. [. Alkadhi, Doses de radiations ionisantes délivrées par la tomodensitométrie computérisée et risque de cancer secondaire, Forum Medical Suisse, vol.8, issue.16, pp.291-293, 2008.

C. [. Baim, E. M. Wilson, M. M. Lewiecki, R. W. Luckey, B. C. Downs et al., Precision Assessment and Radiation Safety for Dual-Energy X-Ray Absorptiometry, Journal of Clinical Densitometry, vol.8, issue.4, pp.371-378, 2005.
DOI : 10.1385/JCD:8:4:371

L. [. Barré and . Dollet, Analyse de texture par Fourier, 1999.

S. [. Benhamou, E. Poupon, S. Lespessailles, R. Loiseau, V. Jennane et al., Fractal Analysis of Radiographic Trabecular Bone Texture and Bone Mineral Density: Two Complementary Parameters Related to Osteoporotic Fractures, Journal of Bone and Mineral Research, vol.8, issue.4, pp.697-704, 2001.
DOI : 10.1359/jbmr.2001.16.4.697

URL : https://hal.archives-ouvertes.fr/hal-00768782

S. [. Bevill, T. M. Easley, and . Keaveny, Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependance on bone volume fraction and anatomic site, Journal of Biomechanics, issue.40, pp.3381-88, 2007.

J. M. Bland and D. G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, pp.307-310, 1986.

. [. Bonnick, Osteoporosis in men and women, Clinical Cornerstone, vol.8, issue.1, p.28, 2006.
DOI : 10.1016/S1098-3597(06)80063-3

M. R. Bosisio, M. Talmant, W. Skalli, P. Laugier, and D. Mitton, Apparent Young's modulus of human radius using inverse finite-element method, Journal of biomechanics, issue.9, pp.40-2022, 2007.

[. Brear, J. D. Currey, S. Raines, and K. J. Smith, Density and Temperature Effects on Some Mechanical Properties of Cancellous Bone, Engineering in Medicine, vol.21, issue.4, pp.163-167, 1988.
DOI : 10.1243/EMED_JOUR_1988_017_043_02

A. M. Briggs and A. M. Greig, Bone mineral density distribution in thoracic and lumbar vertebrae: An ex vivo study using dual energy X-ray absorptiometry, Bone, vol.38, issue.2, pp.286-294, 2005.
DOI : 10.1016/j.bone.2005.07.018

S. [. Briot, J. Kolta, R. Fechtenbaum, C. Said-nahal, C. Benhamou et al., Evidence of increase in vertebral body dimensions inpostemanopausal women with osteoporosis: a threeyear follow-up study, ASBMR 30th annual meeting, 2008.

A. [. Brown and . Fergusson, Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur, Acta Orthopaedica Scandinavica, vol.7, issue.1-6, pp.51-429, 1980.
DOI : 10.3109/17453678008990819

]. J. Buck07a, K. Buckley, J. Loo, and . Motherway, Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength, Bone, issue.3, pp.40-767, 2007.

J. M. Buckley, L. Cheng, and K. Loo, Quantitative computed tomography-based predictions of vertebral strength in anterior bending. Spine, pp.1019-1046, 2007.

. [. Burr, Microdamage and bone strength, Osteoporosis International, vol.14, issue.0, pp.67-72, 2003.
DOI : 10.1007/s00198-003-1476-2

. [. Campana, Evaluation des relations entre propriétés biomécaniques et imagerie: étude in vitro du disque intervertébral, in Mecanique, p.174, 2004.

D. R. Carter and W. C. Hayes, The compressive behavior of bone as a two-phase porous structure, The Journal of Bone & Joint Surgery, vol.59, issue.7, pp.59-954, 1977.
DOI : 10.2106/00004623-197759070-00021

D. [. Cendre, M. E. Mitton, F. Arlot, B. Duboeuf, C. Burt-pichat et al., High-Resolution Computed Tomography for Architectural Characterization of Human Lumbar Cancellous Bone: Relationships with Histomorphometry and Biomechanics, Osteoporosis International, vol.10, issue.5, pp.353-360, 1999.
DOI : 10.1007/s001980050240

P. [. Cheng, S. Nicholson, G. Boonen, P. Lowet, J. Brys et al., Prediction of vertebral strength in vitro by spinal bone densotometry and calcaneal ultrasound, Journal of Bone and Mineral Research, issue.10, pp.12-1721, 1997.

[. Chevalier, D. Pahr, and P. Zysset, Comparison of voxel-based and smooth finite element models to predict damage accumulation in vertebral bodies, 30th ASBMR Annual Meting, 2008.

. [. Cochard, Atlas d'embryologie humaine de Netter, 2002.

]. R. Craw03a, C. E. Crawford, T. M. Cann, and . Keaveny, Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, vol.33, pp.744-750, 2003.

]. R. Craw03b, W. S. Crawford, T. M. Rosenberg, and . Keaveny, Quantitative computed tomographybased finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions, Journal of Biomechanical Engineering, vol.125, issue.4, pp.434-442, 2003.

L. [. Cummings and . Melton, Epidemiology and outcomes of osteoporotic fractures. The Lancet, pp.1761-1767, 2002.

C. Dreux and C. Menkes, Méthodes de mesure de la densité minérale osseuse (DMO) et examens biologiques dans la prise en charge de l'ostéoporose., in 190, pp.1275-1290, 2006.

E. [. Duan, C. H. Seeman, and . Turner, The Biomechanical Basis of Vertebral Body Fragility in Men and Women, Journal of Bone and Mineral Research, vol.28, issue.12, pp.16-2276, 2001.
DOI : 10.1359/jbmr.2001.16.12.2276

F. [. Duan, F. Duboeuf, P. D. Munoz, E. Delmas, and . Seeman, The fracture risk index and bone mineral density as predictors of vertebral structural failure, Osteoporosis International, vol.3, issue.1, pp.54-60, 2006.
DOI : 10.1007/s00198-005-1893-5

J. Dubousset, G. Charpak, I. Dorion, W. Skalli, F. Lavaste et al., A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system, pp.189-297, 2005.

G. [. Dubousset, W. Charpak, G. Skalli, J. Y. Kalifa, and . Lazennec, EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Revue de chirurgie orthopédique et réparatrice de l'appareil moteur, pp.93-141, 2007.

J. Dubousset, G. Charpak, W. Skalli, J. A. De-guise, G. Kalifa et al., Skeletal and spinal imaging with EOS system, pp.665-671, 2008.

V. [. Duchemin, C. Bousson, C. Raossanaly, J. D. Bergot, W. Laredo et al., Prediction of mechanical properties of cortical bone by quantitative computed tomography, Medical Engineering & Physics, vol.30, issue.3, pp.30-321, 2008.
DOI : 10.1016/j.medengphy.2007.04.008

E. N. Ebbesen, J. S. Thomsen, H. Beck-nielsen, H. J. Nepper-rasmussen, and L. Mosekilde, Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing, Bone, vol.25, issue.6, pp.25-713, 1999.
DOI : 10.1016/S8756-3282(99)00216-1

M. [. Eckstein, V. Matsuura, M. Kuhn, R. Priemel, T. Müller et al., Sex Differences of Human Trabecular Bone Microstructure in Aging Are Site-Dependent, Journal of Bone and Mineral Research, vol.80, issue.Suppl 3, pp.22-817, 2007.
DOI : 10.1359/jbmr.070301

I. [. Fazzalari, Q. A. Parkinson, P. Fogg, and . Sutton-smith, Antero???postero differences in??cortical thickness and??cortical porosity of??T12 to??L5 vertebral bodies, Joint Bone Spine, vol.73, issue.3, pp.73-293, 2006.
DOI : 10.1016/j.jbspin.2005.03.023

M. [. Fazzalari, K. Forwood, B. A. Smith, P. Manthey, and . Herreen, Assessment of Cancellous Bone Quality in Severe Osteoarthrosis: Bone Mineral Density, Mechanics, and Microdamage, Bone, vol.22, issue.4, pp.381-389, 1998.
DOI : 10.1016/S8756-3282(97)00298-6

. [. Frost, Presence of microscopic cracks in vivo in bone. Bulletin of Henry Ford Hospital, pp.25-35, 1960.

V. [. Gangnet, R. Pomero, W. Dumas, J. Skalli, and . Vital, Variability of The Spine and Pelvis Location with Respect toThe Gravity Line:A 3D Stereoradiographic Study Using a Force Platform, Surgical and Radiologic Anatomy, issue.56, pp.25-424, 2003.

C. [. Genant, C. Wu, M. C. Van-kuijk, and . Nevitt, Vertebral fracture assessment using a semiquantitative technique, Journal of Bone and Mineral Research, vol.13, issue.S1, pp.1137-1185, 1993.
DOI : 10.1002/jbmr.5650080915

C. C. Glüer, G. M. Blake, Y. Lu, B. A. Blunt, M. Jergas et al., Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques, Osteoporosis International, vol.52, issue.4, pp.262-270, 1995.
DOI : 10.1007/BF01774016

F. [. Guggenbuhl, L. Bodic, M. Hamel, D. Baslé, and . Chappard, Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT, Osteoporosis International, vol.13, issue.Suppl 3, pp.17-447, 2006.
DOI : 10.1007/s00198-005-0007-8

M. A. Haidekker, R. Andresen, and H. J. Werner, Relationship Between Structural Parameters, Bone Mineral Density and Fracture Load in Lumbar Vertebrae, Based on High-Resolution Computed Tomography, Quantitative Computed Tomography and Compression Tests, Osteoporosis International, vol.9, issue.5, pp.433-440, 1999.
DOI : 10.1007/s001980050168

T. [. Hansson, M. M. Keller, and . Panjabi, A Study of the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Tissue Characteristics, Spine, vol.12, issue.1, pp.56-62, 1987.
DOI : 10.1097/00007632-198701000-00011

. [. Haralick, Statistical and structural approaches to texture, Proceedings of the IEEE, vol.67, issue.5, p.67, 1979.
DOI : 10.1109/PROC.1979.11328

W. C. Hayes and E. R. Myers, Biomechanical considerations of hip and spine fractures in osteoporotic bone, Instructional course lectures, vol.46, pp.431-469, 1997.

J. Homminga, B. Van-rietbergen, E. M. Lochmüller, H. Weinans, F. Eckstein et al., The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent ???error??? loads, Bone, vol.34, issue.3, pp.510-516, 2004.
DOI : 10.1016/j.bone.2003.12.001

. [. Johnson, Nonequilibrium nonlinear-dynamics in solids: state of the art., in The universality of nonclassical nonlinearity, with applications to NDE and ultrasonics, 2005.

Y. [. Kalifa, C. Charpak, E. Maccia, J. Fery-lemonnier, J. M. Bloch et al., Evaluation of a new low-dose digital X-ray device: first dosimetric and clinical results in children, Pediatric Radiology, vol.28, issue.7, pp.28-557, 1998.
DOI : 10.1007/s002470050413

J. A. Kanis, O. Johnell, A. Oden, A. Dawson, C. D. Laet et al., Ten Year Probabilities of Osteoporotic Fractures According to BMD and Diagnostic Thresholds, Osteoporosis International, vol.12, issue.12, pp.12-989, 2001.
DOI : 10.1007/s001980170006

E. [. Keaveny, G. L. Morgan, O. C. Niebur, and . Yeh, Biomechanics of trabecular bone. Annual review of biomedical engineering, pp.307-340, 2001.

]. T. Keav93a, R. E. Keaveny, L. J. Borchers, W. C. Gibson, and . Hayes, Trabecular bone modulus and strength can depend on specimen geometry, Journal of biomechanics, issue.8, pp.26-991, 1993.

T. M. Keaveny and W. C. Hayes, A 20-Year Perspective on the Mechanical Properties of Trabecular Bone, Journal of Biomechanical Engineering, vol.115, issue.4B, pp.115-534, 1993.
DOI : 10.1115/1.2895536

T. [. Keaveny, R. P. Pinilla, D. L. Crawford, A. Kopperdahl, and . Lou, Systematic and random errors in compression testing of trabecular bone, Journal of Orthopaedic Research, vol.27, issue.1, pp.101-110, 1997.
DOI : 10.1002/jor.1100150115

S. [. Kerkeni, L. Kolta, B. Gossec, E. Billotet, D. Sapin et al., In vivo measurements of vertebral body dimensions by 3-dimensional X-ray absorptiometry, pp.3-113

A. [. Kolta, D. Le-bras, V. Mitton, J. A. Bousson, J. De-guise et al., Three-dimantional X-ray absorptiometry (3D-XA): a method for reconstruction of juman bones using a dual absorptiometry device, Osteoporosis International, issue.16, pp.969-976, 2005.

S. [. Kolta, A. Quiligotti, A. Ruyssen-witrand, D. Amido, A. Mitton et al., In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method, Osteoporosis International, vol.21, issue.2, pp.185-92, 2008.
DOI : 10.1007/s00198-007-0447-4

P. [. Kolta, J. Ravaud, C. Fechtenbaum, and . Roux, Accuracy and Precision of 62 Bone Densitometers Using a European Spine Phantom, Osteoporosis International, vol.10, issue.1, pp.14-19, 1999.
DOI : 10.1007/s001980050188

D. L. Kopperdahl, E. F. Morgan, and T. M. Keaveny, Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone, Journal of Orthopaedic Research, vol.27, issue.4, pp.801-805, 2002.
DOI : 10.1016/S0736-0266(01)00185-1

T. [. Kopperdahl and . Keaveny, Yield strain behavior of trabecular bone, Journal of Biomechanics, vol.31, issue.7, pp.31-601, 1998.
DOI : 10.1016/S0021-9290(98)00057-8

W. [. Laporte, J. A. Skalli, F. De-guise, D. Lavaste, and . Mitton, A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Computed Methods in biomechanics and biomedical engineering, pp.1-6, 2003.

[. Bras, Exploration des potentialités du système EOS pour la caractérisation mécanique des structures osseuses: application à l'extrémité supérieure du fémur, 2004.

E. Lespessailles, C. Chappard, N. Bonnet, and C. L. Benhamou, Imagerie de la microarchitecture osseuse (Imaging techniques for evaluating bone microarchitecture) Revue du rhumatisme, pp.435-443, 2006.

E. Lespessailles, C. Gadois, G. Lemineur, J. Do-huu, and L. Benhamou, Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis, Calcified Tissue International, vol.11, issue.suppl 1, pp.80-97, 2007.
DOI : 10.1007/s00223-006-0216-y

E. Lespessailles, C. Gadois, I. Kousignian, J. Neveu, P. Fardellone et al., Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study, Osteoporosis International, vol.6, issue.Suppl 1, pp.19-1019, 2008.
DOI : 10.1007/s00198-007-0532-8

]. E. Lesp98a, J. P. Lespessailles, C. L. Roux, M. E. Benhamou, E. Arlot et al., Fractal Analysis of Bone Texture on Os Calcis Radiographs Compared with Trabecular Microarchitecture Analyzed by Histomorphometry, Calcified Tissue International, issue.2, pp.63-121, 1998.

]. E. Lesp98b, A. Lespessailles, E. Jullien, R. Eynard, G. Harba et al., Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture, Journal of Biomechanics, issue.9, pp.31-817, 1998.

M. A. Liebschner, D. L. Kopperdahl, W. S. Rosenberg, and T. M. Keaveny, Finite Element Modeling of the Human Thoracolumbar Spine, Spine, vol.28, issue.6, pp.28-559, 2003.
DOI : 10.1097/01.BRS.0000049923.27694.47

F. Linde and I. Hvid, Stiffness behaviour of trabecular bone specimens, Journal of Biomechanics, vol.20, issue.1, pp.83-92, 1987.
DOI : 10.1016/0021-9290(87)90270-3

I. [. Linde and . Hvid, The effect of constraint on the mechanical behaviour of trabecular bone specimens, Journal of Biomechanics, vol.22, issue.5, pp.485-90, 1989.
DOI : 10.1016/0021-9290(89)90209-1

F. Linde, P. Norgaard, I. Hvid, A. Odgaard, and K. Soballe, Mechanical properties of trabecular bone. Dependency on strain rate, Journal of Biomechanics, vol.24, issue.9, pp.803-812, 1991.
DOI : 10.1016/0021-9290(91)90305-7

F. Linde, I. Hvid, and F. Madsen, The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens, Journal of Biomechanics, vol.25, issue.4, pp.359-368, 1992.
DOI : 10.1016/0021-9290(92)90255-Y

H. [. Linde and . Sorensen, The effect of different storage methods on the mechanical properties of trabecular bone, Journal of Biomechanics, vol.26, issue.10, pp.26-1249, 1993.
DOI : 10.1016/0021-9290(93)90072-M

D. [. Lochmüller, V. Bürklein, C. Kuhn, R. Glaser, C. C. Müller et al., Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound, Bone, vol.31, issue.1, pp.31-77, 2002.
DOI : 10.1016/S8756-3282(02)00792-5

K. [. Lu, K. C. Luk, Q. Cheung, J. X. Gui-xing, L. Sheng et al., Microfracture and Changes in Energy Absorption to Fracture of Young Vertebral Cancellous Bone Following Physiological Fatigue Loading, Spine, vol.29, issue.11, pp.29-1196, 2004.
DOI : 10.1097/00007632-200406010-00007

J. [. Luo, J. J. Kinney, D. Kaufman, A. Haupt, R. S. Chiabrera et al., Relationship Between Plain Radiographic Patterns and Three- dimensional Trabecular Architecture in The Human Calcaneus, Osteoporosis International, vol.9, issue.4, pp.339-345, 1999.
DOI : 10.1007/s001980050156

K. [. Masharawi, Y. Salame, S. Mirovsky, G. Peleg, N. Dar et al., Vertebral body shape variation in the thoracic and lumbar spine: Characterization of its asymmetry and wedging, Clinical Anatomy, vol.13, issue.1, pp.46-54, 2007.
DOI : 10.1002/ca.20532

J. Millard, P. Augat, T. M. Link, M. Kothari, D. C. Newitt et al., Power Spectral Analysis of Vertebral Trabecular Bone Structure from Radiographs: Orientation Dependence and Correlation with Bone Mineral Density and Mechanical Properties, Calcified Tissue International, vol.63, issue.6, pp.482-491, 1998.
DOI : 10.1007/s002239900562

C. [. Mitton, S. Landry, W. Véron, F. Skalli, and J. A. Lavaste, De Guise, 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Medical and biological engineering & computing, pp.38-133, 2000.
DOI : 10.1007/bf02344767

S. [. Mitton, S. Deschênes, B. Laporte, S. Godbout, J. A. Bertrand et al., 3D reconstruction of the pelvis from bi-planar radiography. Computed Methods in biomechanics and biomedical engineering, pp.1-5, 2006.

K. [. Mitton, S. Zhao, C. Bertrand, S. Zhao, C. Laporte et al., 3D reconstruction of the ribs from lateral and frontal X-rays in comparison to 3D CT-scan reconstruction, Journal of Biomechanics, vol.41, issue.3, pp.41-706, 2008.
DOI : 10.1016/j.jbiomech.2007.09.034

D. Mitton, Caractérisation mécanique et structurale de l'os spongieux Modèle animal et application à l'étude du vieillissement osseux humain., in Génie biologique et médical, 1997.

J. Mizrahi, M. J. Silva, T. M. Keaveny, W. T. Edwards, and W. C. Hayes, Finite-Element Stress Analysis of the Normal and Osteoporotic Lumbar Vertebral Body, Spine, vol.18, issue.Supplement, pp.18-2088, 1993.
DOI : 10.1097/00007632-199310001-00028

E. F. Morgan and T. M. Keaveny, Dependence of yield strain of human trabecular bone on anatomic site, Journal of Biomechanics, vol.34, issue.5, pp.569-577, 2001.
DOI : 10.1016/S0021-9290(01)00011-2

L. Mosekilde, Alters-assoziierte Ver??nderungen in Knochenmasse, -struktur und -stabilit??t ??? Wirkungen von k??rperlicher Aktivit??t, Zeitschrift f??r Rheumatologie, vol.59, issue.S1, pp.1-9, 2000.
DOI : 10.1007/s003930070031

L. Mosekilde, L. Mosekilde, and C. C. Danielsen, Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone, vol.8, issue.2, pp.79-85, 1987.
DOI : 10.1016/8756-3282(87)90074-3

]. L. Mose89a and . Mosekilde, Sex differences in age-related loss of vertebral trabecular bone mass and structure--biomechanical consequences, Bone, vol.10, issue.6, pp.425-457, 1989.

L. Mosekilde, S. M. Bentzen, G. Ortoft, and J. Jorgensen, The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density, Bone, vol.10, issue.6, pp.465-70, 1989.
DOI : 10.1016/8756-3282(89)90080-X

M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa et al., Comparison of three ultrasonic axial transmission methods for bone assessment, Ultrasound in Medicine & Biology, vol.31, issue.5, pp.31-633, 2005.
DOI : 10.1016/j.ultrasmedbio.2005.02.001

M. Muller, D. Mitton, M. Talmant, P. Johnson, and P. Laugier, Nonlinear ultrasound can detect accumulated damage in human bone, Journal of Biomechanics, vol.41, issue.5, pp.41-1062, 2008.
DOI : 10.1016/j.jbiomech.2007.12.004

S. [. Myers and . Wilson, Biomechanics of Osteoporosis and Vertebral Fracture, Spine, vol.22, issue.Supplement, pp.25-31, 1924.
DOI : 10.1097/00007632-199712151-00005

R. [. Nazarian and . Müller, Time-lapsed microstructural imaging of bone failure behavior, Journal of Biomechanics, vol.37, issue.1, pp.55-65, 2004.
DOI : 10.1016/S0021-9290(03)00254-9

. [. Netter, Atlas d'anatomie humaine, 2004.

X. [. Nicholson, G. Cheng, S. Lowet, M. W. Boonen, J. Davie et al., Van der Perre, Structural and material mechanical properties of human vertebral cancellous bone, Medical Engineering and Physics, issue.8, pp.19-729, 1997.

[. Nih, Osteoporosis Prevention, Diagnosis, and Therapy, NIH Consensus Statement, vol.17, issue.1, pp.1-36, 2000.

F. [. Odgaard and . Linde, The underestimation of Young's modulus in compressive testing of cancellous bone specimens, Journal of biomechanics, issue.8, pp.24-691, 1991.

V. Pomero, D. Mitton, S. Laporte, J. A. De-guise, and W. Skalli, Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model, Clinical Biomechanics, vol.19, issue.3, pp.240-116, 2004.
DOI : 10.1016/j.clinbiomech.2003.11.014

L. Pothuaud, C. L. Benhamou, P. Porion, E. Lespessailles, R. et al., Fractal Dimension of Trabecular Bone Projection Texture Is Related to Three-Dimensional Microarchitecture, Journal of Bone and Mineral Research, vol.53, issue.4, pp.691-699, 2000.
DOI : 10.1359/jbmr.2000.15.4.691

B. [. Pothuaud, L. Van-rietbergen, O. Mosekilde, P. Beuf, C. L. Levitz et al., Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone, Journal of Biomechanics, vol.35, issue.8, pp.1091-1099, 2002.
DOI : 10.1016/S0021-9290(02)00060-X

G. Renaud, S. Callé, J. Remenieras, and M. Defontaine, Exploration of trabecular bone non linear elasticity using time of flight modulation. IEEE UFFC Speical issue on diagnostic and therapeutic applications of ultrasounds in bone, pp.1-10, 2007.

F. [. Rhissassi and . Masri, Caractérisation des propriétés mécaniques d'échantillons cortico-spongieux vertéraux par méthode inverse, pp.1-33, 2008.

T. [. Rho, G. M. Tsui, and . Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, vol.18, issue.20, pp.18-1325, 1997.
DOI : 10.1016/S0142-9612(97)00073-2

L. [. Riggs, R. A. Melton, J. J. Robb, E. J. Camp, J. M. Atkinson et al., Population-Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites, Journal of Bone and Mineral Research, vol.75, issue.12, pp.19-1945, 2004.
DOI : 10.1359/jbmr.040916

H. [. Riggs, W. L. Wahner, R. B. Dunn, K. P. Mazess, L. J. Offord et al., Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis., Journal of Clinical Investigation, vol.67, issue.2, pp.67-328, 1981.
DOI : 10.1172/JCI110039

M. [. Ritzel, M. Amling, M. Pösl, G. Hahn, and . Delling, The Thickness of Human Vertebral Cortical Bone and its Changes in Aging and Osteoporosis: A Histomorphometric Analysis of the Complete Spinal Column from Thirty-Seven Autopsy Specimens, Journal of Bone and Mineral Research, vol.215, issue.Suppl 1, pp.89-95, 1997.
DOI : 10.1359/jbmr.1997.12.1.89

J. [. Roy, T. Y. Rho, N. D. Tsui, G. M. Evans, and . Pharr, Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone, Journal of Biomedical Materials Research, issue.2, pp.44-191, 1999.

K. [. Schaffler, C. Choi, and . Milgrom, Aging and matrix microdamage accumulation in human compact bone, Bone, vol.17, issue.6, pp.521-525, 1995.
DOI : 10.1016/8756-3282(95)00370-3

. A. Schu92, G. Schultz, R. Andersson, K. Ortengren, A. Haderspeck et al., Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals, The Journal of Bone and Joint Surgery, vol.64, pp.713-733, 1982.

M. J. Silva, Biomechanics of osteoporotic fractures. Injury, International Journal of the Care of the injured, pp.69-76, 2007.

M. J. Silva, T. M. Keaveny, and W. C. Hayes, Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections, Journal of Orthopaedic Research, vol.23, issue.3, pp.300-308, 1998.
DOI : 10.1002/jor.1100160305

K. Singer, R. Edmondston, R. Day, P. Breidahl, and R. Price, Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region, Bone, vol.17, issue.2, pp.167-174, 1995.
DOI : 10.1016/S8756-3282(95)00165-4

M. [. Smith, C. Khairi, and J. Johnson, The loss of bone mineral with aging and its relationship to risk of fracture., Journal of Clinical Investigation, vol.56, issue.2, pp.311-318, 1975.
DOI : 10.1172/JCI108095

F. Trochu, A contouring program based on dual kriging interpolation. Engineering with computers, pp.160-177, 1993.

P. [. Ulrich, M. Johnson, D. Muller, M. Mitton, P. Talmant et al., Application of nonlinear dynamics to monitoring progressive fatigue damage in human cortical bone, Applied Physics Letters, vol.91, issue.21, p.91, 2007.
DOI : 10.1063/1.2809565

G. [. Ün, T. M. Bevill, and . Keaveny, The effects of side-artifacts on the elastic modulus of trabecular bone, Journal of biomechanics, issue.11, pp.39-1955, 2006.

A. [. Van-den-abeele, J. Sutin, P. Carmeliet, and . Johnson, Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS), NDT & E International, vol.34, issue.4, pp.239-287, 2001.
DOI : 10.1016/S0963-8695(00)00064-5

J. [. Weaver and . Chalmers, Cancellous Bone, The Journal of Bone & Joint Surgery, vol.48, issue.2, pp.289-98, 1966.
DOI : 10.2106/00004623-196648020-00007

P. [. Wehrli, B. R. Saha, H. K. Gomberg, P. J. Song, M. Snyder et al., Role of Magnetic Resonance for Assessing Structure and Function of Trabecular Bone, Topics in Magnetic Resonance Imaging, vol.13, issue.5, pp.13-335, 2002.
DOI : 10.1097/00002142-200210000-00005

T. E. Wenzel, M. B. Schaffer, and D. P. Fyhrie, In vivo trabecular microcracks in human vertebral bone, Vivo Trabecular Microcracks in Human Vertebral Bone, pp.89-95, 1996.
DOI : 10.1016/8756-3282(96)88871-5

[. Group, Assessment of fracture risk and its application to screening for postemenopausal osteoporosis, 1994.

. [. Zioupos, Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone, Journal of Microscopy, vol.201, issue.2, pp.270-278, 2001.
DOI : 10.1046/j.1365-2818.2001.00783.x

. [. Zioupos, On microcracks, microcracking, in-vivo, in-vitro, in-situ and other issues, Journal of Biomechanics, vol.32, pp.209-211, 1999.