx}) dx (6.32)

_ ZB: /Ooo sz (Wm;w>KFwym(x)d:c (6.33)

m=1 w=0

1—
which gives (6.11) as Fy ., (2) = (Fx,. ().

6.C Proof of Proposition 6.5

Before proceeding to the proof, we state the following result:

Lemma 6.1: The random variable Uy, = Fx, . (Xk,m) is uniformly distributed on the
interval [0,1].

Proof. In the lines of [115], suppose that = is an arbitrary number and u = Fx, , (), with
0 <wu < 1. The distribution function (CDF) of Uy ,,, is given as

Fy, .. (v) = Pr{Ugm <wu}=Pr {FXk’m(Xkym) < u}
~ Pr {kam <Pyl (u)} —u, 0<u<l (6.34)
which implies that Uy ., is uniformly distributed on [0,1]. O

The average sum rate of RBF is given by

B
R=3 Rim (6.35)
m=1

where Ry, is the average rate of the selected user k£ on beam m given by

Rian = E{X X)) (6.36)

m

with X7, ~ Xjm.
Since E{X{1)} = E{Fx.,,, (U0} with U = max {U} . UE,..
statistics [121] (eq. 3.1.1) we have that

K . .. .
where X,i ) = max {X,;m,X,f)m, .. .,X,fm} (maximum over K i.i.d. random variables)

.. ,U,fm}, from order

1
— K — _
E{Fx! (UN)} =K /0 Fyl (2)257dz (6.37)

Inserting (6.37) into (6.35) results in (6.26).
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Chapter 7

System Aspects in Multiuser
MIMO Systems

7.1 Introduction

MIMO techniques have been widely recognized as a key technology in the evolution of next-
generation broadband wireless access systems. Their potential for high spectral efficiency,
increased diversity, and interference suppression has motivated significant amount of work
and research, not only from academia but also from numerous companies that try to im-
plement and commercialize multiuser MIMO technology. The scarce bandwidth resources,
the introduction of data services and best effort applications, the transition from circuit-
switched to packet-switched networks, as well as the need for enhanced quality of service
(QoS) are some of the motivating factors that made MIMO technology key element of forth-
coming wireless systems. Multiuser multi-antenna techniques are currently envisioned in
3GPP long term evolution (LTE), WCDMA /HSDPA, IEEE 802.16e (WiMAX), and IEEE
802.11n.

For applications such as wireless LANs, broadband wireless MANs and cellular tele-
phony, MIMO systems will likely be deployed in environments where a single base station
communicates and delivers information to multiple users sharing the same spatial channel.
In such network deployments, the spatial degrees of freedom offered by multiple antennas
can be advantageously exploited to enhance system throughput, by scheduling simultane-
ously multiple users. The design of multiuser MIMO systems hinges on the problem of the
joint design of a good antenna combining technique (e.g. beamforming, space-time coding)
with a properly matched channel access protocol that may include some degree of SDMA.
At the heart of this problem lies that of CSIT acquisition. Information-theoretic results
and throughput gain promises may often become questionable if a constraint of reasonably
low-rate CSIT feedback and complexity is taken into account.

145
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This chapter focuses on several system issues and design challenges that arise in real-
world wireless system design. We discuss the main practical challenges that we should
consider when deploying techniques as those proposed in Chapters 3-6. We also propose a
generalization of the proportional fair scheduler (PFS) for multiuser contexts (e.g. SDMA,
OFDMA, etc.).

7.2 Channel State Information Acquisition

In FDD systems and TDD systems without calibration, the only way probably to acquire
channel state information at the BS from each user is through a feedback control channel,
similarly to the control channels used for power control or adaptive modulation. Since the
bandwidth required for those feedback control channels is considered as overhead that re-
duces the overall system spectral efficiency, and which grows in proportion to the number of
active users, there is a substantial interest in compressing the required amount of informa-
tion. The issue of feedback reduction becomes imperative in systems with wideband (e.g.
OFDM) communication or high mobility (such as 3GPP-LTE and WiMAX).

7.2.1 CSI at the Receiver

Channel acquisition at the receiver is usually acquired through transmission of training
sequences (pilot symbols) by the transmitter that enable the mobile terminals to perform
channel estimation. It is also possible to use blind methods that do not require any training
symbols but exploit knowledge of the structure of the transmitted signal or the channel. The
assumption that the receiver enjoys accurate channel state information is often reasonable,
especially in the downlink, where pilot-symbol-based channel estimation is more efficient
since the terminals can share a common pilot channel. Note however that in practical
systems, there is a tradeoff between the accuracy of CSIR and the achievable throughput,
since in order to estimate the channel, a portion of the transmission time and a fraction of
the power is spent to the training phase. Clearly the longer the training interval, the more
accurate the channel estimate, and the higher the achievable rate; however the longer the
training phase, the less time the BS disposes to transmit data to the users.

7.2.2 CSI at the Transmitter

Channel acquisition at the transmitter can be performed either implicitly or in an explicit
way by relying on channel measurements at the receiver side. The methods available to
gather CSI at the transmitter can be classified into two categories, relying either on reci-
procity or feedback.

Implicit CSIT: reciprocity-based acquisition

The reciprocity principle is based on the property that electromagnetic waves propagating
in both directions will undergo the same propagation phenomena, thus in systems operating
at the same frequency band in both uplink and downlink (TDD systems), the instantaneous
forward channel is identical to the transpose of the reverse channel. Therefore, the BS can
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estimate the downlink channel from the uplink as long as the downlink-uplink switching
time is much smaller than the channel coherence time.

Ideally, reciprocity requires the forward and reverse channels to operate at the same
frequency, the same time, and the same antenna array. Although this assumption may not
always hold in practice, reciprocity still hold if any time lag between the forward and reverse
transmissions is much smaller than the channel coherence time 7.. Similarly, any frequency
offset must be much smaller than the channel coherence bandwidth B., and the antenna
location differences between uplink and downlink must be much smaller than the channel
coherence distance d..

Reciprocity-based channel acquisition is usually applied in TDD systems, whereas it is
normally not applicable in FDD systems where the temporal and spatial dimensions may
be identical, but the frequency offset between uplink and downlink is generally much larger
than the channel coherence bandwidth. However, the users’ spatial signatures vary more
slowly that fast fading. Therefore, depending on the angle spread, channel directional
information can be extracted from the uplink even in FDD systems. Note also that the
reciprocity principle requires RF hardware chains with identical frequency transfer function
characteristics. Therefore, accurate RF chain calibration must be performed periodically to
track the slow time variations of the RF chains and adjust the difference in the frequency

response.

Explicit CSIT: feedback-based acquisition

Feedback of CSI through an uplink channel is employed in system settings where the uplink
and downlink utilize different frequency bands (e.g. FDD systems), or when the reciprocity-
based approach in a TDD system is not reliable due to temporal variation of the channel.
In this approach, the channel is first estimated at the receiver side and then conveyed to
the transmitter using a feedback link.

In the previous chapter, we used the idealized assumption of infinite rate and zero-delay
feedback channel. However, for channels with relatively small coherence time, e.g. multiuser
outdoor systems with high mobility users, the zero-delay and error-free assumptions are often
unreasonable. The feedback delay between the measured channel and the one employed by
the transmitter may result in outdated CSI which can be a significant source of error.

Channel acquisition using feedback can be applied in both TDD and FDD systems;
however it is more common in FDD scenarios. Although feedback-based channel acquisition
has been successfully applied in simple systems, the requirement on uplink bandwidth can
become prohibitively large for complex system settings such as frequency-selective MIMO
channels. Moreover, in wideband systems, obtaining CSIT and CSIR per each subcarrier
can be costly in terms of training overhead. However, the performance of feedback and
channel estimation can be improved by exploiting the high degree of correlation between

channels of adjacent subcarriers.

7.3 Codebook-based Precoding

Codebook-based downlink precoding has been already considered as transmission scheme
for next-generation wireless standards (e.g. HSDPA) and has sparked a vivid debate in
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3GPP-LTE standardization activities. Current scenarios envisaged that mobile terminals
use a codebook of size 28P and are allowed to convey back to the transmitter a quantization
index and a real-valued CQI via an uplink feedback channel. The candidate schemes that

are envisioned can be divided in two categories:

e In the first group, often referred to as unitary precoding, the codebook contains a set
of L = 2P0 /M pre-determined unitary beamforming matrices of size M x M. Each
terminal selects from the codebook the beamforming matrix that offers the highest
SINR for each of its M beamforming vectors, assuming that the other M —1 vectors are
used for transmission to interfering users. The most popular scheme of this category
is per-user unitary and rate control (PU?RC) [122].

e In the second group, often referred to as non-unitary precoding, the codebook con-
tains 287 unit-norm quantization vectors and is used by each terminal to quantize its
channel vector direction (of dimension M). As the employed channel vector is nor-
malized, this feedback value captures information regarding only the spatial direction
of the channel vector. Since the terminal does not know a priori the beamforming
vectors of the interfering users, the reported CQI contains an estimate (lower or upper
bound) of the achievable SINR. Zero-forcing precoding is usually utilized to design the

beamforming matrix.

According to the taxonomy we provided in Section 2.8, unitary precoding can be viewed as
projection-based technique, while non-unitary precoding as quantization-based technique.
We should note that only unitary precoding is employed in 3GPP-LTE standard. Zero-
forcing beamforming, despite being proposed by several companies, has not been considered
as a candidate multiuser MIMO scheme.

Several codebook design challenges arise in practice, especially since defining near-
optimal quantization regions depend on various system parameters, including the channel
properties and statistics and the antenna configuration and correlation. In Chapter 5 we
studied quantization-based approaches considering for simplicity unstructured codebooks
that contain M-dimensional random vectors. Such codebooks are designed specifically for
uncorrelated channels whose direction is isotropically distributed in the unit sphere. There-
fore, in practically relevant correlated channels, structured codebooks are expected to per-
form significantly better [123]. A practical codebook design offering good performance with
line-of-sight channels or channels with a small angle spread is the Fourier codebook [124].
This codebook is simply constructed by extracting the top M rows of the discrete Fourier
transform (DFT) matrix of size Np.

Another design challenge is related to whether quantization codebooks should be com-
mon or user-specific. Clearly, the performance is increased by considering that each receiver
uses a different and independently generated codebook, especially in networks with low num-
ber of users served using non-unitary precoding. If both the codebook size and the number
of users to select from are small, it is highly likely that several users may quantize their
channels to the same quantization vectors. Therefore, if ZFBF is applied on the channel
quantizations, the probability that M near-orthogonal users are found by the scheduler is
decreased (reduction in the spatial dimensions available). The complexity of generating a
different codebook for each user can be reduced by generating a common, general codebook
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V, known at both ends of the link, and afterwards each user obtains its specific codebook
through random unitary rotation of V,. In that case, each codevector is independent from
user to user.

Finally, two questions that often arise in practice are related to the codebook size and how
often it should be updated depending on the channel coherence time. For instance, although
the performance of ZFBF-based codebook techniques is increased for Np increasing, unitary
precoding performs better for small codebook sizes. Actually, the multiplexing gain of
unitary precoding based schemes vanishes to one for large codebooks, due to the fact that
the average number of users selecting the same beamforming matrix decreases exponentially

with the number of quantization bits Bp.

7.4 CQI feedback metrics and Link Adaptation

The utility of CQI feedback is two-fold: on one hand, it is employed by the SDMA scheduler
as a means to select users with favorable channel conditions and separable spatial signatures.
On the other hand, it is used from the link adaptation protocol to select the appropriate
coding and modulation schemes and to adapt the rate of the link.

The information encapsulated in the CQI feedback parameters limits the decision and the
degrees of freedom available at the transmitter. For instance, if the CQI contains information
on the channel norm, the scheduler can easily identify the users with the strongest channels,
but fails to derive any information on their spatial separability and the interference they
cause to each other. If more than one user access simultaneously the channel, such CQI
metric cannot be generally utilized by the link adaptation protocol, since the instantaneous
rate allocated ignoring the inter-user interference may fall above the instantaneous mutual
information of the fading channel. However, in quantization-based systems, one challenge
when designing feedback metrics is that information on received SINR is in principle not
available to the individual users who only have knowledge of their own channels. The SINR
measurement depends, among others, on the channel as well as on the number of other
mobiles being simultaneously scheduled along with the user making the measurement and
their respective beamforming vectors. As user cooperation is not allowed, the number of
simultaneous users and the available power for each of them will generally be unknown at
the mobile. In Chapter 5, we show that in the large number of user case, simplifications
arise which give the user the possibility of estimating with satisfactory accuracy the received
SINR. SINR-like metrics that rely on statistical bounds can be efficient scheduling decision
metrics, however they cannot guarantee QoS and information outage-free rate adaptation.
Note also that in practical systems, such as HSDPA, CQIs take discrete values representing
one of the possible modulation and coding schemes (MCS).

7.5 Opportunistic Scheduling: System Issues

Opportunistic scheduling protocols are designed towards a better utilization of the spectrum
by granting channel access to users that experience favorable channel conditions (multiuser
diversity). However, the promised throughput gains can be realized only if dynamic link
adaptation techniques are available to take advantage of the improvement in channel condi-
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tions. In other words, the BS should have access to channel quality measurements and the
ability to adapt the rate as a function of the instantaneous CQI. Apart from the problem
of feedback overhead and the requirement for channels with fast fluctuations, multiuser di-
versity is gained at the expense of throughput fairness and delay. In an idealized scenario
where users’ fading statistics are the same, the strategy of communicating with the user
that exhibits the best channel maximizes not only the total capacity of the system but also
the throughput of individual users. However, in practice, the statistics are not symmetric
and identically distributed: there are users who are closer to the BS with higher average
SNR or users at the cell edge with poor SNR; there are users who are stationary and some
that are moving; there are users who are in a rich scattering environment and some with no
scatterers around them. In these scenarios, opportunism may lead to unfair resource allo-
cation since the users with poor channel conditions may get negligible or zero throughput.
Due to its particular importance from a user-centric point of view, fairness is analyzed in

detail in the following section.

7.6 Fairness

The concept of fairness has been extensively studied in the literature of resource allocation
for wireline and computer networks [125], whereas most theoretical approaches arose from
the field of political economics. In this field, the concept of utility and welfare functions were
developed in order to define fairness. In order to express user’s satisfaction with the service
delivered by the network, utility functions are defined to formalize a notion of network
performance evaluated in terms of the degree to which the network satisfies the service
requirements of each user’s applications. Let r; denote the resource (service) assigned to
user k, and which may contain all the relevant QoS measures (delay, throughput, packet
loss, etc.). The utility function U () maps the resource into the performance of the service.
For elastic traffic, such as file transfer, email and remote terminal, which are delay tolerant
and their satisfaction is generally measured in terms of bandwidth, the utility function is
commonly defined as Uy (ry) = logrg. The welfare function W (Uy, ..., Uk) is defined as the
one that aggregates the individual utility functions Uj. A fair resource allocation is the one
that maximizes the welfare function max{W(Uy,...,Uk)}.

7.6.1 Definition of Fairness in Scheduling

There is no unique or general definition of fairness and one can find at least three main
definitions of fairness in the resource allocation literature:

e Max-Min Fairness: The idea behind max-min fairness is to allocate resources as
equally as possible among the competing users, thus this criterion might be the pre-
ferred option for the terminals in a bad condition, since it assures that all users receive
the same resource sharing. Formally, max-min fairness is expressed

max Ir%n Uk (7x) (7.1)

Tk

for concave utility functions. This corresponds to the welfare function W (Uy, ..., Uk)
= ming, (U1, ...,Uk). It has the property that for a feasible resource allocation vector
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r=(r1,...,7K), an increase of any rate within the domain of feasible rate allocations
must be at the cost of a decrease of some already smaller rate, i.e. the utility Uy (rx)
cannot be increased without simultaneously decreasing U;(r;) for some j with U;(r;) <
Uy (ry). Depending on the resource allocation problem, a max-min fair allocation does

not always exist; however existence results in uniqueness.

e Proportional Fairness: The idea behind proportional fairness is to maximize the
global performance, meaning that a user with bad conditions may see its utility de-
creased if this allows a large enough increase to a user with already good conditions
(for the sake of the overall throughput). The welfare function of proportional fair al-
location is W (Ui, ...,Uk) = >, Uk. A rate allocation vector r is proportionally fair
if it is feasible, and if for any other feasible allocation r' = (r}, ..., 7”;<): the aggregate
of proportional changes is zero or negative:

K /

STk < (7.2)

,
=1 K

e Weighted Fairness: If weights wy, are associated with the relative importance of each
user for the system, both max-min and proportional fairness can be generalized. The
welfare function for the weighted max-min fairness is then given by W (U, ..., Uk)
= min{U(rr/wy)} and for the weighted proportional fairness is W(Uy,...,Uk) =
>, wiUg. Under weighted fairness, each utility function is increased according to its
associated weight wy.

As the concept of fairness is generally subjective, it is not clear which definition is the
best one. Normally, the scheduler selects the appropriate fairness measure for the system,
depending on the burstiness of the traffic, the number of users, the price that users are
willing to pay, the system time scale, etc. Two commonly used measure of fairness are: the
Jain index [126] and the Gini index [127].

7.6.2 Proportional Fair Scheduler (PFS)

Proportional fair scheduler was used for the downlink scheduling in IS-856 (also known as
1xEV-DO or HDR) and was adopted in [53] as a means to meet the challenges of delay and
fairness constraints while harnessing multiuser diversity. PFS maintains resource fairness
by providing a fair sharing of transmission time proportional to past user throughputs over
a fixed window length. On a time-slotted transmission, let Ry (¢) be the date rate requested
by user k at time slot ¢ and supported by its instantaneous channel quality. The scheduler
selects at each scheduling slot the user k£* with:

. Ri(t)
= arg max —
1<k<K Ry(t)

(7.3)

among all active users K for which the base station has data to send. The rate Ry (¢) is
the k-th user’s average throughput in a past window of length ¢., and is updated slot-wise
using an exponential filter as follows:

. { (1= HRe(t) + L Ri(t), k =k (7.4)

READ=1 0= Dry), e

~—
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The parameter t. defines the time horizon in which we want to achieve fairness and is
constrained by the maximum delay tolerance. Obviously, the larger t., the less stringent the
fairness constraint, and thus longer delays start appearing between successive transmissions
to the same user. For instance, in IS-856 ¢. ~ 1.67 seconds.

Note that the above PFS rule computes the proportionally fair allocation based on the
following practical result (theorem): there exists one unique PF allocation and is obtained
by maximizing ), logr over the set of feasible resource allocations. In [53] it was shown
that PFS maximizes the sum of the logarithm of the average throughput Y, log R, almost
surely among the class of all schedulers when t. — oco. In other words, PFS maximizes the
product of user long-term average throughputs, rather than the sum throughput. Therefore,
when users are charged equally in terms of price per unit share, PFS brings the maximum
revenue to the network operator according to [128].

In [53], PFS exploits the multiuser diversity by assigning the radio resource to a user
when its SNR is at or near its peak. In this sense, PF'S can be thought as an approximation of
greedy scheduling under resource fairness constraint. Its performance is affected by both the
user fading statistics and the number of active users, and the optimum multiuser diversity
can be obtained when each user has the same i.i.d. small-scale fading over time. Note that
users with higher SNR, and greater fading variations get higher throughput than those with
the opposite condition. However, regardless of the user average SNR, the PFS algorithm
provides equal opportunity of transmission to users with the i.i.d. fading statistics, and only
slightly better chances of transmission to those with smaller channel variations over the long
term [129]. Detailed theoretical analysis of the properties of PFS can be found in [130,131].

7.6.3 Multiuser Proportional Fair Scheduler (M-PFS)

PFS was originally proposed for systems that serve only one user at each scheduling window.
In this section, we generalize the PFS policy for any multiuser transmission system. Let
G be the set of all possible subsets of cardinality |G| = M of disjoint indices among the
complete set of user indices {1,--- , K}. Let S; € G, be one such group of M users selected

for transmission at a given time slot t.

Proposition 7.1: The multiuser proportional fair scheduling policy (M-PFS) is such that
the users are selected as

. Rys(t)

where Ry s(t) is the rate of user k € S conditioned to the scheduling set S.

Proof. In order to show that (7.5) is a proportional fair scheduler, we need to show that
it maximizes the sum of the logarithms of the average throughputs, i.e. >, logRy(t).
Consider the objective function J = 3, log Ry (t + 1). Then we have:

g;slog<<1—i> > %1%((1——) Rk()+é72ks(t))
;log((l—%) )+Zlog (1+ 11%12%;1()) o)

keS

J



7.6 Fairness 153

The first term in (7.6) can be omitted since it does not depend on the particular choice of
the scheduling set S, hence selecting the users that maximize the objective function results
in the following optimization problem:

Rys(t)
S = = 1 1+ —————— 7.7
=gy o]l (4 R &
which results in (7.5) since the logarithm is a monotonically increasing function. O

By developing the above expression we have
Ris(t)
S = 1 ———+b
¢ = argipax ( * 1; 0= tRe(t)

where b is the by-products from the multiplication. If we consider a system with parallel
channels, in which the rate provided to user k& does not depend on the rate of users j,j €

S, # k, then b can be omitted resulting in the following M-PFS expression

RkS(t)>
S} = arg max < - 7.8
t Seg s Rk(t) ( )

We remark that (7.5) can be directly applied as the PFS policy for multiuser SDMA downlink
systems, multi-carrier (e.g. OFDMA), and multi-cell networks.
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Chapter 8

Conclusions and Perspectives

In this dissertation, we have focused on resource allocation and performance optimization
for multiuser multi-antennas systems with incomplete CSIT. Limited feedback techniques
that allow the transmitter to live well with partial channel knowledge and still achieve a
significant fraction of the optimal capacity achieved under perfect CSIT is the leitmotiv of
this thesis.

One first key idea is based on splitting the feedback information between the scheduling
and the final beam design (or "user serving") stage, thus taking profit from the fact the
numbers users to be served at each scheduling slot is much less than the number of users
simultaneously requesting data packets during one given scheduling window. We introduced
a two-stage framework that decouples the scheduling and beamforming problems, showing
that user selection can be performed well using rough channel estimates, while the stage
of serving the selected users is better accomplished with more accurate feedback. In one
proposed setting, random beamforming is exploited to identify good, spatially separable,
users in a first stage. In the second stage, the initial random beams of the selected users
are refined based on the available feedback as a means to offer improved performance and
robustness. Several refinement strategies, including beam power control and beam selection,
are proposed, offering various feedback reduction and performance tradeoff. The common
features of the above schemes is to restore robustness of RBF with respect to sparse network
settings (low to moderate number of active users), at the cost of a moderate complexity
increase. The established framework is suitable for resource allocation in slow varying
multi-antenna networks with best effort, elastic traffic.

Furthermore, we have studied the problem of user selection and precoding with partial
CSIT in more realistic channel scenarios. We showed that useful information that lies hidden
in the second-order statistics of the channel - either in the temporal or in the spatial domain
- can be exploited by the SDMA scheduler. In time-correlated channels, the redundancy
(memory), which appears due to the channel structure, is exploited in order to successively
refine over time the random beams of RBF. A framework, coined as memory-based oppor-
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tunistic beamforming, has been established, which allows to fill the capacity gap between
a purely opportunistic RBF and a channel-aware precoding and scheduling scheme with
full CSIT. Our approach is suitable for low mobility (indoor) settings (i.e. limited Doppler
spread), while is shown to approach the capacity of optimal unitary precoding with full
CSIT for channels with large coherence time.

In spatially-correlated MIMO channels, long-term statistical channel knowledge can re-
veal information about the mean spatial separability of users, which is instrumental to a
proper beamforming design. The merit of combining statistical and instantaneous channel
information has been highlighted through several approaches. A maximum-likelihood (ML)
channel estimation framework is established, which effectively combines slowly varying sta-
tistical CSIT, assumed available at the transmitter, with instantaneous low-rate CSIT. In
particular, we considered both channel norm and effective channel gain (beam gain informa-
tion) as scalar CQI feedback. Efficient algorithms were developed for computing the coarse
ML estimates, which enable the SDMA scheduler to identify users with large gains and
separable spatial signatures. A greedy user selection scheme and a low-complexity, SDMA
eigenbeamforming technique based on multiuser interference bounds were also proposed and
evaluated. It was demonstrated that, in systems with reasonably limited angle spread at
the transmitter, such as wide-area cellular networks with elevated base stations, it is suffi-
cient to feed back a single scalar but properly designed CQI parameter and combine it with
long-term statistical CSIT in order to achieve near-optimal throughput performance.

Limited feedback strategies utilizing quantization codebooks were also investigated in
the thesis. In particular, the problem of efficient, sum-rate maximizing CQI metric design
is addressed. We identified several scalar feedback metrics that incorporate information on
the channel gain, the channel direction, and the quantization error, and can be interpreted
as reliable estimates of the received SINR. For that, bounds on the instantaneous inter-user
interference when ZFBF is employed were derived. Although the exact SINR is in principle
not available to the individual users, the use of interference bounds and approximate ex-
pressions results in simplifications that give users the possibility of estimating a priori their
individual received SINR. It was demonstrated that scalar CQI feedback combined with
CDI and efficient user selection and ZFBF can achieve a significant fraction of the capacity
of the full CSIT case by means of multiuser diversity. However, a major limitation of SDMA
systems relying on quantized CSIT is that they become interference dominated and their
multiplexing gain is reduced at high SNR under fixed feedback load rate. Motivated by the
fact that SDMA does not always outperform TDMA when the transmitter relies on incom-
plete CSIT, we showed the importance of dynamic SDMA/TDMA transition algorithms.
Properly designed scheduling metrics allowing a soft, adaptive switching from multiuser to
single-user transmission mode are shown to be a promising means to circumvent this prob-
lem, guaranteeing a linear sum-rate growth at any SNR range. Moreover, we considered
a practically relevant system in which each user has a sum feedback rate constraint. A
tradeoff between multiuser diversity and spatial multiplexing has been identified, since the
available feedback bits ought to be shared between CDI and CQI information. The prob-
lem of optimizing the feedback bit split has been studied, revealing an interesting interplay
between the number of active users, the average SNR and the feedback load.

Finally, a low-rate representation of CSIT feedback parameters, referred to as ranking-
based feedback, was identified as a means to further compress the reported channel feedback
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information. Each user calculates and reports to the BS the integer-valued ranking of its
instantaneous CSIT among a set of stored past CSIT measurements. This alternative rep-
resentation enables the scheduler to identify users that are instantaneously on the highest
peak (quantile) with respect to their own channel distribution, independently of the distribu-
tion of other users. Interestingly, in non-symmetric networks, with i.ni.d. channel statistics
among users, the proposed ranking-based feedback allows to restore temporal fairness since
it equalizes the probability that a user will be selected, independently of its average SNR.

Future Research

The results of this dissertation shed some light on how to achieve a significant fraction
of the multi-antenna broadcast capacity as promised by information-theoreric results, even
when the transmitter relies on limited and incomplete channel knowledge. In parallel, the
thesis brought up several interesting open issues and topics for further research, as briefly
discussed in what follows.

Our work in Chapters 3 to 5 have identified linear precoding combined with efficient user
selection and limited as a promising technique to achieve the sum rate of MIMO broadcast
channels. Nevertheless, the results rely on several simplifying assumptions on the behavior
of the feedback channel. Since the uplink channel is not instantaneous and error-free in
practice, a natural extension to these results can be studying the effect of feedback channel
noise, delays and CSIT estimation on the system performance. This investigation is of
primary importance in high mobility networks with large Doppler spread channels where
delays are more prominent. Clearly, the feedback delay would affect the validity of the
feedback and would cause the scheduler to mistakenly choose users that do not have the most
favorable channel conditions. One simple method would be to back off the reported CQI;
however understanding the amount of back off and the effect of estimation error variance
on the throughput are challenging open problems.

In all our work, except in Chapter 6, we study network settings with i.i.d. channel fading
statistics. It is of particular interest to assess the real throughput gain of the proposed
methods in channels with shadowing and path loss, in which the users exhibit unequal
average SNRs. Such scenarios would certainly impact the multiuser diversity gains as well
as the system overall sum-rate and fairness performance. Additionally, if we consider the
impact of realistic traffic models and system loads, the available degrees of freedom at the
disposal of the scheduler can be severely reduced. It might be of interest to identify how
many effective active users are available for selection by the scheduler at each time and
how to take advantage of the different degrees of freedom to satisfy the QoS constraints for
different types of traffic. Fairness issues, which have not been taken into account in our
work here presented, need to be incorporated, in order to provide high throughput while
satisfying certain QoS constraints.

Extensions of the problem of resource allocation for multiuser multi-antenna downlink
channels with limited feedback to wideband systems and multicell settings are also problems
of timely relevance that require further research.

Finally, we have investigated techniques matched to a quantized (digital) channel feed-
back where each user sends back a suitably encoded and modulated quantization index.
Nevertheless, recent findings have started considering analog feedback schemes. Although
digital feedback is shown to be superior in most cases [132], such practically relevant frame-
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work may give rise to hybrid digital /analog feedback approaches. For instance, the feedback
link design can be modeled as a Wyner-Ziv coding problem, where the transmitter combines
the digital, quantized CSIT information that combines with analog side information.

In order to conclude, we might say that the theoretical limits of multiuser multi-antenna
systems are relatively well understood nowadays. However, the gap between the current
practical schemes and the theoretical limits is still significant, making the optimal design of
limited feedback multiuser MIMO transmission an open and exciting problem.



Chapter 9

Résumé en francais

Introduction

Durant la derniére décennie, l'industrie de communications sans fil a été confrontée &
une demande intense d’augmentation de débits de données et I’amélioration de la qualité
de service (QdS). Les applications qui sont proposées aujourd’hui aux clients ne sont plus
limitées a la transmission de la voix; de nouveaux types de services sont apparus, comme
le streaming multimédia, la navigation sur Internet, le transfert de fichiers et la téléphonie-
video, chacun exigeant différentes contraintes de débit et de qualité de service.

L’introduction de nouveaux services de données est une des raisons fondamentales de la
transition des systémes de commutation ‘circuit’ aux réseaux de commutation ‘paquet’. Les
réseaux, qui accueillent un trafic de type ‘best-effort’ et tolérant aux retards, ont évolué,
en offrant la flexibilité nécessaire a 'unité d’allocation des ressources d’ordonnancer les
transmissions aux instants ou le lien de communication est exposé aux conditions du canal
les plus favorables. Ceci donne lieu a la diversité multi-utilisateurs, qui vise a une meilleure
utilisation du spectre dans chaque cellule au détriment pourtant de I’équité (fairness) et du
délai.

En plus de la diversité multi-utilisateurs, une autre technologie-clé qui utilise efficace-
ment les ressources de la bande passante est celle de communications multi-antennes. Les
techniques & entrées multiples sorties multiples (MIMO) ont suscité un fort intérét grace a
leur potentiel & offrir des efficacités spectrales élevées, de la diversité et des dispositions de
suppression des interférences. Par conséquent, 1'utilisation de plusieurs antennes est envis-
agée dans la plupart des protocoles sans fil de la nouvelle génération, y compris 3GPP-LTE,
High Speed Downlink Packet Access (HSDPA), IEEE 802.16e (WiMAX) et IEEE 802.11n.

De MIMO mono-utilisateur vers communications MIMO multi-utilisateurs

Le haut débit et les gains en diversité promis par les communications MIMO point-a-
point (mono-utilisateur) sont obtenus essentiellement grace a 'utilisation des techniques de
diversité (par exemple, codage spatio-temporel) en combinaison avec des techniques de max-
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imisation du débit (multiplexage spatiale). Dans une approche traditionnelle des systémes
MIMO mono-utilisateur, les degrés de liberté spatiaux portés par 1’utilisation d’antennes
multiples sont exploités afin d’accroitre les dimensions disponibles pour le traitement du
signal et la détection, en agissant ainsi essentiellement comme une approche qui optimise
uniquement la performance de la couche physique. Les protocoles de la couche de liaison
(link layer) pour I’accés multiple bénéficient indirectement des avantages de la performance
des antennes MIMO, avec un plus grand débit par utilisateur ou une qualité de canal plus
fiable, sans méme exiger une connaissance exacte de la capacité du lien MIMO.

Dans les réseaux de MIMO multi-utilisateurs, les degrés de liberté spatiaux offerts par
les antennes multiples peuvent étre avantageusement exploités afin de renforcer Pefficacité
spectrale du systéme, en ordonnancgant plusieurs utilisateurs simultanément avec des méth-
odes d’accés multiple par répartition spatiale (SDMA). Ce protocole d’accés multiple exige
des stratégies d’ordonnancement et des techniques d’émetteur plus complexes, sans néan-
moins demander I’expansion de la bande passante. Avec un accés multiple par répartition
spatiale, I'interférence multi-utilisateurs est annulée par les antennes multiples qui, en plus
de fournir une diversité de lien, donnent les degrés de liberté nécessaires pour la séparation
des utilisateurs dans le domaine spatial.

Les résultats récents de la théorie d’information révélent que la stratégie optimale pour
atteindre la capacité des canaux de diffusion MIMO (broadcast channel) est le ‘dirty paper
coding’ (DPC). Cependant, cette stratégie, qui implique une technique théorique de pré-
annulation de l'interférence, combinée & un ordonnancement implicite et & un algorithme
d’allocation de puissance, est trés complexe & mettre en oeuvre et est extrémement sensible
aux erreurs d’estimation du canal. Cette technique a pourtant révélé le role fondamental
de la dimension spatiale sur ’accés multiple et de 'ordonnancement, ce qui remet en cause
la vision traditionnelle trop simpliste que MIMO est purement une technologie de couche
physique. Cela a donné lieu au développement d’approches d’optimisation inter-couches,
qui visent a la conception conjointe de la modulation/codage de la couche physique et de
I’allocation des ressources de la couche liaison ainsi que des protocoles d’ordonnancement.

Les techniques MIMO multi-utilisateurs et leurs performances ont commencé a étre in-
tensément étudiés en raison de plusieurs avantages par rapport aux communications MIMO
mono-utilisateur. En particulier, les schémas MIMO multi-utilisateurs permettent une aug-
mentation linéaire de la capacité, proportionnelle au nombre d’antennes de transmission,
grace a leurs aptitudes de multiplexage spatial. Ces systémes apparaissent aussi plus ro-
bustes face a la plupart des limitations de propagation des communications MIMO mono-
utilisateur, comme la perte de rang du canal ou la visibilité directe (line-of-sight). En outre,
les gains de multiplexage spatial promis par la théorie de l'information peuvent étre at-
teints sans la nécessité d’antennes multiples au niveau de terminaux, permettant ainsi le
développement de terminaux petits et bons marchés.

Tous ces résultats prometteurs viennent malheureusement avec ’hypothése d’une con-
naissance parfaite d’état du canal a ’émetteur (CSIT). Les systémes multi-antennes multi-
utilisateurs, a la différence du cas mono-utilisateur, bénéficient de maniére substantielle de
la CSIT, dont 'absence peut réduire significativement le débit du systéme et donc leur in-
térét. Siune station de base (SB) avec M antennes de transmission qui communique avec K
récepteurs mono-antenne a une connaissance du canal parfaite, un gain de multiplexage égal

a min(M, K) peut étre obtenu. Si la station de base a une connaissance du canal imparfaite,
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le gain de multiplexage peut étre réduit, et dans des configurations avec une absence totale
de CSIT, le gain de multiplexage devient égal a un. Le cott d’obtention de la CSIT semble
étre le plus important sacrifice & encourir afin de bien servir les utilisateurs en multiplexage
spatial et d’augmenter la capacité du systéme MIMO multi-utilisateurs.

Cette thése se concentre sur la voie descendante d’un canal multi-antennes et vise a iden-
tifier quel type de CSIT partielle, également dénommeée feedback limité, peut étre transmise
au transmetteur en vue d’atteindre des efficacités spectrales trés proches des capacités op-
timales obtenues avec une CSIT parfaite.

Nous nous concentrons sur des techniques de formation de faisceaux (beamforming)
linéaires & faible complexité avec une CSIT partielle, qui peuvent atteindre une part im-
portante de la capacité optimale sous condition qu’elles soient associées & des protocoles
d’ordonnancement efficaces. Nous essayons de donner des réponses et des solutions au
probléme de conception de la CSIT partielle en proposant plusieurs stratégies de feed-
back limité qui permettent & la station de base d’atteindre une efficacité spectrale quasi-
optimale. Comme nous le verrons dans les chapitres suivants, la diversité multi-utilisateurs

et 'ordonnancement opportuniste jouent un roéle primordial dans nos approches.

Dans cette thése, nous avons fait les hypothéses suivantes: tous les systémes que nous
étudions se trouvent dans une cellule et l'interférence intercellulaire est traitée comme du
bruit Gaussien additif. Les utilisateurs ont une connaissance parfaite du canal au niveau
de récepteur (CSIR). Nous considérons des canaux & évanouissement plat, ce qui veut dire
que les signaux sont de bande étroite. En plus, nous supposons un lien d’adaptation idéal
et donc, nous calculons la capacité et le débit en utilisant la formule de Shannon. Les
utilisateurs ayants des paquets dans leurs queues, la station de base & toujours des données
a transmettre aux utilisateurs choisis.

Canaux de diffusion MIMO

Le deuxiéme chapitre de cette thése est consacré a une présentation détaillée des com-
munications MIMO multi-utilisateurs. Nous faisons aussi le point sur l’état de Dart des
MIMO multi-utilisateurs avec voie de rétroaction limitée, en mettant ’accent sur la voie
descendante, autrement dit sur le canal de diffusion. Le modéle général des systémes multi-
antennes est donné et des résultats connus sur la capacité du canal de diffusion sont présentés
sous différentes hypothéses concernant 'information du canal & I’émetteur. Les résultats ré-
cents de la théorie de 'information ont démontré 'importance cardinale de la CSIT et de
I’ordonnancement, ainsi que le role de la diversité multi-utilisateurs pour atteindre la ca-
pacité du canal. Plusieurs approches y compris les techniques du precodage non-linéaire
et linéaire sont présentées et nous discutons sur les différentes approches de conception du
systéme, ainsi que sur les compromis des performances. L’accent est mis sur les stratégies
du précodage linéaire a faible complexité, combinées avec des stratégies d’ordonnancement
en utilisant une CSIT partielle.
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Canaux a entrées multiples et a sorties multiples (MIMO)
Le modéle du signal & temps discret et & bande étroite du canal MIMO point-a-point
avec M antennes d’émission et N antennes de réception est donné par

y=Hx+n (9.1)

o x € CM*1 est le symbole émis, H € CN*M est la matrice du canal, y € CVN*! est
le signal recu, et n € CN*! est le vecteur du bruit. Nous supposons un bruit Gaussien
complexe de moyenne nulle et matrice de covariance R,,. Un canal blanc H =R, Y2H est

/2 . .
n a une matrice de covariance

souvent utilisé de telle sorte que le bruit blanc w = Ry, 1
unitaire, E{ww} = I. En raison de la normalisation du bruit, la contrainte sur la puissance
P = Tr(E{xx!}) peut étre interprétée comme le rapport signal sur bruit (RSB) moyen par
antenne de réception avec un gain du canal égal & un.

La connaissance de la matrice de gain du canal H & ’émetteur et de récepteur est
dénommeée information sur le canal & [’émetteur (CSIT) et information sur le canal au

récepteur (CSIR), respectivement.

~~.
=~

Figure 9.1: Modéle du canal MIMO

Systémes multi-utilisateurs avec antennes multiples

Un canal multi-utilisateurs est généralement tout canal partagé entre plusieurs utilisa-
teurs. Il existe deux types de canaux multi-utilisateurs: les canaux a voie montante et ceux a
voie descendante. Un canal de liaison montante, aussi appelé canal d’accés multiple (MAC),
a de nombreux émetteurs envoyant des signaux & un seul récepteur dans la méme bande de
fréquence. Un canal descendant, aussi appelé canal de diffusion, a un émetteur qui envoie
des signaux a de nombreux récepteurs. Dans un contexte multi-utilisateurs, nous consid-
érons uniquement la communication entre la SB équipée avec M antennes et K terminaux,
ou chaque utilisateur actif k est équipé de Ny antennes.

Dans la voie descendante, illustré dans la Fig.9.2, le signal recu y, € CN**1 par le k-iéme

utilisateur est exprimé par
vy =Hpx+n; for k=1,.... K (9.2)

Le signal émis x est une fonction des données des utilisateurs multiples, c’est-a-dire

x = Zxk (9.3)
k
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(CM><1

ou Xi € est le vecteur du signal transmis portant des données pour 'utilisateur k,

avec covariance Xy = E{x;x7}.

. fommoo o> y{L user k

base station (M antennas)
i YL user K

NK

K users (user k has Nk antennas)

Figure 9.2: La voie descendante d’un réseau MIMO multi-utilisateurs

La caractérisation de la région de la capacité du canal de diffusion général est un probléme
ouvert de la théorie de I'information multi-utilisateurs. L’outil théorique pour caractériser la
région de la capacité MIMO broadcast avec CSI compléte, est le ‘dirty paper coding’ (DPC),
qui a été révélé par article de Caire et Shamai (Shitz) [7]. La, il a été démontré que 'idée
de pré-soustraction de l'interférence a I’émetteur peut atteindre la capacité d’'un canal de
diffusion MISO avec deux utilisateurs. Les résultats de [7] ont été généralisés par [16-18],
jusqu’a ce que Weingarten et al. [8] établisse la caractérisation compléte de la région de la
capacité MIMO broadcast gaussien, instituant ’optimalité de la stratégie DPC.

Une technique intéressante de transmission multi-utilisateurs a faible complexité est la
‘formation de voie opportuniste’ (random opportunistic beamforming - RBF) [9,53]. Dans
RBF, 1 < B < M faisceaux aléatoires et mutuellement orthogonaux sont générés par la SB.

A Pinstant ¢, le signal transmis est donné par

B
X(H) = > am(t)sm(t) (9.4)
m=1

ou s, (t) est le signal scalaire pour l'utilisateur servi par le faisceau m. Le rapport signal

sur bruit et interférence (SINR) de l'utilisateur & sur le faisceau m est égal a

|thm|2

S g, + Bo?/P
Jj#Em

SINRy. = m=1

... B (9.5)

Chaque utilisateur, disons le k-iéme, calcule les SINRs sur tous les faisceaux, SINRy, ,,, pour
m=1,..., B, trouve le faisceau by qui offre le SINR le plus élevé, by = arg max SINR,m,

et renvoie la valeur de SINRy, p, avec l'indice du faisceau b;. En retour, I’émetteur attribue
chaque faisceau m a l'utilisateur k., avec le plus grand SINR, k,, = aurg1 E}&XK SINRj . Le

débit-somme du systéme (sous ’hypothése de signalisation gaussienne) est donné par

B
Rrpr ~E { > logy(1+ nax SINRka)} (9.6)

m=1
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Figure 9.3: Schéma de la formation de faisceaux aléatoires opportuniste

L’analyse asymptotique sur le débit-somme a montré que, pour M et P fixe et K — oo,
le débit moyen de RBF augmente comme M loglog K, la méme loi de croissance que la
capacité optimale avec une CSIT parfaite. L’intuition derriére cette technique est que pour
un K grand, il existe pratiquement stirement un utilisateur bien aligné avec chaque faisceau,
ayant trés peu d’interférence avec les autres faisceaux. Ainsi, le gain de multiplexage spatial

peut étre complétement atteint.

Une limitation du [9] est que ce schéma est optimal pour un trés grand nombre d’
utilisateurs (généralement irréaliste). La performance dégrade rapidement avec un nombre
d’utilisateurs qui diminue. En outre, cette dégradation est amplifiée lorsque le nombre
d’antennes d’ émission augmente. La raison est intuitive: lorsque le nombre d’utilisateurs
actifs diminue et M augmente, il devient de plus en plus improbable que M faisceaux générés
aléatoirement soient bien adaptés avec les canaux de chaque ensemble de M utilisateurs

R
dans la cellule. En plus, RBF est sous-optimal & fort RSB, Plim loz}it}:

devient limité par interférence. Comme l'interférence croit avec la puissance P et ne peut

=0, car le systéme

étre éliminée en raison de la connaissance partielle du canal, le gain de multiplexage M ne
peut étre réalisé a fort RSB. Dans les deux chapitres suivants, nous proposons plusieurs
améliorations de RBF afin de rétablir et d’augmenter la robustesse de la performance du
débit-somme pour un petit nombre d’utilisateurs.
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Formation de voie opportuniste robuste

Dans ce chapitre, nous étudions un scénario d’ordonnancement et de formation de fais-
ceaux avec voie de rétroaction limitée basée sur le cadre du beamforming aléatoire (RBF).
L’intuition derriére le concept de RBF est que, malgré le faite que les faisceaux soient
générés aléatoirement et sans aucune CSIT & priori, pour un grand nombre d’utilisateurs
K, ce groupe d’utilisateurs est caractérisé par de grand gains de canal ainsi qu’une bonne
séparabilité spatiale. De ce fait, la probabilité que la direction du faisceau aléatoire soit
presque alignée avec le canal des certains utilisateurs augmente. Cependant, un incon-
vénient majeur a cette technique est que les performances se détériorent rapidement lorsque
K baisse. Quand le nombre d’utilisateurs actifs diminue, il devient de plus en plus improb-
able que M faisceaux générés de maniére aléatoire seront proches aux directions des canaux
de n’importe quel ensemble de M utilisateurs. Cette situation peut facilement arriver dans
la pratique ou le trafic survient généralement par rafales (bursty) avec de fréquentes périodes
de silence. Une autre limitation du RBF est qu’il est dominé par 'interférence & haut RSB.
Son gain de multiplexage disparait donc, di & U'interférence croissante avec le RSB qui ne

peut étre éliminée avec un débit fixe de CSIT.

Dans la premiére partie de ce chapitre, nous donnons des expressions analytiques pour le
débit du beamforming aléatoire et nous dérivons des lois d’échelle de la capacité pour un fort
RSB. L’implication principale de nos résultats est que, dans certains régimes asymptotiques,
il est utile de réduire le nombre de faisceaux actifs, c’est-a-dire les faisceaux auxquels on
alloue une puissance non nulle. Dans un régime de faible puissance, il est préférable d’utiliser
un grand nombre de faisceaux si 'on veut maximiser la capacité, alors que dans la région
limitée par linterférence (P — oo) et un K fixe, la stratégie de transmission qui maximise

le débit du systéme consiste & servir un seul utilisateur.

Dans la deuxiéme partie de ce chapitre, nous introduisons une nouvelle classe de schémas
de beamforming unitaire aléatoire qui présente de la robustesse dans les cellules avec un
nombre d’utilisateurs faible & modérée (réseaux creux), tout en préservant un débit de
feedback limité ainsi que ’avantage de la faible complexité de la formation des faisceaux

aléatoires.

Une premiére idée-clé est basée sur la division de la voie de rétroaction entre 1’ ordon-
nancement et I’étape de la conception de faisceaux, afin de bénéficier du fait que le nombre
des utilisateurs a servir B a chaque instant est beaucoup plus bas que le nombre d’utilisateurs
actifs (c’est-a-dire, B < M << K). Dans une premiére étape, une matrice de formation de
faisceaux, pouvant étre sélectionnée aléatoirement, est utilisée et une sélection de groupes
d’utilisateurs (de taille |S| = B) est effectuée parmi tous les K utilisateurs actifs. Dans la
deuxiéme étape, une information de qualité du canal additionnelle est percue pour chaque
utilisateur présélectionné et une matrice de formation de faisceaux améliorée est congue afin

de les servir.

Le SINR signalé par tous les utilisateurs est mesuré a la base de la premiére matrice
de formation de faisceaux. Basé sur cette information de rétroaction, nous ameéliorons la
conception des faisceaux qui seront utilisés pour servir les utilisateurs sélectionnés. En
général, la premiére matrice peut étre congue en fonction de n’importe quelle connaissance
a priori du canal, mais dans ce chapitre nous avons supposé que les faisceaux de la premiére

phase sont générés aléatoirement car aucune CSIT & priori n’est prise en charge. Une fois
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que le groupe de B (1 < B < M) utilisateurs est présélectionné a l'aide du feedback de
type SINR, une information du canal additionnelle peut étre demandée par ce groupe afin
de concevoir la matrice du précodage finale. La deuxiéme étape de précodage peut exiger
que de nouvelles portions de rétroaction CSIT soient calculées en fonction des objectifs de
la conception. Selon la contrainte du débit de la voie de retour, la rétroaction CSIT 7,; de

la deuxiéme étape peut prendre les formes suivantes:
e Stratégie 1: 7, = hy, (CSIT compléte)

Stratégie 2: 7,; = hy, (vecteur du canal quantifié)

Stratégie 3: 7,; = |hkqm|2 (BGI: information sur le gain de faisceau)

Stratégie 4: Fy;c = v (pas de feedback additionnel)

Si nous nous concentrons sur la stratégie 3 dans laquelle les orientations du faisceau de
la premiére étape ne changent pas, nous proposons un algorithme d’allocation de puissance
de faisceau & travers les B faisceaux aléatoires. Supposons que le vecteur des puissances
transmises est défini comme P = [P ... Py/] ot P, est la puissance transmise sur le faisceau
m. Le SINR de 'utilisateur k,, € S sélectionné pour le faisceau m peut étre exprimé par:

Pmnk:mm

o+ > Pk,
iFm

SINRy,, m(P) =

(9.7)

L’allocation de puissance pour les faisceaux de RBF qui maximise la capacité avec la con-

trainte de la somme des puissances peut étre formulée comme:

M
max R(S, P) = max mz::l logy (14 SINR,, . (P))
M
$t.Y Pn<P Pp>0,m=1,..,M (9.8)

m=1

Dans le cas de deux faisceaux aléatoires, la stratégie d’allocation optimale P* = (Py, P5)
est donné par:
Pf=arg  max J(P1)
P={0.P,P'} (9.9)
Py =P — Py
ou Py € [0,P] et

(9.10a)

p_ | CBEVBT-IAT)24 st A#0
| -r/B siA=0

A= 77k1177k21(77k21 - 77k22)(P77k12 =+ 02) + 77k2277k12(77k11 - 77k12)(P77k21 + 02) (910b)

B = (P2 + 0°)0k1 (Pliky1mie + 201,107 = Ngy20°)
+ o2(20k2 — My 1) (Pikor + 0°) (P2 + 07) (9.10¢)
T = 0,107 (Piy2 + 0°) (Pl + 0°) = Niy2(Prigy1 + 0°) (P2 + 02)? (9.10d)

Dans le cas général de B > 2 faisceaux, un algorithme itératif (sous optimal mais efficace)
est proposé et simulé numériquement.
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Si nous considérons la stratégie 4, nous proposons une méthode simple d’allocation de
puissance, nommeée ‘On/Off Beam Power Control’, dans laquelle ’émetteur prend une déci-
sion binaire entre:

e mode de transmission TDMA vers un utilisateur choisi (celui avec le plus grand ~x
dans la premiére étape).

e mode de transmission SDMA ou tous les faisceaux aléatoires sont actifs avec la méme
puissance.

L’ordonnanceur, en se fondant uniquement sur les valeurs de rétroaction SINR, compare le
débit somme instantané du mode SDMA avec le débit attendu de TDMA et sélectionne le
mode de transmission qui maximise le débit du systéme.

La performance de l'algorithme de controle de puissance itératif est présenté dans la
Figure 9.4 pour un systéme avec quatre faisceaux. Dans la figure 9.5 nous tracons le débit-
somme par rapport au nombre d’utilisateurs pour un systéme avec M = 2 antennes de
transmission et RSB = 10 dB. Le schéma fonctionne en mode TDMA pour de faibles valeurs
de K (toute la puissance est donné a l'utilisateur avec le SINRy,,, le plus haut) et passe en
mode SDMA avec une allocation de puissance uniforme pour K grand. Nous observons
également que ’écart du débit entre le controle de puissance optimal (avec les deux étapes
de feedback) et le controle de puissance On/Off (sans feedback supplémentaire) pour K < 20
utilisateurs est d’environ 0.4 bps/Hz.

75 T
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T

Sum rate (bps/Hz)
@
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»
o
T
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——— Single-stage single-beam RBF
—=&— Two-stage RBF with Iterative Beam Power Allocatior|
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I I
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Number of users

Figure 9.4: Débit-somme en fonction du nombre d’utilisateurs pour l’algorithme de controle

de puissance itératif avec M = 4 antennes de transmission et RSB = 10 dB.
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Figure 9.5: Débit-somme en fonction du nombre d’utilisateurs pour l’algorithme de controle
de puissance On/Off avec M = 2 antennes de transmission et RSB = 20 dB.

Exploitation de la structure du canal dans des canaux de
diffusion MIMO

Dans ce chapitre, nous considérons des canaux MIMO multi-utilisateurs avec corrélation
temporelle et spatiale et nous proposons plusieurs techniques qui augmentent le débit en
exploitant la structure du canal.

Dans les canaux avec corrélation temporelle, des informations provenant de feedback a
faible débit peuvent étre cumulées au fil du temps pour approcher les performances opti-
males avec CSIT parfaite (agrégation du feedback). En outre, le canal peut étre considéré
comme une source de Markov et la redondance est donc exploitée pour réduire la voie de
rétroaction. Nous proposons un schéma opportuniste de formation des faisceaux qui ex-
ploite la mémoire du canal et qui offre une capacité proche de celle du précodage unitaire
optimal avec CSIT parfaite pour des canaux variant lentement avec le temps. Notre tech-
nique, appelée ‘Memory-based Opportunistic Beamforming’ (MOBF), essaie d’exploiter la
mémoire du canal tout en faisant a chaque instant une meilleure sélection de la matrice
unitaire de précodage basée sur 'information CSIT du passé. La corrélation temporelle est
exploitée par la mémorisation des décisions précédentes d’ordonnancement, c’est-a-dire en
comparant le groupe S des utilisateurs sélectionnés pour un precodeur aléatoire Q(t) avec
les sélections-décisions suivantes Q(t +14) pouri=1,...,T.

Le résultat ci-dessus implique que le maximum du débit-somme offert & I'aide de diverses
matrices de précodage Q; converge asymptotiquement vers la capacité optimale du beam-
forming unitaire R*. En conséquence, cette matrice de précodage unitaire, notée Q* qui
correspond & la matrice qui maximise le débit, converge vers un des différents precodeurs
unitaires optimaux. Par conséquent, si le canal est quasi-statique, le codebook du schéma
MOBF contiendra une matrice de beamforming optimale, ¢’est-a-dire une matrice unitaire
qui maximise le débit-somme d’une certaine réalisation du canal. Dans la figure 9.6 nous
évaluons le débit de MOBF en fonction du nombre d’utilisateurs avec M = 8 antennes de
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transmission. Comme attendu, ’écart de performance entre MOBF et RBF est plus élevé
pour un petit nombre d’utilisateurs. Le débit-somme de RBF s’améliore lorsque K aug-
mente, car il est plus probable que les faisceaux aléatoires trouvent des utilisateurs avec des

canaux forts et étroitement alignés sur leurs directions.

11

10

Sum rate [bps/Hz]
~

—— Static channel
—— Conventional RBF
~<— Memoryless channel
—— 200Hz Doppler

—#— 60Hz Doppler

—*— 10Hz Doppler

I I I I I
20 40 60 80 100 120 140 160 180 200

Number of users

Figure 9.6: Débit de MOBF en fonction du nombre d’utilisateurs K pour différentes valeurs
d’étalement Doppler.

Dans des canaux spatialement corrélés, la connaissance statistique du canal & long terme
peut révéler un grand nombre d’informations sur la nature macroscopique du canal, y com-
pris la direction moyenne d’arrivée/départ des trajets multiples et son étalement angulaire.
Elle peut surtout révéler des informations sur la séparabilité spatiale moyenne entre les util-
isateurs: par exemple, deux utilisateurs dans des domaines trées différents de la cellule sont
plus susceptibles d’étre séparables que des utilisateurs situés proche 'un & 'autre, parce que
leurs canaux se trouvent dans deux cones d’énergie différents, si un étalement angulaire a la
SB raisonnablement faible est considéré. La CSIT statistique peut étre facilement obtenue
par les mobiles et puis renvoyée a I’émetteur avec un débit de voie de rétroaction assez faible.
Plusieurs formes de CSIT statistique sont aussi réciproques, par exemple la matrice de cor-
rélation et la puissance de la composante Rice. D’autre part, afin d’exploiter la diversité
multi-utilisateurs pendant la procédure d’ordonnancement, I’émetteur doit posséder une cer-
taine forme d’information sur la qualité du canal (CQI) instantanée pour chaque utilisateur
afin qu’il puisse distinguer les utilisateurs avec des conditions de canal favorables.

Dans ce chapitre, nous étudions quel type de feedback CQI limité est pertinent et suffisant
afin de minimiser le débit de la voie de rétroaction, tout en permettant & I’ordonnanceur
d’extraire les gains de la diversité multi-utilisateurs. Un cadre d’estimation de canal a
maximum de vraisemblance (MV) est aussi établi, qui combine efficacement la CSIT statis-
tique variante lentement - supposée disponible & I’émetteur - avec un feedback instantané
a faible débit. Nous proposons des métriques de sélection d’utilisateurs de basse com-
plexité (de type MSE) ainsi qu’un algorithme d’ordonnancement ‘avare’ (greedy). Nous
considérons que chaque utilisateur k renvoie le module carré du canal avec le vecteur de
beamforming z, € CM*! ie. v, = |hff zk|2. Les vecteurs de formation de faisceaux peu-
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vent étre interprétés soit comme des signaux-pilotes durant la phase d’entrainement, soit
comme les vecteurs de formation de faisceaux préférés dans une approche de précodage et
d’ordonnancement a deux étapes. Cette estimation du canal & maximum de vraisemblance
est celle qui maximise la log-vraisemblance de la densité de probabilité (4.5) conditionnée
par la contrainte de feedback scalaire v, = |h qy|*:

h; = argmax f(h|;) (9.11)
Dans ce cas 1a, nous avons le probléme d’optimisation suivant:

max thRkhk
hy, ) (9.12)
s.t. |thqk|2 = Yk

11 peut étre facilement démontré que (9.12) est équivalent a résoudre un probléme des valeurs
propres généralisées, dont la solution est donnée par:

N hR;h v/
h; = argmax 1;—1 Rk ~H7k uy
hy, hk "thk |(leC uk|

(9.13)

qui correspond au vecteur propre généralisé associé a la valeur propre la plus élevée, uy, as-
socié a la plus grande valeur propre généralisée positive de la paire de matrices Hermitiennes
(R, ®r).

Dans la figure 9.7 nous voyons la performance du débit-somme de I’estimation MV en
fonction de ’étalement angulaire. Une fois le groupe d’utilisateurs sélectionnés S est identifié
sur la base de l'estimation du canal de chaque utilisateur, I’émetteur obtient de la CSIT
compléte seulement pour les M utilisateurs choisis pour concevoir la matrice de précodage
MMSE du groupe des utilisateurs S. Lorsque 1’étalement angulaire est proche de zéro, notre
méthode approche le débit du précodage MMSE avec CSIT compléte.

=»- MMSE Precoding with full CSIT

~©- Constr. ML channel estimation with BGI
< Orth.Basis Expansion method with BGI
=9~ Random Beamforming

9.5 o

Sum Rate [bits/s/Hz]
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75 L L L L

Angle spread, crgn

Figure 9.7: Débit-somme de la méthode d’estimation MV en fonction de I’étalement angu-
laire pour M = 2 antennes et K = 50 utilisateurs. La CSIT compléte est acquise pour les
utilisateurs sélectionnés dans une deuxiéme étape.
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Eigenbeamforming basé sur des bornes d’interférence avec feedback limité

Enfin, nous augmentons le feedback CQI avec un feedback instantané et scalaire sous
forme d’information sur le rapprochement entre le canal et les faisceaux prédéfinis, afin
de mieux estimer l'interférence multi-utilisateurs. Nous proposons ainsi une technique
d’eigenbeamforming SDMA & faible complexité, basée sur de nouvelles bornes analytiques
de linterférence multi-utilisateurs. Nous montrons que dans des réseaux cellulaires, une
information de feedback CSIT scalaire est suffisante pour offrir des performances proche de
loptimal si elle est combinée avec une connaissance statistique a long terme.

La performance d’eigenbeamforming SDMA est évaluée dans la figure 9.8. La perfor-
mance de notre méthode a basse complexité est supérieure a celle du beamforming aléatoire,

et les gains sont plus prononcés pour un étalement angulaire de moins de 45 degrés.
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Figure 9.8: Débit-somme en fonction du nombre d’utilisateurs K pour M = 2 antennes et
og = 0.17.

Une conclusion générale est que tous nos schémas proposés ont des performances proches
de celles du cas CSIT compléte lorsque ’étalement angulaire par utilisateur a la SB est assez
modéré. Donc nos approches sont adaptées aux systémes de communication sans fil avec
SBs élevées tels que les réseaux cellulaires, dans lesquels 1’élévation de la SB au-dessus de
I’encombrement diminue I’étalement angulaire de la propagation multi-trajets.

Canaux de diffusion MIMO avec feedback limité et
tableaux de codages

Ce chapitre traite des stratégies de feedback limité en utilisant des codebooks (tableaux
de codages) a quantification vectorielle. En particulier, nous adressons le probléme de
la conception de feedback efficace sous forme d’information de qualité du canal (CQI) qui
maximise le débit du systéme. Nous avons proposé plusieurs métriques scalaires de feedback
qui intégrent les informations sur le gain et la direction du canal ainsi que de l’erreur

de quantification. Ces métriques sont construites basées sur des bornes de l'interférence
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multi-utilisateurs instantanée, et peuvent étre interprétées comme des estimations fiables
du SINR regu. Nous démontrons que le feedback CQI scalaire combiné avec information
sur la direction du canal (CDI) et un algorithme de sélection d’utilisateurs efficace peut
atteindre une part significative de la capacité optimale tout en exploitant la diversité multi-
utilisateurs. Nous proposons également un systéme adaptatif de transition entre les modes
de transmission SDMA et TDMA, qui est démontré atteignant une croissance de débit
linéaire pour tous les régimes de RSB.

Dans ce chapitre, la matrice de précodage n’est pas congue par avance (avant la phase
de voie de rétroaction), mais elle est générée basée sur une CSIT partielle obtenue par tous
les utilisateurs actifs. En d’autres termes, chaque utilisateur renvoie une forme de CSIT
quantifiée, qui a son tour est utilisée par la SB pour la sélection d’utilisateurs et la conception
du précodage. Chaque utilisateur envoie une CSIT (quantifiée et de précision finie) sur le
canal de quantification en quantifiant le vecteur du canal normalisé avec le vecteur le plus
proche de son codebook prédéterminé. Comme un canal de diffusion multi-antenne avec
K > M utilisateurs est étudié ici, chaque utilisateur est autorisé a rapporter une CSIT qui
consiste de Bp octets pour 'information sur la direction du canal, complétée par une CQI
instantanée. L’information CDI est principalement utilisée pour la conception du précodage,
tandis que la CQI sert a sélectionner intelligemment M utilisateurs spatialement séparables
avec des grands gains de canal. Cette approche peut étre considéré comme une extension de
la formation de voie aléatoire (RBF) qui utilise un codebook contenant Np > M vecteurs de
beamforming (pas nécessairement orthonormaux). Dans les paragraphes qui suivent, nous
adoptons une stratégie de précodage de forcage a zéro (ZF) sur la direction quantifiée du
canal disponible a la SB.

Une grande partie de ce travail se concentre sur la question suivante: "Quel type
d’information CQI scalaire doit étre communiqué & la SB afin de réaliser des performances
quasi-optimales?" Les résultats récents montrent que si la CQI scalaire contient des in-
formations uniquement sur la norme du canal, la croissance de débit est indépendante du
RSB moyen et du nombre d’utilisateurs actifs K [62,64]. Par conséquent, le systéme de-
vient limité par l'interférence pour RSB élevé, et ne parvient pas a atteindre la croissance
de débit optimale, méme lorsque le nombre d’utilisateurs va vers l'infini (pas de gain de
diversité multi-utilisateurs). Cela est d au fait qu’une estimation sur Uinterférence multi-
utilisateurs est nécessaire, et donc des connaissances supplémentaires sous forme d’erreur
de quantification du canal sont nécessaires pour atteindre les gains de multiplexage et de
diversité multi-utilisateurs.

Nos contributions principales peuvent étre résumées comme suit:

e Nous proposons plusieurs métriques scalaires de rétroaction basées sur des bornes de
Iinterférence multi-utilisateurs, qui résument 'information sur le gain et la direction
du canal, ainsi que sur lerreur de quantification. Ces métriques peuvent étre in-
terprétées comme des estimations du SINR recu, qui est généralement inconnu aux

utilisateurs servis puisqu’ils connaissent seulement leurs propres canaux.

e Nous appliquons ces métriques dans un systéme de beamforming linéaire de forgage a
zéro sur les directions quantifiées des canaux et de sélection des utilisateurs ‘greedy’.
Pour cela, nous avons prolongé I’algorithme d’ordonnancement ‘greedy’ de [11] pour
le cas de feedback limité. Cet algorithme a les avantages qu’il ne dépend pas des
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parameétres systéme a priori (comme Iorthogonalité entre les canaux quantifiés [62])
et permet de passer des transmissions multi-utilisateurs aux transmissions mono-
utilisateur.

e En utilisant le contexte de precoding ci-dessus, nous dérivons des bornes supérieures
de l'interférence multi-utilisateurs instantanée qui nous permettent de prévoir analy-
tiquement la pire interférence ainsi qu’une borne inférieure sur le SINR, d’un systéme

employant un forcage a zéro sur les directions quantifiées des canaux.

e Le débit du systéme est analysé et son optimalité asymptotique en termes de la crois-
sance de la capacité (c’est-a-dire M loglog K) est démontrée pour K — oco. Nous

dérivons également des bornes supérieures du débit-somme pour le régime a fort RSB.

e Nous proposons des métriques d’ordonnancement pour le changement de mode de
transmission de SDMA (multi-utilisateurs) & TDMA (mono-utilisateur), sur la base
d’une stratégie de rétroaction raffinée. Nous montrons que le mode mono-utilisateur
est préféré lorsque le RSB moyen augmente, alors que le mode multi-utilisateurs est
favorisé lorsque le nombre d’utilisateurs augmente.

Certains termes qui sont largement utilisés dans les sections suivantes sont:
e la direction du canal (canal normalisé): hy, = hy/ ||hy]|
e le canal quantifié: hy,
e lerreur de quantification: sin? ¢y, = sin?(Z(hy, hy))

e l'alignment du canal: cos 6y = ‘flkwk’

Conception de Feedback CQI

Dans la voie descendante d’un systéme SDMA avec plus d’utilisateurs actifs que d’ an-
tennes d’émission (K > M), la sélection des utilisateurs doit étre effectuée sur la base d’une
information du canal bien choisie et congue. Les décisions d’ordonnancement dépendent
des critéres d’optimisation pris en compte, par exemple la maximisation du débit du sys-
téme, la maximisation du débit utilisateur, I’équité (fairness), la minimisation des délais,
etc. Si la maximisation du débit-somme est considérée en tant que critére d’optimisation
afin d’approcher la capacité optimale, les utilisateurs choisis doivent avoir:

e des directions de canal mutuellement orthogonales
e de grands gains de canal

La séparation spatiale entre les utilisateurs permet a la SB de former des faisceaux non
interférents sans perte de puissance significative, alors que 'importance de la CQI est double:
elle est utilisée pour l'identification des utilisateurs avec des conditions de canal favorables et
elle indique le débit (ordre de codage et de modulation) dans lequel la SB peut transmettre
des données a un utilisateur particulier (adaptation du lien).

La conception de métriques de rétroaction présente un défi car I'information sur le SINR,
recu n’est, en principe, pas disponible & chaque utilisateur individuel, n’ayant que connais-
sance de leur propre canal. La valeur de SINR dépend, donc entre autres, du canal ainsi
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que du nombre d’autres utilisateurs simultanément servis. Comme la coopération entre les
utilisateurs n’est pas autorisée, le nombre d’utilisateurs simultanément servis et la puissance
disponible pour chacun d’entre eux sont généralement inconnus au récepteur.

Cependant, dans le cas de grand nombre d’utilisateurs, les utilisateurs ont la possibilité
d’estimer leur SINR, basés sur certaines simplifications et approximations. Ce feedback du
SINR estimé permet a 'ordonnanceur d’identifier les utilisateurs avec des normes du canal
élevées, ainsi qu’avec des petites erreurs de quantification. Dans les paragraphes suivants,
nous étudions le probléme de la conception du feedback de la qualité du canal. Notre objectif
est d’obtenir des métriques de rétroaction scalaires, vx, qui nous permettent d’exploiter la

diversité multi-utilisateurs et atteindre des performances quasi-optimales.
Bornes sur le SINR regu moyen

Métrique de feedback CQI I

Nous avons montré que, bien que les récepteurs n’aient pas connaissance des décisions
d’ordonnancement et donc des vecteurs de beamforming w;, des bornes (inférieures) simples
sur le SINR recu espéré peuvent étre obtenues. Motivés par cela, nous considérons que
chaque utilisateur peut calculer et renvoyer la métrique de feedback scalaire suivante

P ||hy || cos? ¢y,
P ||h || sin® ¢p, + M

V= (9.14)
proposée au méme temps dans [62,94,96,97].

Ce type de CQI encadre information sur le gain du canal ainsi que sur l’erreur de quan-
tification de CDI, sin? ¢5. La métrique ci-dessus résulte basée sur une borne supérieure
sur le SINR moyen recu, qui & son tour est calculé sur la valeur espérée de l'interférence
multi-utilisateurs & cause de la CSIT quantifiée et en utilisant une borne supérieure sur la
puissance du signal re¢u moyen. Cette métrique CQI peut étre interprétée comme une borne
supérieure du SINR recu sous 'hypothése que M utilisateurs seront exactement servis par
M faisceaux congus basés sur la CDI quantifiée. Nous devons remarquer que cette valeur
de CQI ne peut pas étre utilisée directement pour l'adaptation du lien. Le seul cas ou le
SINR recu est égal a celui prédit par (9.14) est lorsque les M vecteurs de beamforming a

I’émetteur sont parfaitement orthogonaux.

Borne inferieure du SINR recgu instantané

Dans la section précédente, nous avons étudié des bornes sur le SINR recu moyen et
identifié une métrique CQI efficace. Toutefois, d’un point de vue pratique, la métrique I
a la limitation qu’elle ne peut pas étre atteinte (il s’agit d’une borne supérieure), car les
vecteurs de beamforming ne sont pas en général parfaitement orthogonaux, en particulier
dans les réseaux avec un nombre d’utilisateurs modéré.

Par conséquent, bien que la métrique I puisse étre utile pour la sélection d’utilisateurs,
elle ne peut pas étre employée pour I'adaptation du lien. Si le systéme adapte le débit
du codage et de la modulation basé sur les valeurs 7{ (cf. eq. (9.14)), le lien va subir
d’importantes pertes car la métrique CQI I surestime le SINR recu. Pour contourner cela,
la SB doit demander du feedback additionnel par les utilisateurs sélectionnés afin d’effectuer
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lallocation du débit. Cette deuxiéme étape de feedback peut augmenter le débit de signal-
isation et des retards du protocole, et elle n’est pas du tout pratique dans des canaux qui
varient rapidement.

Afin d’éviter la nécessité de cette deuxiéme étape et de garantir des transmissions sans
erreurs et interruptions, nous devons trouver une métrique de rétroaction qui peut étre
utilisée efficacement & la fois pour la planification et ’allocation du débit. Pour cela, nous
proposons de renvoyer une borne inférieure sur le SINR, au lieu d’une borne supérieure. En
outre, nous dérivons des bornes sur le SINR instantané. Notre borne inférieure est basée
sur:

e une borne inférieure de la puissance du signal regu.

e une borne supérieure de 'interférence multi-utilisateurs actuelle.

Metrique de feedback CQI II
Motivés par la borne inférieure du SINR, instantané ci-dessus (voir Théoréme 5.2), nous

proposons que chaque utilisateur renvoie & la BS la métrique scalaire suivante:

LBx
I Sk

e = =UBz

— Ok (9.15)
I, "+ M

ol ‘x’ peut étre remplacé par 1, 2 ou 3 pour le signal regu (LB) et 1 ou 2 pour U'interférence
(voir chapitre 5 pour plus de détails). Pour nos simulations, nous considérons la métrique

suivante: ,
SEBS e i (cos é, — V)2

II
.7 M PP T + M

Pour calculer (9.16), le récepteur doit connaitre les paramétres d’orthogonalité € et & et
supposer que exactement M = M utilisateurs seront servis.

La différence fondamentale entre (9.14) et (9.16) est U’estimation de l'interférence multi-
utilisateurs et de la puissance du signal recu. Dans (9.14) linterférence est remplacée par
une borne supérieure sur sa valeur espérée, c’est-a-dire E {Zjes\{k} L b |f1kwj|2} <
% |h||? sin? ¢, alors que pour la CQI métrique II une borne supérieure sur Uinterférence
multi-utilisateurs instantanée (cf. eq. (5.21)) est utilisée.

Transition SDMA /TDMA avec feedback limité

Dans les méthodes précédentes, nous avons essayé de dériver des métriques CQI scalaires
pour transmissions multi-utilisateur efficaces. Une borne supérieure du SINR espéré ainsi
qu’'une borne inférieure du SINR regu ont été proposées comme des métriques qui nous
permettent de bénéficier du gain de la diversité multi-utilisateurs. Une hypothése sous-
jacente commune & la fois pour 7,5 et v,ﬁl est que M = M utilisateurs sont nécessairement,
servis/choisis.

Néanmoins, cela peut étre une inconvenance majeure car dans les canaux de diffu-
sion MIMO avec CSIT partielle, il n’est pas garanti que la transmission multi-utilisateurs
(SDMA) offre des performances toujours supérieures a la transmission mono-utilisateur
(TDMA). 1l existe donc plusieurs contextes dans lesquels il est bénéfique d’un point de
vue capacité de communiquer avec M < M utilisateurs (en arrivant jusqu’a TDMA), en
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particulier dans le régime de haut RSB et/ou de faible nombre des utilisateurs. En fait,
Pimprécision sur le calcul de linterférence multi-utilisateurs (par le manque de connaissance
parfaite du canal) est préjudiciable dans le régime a fort RSB, dans lequel le systéme devient
limité par linterférence et le débit-somme sature. Motivés par I'argument ci-dessus, nous
nous intéressons ici a trouver une stratégie de rétroaction qui offre la flexibilité souhaitée
entre SDMA et TDMA, pour atteindre une croissance de capacité linéaire pour tout régime
de RSB.

Stratégie de feedback CQI pour transition SDMA /TDMA adaptative

Afin d’obtenir plus de flexibilité sur I’estimation de 'interférence multi-utilisateurs et, par
conséquent, du SINR pour diverses valeurs de M, une autre forme de feedback CQI doit étre
considérée. Dans [90] nous avons déja présenté I'idée de la décomposition du feedback CQI
en deux des valeurs scalaires, qui a été davantage exploitée dans [94]. En plus de 'indice du
codevecteur (CDI), nous proposons que chaque utilisateur envoie:

e la norme du canal 7,(;) = [|hg]|

e le carré de lalignement 7,(@2) = cos? ¢,

La décomposition de la CQI en deux scalaires permet a la SB de calculer une estimation
du SINR plus précise pour tout ensemble d’utilisateurs servis & cardinaliteé M < M. Cela
est di a sa capacité de calculer l'interférence multi-utilisateurs de facon plus précise ayant
la CQI sous forme de gain du canal et de ’erreur de quantification.

Sous une contrainte de débit de feedback fixe et fini, chaque valeur scalaire est quantifiée
avec une précision réduite par rapport au cas d’une seule métrique CQI scalaire (par exemple
métriques I et IT). L'effet de quantification de CQI est étudié par des simulations, ot nous
voyons que la réduction de la précision des deux CQIs scalaires ne réduit pas le débit somme
par rapport au cas d'un CQI scalaire.

Canaux de diffusion MIMO avec une contrainte finie sur le débit-somme de
feedback

Nous imposons également une contrainte sur le débit total de la voie de rétroaction,
ce qui implique que chaque utilisateur peut seulement utiliser By, octets pour envoyer la
connaissance du canal CDI et CQI. Chaque récepteur k a a sa disposition seulement un
nombre limité d’octets de rétroaction By, pour la quantification du vecteur du canal et le
feedback de la CSIT quantifiée a la SB. De ce nombre total d’octets, Bp octets sont utilisés
pour représenter la CDI h = h/ ||h|| basée sur un codebook prédéterminé, et By octets sont
utilisés pour la quantification scalaire de la valeur de la CQI. Ce modéle est décrit dans la
Fig. 9.9.

CSIT— CDI cal

Bt = Bo + Ba

Figure 9.9: Modele de voie de rétroaction & débit-somme fini.
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Nous essayons de révéler ici 'interaction entre K, le RSB et le débit de la voie de
rétroaction Bp et Bg, en vue d’exploiter les degrés de liberté qui existent dans la voie
descendante du MIMO multi-utilisateurs, c’est-a-dire la diversité multi-utilisateurs et le
multiplexage spatial. Nous cherchons & caractériser le compromis qui est la conséquence
d’une contrainte finie sur le débit total de feedback par utilisateur (Bio), en identifiant
I’allocation optimale du débit de rétroaction pour atteindre en méme temps le gain de
la diversité multi-utilisateurs et celui du multiplexage spatial. En bref, nous essayons de
quantifier le nombre d’octets que nous devons consacrer pour la CQI et la CDI.

Notre objectif est d’allouer dynamiquement les octets de feedback CDI et CQI (voir la
Fig. 9.9) d’un montant total d’octets de rétroaction By, de sorte & ce que la capacité de
la voie descendante MIMO R(Bp, Bg) soit maximisée. Cela peut étre formulé comme suit:

max R(Bp, Bg)

Bp,Bq (9.17)
s.t. BD + BQ = Btot

Réduction du feedback avec CSIT basée sur le rang

Dans ce chapitre, nous proposons une nouvelle représentation de l'information du canal
utilisée pour la sélection d’utilisateurs qui permet de diminuer davantage le débit de la
voie de rétroaction. Ce type de feedback, appelé ‘CSIT basée sur le rang’, consiste d’une
valeur entiére qui représente le rang de la CSIT instantanée parmi un ensemble de W
mesures de CSIT antérieures. Cette représentation permet a 'ordonnanceur de sélectionner
les utilisateurs qui se trouvent au point culminant (quantile) de leurs propres distributions
des canaux, indépendamment de la distribution des autres utilisateurs. Lorsque W est
suffisamment grand, les utilisateurs sélectionnés sont également ceux qui ont les conditions
du canal les plus favorables. En plus, ce type de rétroaction étant sous forme numérique
des quantifications scalaires simples et des compressions significatives peuvent étre réalisées.
Une propriété intéressante de cette méthode est que I’équité temporelle est rétablie dans
des réseaux hétérogenes, c’est-a-dire dans les systémes dans lesquels les utilisateurs n’ont
pas des canaux identiquement distribués et donc dont les terminaux mobiles ont différentes
valeurs de RSBs moyens.

Pour montrer les mérites de notre technique, nous adoptons un schéma de RBF et nous
supposons qu’a l'instant ¢, chaque utilisateur mesure sa CQI & chacun des B faisceaux
aléatoires. En plus de la valeur instantanée de CQI pour chaque faisceau m, {yg,m (t)}izl,
chaque utilisateur garde en mémoire un certain nombre de mesures de CQI antérieures,

Wi.m, pendant une fenétre d’observation de longueur W, i.e.

Wk:,m = {’Yk,m(t - 1)77k,m(t - 2)7 cee 77k,m(t -w + 1)}

Chaque utilisateur, disons le k-éme, calcule le rang (ordre) 7y, (t) € {1,...,W + 1} de sa
métrique de CQI vy, (¢) parmi les W valeurs du passé contenues dans I’ensemble W, .
Par exemple, si v m(t) est la troisiéme plus grande valeur parmi les W valeurs mesurées,
riem(t) = 3. La valeur de rang est donnée comme

W—1 w-1
Tk,m(t) =1+ Z 1 {Vk,m(t) < F)/k,m(t - ’LU)} + Z 1 {Vk,m(t) = FYk,m(t - ’LU)} Zw (918)
w=1

w=1
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Z,, est une variable aléatoire i.i.d. dans {0,1} avec Pr{Z,, = 0} = 1/2, ce qui correspond
au cas ot la CQI instantanée est égale a une ou plusieurs valeurs du passé. Dans ce cas la
une valeur de rang est choisie aléatoirement avec probabilité égale.

Les idées-clé de notre approche sont les suivantes:

1) chaque utilisateur choisit la valeur de rang minimale, c’est-a-dire,

r(t) = min BTk,m(t) (9.19)

m=1,...,
2) chaque utilisateur, au lieu de renvoyer directement sa plus grande valeur de CQI, envoie
une valeur quantifiée 7 (t) de Pentier r4(¢), ainsi que l'indice du faisceau m auquel cette

valeur de rang est minimisée, i.e.
m(t) = Q(rr(t)) (9.20)

ot Q(-) représente un quantificateur 4 N = 28 niveaux. De ce fait, la charge de feedback
par utilisateur est égale a [log, N octets pour le rang et [log, M octets pour l'indice du
faisceau préféré.

Au niveau de ’émetteur, ordonnanceur assigne chaque faisceau m a l'utilisateur &,

disposant de la valeur de rang la plus petite,
kX (t) = in 7 (t 21
m (1) arg 1min Pr(t) (9.21)

Nous analysons la performance du débit systéme de la voie descendante d’un systéme MISO
avec des faisceaux orthogonaux aléatoires, pour lequel les utilisateurs sont sélectionnés en
fonction du ‘CSIT feedback basé sur le rang’. En outre, nous donnons des expressions an-
alytiques pour le débit lorsque W est fini. Nous quantifions ’effet d’une valeur W finie,
ainsi que l'erreur introduite dans les décisions d’ordonnancement par rapport au cas op-
timal W — oo. Le débit somme moyen R d’un systéme avec B faisceaux et une fenétre

d’observation W est donné par

R = mzi (/000(1 — (Fx,, (2)")dz — wi (WV; w>K /Ooo Fw,m(x)dx> (9.22)

W—w w
ou Fy m(x) = (VJJ/) (FXk;*n (;v)) (1 - Fx,. (;v)) . Dans les réseaux hétérogenes, la CSIT

basée sur le rang a un mérite supplémentaire car elle offre de ’équité temporelle entre les

utilisateurs, c’est-a-dire la probabilité qu’un certain utilisateur soit choisi est égale a 1/K,
indépendamment des distributions des autres utilisateurs et de sa propre valeur de RSB
moyen.

Supposons que ¢y, est la fraction de temps assignée a l'utilisateur k, avec Zszl wr = 1.
Une stratégie d’ordonnancement basée sur la CCDF est donnée par:

* _ 1/¢k
b, = ang mas (1~ P, (1) (9.23)

En utilisant un ordonnanceur de minimum CCDF, l'utilisateur & peut avoir accés au canal
avec une probabilité . Si Ay, est I’événement que I'utilisateur k est sélectionné pour le
faisceau m et tous les utilisateurs ont la méme fraction de temps, c’est-a-dire ¢ = 1/K,

nous avons

Pr{Akﬁm}

/ Pr{Am|Xkm = 2} fx, ,, (x)dx
0

1-K

= —/ (1= Fx, ) © dFx, @) =1/K (9.24)
0
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La probabilité que le k-éme utilisateur soit sélectionné Pr { Ay ,, = 1} ne dépend pas de la
distribution des autres utilisateurs, méme si les canaux des utilisateurs sont indépendants,
mais pas nécessairement identiquement distribués. L’indépendance de la probabilité de
sélection peut étre déduite du fait que le rang de la CSIT de chaque utilisateur suit une
distribution uniforme indépendamment de ’évanouissement des autres utilisateurs. Dans
la Figure 9.10 nous évaluons la performance de la stratégie d’ordonnancement basée sur
le rang. La valeur de RSB pour le systéme RBF conventionnel est quantifiée avec B = 5
octets en utilisant ’algorithme optimal Max-Lloyd, alors que la CQI basée sur le rang est
quantifiée en utilisant B = 3 octets. Pour différentes valeurs de W, la représentation de
CSIT proposeée est capable d’identifier correctement les utilisateurs avec le plus haut débit
instantané, ce qui fait que le gain de la diversité multi-utilisateurs est exploité, méme avec
une réduction du feedback de 40%. L’équité temporelle et la probabilité d’accés égalisée
sont montrées dans la figure 9.11.
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Figure 9.10: Débit moyen en fonction du nombre d’utilisateurs pour RBF avec un faisceau,
M =2 antennes, RSB = 10 dB et différentes valeurs de longueur de fenétre W.

Les Aspects Systémes

Les techniques MIMO sont actuellement envisagées dans la plupart des activités de nor-
malisation des réseaux sans fil de la nouvelle génération, y compris 3GPP-LTE, HSDPA,
IEEE 802.16e (WiMAX) et IEEE 802.11n. Dans ce chapitre, nous examinons certaines ques-
tions et défis de conception systémique et d’implémentation qui se posent dans le monde réel.
Nous présentons les principales difficultés pratiques qui doivent étre considérées et affron-
tées lors du déploiement de techniques MIMO comme celles proposées dans les chapitres 3-6.
Dans la pratique, une attention particuliére doit étre accordée a I’acquisition et & la réduction



180 Chapter 9 Résumé en frangais

0.35 T T T T T T

Il RBF w/ Ranking-based User Selection
Il RBF w/ SINR-based User Selection

0.3+ J
> 0250 4
£
©
Qo
[=}
s
=) 0.2 i
£
5
o
[}
=
&
< 0.15f 4
(7]
N
3
13
(=}
Z  oaf 4

0.05 B

User index

Figure 9.11: Probabilité d’accés normalisée vs. 'indice d’utilisateur pour le RBF avec M =4

antennes et X = 10 utilisateurs.

de la voie de rétroaction (feedback), ce qui devient impératif dans les systémes a large bande
(OFDM) ou de communication & haute mobilité (comme dans 3GPP-LTE et WiMAX). Les
aspects d’équité sont également étudiés et une généralisation de la stratégie d’équité pro-
portionnelle (PFS - proportional fair scheduling) pour les contextes multi-utilisateurs est
proposée.

L’acquisition de feedback au récepteur est généralement effectuée par des séquences de
signaux pilotes, émis par I’émetteur, qui permettent aux terminaux mobiles d’effectuer une
estimation du canal. Il est également possible d’utiliser des méthodes d’estimation aveugle
qui exploitent la connaissance de la structure du signal transmis ou du canal. L’acquisition de
feedback a l’émetteur peut étre effectuée de deux sortes: soit implicitement (en exploitant
la réciprocité), soit explicitement en se fondant sur des mesures du canal au niveau du
récepteur. En ce qui concerne la notion d’équité, elle a été largement étudiée dans la
littérature de ’allocation des ressources pour les réseaux informatiques et économiques, mais
il n’existe pas de définition générale et unique. On peut trouver au moins trois définitions

principales de I’équité:
e équité max-min
e équité proportionnelle
e équité pondérée

Parmi les trois, la stratégie d’ordonnanceur d’équité proportionnelle (PFS) est la plus répan-
due. Elle vise & maintenir I’équité en offrant un partage équitable du temps de transmission,

proportionnel au débit utilisateur re¢cu durant une fenétre de longueur fixe. L’ ordonnanceur
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sélectionne a chaque créneau d’ordonnancement ['utilisateur k£* avec:

. Ri(t)
= arg max —
1<k<K Ry(t)

(9.25)

parmi tous les utilisateurs actifs K, ou Ry(t) est le débit demandé par l'utilisateur k a
'instant ¢ et Ry (t) est le débit moyen observé pendant une fenétre de longueur ¢.. Pour la
mise & jour du débit moyen un filtre exponentiel est utilisé:

5 _ ) A= DRe®) + £ Re(t), b=k
R’“(Hl)_{ (1 - L)Ru (o), k# b

Multiuser Proportional Fair Scheduler (M-PFS)

(9.26)

PFS a été initialement proposé pour des systémes qui ne servent qu’un seul utilisateur &
chaque fenétre d’ordonnancement. Nous avons généralisé cette régle de PFS pour des réseaux
multi-utilisateurs, tels que les systémes SDMA, les systémes multi-porteurs (par exemple,
OFDMA), et les réseaux multicellulaires. La régle d’ordonnancement multi-utilisateurs
d’équité proportionnelle (M-PFS) est que les utilisateurs sont choisis tels que:

. Ris(t)
e 10 =)

ott Ry s(t) est le débit d’utilisateur k£ € S conditionné au groupe d’utilisateurs S.

(9.27)

Conclusions

Dans cette thése, nous avons mis I’ accent sur la problématique de I’ allocation des
ressources et optimisation des performances pour des systémes multi-antennes, multi-
utilisateurs avec connaissance du canal incompléte. Le leitmotiv de cette thése comprend
des techniques de rétroaction limitée qui permettent & I’émetteur de bien vivre avec une
connaissance de canal partielle en atteignant paralléelement une fraction significative de la
capacité optimale.

Une premiére idée-clé est basée sur la division de la voie de rétroaction entre 1’ ordon-
nancement et la conception de faisceaux, afin de bénéficier du fait que le nombre des util-
isateurs a servir a chaque instant est beaucoup moins élevé que le nombre d’utilisateurs qui
demandent des paquets de données pendant une certaine fenétre d’ordonnancement donnée.
Nous avons introduit une approche a deux étapes qui indique que la selection des utilisa-
teurs peut étre accomplie avec une estimation de canal moins raffinée, alors que I’étape pour
servir les utilisateurs sélectionnés est mieux accomplie avec une connaissance du canal plus
précise. Dans un premier temps, le schéma de formation des faisceaux aléatoires est exploité
afin d’identifier les utilisateurs spatialement séparables et en conditions de canal favorables.
Dans un deuxiéme temps, les faisceaux aléatoires de ces utilisateurs sont raffinés basé sur le
feedback disponible afin d’offrir de meilleures performances et robustesse. Plusieurs straté-
gies de raffinement successif, y compris le controéle de puissance et la sélection de faisceaux,
sont proposées, tout en offrant un compromis entre la réduction de feedback et la capacité
atteinte. Le but commun de ces schémas est de rétablir la robustesse de RBF a I’égard des
réseaux creux (c’est a dire, avec un nombre d’utilisateurs actifs faible & modéré), au prix

d’une augmentation modérée de la complexité.
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En outre, nous avons étudié le probléme de sélection d’utilisateurs et du précodage avec
CSIT partielle dans des scénarios de canaux plus réalistes. Nous avons montré que certaines
informations utiles, cachées dans la statistique du canal de deuxiéme ordre, peuvent étre
exploitées par 'ordonnanceur d’un systéme SDMA.

Dans les canaux temporellement corrélés, la redondance existante, due & la structure
du canal, est exploitée afin de raffiner au fil du temps les faisceaux aléatoires de RBF
successivement. Une technique de formation de faisceaux opportuniste, nommeée ‘memory-
based opportunistic beamforming’, a été proposée et nous avons démontré comment un tel
systéme nous permet de combler le fossé entre la capacité de RBF et la capacité optimale de
beamforming unitaire avec CSIT parfaite. 1l est également démontré que notre algorithme
approche la capacité optimale quand la cohérence du canal est suffisamment large. Notre
approche trouve des applications pour des systémes & faible mobilité (c’est-a-dire pour des
canaux multi-antennes avec un étalement de Doppler limité).

Dans les canaux MIMO spatialement corrélés, la connaissance du canal statistique a
long terme révele des informations importantes sur la séparabilité spatiale moyenne des
utilisateurs, ce qui est essentiel & une bonne conception des faisceaux. Nous avons proposé
plusieurs approches qui mettent en évidence le mérite de combiner 'information statistique
et l'information du canal instantanée. Un schéma d’estimation du canal & maximum de
vraisemblance (MV) est établi afin de combiner efficacement la CSIT statistique avec une
CSIT instantanée de débit faible. En particulier, nous avons examiné deux types de CQI
scalaire:

e la norme du canal
e information sur le gain de faisceau

Un algorithme de selection d’utilisateur ‘avare’ (greedy) ainsi qu’une technique de eigen-
beamforming multi-utilisateurs & faible complexité ont été proposées et évaluées. Notre
approche est basée sur des nouvelles bornes d’interférence multi-utilisateurs dérivées spé-
cialement pour notre contexte. Il a été démontré que, dans les systémes avec étalement
angulaire & ’émetteur raisonnablement limité, il suffit d’envoyer un feedback scalaire et de
le combiner avec une CSIT statistique & long terme pour atteindre un débit proche de la
capacité optimale.

Des stratégies de rétroaction limitée en utilisant des tableaux de codage (codebooks) de
quantification vectorielle sont aussi étudiées dans cette thése. En particulier, nous avons
adressé le probléme de la conception des métriques CQI qui maximisent le débit du sys-
téme. Nous avons identifié plusieurs métriques de feedback scalaires qui sont fonction de
parameétres comme le gain du canal, la direction du canal et 'erreur de quantification. Ces
métriques peuvent étre interprétées comme une estimation fiable du SINR regu. Il a aussi
été démontré qu'une telle CQI scalaire, combinée avec une CDI, un forcage a zéro, et un
algorithme d’ordonnancement ‘avare’, peut atteindre une part importante de la capacité
optimale en exploitant les gains de la diversité multi-utilisateurs. Une limitation majeure
de ces systémes, comme tous les systémes SDMA basés sur une CSIT quantifiée, est qu’ils
deviennent dominés par Uinterférence, c’est-a-dire que leur gain de multiplexage est réduit
a haut RSB (si le débit de la voie de rétroaction reste fixe). Motivés par le fait que la capac-
ité d'un systéme SDMA n’est pas toujours inférieure & celle d’un systéme TDMA lorsque
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I’émetteur repose sur une CSIT incompléte, nous avons démontré 'importance et lintérét
des algorithmes adaptatifs de transition entre SDMA et TDMA. Nous avons présenté des
métriques d’ordonnancement, adaptées a identifier cette transition SDMA /TDMA, tout en
proposant des méthodes prometteuses pour garantir une croissance de débit linéaire pour
toutes les valeurs de RSB.

En outre, nous avons examiné un systéme dans lequel chaque utilisateur posséde une
contrainte sur le débit total de sa voie de rétroaction. Un compromis entre la diversité multi-
utilisateurs et le multiplexage spatial a été identifié, car les octets de feedback disponibles
doivent étre partagés entre la CDI et la CQI. Le probléme d’optimisation de I'allocation des
octets de la voie de retour a été étudié et une approche a faible complexité a été proposée.
Notre formulation révéle une intéressante interaction entre le nombre d’utilisateurs actifs,
le RSB moyen et le débit de feedback.

Enfin, une représentation de 'information du canal & bas débit, dénommée ‘rétroaction
basée sur rang’ (ranking-based feedback), a été identifiée comme un moyen performant de
compression de la CSIT reportée. Avec cette approche, chaque utilisateur calcule et envoie
a l’émetteur la valeur entiére du rang de CSIT instantanée parmi un ensemble de mesures
de CSIT antérieures. Notre proposition donne a ’ordonnanceur la possibilité d’identifier les
utilisateurs qui sont instantanément sur le sommet le plus élevé de leur propre distribution de
canal, indépendamment de la distribution des autres utilisateurs. Cette méthode présente
un avantage supplémentaire dans les réseaux & canaux non symétriques. Elle permet de
rétablir I’équité temporelle car elle égalise la probabilité qu’un utilisateur sera sélectionné,

indépendamment de la valeur absolue de son RSB moyen.
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