P. Mougin, Modèle Thermodynamique VLE/VLLE pour les Systèmes Gaz (Acides)méthanol-eau, IFP, 2002.

. Hocq, Etude expérimentale et Modélisation Thermodynamique des Mélanges Méthanoleau-hydrocarbures, 1994.

. Lallemand, Modélisation Thermodynamique des Mélanges Méthanol-eau-hydrocabures, IFP, 1998.

V. Yakoumis, G. M. Kontogeorgis, E. C. Voutsas, and D. P. Tassios, Vapor-Liquid Equilibria for Alcohol-hydrocarbon Systems Using the CPA Equation of State, Fluid.Phase.Equil, pp.130-161, 1997.

E. C. Voutsas, I. V. Yakoumis, and D. P. Tassios, Prediction of Phase Equilibria in Water, Ssytems, Fluid.Phase.Equil, vol.151, p.158, 1999.

P. Vallée, S. Mougin, W. Jullian, and . Fürst, Representation of CO 2 and H 2 S Absorption by Aqueous Solutions of Diethanolamine Using Electrolyte Equation of State, Ind.Eng.Res, vol.3473, p.38, 1999.

. Habchi-tounsi, Modélisation de l'Absorption des Gaz Acides dans un Solvant Mixte par le Modèle Electrolyte-NRTL, IFP, 2002.

A. Galindo, G. Gil-villegas, and . Jackson, A Statistical Associating Theory for Electrolytes Solutions SAFT-VRE, Molecular Physics, vol.102, 1999.

W. Fürst and H. Renon, Representation of excess properties of electrolyte solutions using a new equation of state, AIChE Journal, vol.39, issue.2, p.39, 1993.
DOI : 10.1002/aic.690390213

P. Ungerer, B. Tavitian, and A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry : Monte Carlo Methods, p.Technip, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00107880

A. Pople, Molecular Association in Liquids.II. A Theory of the Structure of Water, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.163, p.205, 1951.

J. A. Barker and R. Watts, Structure of water; A Monte Carlo calculation, Chemical Physics Letters, vol.3, issue.3
DOI : 10.1016/0009-2614(69)80119-3

J. S. Rowlinson, The lattice energy of ice and the second virial coefficient of water vapour, Transactions of the Faraday Society, vol.47, p.47, 1951.
DOI : 10.1039/tf9514700120

A. Horne, Water and Aqueous Solutions : Structure, Thermodynamics, and Transport Properties, 1972.

. Ben-naim, Statistical Mechanics of "Waterlike" Particles in Two Dimensions.I

T. Southall and K. A. Dill, The Mechanism of Hydrophobic Solvation Depends on Solute Radius, The Journal of Physical Chemistry B, vol.104, issue.6, p.1326, 2000.
DOI : 10.1021/jp992860b

A. T. Silverstein, A. D. Hayemt, and K. A. Dill, A Simple Model of Water and the Hydrophobic Effect, Journal of the American Chemical Society, vol.120, issue.13, p.3166, 1998.
DOI : 10.1021/ja973029k

W. L. Jorgensen, Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, Journal of the American Chemical Society, vol.103, issue.2, 1981.
DOI : 10.1021/ja00392a016

L. Jorgensen, J. Chandrasekhar, J. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.79-926, 1983.
DOI : 10.1063/1.445869

J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, issue.24, pp.91-6269, 1987.
DOI : 10.1021/j100308a038

D. Bernal and R. H. Fowler, A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, The Journal of Chemical Physics, vol.1, issue.8, p.515, 1933.
DOI : 10.1063/1.1749327

L. Jorgensen, Revised TIPS for simulations of liquid water and aqueous solutions, The Journal of Chemical Physics, vol.77, issue.8, p.4156, 1982.
DOI : 10.1063/1.444325

J. L. Abascal, E. Sanz, R. García-fernández, and C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, The Journal of Chemical Physics, vol.122, issue.23, pp.122-234511, 2005.
DOI : 10.1063/1.1931662

L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, The Journal of Chemical Physics, vol.123, issue.23, pp.123-234505, 2005.
DOI : 10.1063/1.2121687

H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, The Journal of Chemical Physics, vol.60, issue.4, pp.60-1545, 1974.
DOI : 10.1063/1.1681229

W. Mahoney and W. L. Jorgensen, A five-site Model Liquid Water and the Reproduction of the Density Anomaly by Rigid, Non-Polarizable Models, J. Chem. Phys, vol.112, issue.8910, 2000.

S. W. Rick, A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums, The Journal of Chemical Physics, vol.120, issue.13, p.6085, 2004.
DOI : 10.1063/1.1652434

J. C. Koneshan, R. M. Rasaiah, S. H. Lynden-bell, and . Lee, Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 ??C, The Journal of Physical Chemistry B, vol.102, issue.21, pp.102-4193, 1998.
DOI : 10.1021/jp980642x

R. Chitra and P. E. Smith, Molecular Dynamics Simulations of the Properties of Co-solvent Solutions, J. Chem. Phys. B, vol.104, issue.5854, 2000.

S. Bouazizi, N. Nasr, and M. C. Jaîdane, Bellissent-Funel, Local Order in Aqueous NaCl Solutions and Pure Water : X-ray Scattering and Molecular Dynamics Simulations Study, J

X. Zhou, Y. Lu, J. Wang, and . Shi, Molecular dynamics Study on Ionic Hydration, Fluid Phase Equil, p.194, 2002.

B. Hribar, N. T. Southall, V. Vlachy, and K. A. Dill, How Ions Affect the Structure of Water, Journal of the American Chemical Society, vol.124, issue.41, pp.124-12302, 2002.
DOI : 10.1021/ja026014h

T. Vidal, Application Au Génie Chimique et à L'industrie Pétrolière, 1997.

M. Prausnitz, N. Lichtenthaler-rüdiger, G. De, and A. Edmundo, Molecular Thermodynamics of Fluid Phase Equiliria, Upper Saddle River (N.J), 1999.

H. Harvey and J. M. Prausnitz, Thermodynamics of high-pressure aqueous systems containing gases and salts, AIChE Journal, vol.35, issue.4, p.35, 1989.
DOI : 10.1002/aic.690350413

E. Debye and . Hückel, Zur Theorie der Elektrolyte I : Gefrierpunktserniedrigung und Verwandte Erscheinungen, Phys. Z, vol.185, p.24, 1923.

E. Debye and . Hückel, Zur Theorie der Elektrolyte II : das Grensgesetz für die Elektrische Leitfähigkeit, Phys. Z, vol.385, p.24, 1923.

G. Maurer, Electrolyte Solutions, Fluid Phase Equil, 1983.

. Millot, Etudes des Phénomènes de Solvatation dans les Solutions d'Electrolytes, Application à la Modélisation des Propriétés Thermodynamiques par l'intermédiaire d'une équation d'Etat, 2003.

E. A. Guggenheim and J. C. Turgeon, Specific interaction of ions, Transactions of the Faraday Society, vol.51, pp.51-747, 1955.
DOI : 10.1039/tf9555100747

A. Bromely, Approximate individual ion values of ?? (or B) in extended Debye-H??ckel theory for uni-univalent aqueous solutions at 298.15 K, The Journal of Chemical Thermodynamics, vol.4, issue.5, p.669, 1972.
DOI : 10.1016/0021-9614(72)90038-9

S. Pitzer, Thermdynamics of Electrolytes.I. Theorical Basis and General Equations, Chem. Phys, vol.2, issue.268, 1973.

S. Pitzer and G. Mayorga, Thermodynamics of Electrolytes II Activity and Osmotic Coefficients for Strong Electrolytes with one or Both Ions Univalent, Phys. Chem, vol.3, p.539, 1974.

H. Renon and J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal, vol.14, issue.1, p.14, 1968.
DOI : 10.1002/aic.690140124

M. Austgen, Model of Vapour-Liquid Equilibria for Aqueous Acid Gas -Alkanolamine Systems Using the Electrolyte-NRTL Equation, Ind. Eng. Chem. Res, pp.28-1060, 1989.

L. Cruz and H. Renon, A new Thermodynamics Representation of Binary Electrolytes Solutions non Ideality in the Whole range of Concentration, AICHE, vol.817, p.24, 1978.

F. X. Ball, W. Fürst, and H. Renon, Representation of deviation from ideality in concentrated aqueous solutions of electrolytes using a mean spherical approximation molecular model, AIChE Journal, vol.31, issue.8, p.31, 1985.
DOI : 10.1002/aic.690310802

URL : https://hal.archives-ouvertes.fr/hal-01212232

S. Abrams and J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE Journal, vol.21, issue.1, p.21, 1975.
DOI : 10.1002/aic.690210115

B. Christensen, A. Sander, P. Frendenslung, and . Rasmussen, Toward the Extension of UNIQUAC to Mixtures with Electrolytes, Fluid Phase Equil, p.13, 1983.

A. Sander, P. Frendenslung, and . Rasmussen, Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation, Chemical Engineering Science, vol.41, issue.5, pp.41-1171, 1986.
DOI : 10.1016/0009-2509(86)87090-7

I. Soreide and H. Whitson, Peng-Robinson Predicitons for Hydrocarbons, CO 2 , N 2 and H 2 S with Pure Water and NaCl Brine, Fluid Phase Equil, p.77, 1992.

Y. Peng and D. B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, vol.15, issue.1, 1976.
DOI : 10.1021/i160057a011

B. Robinson, The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs, GPA Report, 1978.

J. Huron and J. Vidal, New Mixing Rules in Simple Equations of State for Representing Vapour-Liquid Equilibria of Strongly non Ideal Mixtures, Fluid Phase Equil, 1979.

S. Kiepe, K. Horstmann, J. Fischer, and . Gmehling, Application of the PSRK Model for Systems Containing Strong Electrolytes, Industrial & Engineering Chemistry Research, vol.43, issue.20, p.1021, 2004.
DOI : 10.1021/ie0401253

Y. X. Zuo and T. M. Guo, Extension of the Patel???Teja equation of state to the prediction of the solubility of natural gas in formation water, Chemical Engineering Science, vol.46, issue.12, pp.46-3251, 1991.
DOI : 10.1016/0009-2509(91)85026-T

X. Zuo, E. Stenby, and T. M. Guo, Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems, Journal of Petroleum Science and Engineering, vol.15, issue.2-4, p.15, 1996.
DOI : 10.1016/0920-4105(95)00062-3

G. Sieder and G. Maurer, An extension of the Peng-Robinson Equation of State for the Correlation and Prediction of High-Pressure Phase Equilibrium in Systems Containing Supercritical Carbon Dioxide and a Salt, Fluid Phase Equil, p.225, 2004.

. Cummings, Introduction to Integral Equation Approximations with Application to Near-Critical and Supercritical Fluids, Supercritical Fluids : Fundamentals for Applications, E
DOI : 10.1007/978-94-015-8295-7_11

G. Gray and K. E. Gubbins, Theory of Molecular Fluids,1: Fundamentals, 1984.

L. Lee, Molecular Thermodynamics of Non Ideal Fluids, Ed.Butterworths Series in Chemical Engineering, 1988.

M. Cardoso and J. P. , Activity Coefficients in Mixed Solvent Electrolyte Solutions, Fluid Phase Equil, pp.33-315, 1987.

M. Breil and J. Mollerup, The McMillan-Mayer Framework and the Theory of Electrolyte Solutions, Fluid Phase Equil, p.242, 2006.

A. Haynes and J. Newman, On Converting from the McMillan-Mayer Framework : I

L. Lebowitz and J. K. Percus, Mean Spherical Model for Lattice Gases with Extend Hard Cores and Continuum Fluids, Phys. Rev, vol.144, 1966.
DOI : 10.1103/physrev.144.251

N. F. Carnahan and K. E. Starling, Intermolecular repulsions and the equation of state for fluids, AIChE Journal, vol.18, issue.6, pp.18-1184, 1972.
DOI : 10.1002/aic.690180615

F. Carnahan and K. E. Starling, Equation of State for Nonattracting Rigid Spheres, The Journal of Chemical Physics, vol.51, issue.2
DOI : 10.1063/1.1672048

J. A. Barker and D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square???Well Potential, The Journal of Chemical Physics, vol.47, issue.8, p.47, 1967.
DOI : 10.1063/1.1712308

I. Sandler, From Molecular Theory to Thermodynamic Model, Chem. Eng. Education, vol.12, p.24, 1990.

J. C. De-hemptinne, P. Mougin, A. Barreau, L. Ruffine, S. Tamouza et al., Application to Petroleum Engineering of Statistical Thermodynamics ??? Based Equations of State, Oil & Gas Science and Technology - Revue de l'IFP, vol.61, issue.3, p.61, 2006.
DOI : 10.2516/ogst:2006039a

A. Gil-villegas, G. Galindo, and . Jackson, A statistical associating fluid theory for electrolyte solutions (SAFT-VRE), Molecular Physics, vol.3, issue.6, pp.99-531, 2001.
DOI : 10.1021/ie00049a037

B. H. Behzadi, A. Patel, C. Galindo, and . Ghotbi, Modeling Electrolyte Solutions with the SAFT-VR Equation Using Yukawa Potentials and the Mean-Spherical Approximation, Fluid Phase Equil, pp.236-241, 2005.

F. Cameretti and G. Sadowski, Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory, Industrial & Engineering Chemistry Research, vol.44, issue.9, p.44, 2005.
DOI : 10.1021/ie0488142

M. S. Wertheim, Fluids with Highly Directional Attractive Forces, J. Stat. Phys, vol.35, issue.35, 1984.
DOI : 10.1007/bf01017362

G. Chapman, Phase equilibria of associating fluids, Molecular Physics, vol.22, issue.5, pp.65-1057, 1988.
DOI : 10.1063/1.451002

G. Chapman, New reference equation of state for associating liquids, Industrial & Engineering Chemistry Research, vol.29, issue.8
DOI : 10.1021/ie00104a021

J. C. De-hemptinne, P. Mougin, R. Inchekel, and L. Ruffine, Programmation de l'équation CPA dans la BOC, IFP, 2005.

H. Huang and M. Radosz, Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures, Industrial & Engineering Chemistry Research, vol.30, issue.8, pp.29-2284, 1990.
DOI : 10.1021/ie00056a050

H. Huang and M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Industrial & Engineering Chemistry Research, vol.29, issue.11, p.30, 1991.
DOI : 10.1021/ie00107a014

. Banaszak, Thermodynamic Perturbation Theory of Polymerisation, Phys. Rev. E, vol.48, issue.3760, 1993.

T. Kraska and K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State : 1. Pure Alkanes, Alcohols and Water, Fluid Phase Equil, pp.35-4727, 1996.

T. Kraska and K. E. Gubbins, Phase Equilibria calculations with a modified SAFT equation of state : 2. Binary Mixtures of n-Alkanes, 1-Alcohols and Water, Fluid Phase Equil, pp.35-4738, 1996.

H. Fu and K. E. Sandler, A Simplified SAFT Equation of State for Associating Compounds and Mixtures, Industrial & Engineering Chemistry Research, vol.34, issue.5, pp.34-1897, 1995.
DOI : 10.1021/ie00044a042

J. Blas and L. V. Vega, Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State, Industrial & Engineering Chemistry Research, vol.37, issue.2, p.37, 1998.
DOI : 10.1021/ie970449+

N. Solms, Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures, Industrial & Engineering Chemistry Research, vol.42, issue.5, p.42, 1098.
DOI : 10.1021/ie020753p

. Tamouza, Modélisation d'Equilibres de Phases d'Hydrocarbures Purs par l'Equation SAFT, IFP, 2002.

Y. S. Wei and R. J. Sadus, Equations of state for the calculation of fluid-phase equilibria, AIChE Journal, vol.96, issue.151, p.46, 2000.
DOI : 10.1002/aic.690460119

A. Muller and K. E. Gubbins, Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches, Industrial & Engineering Chemistry Research, vol.40, issue.10, p.40, 2001.
DOI : 10.1021/ie000773w

G. Economou, Statistical Associating Fluid Theory:?? A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures, Industrial & Engineering Chemistry Research, vol.41, issue.5
DOI : 10.1021/ie0102201

G. Economou, Associating models and mixing rules in equations of state for water/hydrocarbon mixtures, Chemical Engineering Science, vol.52, issue.4, pp.52-511, 1997.
DOI : 10.1016/S0009-2509(96)00441-1

C. Voutsas, G. C. Boulougouris, I. G. Economou, and D. P. Tassios, Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory, Industrial & Engineering Chemistry Research, vol.39, issue.3, pp.39-797, 2000.
DOI : 10.1021/ie990559b

. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, vol.27, issue.6, p.1197, 1972.
DOI : 10.1016/0009-2509(72)80096-4

M. S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, Journal of Statistical Physics, vol.78, issue.1-2, p.35, 1984.
DOI : 10.1007/BF01017363

R. Heidmann and J. M. Prausnitz, A Vander Waals Type Equation of State for Fluids for Associating molecules, Proc. Natl. Acad. Sci, pp.73-1773, 1976.

. Anderko, A Simple Equation of State Incorporating Association, Fluid Phase Equil, p.45, 1989.

M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, and D. P. Tassios, An Equation of State for Associating Fluids, Industrial & Engineering Chemistry Research, vol.35, issue.11, pp.35-4310, 1996.
DOI : 10.1021/ie9600203

M. C. Zhao, C. Dos-ramos, and . Mccabe, Development of an Equation of State for Electrolyte Solutions by Combining the Statistical Associating Fluid Theory and the Mean Spherical Approximation for the Nonprimitive Model, The journal of chemical physics, pp.126-244503, 2007.

W. Liu, Y. Wang, and . Li, An Equation of State for Electrolyte Solutions by a Combination of Low-Density Expansion of Non-Primitive Means Spherical Approximation and Associating Fluid theory, Fluid Phase Equil, p.227, 2005.

H. Lotfikian and . Modarress, Modification and Application of a Non-Primitive Mean Spherical Approximation Model for Simple Aqueous Electrolyte Solutions, Fluid Phase Equil, p.209, 2003.

J. S. Blum and . Hoye, Mean spherical model for asymmetric electrolytes, Molecular Physics, vol.30, issue.5, pp.81-1311, 1977.
DOI : 10.1063/1.1669510

. Blum, Mean spherical model for asymmetric electrolytes, Molecular Physics, vol.30, issue.5, p.1529, 1975.
DOI : 10.1063/1.1669510

E. Waisman and J. L. Lebowitz, Mean Spherical Model Integral Equation for Charged Hard Spheres. II. Results, The Journal of Chemical Physics, vol.56, issue.6, p.53, 1972.
DOI : 10.1063/1.1677645

L. Wei and . Blum, Internal energy in the mean spherical approximation as compared to Debye-Hueckel theory, The Journal of Physical Chemistry, vol.91, issue.16, pp.91-4342, 1987.
DOI : 10.1021/j100300a027

J. R. Triolo, L. Grigera, and . Blum, Simple electrolytes in the mean spherical approximation, The Journal of Physical Chemistry, vol.80, issue.17, p.1861, 1976.
DOI : 10.1021/j100558a008

L. Triolo, M. A. Blum, and . Florianon, Simple electrolytes in the mean spherical approximation. 2. Study of a refined model, The Journal of Physical Chemistry, vol.82, issue.12, pp.82-1368, 1978.
DOI : 10.1021/j100501a009

M. Watanasiri, L. L. Brulé, and . Lee, Prediction of thermodynamic properties of electrolytic solutions using the mean spherical approximation, The Journal of Physical Chemistry, vol.86, issue.2, p.86, 1982.
DOI : 10.1021/j100391a031

J. P. Simonin, L. Blum, and P. Turq, Real Ionic Solutions in the Mean Spherical Approximation. 1. Simple Salts in the Primitive Model, The Journal of Physical Chemistry, vol.100, issue.18, p.7704, 1996.
DOI : 10.1021/jp953567o

URL : https://hal.archives-ouvertes.fr/hal-00162536

J. P. Simonin, Real Ionic Solutions in the Mean Spherical Approximation. 2. Pure Strong Electrolytes up to Very High Concentrations, and Mixtures, in the Primitive Model, The Journal of Physical Chemistry B, vol.101, issue.21
DOI : 10.1021/jp970102k

URL : https://hal.archives-ouvertes.fr/hal-00162536

P. Simonin, O. Bernard, and L. Blum, Real Ionic Solutions in the Mean Spherical Approximation. 3. Osmotic and Activity Coefficients for Associating Electrolytes in the Primitive Model, The Journal of Physical Chemistry B, vol.102, issue.22, pp.102-4411, 1998.
DOI : 10.1021/jp9732423

URL : https://hal.archives-ouvertes.fr/hal-00162536

R. Fawcett and A. C. Tikanen, Role of Solvent Permittivity in Estimation of Electrolyte Activity Coefficients on the Basis of the Mean Spherical Approximation, The Journal of Physical Chemistry, vol.100, issue.10, p.4251, 1996.
DOI : 10.1021/jp952379v

K. Lin, J. C. Thompson, and . De-hemptinne, Multicomponent Equations of State for Electrolytes, AICHE, accepted for publication, 2007.

J. A. Myers, S. I. Sandler, and R. H. Wood, An Equation of State for Electrolyte Solutions Covering Wide Ranges of Temperature, Pressure, and Composition, Industrial & Engineering Chemistry Research, vol.41, issue.13, p.41, 2002.
DOI : 10.1021/ie011016g

H. Planche and . Renon, Mean Spherical Approximation Applied to a Simple Non Primitive Model of Interaction for Electrolyte Solution and Polar Substances, Phys. Chem, vol.3924, p.85, 1981.

. Anderko, Modeling Phase Equilibria Using an Equation of State Incorporating Association, Fluid Phase Equil, p.75, 1992.

R. Heidmann and J. M. Prausnitz, A Vander Waals Type Equation of State for Fluids Associating Molecules, Proc. Natl. Acad. Sci, pp.73-1773, 1976.

J. R. Elliott and C. T. Lira, Introductory Chemical Engineering Thermodynamics, Upper Saddle River (N.J), 1999.

Z. Wu and J. M. Prausnitz, Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt:?? An Extended Peng???Robinson Equation of State, Industrial & Engineering Chemistry Research, vol.37, issue.5, pp.37-1634, 1998.
DOI : 10.1021/ie9706370

J. A. Myers, S. I. Sandler, and R. H. Wood, An Equation of State for Electrolyte Solutions Covering Wide Ranges of Temperature, Pressure, and Composition, Industrial & Engineering Chemistry Research, vol.41, issue.13, p.41, 2002.
DOI : 10.1021/ie011016g

M. Born, Volumen und Hydratationswärme der Ionen, p.45, 1920.

. Schmidt, Properties of Water and Steam in SI-Units, 1982.

H. J. Barthel, R. Gores, A. Eueder, and . Schmid, Electrolyte solutions for technology - new aspects and approaches, Pure and Applied Chemistry, vol.71, issue.9, pp.71-1705, 1999.
DOI : 10.1351/pac199971091705

J. Zuo, D. Zhang, and W. Fürst, Predicting LLE in mixed-solvent electrolyte systems by an electrolyte EOS, AIChE Journal, vol.150, issue.151, p.46, 2000.
DOI : 10.1002/aic.690461122

URL : https://hal.archives-ouvertes.fr/hal-01212209

L. Zhi-ping and L. Yi-gui, Jiu-Fang, Low-Denstity Expansion of the Solution of Mean Spherical Approximation for Ion-Dipole Mixtures, J. Phys. Chem, vol.106, issue.5266, 2002.

D. Pottel and . Properties, Water, A Cpomrehension Treatise, 1973.

B. Hasted, D. M. Ritson, and C. H. Coolie, Dielectric Properties of Aqueous Ionic Solutions, J. Chem. Phys, vol.1, p.16, 1948.

Y. Y. Akhadov, Dielectric Properties of Binary Systems, 1981.

F. Hinton and E. S. Amis, Solvation numbers of ions, Chemical Reviews, vol.71, issue.6, p.71, 1971.
DOI : 10.1021/cr60274a003

J. L. Cruz, Ecarts à l'Idéalité des Systèmes Electrolytiques Binaires, dans tout L'Intervalle des Concentrations, 1977.

L. Martin, J. L. Gomrz-estévez, and M. Canales, Simple statistical mechanics of electrolytes with a concentration dependent dielectric constant. Part 1. The pressure equation, Journal of Solution Chemistry, vol.22, issue.2, p.16, 1986.
DOI : 10.1007/BF00646681

Y. Kwong, Ion-Dipole Perturbation Theory Applied to Simple Electrolytes, J.Am.Chem.Soc, pp.95-7465, 1991.

. Nezbeda, On molecular-based Equations of State: Rigor Versus Speculations, Fluid Phase Equil, 2001.

A. H. Raatschen, J. M. Harvey, and . Prausnitz, Equation of State for Solutions of Electrolytes in Mixed Solvents, Fluid Phase Equil, p.38, 1987.

W. Copeman and F. P. Stein, A Perturbed Hard-Sphere Equation of State for Solutions Containing an Electrolytes, Fluid Phase Equil, p.35, 1987.

J. and M. D. Donohue, An Equation of State for Electrolyte Solutions.1. Aqueous Systems Containing Strong Electrolytes, Ind. Eng. Chem. Res, pp.27-1073, 1988.

G. Simon, H. Kistenmacher, J. M. Prausnitz, and D. Vortmeyer, An Equation of State for Systems Containing Electrolytes and Non Electrolytes, Chem. Eng. Process, vol.139, p.29, 1991.

X. Zuo and T. M. Guo, Extension of the Patel???Teja equation of state to the prediction of the solubility of natural gas in formation water, Chemical Engineering Science, vol.46, issue.12, p.3251, 1991.
DOI : 10.1016/0009-2509(91)85026-T

Q. Vu, P. D. Suchaux, and W. Fürst, Use of a Predictive Electrolyte Equation of State for the Calculation of the Gas Hydrate Formation Temperature in the Case of Systems with Methanol and Salts, Fluid Phase Equil, pp.194-361, 2001.

S. P. Ji and H. Tan, Adidharma and M Radosz, Statistical Associating Fluid Theory Coupled with Restricted Primitive Model to Represent Aqueous Strong Electrolytes

P. Tan, H. Adidharma, and M. Radosz, Statistical Associating Fluid Theory Coupled with Restricted Primitive Model To Represent Aqueous Strong Electrolytes, Industrial & Engineering Chemistry Research, vol.44, issue.12, pp.44-4442, 2005.
DOI : 10.1021/ie048750v

A. Paricaud, G. Galindo, and . Jackson, Recent Advances in the Use of the SAFT Approach in Describing Electrolytes, Interfaces, Liquid Crystals and Polymers, Fluid Phase Equil, p.194, 2002.

I. Sandler and H. Orbey, Equations of State, Models for Thermodynamic and Phase Equilibria calculations, 1992.

Y. S. Wei and R. J. Sadus, Equations of state for the calculation of fluid-phase equilibria, AIChE Journal, vol.96, issue.151, p.46, 2000.
DOI : 10.1002/aic.690460119

O. Redlich and J. N. Kwong, On the Thermodynamics of Solution, V: An Equation of

. State, Fugacities of Gaseous Solutions, Chem. Rev, vol.44, issue.233, 1949.

C. Panayioutou and J. Sanchez, Hydrogen bonding in fluids: an equation-of-state approach, The Journal of Physical Chemistry, vol.95, issue.24, pp.95-10090, 1991.
DOI : 10.1021/j100177a086

W. Zwanzig, High-Temperature Equation of State by a Perturbation Method, Nonpolar Gases J. Chem. Phys, pp.22-1420, 1954.

H. Huang and M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Industrial & Engineering Chemistry Research, vol.29, issue.11, pp.29-2284, 1990.
DOI : 10.1021/ie00107a014

G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Equation of State Solution For Associating Fluids, Ind. Eng. Chem. Res, pp.50-81, 1989.

N. F. Carnahan and K. E. Strarling, Equation of State for Nonattracting Rigid Spheres, The Journal of Chemical Physics, vol.51, issue.2
DOI : 10.1063/1.1672048

J. R. Elliott, S. J. Suresh, and M. D. Donohue, A simple equation of state for non-spherical and associating molecules, Industrial & Engineering Chemistry Research, vol.29, issue.7, pp.29-1476, 1990.
DOI : 10.1021/ie00103a057

O. Derawi, G. M. Kontogeorgis, M. L. Michelsen, and E. H. Stenby, Extension of the Cubic-Plus-Association Equation of State to Glycol???Water Cross-Associating Systems, Industrial & Engineering Chemistry Research, vol.42, issue.7
DOI : 10.1021/ie0206103

S. Tamouza, Utilisation prédictive de l'équation d'état SAFT, Paris nord), 2004.

S. Oakes, J. M. Simonson, and R. J. Bodnars, The System NaCl-CaCl 2 -H 2 O.2. Densities for Ionic Strengths of 1,1-19, Mol, vol.29815, issue.2

A. Perron, J. E. Roux, and . Desnoyers, Heat Capacities and Volumes of NaCl, CaCl 2 , and NiCl 2 up and to 6 Molal in Water, p.59, 1981.

J. Hamer and Y. C. Wu, Osmotic Coefficients and Mean Activity Coefficients of Uni???univalent Electrolytes in Water at 25??C, Journal of Physical and Chemical Reference Data, vol.1, issue.4, pp.1-1047, 1972.
DOI : 10.1063/1.3253108

I. Partanen and P. O. Minkkinen, Thermodynamic Activity Quantities in Aqueous Sodium and Potassium Chloride Solutions at 298,15 K up to a Molality of 2 mol

F. Gibbard, G. Scatchard, R. A. Rousseau, and J. L. Creek, Liquid-Vapour Equilibrium of Aqueous Sodium Chloride, from 298 to 373 K and from 1 to 6 Mol/Kg, and related Properties, J. Chem. Eng. Data, pp.19-281, 1974.

J. Downes, Thermodynamic of Mixed Electrolyte Solutions : The systems

V. Koennecke, T. Neck, J. I. Fanghaenel, and . Kim, Activity Coefficients and Pitzer Parameters in the Systems Na, CsCl Journal of Solution Chemistry, vol.4, issue.4, pp.26-561, 1997.

D. Yan, Y. Xu, and S. J. Han, Activity Coefficients of Sodium Chloride in Methanol - Water, pp.52-937, 1994.

R. Rabie, G. Wilcek, G. H. Vera, and . Vera, Activities of Individual Ions From Infinite Dilution to Saturated Solutions, Journal of Solution Chemistry, vol.885, p.28, 1999.

L. A. Romankiw and I. M. Chou, Densities of Aqueous Sodium Chloride, Potassium Chloride, Magnesium Chloride, and Calcium Chloride Binary Solutions in the Concentration Range 0, J. Chem. Eng. Data, vol.300, p.28, 1983.

G. Leopold and J. Johnston, The Vapor Pressure of the Saturated Aqueous Solutions of Ceratain Salts, J. Am. Chem. Soc, p.49, 1927.

W. F. Ehret, Ternary Systems: CaCl 2 -Ca(NO 3 ) 2 -H 2 O at 25 °C, CaCl 2 -Ca(ClO 3 ) 2 -H 2 O at 25 °C, SrCl 2 -Sr(NO 3 )2-H 2 O at 25 °C, KNO 3 -Pb(NO 3 ) 2 -H 2 O at 0 °C, J. Am. Chem. Soc, pp.54-3126, 1932.

J. A. Rard and S. L. Clegg, Critical Evaluation of the Thermodynamic Properties of Aqueous Calcium Chloride. 1. Osmotic and Activity Coefficients of 0-10,77 mol/kg Aqueous Calcium Chloride Solutions at 298,15 K and Correlation with Extended Pitzer Ion-interaction Models, J. Chem. Eng. Data, vol.819, p.42, 1997.

. Vaslow, The Apparent Molar Volume of the Alkali Metal Chlorides in Aqueous Solution and Evidence for Salt-Induced Structure Transition, J. Phys. Chem, pp.70-2286, 1966.

M. Fabuss, A. Korosi, and A. K. Huq, Densities of Binary and Ternary Aqueous Solutions of NaCl, 4 , and MgSO 4 of Sea Water, and Sea Water Concentrations, pp.11-325, 1966.

K. Khaibullin and N. M. Borisov, Experimental Investigation of the Thermal Properties of Aqueous and Vapor Solutions of Sodium and Potassium Chlorides at Phase Equilibrium, High Temp, vol.4, p.489, 1966.

Y. Tashima and Y. Arai, Densities of Some Alcohols and Water Containing Calcium Chloride in the Region 20-70 °C. Relation with Salt Effect on Vapor-Liquid Equilibria

J. A. Rard and D. G. Miller, Isopietic Determination of the Osmotic and Activity Coefficients of Aqueous MgCl 2 Solution at 25 °C, J. Chem. Eng. Data, vol.38, p.26, 1981.

J. E. Perron, F. J. Desnoyers, and . Millero, Apparent Molal Volumes and Heat Capacities of Alkaline Earth Chlorides in Water at 25 ??C, Canadian Journal of Chemistry, vol.52, issue.22, p.52, 1974.
DOI : 10.1139/v74-558

. Vaslow, The Apparent Molal Volumes of the Lithium and Sodium Halides. Criticaltype Transitions in Aqueous Solution, J. Phys. Chem, pp.73-3745, 1969.

W. Grzybkowski and G. Atkinson, Thermodynamics of Concentrated Electrolyte Mixtures. 8. Apparent Molal Volumes, Adiabatic Compressibilities, and Hydration Numbers of Aqueous ZnBr2, CaBr2, and NaBr at 25 °C, J. Chem. Eng. Data, pp.31-312, 1986.

R. A. Robinson and H. J. Mccoach, Osmotic and Activity Coefficients of Lithium Bromide and Calcium Bromide Solutions, Journal of the American Chemical Society, vol.69, issue.9, pp.69-2245, 1947.
DOI : 10.1021/ja01201a517

H. Stokes, Thermodynamic Study of Bivalent Metal Halides in Aqueous Solution

E. Y. Kontogeorgis, Multicomponent Phase Equilibrium Calculations for Watermethanol-alcane Mixtures, Fluid Phase Equil, 1999.

L. Pauling, The Nature of the Chemical Bond. V, The Journal of Chemical Physics, vol.2, issue.8, p.10, 1940.
DOI : 10.1063/1.1749514

U. Giese, R. Kaatze, and . Pottel, Permittivity and dielectric and proton magnetic relaxation of aqueous solutions of the alkali halides, The Journal of Physical Chemistry, vol.74, issue.21, p.74, 1970.
DOI : 10.1021/j100715a005

. Inchekel, Etude de L'équation CPA pour les Fluides Associatifs, IFP, 2004.

H. Hong, P. V. Malone, M. D. Jett, and R. Kobayashi, The measurement and interpretation of the fluid-phase equilibria of a normal fluid in a hydrogen bonding solvent: the methane???methanol system, Fluid Phase Equilibria, vol.38, issue.1-2, p.38, 1987.
DOI : 10.1016/0378-3812(87)90005-7

L. Yarym-agaev, R. P. Sinyavskaya, I. I. Koliushko, and L. Y. Levinton, Phase Equilibria in the Water-methane and Methanol-methane Binary Systems under High Pressures, J. Appl

. Ruffine, Equilibres de Phases à Basse Température de Systèmes Complexes CO 2 hydrocarbures légers-méthanol-eau : Mesures et Modélisation, 2005.

S. Kooner, R. C. Phutela, and D. V. Fenby, Determination of the Equilibrium Constants of Water-Mmethanol Deuterium Exchange Reactions from Vapor Pressure Measurements

W. Fu-jinyan, H. Kun, and . Ying, Studies on the Vapor-Liquid Equilibrium and Vapor-Liquid-Liquid Equilibrium for a Methanol-methyl Methacrylate-water Ternary System. (I) Three Different Binary Systems, Huagong Xuebao, vol.64, p.39, 1988.

M. Bao, J. Liu, N. Yang, and . Wang, Measurement and Correlation of Moderate Pressure Vapor-Liquid Equilibrium Data for Methanol-water Binary System, Huagong Xuebao, vol.230, p.46, 1995.

T. Kurihara, K. Minoura, K. Takeda, and . Kojima, Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water, J. Chem. Eng

R. E. Harner, J. B. Sydnor, and E. S. Gilreath, Solubilities of Anhydrous Ionic Substances in Absolute Methanol., Journal of Chemical & Engineering Data, vol.8, issue.3, p.411, 1963.
DOI : 10.1021/je60018a035

E. Ricci and N. S. Yanick, The Ternary System NaCl -NaI -H 2 O, J. Am. Chem. Soc, pp.58-313, 1936.

R. Kirn and H. L. Dunlap, THE SOLUBILITIES OF ALKALI CHLORIDES AND SULFATES IN ANHYDROUS ALCOHOLS, Journal of the American Chemical Society, vol.53, issue.2, pp.53-391, 1931.
DOI : 10.1021/ja01353a001

L. Werblan, A. Rotowska, and S. Minc, Viscosity of Water -Methanol Solutions of LiClO 4 , NaClO 4 and NaCl, Electrochim. Acta, pp.61-102, 1971.

. Solutions, Part 1. Alkali Metal Salts in Methanol, Journal of Solution Chemistry, vol.14, issue.621, 1985.

M. T. Zafarani-moattar, J. J. Sardroodi, and K. Nasirzadeh, Isopiestic Determination of Osmotic Coefficients and Evaluation of Vapor Pressures for Solutions of Calcium Chloride and Calcium Nitrate in Methanol at 298,15 K, Fluid Phase Equil, p.200, 2002.

T. Yamamoto, Y. Terano, J. Nishi, and . Tokunaga, Vapor-Liquid Equilibria for Methanol + Ethanol + Calcium Chloride, + Ammonium Iodide, and + Sodium Iodide at 298
DOI : 10.1021/je00018a026

Y. Li, Z. Luo, and . Zhu, Vapor-Liquid Equilibria for Salt-Containing Systems by Equation of State -Measurement and Correlation of Vapor Pressures for Salt Solutions with Single Solvent, 1986.

M. Brons, Etude des Systèmes Eau Salée-hydrocarbure-gaz acides, IFP, 2001.

O. Thomas, N. O. 'sullivan, and . Smith, The Solubility and Partial Molar Volume of Nitrogen and Methane in Water and in Aqueous Sodium Chloride from 50 to 125 ° and 100 to 600 atm, J. phys.chem, pp.74-1460, 1970.

H. Luis, C. Blanco, and N. O. Smith, The high Pressure Solubility of Methane in Aqueous Calcium Chloride and Aqueous Tetrathylammoium Bromide. Partial Molar Properties of Dissolved Methane and Nitrogen in Relation to Water Structure, The journal of physical chemistry, p.82, 1978.

G. Sawaya, Etude de Systèmes Biphasiques d'Intérêt Pétrolier : Hydrocarbures Peu Volatils, Mélanges Eau-méthanol et Eau-méthanol-chlorure de Sodium, 1998.

A. P. Jödecke, G. Kamps, and . Maurer, Experimental investigation of the Influence of NaCl on the Vapor-Liquid Equilibrium of CH 2 OH+H 2 O, J. Chem. Eng. Data, vol.138, p.50, 2005.

A. I. Johnson and W. F. Furter, Salt effect in Vapor-Liquid Equilibrium

E. Nishi and . Nagao, Isobaric Vapor-Liquid Equilibrium Data for Alcohol-water Systems in the Presence of Salts. I. Experimental Measurement of VLE Containing LiCl, NaCl and KCl as Salt, pp.25-71, 1990.

L. Wang, G. Chen, G. Han, X. Guo, and T. Guo, Experimental Study on the Solubility of Natural Gas Components in Water with or Without Hydrate Inhibitor, Fluid Phase Equil, p.207, 2003.