. += and . Arete, ea-1].longueur() * tPk(i_et) * I_1p ; b(ev) += ARETE[ea-1].longueur() * tPk(i_ev) * I_1m

}. Audusse, F. Bouchut, M. Bristeau, R. Klein, and B. Perthame, A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2050-2065, 2004.
DOI : 10.1137/S1064827503431090

F. [. Arnold, B. Brezzi, L. D. Cockburn, and . Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2001.
DOI : 10.1137/S0036142901384162

C. [. Aizinger and . Dawson, A discontinuous Galerkin method for two-dimensional flow and transport in shallow water, Advances in Water Resources, vol.25, issue.1, pp.67-84, 2002.
DOI : 10.1016/S0309-1708(01)00019-7

R. [. Abdul and . Gillham, Laboratory Studies of the Effects of the Capillary Fringe on Streamflow Generation, Water Resources Research, vol.43, issue.3, pp.691-698, 1984.
DOI : 10.1029/WR020i006p00691

]. D. Arn82 and . Arnold, An interior penalty finite element method with discontinuous elements

]. G. Bak77 and . Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp, vol.31, issue.137, pp.45-59, 1977.

]. P. Bas99 and . Bastian, Numerical computation of multiphase flows in porous media, 1999.

]. P. Bas03 and . Bastian, Higher order discontinuous Galerkin methods for flow and transport in porous media, Challenges in scientific computing?CISC 2002, pp.1-22, 2003.

A. [. Brooks and . Corey, Hydraulic properties of porous media, Fort Collins, vol.3, p.27, 1964.

H. Beaugendre, A. Ern, T. Esclaffer, E. Gaume, I. Ginzburg et al., A seepage face model for the interaction of shallow water tables with the ground surface: Application of the obstacle-type method, Journal of Hydrology, vol.329, issue.1-2, pp.258-273, 2006.
DOI : 10.1016/j.jhydrol.2006.02.019

URL : https://hal.archives-ouvertes.fr/inria-00337535

. Bir-+-07-]-p, O. Bastian, F. Ippisch, H. J. Rezanezhad, K. Vogel et al., Numerical simulation and experimental studies of unsaturated water flow in heterogeneous systems, In Reactive Flows, Diffusion and Transport, pp.579-597, 2007.

D. [. Beavers and . Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, vol.none, issue.01, pp.197-207, 1967.
DOI : 10.1017/S0022112067001375

P. [. Bause and . Knabner, Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods, Advances in Water Resources, vol.27, issue.6, pp.565-581, 2004.
DOI : 10.1016/j.advwatres.2004.03.005

J. [. Barcelo and . Nieber, Influence of soil pipe networks on catchment hydrology , 1982. paper presented at the Summer meeting, Am. Soc. Agric. Eng

B. [. Bastian, . P. Rivì-ere-[-bt78-]-z, W. Bazant, M. A. Thonguthai, E. T. Celia et al., Discontinuous galerkin methods for two-phase flow in porous media Pore pressure and drying of concrete at high temperature A general mass-conservative numerical solution for the unsaturated flow equation The Finite Element Method for Elliptic Problems, CJ] E. Cuthill and J.McKee. Reducing the bandwidth of sparse symmetric matrices. Naval Ship Research and Development Center, pp.1059-10791483, 1978.

J. P. Carlier, C. Kao, I. F. Ginzburg-[-cp88-]-r, R. S. Carsel, . Parrishcs98a-]-b et al., Field-scale modeling of subsurface tile-drained soils using an equivalent-medium approach The interrelation between gas and oil relative permeabilities Developing joint probability distributions of soil water retention characteristics The local discontinuous Galerkin method for timedependent convection-diffusion systems The runge-kutta discontinuous galerkin finite element method for conservation laws v : Multidimensional systems Analysis of discontinuous finite element methods for ground water/surface water coupling, Dar56] H. Darcy. Les fontaines publiques de la ville de Dijon. V. Dalmont, Paris, 1856. [Daw06] C. DawsonDB70] T. Dunne and R.D. Black. Partial area contributions to storm runoff in a small new england watershed. Water resources research, pp.105-11538, 1954.

L. Dormieux, E. B. Bourgeoisdla01-]-e, F. Diaw, P. Lehmann, and . Ackerer, IntroductionàIntroduction`Introductionà la micromécanique des milieux poreux One-dimensional simulation of solute transfert in saturated-unsaturated porous media using the discontinuous finite element method, Presses de l' ´ Ecole Nationale des Ponts et Chaussées, pp.197-213, 2001.

M. Discacciati, E. Miglio, A. Quarteronidp99, ]. Diersch, and P. Perrochet, Mathematical and numerical models for coupling surface and groundwater flows, Applied Numerical Mathematics, vol.43, issue.1-2, pp.57-74271, 1999.
DOI : 10.1016/S0168-9274(02)00125-3

D. Di-pietro, J. Ern, and . Guermond, Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection, avec application aux crues desrivì eres etàetà l'introduction des marées dans leur lit. Compte- Rendù a l'Académie des Sciences de Paris, pp.805-831147, 1871.
DOI : 10.1137/060676106

M. Esteves, X. Faucher, S. Galle, and M. Vauclin, Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values, Journal of Hydrology, vol.228, issue.3-4, pp.265-282, 2000.
DOI : 10.1016/S0022-1694(00)00155-4

J. [. Ern and . Guermond, Discontinuous Galerkin Methods for Friedrichs??? Systems. Part II. Second???order Elliptic PDEs, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2363-2388, 2006.
DOI : 10.1137/05063831X

]. B. Ein88 and . Einfeldt, On godunov-type methods for gas dynamics, Journal of Computational Physics, vol.25, pp.294-318, 1988.

S. [. Ern, M. Nicaise, and . Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems, C. R. Math. Acad. Sci. Paris, issue.12, pp.345709-712, 2007.

S. [. Ern, K. Piperno, and . Djadel, A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying, International Journal for Numerical Methods in Fluids, vol.107, issue.2
DOI : 10.1002/fld.1674

URL : https://hal.archives-ouvertes.fr/hal-00153788

A. [. Ern, P. Stephansen, and . Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA Journal of Numerical Analysis, vol.29, issue.2, 2008.
DOI : 10.1093/imanum/drm050

D. [. Fagherazzi, P. Furbish, M. Y. Rasetarinera, and . Hussaini, Application of the discontinuous spectral Galerkin method to groundwater flow, Advances in Water Resources, vol.27, issue.2, pp.129-140, 2004.
DOI : 10.1016/j.advwatres.2003.11.001

W. [. Fatt and . Klikoff, Effect of Fractional Wettability on Multiphase Flow Through Porous Media, Journal of Petroleum Technology, vol.11, issue.10, pp.426-432, 1959.
DOI : 10.2118/1275-G

R. [. Fipps and . Skaggs, Drains as a Boundary Condition in Finite Elements, Water Resources Research, vol.26, issue.2, pp.1613-1621, 1986.
DOI : 10.1029/WR022i011p01613

G. [. Green and . Ampt, Studies on Soil Phyics., The Journal of Agricultural Science, vol.4, issue.01, pp.1-24, 1911.
DOI : 10.1017/S0021859600001441

I. Ginzburg, J. Carlier, and C. Kao, Lattice Boltzmann approach to Richards' equation, Proceedings of Computational Methods in Water Resources 2004 International Conference, 2004.
DOI : 10.1016/S0167-5648(04)80083-2

]. M. Gen80 and . Van-genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci Soc Am J, vol.44, pp.892-898, 1980.

]. V. Gin04 and . Ginting, Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method, 2004.

M. [. Govindaraju, S. E. Kavvas, D. E. Jones, and . Rolston, Use of Green-Ampt model for analyzing one-dimensional convective transport in unsaturated soils, Journal of Hydrology, vol.178, issue.1-4, pp.337-350, 1996.
DOI : 10.1016/0022-1694(95)02796-3

C. [. Golub and . Van-loan, Matrix computations, 1996.

M. Gabbouhy, A. Maslouhi, Z. Mghazli, and Z. Saâdi, Modélisation numérique du transport de soluté dans la zone non saturée d'un sol trés sableux, Math-Recherche et Applications, pp.77-99, 2002.

[. Gerbeau and B. Perthame, Derivation of viscous saint-venant system for laminar shallow water ; numerical validation, Discrete and Continuous Dynamical Systems : Series B, pp.89-102, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00691701

L. [. Gharaaty-sani and . King, Interceptor drains on sloping land, 1978. paper presented at the Summer Meeting, Am. Soc. Agric. Eng

E. [. Gureghian and . Youngs, The calculation of steady-state water-table heights in drained soils by means of the finite-element method, Journal of Hydrology, vol.27, issue.1-2, pp.15-32, 1975.
DOI : 10.1016/0022-1694(75)90096-7

]. A. Haz11 and . Hazen, Discussion : dams on sand fondations, Transactions of the American Society of Civil Engineers, vol.73, pp.199-203, 1911.

]. R. Hel97 and . Helmig, Multiphase Flow and Transport Processes in the Subsurface : A Contribution to the Modelling of Hydrosystems, 1997.

]. J. Her03, . Hervouethg93-]-s, W. G. Hassanizadeh, and . Gray, Hydrodynamique desécoulementsàdesécoulementsdesécoulements`desécoulementsà surface libre : Modélisation numérique avec la méthode desélémentsdeséléments finis Thermodynamic basis of capillary pressure in porous media, Water Resour. Res, vol.29, pp.3389-3405, 1993.

]. A. Hlvl83, P. D. Harten, B. Lax, and . Van-leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Rev, vol.25, pp.35-61, 1983.

]. R. Hor33 and . Horton, The role of infiltration in the hydrologic cycle, Trans. Am. Geophys. Union, vol.14, pp.446-460, 1933.

L. [. He and . Ren, A multiscale finite element linearization scheme for the unsaturated flow problems in heterogeneous porous media, Water Resources Research, vol.28, issue.5, p.8417, 2006.
DOI : 10.1029/2006WR004905

]. R. Hvt-+-77, M. Haverkamp, J. Vauclin, P. J. Touma, G. Wierenga et al., A comparison of numerical simulation models for one-dimensionnal infiltration, Soil Science Society of America Journal, vol.41, pp.285-294, 1977.

A. [. Jäger and . Mikelic, On the interface boundary condition of Beavers, Joseph and Saffmann, SIAM J. Appl. Math, vol.60, pp.1111-1127, 2000.

J. Jones and C. Woodward, Newton-krylovmultigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. manuscript in preparation, Advances in Water Resources, pp.763-774, 2000.

. R. Kkb-+-02-]-k, C. T. Kavanagh, R. C. Kelley, J. P. Berger, S. E. Hallberg et al., Nonsmooth nonlinearities and temporal integration of richards equation, Proceedings of the XIV International Conference on Computational Methods in Water Resources, pp.947-954, 2002.

R. [. Kollet and . Maxwell, Integrated surface???groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Advances in Water Resources, vol.29, issue.7, pp.945-958, 2006.
DOI : 10.1016/j.advwatres.2005.08.006

F. [. Kienzler and . Naef, Subsurface storm flow formation at different hillslopes and implications for the 'old water paradox'. Hydrological processes, pp.104-116, 2008.

]. J. Koz27 and . Kozeny, About capillaries conducting water in the earth, Commitee Report of the Viennese Academy, vol.136, issue.2a, pp.271-306, 1927.

B. [. Klieber and . Rivì-ere, Adaptive simulations of two-phase flow by discontinuous Galerkin methods, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.1-3, pp.404-419, 2006.
DOI : 10.1016/j.cma.2006.05.007

E. [. Knabner and . Schneid, Adaptive Hybrid Mixed Finite Element Discretization of Instationary Variably Saturated Flow in Porous Media, High Performance Scientific and Engineering Computing, vol.29, pp.37-44, 2002.
DOI : 10.1007/978-3-642-55919-8_4

. [. Lehmann, . Ph, and . Ackerer, Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media, Transport in Porous Media, pp.275-292, 1998.

C. [. Moussa and . Bocquillon, Criteria for the choice of flood-routing methods in natural channels, Journal of Hydrology, vol.186, issue.1-4, pp.1-30, 1996.
DOI : 10.1016/S0022-1694(96)03045-4

S. [. Manzini and . Ferraris, Mass-conservative finite volume methods on 2-D unstructured grids for the Richards??? equation, Advances in Water Resources, vol.27, issue.12, pp.1199-1215, 2004.
DOI : 10.1016/j.advwatres.2004.08.008

G. Mayer, F. Jacobs, and F. H. Wittmann, Experimental determination and numerical simulation of the permeability of cementitious materials, Nuclear Engineering and Design, vol.138, issue.2, pp.171-177, 1992.
DOI : 10.1016/0029-5493(92)90293-5

E. Miglio, A. Quarteroni, and F. Saleri, Coupling of free surface and groundwater flows. Computers and Fluids, pp.73-83, 2003.

]. C. Nav23 and . Navier, Mémoire sur les lois du mouvement des fluides, Mémoire de l'Académie des Sciences de Paris, pp.389-416, 1823.

J. Tinsley-oden, I. Babu?ka, and C. E. Baumann, A DiscontinuoushpFinite Element Method for Diffusion Problems, Journal of Computational Physics, vol.146, issue.2, pp.491-519, 1998.
DOI : 10.1006/jcph.1998.6032

C. [. Perrin, V. Michel, and . Andréassian, Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, Journal of Hydrology, vol.242, issue.3-4, pp.275-301, 2001.
DOI : 10.1016/S0022-1694(00)00393-0

D. [. Ponce and . Simons, Shallow wave propagation in open channel flow

]. L. Ric31 and . Richards, Capillary conduction of liquids through porous mediums, Physics, vol.1, pp.318-333, 1931.

M. [. Rivì-ere, V. Wheeler, and . Girault, Part I. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin method for elliptic problem, Computational Geosciences, vol.3, issue.3/4, pp.337-360, 1999.
DOI : 10.1023/A:1011591328604

]. P. Saf59 and . Saffman, A theory of dispersion in a porous medium, J. Fluid Mech, vol.6, pp.321-349, 1959.

]. P. Saf71 and . Saffman, On the boundary condition at the interface of a porous medium

S. [. Singh and . Bhallamudi, Conjunctive surface-subsurface modeling of overland flow, Advances in Water Resources, vol.21, issue.7, pp.567-579, 1998.
DOI : 10.1016/S0309-1708(97)00020-1

]. G. Sto45 and . Stokes, On the theories of the internal friction of fluids motion and of the equilibrium and motion of elastic solids, Trans. Cambridge Phil. Soc, vol.8, pp.287-305

O. [. Tassi, C. A. Bokhove, and . Vionnet, Space discontinuous Galerkin method for shallow water flows???kinetic and HLLC flux, and potential vorticity generation, Advances in Water Resources, vol.30, issue.4, pp.998-1015, 2007.
DOI : 10.1016/j.advwatres.2006.09.003

]. P. Td06 and . Tardif-d-'hamonville, Modélisation et simulation du transport advectif et diffusif an milieu poreux monophasique et diphasique, 2006.

]. P. Tded07, A. Tardif-d-'hamonville, L. Ern, and . Dormieux, Finite element evaluation of diffusion and dispersion tensors in periodic porous media with advection, Computational Geosciences, vol.11, issue.1, pp.43-58, 2007.

]. E. Tor01 and . Toro, Shock-capturing methods for free-surface shallow flows, 2001.

J. [. Viollet, P. Chabard, D. Esposito, and . Laurence, Mécanique des fluides appliquée, 2003.

T. Vogel, M. Th, M. Van-genuchten, and . Cislerova, Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions, Advances in Water Resources, vol.24, issue.2, pp.133-144, 2001.
DOI : 10.1016/S0309-1708(00)00037-3

K. [. Vanderkwaak and . Loague, Hydrologic-Response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resources Research, vol.23, issue.4, pp.999-1013, 2001.
DOI : 10.1029/2000WR900272

G. [. Vimoke and . Taylor, Simulating water flow in soil with an electric resistance network. Soil and Water Conserv, Res. Div., U.S. Agirc. Res. Serv, vol.32, pp.1-136, 1962.

C. [. Woodward and . Dawson, Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media, SIAM Journal on Numerical Analysis, vol.37, issue.3, pp.701-724, 2000.
DOI : 10.1137/S0036142996311040

]. M. Whe78 and . Wheeler, An elliptic collocation-finite element method with interior penalties