V. References-]-g, F. Markl, A. Lieb, . J. Chem2-]-a, M. D. Ashe et al., Nouveaux ligands mixtes phosphore soufre : coordination, catalyse et étude théorique, Ecole Polytechnique (Palaiseau), 2005. [15] A. D. Becke 3098. [16] J. P. Perdew, Phys. Rev, pp.7596-207, 1264.

N. Palucki, P. J. Yasuda, A. Reider, D. L. Chem, M. Hughes et al., Nouveaux ligands phospholes : coordination, catalyse et étude théorique, [90] H. M. Senn, P. E. Blochl, A. Togni. [91] A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig, pp.2762-887, 1121.

S. I. Gorelsky96-]-s and . Gorelsky, AOMIX: Program for Molecular Orbital Analysis, J. Organomet. Chem. Angew. Chem.-Int. Edit. J. Am. Chem. Soc. Z. Ciunik, J. J. Ziolkowski Organometallics, vol.635, issue.21, pp.343-3037, 1981.

B. Akermark, B. Krakenberger, S. Hansson, and A. Vitagliano, Ligand effects and nucleophilic addition to (.eta.3-allyl)palladium complexes. A carbon-13 NMR study, Organometallics, vol.6, issue.3, p.620, 1987.
DOI : 10.1021/om00146a031

A. Dedieu, Theoretical Studies in Palladium and Platinum Molecular Chemistry, Chemical Reviews, vol.100, issue.2, p.543, 2000.
DOI : 10.1021/cr980407a

V. , R. M. Utsunomiya, Y. Miyamoto, J. Ipposhi, T. Ohshima et al., Phosphorus and Carbon NMR of Transition Metal Phosphine Complexes, Organometallics Organometallics J. Am. Chem. Soc. Helv. Chim. Acta J. Chem. Phys. Phys. Rev. B J. Chem. Phys. Chem. Phys. Lett. Chem. Phys. J. Chem. Phys. Chem. Phys. Lett. Theor. Chem. Acc. J. Am. Chem. Soc. J. Am. Chem. Soc. Org. Lett. Inorg. Chem. Eur. J. Inorg. Chem, vol.914, issue.6, pp.3371-117, 1698.

C. Amatore, S. Gamez, and A. Jutand, Rate and Mechanism of the Reversible Formation of Cationic (??3-Allyl)- palladium Complexes in the Oxidative Addition of Allylic Acetate to Palladium(0) Complexes Ligated by Diphosphanes, Chemistry, vol.18, issue.6, pp.1273-1280, 2001.
DOI : 10.1002/1521-3765(20010316)7:6<1273::AID-CHEM1273>3.0.CO;2-7

C. Amatore, A. A. Bahsoun, A. Jutand, L. Mensah, G. Meyer et al., )-PhCHCH-CH(Ph)-OAc with Palladium(0) Complexes in Allylic Substitutions, Organometallics, vol.24, issue.7, pp.1569-1577, 2005.
DOI : 10.1021/om049420d

O. Piechaczyk, C. Thoumazet, Y. Jean, and P. Le-floch, DFT Study on the Palladium-Catalyzed Allylation of Primary Amines by Allylic Alcohol, Journal of the American Chemical Society, vol.128, issue.44, pp.14306-14317, 2006.
DOI : 10.1021/ja0621997

T. Cantat, E. Genin, C. Giroud, G. Meyer, and A. Jutand, Structural and kinetic effects of chloride ions in the palladium-catalyzed allylic substitutions, Journal of Organometallic Chemistry, vol.687, issue.2, pp.365-376, 2003.
DOI : 10.1016/S0022-328X(03)00791-5

S. Sakaki, M. Nishikawa, and A. Ohyoshi, A palladium-catalyzed reaction of a .pi.-allyl ligand with a nucleophile. An MO study about a feature of the reaction and a ligand effect on the reactivity, Journal of the American Chemical Society, vol.102, issue.12, pp.4062-4069, 1980.
DOI : 10.1021/ja00532a014

F. Ozawa, T. Ishiyama, S. Yamamoto, S. Kawagishi, H. Murakami et al., Catalytic C???O Bond Cleavage of Allylic Alcohols Using Diphosphinidenecyclobutene-Coordinated Palladium Complexes. A Mechanistic Study, Organometallics, vol.23, issue.8, pp.1698-1707, 2004.
DOI : 10.1021/om030682+

S. Ramdeehul, L. Barloy, J. A. Osborn, A. Decian, and J. Fischer, -allyl)palladium(II) Complexes, Organometallics, vol.15, issue.26, pp.5442-5444, 1996.
DOI : 10.1021/om9605894

M. Kollmar and G. Helmchen, -3,3-Diphenylallyl)(phosphinooxazoline)palladium Complex, Organometallics, vol.21, issue.22, pp.4771-4775, 2002.
DOI : 10.1021/om020323z

URL : https://hal.archives-ouvertes.fr/hal-01321648

G. Consiglio and R. M. Waymouth, Enantioselective homogeneous catalysis involving transition-metal-allyl intermediates, Chemical Reviews, vol.89, issue.1, pp.257-276, 1989.
DOI : 10.1021/cr00091a007

H. Nakamura, M. Bao, and Y. Yamamoto, The Fate of Bis(??3-allyl)palladium Complexes in the Presence of Aldehydes (or Imines) and Allylic Chlorides: Stille Coupling versus Allylation of Aldehydes (or Imines), Angewandte Chemie International Edition, vol.107, issue.17, p.3208, 2001.
DOI : 10.1002/1521-3773(20010903)40:17<3208::AID-ANIE3208>3.0.CO;2-U

K. J. Szabo, Umpolung of the Allylpalladium Reactivity: Mechanism and Regioselectivity of the Electrophilic Attack on Bis-Allylpalladium Complexes Formed in Palladium-Catalyzed Transformations, Chemistry, vol.6, issue.23, pp.4413-4421, 2000.
DOI : 10.1002/1521-3765(20001201)6:23<4413::AID-CHEM4413>3.3.CO;2-I

O. A. Wallner and K. J. Szabo, Palladium-Catalyzed Electrophilic Substitution of Allyl Chlorides and Acetates via Bis-allylpalladium Intermediates, The Journal of Organic Chemistry, vol.68, issue.7, pp.2934-2943, 2003.
DOI : 10.1021/jo026767m

M. Garcia-iglesias, E. Bunuel, and D. J. Cardenas, -Allyl)-palladium Complexes as Feasible Intermediates in Catalyzed Reactions, Organometallics, vol.25, issue.15, pp.3611-3618, 2006.
DOI : 10.1021/om060199+

URL : https://hal.archives-ouvertes.fr/hal-00543145

F. Pichierri and Y. Yamamoto, Mechanism and Chemoselectivity of the Pd(II)-Catalyzed Allylation of Aldehydes:?? A Density Functional Theory Study, The Journal of Organic Chemistry, vol.72, issue.3, pp.861-869, 2007.
DOI : 10.1021/jo061985r

N. Solin, J. Kjellgren, and K. J. Szabo, Palladium-Catalyzed Electrophilic Substitution via Monoallylpalladium Intermediates, Angewandte Chemie International Edition, vol.42, issue.31, pp.3656-3658, 2003.
DOI : 10.1002/anie.200351477

N. Solin, J. Kjellgren, and K. J. Szabo, -Allyl Palladium Intermediates, Journal of the American Chemical Society, vol.126, issue.22, pp.7026-7033, 2004.
DOI : 10.1021/ja049357j

URL : https://hal.archives-ouvertes.fr/hal-00534925

H. Nakamura, H. Iwama, and Y. Yamamoto, Palladium- and Platinum-Catalyzed Addition of Aldehydes and Imines with Allylstannanes. Chemoselective Allylation of Imines in the Presence of Aldehydes, Journal of the American Chemical Society, vol.118, issue.28, pp.6641-6647, 1996.
DOI : 10.1021/ja9608858

Y. Yamamoto and N. Asao, Selective reactions using allylic metals, Chemical Reviews, vol.93, issue.6, pp.2207-2293, 1993.
DOI : 10.1021/cr00022a010

N. Asao, T. Asano, and Y. Yamamoto, Do More Electrophilic Aldehydes/Ketones Exhibit Higher Reactivity toward Nucleophiles in the Presence of Lewis Acids?, Angewandte Chemie International Edition, vol.13, issue.17, p.3206, 2001.
DOI : 10.1002/1521-3773(20010903)40:17<3206::AID-ANIE3206>3.0.CO;2-5

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.464913

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, pp.13244-13249, 1992.
DOI : 10.1103/PhysRevB.45.13244

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, The Journal of Chemical Physics, vol.82, issue.1, pp.299-310, 1985.
DOI : 10.1063/1.448975

S. Miertus, E. Scrocco, and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chemical Physics, vol.55, issue.1, pp.117-129, 1981.
DOI : 10.1016/0301-0104(81)85090-2

M. Cossi, G. Scalmani, N. Rega, and V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, The Journal of Chemical Physics, vol.117, issue.1, pp.43-54, 2002.
DOI : 10.1063/1.1480445

V. Barone, R. Improta, and N. Rega, Theoretical Chemistry Accounts, pp.2-6, 2004.

A. A. Braga, G. Ujaque, and F. Maseras, A DFT Study of the Full Catalytic Cycle of the Suzuki???Miyaura Cross-Coupling on a Model System, Organometallics, vol.25, issue.15, pp.3647-3658, 2006.
DOI : 10.1021/om060380i

A. Suzuki, Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995???1998, Journal of Organometallic Chemistry, vol.576, issue.1-2, pp.147-168, 1999.
DOI : 10.1016/S0022-328X(98)01055-9

A. Suzuki, Cross-coupling reactions via organoboranes, Journal of Organometallic Chemistry, vol.653, issue.1-2, pp.83-90, 2002.
DOI : 10.1016/S0022-328X(02)01269-X

N. Miyaura and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chemical Reviews, vol.95, issue.7, pp.2457-2483, 1995.
DOI : 10.1021/cr00039a007

J. A. Casares, P. Espinet, and G. Salas, 14-Electron T-Shaped [PdRXL] Complexes: Evidence or Illusion? Mechanistic Consequences for the Stille Reaction and Related Processes, Chemistry - A European Journal, vol.8, issue.21, pp.4843-4853, 2002.
DOI : 10.1002/1521-3765(20021104)8:21<4843::AID-CHEM4843>3.0.CO;2-I

W. D. Cotter, L. Barbour, K. L. Mcnamara, R. Hechter, and R. J. Lachicotte, Thermodynamics and Mechanism of the Reversible Tin-to-Palladium Transmetalation of the Furyl Group, Journal of the American Chemical Society, vol.120, issue.42, pp.11016-11017, 1998.
DOI : 10.1021/ja980901w

A. Nova, G. Ujaque, F. Maseras, A. Lledos, and P. Espinet, A Critical Analysis of the Cyclic and Open Alternatives of the Transmetalation Step in the Stille Cross-Coupling Reaction, Journal of the American Chemical Society, vol.128, issue.45, pp.14571-14578, 2006.
DOI : 10.1021/ja0635736

P. Nilsson, G. Puxty, and O. F. Wendt, Reaction Mechanism of Transmetalation between Tetraorganostannanes and Platinum(II) Aryltriflate Complexes. Mechanistic Model for Stille Couplings, Organometallics, vol.25, issue.5, pp.1285-1292, 2006.
DOI : 10.1021/om051021a

A. Ricci, F. Angelucci, M. Bassetti, and C. Lo-sterzo, Mechanism of the Palladium-Catalyzed Metal???Carbon Bond Formation. A Dual Pathway for the Transmetalation Step, Journal of the American Chemical Society, vol.124, issue.6, pp.1060-1071, 2002.
DOI : 10.1021/ja011644p

S. E. Denmark and J. P. Fu, Catalytic Enantioselective Addition of Allylic Organometallic Reagents to Aldehydes and Ketones, Chemical Reviews, vol.103, issue.8, pp.2763-2793, 2003.
DOI : 10.1021/cr020050h

A. Yanagisawa, H. Nakashima, A. Ishiba, and H. Yamamoto, Catalytic Asymmetric Allylation of Aldehydes Using a Chiral Silver(I) Complex, Journal of the American Chemical Society, vol.118, issue.19, pp.4723-4724, 1996.
DOI : 10.1021/ja9603315

P. G. Cozzi, P. Orioli, E. Tagliavini, and A. Umanironchi, Enantioselective allylation of aldehydes promoted by chiral zinc bis(oxazoline) complexes, Tetrahedron Letters, vol.38, issue.1, pp.145-148, 1997.
DOI : 10.1016/S0040-4039(96)02238-1

H. L. Kwong, K. M. Lau, W. S. Lee, and W. T. Wong, Chiral zinc(II) bipyridine complex. Crystal structure and catalytic activity in asymmetric allylation reaction, New Journal of Chemistry, vol.23, issue.6, pp.629-632, 1999.
DOI : 10.1039/a902177i

P. Bedeschi, S. Casolari, A. L. Costa, E. Tagliavini, and A. Umanironchi, Catalytic asymmetric synthesis promoted by a chiral zirconate: Highly enantioselective allylation of aldehydes, Tetrahedron Letters, vol.36, issue.43, pp.7897-7900, 1995.
DOI : 10.1016/0040-4039(95)01627-T

M. Kurosu and M. Lorca, Catalytic asymmetric allylations of achiral and chiral aldehydes via BINOL???Zr complex, Tetrahedron Letters, vol.43, issue.10, pp.1765-1769, 2002.
DOI : 10.1016/S0040-4039(02)00139-9

H. Hanawa, S. Kii, N. Asao, and K. Maruoka, Bis-zirconium and bis-hafnium catalysts for the strong activation of carbonyl substrates, Tetrahedron Letters, vol.41, issue.29, pp.5543-5546, 2000.
DOI : 10.1016/S0040-4039(00)00827-3

Y. Motoyama, M. Okano, H. Narusawa, N. Makihara, K. Aoki et al., Bis(oxazolinyl)phenylrhodium(III) Aqua Complexes:?? Synthesis, Structure, Enantioselective Allylation of Aldehydes, and Mechanistic Studies, Organometallics, vol.20, issue.8, pp.1580-1591, 2001.
DOI : 10.1021/om010018y

G. Mora, B. Deschamps, S. Van-zutphen, X. F. Le-goff, L. Ricard et al., Xanthene-Phosphole Ligands:?? Synthesis, Coordination Chemistry, and Activity in the Palladium-Catalyzed Amine Allylation, Organometallics, vol.26, issue.8, pp.1846-1855, 2007.
DOI : 10.1021/om061172t

URL : https://hal.archives-ouvertes.fr/hal-00168499

V. C. References-]-j, J. M. Guillemin, J. Denis, M. J. Chem, H. W. Hopkinson et al., Phosphorus -Carbon Heterocyclic Chemistry, The Rise of a New Domain, pergammon, 183. [26] P. Le Floch Dimroth45] C. Jongsma, H. Vermeer, F. Bickelhaupt, pp.951-329, 1295.

V. References-]-f, P. L. Mathey, S. Floch, P. L. Synth, C. C. Floch et al., Phosphorus Sulfur Silicon Relat. Elem, Phosphorus Chemistry46] M. A. Van Bochove, M. Swart, F. M. Bickelhaupt Angew. Chem.-Int. Edit, pp.627-4548, 1097.

A. Suarez, C. W. Downey, and G. C. Fu, Kinetic Resolutions of Azomethine Imines via Copper-Catalyzed [3 + 2] Cycloadditions, Journal of the American Chemical Society, vol.127, issue.32, p.11244, 2005.
DOI : 10.1021/ja052876h

K. Tanaka, S. Qiao, M. Tobisu, M. M. Lo, and G. C. Fu, Enantioselective Isomerization of Allylic Alcohols Catalyzed by a Rhodium/Phosphaferrocene Complex, Journal of the American Chemical Society, vol.122, issue.40, p.9870, 2000.
DOI : 10.1021/ja002471r

R. M. Roberts and A. S. Wells, Friedel crafts acetylations of alkyl and phenylphosphaferrocenes, Inorganica Chimica Acta, vol.130, issue.1, p.93, 1987.
DOI : 10.1016/S0020-1693(00)85935-6

M. Ogasawara, T. Sakamoto, A. Ito, Y. Ge, K. Nakajima et al., Unprecedented Formation of ??-Vinylidene Complexes from Phospharuthenocene and Acyl Chloride via Activation of the C???O Double Bond, Organometallics, vol.26, issue.27, p.6698, 2007.
DOI : 10.1021/om701063k

G. Frison, F. Mathey, and A. Sevin, Electronegativity Versus Lone Pair Shape:?? A Comparative Study of Phosphaferrocenes and Azaferrocenes, The Journal of Physical Chemistry A, vol.106, issue.23, p.5653, 2002.
DOI : 10.1021/jp0258816

URL : https://hal.archives-ouvertes.fr/hal-00463351

R. M. Roberts and A. S. Wells, Trifluoromethanesulphonic acid as a catalyst in the acylation of phosphaferrocenes, Inorganica Chimica Acta, vol.112, issue.2, p.167, 1986.
DOI : 10.1016/S0020-1693(00)84491-6

G. Delauzon, B. Deschamps, J. Fischer, F. Mathey, and A. Mitschler, 1,1'-Diphosphaferrocenes. Synthesis, basic chemistry, and structure, Journal of the American Chemical Society, vol.102, issue.3, p.994, 1980.
DOI : 10.1021/ja00523a015

B. Deschamps, L. Ricard, and F. Mathey, Access to Phosphacymantrene-2-carboxylic Acid and 2-Carboxaldehyde Derivatives, Organometallics, vol.18, issue.26, p.5688, 1999.
DOI : 10.1021/om9904596

R. M. Roberts and A. S. Wells, Aluminium chloride induced cleavage of diphosphaferrocenes in aromatic hydrocarbons; the synthesis of ??6-arene ??5-phosphacyclopentadienyl iron(ii) cations, Inorganica Chimica Acta, vol.126, issue.1, p.67, 1987.
DOI : 10.1016/S0020-1693(00)81241-4

F. Mathey, Reaction des p-phenylphospholes avec le dicyclopentadienyl-difer-tetracarbonyle, synthese et etude spectrochimique des phosphaferrocenes, Journal of Organometallic Chemistry, vol.139, issue.1, p.77, 1977.
DOI : 10.1016/S0022-328X(00)84304-1

K. Forissier, L. Ricard, D. Carmichael, and F. Mathey, (M = Co, Rh), Organometallics, vol.19, issue.6, p.954, 2000.
DOI : 10.1021/om990820o

D. Plazuk and J. Zakrzewski, Acylation of Ferrocene and a 1,1??????Diphosphaferrocene with Acyl Trifluoroacetates in the Presence of Trifluoromethanesulfonic (Triflic) Acid or Some Metal Triflates, Synthetic Communications, vol.1, issue.1, p.99, 2004.
DOI : 10.1016/S0022-328X(00)99480-4

P. G. Gassman and C. H. Winter, Preparation, electrochemical oxidation, and XPS studies of unsymmetrical ruthenocenes bearing the pentamethylcyclopentadienyl ligand, Journal of the American Chemical Society, vol.110, issue.18, p.6130, 1988.
DOI : 10.1021/ja00226a030

R. M. Roberts, J. Silver, and A. S. Wells, Structural studies of protonated monophosphaferrocenes using mcolon; ssbauer and NMR spectroscopy, Inorganica Chimica Acta, vol.118, issue.2, p.135, 1986.
DOI : 10.1016/S0020-1693(00)81375-4

A. Saric, V. Vrcek, and M. Buhl, Density Functional Study of Protonated Formylmetallocenes, Organometallics, vol.27, issue.3, p.394, 2008.
DOI : 10.1021/om700916f

R. M. Roberts, J. Silver, and A. S. Wells, A Study of acylmonophosphaferrocenes in strong acids, Inorganica Chimica Acta, vol.157, issue.1, p.45, 1989.
DOI : 10.1016/S0020-1693(00)83421-0

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, p.13244, 1992.
DOI : 10.1103/PhysRevB.45.13244

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.82, issue.1, p.270, 1985.
DOI : 10.1063/1.448799

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, The Journal of Chemical Physics, vol.82, issue.1, p.299, 1985.
DOI : 10.1063/1.448975

W. R. Wadt and P. J. Hay, effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, The Journal of Chemical Physics, vol.82, issue.1, p.284, 1985.
DOI : 10.1063/1.448800

M. Cossi, G. Scalmani, N. Rega, and V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, The Journal of Chemical Physics, vol.117, issue.1, p.43, 2002.
DOI : 10.1063/1.1480445

A. Escobar, B. Donnadieu, and F. Mathey, From Functional Phospholide Ions to Bifunctional 1,1???-Diphosphaferrocenes, Organometallics, vol.27, issue.8, p.1887, 2008.
DOI : 10.1021/om7012474

M. Steurer, Y. P. Wang, K. Mereiter, and W. Weissensteiner, -Deprotonation in the Synthesis of Chiral, Nonracemic Ferrocene Derivatives, Organometallics, vol.26, issue.15, p.3850, 2007.
DOI : 10.1021/om7003282

URL : https://hal.archives-ouvertes.fr/hal-00504494

A. F. Cunningham, Mechanism of Mercuration of Ferrocene:?? General Treatment of Electrophilic Substitution of Ferrocene Derivatives, Organometallics, vol.16, issue.6, p.1114, 1997.
DOI : 10.1021/om960815+

A. F. Cunningham, Sequential Friedel-Crafts Diacetylation of Ferrocene: Interannular Proton Transfers as a Mechanistic Probe, Organometallics, vol.13, issue.6, p.2480, 1994.
DOI : 10.1021/om00018a047

M. Scheibitz, M. Bolte, H. W. Lerner, and M. Wagner, 1:1 Adduct of 1,1???-Bis(dibromoboryl)ferrocene and 3,3???,4,4???-Tetramethyl-1,1???-diphosphaferrocene, Organometallics, vol.23, issue.14, p.3556, 2004.
DOI : 10.1021/om049707a

M. Melaimi, Chimie de coordination et applications en catalyse de nouveaux phospholes et diphosphaferrocènes, Ecole Polytechnique, 2003.

B. Deschamps, J. Fischer, F. Mathey, A. Mitschler, and L. Ricard, Reaction of 1-alkyl-1,1'-diphosphaferrocene monoanions with acyl chlorides. Synthesis and zwitterionic structure of stable .lambda.3,.lambda.5-diphosphaferrocenes, Organometallics, vol.1, issue.2, p.312, 1982.
DOI : 10.1021/om00062a014

.. Partie-expérimentale, 237 I. Considérations générales 239 II. Partie I

I. Partie, 240 II.1.a. Synthèse des ligands, Procédures catalytiques, pp.245-247

I. Partie and I. Chapitre, 247 II.2.a. Mode opératoire pour les réactions d'allylation, p.247

I. Partie and I. -chapitre, 248 II.3.a. Synthèse des complexes, pp.249-253

I. Partie and I. -chapitre, 249 II.4 250 II.4.b. Synthèse du complexe [Pt(? 3 -allyle)(dppe), Synthèse du complexe [PtCl Synthèse du complexe [Pt(? 2 -alcool allylique)(DPP-Xantphos)] 8 ............. 253 II

I. Partie, 255 III.1. Synthèse des complexes [(N-N)Pd(dba)] 4a-d, p.256

. Ambiante, Le milieu réactionnel pourpre initial devient peu à peu orange ou jaune. La suspension sensible à l'air est ensuite filtrée. La poudre obtenue est lavée au diéthyléther plusieurs fois avant d'être séchée sous pression réduite

. Couleur, Rendement 85 %. Décomposition à 190 ± 5 °C Analyse par spectroscopie de masse (positive LSI, 3-NBA, pp.548-314

. Le-solvant-utilisé-est-le-benzène, 150 mL), avec 2 équivalents de 3,4,7,8- tétraméthylphénanthroline. Couleur: jaune

6. and H. Dba, 237 (tmphen+1, 100 %), 235 (dba+1, 100 %) Analyse élémentaire calculée pour C 33 H 30 N 2 OPd : C 68,69 H 5,24 N 4,85 ; trouvée : C 67 FT-IR (KBr/Nujol, ?, cm -1 ) 1635 (s, C=O). 1 H NMR, Analyse par spectroscopie de masse (positive LSI, pp.93-98

X. , I. Partie, and I. , 264 I.1. Partie I, Annexe I : structures obtenues par diffraction des rayons, p.271

I. Partie and I. -chapitre, 276 I.3.b. Complexe [Pt(? 3 -allyle)(dppe)][OTf] (3), 276 I.3.a. Complexe [PtCl 278 I.3.c. Complexe [Pt(CH 2 CH 2 CH 2 281 I.3.d. Complexe [Pt(? 3 -allyle)(DPP-Xantphos)][PF 6

. Pd, Pd(1)-C(10) 2.13(1) Pd(1)-C(9) 2, 8A) 2.07)-C(10A) 2.17(2) Pd(1)-C(9A), p.2292541

. Pd, C(9)-H(9) 127.1 C(9)-C(10)-Pd(1) 70

. Table, Distances (A) et angles (deg) Pt(1)-C(29) 2.096(3) Pt(1)-N(1) 2, pp.2-2308