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Introduction

Skeletal muscle contraction is a broad domain of science that covers many areas,
from biophysics and chemistry to mechanics. The foundations of the theory of
muscle contraction were built 50 years ago, when it was understood that it is
myosin “cross-bridge”, linking adjacent myosin and actin filaments, that generates
force and motion. Since that time many experimental advances have been made.
These advances have not been always matched by improvements in the building of

mathematical models.

Mathematical approaches to muscle contraction are mainly based on the ideas
proposed in the Huxley 1957 model [4] and Huxley and Simmons 1971 model [10],
that dominated the field for the past half century. Although they do not account
for all observed phenomena, these models still represent the paradigm of choice.
The two models of Huxley can be seen as complementary since the Huxley 1957
model describes the attachment-detachment process and the events related to the
slow time scale, while the Huxley and Simmons 1971 model describes the power
stroke process and the events related to the fast time scale.

In this Thesis we shall follow some recent insight and explore the possibility
to bring together these two type of processes and to obtain a unified model that
is able to describe the whole cross-bridge cycle. Before the unification we first
modify the existing models to cast them into a fully mechanical framework. Both
Huxley 1957 model [4] and Huxley and Simmons 1971 model [10], present ad hoc
assumptions regarding the chemical rate constants that drive the processes. Similar
assumptions were made in all recent models to fit the experimental data at the
expense of maintaining the link with mechanics.

In Chapter 1 we describe the physiology of muscles and their mechanical be-
havior, as well as the corresponding experimental procedures. There we also give
the details of the Huxley 1957 model and Huxley and Simmons 1971 model which

are important for the original development in the subsequent pages.

In Chapter 2, we deal with the attached state and reexamine the power stroke
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theory through the eyes of a mechanical engineer. It has been already observed
in the literature [17| that the Huxley and Simmons 1971 model of power stroke
encounters problems in matching the observed time scale of tension relaxation
when a realistic value of the stiffness of the myosin head is taken. After a review
of how the more recent models, which incorporate one or more aspects of the
original Huxley and Simmons 1971 model, deal with these problems, we present
our modification of the theory which places the power stroke mechanism entirely
in a mechanical framework. The novelty of our approach from the perspective of
mechanics is that we deal with the mechanical behavior of a multi-stable system
in a Brownian domain, where the effects of thermal fluctuations are important.
We obtain an analytical description of the behavior of our model at equilibrium
and during the transients and show how the resulting modification of the Huxley
and Simmons 1971 model helps one to avoid the intrinsic problems of this model
indicated above. Finally we show that our model gives a new meaning to the
power stroke step, which is in quantitative agreement with all recent experimental

observations.

In Chapter 3, we turn to the attachment-detachment process and review from
the new, fully mechanical point of view the Huxley 1957 model. We show that this
model can be viewed as belonging to a class of models of Brownian ratchets. These
models, first developed in the early '90s, have an important role in the description
of molecular motors of which the myosin II is an example. We are interested in the
Brownian ratchets theory because it allows one to have a completely mechanical
interpretation of the muscle contraction process. We present different types of
ratchets representing the process of ATP hydrolysis. We modify one of these models
by including cooperative effects and adapt it to the description of the slow time
phase of the contraction phenomenon. We also develop and test in this Chapter a
numerical algorithm to solve the coupled system of stochastic differential equations

which is later used for our numerical experiments.

In Chapter 4, we combine the power stroke model from Chapter 2 with the
model of a cooperative Brownian ratchet developed for the simulation of the
attachment-detachment process in Chapter 3. We present different ways of linking
together the two models and study both advantages and limitations of each version
of the unified model. We finally come up with a model capable of providing fully
mechanical description of all four stages of the biochemical Lymn-Taylor cycle of
muscle contraction. The resulting model still has drawbacks and we present some

perspectives regarding how to resolve the remaining problems.



In the last Chapter 5 we collect the main new developments from each Chapter
and present a general discussion and conclusions. In Appendix we review some
mathematical results regarding stochastic differential equations which we used in
the Thesis.






Chapter 1

Muscle physiology and early

modeling

1.1 Muscle physiology

The movements of a muscle on a macroscopic scale appear as the result of the
concerted action of millions of elemental units that work in unison. The most
studied muscles are called skeletal muscles because these muscles are attached
to the skeleton. The contraction of skeletal muscles is under voluntary control.
They belong to the class of striated muscles which are composed of long, parallel,
cylindrical fibers. Each of these fibers is a multinucleate cell, of 1 — 100 mm in
length and 10 — 100 pm in diameter. Fibers contain myofibrils, also cylindrical in
shape with a diameter of 0.5 — 2 um. Myofibrils are made of repeated segments
each about 2.5 pum in length, that are called sarcomeres (Fig. 1.1) |95].
Sarcomere is the smallest element of a muscle that can contract. Being placed
in series, sarcomeres generate the contraction of the whole muscle. Each sarcomere
is formed by an array of filaments of two different types, which interact with each
other: a thinner filament, containing the protein Actin, and a thicker filament,
containing the protein Myosin. The sarcomere can be divided in zones: in Fig. 1.2
we see a longitudinal and a transverse view of it. In the region where the filaments
overlap, six thin filaments are located around each thick filament (Fig. 1.2b).
Thin filaments are anchored to the Z-disk (from german zwischen, between) which
connects adjacent sarcomeres. Thick filaments are anchored to M-line (Mittel,
middle of the sarcomere, not showed in Fig. 1.2) and also to the Z-disk via an elastic
element the giant protein titin. These repeating structures, (A=anisotropic at the

polarizing microscope, I=isotropic, H=hell=clear) observed under the microscope,
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Figure 1.1: Muscle’s anatomical microstructure

generate the typical striated structure that gives the name to this type of muscles
[19]. A longitudinal view as it appears on a electron mocrograph is given in Fig.
1.3.

The sliding-filament hypothesis was proposed fifty years ago. It assumes that
during contraction the thin filament moves past the thick one, so that both the sar-
comere, and the muscle, shorten without changing the length of the two structures.
The hypothesis was based on the papers of Hugh Huxley and Jean Hanson [2] (using
a phase contrast light microscopy) and of Andrew Huxley and Rolf Niedergerke [3]
(using a specially developed interference light microscope) both published in 1954.
Both works showed that when the muscle contracts the filaments keep a constant
length, and the conclusion was made that they must slide during shortening. This
hypothesis has not been immediately accepted: the then current view was that
myosin was a long negatively charged polypeptide without much structure that

shorten down due to the addition of C'a®* |76]. Later on, it became clear that



Muscle physiology Section 1.1

Figure 1.2: Longitudinal and transverse view of a sarcomere: (a) Longitudinal view of 3 sar-
comeres (sketch). (b) Transverse view at 3 different section (sketch). (c) Transverse view of 3

sarcomeres (microscope). From [97]

e —

proteingin - just overlap zone Just myasin proteins
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filarment thick & thin filament - ho
filaments cross bridges

Figure 1.3: Longitudinal view of a sarcomere as seen in electron micrgraph. From [9§]

the two filaments interact through the cross-bridges (later we use notation Xb);
these are the globular portions, or heads, that emerge in regularly repeating cou-
ples from the thick filament formed by the polymerisation of the dimeric protein
myosin II (Fig. 1.4). Each head has a site with an affinity for actin, and a site
with an affinity for a high energy molecule, called ATP (adenosintriphosphate).
The first site bounds an actin monomer while the second site an ATP molecule
which acts as the fuel for the muscle motor. ATP is hydrolyzed by myosin in
ADP (adenosindiphosphate) and orthophosphate which subsequently are dissoci-

ated with release of chemical energy [9)].

A simplified model of Xb cycle is shown in Fig. 1.5, where one can see four most
important states in which Xb can exist. When attached to actin (state 2 in the
figure), each Xb uses its potential energy to pull the actin filament through a power
stroke (state 3) which, according to crystallographic studies, consists in a tilting of

the lever arm portion of the head [33]. The relative sliding of the filaments takes
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Myosin tails are arranged to point toward
the center of the sarcomere, and the heads
point to the sides of the myofilament band.

Myosin head ——
(b) Portion of a thick filament

5 BENJAMINGCUMMINGS

Figure 1.4: Myosin filament structure. (a) Myosin molecule (couple). (b) Bundle of coupled

myosin molecules which generate the thick filament. From [100]

place in one direction (plus direction), but due to the antiparallel arrangement
of the two halves of the sarcomere, the two Z-disks are pulled towards the center
of the sarcomere, reducing its length. In this sense, the half-sarcomere, the zone
between one Z-disk and the next M-line, can be seen as the smallest element that
can contract. To go back to its original configuration (state 1) the Xb needs another
ATP to detach from actin and start another cycle (state 4). It then binds to a
new active site on the actin filament (state 2) and the whole process starts again
|64]. This inner working is described in the bio-chemical Lymn-Taylor model of
a cross-bridge cycle [9]. The cycle in Fig. 1.5 is a simplified four-states model
that omits a number of intermediate states, nevertheless it describes the essential
steps of the process. An important general observation is that muscle needs ATP
for both the contraction and the relaxation; the unphysiological depletion of ATP
below a certain concentration will prevent the detachment of the heads from the

actin filament, which causes rigor mortis [19)].

The structure of the head can be resolved with a precision of one nanometer [33],
[87]. It has been proved that the relative displacement of the filaments is mainly
taking place during the power stroke (state 3). It is achieved by a rotation of the
distal part (C-terminal) of the head that acts like a lever arm. This mechanism

gives to the whole approach the name of swinging lever arm theory.

Regulation of the contraction is due to the fact that Xbs can bound actin only

when the concentration of calcium ions is high enough. The troponin is a protein
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Figure 1.5: Simplified Cross Bridge (Xb) cycle (see text). From [44]

that is attached to the protein tropomyosin and lies within the groove between the
two strand of the actin filament in muscle tissue. In a relaxed muscle, tropomyosin
prevent the interaction of myosin with the attachment site on actin, thus preventing
contraction. When the muscle cell is stimulated, calcium channels open in the sar-
coplasmic reticulum and release calcium into the sarcoplasm. Some of this calcium
ions attach to troponin, causing a conformational change that moves tropomyosin
out of the way so that the Xbs can attach to actin and produce muscle contrac-
tion. The ions Ca®" are stored in the sarcoplasmatic reticulum (SR) surrounding
the myofilaments. The action potential originated at the neuromuscolar junction
triggers the release of calcium from the SR almost synchronously everywhere by
inducing an increase in Ca2+ permeability of the SR membrane. The contraction
is maintained until the nerve continues to fire; when the train of action potentials
stops, the Ca2+ permeability falls, while the Ca2-+ pump brings back the calcium
into the SR. The decrease of calcium concentration below the threshold inactivates

the thin filament and induces relaxation of muscle [19] (Fig. 1.6).



Chapter 1 Muscle physiology and early modeling
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Figure 1.6: Excitation contraction coupling: schematic description. From [97]

We have given here a brief overview of the complex events that lead to the con-
traction of skeletal muscles. A complete description should take into consideration
how the electrical signal generates the biochemical processes, with all their com-
plexity, which finally leads to the mechanical force or displacement in sarcomeres.
We would like to emphasize that in this work we shall consider only the mechanical
aspects of the contraction, avoiding the description of proteins interaction through
chemical rate constants. Despite some limitations in the physical interpretation
of the final model, discussed at the end of the thesis, this approach allows one
to produce a fully mechanical model of the contraction in the sarcomere, opening
the way to the construction of artificial muscle type machines. Moreover, as we
shall show the new approach improves, in some aspects, the predictive power of

the model respect to the chemical approach.
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1.2 Mechanical experiments

There exist different experimental approaches to the study of the mechanics of
muscle contraction (see |76], [75], |78] and references therein). The technology used
in these experiments has been often highly innovative, leading to technological
spin-off. We have already mentioned different microscopy techniques. Another
technique is the in vitro motility essay, where single myosin molecules attached to a
bead trapped by a laser beam are used to measure the generated force. Differently,
the IVMA measures the speed of sliding of actin filaments, attached to a bead,
gliding on a bed of myosins. Then the synchrotron radiation (an intense X-ray
source) was developed to study the Xb movements in situ in whole muscle or
single fibres. Finally protein crystallography was applied to investigate the power

stroke in the myosin molecule at atomic resolution (see Fig. 1.7) [76].

upper SOK domain

regulatory light chain

,.
converter domain essential light chain

Figure 1.7: Structure of myosin S1 from chicken skeletal muscle. From [33]

In this Thesis we approach the modeling of skeletal muscles contraction from a
mechanical point of view. Therefore, we shall be mainly interested in a particular
set of experiments performed on the muscle fibers or myofibrils. These experiments
have common aspects with the usual mechanical measurements aimed at testing
the behavior of passive materials [19].

A muscle responds to a single stimulus with a single transient rise in tension,
called twitch. Two stimuli, generated after a suitable interval of time, produce
identical force transients. When the second twitch starts before the first one is
over, the second one develops a larger peak tension. With a train of stimulations
the force reaches a steady state value, called unfused tetanus, and characterized

by the oscillating behavior with the stimulation frequency (Fig. 1.8). At a higher
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Chapter 1 Muscle physiology and early modeling

frequency the mean force rises to an almost constant value: this situation is called
tetanus. The required frequency depends on the type of muscles and on the tem-
perature (50-60 Hz in mammalian muscles at body temperature, not used in the
figure) [19]. An experiments in which we are interested have been made in the

state of tetanus, that can be viewed as a steady state condition.

Muscle tension

~.1pps
I | g !
D 100 200 300 400
Time (msec)

Figure 1.8: Force generated at different stimulation frequency. 1 pps correspond to the single

twitch, at 80 pps is reached the tetanus. From [97]

The mechanical experiments, either on a fiber or on a myofibril, are usually
performed with one end of the specimen fixed and the other linked to a lever with
a catch mechanism and a transducer of force (Fig. 1.9). In this Section we shall
explain in detail the three major protocols used in these type of experiments and

present their main results.

Force-length curves

When the catch mechanism is fixed, the muscle undergoes an isometric contraction.
By imposing tetanization with the ends fixed one can register the tension generated
by the muscle. By varying the initial length of the muscle before the tetanization,
a force-length curve can be constructed [95].

In Fig. 1.10 we show the schematic force length curve for the total force and for
its two components: active force and passive force. Passive force is the resistance
generated by elastic components in parallel to the contractile element, it becomes
relevant when the sarcomeres are overstretched. The passive resistance is almost
zero until a certain critical elongation of the sarcomere, and then increases fast
showing nonlinear elasticity. Subtracting the passive force from the total isometric

force, we obtain the component of the force that a muscle can generate actively.
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Figure 1.9: Experimental devices (a,d), experimental curves(b,c) and one version of the Hill’s
model (e) (see Section 1.3.1). (a) When the catch mechanism is acting the muscle can be tetanized
at a constant length, left part of (c), reaching the tetanus at Ty in (b). When the system is released
(d), the isotonic contraction against a constant load, T' in (b), generates the length-time curve in

the right part of (c). From [19]

Different types of muscles have different passive responses and so different total
forces, but the active force-length curve, for most of them, shows the same non-
monotone behavior |7|. This behavior (Fig. 1.11) is in agreement, with the fact
that the two filaments must overlap to generate force. In fact, the maximum active
force is generated when the overlap between the two filaments is optimal, i.e. when
all the Xbs see an actin site where they can bound and, at the same time, there is
no interference between the two half parts of a sarcomere. When the initial length
in the passive state is such that some Xbs, the ones near the M-line, do not have
any active site to attach, the active force starts to decrease linearly with the total
number of Xbs available to interact with actin. For shorter initial lengths than
those corresponding to the plateau of the force-length curve, two opposite actin
filaments start to interfere with each other, that again contributes to a decrease of
force [7].

An important thing to note is that the force-length (T-1) curve is created point
by point: first we fix a length in the passive state, then we tetanize the muscle and
register the force which develops in isometric contraction. The T-1 curve represents
therefore a series of isometric activations at different initial passive lengths. In
particular this curve does not represent the response of the muscle to quasi-static

stretching.
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Figure 1.10: Total, passive and active force as a function of the length for two different types of
muscles. The passive force is analyzed stretching the muscle in the passive state. The total force

is analyzed tetanizing the muscle from a constant passive length. The active force is derived by

subtraction. From [19]
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Figure 1.11: Upper figure: Active tension generated by isometric tetanization from different
passive lengths of the sarcomere. Lower figure: relative positions of the thin filament (black line)

and of the thick filament (white body) at the points indicated in the upper figure. From [19]
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Force-velocity experiments

The dynamical behavior of skeletal muscles is usually studied in a different type of
experiments [1], [67], [66], [93] aimed at constructing the force-velocity curve. This
curve relates the load imposed to a contracting muscle to the velocity at which the
muscle shortens. It can be obtained, still point by point, within the experimental
setup discussed before [5]: a muscle is tetanized at a fixed passive length, then
the lever is released, while a constant load is applied. The length of the muscle is
plotted against time (Fig. 1.12). As soon as tension is reduced, the muscle length
decreases: this typically fast response shows the presence of an elastic element
whose shortening takes place before a slower time scale dynamics of the Xb cycle
gets activated. After this fast transient, the muscle starts to shorten at constant

velocity. Repeating the experiment with different loads, one can construct the

curve plotted in Fig. 1.13.

A

2

Length change (mm)

Length change (mm)
> -

0
— e e e 05
b /] / 2
L 1 1 1 J

Time (msec)

Figure 1.12: Shortening vs. time curves, for one load (A) and for different loads (B). Length

change axes refers to shortening. The oscillating regime is due to the mechanical apparatus.

From [5]

As we can see, there is a maximum velocity vy that the muscle contraction can
reach under free (unloaded) shortening; this velocity is independent of the length
of the muscle in the passive state. There is also a load against which the muscle
undergoes an isometric contraction at v = 0, this value is provided by the T-1 curve.
Applying a constant load greater than this value gives the force velocity curve in
lengthening (or eccentric) portion. This latter range is much less known than the
shortening range because of the higher dispersion of the experimental points. A

general feature is that above a certain threshold, about 1.8 F,_g, the velocity goes
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to infinity. Moreover there is a discontinuity in the derivative of the F'—wv curve at
the isometric point v = 0: in the eccentric portion the derivative of the curve is six
time greater than in the shortening portion. In order to construct the force-velocity
curve the steady shortening state must be reached, which happens in a typical time
scale of tens of milliseconds [93]|. The transient that precedes this state takes place
in a typical time scale of some milliseconds and can be analyzed also in a slightly

different mechanism, which we introduce in the next Section.

Experiments on fast force recovery

There is a third type of experiments with which we shall mainly occupy ourselves
in this Thesis. Imposing on a tetanized muscle a small increment, say negative,
of length § generates a change in tension as shown in Fig. 1.14(a) (see [10] and
references below). There is an instantaneous (hundreds of microseconds) decrease
in tension to a new value called T}, just as it would be if the thin and thick
filaments were attached to each other by elastic springs. Almost immediately after
this elastic stress drop, the tension rises and then for some time (milliseconds time
scale) remains close to a plateau level (called T,) before finally recovering fully
the value it had had before the length change (tens of milliseconds time scale).
The changes in length in these experiments are very small, about 4-10 nm per

half sarcomere, and the time scales involved for T, recovery (milliseconds) are

12
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such that it is realistic to assume that the number of attached Xbs remains fixed.
Imposing different length increments, one obtains the relationship between the

imposed length increments and the tensions 77 and T shown in Fig. 1.14(b).

Length, <
nm per half
1onm Tension, relative to isometric
14
i ——
L —]
—1
T " ln«ycmz
Tension '
Tn ke
o
—_
10 msec
Time y, filament displacement in each half-sarcomere (nm)
(a) (b)

Figure 1.14: Fast recovery experiments. (a) A rapid small shortening is applied to the muscle
(upper trace) and the resulting tension history is measured (lower trace). (b) The curves T} and
T5 vs. the imposed length increment for two different values of initial length, normalized with

respect to the higher isometric tension Tp. Symbols are defined in the text. From [19]

An important understanding that derives from this experiment is that the values
of T7 at various shortenings lay practically on a straight line. Another important
result is that the rate of recovery of tension changes with the step imposed in a
highly non linear manner (see Fig. 1.15). It tends to increase in an exponential
way from positive length steps to higher negative steps.

The behavior exhibited by a muscle in this set of experiments is an impor-
tant source of information about muscle mechanics, because at least the fast time
response producing the functions 77(0) and T5(J) appears to be independent of
the attachment-detachment process. Since the pioneering paper of Huxley and
Simmons |10] these experiments have been repeated by many groups [14] [41] [43]
[67].

The force-length, the force-velocity and the 77 and T5 vs. step-length curves are
the most important experimental results that deal directly with the mechanisms of
muscle contraction. We have given references to some recent experiments revealing
for instance the history dependence in the mechanical response when muscle is
stretched after tetanization [52]. Nevertheless, in what follows, we shall focus on

the explanation of only the main experimental facts that are considered to be well
established.

13
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Figure 1.15: Rate constant r of quick tension recovery following a length increment of magnitude

y. Estimated as In(3)/t;/3 where t; 3 is the time for recovery from T to (273 +71)/3. From [10]

1.3 Mechanical modeling

In this Section we introduce several basic models aimed at explaining the mechan-
ical behavior of muscles. They are: the Hill 1938 model, the Huxley 1957 model
and the Huxley and Simmons 1971 model. These models represent the basis on
which the majority of more recent models are based. Some of this more recent

models are reviewed later in the Thesis.

1.3.1 Hill 1938 model

An analytical expression for the concentric part of the force-velocity curve was ob-
tained by Hill in 1938 [1]. He used his own experiments focused on the energetics of
muscle contraction against a constant force. First he observed that when the mus-
cle is allowed to shorten, it liberates more energy (thermal and mechanical) than
during isometric contraction. He divided the total energy rate E into three terms:
the maintenance heat rate (A) liberated by a muscle in isometric contraction, the
shortening heat rate (H), that is the total heat liberated during the contraction
minus A, and the rate of work done (W) equal to F'- v where F' is the constant

applied force and v is the velocity uniquely related to it, as we have seen in our

14
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discussion of the force velocity curve. Hill wrote the energy balance in the form:
E=A+H+W=FE-A=H+W. (1.1)

By a very precise measurement of the first term A and of the total energy rate

E, Hill observed empirically the relation:
H+W =bF,—F). (1.2)

In the right hand side of (1.2) we see the difference between the force F' applied
to the muscle and the maximal force F exerted by it in an isometric contraction
when v = 0. Independently Hill observed that H depends linearly on the velocity

of contraction, H = av. In this way we have:
H+W =av+ Fv=>bF,—F). (1.3)
By rearranging terms in (1.3), Hill obtained:

(a+ F)(v+b) = bla+ Fp). (1.4)

Shortening Velocity [cm/s]

0 20 40 60 80
Load [g]

Figure 1.16: Force velocity relation. The circles represent the experimental observation (frog

muscle), the line corresponds to the curve (1.4). From [52]

In the F'—v space equation (1.4) describes a hyperbola with asymptotes —a and
—b (see Fig. 1.16) [46]. It fits the experimental points very well (using appropriates
values of a and b) for a large variety of muscles. In the free contraction F' = 0,
the velocity becomes maximal v,,,, and it has been observed that for many type

of muscles across species and temperatures |52]:

b
&2 095 (1.5)

F 0 Umaz
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Parallel element

Figure 1.17: Hill 1938 model with with a series of a passive spring and a contractile element,

both in parallel with a second passive spring. From [19]

With these results, Hill proposed a model (see Fig. 1.17) where the active
muscle is represented by an elastic element SE in series with a contractile element
CE whose function is to link the applied force to the velocity, in a black box manner.
Successively, to account for passive elasticity, an elastic element PE was added in
parallel with the CE and the SE (Fig. 1.17).

In the passive state the CE can be stretched without any resistance. During
the contraction, the total force generated by the system is ' = kyu + ks(u — w).
Here ks(u —w) = fCE[w', lo], ks is the stiffness of the SE and k, of the PE, u the
total displacement, w the displacement of the CE, fog is the force in the contractile
element which depends on the rate of change of the displacement w' = v. According

to observations made by Hill, the CE exerts a force of the type

4 . b
0 w < —F(lo)—
. a
F(lo)b+aw —F(lo)é <w<0
o A F(l)b — d'i “y
1.5F (Iy) — 0.50wT 0 << F(ly)=
| 1.5F(lo) F(lo)% <

that accounts also for the eccentric contraction. The isometric force Fy has a
dependence on the initial length of the muscle [y, as shown by the force length
curve. The force is equal to zero for large negative values of w’ (shortening), while
it can be directly obtained from (1.4) for smaller contraction velocities. In the
eccentric region, w > 0, the values are taken to match the behavior observed
experimentally (see Fig. 1.13).

The model leads to a differential equation that can be solved to obtain the
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time dependence of the force for different given protocols of stretches. Thus if we

introduce a parameter 3 to account for the concentration of calcium, as in the first

and third part of Fig. 1.18, we obtain:
kY . Flo,t
(1 + k—”) i — (kf: ),10] (1.6)

where 0 < 3 < 1 modulates the force in the contractile element fog. Two examples

F(lo,t) — kpu = ffor

of loading programs are presented in Fig. 1.18. The elongation, equal for both
experiments, is given by a ramp that increases the length of the muscle, maintains
it constant and then shortens it to the initial state. The activation parameters
were different. The experimental observations obtained for the given elongation
history is shown in Fig. 1.19. The predictions of the model are in Fig. 1.20: the
two responses are rather similar.

For 50 years Hill 1938 model dominated the field. In this period many ideas
have been added to the model in order to accommodate newly discovered facts |52].
Originally quite simple the model became more and more complicated and lost its
appeal; however the simplest version is still today used to simulate the mechanical

behavior of muscles.

Activation
Parameter 3

T T T

O — T -~ Time [s]

1.0

Elongation « [mm]

104 /_\
. Time [s]

1.0

(a)

Activation
Parameter 3

Y B

— . . Time [s]

1.0
Elongation u [mm]

101 m

1.0

Time [s]

(b)

Figure 1.18: Two different experimental procedures for Hill’s 1938 model. The response is
illustrated in Fig. 1.20. From [52]
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Figure 1.19: Experimental results for the elongation history shown in Fig. 1.18. From [13]
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Figure 1.20: Response of the Hill’s 1938 model for two different procedures I (upper part of
Fig. 1.18) and II (bottom part). From [52]
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The main reason for the search of different concepts in muscle modeling was
the following: Hill’s model does not provide insights into the mechanism of the
production of force. Its black bor nature is sufficient to give a good fit to the
experimental curves, but it does not provide a tool for the understanding of the
mechanisms that operates at the micro-scales which are not visible in the standard

mechanical experiments.

1.3.2 Huxley 1957 model

Before 1954, most theories of muscle contraction were based on the idea that short-
ening and force production were the result of some kind of folding or coiling of large
protein molecules. In 1954, HE Huxley and J Hansen [2] as well as AF Huxley and
RM Niedergerke [3| demonstrated that muscle contraction is not associated with
any change of length inside the microstructure. These authors postulated that the
force is generated through the interaction of actin and myosin filaments.

Based on this understanding, AF Huxley developed in 1957 a new theory of
muscle contraction [4]. The thick myosin filament is assumed to be fixed in space
while the thin filament is assumed to slide parallel to myosin with constant velocity
v. The movement is generated by a mechanical structure (that is now known to be
the Xb) that can occupy different positions along the backbone of actin, and whose
movement is limited by an elastic element (Fig. 1.21(a)). The model postulates
that the number of active Xbs is constant and considers only the full activation of

the muscle (tetanic response).

A : !

Thick |r1lament

—54
s g ﬂ
—IJr T _rﬂﬂﬂ

0 ME
Thinilamen! -
|

=

.IF]. . R\
A . LTI AF A = —_—

-1.5 0 1.0 0.5 0 05 ;p 1.0 1.6

Figure 1.21: Huxley 1957 model. (a) The myosin head M is elastically coupled to the backbone.
The interaction between the filaments can be established when M reach the attachment site A

on the actin filament. (b) hypotheses on the attachment and detachment functions. From [4]
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The structure in question can attach itself only to specific sites on the actin
filament. When it is attached, then there is a force between actin and myosin,
which depends on the position of Xb. To calculate the total force generated by
the muscle one needs to know the total number of attached Xbs at each position
x relative to the reference position of the structure, at every time ¢.

As a result of thermal fluctuations Xbs attach to the actin in a range of axial
position. They exert a force if they reach the attached position where the elastic
element is stretched; notice that a source of asymmetry is needed to generate a net
force in one particular direction [4]. It is assumed that the probability f that a
detached Xb can attach and the probability g that an attached Xb can detach, are
functions of the variable x, as showed in Fig. 1.21(b). The attachment probability
f(z) is assumed to be linear in = and is zero both beyond a maximum distance h,
and for x < 0 (the Xb can not attach to an active site when the elastic element is
compressed). The detachment probability function g(z) is also linear for positive
x, the probability increases even beyond h, and is large and constant for negative
x. If n(xz,t) is the fraction of the total population of attached Xbs whose distance
from the active site is x at time ¢, then its time evolution can be found from a first

order kinetic equation [4]:

on(z,t) on(z,t)

o VT or (1 —n(z,1))f(z) — n(z,t)g(x). (1.7)

Huxley limited the analysis to steady state case, when the solution is constant in
time, so the first term in the left is zero. The equation (1.7) allows the computation
of n(x) at different v: at zero velocity n(x) reaches the constant value f/(f + g).
At higher values of velocity there are two factors that reduce its value: first there is
less time for the Xbs to attach, second the Xbs are brought faster towards negative
values of z. The predictions of the model (1.7) are illustrated in Fig. 1.22. The

analytical solution is given by:

Ji _ _ g2
fl}rgl [1 — exp( ¢/v2)]exp(£) <0
V) = 1 _ 4\ ® 1.8
R O B | R
0 z>=h
where
¢:f142-91h‘

Using this solution one can write an explicit expression for the force velocity depen-

dence. Indeed, assume that each Xb acts like a linear spring with elastic modulus
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Figure 1.22: Relative distribution of Xbs at various velocities according to Huxley 1957 model.
From [4]

k, generating a force proportional to its displacement kx. Then the total tension

can be written as:

T() =p [ kan(z,v)ds =

fHi+ah? v b/ 1/fi+an\v (1.9)
gt S [ (P2 5

where p stands for the density of Xbs per unit volume. Optimizing the parameters

to fit the Hill’s data, Huxley obtained an excellent fit as in Fig. 1.23. The isometric

tension becomes C'(f/(f + g)), where C depends on the number of Xbs present
in the segment of muscle under consideration and on the other parameters of the
model, for instance the elastic constant.

In addition to the concentric part of the force velocity curve the model predicts
also other features of the muscle response, even if only qualitatively. For instance,
the model predicts the eccentric part of the force velocity curve, showing both a
different slope of the curve at the isometric point and an asymptotic behavior of
the force at high velocities. Both values however are highly overestimated. The
model also overestimates the rate of heat release during lengthening, however this

problem, as pointed out in [4], can be eliminated through the assumption that
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Figure 1.23: Huxley’s prediction for the force velocity curve (line) and experimental data
(points). From 1.23

during lengthening there is a mechanical breakdown of the Xbs, which detach
without ATP release. Many more recent developments have been done along these
lines, see for instance |21|, [22], 27|, [58], [64]. Overall, the Huxley 1957 model
represents an improvement over the Hill 1938 model because it gives a precise
mathematical description of the microscopic events behind the black box behavior

postulated by Hill.

1.3.3 Huxley and Simmons 1971 model

The experimental response of muscles to rapid length increments, described in
Section 1.2, cannot be easily explained by the 1957 Huxley’s model. The pioneering
experiments of this type, made in [10], have lead to the development of another
important mathematical model: Huxley and Simmons’ model of 1971. This model
is not an expansion of the Huxley 1957 model, but is a quite different model which
deals only with force generated by the attached Xbs. In particular it does not
take into account the detachment process. What brings the necessity of a new
model is the fact that the rapid recovery of force takes place in the milliseconds
time scale, which is difficult to explain in the framework of the slower attachment-
detachment process, related to the time scale of tenth of a second. The approach
used by Huxley and Simmons, which we shall describe below, is the predominant

idea even in the most recent models. This approach has recently received further
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confirmation from the measurements of the axial motions of the myosin heads at
angstrom resolution by X-ray interference technique [66].

The particular mechanism suggested by Huxley and Simmons for the structure
of the Xbs is shown in Fig. 1.24. First of all, they assumed that the Xb contains a
linear elastic spring linked to the head of the myosin. When attached to the actin
filament, the head of the myosin can be in two states, and can switch from one
state to another in a jump fashion. The ratio of the rates of jumps are controlled
by the relative energy of the two states. The energy U, of the head is a double
well function of configuration coordinate z, it is plotted in Fig. 1.25 together with
the parabolic energy of an elastic element. The switching can stretch or relax the
elastic element, so we can refer to the states as a “low” force generating state and
a “high” force generating state. The total potential energy U,,, given by the sum
of the potential energy of the elastic element U, and the potential energy of the
chemical state Uy, is plotted in Fig. 1.26.

Thick filament —I

Figure 1.24: Huxley and Simmons 1971 model. The myosin head S-1 is linked to the thick

filament through an elastic element S-2 and has two stable positions. From [19]

The model analyzes the distribution of Xbs in each of the energy well in order
to obtain the total force generated by the muscle. Because in each half sarcomere
the Xbs are arranged in parallel between an actin filament and the relative myosin
filament, the total generated force is the sum of the forces generated by each Xb.
It is assumed that when the muscle is isometrically tetanized, the two states have
the same total energy.

Due to the linearity of the elastic element:

1., K oo
Us = 5K = S (yo £ 5 +) (1.10)

where [ is the stretch which can be written as the sum of yo + h/2 (where yq is
a point located at equal distance from both wells, A is the distance between the

wells) and y, the increment of length imposed on the muscle. We recall that U, has
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y>0: strefch

Figure 1.25: The potential energies in Huxley and Simmons 1971 model. (a) Elastic energy in
isometric contraction (y = 0), after stretch (y > 0) and after release of the muscle (y < 0). (b)
Configurational energy of the head, two stable states 1 and 2 are present. From [19]

-h/2 I—— X h/2

Figure 1.26: The total energy Ut = Uy + Uy in Huxley and Simmons 1971 model as a function

of the configuration of a Xb in the isometric case (y = 0). From [19]
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two potential energy wells, corresponding to the two states 1 and 2. The heights of
the potential energy barriers £ and FE5 in Fig. 1.25, are assumed to be the same
for both wells. Since in the state of isometric contraction the two minima of the
total potential energy have the same level when y = 0, the total number of Xbs in
the two configurations is the same. When a length increment is imposed, y # 0,
there is a change in U (upper part of Fig. 1.25) and therefore in the total energy
Uit = Us + Uy, as shown in Fig. 1.27.

Before giving the mathematical details, we describe briefly how the model
works. The change in the total length y first affects the tension in the linear
spring, and is therefore responsible for the 7T; force observed in the experiments.
After the step, the levels of the energy in the two minima become different, and
a change in the total number of Xbs in each state is generated. This adjustment
process follows kinetics postulated for the jump process, and takes place in a slower
time scale than the time scale responsible for the T response. The final steady
state is responsible for the value of force T5.

To compute the forces T} and 75, we need to know the relative number of Xb,
ny and ngy in each well, n;+ny = 1. Under the assumption that the state of detailed
balance is reached, the rate constants k., describing transitions from position 1 to
position 2, and k_, describing transition from 2 to 1, are related through:

ky (Bi2 — Bor)
= Cexp [ KT ] ; (1.11)

where T is the absolute temperature, kg the Boltzmann constant, C' a constant to
be determined and By, and Bs; the activation energies for passing from state 1 to
state 2 and vice versa. In Fig. 1.27, we also see that k_ is constant since Bs; is a
fixed quantity independent of the tension in the elastic element. Therefore we can
write By = E; and By = Ey + AUy, where AUy, is given by

(yo+y+g)2—<yo+y—g)2] = (1.12)

kh(yo+y) + (Ey — Ey)

1
AUtOt — (E2 - El) + §K

Since in isometric contraction the two states have the same energy:
AUt |y=0= 0= —Khyo = (Ez — E1), (1.13)

the relation (1.11) becomes:

k'+ . —Kh'g
L =P < T ) : (1.14)
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Figure 1.27: The different behavior of Huxley and Simmons 1971 model: total energy in stretch
(y > 0, where the configuration 1 is energetically preferred) and in release (y<0, where the

configuration 2 is energetically preferred) modes. From [10]

The differential equation describing the number of Xbs in the state 2 during

transients is:

= ko (t) — k_na(t) = — (k. + k_)na(t) + ks (1.15)

Due to the hypothesis of equal energies of the states during isometric contraction

we obtain that ne(0) = 1/2. We can now solve (1.15) and write:

na(t) = n5® + (0.5 — n®) exp[—t(ky + k)] (1.16)
where:
ny = ke
2 k4 ko

One can see that the fraction of Xbs in state 2, starts at one-half and rises to the
value n5° exponentially with rate ky + k_. To compute the steady state tension,

only the ratio of the rates constants (1.14) is needed. The transient of tension can
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be written as:

T(y,t) = m(HK (yo +y - g) +na(t) K <y0 +y+ g)

= Klyo + y + (nao(t) — 0.5)A].

The characteristic values of tension predicted by this model are T’ (y) = T'(y,0) =
K(yo +y) and Tr(y) = T(y,00) = K[y — 0+ y + (n3” — 0.5)A].

In order to compute these functions, one needs the elastic constant K. As it
was not known at that time, Huxley and Simmons used the data on the rate of
recovery 7(y) (Fig. 1.15). They obtained a fit:

r(y) =ro(1+e )

with 79 = 0.2 ms™ and o = 0.5 nm~!. As we have seen, the same curve can be

predicted from the model:
r(y) = ky + k- = k_(1 + e Kh/ksT y) (1.17)

Huxley and Simmons used this formula to obtain the values of both k_ and Kh =

a kgT. Then they could compute the equilibrium force:

akgT h «
Ty(y) = ]f (yo+y—§tanh7y) (1.18)

which is shown in Fig. 1.28. The resulting curves T} (y) and T5(y) exhibit the same

104
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Figure 1.28: Prediction of the Huxley and Simmons 1971 model. From [10]

general features as the experimental curves shown in Fig. 1.14(b). The resulting

27



Chapter 1 Muscle physiology and early modeling

value for the stiffness becomes K ~ 0.2 pN/nm, however a value of one order of
magnitude greater |35] [38] [36] [80] [92] was proven later. We shall come back on
the importance of this value extensively in Chapter 2, however we mention here
that the more realistic value K = 2 pN/nm affects dramatically the prediction of
the model. First, we see immediately from (1.17) that the () dependence will be
highly overestimated, because it depends on K exponentially. Second, the T5(0)
curve is more inflected with the higher value of the parameter K, thus it shows a
negative slope at 6 = 0 which is in contrast with the experimental result.

There were several recent attempts to improve the quantitative predictions of
the theory 18] [43] |48] [59] |73] [96], however nothing fundamentally new has been
added to the model. The most attractive feature of the Huxley and Simmons
1971 model is that it attempts to link biochemistry to mechanics. Not only in the
more recent models this link was not improved, but, on the contrary, it was almost
lost. In the next Chapter we shall give a brief review of some of these models and

propose a new one where the link is improved and further quantified.
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Chapter 2

Power Stroke

2.1 Introduction

The special character of the mechanical response of skeletal muscles described
in Chapter 1, allows one to classify them as active materials, because they can
adapt to external stimuli. The advances in technology are often linked to the
development of such materials that can provide active functioning, like sensing and
actuation. In the past, active response was achieved through organizing elements,
with passive response at the micro-level, into complex structures with multiple
equilibrium states. However modern technologies require that such mechanisms
function at micrometer and even nanometer scales, so traditional solutions become
unacceptable, and there is a demand for materials where the complex behavior is
realized already at the molecular level. An example of such materials is given by
shape memory alloys, where the multi-stability of the system at the molecular level
is due to phase transformation which does not require diffusion, and can be induced
by stress, temperature or electro-magnetic field. The analysis and modeling of such
active materials has reached a level of precision that one would want to achieve
in the description of skeletal muscles, given some similarity of the behavior of the
two types of systems. The similarity is based on the idea of multi-stability of the
microscopic elements of the system.

As we have seen in Chapter 1 the model of Huxley and Simmons (HS71) can
describe fast response of skeletal muscles assuming the presence of bi-stable ele-
ments with double well energy. In this model the energy landscape is degenerate
because the wells are infinitely narrow. This leads to a description in terms of
a jump process, which requires the knowledge of chemical rate constants. In the

HS71 model, the definition of the energy for the states between the minima is
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not needed: the Xb switches between the states instead of continuously moving
between them. This makes the precise analytical comparison of this model with
mechanical models of shape memory alloys difficult. Despite these apparent dis-
tinctions, the main ingredients in both types of models are similar which leaves
a possibility to link the Huxley and Simmons model to the continuum theory of
martensitic transformations in active materials.

We recall that, the main difference between the multi-stable and conventional
linear elastic elements is that the energy of the former is non-convex. As it was
shown in the pioneering work of Ericksen [11], this non convexity is of fundamen-
tal importance for the interpretation of the behavior experimentally exhibited by
shape memory alloys, which is related to the presence of multiple stable micro-
configurations. Ericksen considered the behavior of a continuum 1-D problem for
a material with a non-convex energy under slowly varying load showing that a
mathematical model based on bi-stability can explain hysteresis. After that, a
thorough study of the problem was performed, in particular a precise description
of the microscopic events was obtained by discretizing the 1-D continuum problem
and viewing it as a chain of bi-stable elements 11|, [16], [29], |62].

In this Chapter we reformulate the original Huxley and Simmons 1971 model
in this precise mathematical framework. We show that this reformulation can
produce a picture which avoids some drawbacks of the original HS71 model. We
start by briefly describing the way in which other recent models have dealt with
these drawbacks. Then we introduce our new mechanical model aimed first at
modeling the power stroke only and present a quantitative analysis of this model

including the comparison with experimental curves.

2.2 Recent Models

Already in 1978 |17| it was realized that the Huxley and Simmons 1971 model
can not predict correct time scale of tension relaxation, if a realistic value of the
stiffness of the elastic element is used. The quantitative resolution of this and other
problems of the HS71 model, already mentioned in Section 1.3.3, will be given later
in this Chapter, while now we would like to briefly review the main approaches
used to circumvent these problems. In particular we show that the way chosen by
the authors of the recent models to deal with the drawbacks of the HS71 model,
leads to almost complete loss of coupling between the two aspects of the problem:

mechanical and biochemical. The goal of these models was not only to resolve the
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uncorrect time scale predicted by the HS71, however here we shall focus only on

this aspect of the problem.

Eisenberg and Hill model

An early modification of the original HS71 model was proposed in 1978 by Eisen-
berg and Hill [17]. The model was extended in 1980 on a more quantitative basis
[18]. It is based on the observation that by assuming two very narrow energy wells,
Huxley and Simmons made implicitly the hypothesis that the transition between
the states takes place only after a Xb had collected the total amount of energy
needed to overcome the barrier.

Eisenberg and Hill proposed to make the wells wider in order to allow the
transition to start at lower energy. They also linked the force generated by the Xb
in each state with the first derivative of the free energy, instead of the stretch of
the elastic element, that has now been formally eliminated. Without the elastic
element, the coordinate = of the Xb is controlled by the imposed length of the
sarcomere, actually the coordinate x has become a measure of axial position of the
particular actin site at which the Xb is attached. The origin x = 0 was chosen
in such a way that the Xb in the pre-power stroke st