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Abstract

The thesis studies resource allocation methods, distributed per base station (BS) in multi-
cellular OFDMA networks. The objective is to provide the Quality of Service (QoS) re-
quested by each user, whatever its location in the cell. First, it investigates causal network
coordination in distributed networks. Two BSs form a virtual Multiple-Input Multiple-
Output (MIMO) array for the users located at the border of cells. These users thus benefit
from a diversity gain, and from inter-cell interference mitigation. The efficiency of the as-
sociated resource allocation method depends on the fairness of the power control objective.
Thus, network coordination is used for Rate Constrained (RC) users, but not for Best Ef-
fort (BE) users, in a proposed algorithm that jointly manages both QoS objectives. The
thesis next considers the more general perspective of fully distributed networks. For RC
users, a resource allocation process with iterative interference-based power allocation is de-
termined to solve the Margin Adaptive problem. It includes a distributed constraint that
guarantees power control convergence. The proposed method is extended to RC users in
MIMO, both when full Channel State Information is available at transmission, and when
only the statistical properties of the channel are available at transmission. Finally, for BE
users, the objective is to maximize the weighted sum throughput, where the weight of each
user is proportional to its queue length. A subcarrier allocation method, deduced from a
network-wide interference graph, and a distributed power control method are proposed for

that optimization problem.
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Introduction

Les réseaux cellulaires émergents et futurs reposent sur les hypothéses d’architecture plate
et de transmission en mode tout IP. Ces nouvelles contraintes imposent la fonctionnalité
d’allocation de ressources comme le point central entre la couche MAC (Medium Access
Control) et la couche physique. En effet, I’allocation de ressources doit gérer I'accés aux
ressources radio des différents utilisateurs, en fonction de leurs demandes de Qualité de Ser-
vice (QdS) et de I’état du canal. Les réseaux cellulaires émergents, le WiMAX et le 3GPP
LTE, utilisent tous deux 'OFDMA (Orthogonal Frequency Division Multiple Access) comme
couche physique et méthode d’accés multiple. Dans les systémes basés sur TOFDMA] la
bande passante est séparée en sous-porteuses orthogonales, chacune correspondant & un
canal & bande étroite. De nombreux travaux ont été effectués dans le passé sur ’allocation
opportuniste de ressources, qui nécessite la connaissance du canal dans chaque sous-porteuse.
Ceci implique qu’une information sur I’état du canal, CSI (Channel State Information), doit
étre remontée de chaque terminal mobile & I'instance fonctionnelle responsable de ’allocation
de ressources, avec le délai le plus court possible. Afin de minimiser ce délai, il a été décidé
par les instances de normalisation du 3GPP LTE que I’allocation de ressources serait effec-
tuée par chaque station de base. Ceci correspond & une contrainte dite d’architecture plate,
dans laquelle ’allocation de ressources est distribuée par station de base.

BS Allogation de BS Allocation de Allocation de
2 | ressources 0 | ressources ressources

--»  Transmission de données
“““““ " Message CSI
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Allocation de
ressources centralisée

—»  Transmission de données

””””” > Message CSI
—— Message de contrdle pour l'allocation de ressources

Une telle allocation de ressources distribuée s’oppose & I’allocation plus classique, centralisée,
dans laquelle un controleur global type RNC est responsable de I’allocation de ressources
pour un ensemble de cellules adjacentes. L’allocation centralisée est utilisée dans les réseaux
UMTS R99. Son probléme principal est le délai induit dans ’allocation de ressources. Elle
permet néanmoins d’optimiser globalement sur les cellules adjacentes, et de gérer ainsi les
problématiques d’interférence inter-cellulaires pour les utilisateurs en bordure de cellules.
Une autre contrainte des réseaux émergents est la transmission en mode tout IP. Elle im-
pose que ’ensemble des utilisateurs partagent les méme ressources radio, et que l’allocation
dynamique des ressources soit responsable de gérer la QdS de tous les utilisateurs. En
OFDMA dans le sens descendant, ’allocation de ressources se compose de 'allocation de
sous-porteuses, qui doit étre orthogonale entre les utilisateurs d'une méme cellule, et de la
distribution de la puissance totale sur les différentes sous-porteuses.

Le principal désavantage de ’allocation de ressources distribuée consiste en 1’absence de
coordination de l'interférence inter-cellulaire. Les utilisateurs localisés en bordure de cellule
sont particuliérement exposés a cette interférence, qui risque de fortement dégrader leurs
performances. En conséquence, les réseaux a architecture plate ne pourront étre considérés
comme cellulaires que s’ils permettent & chaque utilisateur d’atteindre sa QdS, et ce quelle
que soit sa localisation dans le réseau. Dans les réseaux tout IP, les utilisateurs les plus
impactés par 'interférence sont les utilisateurs demandant un service temps réel qui sont
positionnés en bordure de cellule. Néanmoins, comme les ressources radio sont partagées
entre les différents utilisateurs, 1’allocation de ressources ne doit pas se focaliser sur une
seule catégorie de QdS. De méme, l'interférence inter-cellulaire que chaque cellule engendre
ou subit doit étre considérée dans ’allocation de ressources, et ce bien qu’une allocation to-
talement centralisée ne soit pas réalisable. De nouvelles méthodes d’allocation de ressources

doivent étre déterminées, afin de tenir compte de ces contraintes dans les réseaux distribués.



Résumé des travaux de thése vii

Objectifs de la thése

La thése cherche & définir de telles méthodes, qui permettent de diminuer l'interférence
inter-cellulaire de fagon efficace, tout en maintenant un faible cotit en termes de complexité
et de signalisation entre les stations de base. Les réseaux OFDMA sont considérés, de sorte
que les méthodes proposées peuvent s’appliquer au WiMAX, au 3GPP LTE, et aux futurs
réseaux 4G qui seront basés sur FOFDMA. Certains sujets traités dans la thése peuvent

aussi s’appliquer aux réseaux de type ad hoc. Les objectifs principaux de la thése sont :

e Evaluer la faisabilité et la pertinence de la coordination de réseaux dans les réseaux
distribués. La coordination de réseaux étudiée dans la thése considére deux contraintes
imposées par I'architecture distribuée : une contrainte de causalité sur la transmission

entre stations de base, et une contrainte d’allocation de ressources distribuée.

e Déterminer une méthode d’allocation de ressources distribuée pour les utilisateurs
demandant un service temps réel, qui doivent atteindre un débit cible. Cette méthode
doit tenir compte de I'interférence inter-cellulaire en I’absence d’informations globales.
La faisabilité de ce probléme a été étudiée dans la littérature avec un seul canal et en
SISO (Single-Input Single-Output). Nous I’étudions ici en multi-canal, en SISO et en
MIMO (Multiple-Input Multiple-Output).

e Etudier I'allocation de ressources pour les utilisateurs Best Effort, en tenant compte
de la longueur de leurs files d’attente. Une allocation de ressources utilisant la vari-
able temporelle est permise pour ces utilisateurs. Nous nous proposons de caractériser
si la transmission conjointe de deux utilisateurs est plus efficace que leur transmis-
sion séparée pour atteindre un certain objectif de QdS. L’allocation de sous-porteuses

temporelle peut alors étre utilisée, en plus du contréle de puissance.

Dans tous les cas étudiés, 'allocation de ressources correspond & un objectif d’optimisation
global sur le réseau, qui est décomposé par station de base, en raison de la contrainte
d’architecture distribuée.

Les hypothéses principales prises dans la thése sont les suivantes : ’allocation de ressource a
lieu dans chaque intervalle de temps (TTI), et il est supposé que le canal reste inchangé du-
rant le TTT; toutes les stations de base sont parfaitement synchrones; la constellation du sig-
nal est Gaussienne, avec un niveau de modulation suffisamment élevé pour que l'information
mutuelle atteigne quasiment la capacité du canal; enfin, I'information de canal est parfaite-
ment connue en réception et en transmission, sauf dans la deuxiéme partie du chapitre 6.
On se place dans des réseaux multi-cellulaires OFDMA, dans lesquels le paramétrage de
la modulation OFDM est tel que chaque sous-porteuse est un canal & bande étroite sur
lequel le canal rapide est plat et quasi-statique. Dans I’ensemble de la thése, I'interférence
inter-cellulaire est traitée comme du bruit. Il est & noter que des traitements sur le canal a
interférence permettent de parvenir & une région de capacité plus grande, mais ces traite-
ment complexes supposent que l'interférence soit parfois utilisée de facon constructive. Nous
n’étudions pas ces méthodes dans la thése.

Tous les problémes d’allocation de ressources considérés s’écrivent comme des problémes
d’optimisation. A cause des contraintes d’architecture, de la complexité, et de la nécessité
de tenir compte de l'interférence inter-cellulaire dans les allocations distribuées, les prob-

lemes d’optimisation doivent étre décomposés en plusieurs sous-problémes. Dans la plupart
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des cas, on cherchera & obtenir des sous-problémes convexes, qui pourront étre résolus avec
des méthodes classiques d’optimisation convexes. Dans la thése, on utilisera a la fois des
méthodes numériques, comme la méthode de Newton, et des méthodes analytiques, comme
les conditions de Karush-Kuhn-Tucker (KKT).

Dans la suite, nous détaillons les travaux menés dans chaque chapitre. Deux axes de
recherche principaux sont considérés pour I’allocation de ressources : tout d’abord, lorsque la
coordination de réseaux est possible, et ensuite, lorsqu’une allocation totalement distribuée
est imposée. Le premier axe de recherche correspond aux chapitres 3 et 4. Le second est
étudié dans les chapitres suivants. Dans ’ensemble de la thése, on s’intéresse & I’allocation
de ressources dans le sens descendant dans un intervalle de temps TTI, et le canal est sup-
posé parfaitement connu en transmission, sauf dans la seconde partie du chapitre 6. Deux
types d’utilisateurs sont considéreés : les utilisateurs & Débit Contraint (DC), qui demandent
une application de type temps réel, et pour lesquels un certain débit cible doit étre atteint
dans chaque intervalle de temps, et les utilisateurs Best Effort (BE), qui demandent une
application n’ayant aucune contrainte de QdS spécifique par TTI, lorsque la longueur des

files d’attente n’est pas prise en compte.

Chapitre 3 - Augmentation de I’équité par la coordination de réseaux

Le premier axe d’étude porte sur la coordination dans les réseaux distribués. On suppose
que deux stations de base (BS) peuvent coordonner leur transmission afin de servir le méme
utilisateur. Cette coordination est contrainte par ’architecture qui impose que la transmis-
sion de données entre les deux BSs soit causale, et que chacune des BSs impliquées effectue
I’allocation de ressources séparément, en fonction de I'information de canal remontée par
le terminal mobile concernant les deux liens. Par ailleurs, on suppose que Rapport-Signal-
a-Bruit (RSB) du canal entre deux BSs est parfait. Les deux BSs forment alors un canal
MIMO virtuel. Afin de diminuer le cotit de la coordination, seuls les utilisateurs localisés en
bordure de cellule sont coordonnés. La coordination de réseaux permet d’augmenter la diver-
sité et de diminuer 'interférence inter-cellulaire des utilisateurs concernés, car la BS voisine
qui serait potentiellement la plus interférente est choisie pour la coordination. Un exemple
détaillé de procédure de coordination pour un utilisateur est donné par la figure suivante, ot

BS; est la station de base directe, et BSg est la station de base coordonnée de I'utilisateur.
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Lien entre la BS directe et 1'utilisateur i Utilisateur direct de BS,
—
Lien entre la BS coordonnée et Utilisateur coordonné de BS;
» | l'utilisateur i
<y | Lien entre deux BS i Utilisateur direct pour BS, ou BS,
1
Xy | 0
B8, |« BS,

1 1
Y1 | Yk2

Avec cette méthode de coordination de réseaux causale sur deux TTI, le débit de

l'utilisateur k£ dans la sous-porteuse [ ayant une bande passante Bgc est égal &

Rl — % log, (det (12 + H;(HQ)H))

2

Bsc G 1Py G Py

=1 1+ = o _GRGR
5 089 ( + I}i + I,i

ou Hj est le canal MIMO virtuel équivalent, P}, (resp., P!,) est la puissance transmise
par sa BS directe (resp., coordonnée) vers 'utilisateur k& dans la sous-porteuse [, Giuc (resp.,
Glc)k) est le gain entre la BS directe (resp., coordonnée) de 'utilisateur k et lui-méme dans
la sous-porteuse [, incluant les pertes de propagations moyenne, les effets de masques, et le
fast fading, et I\ est la somme du bruit et des interférences regues par 1'utilisateur k dans
la sous-porteuse [. Le débit total de l'utilisateur k, Ry, est obtenu en sommant Ri sur
I’ensemble des sous-porteuses qui lui sont allouées, & la fois sur le lien direct et sur le lien
coordonné, dans I’ensemble Oy,.

La méthode proposée consiste tout d’abord & identifier les utilisateurs qui doivent étre co-
ordonnés par chaque BS, puis & effectuer I'allocation de ressources. Dans ce chapitre, on
s'intéresse principalement au controle de puissance. Les utilisateurs coordonnés sont les

utilisateurs dont la distance entre le gain moyen avec sa BS directe et sa BS voisine la
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plus proche est inférieure & A dB. Cette valeur doit étre paramétrée afin de ne coordon-
ner que les utilisateurs localisés en bordure de cellule. La méme méthode d’allocation de
sous-porteuses, ayant pour objectif d’allouer le méme nombre de sous-porteuses a tous les
utilisateurs d’une cellule, est utilisée quel que soit 'objectif du controle de puissance. Elle
alloue les mémes sous-porteuses & un utilisateur coordonné & la fois sur son lien direct, et
sur son lien coordonné.

Quatre objectifs, correspondant a des degrés d’équité variables entre utilisateurs, sont testés:
Globally Optimal, Max-Min Fair, Proportional Fair et Harmonic Mean Fair. Le controle
de puissance utilise un processus itératif, qui a lieu par BS de facon indépendante. Dans
chaque BS, l'allocation de puissance est décomposée en deux processus paralléles : d’une
part, l'allocation de puissance pour les utilisateurs direct, et d’autre part, I'allocation de
puissance pour les utilisateurs coordonnés. Chaque sous-probléme d’allocation de puissance
est localement convexe, car I'interférence inter-cellulaire est fixée & une valeur donnée qui a
été déterminée a l'itération précédente. 11 s’écrit de la fagon suivante (par exemple ici pour
P’ensemble des utilisateurs directs d’une méme cellule, Sy) :

11—«
maxp, Z (Rk)

keSq I-a
s.t. Z Z Pcll,k — Pma.x,d
k€Sq €O,
st. Py >0, Vk €Sy, 1 € Oy (0.1)

« est le coefficient d’équité du probléme, qui vaut:

0 pour Globally Optimal (GO),

2 pour Harmonic Mean Fair (HMF),

qui tend vers l'infini pour Max-Min Fair (MM),

qui tend vers 1 pour Proportional Fair (PF).

Chaque probléme d’optimisation convexe posséde un unique optimum global. Il est obtenu
numériquement avec la méthode de Newton.

Le controle de puissance itératif est illustrée par la figure suivante.



Résumé des travaux de thése xi

Puissance initiales,
=0
v

i=0
Calculer 'interférence
inter-cellulaire

!
EFD Allocation de puissance

pour les utilisateurs
coordonnés de BS;

i+ !

Allocation de puissance
pour les utilisateurs
directs de BS;

j =1_itérations?

non oui

Dans ce chapitre, I'influence de la coordination de réseaux sur les performances, en fonc-
tion du niveau d’équité de I'objectif de controle de puissance, est évaluée numériquement.
Les résultats de simulations montrent que la coordination de réseaux permet d’améliorer
I’équité, quel que soit le niveau de charge, et quel que soit I'objectif de contréle de puis-
sance. Ceci est obtenu par une augmentation du débit des utilisateurs localisés en bordure
de cellule qui sont coordonnés. En conséquence, la somme des débits dans le réseau est
augmentée lorsque l'objectif de controle de puissance est équitable, car dans ce cas, les
débits de tous les utilisateurs dépendent des débits des utilisateurs localisés en bordure de
cellule. Cependant, lorsque I'objectif de contréle de puissance est inéquitable, le débit-créte
est diminué par la coordination de réseaux, car le gain de performances fourni aux util-
isateurs en bordure de cellules est obtenu au détriment des utilisateurs qui sont dans les
meilleures conditions radio. En conséquence, la somme des débits par cellule est diminuée
par la coordination causale de réseaux avec I'objectif Globally Optimal, contrairement aux
autres objectifs d’allocation de puissance. Nous pouvons en déduire que la coordination de
réseaux doit étre réservée aux utilisateurs en bordure de cellule dont ’objectif d’allocation

de ressources est équitable.
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Chapitre 4 - Allocation de ressources dépendant de la QdS avec coordination

de réseaux distribués

Les conclusions du chapitre précédent montrent que la coordination de réseaux est efficace
pour les utilisateurs & Débit Contraint (DC), dont I'objectif d’allocation de ressources est
d’atteindre individuellement un débit donné par intervalle de temps, mais qu’elle est inef-
ficace pour les utilisateurs Best Effort (BE), dont I'objectif d’allocation, Globally Optimal,
est inéquitable. En conséquence, dans ce chapitre, une méthode pour satisfaire un mélange
d’utilisateurs ayant I'un ou l'autre des objectifs de QdS est déterminée. La coordination
de réseaux est restreinte aux utilisateurs DC localisés en bordure de cellule. Le chapitre
propose tout d’abord un état de I'art sur I'allocation de ressources en OFDMA. Pour les
utilisateurs DC, ’allocation de ressources peut s’effectuer selon un objectif dit ‘Rate Adap-
tive’, qui est équivalent a 'objectif Max-Min Fair, ou selon un objectif ‘Margin Adaptive’
(MA). Ce dernier consiste & minimiser la somme de puissances requises pour atteindre le
débit cible de chaque utilisateur.

La plupart des articles de la litérature portent sur ’allocation de ressource en OFDMA
dans le cas d’une cellule isolée. Le probléme de la gestion de Iinterférence inter-cellulaire
dans I'allocation de ressources a été peu étudié, et uniquement résolu par des heuristiques.
Dans le cas d’une cellule isolée, il a été démontré que, lorsque l'objectif de ’allocation de
ressources est Globally Optimal, séparer I'allocation de sous-porteuses de l’allocation de
puissance est optimal. De plus, l’allocation de sous-porteuses en OFDMA (c’est a dire, en
autorisant la transmission d’un unique utilisateur par sous-porteuse) est elle aussi optimale,
comparé a une allocation en OFDM, qui autoriserait la transmission de plusieurs utilisateurs
dans une méme sous-porteuse. Néanmoins, pour les problémes Rate Adaptive et Margin
Adaptive en OFDMA, T’allocation de ressources ne peut pas se décomposer en deux étapes

successives (allocation de sous-porteuses puis de puissance) comme pour Globally Optimal.
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L’allocation conjointe portant a la fois sur les sous-porteuses et sur la puissance est un prob-
léme qui n’est pas convexe, car I’allocation de sous-porteuses et un probléme discret, tandis
que le controle de puissance est un probléme continu. Elle peut étre résolue par relachement
de la contrainte d’allocation discréte portant sur l'allocation de sous-porteuses, qui trans-
forme le probléme en un probléme convexe. Cependant, une étape finale est nécessaire pour
déterminer quel utilisateur unique doit transmettre dans chaque sous-porteuse, la méthode
conjointe pouvant mener & un partage des sous-porteuses par utilisateur. Cette derniére
étape est sous-optimale, et méne & des performances de 1'algorithme qui ne sont pas signi-
ficativement meilleures que ce qui est obtenu en séparant I'allocation de sous-porteuses de
I’allocation de puissance. Ces conclusions nous indiquent qu’il est préférable, pour une raison
de compromis entre la complexité des algorithmes et le gain obtenu, d’effectuer ’allocation
de sous-porteuses et 'allocation de puissance en série. Ceci est d’autant plus nécessaire en
multi-cellulaire, lorsque l'interférence inter-cellulaire doit étre considérée.

Dans ce chapitre, les utilisateurs DC sont caractérisés par un objectif MA, tandis que les
utilisateurs BE sont caractérisés par un objectif Globally Optimal. L’allocation de ressources
ayant lieu dans le sens descendant, les utilisateurs DC et BE sont liés par une contrainte de

puissance totale par cellule. Le probléme d’allocation de ressources par cellule est le suivant:

mingp e} Z Z (Pi+Ply)

kESnc,qa €O

s.t. Z Rl > Ry cibles Yk € Spc,d
leOy,

max Z Ry,

kESBE
Lsc

st Y Pl < P
=1

st. PL_>0,Vle{l,.. Lsc}

nBs

s.it. O NO = @,V(k, k,) € {SDC,d U SBE}2 Jk #£ K
0.2)

ol Spc,q est I'ensemble des utilisateurs DC directs servis par la station de base ngg,
Spc,c est I'ensemble des utilisateurs DC coordonnés par ngs, and Sgg est I'ensemble des
utilisateurs BE directs servis par nps.

L’allocation de sous-porteuses et le controle de puissance sont utilisés pour optimiser
I’allocation de ressources. La méthode proposée donne la priorité aux utilisateurs DC par
rapport aux utilisateurs BE, & la fois pour I’allocation de sous-porteuse et pour le controle de
puissance. Ces deux étapes sont effectuées de fagon séparée, en séquence, pour des raisons de
complexité. L’allocation de sous-porteuses pour les utilisateurs DC a pour objectif de min-
imiser la somme des puissances requises pour atteindre les débits cibles, sous les hypothéses
simplificatrices que la puissance et l'interférence par sous-porteuses sont équitablement ré-
parties sur toutes les sous-porteuses. S’il reste des sous-porteuses libres a l'issue de cette
allocation, celles-ci sont distribuées aux utilisateurs BE, avec pour objectif de maximiser le
gain direct. Le controle de puissance pour les utilisateurs DC suit lui aussi un objectif MA,
dans lequel la minimisation de la somme des puissances porte & la fois sur la puissance trans-

mise par la BS directe de chaque utilisateur, mais aussi par sa BS coordonnée. La contrainte
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de puissance totale par cellule n’est pas considérée dans le probléme MA, afin de simplifier
le probléme. Il en résulte que le controle de puissance peut s’effectuer de fagon distribuée,

indépendamment pour chaque utilisateur. Le probléme d’optimisation correspondant,

min{Pd,lmPc,k} Z (Pzik + Pcl,lc)

leOy,
s.t. Z Rl > Ry cible
€Oy,
s.t. Pl >0and P}, > 0,1 €06y (0.3)

est convexe sous certaines conditions, et peut dans tous les cas se résoudre avec les con-
ditions KKT. A Tissue du controle de puissance pour les utilisateurs DC, s’il reste de la
puissance disponible sur la cellule, celle-ci est distribuée aux utilisateurs BE suivant un
objectif d’allocation Globally Optimal. Si la somme des puissance excéde le maximum au-
torisé, alors le controle d’admission rejette les utilisateurs DC qui nécessitent les niveaux de
puissance les plus élevés.

Avec coordination || Sans coordination
PM (puissance requise) 1.95 W 519 W
AKSK (évalué par I'algorithme) 11.07 W 16.15 W
EPA (puissance requise) 10.99 W 10.31 W

Il est montré par des résultats numériques que la coordination de réseaux pour les utilisa-
teurs DC localisés en bordure de cellule permet de diminuer la somme des puissances requises
pour satisfaire ces utilisateurs, grace au gain en diversité et a la diminution de l'interférence
inter-cellulaire. Ceci est représenté par la table suivante, dans laquelle la méthode proposée,
appelée ‘PM’; est comparée a deux autres algorithmes: ‘AKSK’, pour lequel la puissance
allouée aux utilisateurs DC est fixée en fonction de la proportion de sous-porteuses qui sont
allouées a ces utilisateurs, et pour lequel I’allocation de puissance suit le méme objectif MA
qu’avec notre méthode, et enfin ‘EPA’, dans lequel I’allocation de puissance est équirépartie
sur ’ensemble des sous-porteuses. Le scénario testé correspond a 16 utilisateurs DC avec
un débit cible de 64 kbits/s, et 16 utilisateurs BE par cellule. De plus, méme lorsque la
coordination de réseaux n’est pas utilisée, la méthode proposée de priorisation des utilisa-
teurs entraine une augmentation du pourcentage d’utilisateurs DC qui atteignent leur débit
cible, et une augmentation de la somme des débits pour les utilisateurs BE. La méthode de
priorisation est encore plus efficace lorsque la coordination de réseaux est utilisée, grace a
la diminution de puissance obtenue pour les utilisateurs DC.
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Chapitre 5 - Allocation de ressources distribuée pour les utilisateurs a Débit

Contraint

Dans la suite de la thése, on s’intéresse aux réseaux totalement distribués, dans lesquels
aucune information sur les données & transmettre n’est échangée entre stations de base, et
dans lesquels l'allocation de ressources est distribuée par cellule. On étudie tout d’abord

le probléme d’allocations de ressources MA pour les utilisateurs DC. Ce probléme consiste
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a4 minimiser la somme des puissances nécessaires pour atteindre le débit cible de chaque

utilisateur :

Kn
min{P’@} Z Z P]é

k=11€0Oy
s. t. Z Ri > Ry cible, Vk € {1,..., Kxr}
€Oy,

Lsc

s. .Y Pl < Puax,Vnps € {1,..., Nps}
=1

Lsc

S. t.ZPéBS > O,V(nBs,l) € {1,...,NB5} X {]., ...,Lsc}
=1

st. O, NOw =0,V(k k'), k # k' servis par la méme BS
(0.4)

L’objectif DC peut ne pas étre réalisable pour un ensemble d’utilisateurs interférents, ce
qui entraine une divergence du controle de puissance itératif. Les conditions de convergence
du controéle de puissance ont été caractérisées dans la littérature pour le canal & interférences,
avec une seule sous-porteuse, lorsque le Rapport-Signal-a-Bruit-plus-Interférence (RSBI)
cible de chaque utilisateur est connu. Dans ce chapitre, un critére de convergence distribué
pour la canal multi-porteuses est déterminé. Il permet au controle de puissance distribué de
converger dans les réseaux multi-cellulaires OFDMA. Tl correspond & une borne supérieure
par sous-porteuse sur le RSBI cible, que ’on appelera ‘E’; et qui dépend des gains de canal
avec les stations de base interférentes :

l
Gk,k

El =
Tk G

On montre que lorsque le RSBI cible par utilisateur et par sous-porteuse, “Yi;: est stricte-

ment inférieur & E,lc, le probléme d’allocation de puissance par sous-porteuse posséde une

solution optimale unique, qui est atteinte lorsque chaque utilisateur met a jour sa puissance

en fonction de 'interférence qu’il recoit et de son RSBI cible, lors d’un controle de puissance

itératif et totalement distribué sur le réseau.

Le critére 7,2 < E,ﬁ est valide lorsque 'interférence inter-cellulaire est suffisamment élevée
par rapport au niveau de bruit. En conséquence, il est utilisé de fagon adaptative dans
I’allocation de ressources pour résoudre le probléeme MA. Le probléme d’allocation de puis-
sance étant résolu de fagon itérative, & chaque itération, et dans chaque sous-porteuse, le
niveau d’interférence recu lors de l'itération précédente est évalué. S’il est négligeable, alors
le critére E n’est pas appliqué dans cette sous-porteuse.

La méthode d’allocation de ressources proposée est composée de trois étapes :

1. Allocation de sous-porteuses, distribuée par cellule.

2. Controle de puissance : composé d’allocations de puissances locales par cellule, et itéré
sur ’ensemble des cellules afin de tenir compte de l'interférence inter-cellulaire.

3. Controle d’admission, distribué par cellule.
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Elle est illustrée par la figure suivante.

Allocation de Allocation de Allocation de
sous-porteuses BS, sous-porteuses BS, sous-porteuses BSy g

l

Puissance initiales,
i=0
v
i=0
Calculer l'interférence
inter-cellulaire

[t ] l
Allocation de
puissance BS;

A4

non i
j = n_itérations?
oui

| } )

Controle d' Controle d' Controle d'
admission BS, admission BS, Admission BS 3¢

L’allocation de sous-porteuses est tout d’abord effectuée sur chaque cellule de fagon
indépendante avec une méthode itérative, qui a pour but de minimiser la somme des puis-
sances requises pour atteindre les débits cibles de chaque utilisateur, sous les hypothéses
de puissance également répartie, et de niveau d’interférence équivalent sur chaque sous-
porteuse. Les sous-porteuses sélectionnées pour chaque utilisateur maximisent le critére E
proposé, ce qui permettra par la suite d’obtenir un intervalle de variations plus large pour
le RSBI cible. L’allocation de puissance consiste ensuite & déterminer ’ensemble de RSBIs
cibles par utilisateur, et a lancer le controle de puissance itératif sur chaque sous-porteuse
en parallele. On ne tient pas compte de la contrainte de puissance maximale par cellule
pendant le controle de puissance, ce qui permet de décomposer I'allocation de puissance par
utilisateur. A l'issue du controle de puissance, si la puissance totale d’une cellule dépasse
le maximum autorisé, alors les utilisateurs qui demandent le plus de puissance sont rejetés

par le module de controle d’admission. Le probléeme MA par utilisateur est équivalent au
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Xix

probléme de minimisation suivant, qui porte sur les RSBI cibles :

1

min l Iik
i e\

lEO, K,k

s. t. Bsc Z log, (1 +9%) > Ry cible
€O,

s. t. yL >0,V € O
s. t. BL —e>A~Lif Elrl > 6,V € 0

(0.5)

Ot EL7l > § est le critére pour évaluer si le niveau d’interférence est suffisamment éleve

pour étre pris en compte, et € est une petite valeur strictement positive.

Ce probléme

d’optimisation est convexe en v, et se résoud avec les KKT. Le controle de puissance itératif

est donc composé des quatre étapes suivantes :

1. Initialisation : toutes les valeurs sont mises a 0.

2. Itération pour déterminer les RSBI cibles

: pour chaque utilisateur, en fonction des

valeurs de puissances regues a l'itération précédente, calcul de -, afin de résoudre le

probléme MA.

3. Mise a jour des valeurs d’interférence inter-cellulaire, avant d’aller a I'itération suivante

pour les calcul des RSBI cibles.

70 T I =
..e.. Méthode proposée, delta= 0.001 e
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.% YA
< /
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La méthode proposée est comparée a literative water-filling. Les résultats numériques
montrent qu’elle permet d’éviter les situations de divergence du contréle de puissance qui
ont lieu avec l'iterative water-filling lorsque le niveau de charge est moyen ou élevé. Elle
permet aussi de diminuer le nombre de sous-porteuses utilisées et la puissance requise, et
s’adapte de facon efficace au niveau d’interférence. Cette méthode est, en conséquence,
une alternative possible a l'iterative water-filling pour satisfaire les utilisateurs DC dans les

réseaux distribués.

Chapitre 6 - Allocation de ressources distribuée pour les réseaux MIMO

Ce chapitre étend les résultats du chapitre 5 sur 'allocation de ressources distribuées pour
les utilisateurs DC au cas des réseaux MIMO. Chaque station de base et chaque terminal mo-
bile sont équipés de plusieurs antennes. Le nombre d’antennes en transmission est n;, et le
nombre d’antennes en réception est n,., €t Nymin = min {n;, n,.}. Le probléme d’optimisation
MA est étudié dans deux cas : lorsque toute I'information de canal est connue en transmis-
sion (CSIT parfait), et lorsque seules les caractéristiques statistiques du canal sont connues
en transmission (CSIT statistique).

Dans le premier cas, un critére E distribué permettant d’assurer la convergence du controle
de puissance est appliqué sur le débit par sous-porteuse. Cette borne supérieure sur le
débit est obtenue sous les hypothéses d’interférence inter-cellulaire moyenne et d’allocation
de puissance équirépartie sur tous les flux. Elle est égale a R} < R} . ou R} . =
Bscnimin log, (1+ EL) et

2
El _ (/Bllc,nmin) gk,k
E— Ngs
Z{nan#k} In.k
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(ﬁiynmin) est valeur singuliére la plus élevée du canal direct. Le controle de puissance dis-
tribué consiste alors & déterminer, de fagon itérative, la matrice de précodage qui résoud le
probléme MA, l'interférence inter-cellulaire étant fixée & la valeur de la précédente itération.
Il est décomposé sur chaque utilisateur, car la contrainte de puissance totale n’est pas prise
en compte dans le controle de puissance, mais dans une étape de controle d’admission qui
a lieu ensuite. Les variables d’optimisation de ce probléme sont la puissance par utilisateur
et par sous-porteuse, et la matrice de précodage sur chaque sous-porteuse. Le probléme

d’optimisation par utilisateur est alors :

: l
min E P,
05 (1) 01 (lsc, k) k

{Pk,ék" B 34 } et

s.t. Z R}, > Ry cible

ISSIS
st. PL >0,V €0
R}, < R} pax — € if EL7, >0,V € 6y

Un récepteur MMSE étant utilisé, le débit par sous-porteuse est égal &

Mmin

2
R! = Bsc Z log, (1 +pkd§€,j()\§€,j) )
j=1

ou py, est le RSB de 'utilisateur k tenant compte de la somme des puissances sur toutes les
sous-porteuses, dfw- est la puissance normalisée de 'utilisateur k£ dans la sous-porteuse [ et

—1/2.0
H, 5,

Qgc étant la matrice de covariance de I'interférence et du bruit, et ch . €tant la matrice de

le flux 7, et {)\2’1, e )\mein} sont les valeurs singuliéres du canal équivalent (Qée)

canal direct de l'utilisateur k.

Le probléme d’optimisation est convexe et se résoud avec les KKT, de fagon équivalente sur
I’ensemble des RSB par sous-porteuse et par flux, {prd? (), ..., pyd%Usc)} La matrice de
précodage optimale est ainsi obtenue par water-filling sur les sous-porteuses et sur les flux,

en tenant compte de la contrainte de convergence du contréle de puissance.

Dans le deuxiéme cas (CSIT statistique), on détermine une expression analytique ap-
prochée de la capacité d’outage, qui est fonction du RSB et de la probabilité d’outage. La
probabilité d’outage du canal MIMO Rayleigh y = Hx + n est :

Pout =P (H <]- + :)\12> < 2C>
t

i=1
ol pest le RSB, et {Ai} ., . , sont les valeurs singuliéres du canal H, et C est le débit,
en bits par utilisation de canal. La capacité d’outage pour une probabilité d’outage cible
Pout, cible est définie comme le débit C' maximum permettant d’atteindre une probabilité
d’outage Pout < Pout, cible- L:a formule analytique recherchée doit étre concave en le RSB,
afin d’exprimer le probléme d’allocation de puissances Margin Adaptive comme un probléme
d’optimisation convexe. Une borne supérieure sur la capacité d’outage est obtenue & partir
de I'inégalité entre les moyennes arithmétique et géométrique. Une borne inférieure sur la

capacité d’outage est obtenue en ne tenant compte que de la trace dans la formule de la
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capacité. Dans les deux cas, les bornes sur H:;"l" (1 + n%)\f) sont des fonctions linéaires en
{)‘iQ}{1<i<nman} qui s’expriment sous la forme d’une somme des ;2. Comme cette somme
suit une loi du chi-2, on peut exprimer les probabilités d’outage qui en découle comme des
fonctions Gamma, puis extraire les bornes sur la capacité d’outage par inversion de ces
fonctions pour des valeurs de P, proches de zéro. L’expression analytique de la capacité
d’outage est alors égale & la moyenne arithmétique des bornes supérieure et inférieure :

C = % (nm;n log, (1 + ﬂPOUt)p) + log, (1 + f(POUt)p))

MminTlt Uz

ot f(Pyyt) dépend du nombre d’antennes et de la probabilité d’outage cible. Les bornes sur
la probabilité d’outage utilisées pour obtenir cette expression analytique sont représentées

sur la figure suivante.
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Il est montré que cette formule est trés proche des résultats obtenus par tirages de Monte-
Carlo pour des valeurs pratiques de RSBs et de probabilités d’outage, et ce pour plusieurs

configurations antennaires.
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De plus, cette formule permet d’exprimer la capacité d’outage pour une probabilité
d’outage donnée comme une fonction concave du SNR, et le probléme MA devient alors
un probléme d’optimisation convexe. On en déduit une méthode de controle de puissance

itérative qui inclut le critére de convergence E distribué suivant :

f(Pout)gk',k

By = Ngs
Nmin Z{n:l,n;ﬁk} In,k

(0.7)

Ce critére est obtenu en ne tenant compte que la borne supérieure sur la capacité d’outage.
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Le probléme MA par utilisateur est donc un probléme d’optimisation convexe portant sur

la puissance par sous-porteuse. Il est résolu avec les conditions KKT.

Les cas CSIT parfait et CSIT statistique sont testés par des simulations numériques, et

comparés a literative water-filling. Il est montré que les méthodes proposées évitent les

situations de divergence du controle de puissance qui ont lieu avec l'iterative water-filling a

charges moyenne et forte. En conséquence, ces méthodes permettent a plus d’utilisateurs

DC d’atteindre leur débit cible, et elles diminuent les niveaux d’interférence et de puissance

moyens du réseau.
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Chapitre 7 - Maximisation de la somme des débits pondérés dans les réseaux

multi-cellulaires

Dans ce chapitre, on s’intéresse a l'allocation de ressources pour les utilisateurs BE dans

les réseaux OFDMA multi-cellulaires. Pour ces utilisateurs, un objectif de QdS possible

consiste a éviter que des paquets ne soient perdus dans le buffer, ce qui arrive lorsque

les files d’attente dépassent leur taille maximale. Le probléme de la maximisation de la

somme des débits pondérés (WSTM), ou le poids de chaque utilisateur est proportionnel a
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la longueur de sa file d’attente, est un compromis entre la maximisation de la somme des
débits, et I’équilibrage des longueurs des files d’attente, nécessaire pour éviter toute perte

de paquets. Il s’écrit de la facon suivante :

Ky

max {P,®} Zkak (08)
k=1
Lsc

s. t. ZP}LRS < Prax, Vs € {1,..., Nps}
=1

s. t. PL__>0,Y(ng

nBs

Svl) € {17"'7NBS} X {17 "'7LSC}
s.t. O, NOL = @,V(k,k

"), servis par la méme BS, k # k'

ol wy est le poids de 'utilisateur k.

Afin de résoudre le probléme WSTM, on s’intéresse d’abord a la région de capacité du canal
a interférences avec deux utilisateurs. Une caractérisation simple des cas ou la transmission
simultanée des deux utilisateurs est plus efficace que leur transmission en séquence pour
maximiser la somme des débits pondérés est obtenue. Elle dépend de la convexité de la
région de capacité, et des poids relatifs de chaque utilisateur. Différents exemples de régions

de capacité, convexes ou concaves, sont représentés sur la figure suivante.
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Il est démontré que la somme des débits pondérés est plus élevée lorsque les deux sta-
tions de base transmettent que lorsque I'une des deux ne transmet pas, sous les conditions

suivantes :

w w.
Apn >0, Ay >0, —-£ > m, and — > my
Wn, Wi

oit Ay, et m, dépendent des gains, de la puissance maximale par cellule et du bruit.

A n > 0 est la condition pour la fonction f,,, qui caractérise la dépendance du débit de
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l'utilisateur n, R, par rapport au débit de l'utilisateur k, Ry, soit une fonction concave en
0. Dans le cas ot Ay, > 0 et A, > 0, la région de capacité des utilisateurs n et k est
convexe dans une certaine zone, ce qui implique que toute tangente a la région de capacité
dans cette zone, de pente —Z}’—: (s’appuyant sur f,), coupera ’axe des ordonnées en une
valeur qui sera plus élevée que la valeur de f, lorsque Ry est égal & 0. En conséquence, la
somme des débits pondérés sera maximisée par la transmission conjointe des deux utilisa-
teurs, correspondant & une P} # {0, Pmax} de la puissance de I'utilisateur k. La condition
g—i provient de la faisabilité des pentes. 1% > m, ou m, = —f/(0) indique que wy, ne doit
pas étre trop faible par rapport & w,, sinon P, = 0 est optimal pour maximiser la somme
des débits pondérés.

Ce critére est étendu au cas d’un réseau avec plus de deux cellules, et est utilisé pour
construire le graphe d’interférence du réseau, qui permet ensuite de déterminer quels util-
isateurs sont autorisés a transmettre simultanément dans la méme sous-porteuse. Le graphe
d’interférence est construit de sorte que deux utilisateurs dont la transmission conjointe
maximise la somme de leurs débits pondérés peuvent transmettre simultanément. Il tient
aussi compte de la contrainte d’orthogonalité entre utilisateurs d’une méme cellule pour
I’allocation de sous-porteuses. La transmission simultanée dans la méme sous-porteuse de
deux utilisateurs est interdite lorsqu’ils sont reliés dans le graphe d’interférence, dont les
entrées valent 0 ou 1. Le graphe permet d’obtenir des sous-ensembles d’utilisateurs pour
lesquels la transmission conjointe est permise. Il s’agit des utilisateurs qui ont la méme
couleur, a l'issue de la coloration du graphe, qui peut étre obtenue avec des méthodes clas-
siques comme 'algorithme DSATUR, ou encore avec des méthodes distribuées. L’allocation
de sous-porteuses basée sur le graphe d’interférence est alors la suivante, pour les réseaux
multi-cellulaires OFDMA :

1. Sur chaque sous-porteuse, choisir I'utilisateur du réseau qui maximise le débit pondéré,
dans lequel le débit est calculé en considérant le RSB seul. Cet utilisateur &k se voit

allouer la sous-porteuse dans sa cellule.

2. Puis sur cette méme sous-porteuse, déterminer I’ensemble des utilisateurs des cellules
adjacentes qui ont la méme couleur que l'utilisateur £ aprés coloration du graphe
d’interférence. Sur chaque cellule, choisir I'utilisateur ayant la méme couleur qui max-

imise le débit pondéré.

Le controle de puissance adapté au probléme WSTM est ensuite étudié. Une méth-
ode en deux étapes, qui est totalement distribuée et s’applique quel que soit le RSBI de
chaque utilisateur, est proposée. La premiére étape consiste a effectuer le controle de puis-
sance sur chaque sous-porteuse indépendamment. L’algorithme itératif utilisé, dans lequel
chaque utilisateur tient compte de l'interférence qu’il génére sur les autres utilisateurs, peut
converger vers un optimum local, car le probléme d’optimisation correspondant n’est pas
convexe. Néanmoins, les résultats numériques montrent que les utilisateurs dont la puis-
sance tend vers zéro atteignent cette valeur en trés peu d’itérations. A lissue de cette
premiére étape, un test est effectué par utilisateur et sous-porteuse, pour évaluer si le RSBI
est élevé. Seuls les utilisateurs et les sous-porteuses vérifiant un critére de RSBI suffisant
sont, pris en compte dans la deuxiéme étape du controle de puissance. Celle-ci opére sur

I’ensemble des sous-porteuses conjointement. Etant donnée ’hypothése de RSBI élevé, le
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probléme d’optimisation est un probléme de programmation géométrique, qui est équivalent
a un probléme d’optimisation convexe. La méthode itérative utilisée converge nécessaire-

ment vers I'optimum global de ce probléme. Le contréle de puissance en deux étapes que

nous proposons est donc sous-optimal, mais il est totalement distribué.

Des simulations numériques sur le canal & interférence montrent que les résultats obtenus

avec notre méthode et avec la méthode optimale, qui requiert une gestion totalement cen-

tralisée, sont trés similaires, ce qui valide notre approche.
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le poids de chaque utilisateur est proportionnel & la longueur de sa file d’attente. L’allocation
de ressources a lieu dans chaque TTI. Il est montré que lorsque le niveau de charge est fort
ou moyen, les méthodes proposées permettent d’augmenter la somme des débits pondérés et
d’obtenir des longueurs de files d’attente plus équitablement réparties entre les utilisateurs,
par comparaison a l’allocation de puissance binaire. De plus, ’allocation de sous-porteuses
basée sur le graphe d’interférence suivie du controle de puissance permet de diminuer de

facon importante la consommation de puissance et de sous-porteuses.

Conclusion

En conclusion, il a été montré dans cette thése que I'interférence inter-cellulaire peut étre ef-
ficacement diminuée dans les réseaux distribués. Les trois techniques principales permettant

d’atteindre ce résultat sont les suivantes :

e Coordonner ’accés aux ressources, afin de transformer I'interférence inter-cellulaire en

signal utile. Cette technique est utilisée dans la coordination de réseaux.

e Eviter les situations dans lesquelles 'interférence est principalement responsable des
dégradations des performances. Ceci peut étre obtenu soit en utilisant 1’allocation
de sous-porteuses temporelle pour n’allouer simultanément que les utilisateurs qui
s’interférent peu (cette méthode a été utilisée dans le chapitre 7 avec la définition du
graphe d’interférence), soit en imposant une borne supérieure sur le débit par utilisa-
teur et par sous-porteuse, qui permette de garantir qu’avec ces débits, 'interférence
sera toujours maitrisée (cette méthode a été utilisée dans les chapitres 5 et 6 pour les

utilisateurs & Débit Contraint).

e Tenir compte de l'influence de l'interférence inter-cellulaire que chaque station de
base génére sur les utilisateurs des cellules adjacentes, en équilibrant les niveaux de
puissance entre cellules adjacentes afin d’éviter les situations menant & des niveaux
d’interférence trop hétérogénes. Le controle de puissance itératif utilisant des infor-

mations d’interférence proposé dans le chapitre 7 remplit cet objectif.

Les résultats obtenus dans cette thése pourraient étre complétés par des travaux per-
mettant de comparer I'efficacité des techniques de diminution de I'interférence inter-cellulaire
présentées ici, avec d’autres techniques de gestion de l'interférence. Parmi celles-ci, I’alignement
d’interférence pourrait étre étudié, ainsi que les nouvelles méthodes proposant de transformer
Iinterférence en signal utile, par I'utilisation d’informations communes a tous les terminaux,

transmises en plus de leur information privée.
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Notations
Vectors and matrices are denoted by bold letters (e.g. X). Other notational conventions

are summarized as follows:

cC", R" The sets of vectors of length n, with complex and real elements.

Rf_ The set of vectors of length n with real positive elements.

RT_L_ The set of vectors of length n with real strictly positive elements.

CcP*", RP*™ The set of matrices with p rows and n columns, with complex and real
elements.

N The set of positive integer elements.

log(+) The natural logarithm.

log, () The base 2 logarithm.

L(.) Lagrangian of an optimization problem.

Vf The gradient of function f.

V2 f The Hessian matrix of function f.

|| The absolute value of a scalar.

|x] The floor operator, i.e. the smallest integer less than x.

[2]* max {0,x}.

1Y) The cardinality of the set €2, i.e. the number of elements in the finite set
X.

N The intersection operator.

U The union operator.

E{-} The expectation operator.

CN(x,X) The circularly symmetric complex Gaussian distribution with mean x
and covariance matrix X.

N(p, 0?) The Gaussian distribution with mean y and variance o2.

T

The transpose operator.

The complex conjugate (Hermitian) transpose operator.

X! The inverse of matrix X.

(X)k The £ row of matrix X.

(X) (k,m) The element corresponding to the £ and n'" column of matrix X.
I, The identity matrix of size n.

0, The square zero matrix of size n.

00, xny The zero matrix of size n, x n;.

diag {x1,...,xN} The diagonal matrix containing elements {1, ..., 2y }.

Tr(X) The trace of matrix X, i.e. the sum of the diagonal.

[IXl Any norm of matrix X.

1X]] The infinity norm of matrix X.

||X||2F = Tr(XX*) The Frobenius norm of matrix X.
p(X) The spectral radius of matrix X.
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Thesis Specific Notations

The following list is not exhaustive, and consists of the most relevant notations used in the

dissertation.

Notations applicable in all chapters:

N
Ngs
Kn
Nrrr
Lsc

Bsc
No
Pmax
Pout

Ry,
Rk,target
Rj,

Ci

O

lsc,k

"

5

Wk

Notations

BSq

Considered network.

Number of BSs in V.

Total number of users in N.

OFDMA FFT size.

Total number of subcarriers per BS.

Total available bandwidth.

Bandwidth per subcarrier.

Variance of the AGWN noise.

Maximum downlink transmit power per BS.
Outage capacity.

Transmitter.

Receiver.

Number of transmit antennas.

Number of receive antennas.

Mutual information between x and y for a given channel realization H .
Receive vector for user k in subcarrier [.
Transmit vector for user & in subcarrier [.
AWGN noise vector for user k in subcarrier /.
Sum data rate of user k.

Target data rate for RC user k.

Data rate of use k in subcarrier [.

Capacity of user k in subcarrier [.

Set, of subcarriers allocated to user k.
Number of subcarriers allocated to user k.
SINR of user k in subcarrier .

Noise plus interference received by user k in subcarrier /.
Power transmitted by BS npg in subcarrier [.
Weight of user k.

specific to Chapters 3 and 4:

Direct BS for user k.

Coordinated BS for user k.

Power transmitted to user & by its direct BS in subcarrier [.

Power transmitted to user k& by its coordinated BS in subcarrier [.

Fast fading coefficient between user k and its direct BS in subcarrier [.
Fast fading coefficient between user k and its coordinated BS in subcar-
rier [.

Path loss including shadowing between user k and its direct BS.
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9d,k Path loss including shadowing between user k and its coordinated BS.

H. Equivalent channel matrix for user % in subcarrier [.

Gfi,k Channel gain between user k and its direct BS in subcarrier [, including
path loss, shadowing and fast fading.

Glc,k Channel gain between user k and its coordinated BS in subcarrier [,
including path loss, shadowing and fast fading.

Sa Set of users served on their direct link by a given BS.

Se Set of users coordinated by a given BS.

SRC.d Set of RC users served on their direct link by a given BS.
Src,da Set of RC users coordinated by a given BS.
SBE Set of BE users served by a given BS.

K Number of users per BS.
Ky Number of direct users per BS.
K. Number of coordinated users per BS .

Pmax,a Maximum downlink transmit power dedicated to direct users per BS.
Prnax,c Maximum downlink transmit power dedicated to coordinated users per
BS.

Notations specific to Chapters 5, 6 and 7:

Pl Power transmitted to user k by its serving BS in subcarrier .
gn,.  Path loss including shadowing between BS n and user k.
Gil, . Channel gain between BS n and user k in subcarrier [, including path

loss, shadowing and fast fading.

E! Power control convergence criterion for user k in subcarrier [.

T,lC Estimate of the inter-cell interference level for user k in subcarrier [, used
to trigger the power control convergence criterion.

Q Set of users that are active in subcarrier [.

¢ Interference information for user k in subcarrier [.

Nmin  Minimum number of transmit and receive antennas.

Hlmk Channel matrix between BS n and user & in subcarrier [.

L SNR of user k in subcarrier [.

,uf%k INR corresponding to the interference received by user k from BS n in

subcarrier [.

<I>§€ Covariance transmit matrix of user k in subcarrier [.

VL Transmit matrix for user k in subcarrier [.

VV%€ Receive matrix for user k£ in subcarrier [.

Q. Covariance matrix of the interference plus noise for user k in subcarrier
l.

dfm Normalized power per subcarrier [ and per stream j for user k.
% Equivalent SINR of user k in subcarrier [, over all streams.



xliv Nomenclature




Chapter 1

Introduction

1.1 Background and motivation

In a few years, cellular networks have passed from circuit-switched networks with dedi-
cated radio resources, to all-Internet Protocol (IP) networks where the Quality of Service
(QoS) constraints of all users must be jointly considered. This evolution has placed re-
source allocation as the central point between the medium access layer and the physical
layer. Resource allocation is responsible for managing multi-user radio access, depending on
users’ QoS demands, and on the channel state. Many work has been done in the previous
years to determine opportunistic allocation methods that dynamically update the access
resources according to the channel variations. Orthogonal Frequency Division Multiple Ac-
cess (OFDMA) is the broadband system that has been chosen for the emerging cellular
networks, WiMAX [1] and 3GPP LTE [2]. In OFDMA, the available bandwidth is sep-
arated into orthogonal subcarriers with flat fading channels. Opportunistic allocation is
particularly efficient with OFDMA, as the probability that all users are in a deep fade in
all subcarriers decreases when the number of subcarriers increases. Besides, users may be
orthogonally multiplexed both in frequency and time, without generating intra-cell interfer-
ence.

Opportunistic allocation requires resource allocation to be performed on the most accurate
Channel State Information (CSI). CSI must then be fed back from each user to the resource
allocation controller with the lowest possible delay. Therefore, the distance between the
resource allocation controller and the users should be reduced. Resource allocation in cel-
lular networks may be performed by a central controller responsible for all users of several
adjacent cells, or may be distributed within each cell. UMTS R99 [3] [4] is based on central-
ized resource allocation. The benefits of centralized resource allocation concern multi-cell
management. Inter-cell interference is decreased at cell’s border, thanks to macrodiversity.
Its main drawback is the latency induced by transmission of the signaling information from
each base station (BS) to the central controller. Besides, UMTS R99 is mostly designed for

1



2 Chapter 1 Introduction

real-time services. Circuit-switched transmission is possible for non real-time services, but
is not efficient due to the waste of resources, and the shared channels cannot serve enough
users. In order to bypass these limitations, HSPA has been introduced in UMTS Releases
5 and 6 for the downlink [5] [6]. A shared channel is then designed for all packet-switched
transmissions. In HSPA, each BS is responsible for scheduling its users, and performing
adaptive modulation and coding depending on the link’s channel state. The most recent
wireless cellular networks are WiMAX (IEEE 802.16e and 802.16m) and 3GPP LTE. Both
systems are based on OFDMA: the physical layer is OFDM, and the multiple access scheme
combines Time Division Multiple Access (TDMA) and Frequency Division Multiple Access
(FDMA). Resource allocation may be updated every Transmit Time Interval (TTI). CSI
should be sent by all users on all subcarriers, leading to a large amount of signaling. The
3GPP LTE standardization proceedings have chosen a totally ‘flat” architecture [2] [7]: each
BS is the network controller of its served users, and there should be minimum signaling
exchange regarding resource allocation between adjacent BSs.

Centralized and distributed resource allocations are represented on Fig. 1.1 and Fig. 1.2.

Centralized
resource allocation

i AtA TrANSIMISSION

* CSI message
—— Resource allocation control message

Figure 1.1: Centralized resource allocation

In the centralized architecture, the central controller decides for resource allocation on all
the users of the network. It consequently performs a global optimization on the whole net-
work. In the distributed architecture, each BS determines resource allocation for its own
users, and is unaware of the resource allocation decisions on the adjacent BSs. Resource
allocation therefore leads to a set of local optimizations per BS.

The emerging cellular networks also assume an all-IP packets transmission. This constraint
results from the will to allow easy inter-connections of heterogeneous networks. The sim-
plest architecture could then be obtained by connecting an IP server with any final access

network, that may be either fixed or cellular. All-IP transmission implies that at radio
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BS Resource Resource Resource
2 | allocati B - i
allocation allocation allocation

e Data transmission

* CSI message

Figure 1.2: Distributed resource allocation

access, all users share the same set of radio resources, and resource allocation is responsible
for dynamically allocating resources to the users, so that they reach their required QoS.
Up to now, packet-based transmission protocols have mainly been defined for non-real-time
services. The issue of fairness among users has been introduced with scheduling objectives
such as Proportional Fair [8]. However, these classical scheduling algorithms provide some
fairness among users on the channel averaged over several TTIs, but users with real-time
services may require a minimum data rate per TTI. New radio access methods for real-time
users requesting Voice over IP or streaming services over packet-based transmission should
therefore be determined.

Removing the possibility to reserve dedicated resources adds flexibility in resource allocation,
but leads to a complex resource allocation task for the resource controller. Indeed, resource
allocation must consider all possible competing QoS requirements. OFDMA systems are
however well-suited to cope with this problem, as they allow a fine granularity in resource
allocation. In OFDMA, per cell resource allocation consists of subcarrier allocation and
power allocation. Subcarrier allocation assigns each subcarrier to a specific user, and power
allocation distributes the cell sum power over all assigned subcarriers. Resource allocation
may correspond to an optimization problem representing users’ QoS objectives. It is based
on the CSI available at transmitter. It may be performed periodically, with a minimum
period equal to one TTI, or occasionally, depending on the data arriving in the buffer, and
on the QoS variations. In this thesis, we assume that resource allocation is performed every
TTI.

The main drawback of distributed resource allocation is inter-cell interference. In OFDMA,
the same bandwidth is shared by all cells. In the absence of coordination of subcarrier
or power allocations among adjacent cells, the users located at the border of cells may be
highly interfered. Static and dynamic subcarrier and power planning methods have been
investigated in the literature to mitigate performance degradations at cell’s border [9]. How-
ever, static planning is not optimized, and dynamic planning becomes useless at high load.
Resource allocation should adequately adapt to the load level: it should allow full use of
the bandwidth at low load, when inter-cell interference is not an issue, and remain efficient

at high load. A major restriction regarding the viability of distributed networks based on
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flat architecture as cellular ones is whether they will be able to provide their QoS to all
users, whatever their location in the cell is. In all-IP transmission, the users that will suffer
the most from inter-cell interference are users with real-time QoS constraints located at the
border of cells. However, as radio resources are shared between all users, resource alloca-
tion should not solely focus on a specific QoS category, but should establish priority levels
between them. Similarly, as all adjacent cells influence each others through inter-cell inter-
ference, resource allocation within one cell should not be totally unaware of its effect on the
other cells. New methods are required in order to take into account all these requirements
in distributed networks.

1.2 Thesis objectives

In this thesis, we consider the distributed architecture of Fig. 1.2. Resource allocation is
performed independently per BS. The aim of the thesis is to define distributed resource al-
location methods that provide the required QoS to all users, at any location. The proposed
methods should entail low inter-BS signaling and reasonable complexity, and allow us to ef-
ficiently mitigate inter-cell interference. The context study is OFDMA networks. Resource
allocation is then composed of subcarrier allocation and power control. The proposed re-
source allocation methods are therefore applicable to WiMAX, 3GPP LTE, and future 4G
networks based on OFDMA. Parts of this study can also be applied to ad hoc type networks.

The main objectives of the studies performed in this thesis are:

e Evaluate the feasibility of network coordination in distributed networks. Network
coordination studies usually assume that all BSs simultaneously have access to the
users’ data, and that a central controller jointly allocates resources in all involved
BSs. We here investigate network coordination with two constraints that are imposed
by the distributed architecture: a causality constraint on BS to BS transmission, and

a distributed resource allocation constraint.

e Determine a distributed resource allocation method applicable to users with a target
data rate requirement, that manages inter-cell interference without any global infor-
mation. The main issue is the feasibility of data rates’ allocation. This has been
characterized in previous literature for the single-channel case in Single-Input Single-
Output (SISO). Our aim is to obtain a new characterization for the multi-channel
case, in SISO as well as in Multiple-Input Multiple-Output (MIMO).

e Investigate distributed resource allocation for Best Effort users, with the consideration
of their queue lengths. For these users, an additional degree of freedom is obtained
via time-based resource allocation. Thanks to the characterization of whether joint
transmission is more efficient than separate transmission to fulfill the resource alloca-
tion objective, time-based subcarrier allocation can then be optimized on top of power
control.

In all cases, resource allocation corresponds to a global optimization objective that is de-

composed over the BSs to address the distributed network constraint.
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1.3 Assumptions

Throughout this dissertation, we make some assumptions that are detailed and discussed in

this section.

e Resource allocation per TTI:
The optimization objectives and the performance results are assessed in terms of data
rates per TTI. We assume that the channel state remains unchanged during one TTT.
Tterative power control within one TTI may consequently be performed over the dif-
ferent time slots.

e Perfect synchronization:
All BSs are synchronized, and all mobile terminals receive the data and interference
from all BSs with the same time delay. Thus, this delay is not considered within the

analysis.

e Signal constellation:
The signal constellation is assumed Gaussian. The modulation level is high enough
so that, with these input symbols, the mutual information almost reaches the channel
capacity. The influence of the modulation could be introduced in our analysis and
numerical results by adding the Signal-to-Noise Ratio (SNR) gap I into the capacity
formula [10]: C = log, (1 + SER) where T is a function of the Bit Error Rate and of

the modulation.

e Downlink resource allocation:
Resource allocation is performed in the downlink, in order to take into account the
per BS sum power constraint. However, the distributed methods from Chapters 5, 6
and 7 can easily be applied to the uplink, by replacing this constraint with per mobile
terminal power constraints. On the contrary, the network coordination method studied
in Chapters 3 and 4 assume perfect data transmission (in terms of SNR) between the
BSs. To extend the proposed methods to the uplink, we should consider imperfect
data transmission between two mobile terminals. In the uplink, we no longer deal
with network coordination, but with more classical relaying techniques. Many papers

concern this subject in the literature (references are given in Section 3.2.1).

e Full channel state information at the receiver and transmitter:
Full CSI is available at the receiver (each user), and also at the transmitter (its serving
BS), in all chapters but Chapter 6. In the case of network coordination, the mobile
terminal provides full CSI to its direct and coordinated BSs on both links. The
obtained results are consequently upper bounds to what could be expected in practical
implementations. However, relaxing the full CSI assumption should not lead to a
modification of the relative behaviors of the different methods, as shown in Chapter 6

when considering the outage capacity.
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1.4 Thesis outline

Resource allocation in distributed networks is investigated from two perspectives: first,
when network coordination between BSs is possible, and then, in fully distributed networks
without network coordination. The first perspective, studied in Chapters 3 and 4, uses
virtual MIMO to increase the link capacity. Resource allocation adapted to this specific
problem is studied with an optimization objective applicable to all users in Chapter 3, and
with QoS differentiation between Rate Constrained (RC) and Best Effort (BE) users in
Chapter 4. The second perspective, which is more general, is investigated in Chapters 5, 6
and 7. Chapters 5 and 6 concern distributed resource allocation for RC users, with SISO
and MIMO transmissions respectively. Chapter 7 studies the weighted sum throughput

maximization problem in SISO for BE users.

Chapter 2 - Preliminaries

Chapter 2 provides the technical and mathematical background for our problem. The tech-
nical background concerns OFDMA, QoS, MIMO, and inter-cell interference. The mathe-
matical background consists of elements on convex optimization, that are used throughout
the dissertation to solve resource allocation problems.

Chapter 3 - Fairness increase through distributed network coordination

In Chapter 3, we propose a method suited to distributed networks, that brings additional
fairness to the users located at the border of cells. It is based on causal network coordi-
nation, where two BSs form a virtual MIMO array to increase the diversity of their users.
Causal network coordination can be used in distributed networks, where the inter-BS link
is assumed perfect in terms of SNR, but does not allow instantaneous data transmission.
First, the chapter proposes a review of the cooperative communications techniques that are
relevant to our study. Then, resource allocation for OFDMA multi-cell networks with the
proposed causal network coordination is detailed. As the main focus in this chapter is on
power control, the same subcarrier allocation method is carried out with all power control
objectives. Power control with four objectives leading to varying fairness among users’ data
rates is tested. These objectives are Globally Optimal, Max-Min Fair, Proportional Fair
and Harmonic Mean Fair. Power control is an iterative process, performed over all BSs
separately. In each BS, power allocation is further decomposed into power allocation for
direct users, and power allocation for coordinated users. Each power allocation sub-problem
is locally convex, as inter-cell interference is fixed to the value of the previous iteration. The
impact of network coordination depending on the fairness of the power control objective is
evaluated. The proposed method is assessed in terms of network throughput and fairness
of the data rates’ distribution among users. It leads to fairness increases with all power

allocation objectives, and to sum throughput increases with all fair objectives.

Chapter 4 - QoS aware resource allocation with distributed network coordination

In this chapter, we extend the causal network coordination procedure to RC and BE users,
and propose a method to jointly manage both QoS objectives. One of the conclusions of

Chapter 3 is that network coordination is not efficient to maximize the sum throughput,
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which corresponds to Globally Optimal objective. As this is the QoS objective for BE users
when queue lengths are not taken into consideration, network coordination is restricted to
the RC users that are located at the border of cells. The chapter first details the state of
the art on resource allocation in OFDMA. For RC users, resource allocation can be solved
either with a Rate Adaptive objective, which is similar to Max-Min Fair resource allocation,
or with a Margin Adaptive (MA) objective. The latter aims at minimizing the sum power
required to reach the target data rates of all RC users. We focus on MA optimization for
RC users, and Globally Optimal optimization for BE users. In downlink, RC and BE users
are linked with a sum power constraint per cell. Subcarrier allocation as well as power
control are differentiated among users to optimize resource allocation. They are performed
separately for complexity purposes. The proposed method favors RC users over BE users
in both subcarrier and power allocations. Network coordination for RC users located at the
border of cells decreases the sum power required by these users, thanks to the diversity gain
and inter-cell interference decrease. Even when network coordination is not used, users’
prioritization increases the ratio of RC users that reach their target data rate, and the
sum throughput of BE users. The prioritization scheme becomes even more efficient with

network coordination, thanks to the power decrease on RC users.

Chapter 5 - Distributed resource allocation for Rate Constrained users

The MA resource allocation problem for RC users in fully distributed SISO OFDMA net-
works is investigated in this chapter. Based on the single-channel convergence criterion of
distributed power control, we propose a method for determining the target SINR per user
and subcarrier, that enables distributed power control to converge in multi-cell OFDMA.
This corresponds to a per subcarrier upper bound on the target SINR, denoted as F, that
depends on the channel gains with the interfering cells. This criterion is valid when inter-cell
interference is not insignificant. Thus, it is adaptively used in a resource allocation method
designed for MA optimization. Subcarrier allocation is first performed on each cell inde-
pendently with an iterative method, that aims at minimizing the sum power required for
each user to reach its target data rate, under equal power allocation and average inter-cell
interference level assumptions. The subcarriers selected for each user should maximize the
proposed E criterion, thus enabling a wider range of variations for the target SINR. Power
allocation is then performed by first determining the set of target SINRs per user, and
then running power control independently in each subcarrier. The proposed method is very
efficient in terms of subcarriers and power consumption, and avoids the power divergence

situations that frequently occur at medium to high load with iterative water-filling.

Chapter 6 - Distributed resource allocation in MIMO networks

This chapter extends the results from Chapter 5 to MIMO transmissions. The MA problem
is solved in two cases: when full Channel State Information is available at transmitter
(full CSIT), and when only statistical CSIT is available at transmitter. In the first case,
the distributed E criterion for power control convergence is applied on the data rate per
subcarrier. This upper bound is obtained by assuming average inter-cell interference and
equal power allocation over all streams. Power allocation is distributed per BS. At each

iteration, the precoder matrix that solves the MA problem is determined via water-filling
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over the subcarriers and streams of all users, and the power control convergence constraint
is included within water-filling. In the second case, an approximate analytical expression is
obtained for the outage capacity, as a function of the SNR and of the outage probability.
This approximate expression is close to the results obtained via Monte-Carlo snapshots at
practical SNR and outage capacity values, for various antennas configurations. It expresses
the outage capacity for a fixed outage probability as a concave function of the SNR, that
can be used to solve the MA problem as a convex optimization problem. An iterative power
allocation method, including a distributed E convergence condition for power control, is then
deduced. In the full CSIT as well as in the statistical CSIT cases, the proposed methods
with criterion E avoid power control divergence situations at medium to high load, and thus

lead to more RC users reaching their QoS objective.

Chapter 7 - Multi-cell weighted sum throughput maximization

Finally in Chapter 7, we consider SISO multi-cell OFDMA networks with BE users. The
objective is the maximization of the weighted sum throughput (WSTM). Chapter 7 first
reviews the relevant literature regarding resource allocation for BE users in OFDMA. Then
it describes a graph-based subcarrier allocation method that allows joint transmission of
two interfering links depending on the convexity of their capacity region, and on their rel-
ative links’ weights. Joint transmission is authorized if it leads to the maximization of the
weighted sum throughput. This criterion extends to the multi-cell case, and is used to build
an interference graph for the network, that indicates which users should simultaneously
transmit in the same subcarrier. We then investigate power control for WSTM. A distrib-
uted power control in two steps is proposed. It first determines which users and subcarriers
should be transmitting, and then operates in high SINR regime for these users. Contrary
to previous work that assumed high SINR on all links, this method can be used in all SINR,
regimes. Subcarrier allocation and power control, used jointly or separately, are assessed
via dynamic numerical simulations, where the weight of each user is proportional to its
queue length. At medium to high load, they lead to higher weighted sum throughput and
fairer queue length management than binary power allocation. Besides, graph-based subcar-
rier allocation followed by power control importantly decreases the power and subcarriers’

consumption.
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Chapter 2

Preliminaries

2.1 Technical background

2.1.1 Orthogonal Frequency Division Multiple Access

We consider OFDMA downlink cellular networks. OFDM is the chosen physical layer for
many standards, such as IEEE 802.11a, 802.11g, 802.20, ADSL, and for both major emerging
cellular networks’ standards, WiMAX and 3GPP LTE.
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Figure 2.1: Implementation of an OFDM system

OFDM is a multi-carrier transmission technique that divides the available bandwidth
into several orthogonal subcarriers with equal bandwidth. The information symbols are
then transmitted in parallel over the wireless channel. Orthogonal transmission is obtained
by using an Inverse Fast Fourier Transform (IFFT) at transmission, and a Fast Fourier
Transform (FFT) at reception (Fig. 2.1). The data to be transmitted are first divided into
Nrpr parallel groups that are independently modulated. Let x! be the complex subsymbols

11
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at the output of the I*® modulator, that correspond to the /" subcarrier. The IFFT module

transforms all subsymbols into NppT time samples X" with:

Nppr—1

1
XTL = —— X
VNEFT ;

L N (2.1)

A cyclic prefix of Ngp time samples is appended to the Nppr time samples (Fig. 2.2). It
copies the N¢p last samples of each OFDM symbol, and is inserted at the beginning of the
symbol. N¢p must be greater than the maximum multipath delay spread. If this condition
is fulfilled, then the multipath delay of one symbol will only affect the next symbol’s cyclic
prefix, leaving the useful data samples free from Inter-Symbol-Interference (IST).

At the receiver, the cyclic prefix is removed, and x! is retrieved by FFT. The received signal
before the FFT is the result of a circular convolution between X™ and the channel response
H. Thus the result of the FFT is :

%' = h'x' + n' (2.2)

where n' is the additive channel noise for subcarrier I. h! is the complex channel transfer
factor for subcarrier [.

—

< NCP NFFT

NFFT + NCP

Figure 2.2: Cyclic prefix of an OFDM system

OFDMA is a multiple access technique based on OFDM physical layer. The multiple
access scheme combines TDMA and FDMA. The minimum resource level that may be allo-
cated to each user is one subcarrier within one time slot. This basic resource is orthogonally
allocated to users in each cell, so that there is no intra-cell interference. In multi-cellular
networks, however, adjacent cells may be transmitting on the same subcarriers. Each sub-
carrier can then be viewed as an interference channel. If the power level per subcarrier is an
optimization variable, the subcarriers are linked by a sum power constraint, which applies to
all the subcarriers for downlink transmission, or to the subset of subcarriers assigned to the
same user, for uplink transmission. Due to this sum power constraint, resource allocation on
the different interference channels is not parallel. Resource allocation in multi-cell OFDMA
must consequently take into account both multi-user QoS constraints per cell (namely, how
to assign subcarriers and distribute power to the different users of a cell, so as to fulfill their
required QoS) and multi-cell interference per subcarrier.

In the following, we consider complex OFDMA signals where each narrowband subcarrier

is assumed to experiment a flat fading quasi-static channel.
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2.1.2 Quality of Service

In wireless networks, each user requests one or several uplink and downlink services. These

services are characterized by specific QoS constraints.

The network layer may map the

requested services to predefined sets of QoS constraints that apply to the end-to-end wireless

transmission. These constraints may correspond to a minimum data rate, a tolerated jitter,

a maximum transmission delay, ...

We investigate resource allocation per TTI. Consequently, only per TTT QoS parameters are

relevant to our study, and the QoS constraints then correspond to two categories of users:

1. Rate Constrained (RC) users: these users must achieve a target data rate to fulfill their

QoS constraint. We assume that the target data rate should be reached within one

TTI. From a network viewpoint, the objective is to minimize the sum power required

to reach the target data rate of RC users.

2. Best Effort (BE) users: these users are not constrained by any objective regarding

their individual per TTI quality indicators. From a network viewpoint, the objective

is to maximize the sum data rate of all BE users. If the time variations are considered,

then the queue length of BE users should also be taken into account. Indeed, buffers

have a limited maximum size, and buffer overflow leads to data loss.

In Chapter 3, we assume that all users have an infinite backlog of data to send. This

assumption also stands for BE users in Chapter 4. In Chapters 4, 5 and 6, the RC users

have exactly the data corresponding to their required data rate to send in each TTI. In

Chapter 7, the actual

data traffic is modeled for each BE user.

2.1.3 Multiple-Input Multiple-Output channel

Tx

Figure 2.3: MIMO channel model

nr

Rx

We consider a point-to-point MIMO channel with n; transmit antennas and n, receive
antennas, subject to Additive White Gaussian Noise (AWGN) but not to interference. The

channel model is [11]:

y=Hx+n

(2.3)
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where x € C"*! is the transmitted vector, y € C"*' is the received vector, n € C"*!
is an AWGN noise vector with variance Ny, and H € C"" ™™ is the channel matrix.

hl 1 h12 hlnt
H= h21 h22 h2n,,
hp,i hnp2 oo hpon,

h;j is the channel gain between the j-th transmit antenna and the i-th receive antenna. It
consists of path loss, shadowing and fast fading. If the channel is zero-mean i.i.d., then
the fading element of each channel gain is composed of independent zero-mean complex
Gaussians, each with independent real and imaginary parts with variance %
The mutual information for a given channel realization H is [12] :

I(x;y|H) = log, (det (In - AlfOHQHH)) (2.4)
where Q = E{xx} is the covariance matrix of the transmit vector. The mutual infor-
mation is maximized when x is complex Gaussian. The capacity is then defined as the
maximum of the mutual information between x and y given a constraint on the total power
transmission, Tr(Q) < P. In the following of the dissertation, with an abuse of notation,
we denote I(x;y|H) as the capacity of the channel, C', even in the absence of optimization
on the input symbols. C' is expressed in bits per channel use.

If CST is known at the transmitter, then the capacity is maximized by using water-filling over
the singular values of the channel as a power allocation policy [13]. If no CSI is available at
transmitter, a good assumption regarding capacity maximization is to distribute the power
equally among the transmit antennas.

MIMO systems can be used to multiplex several streams over the same point-to-point trans-
mission. These streams may either belong to the same user (therefore increasing its data
rate), or to several users (therefore leading to multi-user transmission). The number of
separable streams is equal to the rank of the channel matrix H. MIMO can be used to
increase the total data rate through data multiplexing, and to increase the robustness of
communications by sending the same data over multiple paths subject to different fading
conditions. MIMO thus provides additional degrees of freedom, that may be expressed in
terms of diversity and multiplexing gains, compared to SISO transmission.

Let us now assume that a linear precoder is used at transmission. s € CM*is a complex
Gaussian vector containing the M input symbols, and V € C™*M i5 the linear precoder.
The transmitted vector is then x = Vs. The receiver aims at retrieving the input symbols,
during the detection step. The most efficient detection technique is Maximum Likelihood
(ML). However, its complexity is often prohibitive. Zero-Forcing (ZF) and Minimum Mean
Square Error (MMSE) equalizers are simple linear processing methods. They are also used
as basis for non-linear Decision Feedback (DFE) treatments (DFE-ZF and DFE-MMSE).
The linear receiver aims at obtaining s from the received vector y through a linear operation

§=Why (2.5)

where WH ¢ CM>*"r,
Let H = HV. The ZF receiver inverts the channel by applying the pseudo-inverse matrix
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of H:
W= (ﬁHﬁ)’l il (2.6)

The main problem of ZF receiver is noise amplification. The MMSE receiver minimizes the
mean square error MSE = E{||§ — s||°}, and is defined as:

-1
W = <f1Hﬁ + ]]\QOIM) HA (2.7)

where P = Tr(ss”). The MMSE receiver is equivalent to the ZF receiver when the noise
becomes negligible.

For the most general slow fading channel case, if we assume that each channel realization is
known at transmitter, then optimization over the instantaneous capacity corresponding to a
given channel realization (2.4) can be performed. If the time average converges to the same
limit for almost all channels realizations of the fading process, the channel is ergodic. In that
case, optimization methods should apply to the ergodic capacity. If the channel realization
is not known at transmitter, then the optimization concerns the outage probability and the

corresponding outage capacity.

2.1.4 Interference management in multi-cell networks

Y\ n,
o 39—(? v
X, Y 4' Rxl

Tx,

Interference channel

Xy

Figure 2.4: Multi-access channel

Y1
Gy

X] RXl
n,
TXI k$
ﬂ %

Rx,
Figure 2.5: Broadcast channel

Point-to-point transmission is the simplest case where one transmitter communicates

with one receiver. In SISO transmission with one transmit antenna and one receive antenna,
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Tx, Rx,

Figure 2.6: Interference channel

the capacity of a point-to-point link with AWGN noise is
C =log, (1 +SNR) (2.8)

where SNR is the Signal-to-Noise Ratio. We hereunder review the different SISO multi-user
channels.

The multi-access channel (MAC) corresponds to several transmitters and only one receiver
(Fig. 2.4). The capacity region of the MAC is the set of individual data rates that can be
jointly achieved for all transmitters. The corner points of the capacity region are reached by
using Successive Interference Cancellation (SIC) [14]. The decoding order determines the
final data rates. Whatever the cancellation order, the same sum optimal data rate is achieved
with SIC. The broadcast channel corresponds to one transmitter and several receivers (Fig.
2.5). The sum data rate is maximized by superposition coding at the transmitter, and SIC
at each of the receivers. Each receiver must decode the weaker users before decoding its
own data, so as to achieve the maximum sum data rate. Information-theoretic problems are
often more easily solved on the MAC than on the broadcast channel. The uplink-downlink
duality enables us to study the broadcast channel via the MAC, and then reverse the roles
of transmitters and receivers [15].

The interference channel (Fig. 2.6) is the most complex case, as it involves several unrelated
transmitters and receivers that are interfering each other. No joint treatment such as SIC
is possible in transmission or reception, as neither the set of transmitters nor the set of
receivers are communicating. The capacity region of the interference channel has not yet
been fully characterized. It has been determined in the strong interference case [16], for
a class of deterministic interference channels [17], and for a class of degraded interference
channels [18]. For the general case, Han and Kobayashi [19] have derived an achievable
rate region, whose characterization is quite complex. It involves splitting the transmitted
information into two parts: a private information to be decoded only by a single receiver,
and common information to be decoded by all receivers. This method is applied by Etkin
et al. in [20] for a two-users interference channel with AWGN noise. By using an outer
bound on the capacity region, it is shown that the achieved rate region is within one bit of
the capacity region.

Recently, the notion of degrees of freedom on the symmetric interference channel has been

introduced in [20] for a two users Gaussian interference channel, and extended to the K



2.1 Technical background 17

users Gaussian symmetric interference channel, where all users are subject to the same SNR
and the same Interference to Noise Ratio (INR), in [21]. At high SNR, the capacity of a

point-to-point AWGN link is Cawgn ~ log(SNR). Let o = llgggéﬁg be the ratio of the INR

and SNR in dB. Let Cgsyp, be the symmetric capacity, i.e. the best rate that all users can

simultaneously achieve. Then the generalized degree of freedom is defined as:

. Coym (INR, SNR
dsym (@) = lim (xR, INR) — 00 é ( (SNR) ) (2.9)
awgn

Jafar and Vishwanath have shown in [21] that these values can actually be reached. The
main conclusion is that when o > 2, dgyy, = 1. This means that at very high interference,
the channel can be seen as interference-free.

Complex treatments in transmission and reception, involving the use of private and com-
mon information, are required to obtain these results. We do not investigate these signal
processing issues in the thesis. Our aim is to mitigate interference thanks to resource allo-
cation. Therefore in the following, we consider interference as noise when working on the

interference channel. Consequently, we always express the SISO capacity of a given user as:
C =log, (1 + SINR) (2.10)

where SINR is the Signal-to-Noise-plus-Interference Ratio of this user.

Interference in OFDMA cellular networks

There is no intra-cell interference in OFDMA, due to the orthogonality between subcarriers,
and to FDMA multiple access. However, several cells in OFDMA multi-cellular networks
may be using the same subcarriers for unrelated transmissions. In downlink, each user may
receive inter-cell interference coming from adjacent cells transmitting in the same subcarri-
ers. The users located at the border of cells are the most affected by inter-cell interference,
as their propagation loss to the interfering BSs is of the same order as their propagation
loss to their serving BS.

In order to circumvent this limitation, several methods have been proposed, some of them
in 3GPP LTE study items [22] [23]. A review of the relevant literature is provided in [9].

The main techniques are:

1. Subcarrier planning: Use subcarrier allocation so as to avoid joint transmission of
interfering users in the same subcarrier. This may be performed through static plan-
ning with fixed reuse patterns, or with Differential Frequency Partitioning (DFP). In
the first case, groups of non-interfering adjacent cells are formed, and each group is
assigned an independent subset of the total available set of subcarriers. In the sec-
ond case, the reuse pattern only concerns the users that are located at the border
of each cell, whereas all subcarriers can be allocated in all cells for the users located
inside each cell. An example of DFP with Frequency Reuse Factor (FRF) equal to 3
is depicted on Fig. 2.7. The main limitation of static planning is that it reduces the
bandwidth available for transmission. Dynamic subcarrier allocation may also be con-
sidered: each cell may choose the subcarriers with lowest inter-cell interference level
for its transmission. However, it is only useful at low load, and it may not converge
to a stable state when distributed per BS.
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2. Power planning: Use power allocation in order to mitigate inter-cell interference.
Power planning determines adjacent subsets of subcarriers. Each group of non- inter-
fering cells then transmits at full power within its assigned subcarriers’ subset, and has
a bounded transmit power level in the other subcarriers’ subsets. The subsets may be
static, or they may be dynamically updated, depending on the load level, allowing less
concurrent full power transmission among cells when the load increases. Similarly to
the subcarrier planning case, Differential Power Partitioning (DPP) may be defined.

In that case, adjacent subcarriers’ subsets are only used at cell’s border.

Figure 2.7: Example of DFP with FRF equal to 3

IEEE 802.16e standard [1] defines two modes for subchannel allocation that may be
relevant to inter-cell interference mitigation: Partially Used SubChannelization (PUSC),
and Fully Used SubChannelization (FUSC). Subcarriers are grouped into subchannels using
pseudo-random permutations. In downlink, the minimum set of allocated resources per user
is one subchannel. In PUSC, for sectored antennas, each sector is assigned adjacent sets of
subchannels, whereas in FUSC, the same subchannels are available on the whole cell. At
low to medium load, the probability of using the same subcarrier on two adjacent cells is
lowered thanks to the permutations. Inter-cell interference is however not handled at high

load, when almost, all subcarriers are allocated.

2.2 Elements of convex optimization

Throughout the dissertation, we consider resource allocation problems with a network-wide

objective. However, we are bound by several constraints to solve these problems:

e Network architecture constraint: our study is limited to distributed networks, where
downlink resource allocation should be performed per BS. The network-wide optimiza-

tion problem must consequently be split into Ngg sub-problems, one per BS.

e Inter-cell interference and QoS constraints: in distributed multi-cell networks, inter-
cell interference compels us to use iterative resource allocation over the BSs. Because
of users’ QoS constraints such as target data rate constraints for RC users, or queue
length constraints for BE users, all the subcarriers allocated to a given user must
be jointly considered. Inter-cell interference management can consequently not be

independently performed in each subcarrier.
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e Complexity constraint: joint subcarrier and power allocation may be limited by com-
plexity (details are given in the state of the art on resource allocation in OFDMA, in
Section 4.2). Besides, in most cases, iterative methods are used, thus the complexity
issue is even more problematic as the resource allocation procedures is repeatedly per-
formed. Consequently, sub-optimal heuristics are preferred, at the expense of some

performance loss.

Most of the problems dealt with in the thesis are or can be decomposed into convex
optimization problems. The main advantage of convex optimization problems is that they
have a unique global optimum. Besides, thanks to duality, under certain conditions, the
primal problem can be solved by solving the dual problem. The dual problem is often
separable into several sub-problems. This decomposition feature is particularly relevant to
our problem. The first level of decomposition considered is per BS decomposition. This is
of course required in distributed networks. Then a per user or per subcarrier decomposition
may be used. In all the cases, we must keep in mind that if the initial resource allocation
problem is not convex, then even if its decomposed sub-problems are convex, the final result
will not necessarily be the global optimum of the original problem.

In this section, we detail the properties of convex optimization problems, as well as the main
methods that will be used in the thesis to solve them. Our main references are Boyd and
Vanderbergue [24] for convex optimization, and Chiang [25] for geometric programming.
We first start with the definitions and main types of convex problems. Then we investigate
the duality theory, and explain how to analytical solve simple convex problems with the
Karush-Kuhn-Tucker (KKT) conditions. An example of decomposition through Lagrangian
decomposition is also provided. In Section 2.2.3, Newton’s method to numerically solve
convex problems is detailed. Finally in Section 2.2.4, we provide some insight into the class

of geometric programming.

2.2.1 Convex optimization problems
General mono-objective optimization problems

A mono-objective optimization problem has the form:

miny fo(x)
s.t. fi(x) <0,Vie{l,..,m}
s.t. hi(x)=0,Vie{l,..,p} (2.11)

Where ‘min’ stands for ‘minimize’. The vector x = [z1, ..., xn]/ is the optimization variable,
fo : R™ — R is the objective function, f; : R" — R, Vi € {1,...,m} are the inequality
constraint functions, and h; : R" — R, Vi € {1,...,p} are the equality constraint functions.
A vector x* is optimal if it has the smallest objective value, among all the vectors that

satisfy the constraints.
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Convex sets

A set S € R" is convex if the line segment between any two points in S lies in S:
for any (x1,X2) € C? and any 6 with 0 < 6 < 1:

Ox1 + (1 —(9)X2 es

Convex functions

A function f : R" — R is convex if for all (x,y) € (R™)? and all (a, 8) € R? with a4 = 1,
a>0,5=0,

flax+fy) < af(x) + Bf(y)

A function f is convex over a given set dom f if and only if domf is convex and the Hessian
matrix of f is semidefinite positive for all x € domf. If f is a function on R, this reduces to
f”(z) > 0, and dom f is an interval. The opposite of a convex function is a concave function.
The convexity of some important functions that will be used throughout the dissertation is

discussed hereunder:
e Linear functions are convex and concave on R.
e Exponential: exp(az) is convex on R, for any a € R.
e Powers: 2% is convex on R, when a > 1 or a < 0, and concave for 0 < a < 1.
e Logarithm: log(x) is concave on R .
e Max function: f(x) = max {z1,...,2,} is convex on R".
e Log-sum-exp: The function f(x) = log (expz1 + ... + expx,,) is convex on R".
e Geometric mean: f(x) = ([[\—, :ci)l/n is concave on R .
e Log-determinant: f(X) = log(det (X)) is concave on the set of symmetric positive
definite matrices.
Convex minimization problems

A convex optimization problem is a mono-objective optimization problem of the form (2.11),
where the objective and inequality constraint functions are convex, and the equality con-
straint functions are affine.

A convex optimization problem is expressed in standard form as:

Ininx fO(X)
s.t. fi(x) <0,Vie{l,..,m}
st.alx=b;,Vie{l,..p} (2.12)

If m = 0 and p = 0, the minimization problem is unconstrained. If m = 0 but p > 1, it is
an equality constrained minimization problem. If m > 1 and p > 1, it is an inequality con-
strained minimization problem. If p > 1 then the equality constraints can be equivalently
denoted as Ax = b, where A € RP*" with rank A = p < n.
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Concave maximization problems

maXx fO(x)
s.t. fi(x) <0,Vie{l,..,m}
st.alx=b;,Viec{l,..p} (2.13)

If the objective function f; is concave and inequality functions are convex, then problem
(2.13) is equivalent to a convex optimization problem, where the objective is to minimize

the convex objective function — fj.

Main property of convex optimization problems

A convex optimization problem has only one global optimum. Any locally optimal point is
therefore also globally optimal.
For an unconstrained problem (m = 0 and p = 0), the global optimum is obtained by nulling

the gradient of the objective function:
Vf()(x) =0

For equality constrained optimization problems, efficient solving methods are provided in
the two following sections. It should be noted that we do not consider methods for inequality
constrained optimization problems in this chapter. Indeed, all the problems treated through-
out the dissertation are equality constrained optimization problems, where the equality con-
straint either corresponds to a sum power constraint per cell, or to a sum data rate constraint

per user. Interior points methods are detailed in [24].

2.2.2 Duality theory and applications for convex optimization prob-
lems

Duality

In this section, we consider general optimization problems of the form (2.11), without any
assumption on the convexity. Let D be the non-empty domain of (2.11). The initial problem
is called the primal problem.

The Lagrangian L : R" x R™ x R” — R associated with problem (2.11) is:

m

L(x,Av) = fo(x) + Z Aifi(x) + Z vihi(x) (2.14)

where vectors A and v are the dual variables or Lagrange multiplier vectors associated with
problem (2.11). )\; is the Lagrange multiplier associated with the i*" inequality constraint
fi(x) < 0, and v; is the Lagrange multiplier associated with the i'" equality constraint
hl‘ (X) =0.

The dual function g : R™ x R” — R is defined as the minimum value of the Lagrangian

over x € D:

g (A v) =minp L(x,A\,v) =minp <f0(x) + Z Aifi(x) + Zyihi(x)> (2.15)
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The dual function is the minimum of a family of affine functions of (A, ). Therefore, it is
always concave, even when the primal problem (2.11) is not convex.
If we suppose that all A; > 0, then for any X,

g (A v)=minp L(x,A\,v) <L (XA v) < fo(X)

Consequently, g (A, v) < p*, where p* is the optimal value of the primal problem.
The dual function provides a lower bound on the optimal value of the primal problem for
each pair (A, v), with \; > 0,Vi € {1,...,m}. The optimal value of the primal problem can

consequently be approximated by solving the Lagrange dual problem :

maxgx .} 9 (A, v)
st. N >0,¥ie{l,...m} (2.16)

The solutions of problem (2.16), (A*,v*), are called dual optimal or optimal Lagrange
multipliers. As the Lagrange dual problem (2.16) is a convex optimization problem, (A", v*)
are unique global optimal solutions.

Let d* = g (A", v*) be the optimal value of the Lagrange dual problem. The inequality
d* < p* holds even if the primal problem is not convex. p* — d* is referred to as the
optimal duality gap of the primal problem. If the duality gap is equal to zero, then the
optimal solution of the primal problem is obtained by solving the dual problem. The duality

gap is equal to zero if both following conditions are verified:
1. The primal problem is convex.
2. Slater’s condition holds: 3 x such that f;(x) <0,V i€ {1,...,m}, and Ax =b.

It should be noted that for equality-constrained convex problems, Slater’s condition is ful-
filled as soon as the feasible set is not empty (i.e., 3 x such that Ax = b.). Consequently,
strong duality holds for any feasible convex problem.

Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions are:

fi(x*) <0,Vie{l,..,m}
hi(x*)=0,Viec{l,..p}
Af>0,Vie{l,..,m}
Nfi(x*)=0,Vie{l,..,m}

Vhox") + Y N fix®) + > vihi(x*) =0 (2.17)
=1 1=1

For any optimization problem with differentiable objective and constraints functions for
which strong duality holds, any pair of primal and dual optimal points (x*, (A*,v*)) must
verify the KKT conditions.

Besides, if the primal problem is convex, then the KKT conditions are also sufficient for
the points to be primal and dual optimal. Consequently, for a convex optimization problem

with differentiable objective and constraints functions satisfying Slater’s condition, the KKT
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conditions provide necessary and sufficient conditions for optimality.

The KKT conditions are useful in convex optimization to obtain analytical solutions to sim-
ple problems. We will use them throughout the dissertation, for simple problems stemming
from water-filling, or more complex problems as the one studied for network coordination
of RC users in Chapter 4.

Applications of duality theory to decomposition

Convex problems can be decomposed into several sub-problems in the dual space. Indeed,
the dual space often allows relaxing some constraints, and consequently working on parallel
optimization problems. A detailed review of the decomposition methods and of their appli-
cations to cross-layer optimization is performed in [26].

Dual decomposition can be used when the problem has a coupling variable such that, when
relaxed, the optimization problem decouples into several sub-problems. This method is also
called ‘Lagrangian relaxation’. The decomposition takes place in the dual space and the
coupling variable is the set of Lagrange multipliers. Each sub-problem is solved in parallel,
for a fixed value of the dual variables. Then the dual variables are updated with the aim to
minimize the dual function.

For instance, let us consider an inequality constrained convex optimization problem of the

following form:

MiNy, o x,, } Z fi(xq)

i=1
st Y hi(xi) <c (2.18)
=1

The Lagrangian is:
L(xi,A) =Y filxi) + AT (Z hi(x;) — C)
i=1 i=1

The dual problem maximizes the minimum of L(x;, A) over A. It can be solved with two
levels of optimization. At the lower level, the Lagrangian is decoupled into m sub-problems

over 1.
miny, f;(x;) + AT hi(xi), Vi € {1,...,m} (2.19)

Each sub-problem is solved for a fixed value of the Lagrange multiplier A. The obtained
solution, for each i € {1,...,m}, is denoted as g;(A). Tt is then used in the master dual

problem, that updates A by solving the dual problem:
maxy g(A) = Zgi()\) +ATe
i=1

st.A>0 (2.20)

The master problem can be solved with the sub-gradient method. The two steps are iterated
until convergence. As the dual problem is convex, the obtained solution is necessarily
globally optimal. If the duality gap is zero, then the dual optimum is also equal to the
primal optimum.

Remark: Primal decompositions are also possible in some cases. However, as we will not

use them in the thesis, we do not detail them in this section.
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2.2.3 Newton’s method

The KKT conditions may not always lead to a simple analytical solution. In that case, it
is necessary to use numerical methods in order to solve the convex optimization problem
(2.12). An efficient and classical method for unconstrained and equality-constrained convex
optimization problem is the Newton’s method. This section provides an overview of this

method. Detailed convergence proofs can be found in [24].

Descent methods

Unconstrained convex optimization problems are solved by descent methods. The solution
x* that minimizes f(x) is obtained at V f(x*) = 0. Descent methods produce a minimizing
sequence x* such that

FO) < f(x5), VE =0
The sequence is obtained with :

xFtl = xk 4 tkAxk, Yk >0

where t* > 0 is the step size, and Ax” is the descent direction. Due to the convexity of f,
Axk must verify V f(x*)TAx* < 0.
The general descent method iteratively updates x* until reaching the optimum value. It

starts from an initial vector x° € domf. Then it uses the following iterative process:

1. Determine a descent direction Ax.
2. Choose a step size t > 0 (line search).

3. Update x = x + tAx.

The process stops when a given accuracy criterion on Vf(x) = 0 is fulfilled. Line search
determines the step size t useful to update the direction. An efficient line search method is
backtracking line search. It depends on two parameters 0 < o < 0.5 and 0 < 3 < 1, and
consists in decreasing t as long as the stopping criterion is not fulfilled. Starting from ¢t =1,
the condition f(x+tAx) < f(x)+at V f(xT Ax) is checked. If it is not fulfilled, then t = 3.

Newton’s method for unconstrained convex optimization problems

The convergence of the iterative process is improved when the descent direction is a steep-
est descent direction. For a given norm ||.||, a normalized steepest descent direction gives the
largest decrease in the linear approximation of function f: Ax = arg min {Vf(x)Tv/|jv[ =1}
Newton’s method for unconstrained convex optimization problems chooses the descent di-
rection as the steepest descent direction at x, for the quadratic norm defined by the Hessian
V2 f(x): [vllg2p00 = (VIVZF(x)V) 2 1t is equal to:

Axp = —V2f(x) 'V f(x) (2.21)

And the stopping criterion for the iterative algorithm is: A(x)?/2 < €, where € > 0 is the
target accuracy, and A(x) is the Newton decrement:

Ax)? = VF(x)"V2f(x) V£ (x) (2.22)
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Newton’s method for equality constrained convex optimization problems

Newton’s method can be extended to equality-constrained convex optimization problems.
Two modifications are included: first, the initial vector must be feasible (it must lie in dom f
and satisfy the equality constraints: Ax? = b), and the Newton step must take into account

the equality constraint. The Newton step is characterized by:

(sz(x) AT> (Axnt> _ (—Vf(X)> (2.23)
A 0 w 0

& AT
(x) is called the KKT matrix. It must be invertible at each x. w is the optimal

A
dual variable for the second-order Taylor approximation of the original problem near x .
Finally, Newton’s method for equality-constrained convex optimization problems is:
Start from x° € domf with Ax? = b. Define an accuracy level € > 0. Then use the following

iterative process:

1. Compute the Newton step Ax,: by solving (2.23). Determine the Newton decrement
_ 1/2
M) = (V)T V2 (x) "1V £ ()

2. Quit if \(x)%/2 < e.
3. Choose a step size t > 0 by backtracking line search.

4. Update x = x + tAX,;.

2.2.4 Geometric programming

Geometric programming is a class of non-linear optimization problems that can be turned
into convex optimization problems through a logarithmic change of variables. It is often
used in wireless applications, as many optimization problems belong to the class of geometric
programming.

A monomial is a function f:RY’, — R of the following form:

flx) = dx(ll(l)x;@) .z

n

where d > 0 is a multiplicative constant and a(j) are exponential constants in R, j €

{1,...,n}. A posynomial is a sum of monomial:

Ko o m
f(x) = E dpry® " .xyp”
k=1

A geometric program in standard form is defined as:

H1inx fO(X)
s.t. filx) <0,Vie{l,..,m}
s.t. hy(x)=0,¥V1Ie{l, .. p} (2.24)

where f;, i € {0,...,m} are posynomials:

PO B )

K
fi(X> = Zdikxlik 31‘2““ O
k=1



26 Chapter 2 Preliminaries

and hy, [ € {1,...,p}, are monomials:
aj ai _ap
hi(x) = djx}" 5" ...y

In standard form, a geometric program is not a convex optimization problem, because
posynomials are not convex functions. Let us introduce a logarithmic change of variables:
y; = log(x;) and multiplicative constants: b;, = log(d;x) and b; = log(d;). We also set
aj = [af, a2, ..., afk]T. The optimization problem becomes:

Ko
miny Y " exp(adyy + box)
k=1
K;
s.t. exp(aly +bi) <1,Vie{l,..,m}
k=1
st.aly+b=0,1¢c{l,..p} (2.25)

This optimization problem is equivalent to:

Ko

miny log Z exp(ag,y + box)
k=1
K;
s.t. logZexp(aﬁy +by) <1L,Vie{l,..,m}
k=1

st.aly+b=0VIe{l,..p} (2.26)

Problem (2.26) is convex because the log-sum-exp function f(x) = log (expx1 + ... + exp a,,)
is convex on R".

Geometric programming is often used in the literature to solve resource allocation problems
in communications. For instance, power control with various objectives is studied with
geometric programming in [27]. It should be noted that many optimization problems in
multi-cell wireless communications become geometric programs only when a high SINR
assumption is fulfilled, i.e. when the approximation log(1 + SINR) ~ log(SINR) holds.



Chapter 3

Fairness increase through

distributed network coordination

3.1 Introduction

In Chapters 3 and 4, we propose a method to increase fairness in distributed networks. It
uses network coordination, where two BSs equipped with a single antenna form a virtual
MIMO array, in order to bring additional diversity to their users.

Virtual MIMO consists in transmitting signals to the same receiver from various locations.
From the receiver’s perspective, the channel is then equivalent to a MIMQO channel with
several transmit antennas. The diversity gain brought by virtual MIMO depends on the
path loss and shadowing loss differences between the involved transmitters and the receiver’s
locations, on top of the differences in fading conditions. Virtual MIMO has been introduced
for multi-hop networks in [28] [29]. It belongs to the set of cooperative communication
techniques. This set contains all the techniques where several transmitters or receivers
share some of their resources to increase the link capacity. The most usual cooperative
techniques are relaying techniques and network coordination. Relays are fixed or mobile
radio nodes, that are used to forward data from a source node to a destination node. For
instance, in cellular networks, mobile terminals may serve as relays to other mobile terminals
in uplink, or to BSs in downlink, in order to increase cells’ coverage. Fixed nodes, dedicated
to relaying, may also be considered. These nodes are then called repeaters. Whereas the
‘relay’ designation may apply to various scenarios, network coordination refers to a specific
downlink technique for cellular networks. In that case, the transmission from several BSs
to their users is jointly coordinated, thus turning the channel into an equivalent MIMO
broadcast, channel.

In most network coordination studies, it is assumed that all coordinated BSs simultaneously

have access to the data to be transmitted. Thus, a central controller managing the buffers

27
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of all users and connected to all BSs through high speed links must be included in the
network architecture. In Chapters 3 and 4, we consider distributed networks where each
BS manages its terminals’ buffers, and where the inter-BS link may not allow instantaneous
transmission. Consequently, a causality constraint is imposed on the inter-BS transmission.
Our method can be either seen under the scope of network coordination with a causality
constraint, or under the scope of relaying with a source-to-relay link with perfect SNR. To
simplify notations, in the following, we will refer to our method as a network coordination
method.

We study downlink resource allocation when causal network coordination is triggered for
the users located at the border of cells. The impact of network coordination depending on
the fairness of the power allocation objective is evaluated. Four power allocation objectives
are considered. Our proposed method is assessed in terms of cell throughput, and in terms
of fairness of the data rates’ distribution among users.

The chapter first presents the state of the art on cooperative communication techniques.
Then in Section 3.3, we detail the proposed causal network coordination process, and the
adapted power control designed for this process. Network coordination is performed over
two TTIs and involves two BSs. The direct BS is responsible for determining its set of users
requiring an additional capacity gain. Coordination is triggered without knowledge of the
complete CSI, prior to coordinated transmission, using a path-loss based criterion. Then,
a simple subcarrier allocation method, aiming at assigning the same number of subcarriers
to all direct users, is carried out. The direct BS is responsible for requesting the required
subcarriers for all coordinated users on their respective coordinated BS. Finally, power
control is performed independently per BS. It is further decomposed into two sub-problems
per BS: power allocation for direct users, and power allocation for coordinated users. Power
allocation is performed iteratively over all BSs, in order to take inter-cell interference into
consideration. It is detailed in Section 3.4, with four power allocation objectives: Globally
Optimal, Max-Min Fair, Proportional Fair and Harmonic Mean Fair. In Section 3.5, the
performance results of the proposed method are assessed and compared with a simple case
without network coordination. Numerical results show that network coordination increases
the fairness with all objectives, and increases the sum throughput with fair objectives. With
the unfair objective, Globally Optimal, the fairness increase comes at the expense of a high
peak data rate decrease, thus leading to a sum throughput decrease.

The main contributions of this chapter are:

e Causal network coordination is introduced. The proposed scheme is adapted for dis-
tributed networks where the inter-BS link may not allow instantaneous data transmis-
sion. A resource allocation strategy for this cooperative scheme is then detailed. As
network coordination is costly in terms of resource consumption, it is restricted to the
users located at the border of cells.

e Power control for the proposed causal network coordination is detailed. It is based
on an iterative process over all BSs, and on a separation of power allocation between

direct and coordinated users of the same BS.

e The proposed network coordination and power control strategy is tested with different

power allocation objectives. The conclusions are that network coordination is very
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useful to increase the data rate of the users located at the border of cells, thanks to
diversity gain and inter-cell interference decrease. This leads to a fairness improvement
with all objectives, and to a throughput increase with fair objectives. When the power
allocation objective is unfair, the sum throughput decreases due to the limitation in
the resources allocated to the users in best radio conditions.

3.2 State of the art

BS L
Relay ?  Network coordination

Virtual e >
|D MIMO channel
G.

G
G;
/ Gap, BS0, D Ggg LD
Y Virtual
<D MIMO channel

Source Destination Destination

Figure 3.1: Cooperation techniques: relaying (left) and network coordination (right)

3.2.1 Relaying techniques

Relaying techniques contain many different methods for wireless applications, in cellular and
ad hoc networks [30]. The most general definition is the following: a source node transmits
its data to a relay node, that retransmits it to the destination node. There may be several
relays retransmitting the data simultaneously, and the relaying process may consists of
several hops. If the source and relays transmit the same information, possibly not within
the same time slot due to causality constraints, and if the destination node is able to jointly
process this information, then the relay channel is equivalent to a MIMO channel. This
type of relaying protocol is called ‘Non Orthogonal’. Relaying is orthogonal whenever the
destination does not directly receive information from the source. Besides, the causality
constraint is almost always assumed when studying relays. It means that the relay cannot
instantaneously retransmit the data it receives. A special causality case is the half-duplex
constraint, where the relay cannot simultaneously listen and transmit. Relaying protocols
have been widely studied in uplink cellular networks [31] [32] [33]. A major research area
is the definition of adapted protocols derived from Amplify-and-Forward (AF) and Decode-
and-Forward (DF) [34] [35] [36] [37]. In AF, the relay simply forwards the received data with
an amplification factor. Its main limitation is the induced noise amplification. In DF, the
relay first decodes the received data, and then re-encodes and retransmits it. It avoids noise
amplification, but requires numerical processing at the relay. Resource allocation adapted to
cooperative protocols has rarely been treated in the literature. Power allocation for uplink
cooperation has been studied in [38] [39] [40]. Most papers on downlink relaying deal with

coverage improvement, using relays as repeaters without diversity [41].
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3.2.2 Network coordination

Network coordination consists in coordinating the transmission of several BSs of a cellu-
lar network toward the same users. The involved BSs should be linked by a high-speed
backbone. The BSs may coordinate their transmission to increase diversity and to de-
crease interference. The time-based transmission of adjacent BSs may be coordinated via
cooperative scheduling [42], so as to prevent interfering users from simultaneously transmit-
ting. This method is an extension of the dynamic planning techniques described in [9] to
time-based scheduling. The BSs involved in network coordination act together as a MIMO
transmitter. If several users are served by this set of BSs, the equivalent downlink channel is
a broadcast channel, with one transmitter and several independent receivers. Thus, MIMO
transmit processing can be used on this virtual MIMO channel in order to increase links’
capacity. All precoding methods applicable to the broadcast channel extend to network
coordination. The optimal joint encoding technique is dirty paper coding [43]. It provides
an upper bound on the achievable multi-user capacity. However, dirty paper coding is far
too complex to be implemented in real practical coordinated networks. In order to derive
more practical methods, MIMO linear precoding has been investigated for network coordi-
nation [44] [45] [46]. A generalized ZF precoder, also referred to as block diagonalization,
eliminates the interference from other users, as the transmission of each user lies within
the null space of the others’ transmission. An MMSE precoder may be used instead of ZF
to avoid noise increase. It should be noted that dirty paper coding and linear precoding
require full CSI on all links, available at all BSs or, equivalently, at the central controller
responsible for coordinated transmission. The main limitation of network coordination is
consequently the amount of feedback to be managed, and the additional backbone load
induced by multi-cell treatments [47].

3.3 Resource allocation for network coordination

3.3.1 Causal network coordination

Let us consider a network N with Npg base stations and K users. All BSs use OFDMA
with the same FFT size, Nppr. The total available bandwidth is B, Lgc is the number of
subcarriers per BS, and Bsc = B/Lsc is the bandwidth per subcarrier. Only one user is
served per subcarrier in each cell.

The studied network coordination method coordinates subcarrier and power allocations be-
tween two BSs serving the same mobile terminal. Each user k is attached to a serving
(denoted as ‘direct’) BS, BSg . This BS is responsible for getting the user’s data from the
network layer, and transmitting it to the user. If BS; j, estimates that user k is in bad radio
conditions and consequently has a high probability of achieving a low data rate, then BSg
identifies a neighboring BS that may coordinate its subcarrier and power allocations so as
to serve user k efficiently. Let BS. be the identified BS for coordination. BSg; sends
a message to BS.;, via the inter-BS link, composed of the data to be transmitted within
each subcarrier, and of the subcarriers’ indexes. Both direct and coordinated BSs should
be transmitting on the same set of subcarriers, so as to form a virtual MIMO array. Let O

be that set of subcarriers.
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In order to derive general results that will be valid for different types of network infrastruc-
tures, we impose the causality constraint on the link between the direct BS and the BS
chosen for network coordination. However, the inter-BS channel is assumed perfect in terms
of SNR (SNR — o0). This assumption is reasonable if the BSs are connected by a wired
link (which may be required for seamless handover management in 3GPP LTE or WiMAX),
or by directional radio links. Besides, we assume that the cyclic prefix compensates for the
delay spread from both BSs, so that there is no IST induced by network coordination.

The proposed transmission technique can be either seen under the scope of network coor-
dination, or under the scope of downlink cooperation. In the second case, the considered
transmission may be viewed as the Non Orthogonal Amplify-and-Forward (NAF) coopera-
tion protocol from [36] with one relay and two TTIs. In this protocol, the source communi-
cates with the relay and with the destination during the first TTI. In the second TTI, both
the source and the relay communicate with the destination. It has been shown in [36] that
NAF leads to higher mutual information than the other AF one-relay, two-TTIs protocols
(Orthogonal relaying protocol and simultaneous transmission of source and relay in the sec-
ond time-slot only). NAF is therefore the best AF protocol in terms of achievable rate.

I
Let xﬁc = [xk’l, x%z] be the vector of symbols transmitted by the direct BS in subcarrier /.

I
The vector of symbols received by user k in the two TTIs, yfc = [yfv’l, yfcz] , is equal to

gd kPé k

! ! kdk 1

Y1 = Nag 7 Tk +ng g (3.1)

k
Ger P, ga kPl
! 1 Kok ! Kak !
Yp2 = he g 7 “Eahy + ha T ke + 1y 0 (3.2)
k k

where

e P, (resp. P!,) is the transmit power from the direct (resp. coordinated) BS to user

k in subcarrier [.

® gir (resp. gcp) is the power path loss (including shadowing) from the direct (resp.
coordinated) BS to user k.

e hl (resp. hl,)is the amplitude of the fast fading channel coefficient between the
direct (resp. coordinated) BS and user k, in subcarrier [. It remains constant over
two TTIs.

° I,lC is the inter-cell interference plus noise received by user k in subcarrier . née ~

CN(0,13) is AWGN with variance Ny.

The coordinated network is represented on Figure 3.2, and an example of coordination
process is illustrated on Figure 3.3 with BS; as the direct BS, and BSy as the coordinated
BS of user k.

We consider an idealistic case with full CSI at the BSs. Practical implementations should
be based on partial knowledge of the channel state, provided by statistical estimation of the
channel parameters. However, it has been shown for the MIMO channel, for the most general

case of Ricean fading, that there is no analytical solution for optimizing the ergodic capacity,
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Link between direct BS and user i Direct user for BS,

" | and user

Link between coordinated BS i Coordinated user for BS,

Inter-BS link i Direct user for BS, or BS,

Figure 3.2: Causal network coordination

1 1
Y1 | Yk2

Figure 3.3: Example of coordination
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even when the channel mean and covariance matrices are available [48]. Therefore, complex
numerical techniques are required. The same limitations should apply to the considered
cooperative channel which is similar to a MIMO channel. Thus, we limit our study to full
CSI, so as to provide a first, idealistic assessment of the proposed method.

The transmission channel can be modeled as follows:

! 11 l
yi = Hypxp, + 1y, (3.3)
H% is the equivalent channel matrix for user k in subcarrier [,

1
h 1 gd)l}fd’k 0
V (3.4)
hl -, hl 9d=k'P(;,k

gc,kPi k
1

We assume that ]E{xggxch} = I,. The capacity of user k in subcarrier [ is [12]

1
ch = 3 log, (det (12 + HZ(HZ)H))
2
1 GlpPly Gc ke, Lk
=1 1 — .
5 l0g> < + i + i (3.5)
y 2
where Gdk = )hdk‘ 9d,r and Gck = c,k‘ 9o k-
The data rate of user k is consequently equal to
Ry = Bsc »_ Cj,
leOy,
B
Z5€ 5™ log, (det (12 + HL(H) )) (3.6)
€Oy,

3.3.2 Distributed power control

We now consider the influence of the proposed network coordination protocol on power
control. Let ¢(Ry) be a concave function of the data rate Ry of user k € {1,..., Kx}.
Power control aims at allocating powers to all users of the network, in order to solve an
optimization problem of the global form [49] [8]

#(R
InaX{Pl7 PNBS} Z ]_i)Oé

Lsc
s. t. Z nBs < PmaxyvnRS S {1, "'aNBS}

5. t. Pl >0, Y(ngs,l) € {1,..., Ngs} x {1,..., Lsc} (3.7)

nBps —

where Pl b 18 the power transmitted by BS ngs in subcarrier [, and Py, is the maximum
power per BS for downlink transmission. The optimization variables consist of the set of
power values transmitted by all BSs in all subcarriers. « is a coefficient that indicates the
fairness of the problem.

Although (3.7) may be turned into a convex optimization problem under certain assump-

tions on the utility function (see for instance [50]), we cannot conclude in the general case.
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Besides, because of network coordination, the total SINR is an additive function of the
SINR on the direct and coordinated links, therefore its inverse is not a posynomial function,
which could be solved through geometric programming [50]. If inter-cell interference was not
considered, then the problem would be convex and a global optimum could be obtained [24].
However, its determination would require a global knowledge of all channel gains, which is
not feasible in distributed networks.

As inter-cell interference must be considered, we propose to perform power allocation for
each BS independently and to iterate the process. At each iteration, the inter-cell interfer-
ence received by each user is re-computed, depending on the power transmit values of the
previous iteration. The iterative process does not necessarily converge for all power values,
as the distributed problem may not converge toward a fixed point -which may be the global
optimum. A numerical convergence study is carried out in Section 3.5.1. It shows that it
is possible to set the number of iterations for a given convergence rate on the power values.
Besides, in order to turn problem (3.7) into a convex optimization problem, whatever the
concave function ¢ is, (3.7) must not only be distributed over BS, but also be separated
into two problems per BS: optimization over the direct users and optimization over the
coordinated users.

Therefore, we impose that a fixed part of the total power be dedicated to coordinated users.
Let Sg be the set of users served on their direct link by BS nps, and S. be the set of
users that are coordinated by nps, with |S;| = K4 and |S.| = K.. The power dedicated to

coordinated users is then defined as

K.

Prax,c = Prax
ax, (Kc+Kd) a

and the power dedicated to direct users is Pmax,d = Pmax — Pmax,c- As a consequence, for
each BS, two power controls are performed in parallel: on the one hand, power is allocated
to direct users with power constraint Zkesd Zle(ak Pé’k = Pnax,a; and on the other hand,

power is allocated to coordinated users with power constraint Zkes Zleek Pcl & = Pmax,c-
c ) ?

3.3.3 Joint coordination - resource allocation strategy

We propose a joint coordination - resource allocation strategy for the coordinated channel,
which is made of three steps. It is performed independently in each BS, as it only requires

feedback from each user to its direct and coordinated BSs.

1. Identification of the users of the BS that require coordination, and of their coordi-
nated BS. We assume that coordination is useful for users at the border of each cell:
therefore, it is requested for users which have a path loss difference of less than A dB
between their direct BS and the best (in terms of path loss) neighboring BS. A is a
parameter that should be set depending on the cellular environment and deployment.
A should lead to a trade-off between improving the performance of coordinated users,

and maintaining the performance of the other users.

2. Subcarrier allocation: The same subcarrier allocation method is used whatever the
power control objective is, in order to compare them. A proportion of the subcarriers

of each BS is dedicated to coordinated users, with the restriction that each user should
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have at least one subcarrier allocated on its direct link. The proportion of subcarriers

dedicated to coordinated users is

. K.
LSC,c = min { {MLSCJ ,Lsc — Kd}

As a path loss criterion A is used for coordination request, the BS knows its number of
coordinated users K. before resource allocation. Subcarriers are first allocated to di-
rect users on the remaining Lsc g = Lsc — Lsc,. subcarriers. The subcarrier allocation
process aims at allocating the same number of subcarriers to all users. Each subcarrier
[ is allocated to the user that maximizes channel coefficient Gld,k, and that has less
allocated subcarriers than the user with the maximum number of subcarriers. Then,
the direct BS requests the list of subcarriers allocated to user k on its coordinated
BS. Coordinated users are favored over direct users regarding subcarrier allocation.
Consequently, if the subcarrier required for coordination is already assigned to a direct
user on BS,., and if some subcarriers are still available, the direct user is re-allocated
to the free subcarrier of BS. that maximizes its channel coefficient. At the end of the
subcarrier allocation step, if a user cannot obtain the same subcarriers on its coordi-
nated link as on its direct link, then network coordination is eventually not triggered

for that user.

3. Iterative power control: Tterative power control performs power allocation over co-
ordinated users, and over direct users, within each BS independently. The inter-cell
interference values of the previous iteration are considered. With a fixed inter-cell
interference, each local power allocation problem is convex and has a global optimum.
The general iterative power control framework is depicted on Fig. 3.4. It is detailed

in Section 3.4.

3.4 Power allocation objectives with varying fairness

In this section, we consider problem (3.7) distributed over all BSs, and focus on BS ngg of
N. For each user k € S;U S, served by nps, the performance indicator is the data rate Ry,
(3.6):

¢(Ri) = R, = Bsc Y _ C

lEOy,

3.4.1 Definitions

In the following, we evaluate the performance of the proposed causal network coordination
method with different power allocation objectives: Globally Optimal, Max-Min Fair, Pro-
portional Fair and Harmonic Mean Fair. P, (resp. P.) is the vector of power levels on
the subcarriers allocated to direct (resp. coordinated) users by nps. It should be noted
that, as Ry is an increasing function of P, and P, (for fixed inter-cell interference values),
in all studied cases, the objective function is maximized when the sum power reaches the
maximum allowed power, Ppax,d OF Pmax,c. Thus we use the equality constraint in the

optimization problems.
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Initial power values,
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Figure 3.4: Iterative power control with network coordination

1. Globally Optimal allocation is achieved when the fairness coefficient in (3.7) is « = 0.
It is a greedy optimization method that favors users in good radio conditions, but may
leave users in bad conditions unserved. It is defined as

maxp, Z Ry,

keSq
s.t. Z Z Pé’k = Pmax,d
kESq 1€O
st. Py >0, Vk €Sy, L € Oy (3.8)

for direct users, and

maxp, g Ry

keS.
s.t. Z Z Pcl’k = Pmax7c
keS. €Oy,
st. PL,>0,VkeS,, €6, (3.9)

for coordinated users. In the following, we only write down the optimization problem

for direct users. The optimization problems for coordinated users are similar.

2. Max-Min Fairness is obtained when o — oo. It aims at serving all users, but is

constrained by the users in worst radio conditions. Therefore, it may lead to poor
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cell’s sum throughput values.

maxp, minges,

S.t. Z Z Pé,k = Pmax,d

keSS, €O,
st. Py >0, Vk €8y, | € Oy (3.10)

3. Proportional Fairness corresponds to a — 1:

maxp, Z log(Ry)

keSq
s.t. Z Z P}y = Prax.d
keSS, 1leO,
st. Py >0, Vk €Sy, 1 € O (3.11)

4. Harmonic Mean Fairness is achieved when o« = 2:

e, (z 1)

keSS, Rk
st ) > Phy = Pnaxa
keSS, 1leO,
st. Py >0, Vk €8y, 1 € O (3.12)

Proportional Fair and Harmonic Mean Fair power allocations are trade-offs between Globally
Optimal and Max-Min Fair allocations.

3.4.2 Detailed power allocation process

For direct and coordinated users independently, power allocation is separated into two steps
on each BS. Power is first allocated globally per user, considering the global optimization
problem and sum power constraint. Then for each user, the previously determined power
is allocated to its subcarriers, with the objective to maximize the data rate. Each power
allocation problem is convex, and can be solved via classical convex optimization techniques
such as Newton’s method.

More specifically, in the first step, we consider that each subcarrier’s coefficient is equal
1
lsc,k
. . . ~ o 1 1 o
coordinated link channel coefficient G, = mzle@k G, where |Ok| = lsck. The

to the average direct link channel coefficient G’ik = Zleek Gfi,k and to the average

approximate data rate of user k is then

Ry = Bsczlsc,k

-~ H
10g2 (det <12 + Hk(Hk) ))
where ﬁk is the equivalent channel matrix corresponding to éd,k and éak . As the sub-
carrier allocation method defined in Section 3.3.3 leads to the same number of subcarriers

for all users, the global optimization problem can be simplified as follows (for instance for
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Globally Optimal allocation and direct users):

_ 2
GanP G. 1P
maxp, Z log, <1+ d’j. d’k> + ’j. Crk
kES, k k

s.t. E Pd,k = Pmax,d
kEeSq

s.t. Pd,k >0, Vk € Sq (313)

where [, = Zleek Ifhk is the interference plus noise received by user k on all its subcarriers,
and Py = Zleek sz,k (resp. P.j) is the sum power transmitted by the direct (resp.
coordinated) BS to user k. The optimization variable is the sum power per user. This
optimization problem can be solved with numerical methods in the four cases: a simple
iterative process is used for Max-Min Fair allocation, while Newton’s method is used with
the three other objectives. The details of both methods are provided in Appendices 3.A and
3.B.

Then, Py j, and P, are distributed over the subcarriers of user k with the following objective

(represented here for the direct link, the coordinated link’s optimization is similar):

2
GL P! G! P!
maxp, , Zlogg <1+ d,k d,k) + ekt ek

l l
lEO, Ik Ik
S.t. Z Poli,k = Py
ISSIS
st. Py, >0, VI€ Oy (3.14)

(3.14) is a Globally Optimal optimization problem, that can be solved with Newton’s method
(see Appendix 3.B).

3.4.3 Single carrier case: analytical study

In this section, we consider the single carrier case with Globally Optimal power allocation
objective, in order to get some insight into the proposed joint coordination - power control
method. The single carrier case can be analytically solved for coordinated users. An ana-
lytical solution can also be obtained for direct users, if all direct users are also coordinated

by neighboring BSs.

Power allocation for coordinated users

The optimization problem (3.9) is convex in P.. It can be solved with the KKT conditions.

Details are given in Appendix 3.C. The solution is:

+

1 1. GarPar\’
P..=]—— 1 : : 3.15
ok [Mc Gc,k ( i Ik: > ‘| ( )

where the constant y. must be chosen so that the power constraint ), - s, Pek = Pmax,c 18
fulfilled.

This solution is consequently a modified water-filling, where the SINR from the direct link,
Ga,kPa,k

T, must be considered. From this analytical expression, we can deduce that the power
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on the coordinated link for user k, P, j, will decrease when the SINR on the direct link
increases. This indicates that the coordinated link aims at compensating for the direct link,
thus setting more power when the SINR on the direct link is too low, and on the contrary,
setting less power when the SINR on the direct link is high enough. These conclusions stand
for a fixed p. value, whenever P, is different from zero, which depends both on the direct
link SINR, and on the SINR of the other coordinated users, that are considered through .
setting.

Power allocation for direct users

If a direct user is coordinated, then its power has an influence in (P;)? in the data rate;
whereas for non-coordinated users, the power has an influence in Py ;. Consequently, if both
types of users are present, we cannot find a simple analytical expression for the optimization
problem’s solution. It is then necessary to use Newton’s method (see Appendix 3.B).

In the case where all the direct users are coordinated by a neighboring BS, the solution can
be obtained analytically with the KKT conditions :

LI L r (3.16)

Pip=|—+—vVar— =—
o [.Ud paV T Gy

where

Gc,k Pc,k +

T
k= |} o Gdkk 2 'u?l‘|
(=)
and pig is a constant parameter that must be chosen in order to fulfill the power constraint
Zkesd Pd,k: = Pmax7d-
GekPek

The power on the coordinated link is only considered if condition (1 — gk ui) > 0is

Gd.k
()2

fulfilled. In that case, the power on the direct link P;j decreases when the SINR on the
coordinated link increases. However, |/P. ; may be considered within Py, whereas (Pyx)?
is considered in P, , thus emphasizing that both links asymmetrically contribute to the

data rate.

3.5 Numerical results

Network A is modeled by two rings of interfering BSs with omnidirectional antennas and
same cell radius (see Fig. 3.5). The different power allocation objectives are compared by
using Monte-Carlo simulations, with Ky = {32,64, 96, ..,224} direct users for each BS of
N. The total bandwidth is B = 10 MHz and the FFT size is Nypr = 256. The number of
available subcarriers per BS is Lgc = 256. The inter-site distance is dis = 0.7v/3 = 1.212
km. The path loss model is Okumura-Hata [4]: pl(d) = 137.74 + 35.221og(d) in dB. The
shadowing follows a log-normal law with standard deviation 7 dB, and the fast fading
is Rayleigh. The noise is equal to —105 dBm. It contains the thermal noise and non-
managed interference coming from non-modeled cells. The maximum transmit power for
each BS is Pyax = 43 dBm. The coordination triggering parameter A is set to 3 dB. This
value restricts network coordination to users at cell’s border. It is also consistent with the

handover triggering value usually chosen for this type of deployment in cellular networks.
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Figure 3.5: Network model

Only the users of the 7 central BSs (BSy to BSg) may be coordinated. The second ring of
BSs generates inter-cell interference and helps in coordinating users of the 7 central BSs.
Statistics are averaged over BSy, in order to avoid side effects. In the figures and tables, we
refer to Globally Optimal allocation as ‘GO’, Proportional Fairness as ‘PF’, Harmonic Mean
Fairness as ‘HMF’, and Max-Min Fairness as ‘MM’. ‘C’ indicates that network coordination

is used, whereas ‘NC’ indicates that network coordination is not used.

3.5.1 Numerical convergence study

Each power allocation problem corresponding to one BS and one user type (direct or co-
ordinated) is locally convex and leads to an optimal value. However, this does not imply
that the global problem over the two rings of BSs actually converges. In order to evaluate
the relevance of our method, we have performed a numerical convergence study on direct
and coordinated power for users of BSy. The convergence statistics for Ky = 128, with a
convergence criterion of 5%, are gathered in Table 3.1.

Convergence is faster at high load. Indeed, at low to medium load, each user has several
allocated subcarriers, and power control is performed in two steps. The second step allo-
cates power to subcarriers with Globally Optimal objective, which leads to some subcarriers’
power set to zero if the channel coefficients have a high standard deviation. This explains
for users’ power variations at low to medium load. This phenomenon is amplified with fair
power allocation objectives, as in these cases, users at cell’s border have high power values.
The power variations over the subcarriers of these users are consequently higher. However,
at high load (when K, > 128), the convergence rate for direct and coordinated powers
exceeds 99% with all objectives.

Finally, the average number of iterations required to achieve convergence for all users also
increases with the fairness of the power allocation objective. 6 iterations are required with
Globally Optimal objective, whereas up to 19 iterations are required with Max-Min Fair ob-
jective. Therefore, the algorithm’s convergence time remains quite reasonable, and iterative

power control may be run within the time slots composing the two considered TTIs.
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Table 3.1: Convergence of power control for K; = 128

BS Power For direct users || For coordinated users

Convergence Rate (%)

GO 99.09 99.21
PF 99.54 99.86
HMF 99.85 99.86
MM 99.31 99.29

Required number of iterations

GO ) 6
PF ) 6
HMF 7 8
MM 18 19

3.5.2 Throughput comparison

Network coordination increases the cell’s sum throughput at any load with all power alloca-
tion objectives except Globally Optimal, and the gain gets higher when the load increases.
On the contrary, network coordination decreases the sum throughput in all cases with Glob-
ally Optimal, but the loss gets lower when the load increases (see Fig. 3.6). With Globally
Optimal objective, the throughput loss is between 25 and 9%. With Proportional Fair, the
throughput gain is around 5%. With Harmonic Mean Fair, the minimum throughput gain
is 11%, and a maximum gain of 36% is achieved for K; = 224. The highest gains are ob-
tained with Max-Min Fair, as the sum throughput gain is between 28% and 85%. The fairer
the power allocation objective, the higher network coordination gain is. Indeed, network
coordination increases the data rate of users at cell’s border. With Max-Min Fair objective,
the data rate of all users is increased, as it is aligned with the lowest data rate. Harmonic
Mean Fair and Proportional Fair objectives follow the same tendency. With Globally Opti-
mal objective however, increasing the data rate at cell’s border implies decreasing the data
rate of users that are close to the cell, and as this power allocation objective importantly
favors users in good radio conditions at the expense of users at the border of cells, the sum
throughput is negatively impacted.

3.5.3 Fairness comparison

In order to study the influence of network coordination depending on user’s locations, BSy
is divided into 10 rings with equal area around the BS. The same number of users are served
within each ring.

Fig. 3.7 and 3.8 represent the average data rate within each ring, for a medium load
of Kg = 128. We can first notice that, with Max-Min Fair, Harmonic Mean Fair and

Proportional Fair objectives, network coordination brings data rates gain in all the rings.
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With Globally Optimal objective, only the last two rings benefit from coordination, and
the data rates loss is high in the first ring. Consequently, the fairness gain for users at the
border of the cell is obtained at the expense of a peak data rate decrease equal to 31% with
this objective.

Fig. 3.9 and Fig. 3.10 represent the influence of relaying on users’ data rates’ distribution,
for K4y = 128. Fairness is improved with all power allocation objectives. The probability of
exceeding a given data rate is higher with network coordination for all data rates with Max-
Min Fair and Harmonic Mean Fair, and for data rates up to 94 kbits/s with Proportional
Fair. Although these data rates may seem low, it should be noted that the data rate increase
concerns 59% of the users with Proportional Fair. With Globally Optimal objective, network
coordination decreases the ratio of unserved users from 35% to 10%.

3.6 Conclusion

This chapter has introduced a resource allocation strategy for causal network coordination.
The influence of network coordination on four power allocation objectives, Globally Opti-
mal, Max-Min Fair, Proportional Fair and Harmonic Mean Fair, has been tested. Simulation
results show that network coordination brings additional fairness at any load with all power
allocation strategies, and increases the system throughput with fair power allocation objec-
tives, whereas it decreases the sum throughput with the unfair Globally Optimal objective.
Indeed, with this objective that favors users in good radio conditions, additional fairness is
obtained for users at cell’s border at the expense of a decrease of the peak data rate. On
the contrary, with fair power allocation objectives, all users benefit from the data rate gain

provided to the users at cell’s border.
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In this chapter, we have assumed that all users were subject to the same resource alloca-
tion objective. However, this conjecture no longer holds when considering more realistic
wireless networks, where users may be requesting various services. As seen in Section 2.1.2,
the users’ QoS characteristics regarding per TTI resource allocation can be mapped onto
two categories: RC users, whose objective is to reach a minimum target data rate, and BE
users, that do not have any individual QoS objective. The first category of users follows
a fair resource allocation objective, as the QoS fulfillment of each user is compelled by the
achievement of a given quality indicator (namely, its target data rate), whereas the second
one follows an unfair resource allocation objective, which is the maximization of the sum
data rates, also referred to as Globally Optimal. The results obtained in this chapter have
shown that network coordination should be used for the users whose QoS constraints cor-
respond to a fair resource allocation objective, but not for the users following a Globally
Optimal resource allocation objective. Consequently, in Chapter 4, we will study how to

efficiently use network coordination in order to differentiate users per QoS constraint.
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APPENDIX

3.A Max-min fair power allocation

Gd,k

Tt Let us consider Max-Min

To simplify the notations, we set: a, = G%};’“Pak and by =

Fair power allocation on direct users:

maxp, minkegd 10g2 ((1 =+ bkpdvk)z =+ ak)
s.t. Z Pd,k = Pmax,d
kES,
st. Py >0, Vk €8y, 1 € Oy (3.17)

The Max-Min Fair routine aims at providing the same data rate to all users, which is equiv-
alent to setting the same capacity, as all users are allocated the same number of subcarriers:

C =logs(Amin). The power allocation method is consequently:

1. Compute Apnin, solution of

Z i _ Z V Amin — af
bk bk
{k€S4|Pa,#0}

Pmax,d +
{k€Sa|Pa,n#0}

For each k,
(a) if Apin —ag >0 and VA, —ar — 1> 0set Py = é [VAmin — ar — 1].
(b) Else, set Py = 0.

2. Tterate until 3, .o Pik = Pmax,d-

3.B Newton’s method
The general convex problem for power allocation is:

minp ) _ f (log(g(P)))
S. t. 1TP = Pmax
s.t. P>0 (3.18)

. 2
Where g(P); = log, ((1 + Gd*?f"*’“) + GC’??“”“), and f is a convex function in Py (resp.

P. if we consider the coordinated link). Ppax = Pmax,d for direct users, and Ppax =
Prax,c for coordinated users. With Globally Optimal objective, (f(x)), = —(x),; with
Proportional Fair objective, (f(x)), = — (log(x)), and with Harmonic Mean Fair objective,

(f(x), = (i)k, Vk € S, for direct users, and Vk € S, for coordinated users.

This problem is a convex equality-constrained problem that can be solved with Newton’s
method [24]. Newton’s method is simplified in our case as the Hessian matrix is diagonal.
The Newton step APy is defined by the KKT system:

) e)-(0)
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where A = 17, ¢ = Vf(P), and B is a diagonal matrix with elements: (B)y; =
V2(f(P))x. The KKT system can be solved by elimination, i.e. by solving AB~!ATw =
—~AB™!c, and setting AP, = ~-B7!(ATw +c).
As A =1, we directly obtain:

= _Zkes((v2f(P))k)_l x V(f(P))x
Zkes(v%f(P))k)*l

where S = S, for direct users, and S = S, for coordinated users.
and AP, is deduced from:

(3.20)

APy = —diag (V*(f(P))x) )(ATW + V[ (P)) (3.21)
Finally, the algorithm to solve the power allocation problem is:
1. Compute the gradient and Hessian of f(P).
2. Compute w from equation (3.20).
3. Compute APy from (3.21).

4. Compute A\(P)? = — 7 f(P)TAPy. Quit if A\(P)?/2 < ¢, where € is a parameter

evaluating the convergence.
5. Compute t with backtracking line search.

6. Update P := P + tAP,; and iterate.

3.C Single carrier case, power allocation for coordinated

users
The Lagrangian corresponding to problem (3.9), normalized by 21‘;7522) is:
GarPur\? | GenPe
L(Pe, A ) = Y log ((1 4 4k ‘““) + ok ’“)
D I
keS.
=+ Z )\ch,k — Me (Z Pc,k - Pmax,c) (322)
keS. keS.
The derivative of the Lagrangian with regard to P, is given by:
Gc k
OL(Pe, A, ]
(8;’ku0): c Plk2 Goary Tk T He
c, a4,k Pa,k e,k Pe.k
(14 GosPu ) 4 Gt

The KKT conditions impose that: aug;i;”:”“) =0 and \; > 0.

Ar > 0 condition corresponds to :

Gk
Iy

2
Ga,kPa,x GekPe,k
(1+ = )+ =

fhe =
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Another KKT condition is that A\ P, =0, i.e.,

Gc,k
Iy _
fe = GanPir 2 Go v Por Pc,k—o
(1—|— T ) + c,[ c,
ke k

If pe > (1+Gd,);:di;’3k2+an,l;:c,k then this condition can only be fulfilled if P, ; = 0. Else,
Gek
e = (1+ Gdﬂ?:d«:32+cc,lj:c,k Finally, we obtain :
B He Gc,k Ik .

where [z]* = max{0,2}. The constant y. must be chosen so that the power constraint
> ke, Peke = Prax,c is fulfilled.



Chapter 4

QoS aware resource allocation
with distributed network

coordination

4.1 Introduction

Power control with network coordination has been studied in the previous chapter with a
global optimization objective for all users. Four power allocation objectives have been tested
with the same subcarrier allocation method: Globally Optimal, Max-Min Fair, Proportional
Fair and Harmonic Mean Fair. In Chapter 3, network coordination was triggered for all the
users located at the border of cells. Numerical results have shown that network coordination
increases fairness among users. Thus, high throughput gains are obtained with fair power
allocation objectives, whereas the peak data rate decreases when the objective is unfair. As
a consequence, network coordination is useful for users requesting a minimum data rate,
but should not be triggered for BE users, whose per TTI QoS performance criterion is the
cell’s sum throughput.

Based on the results from Chapter 3, we propose a resource allocation method that uses
network coordination to provide the required QoS of RC users, that are subject to target
data rate requirements, and to increase the sum data rate of BE users. Subcarrier alloca-
tion as well as power control are used to optimize resource allocation. The proposed method
arranges users for resource access according to priority. The priority order depends on QoS
constraints, and favors RC users. RC users should consequently get their required data rate,
but at the expense of the least possible radio resources, so that the remaining resources can
be allocated to BE users. The proposed method is suited to distributed networks, as it
requires small information exchange between the coordinated BSs, and takes into account

the causality constraint.

49
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The chapter first details the literature relevant to resource allocation in OFDMA. In Chap-
ter 3, subcarrier allocation was not optimized, and the main focus was on power control. In
this chapter, both subcarrier and power allocations need to be optimized so as to use radio
resources as efficiently as possible. Therefore, we review the different methods proposed
in the literature for joint resource allocation in OFDMA. Aside from the case of Globally
Optimal objective in single-cell OFDMA, none of the resource allocation problems can be
optimally solved by a decomposition into two sequential stages (subcarrier allocation fol-
lowed by power allocation). We detail the current status of joint resource allocation for
RC users in single-cell OFDMA. We then study some relevant separate methods proposed
to solve the corresponding optimization problems. Finally, a review of the proposed tech-
niques for resource allocation in multi-cell OFDMA is performed. It shows that up to now,
no efficient solution has been determined for joint resource allocation in multi-cell OFDMA
networks. Our focus in this thesis will be on separate resource allocation methods, due to
the distributed network’s constraint.

The chapter then describes a QoS-aware resource allocation method. In the considered
scenario, two sets of users with different QoS requirements are present, RC and BE users.
Our resource allocation method uses the network coordination procedure investigated in
Chapter 3 to serve the RC users located at the border of cells. For these users, resource al-
location corresponds to a Margin Adaptive (MA) objective: the aim is to minimize the sum
power required to fulfill their data rate requirement. Then BE users are served following a
Globally Optimal objective. The chapter details the prioritization among the set of users
regarding subcarrier and power allocations. The allocation methods for the two sets of users
are then described. Finally, the QoS-aware resource allocation method is compared with
Equal Power Allocation with the same subcarrier allocation, and with a modified version of
the method proposed in [51].

The main contributions of this chapter are:

e Network coordination is efficiently used, by limiting its triggering to the cases when a
fairness gain is required. Only RC users located at the border of cells are coordinated.
This leads to a decrease in the sum power required to reach the target data rates of

these users, which is beneficial to the whole network.

e The global resource allocation problem per cell is decomposed thanks to a prioritization
among RC and BE users. Resource allocation is first performed for RC users, and then

for BE users. This decomposition of the original problem greatly simplifies it.

e Subcarrier allocation for RC users with network coordination is proposed as an ex-
tension of the method from [52]. The analytical solution of the Margin Adaptive
resource allocation problem involving network coordination is derived, by using the
KKT conditions.

e The performance results of both QoS sets are highly increased compared to the exist-
ing methods from the literature, both with and without network coordination. Con-
sequently, the proposed prioritization and resource allocation methods could be used
even if network coordination is not available. Network coordination brings additional
performance gains, both in terms of ratio of RC users achieving their target data rate,

and in terms of the sum throughput of BE users.
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4.2 State of the art on resource allocation in OFDMA

In this section, we detail the state of the art on downlink resource allocation in OFDMA.
Most articles consider a single cell without inter-cell interference. This comes from the
fact that early works on resource allocation in OFDMA stem from Digital Subscriber Line
systems (xDSL) studies. Consequently, we first review single-cell cases, and then the relevant
literature on multi-cell networks. In the following optimization problems, the optimization
variables are the subcarrier allocation set and the power values.

4.2.1 Optimization problems
Best Effort users: Globally Optimal objective

The Globally Optimal objective, maximization of the sum data rate under a sum power
constraint Ppax, is studied in [53]. The authors consider a single cell with Lgc subcarriers,
containing K users. They first allow multiple transmission of several users on the same
subcarrier. The assignment index c} is a real continuous value in [0, 1]. It is equal to 0 if
subcarrier [ is not allocated to user k. Rfc is the data rate of user k in subcarrier [, and P,i

is the power transmitted to user k in subcarrier [.

K Lsc
maxp c} Z Z Rfc
k=1 1=1
K Lsc
s.t. Z Zcﬁcp,i < Phax
k=11=1
st. PL>0,V(k, 1) € {1,..., K} x{1,..., Lsc} (4.1)

The authors analytically prove that the sum data rate is maximized when each subcarrier is
assigned to one user only, the user with the best channel gain for that subcarrier, and when
the transmit power is distributed over the subcarriers through water-filling. Consequently,
for BE users, OFDMA is optimal, i.e. ¢} is an integer in {0, 1}. Besides, the solution of the
joint optimization problem over subcarrier and power allocations is equal to the solution
of the separated optimization problems, where subcarrier allocation is first performed, and
then followed by power allocation.

Rate Constrained users: Rate Adaptive and Margin Adaptive problems

Two optimization problems can be used to study resource allocation for RC users: Rate
Adaptive (RA) and Margin Adaptive (MA). In OFDMA, the assignment index ¢}, is equal
to 1 if subcarrier [ is allocated to user k by its serving BS, and to 0 otherwise. The set
of subcarriers allocated to user k, O = {l | cﬁc = 1}, is consequently orthogonal to the
sets of subcarriers allocated to the other users, and it is equivalent to consider the set ©
instead of ¢ as subcarrier allocation’s optimization variable. The sum data rate for user k
is R, = Y ,ce, R}, and the sum power allocated to user k is Py = Y_,.0 P}

The RA optimization problem in downlink OFDMA has been introduced for the single-cell

case in [52]. Its objective is to maximize the minimum data rate over all K users, under a
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maximum sum power constraint:

max(p @} Ming—{1, . K} Z Rfc

lEO,
K
st. Y > Pi < Puax
k=11€0y
st. PL>0,Y(k, 1) €{1,..., K} x{1,..., Lsc}
st. Op N O = 0,V(k, k) € {1,... K} k#K (4.2)

The MA allocation problem [54] aims at minimizing the sum power under a set of users’
data rates constraints:

K
min{p,@} Z Z P]é

k=11€Oy
st. Y Ri > Ryjarget, ¥k € {1, .., K}
€Oy
st. PL>0,Y(k,0) € {1,...,K} x{1,..., Lsc}
st. O, NOp = 0,V(k, k) e {1,... K}  k#K (4.3)

In [55], it is shown that if all users have the same target data rate Ry target = Rearget, V K,
the RA problem can be viewed as an iterative MA problem where the target data rate

increases until the total power constraint no longer holds.

4.2.2 Joint resource allocation for RC users

In OFDMA, MA and RA resource allocation problems are not convex because subcarrier
allocation is a discrete problem, as only one user can be assigned per subcarrier. They can
be turned into convex optimization problems by relaxing the discrete constraint in subcar-
rier allocation [52] [54], i.e., allowing ¢} € [0,1] . However, in both cases, the obtained
solution may lead to some subcarriers being shared between several users. Consequently,
an additional process is required to retrieve an OFDMA solution, which may therefore be
sub-optimal. Besides, as stated in [56], the methods proposed in [54] and [52] involve higher
computational load than solving the MA and RA via Integer Programming. However, even
with Integer Programming, the complexity increases exponentially in the number of con-
straints and variables. Consequently, most papers propose sub-optimal heuristics to reduce
complexity [56] [57].

Recently, it has been shown by Seong et al. in [58] that the Lagrange dual decomposition
method can solve the joint resource allocation problem in OFDMA | provided that the chan-
nel consists of a minimum number of subcarriers. Seong et al. use an important result
from [59] on non-convex optimization. In [59], the authors study the problem of maximiza-
tion of the sum data rate under a sum power constraint. They show that under a certain
condition called the time-sharing condition, the duality gap of the optimization problem is
always zero, regardless of the convexity of the objective function. The time-sharing con-
dition is satisfied for practical multi-user spectrum optimization problems in multi-carrier
systems in the limit, as the number of subcarriers goes to infinity. Consequently, it is possi-

ble to use efficient numerical algorithms to solve non-convex problems in the dual domain.
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These results are applicable to xDSL and to OFDM systems. Seong et al. [58] study the
Weighted Sum Rate Maximization problem (WSRMax), that corresponds to Globally Op-
timal objective with a weight per user, and the Weighted Sum Power Minimization problem
(WSPMin), that is equivalent to MA optimization problems with a given weight per user,
for single-cell OFDMA. They show that with a minimum number of Lgc = 8 subcarriers

and with K = 2 users, the duality gap is virtually equal to zero.

4.2.3 Separate subcarrier and power allocations for RC users

For the RA problem, Rhee and Cioffi [52] perform subcarrier allocation, assuming that
equal amount of power is allocated to each subcarrier, with an iterative process. After an
initialization phase during which each user is allocated its best subcarrier (with regard to
the channel coefficient), in each iterative step, the user with the lowest data rate is identified,
and is assigned its best subcarrier, among the list of subcarriers that are still available. The
iterative process stops when all subcarriers are allocated.

In [60], the authors add power control in sequence after the subcarrier allocation method
from [52]. Power allocation follows a RA objective. The considered RA problem may
impose proportionality constraints among the data rates of users: Ry : Ry : ... : Ry =
a1 : Q... Qa, where {ak}szl is a set of positive coefficients. Power allocation is solved
with Newton’s method when «j, = 1,Vk. Numerical results show that the proposed power
allocation method leads to higher capacity than the equal power allocation of [52]. The
capacity gain increases with the number of users, thanks to multi-user diversity.

In [51], the method of [60] is adapted in order to serve two types of users with different
QoS requirements: RC users and BE users. The optimization problem aims at maximizing
the minimum data rate for RC users, while maximizing the sum data rate for BE users.
Subcarrier allocation is first performed for RC users with the method from [52], and the
remaining subcarriers are then allocated to BE users in a greedy manner. The RA problem
is solved for power allocation of RC users, under the constraint that the sum power should
be lower than Pgc, which is proportional to the number of subcarriers allocated to RC users.
For BE users, power allocation aims at maximizing the sum data rate under the sum power
constraint determined by the remaining power, Py.x — Prc. The main limitation of this
method is that the sum power dedicated to RC users, Prc, is not determined according to

any optimization rule.

4.2.4 Resource allocation in multi-cell networks

To the best of our knowledge, joint subcarrier and power allocation has not been treated for
the multi-cell case yet. The interesting results from [58] are only applicable to the single-cell
case.

Resource allocation in multi-cell can be performed independently in each BS, considering
inter-cell interference as noise. This method is called iterative water-filling [61]. If inter-cell
interference cannot be neglected, then iterative water-filling may lead to power divergence
situations. In [62] [63], the MA optimization problem is studied under the scope of game
theory. Iterative water-filling can be viewed as a non-cooperative game where each player
(i.e., each BS) aims at minimizing the sum power. The authors in [62] suggest to avoid

power divergence situations by including a centralized mediator, that prevents some users
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from transmitting in the subcarriers where their SINR is too low. Other heuristics have been
proposed in [64] [65]. In order to account for inter-cell interference, these heuristics are ei-
ther centralized procedures [64] or distributed procedures requiring an iterative process [65].
This dissertation focuses on distributed multi-cell resource allocation. Based on the con-
clusions that, even in the single-cell case, separate resource allocation leads to satisfying
performance results with reasonable complexity compared to joint resource allocation meth-
ods, and that joint resource allocation in the multi-cell case remains an open problem, we

propose to separate subcarrier allocation from power control.

4.3 QoS-aware resource allocation

In this section, a QoS-aware resource allocation method for multi-cell OFDMA with both
RC and BE users is determined. Unlike [51], the optimization problem for RC users is MA.
In order to provide the required QoS to all RC users whatever their location, we use network
coordination for the RC users located at the border of cells. The causal network coordination
method has been described in Chapter 3. A major conclusion of Chapter 3 is that the sum
throughput is not improved by network coordination when the power allocation objective is

Globally Optimal. As a consequence, BE users are not coordinated.

4.3.1 Description of the proposed method

The resource allocation problem in each BS aims at providing their target data rate to RC
users, while maximizing the sum data rate of BE users. The sum data rate for BE users is
an increasing function of the power dedicated to BE users. Consequently, the optimization
goal is equivalent to minimizing the sum power required to satisfy all RC users, so that the
power dedicated to BE users is maximized. The resource allocation problem on each BS

ngg is:

mingp e} Z Z (Piy+ Py)

kGSRC,d €O

s.t. Z RL > Rk,targeh Vk € SR.C,d
€Oy,

max Z Ry,

kESBE

Lsc

s.t. ZP,,ILBS < Prax
=1

st. Pl >0Vl €e{l,..Lsc}
s.t. ©,N Ok =0,Y(k, k") € {Src,a U SBE}2 kAK (4.4)

Sre,q is the set of direct RC users served by BS ngps, Src ¢ is the set of RC users coordinated
by ngs, and Sgg is the set of BE users served by ngg. The same notations are used in this
chapter as in Chapter 3 to characterize network coordination.

Network coordination is restricted to the RC users located at the border of cells. The direct
BS requests coordination to a neighboring BS for RC users that have a path loss difference
of less than A dB between their direct BS and the best neighboring BS.
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As justified in Section 4.2.4, subcarrier allocation is separated from power control to reduce
complexity. Subcarrier allocation for RC users is performed with an iterative algorithm that
aims at minimizing the number of subcarriers required to satisfy the target data rate re-
quirements of all RC users. Assuming equal power and interference levels on all subcarriers,
the proposed algorithm consequently minimizes the sum power. The RC users are grouped
within groups with the same target data rate. These groups are ordered by increasing target
data rate, so that the users with the lowest target data rate are more likely to be satisfied.
The subcarrier allocation process (detailed in Section 4.3.2) on the direct link is performed
for each group of RC users in decreasing priority order. Then subcarriers on the coordi-
nated link are allocated. Finally, subcarrier allocation for the BE users is performed on the
remaining subcarriers with a greedy algorithm: each available subcarrier is allocated to the
user that maximizes the channel coefficient in the subcarrier.

Once subcarrier allocation is determined, an iterative process is used to perform power
control in a distributed way. At each iteration, power allocation is independently carried
out within each BS, considering the inter-cell interference level computed in the previous
iteration as a fixed value. The power control problem then becomes equivalent to a set
of convex optimization problems that are distributed over the users and over the BSs.
Regarding RC users, minimizing the sum power over all users in a given BS is equivalent to
minimizing the sum power per user, because we do not impose a sum power constraint at
that stage. The sum power constraint is indeed considered after power allocation through
an independent admission control procedure. For the RC users requesting coordination, the
power allocation process computes the power values of the direct BS and of the coordinated
BS that minimize the sum power over both BSs. The details are given in Section 4.3.3. It
should be noted that, as the data rate is an increasing function of the power, the minimum
sum power is obtained when Zleek Rfc = Rj target- DBesides, BE users’ sum data rate
maximization can be performed independently in each BS. The power allocation problem

in BS ngs is consequently:

min{Pd,k;PCTk} Z (Pté,k + Pi,k)
leOy,

s.t. Z RZ = Rk,target; Vk € SRC,d
LEO,

Then max Z Ry
kESRE

s.t. P, <P
> > Pis

kESBE l€O

where P’ = Pax — Z Z Pé,k — Z Z Pcl,k

kESRC,a lEOK kESrC,c 1€EOK
s.t. Pgllﬁk > 0,Vk € {SRC,d USBE}7 €O,
s.t. Pl >0,Yk € Sroe, | € Oy (4.5)

On each BS, if the sum power used for all RC users to reach their target data rates is
less than the maximum power Py, then the remaining power is used for BE users. Power
allocation for BE users is performed with a Globally Optimal objective. The details of the
corresponding water-filling algorithm are given in Appendix 4.A.

On the contrary, if the sum power used for RC users is more than the maximum power
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Prhax, BE users are not served, and some RC users must be rejected. The admission control
process starts with the RC users with the lowest priority levels. Among these users, the
most demanding in terms of power level are rejected. This process stops when the sum

power becomes less than Py ..

4.3.2 Subcarrier allocation for RC users

The subcarrier allocation method for RC users is an iterative algorithm that determines the
minimum set of subcarriers required to satisfy all RC users’ data rate requirements.
At subcarrier allocation stage, no information is available on power and inter-cell interfer-

ence. As a consequence, the BS performs subcarrier allocation under the assumption that

Priax
’ Lsc

inter-cell interference plus noise within all subcarriers (f , which depends on the load and

each subcarrier is allocated the same power

, and that each user undergoes the same

deployment’s characteristics). Under these assumptions, minimizing the set of subcarriers
is equivalent to minimizing the required sum power.

In this algorithm, the direct BS also considers the influence of the coordinated link on the
users’ data rate. To simplify subcarrier allocation, and avoid having to request CSI on the
coordinated BS-to-user link at that stage, the direct BS only takes into account the path
loss (including shadowing) between the coordinated BS and the user.

A proportion of the subcarriers of each BS is dedicated to coordinated users, with the re-
striction that each user should have at least one subcarrier allocated on its direct link. The

proportion of subcarriers dedicated to coordinated users is

K.
Lsc.. = mi — ¢ Iso|,Lsc — K
8C,e = 1IN H(KC+Kd> SOJ 5 d}

where K, is the total number of direct users, including RC and BE users, and K, is the
number of coordinated RC users. We denote the approximate data rate, obtained under
the assumptions of equal power allocation and average interference, as Ry. The algorithm
detailed hereunder is run for a set of users with the same target data rate, Ry target =
Riarget, V.

1. Initialization:

(a) Set Ry = 0 for all users k

(b) For each user k, find the subcarrier [ on the direct link with highest channel
coefficient Gfiyk, and assign it to user k. If user k is a coordinated user, compute
Ry, by taking into account the coordinated link.

2. Iterative phase: as long as there are free subcarriers and as long as at least one user
does not reach the target data rate Riarget,
(a) Find the user k that has the lowest data rate Ry.

(b) For that user k, find the free subcarrier [ on the direct link with the highest
channel coefficient Gil,k, and assign it to user k.

(c) Update Ry, with the additional approximate data rate obtained on subcarrier [,

taking into account the coordinated link if user k is a coordinated user.
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After direct subcarriers have been assigned to all RC users, for all coordinated users,
the direct BS requests the subcarriers corresponding to the direct subcarriers of that user,
on the coordinated BS. If a required subcarrier is already assigned to a direct user, and if
some subcarriers are still available, the direct user is re-allocated to the free subcarrier that
maximizes its channel coefficient.

Each coordinated user should have the same number of subcarriers on the coordinated link
as on the direct link. No transmission takes place on the coordinated link for users who

cannot meet this requirement.

4.3.3 Power control for RC users

Power control aims at minimizing the sum power over all RC users. At that step, we do not
consider the maximum sum power constraint. Consequently, the power control objective can
be distributed per user: the aim is to minimize the sum power, over the direct subcarriers
and the coordinated subcarriers, required to reach the target data rate. For direct users, the
solution is simply to water-fill over the user’s subcarriers, under the data rate objective. For
each coordinated user k, we consider the joint direct and coordinated power optimization
problem:

min{Pd,lmPc,k} Z (Pé,k + Pcl,k:)

lEOy,
s.t. Z ng = Rk,target
leOy,
st. Pl >0and P}, > 0,1 €06y (4.6)

where the sum data rate is equal to

2
Bsc Gél,kpé,k Gf:,kpcl,k
R, = — E log, (1 + 7 + 7
lEOy, k k

This problem is solved jointly over {Pg, P, x} through convex optimization. The analyt-
ical solution is detailed in Appendix 4.B. Power allocation requires both direct BS-to-user
and coordinated BS-to-user CSI. Consequently, the distributed implementation may be per-
formed in two ways: either in the terminal or in the BSs. In the first implementation, the
mobile terminal performs power control and then feeds back the required transmit power
values to the direct and coordinated BSs independently. In the second implementation, the
mobile terminal feeds back CSI on the coordinated BS-to-user link to the direct BS. The
direct BS can then emulate the joint solution, and only provide the direct power. It also
transmits the coordinated BS-to-user link CSI to the coordinated BS (this is less resource-
consuming than a direct CSI transmission between the user and the coordinated BS, as we
assume that the inter-BS link is perfect, contrary to the terminal-user link). Finally the
coordinated BS provides the additional power required in order to reach the target data
rate.

The first implementation is less costly than the second one in terms of resource consumption
associated with signaling. However, it may only be feasible if the terminal has the required

hardware and software to iterativaly compute the power values.
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4.4 Numerical results

The studied network and the simulation parameters are the same as in Chapter 3 (see
Section 3.5).

Our method is compared with two methods that use the same subcarrier allocation, but
different power allocations. The first method is Equal Power Allocation (EPA), where power
value Iz"s‘zx

summarized in Section 4.2.3., for scenarios with both RC and BE users. In the following, we

is allocated to each subcarrier. The second method has been proposed in [51] and

refer to our method as ‘PM’, for Power Minimization. ‘C’ means that network coordination

is used, and ‘NC’ means that there is no network coordination.

4.4.1 Performance of RC users

Scenarios with RC users only are first studied, in order to evaluate the rejection probability
for given target data rates and load levels. A RC user is rejected if it does not reach its
required data rate. We consider three cases: 32 users per cell requesting 144 kbits/s, 96 users
per cell requesting 64 kbits/s, and 192 users per cell requesting 32 kbits/s. The rejection
probability with and without coordination, with EPA and PM methods, is represented on
Fig. 4.1. We can first notice that PM is efficient compared to EPA, with and without
coordination. Besides, network coordination decreases the rejection probability in all the
scenarios. Fig. 4.2 shows the average data rate per ring, and Fig. 4.3 shows the percentage
of rejected users per ring, both for the 32 users per cell scenario. With the proposed method
PM, the rejected users mainly belong to the rings at the border of the cell, because admission
control rejects the users with the highest power requests if the maximum sum power is
exceeded. Network coordination decreases the power required to satisfy all users’ data rate
demands, therefore restricting the need for admission control, and preserving fairness. We
can notice that with EPA, in all scenarios, the average data rate in the central rings is very
high. This triggers an inefficient use of power for some RC users, as the target data rate
is importantly exceeded. Besides, the high average data rates obtained in almost all rings
with EPA should be considered with caution as the rejection probability is very high, even
with network coordination (see Fig. 4.3): it exceeds 40% after the third ring with 32 and
96 users per cell, and after the sixth ring with 192 users per cell. Therefore, EPA is efficient

in terms of sum data rate, but is totally unfair.

4.4.2 Performance with RC and BE users

We now consider a scenario with both RC and BE users, where the RC users do not require
all the power, so that the BE users may also served. Our proposed method is compared
with the method from [51], where the proportion of power dedicated to RC and BE users
is fixed before power control: Prc and Pgg = Pmax — Prc- The power for RC users is
proportional to the number of subcarriers allocated to RC users. However, contrary to [51],
we do not use RA objective for RC users power allocation, but MA objective. Admission
control rejects the users with highest power values, until the sum power becomes lower than
Pre. Numerical results are given for 16 RC users per cell requesting 64 kbits/s, and 16 BE
users per cell. The method adapted from [51] is denoted as ‘AKSK"’.

Network coordination’s cost is evaluated through power consumption. Table 4.1 shows that



4.4 Numerical results 59

80 T T

I 192 users requesting 32 kbits/s
70l I 96 users requesting 64 kbits/s
I 32 users requesting 144 kbits/s

% of rejected users
w B (&) (2]
o o o o

N
(=]

10

C,PM NC PM C, EPA NC, EPA
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Figure 4.3: Percentage of rejected users per ring, 32 users per cell requesting 144 kbits/s

Table 4.1: Comparison of power consumption

Coordination || No coordination
PM (required power) 1.95 W 519 W
AKSK (evaluated by algorithm) 11.07 W 16.15 W
EPA (required power) 10.99 W 10.31 W

the sum power required to serve both direct and coordinated users in coordination case
is lower than the power required to serve direct users only without coordination. This is
due to the inter-cell interference decrease and to the fact that under some shadowing and
fading circumstances, transmitting on the coordinated BS avoids high power transmissions
from the direct BS. These results show that for RC users located at the border of cells,
network coordination spares some power. AKSK highly overestimates the power required
for RC users. Consequently, few power is allocated to BE users, which explains for their
low data rate (see Fig. 4.4 and 4.5). EPA leads to even worse results, although more power
is dedicated to BE users than with AKSK. This is due to inter-cell interference, which is
higher with EPA than with the two other methods, as there is no power control on RC
users. Power control on BE users does not make much difference, as maximizing the sum

data rate over BE users almost leads to equal power allocation [53].

Besides, we can notice that using network coordination importantly increases the data
rate for BE users. The gain brought by network coordination comes from both subcarrier and
power allocations. Indeed, the average number of subcarriers allocated per BE user in the

network coordination case is 7, whereas it is only 3 in the no-coordination case. This comes
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from the fact that less subcarriers are required for RC users when network coordination
is used, thanks to the capacity gain brought in each subcarrier. As a consequence, more
subcarriers are then available for BE users. Besides, the power available for BE users is far
lower without coordination than with coordination, so even the BE users that actually get
subcarriers are limited by power allocation. With PM, the average power per BE user is 2.5

to 3.5 times higher with coordination than without coordination.

The subcarrier allocation process overestimates the required number of subcarriers, be-
cause it assumes equal power allocation and equal inter-cell interference in each subcarrier.
With our proposed method, power control allows RC users to reach their target data rate
with less subcarriers than estimated at subcarrier allocation step. This is mainly important
for the users located at the border of cells, that require the most subcarriers. This limitation
is somewhat mitigated by network coordination, as the evaluated capacity for coordinated
users in the subcarrier allocation process takes into account the coordinated link. Therefore,
the number of required subcarriers on the direct link as evaluated by subcarrier allocation is
lower than in the no-coordination case. These issues show that separating resource allocation
into two independent phases may lead to inconsistencies. However, this is required due to
the constraint of distributed networks, and due to inter-cell interference. In practical imple-
mentation, resource allocation could be improved by considering the past power allocation
values within actual subcarrier allocation, for RC users whose average channel conditions
little vary during several TTTs. When considering per T'TT resource allocation, power alloca-
tion could be emulated within each BS prior to subcarrier allocation to improve its accuracy.
Such an emulation method is however quite complex and does not bring much performance
gain compared to the equal power allocation assumption considered in our method. The
main limitation at subcarrier allocation step is that the received inter-cell interference per
subcarrier is hard to predict. Besides, the opportunistic power allocation methods that we
have derived tend to increase the distribution’s spread of inter-cell interference over the sub-
carriers. Consequently, and as the performance gains are still quite important, our proposed

method is a first step for QoS-aware resource allocation with network coordination.

4.5 Conclusion

In this chapter, we have described a resource allocation method for users with different
QoS requirements in downlink OFDMA. Our method uses network coordination to fulfill
the QoS objectives of the RC users located at the border of cells. Thanks to the diversity
and interference mitigation gains brought by performing power control in a coordinated
way between the direct BS and the most potentially interfering neighboring BS, these users
require less subcarriers and power. The resource allocation method aims at minimizing the
sum power required for RC users, so that the sum data rate of BE users can be maximized.
Subcarrier allocation and power control are performed separately and both favor RC users
over BE users. Numerical results show that the proposed method increases the ratio of
satisfied RC users, as well as the sum data rate of BE users. It is more efficient than
Equal Power Allocation and than other QoS-differentiating methods. Users’ prioritization,
favoring RC users over BE users regarding resource access, already provides performance

improvements. Network coordination renders the proposed prioritized method even more
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efficient, thanks to the data rate gain for RC users that would otherwise be in bad radio
conditions.

If the network architecture allows network coordination to be implemented, then it will be
an interesting feature to improve the performance in multi-cell networks. However, network
coordination will not be feasible in ad hoc networks, or in cellular networks where the inter-
BS link is not reliable enough. In these cases, relaying protocols with unperfect transmission
between the BSs may be considered. We do not investigate these aspects in the thesis. On
the contrary, in the following chapters, we will focus on a totally distributed network without
network coordination. No inter-BS transmission is required. Similarly to Chapters 3 and
4, each BS is responsible for allocating radio resources to its served users, but we also add
the constraint that BSs cannot cooperate regarding users’ data transmission. Distributed
resource allocation methods are determined under these constraints for RC users in Chapter
5 and 6, and for BE users in Chapter 7.



64 Chapter 4 QoS aware resource allocation with distributed network coordination

APPENDIX

4.A Sum data rate maximization for BE users: water-
filling

. Ghn I .
We use the notation a;,, = —#*. On each BS, the power control objective for BE users is:
’ k

max p, Bsc Z Z log, (1 + afiykPéyk)
kESBE 1€O,

s.t. Z Z ch,k: S PBE
keSRE €O
st. Py >0, Vk € Spg, | € Oy (4.7)

Pgg is the remaining power available for BE users after RC users have been served.

This is a convex optimization problem in P,. The Lagrangian (normalized by %) is:

LPg\v)= Y > log(l+aly,Pl,)

keESRE €O
+)\ (pBE > p;yk> Y YR, “8)
kESBE I€EOy kESRE €Oy,
where A\ and v are Lagrange multipliers.
Deriving the Lagrangian with regard to P}, gives:

l
aq i !
—— —A+4v.=0 4.9
1+al, P, k (4.9)

The KKT conditions [24] impose that vl > 0. Consequently

l
aq i

> — (4.10)
I+ ald,kpclt,k
Another KKT condition imposes that v}, Pé’k = 0. Therefore
ay,
Pl —2 =0 (4.11)
’ 1+ aly, Py,
1
It A > %, then this condition is only fulfilled if Pé’k = 0. Else Pull’k = % - ﬁ
Finally, the solution is:
1 1 i
Pl =|x-— (4.12)
’ A afiyk

where the constant A\ is chosen so as to fulfill the sum power constraint.

4.B Power minimization for RC users

1 1
Gar Gen
Tk Tk

is convex in the set defined by P!, € Ry and P}, € [~ (1 /ot , Pl — 1) ,+oo[. The
’ I a/dyk ’ )

Let us introduce the notations ail B = and bf: B = The optimization problem
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Lagrangian is:

2log(2)A

L(Pak, Per, A, aa,v.) = Z Piy+ Z Pl + Bec

€Oy €Oy,

— D alPli = Y P, (4.13)

€Oy €Oy

(Rk,target - Rk)

where \, ag and . are Lagrange multipliers.
Setting the derivative of L(Pg, Pc i, A, o, v.) with regard to Pfhk and Pik, leads to the
following equations:

2afi,k(1 + ail,kpik)

1—al =\ =0 (4.14)
(1+a} Py y)? + 0., Py

and
!
1—~L =2 l lbcv’; =0 (4.15)
(L4 ay , Pgp)® + b 1 Lo
The KKT conditions impose that afi >0 and 'yé > (. Therefore:
Q‘quc(l + ald,kpé,k) (4.16)
(1+ ail,kpcll,k)Q + blc,chl,k -
and
bl
— A ok > (4.17)
(L+aly Py y)*+ 0. Pl
The KKT conditions ailPik =0 and viPik = 0 provide the following equations:
2a', (1 +d' . PL,)
1 d.k d.ktdk B
Py (1)\ Ata, Pl E+0L, P =0 (4.18)
dk* dk ekt e,k
!
Plil1-2A l lbc”“ ——— | =0 (4.19)
' (1+ag,Pyp)? + b, Pry
If P}, >0and P!, >0 then we necessarily have:
-1 2”51,k(1 + afi,kpé,k) 490
- (1 + al Pl )2 + bl Pl ( . )
d,k* d,k, c,k* ¢,k
and
B be i
1=2A (4.21)

(1+ aii,kpé,k)Q + blc,chl,k
This imposes that A > 0 and that bf:’k = Qafi’k(l + afi’kPé’k). Consequently we must have:

! !
bc7k —2ay,

Py =
’ 2(afi’k)2

(4.22)
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and

Plo=X Ve (4.23)
ok 4(a£l,k)2 '

Thus, there exists a joint solution with Pé,k > 0 and Pcl’k > 0 if the following conditions are
fulfilled:

blc,k — 2@2716 >0
!
bc,k:

4(a£1,k)2

So the existence of a joint solution depends on the relative values of the direct and coordi-

> (4.24)

nated link in each subcarrier, and also on the sum data rate constraint, as A must be defined

so as to reach the target data rate.

We can notice that if bf: = 2afi > then the solution obtained with the joint optimization

is Pfl)k =0 and Pcl’k =A\— b%k, which is equivalent to the water-filling solution for P(ik only

S . " L . bl -
(assuming its value is positive, which is imposed by the constraint A > m) Similarly,

if A = 4(2@#’ then we get PclJC = 0 and P(fl’k = 2\ — ﬁ, which is equivalent to the
water-filling solution for Pé,k only (assuming its value is positive, which is imposed by the
constraint blc7k — 2afj,k > 0). Consequently, the joint solutions are also valid if there is an
equality on one of the two constraints.

The optimization problem is convex if (1 4+ ald’kPé’k)Q > blc’kP(f’k. If a joint solution with

Pcl“c > 0 and PCIJC > 0 exists, this imposes that A < Q(Zz;ﬁ In that case, the KKT
conditions lead to the optimum solution of the primal problem.

We now study the cases where a joint positive solution is not feasible.

If blc’k < 2ail,k, then either Pé’k =0 and Pé’k > 0, or Pfl’k > 0 and Pcl’k = 0. Suppose that

Pik =0 and Pcl),C > 0. Equation (4.18) leads to
1+ bfl,kpcl,k
o

and equation (4.17) imposes that:

Therefore:
L+oL, Pl AL,

A< 1 51
Qad’k Qad,k

Abl R . .
As b, < 2aly,, 55 < X Consequently we get the following inequation: A < A. This is
’ J d,k

contradictory, so the case P}, =0 and P!, > 0 is not feasible.
Finally, if b, , < 2al;,, then P!, =0 and

l

+
1
Plo=[2A— — (4.25)
Qg i
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!
be x

IFA< 5,
a’c,k
Pé’k > 0 and Pcl’,C = 0. Equation (4.19) leads to

then either Pé,k =0 and Pcl,k > 0, or Pé’k > (0 and Pé’k = 0. Suppose that

and equation (4.16) imposes that:

Therefore: X
o (1+aPh) (20 NP A(ah,)*N
N bk bk bik

)

blc,k 4(“@1,;&2)\2

As A < Tl 2 o < A. Consequently we get the following inequation: A\ < A. This
A,k e,k
is contradictory, so the case Pé’k > (0 and Pcl’k = 0 is not feasible.
l

Finally, if A < 4’;—" then P}, = 0 and

) +
Pl = l)\ - bll (4.26)

c,k

2
If (1 + afi,kpé,k> < blC,kPék, the optimization problem is not convex with regard to
variable Pé’k. The KKT conditions consequently do not necessarily lead to the optimum

solution. We can notice that in that set, Pcl’k > 0. If a solution with Pfl’k > 0 exists,

. bL . .
then equations (4.22) and (4.23) lead to A > ﬁ Two cases are possible: in the
d,k
first case, we assume that the joint solution is the optimum even outside of the convex
set. As a consequence we never obtain Pé = 0. In the second case, we assume that the

joint solution is not the optimum outside of the convex set. Consequently Pé,k = 0 and

+
Pcl’k = [)\ — ﬁ} . The same data rate, BSC log()\blc)k), is obtained on subcarrier [ in both
cases, if )\blc7k > 1. The sum power required on subcarrier [ with the joint solution is:

bt k 1 ! k
S = 72 — 34l + A= LL’Q .
2a4 4 d.k dag )

The sum power required on subcarrier [ with Pé p=01s: So =X — b%.
) ¢k

The sum power difference is independent of A:

(blc,k - 2(“51,k)2
4(“51,0%271@ B

Consequently to minimize the sum power, the second case is more efficient. We can how-

S1— Sy =

ever notice that both methods have been tested via simulations, and the power differences

observed are almost negligible.

To conclude, the power allocation algorithm as summarized as follows:

1. Set an initial value for .
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2. For each subcarrier [ € ©y:

(a) If b, < 2al, then set P!, =0 and P}, according to equation (4.25).

(b) Else
l l
i If 2(1)57"“)2 >A> 41)%, set P}, and P!, according to equations (4.22) and
Ay g all . > 5
(4.23).

ii. Else, set Pcll’,c =0 and Pcl’k according to equation (4.26).

3. If Riarget is reached with A, stop. Else, update A and keep searching with bisection
search.



Chapter 5

Distributed resource allocation for

Rate Constrained users

5.1 Introduction

In this chapter and in the remainder of the dissertation, we consider fully distributed net-
works corresponding to the flat architecture of Fig. 1.2, where network coordination can no
longer be used. The resource allocation methods proposed and discussed in Chapters 5, 6
and 7 may consequently be applied not only to cellular networks, but also to ad hoc net-
works. In Chapters 5 and 6, resource allocation for Rate Constrained users is investigated.
The QoS indicator of RC users is their data rate. Each RC user should reach its target
data rate in each TTI. In multi-cell networks, this should be achieved at the cost of the
least possible power, in order to mitigate inter-cell interference. This set of QoS objectives
is written as a Margin Adaptive resource allocation problem, i.e., minimization of the sum
power required to reach the target data rates of all users.

In this chapter, we consider the distributed MA resource allocation problem in SISO multi-
cell OFDMA networks. As seen in the state of the art of Chapter 4, Section 4.2, the MA
problem in the multi-cell, multi-carrier case has not yet been treated in a distributed way
in the literature. The main issue is the feasibility of MA resource allocation, i.e., whether
the target data rates are achievable under the constraints of orthogonal intra-cell subcar-
rier allocation and of positive power allocation. A feasibility criterion for power control in
the single-channel case, when the target SINR per user is known, has been obtained by
Zander [66] [67], Foschini and Miljanic [68], and Yates [69]. In that simplest case, the fea-
sibility criterion requires full knowledge of the CSI on all direct and interfering links, and
must consequently be determined by a central controller. However, if the problem is feasi-
ble, then distributed power control converges toward the globally optimal solution. Other

studies have extended this method to cases where the target SINR per user can vary, in

69
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order to add a dynamic behavior and benefit from time and multi-user diversity [70]. The
game-theoretic proposal from [63] includes the feasibility criterion within a global mediator,
that coordinates resource allocation on all cells.

In multi-cell OFDMA, inter-cell interference should be considered when optimizing resource
allocation within each cell. Subcarriers can however not be seen as independent interference
channels, because each user may be allocated several subcarriers per cell. The data rate
fulfillment objective implies a joint optimization over all the subcarriers assigned to the
same user. The interactions and dependences between multi-user resource allocation per
cell and multi-cell interference per subcarrier increase the complexity of the problem, that
may become intractable. Therefore, it is necessary to decompose the original problem into
several sub-problems. This may be performed through parallel decomposition over several
physical entities, such as the BSs. In our case, the parallel decomposition involves that
resource allocation be performed iteratively, so as to take into account inter-cell interfer-
ence. The decomposition may also be logical. As in the previous chapters, we separate
resource allocation into two successive steps: subcarrier allocation and power control. We
add a convergence constraint on power control, that is valid when inter-cell interference is
the limiting feature. It is defined per subcarrier and user, and it only requires distributed
information relative to each BS. The convergence condition introduces a new step between
subcarrier allocation and power control, that consists of setting the target SINR per user
and subcarrier.

In Section 5.3, we investigate the power convergence criterion for RC users. This work is
based on the results from [66] [67] [68] [69] on the interference channel. Then we determine a
distributed criterion per subcarrier to ensure that distributed power control will necessarily
converge. The distributed criterion is based upon an upper bound on the spectral radius
of the interference matrix characterizing each subcarrier. The obtained upper bound is the
infinity norm of the interference matrix, that gives a useful and simple criterion, which will
be denoted in the remaining of the dissertation as F criterion.

Section 5.4 then details the proposed resource allocation method for RC users. Resource
allocation consists of three steps: subcarrier allocation, which aims at maximizing the prob-
ability that power control will converge, by selecting for each user the subcarriers that
maximize the convergence criterion; target SINRs setting, subcarrier per subcarrier, which
aims at determining a target SINRs set per user that both achieves the target data rate, and
enforces the convergence of distributed power control when inter-cell interference is signifi-
cant enough; and finally distributed power control, that necessarily converges to the globally
optimal solution. Each subcarrier can then be treated as an independent interference chan-
nel in the power control process, thanks to the efficient setting of the target SINRs. While
subcarrier allocation is performed only once, power control, which is composed of target
SINRs setting and power allocation, is performed iteratively over the BSs.

Finally, the proposed method is assessed via numerical results in Section 5.5. It is compared
with iterative water-filling [61], with two different subcarrier allocation methods.

The main contributions of this chapter are:

e A simple convergence criterion for power control with inter-cell interference is obtained
per user and subcarrier. This criterion is fully distributed. Besides, if the criterion is

verified, then independent power control, performed iteratively for each user by only
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sensing its received inter-cell interference and adapting its power accordingly so as to
reach its target SINR, will necessarily converge. Consequently, in a distributed net-
work, if each BS fulfills this criterion for all of its users and subcarriers, then we can
predict that distributed power control will not diverge. This is an important improve-
ment compared to classical methods such as iterative water-filling, where divergence
cannot be foreseen, and compared to other methods using a centralized mediator to

avoid divergence [63], that are not fully distributed.

e An iterative resource allocation method is described for RC users. Subcarrier alloca-
tion is first performed with a classical iterative method, in which we propose to use
criterion F instead of the classical channel gain criterion G. This leads to a wider
range of variations for the target SINR. Power allocation is performed by first deter-
mining the target SINR per user and subcarrier, and then running power control over
each subcarrier for these sets of target SINRs. Power allocation is an iterative process,
as inter-cell interference must be considered within target SINR determination. For
a given inter-cell interference level, each user computes its target SINRs set, with
the aim to reach the target data rate, while fulfilling the power control convergence
criterion on each subcarrier, if inter-cell interference is not negligible. A distributed
criterion is used to determine whether the convergence criterion should be considered
or not. Then on each subcarrier, power control is performed independently in each

subcarrier.

e The proposed method is compared with iterative water-filling. It avoids the power
divergence situations that occur with iterative water-filling at medium to high load.
The proposed method efficiently adapts to the inter-cell interference level, using the
FE criterion in power allocation only when inter-cell interference becomes the limiting
feature.

5.2 Margin Adaptive problem

We consider the MA resource allocation problem in downlink, in a multi-cell OFDMA
network. This problem aims at determining the subcarrier and power allocations required
to achieve the target data rates for all users, while minimizing the sum power.

Let A be a network composed of Ngg BSs and K users. Each BS transmits in Lgc
orthogonal subcarriers. ©y, is the set of subcarriers assigned to user k by its BS. Let Ry target
be the target data rate of user k, Réﬁ the data rate of user k in subcarrier [, and Plé the
power transmitted to user k by its serving BS in subcarrier [. To simplify the notations,

we equivalently denote P,i as P,llBS when BS npg serves user k in subcarrier [. The MA
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optimization problem is:

K
min{p,@} Z Z P]i

k=11€0y

Z Ri: > Rk,target7Vk S {1,...,KN}
leOy,

Lsc

. t.ZmeS < Prax, Vnps € {1,..., Nps}
=1
Lsc

s. t. Z nBs >0, V TLBs, ) S {17~--7NBS} X {1,...,Lsc}
s.t. O N O = 0,V(k, k") served by the same BS, k # k' (5.1)

Several levels of decompositions are necessary to turn this NP-hard problem [71] into a set
of sub-problems with reasonable complexity. First, subcarrier allocation and power control
are performed in sequence [52] [54]. For implementation purposes in distributed networks,
the original problem is also separated per BS. The MA problem is then solved iteratively in
each BS, with fixed inter-cell interference levels, that have been computed in the previous
iteration. Finally, the per cell sum power constraint ZLSC PfLBS < Puax, Vnps € {1,..., Ngs}
is not directly considered within power allocation, but an admission control step is added
afterward to take it into account. Thus, power allocation can be decomposed over the users
of the same cell.

Before detailing the MA resource allocation method in Section 5.4, we first investigate the

convergence of distributed power control in OFDMA.

5.3 Distributed power control convergence in OFDMA

5.3.1 Power control on the interference channel

Let us first consider the case when the target SINR per subcarrier and per user is known.
We assume that there is no maximum transmit power constraint per subcarrier or per cell.
The power allocation problem is then spread over independent interference channels. On
each subcarrier, power control can be solved as a TDMA power allocation problem. We
here remind of the main results on power control on the interference channel from [66] [67]
[68] [69].

The SINR of user k in subchannel [ is

PGl
Mo ’
Dt itk PLGY .+ No

Tl = (5.2)
where Gil’k is the channel gain between BS n and user k, including path loss, shadowing
and fast fading, and Ny is the noise variance. To simplify notations, we denote the channel
gain between user k£ and its serving BS in subcarrier [ as Gl

Let +% be the target SINR for user k in subcarrier [. A maximum of (Ngg — 1) links interfere
user k in subcarrier [, as at most one user is allocated per subcarrier in each BS.

Let us define v! = [v}, ... vaBS] with v} = NO%/Gk . » D! = diag {+1, ""%VBS b (FED ) =
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Gk

lel]
k’k . . . .

user. This corresponds to the following set of objectives:

if n # k and (Fl)(k,k) = 0. Power control aims at reaching the target SINR for each

I} > vk, V(k, 1) (5.3)
It can be written as:
(Ings — D'FHP! > v Wi (5.4)

By Perron-Frobenius theorem [72], there exists a positive power allocation if and only if the
maximum modulus of the eigenvalues of D'F', i.e. the spectral radius p(D'F!), is less than

1. If p(DlFl) < 1, the system is feasible, and the optimal power solution is
P! = (In,. — D'F)~1v! (5.5)

Besides, if p(D'F!) < 1, distributed iterative power control converges toward the optimal
power solution. The proof is detailed in Appendix 5.A.

If the target SINR per user and subcarrier is unknown, (5.4) is a Bilinear Matrix Inequality
(BMI), where the target SINRs are linearly constrained if power values are fixed, and vice
versa. A BMI problem is non convex and can have multiple local optima [73]. Consequently,
a means to reduce the complexity would be to separate target SINRs’ determination from
power control. In the following section, we identify an upper bound on the SINR that will
be used in the OFDMA power control method detailed in Section 5.4.2.

5.3.2 An upper bound for OFDMA SINR determination

We now investigate power control in multi-cell OFDMA, when the target SINR per sub-
carrier is unknown and is correlated with other subcarriers’ target SINR. We assume that
subcarrier allocation has already been performed, and that there is no maximum transmit
power constraint per subcarrier or per cell. Each user £ is allocated lsq , subcarriers by
its serving cell, in set ©4. Let 6, : N — N be the function that maps the I" subcarrier

allocated to user k on its absolute index, with regard to {1,..., Lsc}. Resource allocation

aims at determining the set of target SINRs ~, = 'yzk(l), ...,vzk(lsc’k’) / for user k. This
set should be assigned so as to ensure that power control in each subcarrier is feasible,
and that the target data rate of user k is reached. Moreover, resource allocation should
be performed in a distributed way in each BS. Resource allocation is distributed if the BS,
for any of its served users k, only requires information reported by user k and information

from the medium access layer (which is, in our case, reduced to user k’s target data rate).

1
n,k?

on pilot channels. The BS also has information on the background noise Ny, obtained by

User k measures the channel gains with all surrounding BSs n in all subcarriers [, G

measurements during inactivity periods.

We have seen that, on subcarrier [, there exists a power control solution (5.4) that leads
to the target SINR ~/ for all users k if and only if the interference matrix D'F! fulfills the
spectral radius property: p(D'F!) < 1.

The spectral radius of matrix D'F! is lower than any submultiplicative matrix norm ||.|| of
D'F! [72],

p(D'F') < | D'F!| (5.6)
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We consider square matrices with real positive elements. As the set of submultiplicative
matrix norms is infinite, we restrict our study to the set of induced matrix norms and
to the Frobenius norm. Our aim is to determine a matrix norm that provides one cri-

terion per BS, and this criterion should only consist of distributed information. In ma-

>1fn7£ k, and 0 if n = k. A distrib-

l
trix D'F!, each row k is composed of (fyk Gl

uted criterion should only involve the target SINR of user k, 7t. Therefore the distrib-
uted criterion must consider each row independently. The norm should consequently be:
|ID'F!|| = max(;<p<ngs;® ((D'F')y), where ® is a RY® - R function. The distributed
criterion over each BS is then ® ((D'F');) < 1, Vk € {1,..., Ngs}.

As the Frobenius norm does not fulfill this criterion, the chosen norm is an induced norm.

Lemma 5.3.1. An induced norm that verifies HDZFZH = MaT (1<p<Nps} P ((DlFl)k), where
D isa Rf‘*s — R function, is the infinity norm, defined as:

Nps
ID'FY| = maz (1<rennsy D (DF) ) (5.7)
n=1
The proof is given in Appendix 5.B.
The infinity norm of matrix D'F! is
1 Ngs l
Yk > =1,n#k Gn,k:
ID'F|_ = max (1<penne) ( TR (5.8)
Consequently, HDIFIHOo < 1 if and only if
l Ngs l
%Z n=1,n#k G k
( { Gécj b n ) <1,Vk € {1,..., Ngs} (5.9)

If condition (5.9) is fulfilled, then p(D'F!) < 1, and distributed power control leads to the
globally optimal solution. Condition (5.9) is a sufficient condition, but not a necessary
condition for p(D'F!) < 1. However, the infinity norm is the only usual norm allowing
distributed power control that can be used as an upper bound on the spectral radius. This
distributed feature is very useful when multi-carrier transmission is considered. In that case,
the target SINR per subcarrier, 7,2, is not known. Each user should determine its set of
target SINRs, with the objective to minimize the sum transmit power. Let us define :

El = Ci,
k= (5.10)

Z{n 1 n;ék}

On each subcarrier, the target SINR must fulfill condition 7,2 < E,lf E,lf is equal to the
SIR if all BSs transmit with the same power. E! is the most accurate information on the
‘potential’ SIR value available in a distributed way, prior to power control.

5.3.3 Example: 2 users, 2 subcarriers case

In this section, we detail the 2 BSs, 2 users and 2 subcarriers case. This example provides us

some insight into the tightness of the previously defined upper bound. Over each subcarrier



5.4 Resource allocation for MA in OFDMA 75

l = {1,2}, the constraint T} > 4. for each user k = {1,2} is (I — D'F!)P! > v!, where

1 1
vl = [Aé)r, ]\CIIS’J;]’, D! = diag{~},~}} and F! is equal to
Gl
O 21
Fl=|_. (5.11)
12
at, 0

The spectral radius of D'F! is

l lGl Gl
D!F!) = M172%12%01 5.12
p(D'E) = [ L (512)

The infinity norm per subcarrier [ is

Ll Lt
HDIFZHOO _ max{%Gm’ ’YzGlz} (5.13)
1

U~ U~
Consequently, the upper bound is equal to the spectral radius if '“G—szl = ”G—CL;“ The distance
11 22
1~ U~
between the spectral radius and the infinity norm, for instance in the case ”T(l;"‘l > %,
11 22

is:

The upper bound’s tightness decreases when the distance between the different row elements
increases. In cellular networks, this corresponds to asymmetric target SINR values (which
may happen even if all users request the same data rate, due to OFDMA multi-carrier
allocation), and to asymmetric radio conditions for the interfering users occupying the same
subcarrier.

Remark: This result can be generalized to the Ngg links case. For a given subcarrier [,

the following equivalence can be shown: p(D'F!) = ||DlFlHoo and there exists a positive

1
eigenvector X associated with eigenvalue p(D'F!) is equivalent to Vk, % = A, where A is
k
a fixed value.
1
Consequently, the upper bound gets closer to the spectral radius when ratio % has almost
k

the same value for all users k.

5.4 Resource allocation for MA in OFDMA

In this section, we propose a resource allocation method to solve the MA problem (5.1).
It uses the convergence criterion per subcarrier WIlc < E,lC when inter-cell interference is sig-
nificant enough. The accuracy of using the convergence criterion is automatically assessed.
Subcarrier allocation is separated from power allocation to reduce complexity. Besides, the
sum power constraints ZILZSIC Pl

within power control, but an additional admission control step is used after power control.

< Pumax, Vnps € {1,..., Ngs} are not directly considered

The resource allocation method per TTT consists of the following steps:
1. Subcarrier allocation: distributed in each cell.

2. Power control: composed of local power allocations within each cell, iterated over all

cells in order to take inter-cell interference into account.



76 Chapter 5 Distributed resource allocation for Rate Constrained users

3. Admission control: distributed in each cell.

It is depicted on Fig. 5.1. The three steps are detailed hereunder.

Subcarrier Subcarrier Subcarrier
allocation BS, allocation BS, allocation BSygg

I

Initial power values,
j=0
¥
i=0
Update inter-cell
interference
[ix1] :
[ Power allocation
BS;

h 4

no ves

yes

: ) )

Admission Admission s Admission
control BS, control BS, control BS 55

Figure 5.1: Resource allocation in multi-cell OFDMA

5.4.1 Subcarrier allocation

We propose a subcarrier allocation method derived from Rhee and Cioffi [52] for the MA
problem. This method is similar to the one used for non-coordinated RC users in Chapter 4
(see Section 4.3.2). It assumes that all users request the same target data rate, Ry target =
Ryarget, Vk. In case of various target data rates, this method can be performed per set of
users with the same target data rate, the different sets being ordered depending on their
priority. For instance, a possible strategy may be to assign subcarriers to users by increasing
order of the target data rates.

In the method from [52] and from Section 4.3.2, the objective of subcarrier selection is
to maximize the direct channel gain. We propose here to use a modified version where
the objective is to maximize criterion E (5.10). In the following algorithm, we refer to the
coefficient to be optimized as U}.. If the direct channel gain criterion is used, then U} = Gﬁﬁ .
If criterion E is used, then U,lc = E,lc

1. Initialization:
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(a) Set the approximate data rate to Ry, = 0 for all users k.

(b) For each user k, find the subcarrier [ that maximizes coefficient U}, and assign it

to user k. Update Ry, with the approximate data rate obtained on subcarrier [.

2. Iterative phase : as long as there are free subcarriers and as long as at least one user

does not reach the target data rate Riarget,

(a) Find the user k that has the lowest data rate Ry.

(b) For that user k, find the free subcarrier [ with the highest coefficient U}, and

assign it to user k.

(c) Update R), with the additional approximate data rate obtained on subcarrier [.

l
Gkﬁkpmam

S —7 ), is computed

The approximate data rate per subcarrier, RL = Bgc log, (1 +

assuming equal power allocation and equal inter-cell interference level on all subcarriers. I
is an average value for the interference plus noise, that depends on the load.

We propose to use criterion E in subcarrier allocation, so as to maximize the probability
that E. has a high value for all (k,). Indeed, this will then allow the target SINRs to have

a higher range of variation, when the convergence criterion is used.

5.4.2 Distributed power control

Tterative water-filling [61] performs power allocation on each BS independently, considering
inter-cell interference as noise. The process is iterated over all BSs. The main problem of
iterative water-filling is that it does not necessarily converge. Indeed, power control over
some subcarriers may not be feasible, which means that problem (5.4) may not have any
positive solution. To overcome this limitation, we propose to adaptively use the convergence

criterion 'y,l€ < E,lC within power allocation.

Adaptive convergence criterion

The convergence criterion should not be used when the interference channel is noise-limited.
It is thus necessary to evaluate the inter-cell interference level on each subcarrier. Indeed,
criterion £ may be too restrictive when inter-cell interference is insignificant. In a worst-
case scenario, a user k could have its SINR on subcarrier [ limited to E,lg, although none of
the interfering users are transmitting. As a consequence, we add a criterion to trigger the
use of E,lC per subcarrier, depending on the inter-cell interference level.

Let Il = N0+Z{{\:f:sl7n¢k} G, P} be the inter-cell interference plus noise received in a given

power control iteration. The transmitter for user & computes

= I -~ No
G, Prax G, o Prax

Ng:s l l
o Z{n],g:ql,n;ék} Gn,k:Pn
Géﬂ’kpmax

(5.14)
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7} provides an estimate for the inter-cell interference level. As Ppax > P. > 0,Vn €
{1,..., Ngs}, 7} is upper-bounded by %L’

1 l
The transmitter assumes that inter-cell interference can be neglected at the next iteration if
7} is low with regard to ﬁ, ie.,if El7! <. 6 is a parameter that should be set depending
k

on the network characteristics.

Power allocation

Let us consider power allocation for BS ngg at a given iteration of the power control process.
The inter-cell interference levels are set to the values corresponding to the interfering powers
from the previous iteration. As the sum power constraint is not directly considered within
power allocation for npg, solving the MA problem with fixed inter-cell interference levels is
equivalent to solving the power allocation problem for each user of ngg independently. Let
k be a user of ngs. The objective for user k is to minimize the power required to reach its
target data rate, summed over its [gc  allocated subcarriers of set ©;. The power required

1
to satisfy user k in subcarrier [ is P, = &i—1}.
k,k
Consequently, the problem of minimizing the sum power for user k is equivalent to the

following target SINRs allocation problem:

. I
min., Z o (le>
kk

lEOy,

s. t. Bsc Z logy (1 +75) > Ry target
€Oy,

5. t. vh >0,V € Oy
s. t. BL—e>ALif BElrl > 6,V € 0 (5.16)

€ is a small, strictly positive value that is used to avoid EL = ~! in all cases. (5.16) is a
convex optimization problem that can be solved with the KKT conditions. The solution of

resource allocation (5.16) for user k is:

o If E,lcT,l~C > 6:

(Bl — ¢ (5.17)

o If E,lCT,lC < 6:

+

(5.18)

Where A should fulfill the data rate condition Zleek Bsc log, (1 + ’y,i) = Rj target. A 1S
obtained by bisection search. The details are provided in Appendix 5.C.
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Iterative power control

Per BS power allocation considers the actual inter-cell interference in the determination of
the target SINR values. Therefore, power control is performed according to the following

iterative process:

1. Initialization: set all power values to 0.

2. Target SINRs determination iteration: for each user k, given the power values ob-
tained in the previous iteration, compute the set of target SINRs ~, on its allocated

subcarriers.

3. On each subcarrier, determine the power level per user required to reach the target
SINR.

4. Update interference values and go to the next target SINRs determination iteration.

It should be noted that if inter-cell interference is insignificant on all subcarriers, i.e., if
condition E!7} < § is fulfilled for all users, on all subcarriers and during all the iterations,

then our proposed algorithm is simply iterative water-filling.

5.4.3 Admission control

In the previous algorithm, we did not consider the maximum sum power constraint per BS.
Thanks to this simplification, each user can be independently handled in power allocation.
However, at medium to high load, the sum power constraint may not hold. A simple
admission control process is then used: if the sum power exceeds the maximum P, ., on
nps, the users served by npg are ordered by descending transmit power value. Then the
users with highest power are rejected from the cell, until the sum power becomes less than
Ppax. This is not a fair admission control process, but it is the most efficient to reject as

little users as possible.

5.5 Numerical results

We consider a network N composed of two rings of interfering BSs with omnidirectional
antennas and same cell radius. Numerical results are obtained via Monte-Carlo simula-
tions. The inter-site distance is dis = 1.212 km. The path loss model is Okumura-Hata
with a log-normal shadowing with standard deviation 7 dB, and the fast fading is Rayleigh.
The maximum transmit power for each BS is Ppax = 43 dBm. The total bandwidth is
B =10 MHz, the FFT size and the number of available subcarriers for data transmission is
Lsc = 256.

The proposed method is compared with iterative water-filling, with two subcarrier alloca-
tion criteria: the convergence criterion F, or the channel gain criterion G. Two scenarios,
corresponding to different noise levels, are studied, so as to assess the accuracy of adaptive
convergence criterion triggering.

In the iterative water-filling process used for comparisons with our method, an additional
limitation on power control is used, in order to avoid the situations where the power values of
some users importantly diverge. If the power of a user exceeds Pp.x after power allocation,

then this user’s power is set to zero.
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5.5.1 High noise level

Table 5.1: Percentage of rejected users depending on the load (%), Rrarget = 64 kbits/s,
high noise level

Nausers <128 | 128 | 160 | 192 | 224

Proposed method 0 1.88 | 7.58 | 14.82 | 20.02

Iterative water-filling, E 0 3.91 | 10.71 | 27.28 | 34.78

Tterative water-filling, G 0 4.78 | 18.42 | 30.76 | 38.43

In this section, the noise is equal Ng = —105 dBm. It is composed of the thermal noise,
and of an additional background noise. All users require a minimum data rate of 64 kbits/s.
Users that do not reach their target data rate are rejected.
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Figure 5.2: Percentage of active subcarriers, for varying load, Rarget = 64 kbits/s, high
noise level

First, we should notice that in this high noise scenario, the percentage of users and sub-
carriers that do not use criterion F in the proposed method due to low inter-cell interference
level is lower than 2% when the load exceeds 128 users per cell, with § = 1073, Inter-cell
interference is always significant due to the high power values required to reach the target
data rates. In the following, we represent the results obtained with 6 = 0, when criterion E
is always used.

Fig. 5.2 shows the percentage of active subcarriers, defined as the percentage of allocated
subcarriers where the power is different from zero. At low to medium load, the proposed
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Figure 5.3: Interference per active subcarrier, for varying load, Rrarget = 64 kbits/s, high

noise level

method is more efficient than iterative water-filling regarding subcarriers consumption. In-
deed, the proposed method determines the set of target SINRs iteratively, depending on
the per subcarrier inter-cell interference plus noise from the previous iteration. Therefore,
higher target SINRs are set in the least interfered subcarriers, whereas the most interfered
subcarriers are not used. Then at medium to high load, iterative water-filling leads to power
divergence situations that result in an increase of the percentage of rejected users (Table
5.1), and in a consequential decrease in the percentage of active subcarriers. The percentage
of rejected users is almost divided by two with the proposed method. The average inter-
ference per active subcarrier is computed before users are rejected by admission control. It
keeps increasing with the load (Fig. 5.3) with iterative water-filling, whereas the proposed
method leads to an asymptote. The Cumulative Density Functions (CDF) of the inter-cell
interference per active subcarrier are represented on Fig. 5.4, with 128 and 224 users per
cell. The proposed method not only decreases inter-cell interference, but also improves the
fairness among users, compared to iterative water-filling.

It should be noted that using the FE criterion instead of the gain criterion for subcarrier
allocation prior to iterative water-filling decreases the average inter-cell interference, but
still leads to power divergence situations. Criterion E also increases fairness among users,
especially at high load.

If § is set to 1073 instead of 0, the rejection rate slightly increases by up to 2% at high
load, and the percentage of active subcarriers increases at low load. Indeed at low load, the
proposed method is then equivalent to iterative water-filling in most cases, and thus does

not lead to any resource consumption gain.
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Figure 5.4: CDF of inter-cell interference per active subcarrier, Rrarget = 64 kbits/s, 128
(left) and 224 (right) users per cell

5.5.2 Low noise level

In this section, only the thermal noise with spectral density equal to —174 dBm/Hz is
considered. All users require a minimum data rate of 128 kbits/s. Users that do not reach
their target data rate are rejected. We evaluate the influence of § parameter, by testing

§€{1073,5.1073,102}.

Table 5.2: Cases when F criterion is not relevant (%), Rrarget = 128 kbits /s, low noise level

Nysers 96 | 128 | 160 | 192 | 224

%E not used, § = 1073 99.6 | 95.3 | 63.8 | 48.9 | 48.9

%E not used, § = 5.1072 || 100 | 99.8 | 86.1 | 56.6 | 54.4

%E not used, § = 1072 100 | 100 | 93.0 | 58.5 | 55.9

The probability of not using criterion F is shown in Table 5.2. Criterion E is almost
never triggered when the load is lower than 96 users per cell. It is used in 51% of the
cases at most, at high load. The percentage of rejected users is represented on Fig. 5.5.
With iterative water-filling, it increases very rapidly when the load exceeds 160 users per
cell, with a maximum of 69% of rejected users when subcarrier allocation is performed with
criterion G. The performance results of the proposed method depend on 6. If ¢ is set to
1073, criterion E is triggered at medium load before power divergence becomes an issue,
leading to a rejection rate of 6.5% for 160 users per cell. At this load however, users are
not rejected yet by iterative water-filling, if criterion £ is used for subcarrier allocation.
Consequently § = 1073 is too restrictive in that case, and leads to useless users’ rejections.
On the contrary, if § is set to 1072, criterion E is not triggered often enough, and the
rejection rate at high load reaches 34.3%. § = 5.1073 is a good trade-off, that avoids useless
rejections at medium load, as well as power divergence situations at high load. With this
value, the rejection rate is less than 25% at any load. It should be noted that we only need

to consider criterion E in 45.5% of the cases, and yet a gain of 44% in rejection rate is
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obtained. This shows that the main issue is to avoid that the power of some users diverges,
which results in many other users being affected -and in turn increasing their power levels
without bound. The gain brought by our proposed method is higher here than in the high
noise scenario, where the noise level mitigates power divergence’s influence. The percentage
of active subcarriers is represented on Fig. 5.6. At low load, the proposed method is
equivalent to iterative water-filling with criterion E for subcarrier allocation. With iterative
water-filling, the percentage of active subcarriers rapidly decreases, following the inter-cell
interference increase that leads to users’ rejection (see Fig. 5.7).

Finally, we can notice that the influence of the criterion chosen for subcarrier allocation
remains quite important. Maximizing F instead of the direct channel gain G in subcarrier

allocation decreases the rejection rate and the inter-cell interference level at any load.

5.6 Conclusion

In this chapter, we have studied resource allocation for RC users in SISO multi-cell OFDMA
networks. A distributed convergence criterion for power control on the interference channel
has been obtained. Based on this criterion, we have proposed a method that determines
the target SINR per user and per subcarrier, which ensures that the distributed power
control over each subcarrier is feasible and converges toward the global optimum, while
fulfilling the data rate requirement of each user. The convergence criterion is used on
the subcarriers where inter-cell interference is the limiting feature, in an adaptive way.
This method requires an iterative implementation and may be performed within each TTI,
assuming that iterations for a fixed channel state run over the time slots. Numerical results
show that the proposed method avoids power divergence situations and is very efficient

when compared to iterative water-filling, at medium to high load. It is also shown that
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maximizing the convergence coefficient E within subcarrier allocation is far more efficient
than maximizing the channel gain coefficient. Finally, our proposed method accurately
scales with the inter-cell interference level and is thus valid at any load. It is consequently
a relevant alternative to iterative water-filling in distributed networks.

We have seen in this chapter that MA resource allocation in multi-cell, multi-carrier SISO
communication systems, when full CSI is available at the transmitter, can be solved without
making any simplifying assumption. However, this conclusion is no longer valid for MIMO
point-to-point transmissions. Indeed, power allocation should then involve the different
MIMO streams, but the streams’ diagonalization bases differ from one interfering cell to
the other. Besides, retrieving all CSI at the transmitter involves far more signaling than in
SISO, so we should also consider the cases where full CSI is not available at the transmitter.

We will investigate these issues in the following chapter.
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APPENDIX

5.A Proof of power control convergence constraint on the

interference channel

Let us consider distributed power control in subcarrier [, where the target SINR per user k,

7}“ is known. The following power value is set for user k by its serving BS:

'Yl Ngs
Pl = Gl—k No+ > PGL, (5.19)
k.l {n=1,n#k}

!
Let PZ(O) = [Pll,(o)“"?PJlVBs,(O)} be the vector of initial power values. At step T, power

is updated according to the inter-cell interference measured in the previous step, 7' — 1.

/
Therefore, PZ(T) = {Pll,(Ty e PZZVBS,(T)] can be written as:
P{p) = (D'FHP(; 4y + V' (5.20)

where v and D'F! have been previously defined.

Iterating over P! consequently leads to:

T—1
P{; = (D'F)TP, + (Z(DlFl)f> v! (5.21)
t=0
From [72], this Neuman series converges toward (I, —D'F!)~!v!if and only if p(D'F!) <
1, and, from the Perron-Frobenius theorem, if D'F! is nonnegative and irreducible, then
(Ingys — D'FH v > 0.
As a consequence, if p(D'F!) < 1, then Pl(k) has a strictly positive limit:

limp o P{p) = (Ings — D'F) 71V (5.22)

Therefore, the iterative, distributed power control leads to the globally optimal solution if

and only if the system is feasible.

5.B Proof of Lemma 5.3.1

Our aim is to obtain an induced norm whose original vector norm is defined as ||x| =
max{i<p<nNgs}f(Tr), where fis a Ry +— R function. The vector norm should be positive
definite. Consequently f(0) = 0, and f must be an increasing function. The positive ho-
mogeneity criterion states that for any « in R, and any z, ||ax| = «a||x||. Consequently
flaxg) = af(xg) for any o and 2 in (R4, R;). Let us assume that f is twice differen-
tiable in R;. This assumption is quite reasonable as most norm functions are polynomials.
Deriving once with regard to z; and then once with regard to o provides: mkf”(axk) =0
for any («,2;). Consequently f(z)) = 0,Vay, and f is a linear function. As f(0) =0, f
is: f(xx) = Py, where § € R,

The induced matrix norm is equal to:

ID'F'x]|

||DlFlH :max{”X” iX € Rfﬂs,x;ﬁﬂ}
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As constant 8 appears in both numerator and denominator, the induced matrix norm is:

Ngs
ID'F|| = maxgi<pcnpey Y (DF) k)

n=1

This norm is defined as the infinity norm for matrices in RfBS.

5.C Solution of power allocation (5.16)

The Lagrangian of problem (5.16) is:

T Alog(2
L(’Vkv)‘va»ﬂ) = Z IYIlc (le ) + Bfé ) (Rk:,target - Z 10g2(1 +’V;l€)>

1€, k.k 1€Oy,
=Y a4+ Y BT (k- EL+e) (5.23)
€Oy, €Oy,

Where A\, i, 8 are Lagrange multipliers, and € is a small value that is used to avoid E,i = 7,2
in all cases.
BH(rh) T is set to 0 if ELrl < 6, and is a positive value if ELr} > 6.

8L(7k’)‘aaa/6) Illc )‘

= - —al 4+ 44T 5.24
871@ Gz,k (1+’Y]l€) ( k) ( )

The KKT conditions impose that W = 0. o' is a slack variable that can be set to
k

zero [24]. From the KKT condition 3'(7})" > 0 and equation (5.24), we get :

(5.25)

Another KKT condition is 8'(7})" (v — EL +¢€) = 0. If 8/(7})* > 0, then (7} — E} +¢) =
0. In that case, the solution is v} = E,lC — €.

1
Gk,k
1
Ik

+
If B(r})* =0, then \ = % and the solution is 7, = [)\( ) — 1] , where the

K,k
positivity constraint comes from equation (5.25).

Consequently, the solution is:

Gl
'y,lc = min [A ( Ikl’k> -1
k
G "
Y= lx( I’j’“) - 11 (5.27)
k

Where ) is defined so as to fulfill the data rate condition Ele@k Bsc log,(1 —s—y,lc) = Ry target-

o If EIICT}C >0

Bl — (5.26)

o If EIZCTIZc <4
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Chapter 6

Distributed resource allocation in
MIMO networks

6.1 Introduction

This chapter extends the results from Chapter 5 on distributed MA resource allocation for
RC users to the zero-mean independent and identically distributed (i.i.d.) MIMO channel.
Each transmitter is equipped with n; transmit antennas, and each receiver is equipped with
n, receive antennas. MIMO transmission increases the point-to-point data rate thanks to
the additional degrees of freedom of the channel, compared to SISO transmission. The
target data rate of RC users can consequently be reached with fewer power consumption.
Chapter 5 has shown that inter-cell interference can efficiently be mitigated for RC users in
distributed networks, by considering a power control convergence constraint.

Resource allocation in MIMO OFDMA depends on whether CSI is available at the trans-
mitter (CSIT). The transmitter has full CSI if it knows all fast fading coefficients from each
transmit antenna to each receive antenna, on top of the statistical channel information, path
loss and shadowing. In that case, it is necessary to determine the type of precoding and
detection required to make the best use of the channel, while managing inter-cell interfer-
ence, and limiting the complexity of the treatments. For that purpose, we only consider
linear processing, at transmitter and receiver. The linear transmitter should result from an
optimization of power allocation on both subcarriers and streams.

If only the statistical properties of the channel are known at transmitter, the outage proba-
bility and the corresponding outage capacity are used in the MA resource allocation problem.
The main issue is then to obtain an approximate analytical expression of the outage capacity.
This approximation should enable us to solve power allocation efficiently in each iteration.
We therefore aim at obtaining the outage capacity as a concave function of the BS power,

in order to solve the power allocation problem with convex optimization techniques.

89



90 Chapter 6 Distributed resource allocation in MIMO networks

The chapter first details the state of the art on both topics. Specifically, we review the
methods proposed for resource allocation in the full CSIT case with linear processing, and
detail the analytical expressions of the outage capacity, whether exact or approximate, that
have been obtained in the literature up to now. The general framework for MA resource
allocation is described in Section 6.3. The same decomposition method of the original MA
problem is used as in the previous chapters, namely, separation of subcarrier and power allo-
cations, and decomposition of resource allocation per BS, with iterative power control over
BSs. The adapted method for power allocation, depending on the availability of CSIT, is
then derived. In Section 6.4, the MA resource allocation problem with full CSIT is treated.
Power optimization is performed on all subcarriers and streams. Similarly to the SISO case,
a distributed convergence criterion E is determined per user and subcarrier. It is an ap-
proximate upper bound, as it is not possible to diagonalize all interfering channels in the
same basis. Criterion E is included in power control, as an upper bound on the achievable
data rate per subcarrier.

In Section 6.5, the MA resource allocation problem is studied, when only the statistical
properties of the channel are known at transmission. An approximate analytical expres-
sion of the outage capacity is derived. It is tested with several antenna configurations, and
is shown to be very close to the outage capacity obtained with Monte-Carlo simulations,
at practical outage and SNR values. It expresses the outage capacity for a fixed outage
probability as a concave function of the SNR, that can be used to solve the MA problem
as a convex optimization problem. A convergence criterion E is derived for that problem,
and included into iterative power control. The proposed resource allocation methods are
assessed via numerical results and compared with iterative water-filling in Section 6.6.

The main contributions of this chapter are:

e A complete resource allocation method for the MA problem with MIMO full CSIT
is determined. Power allocation performs iterative water-filling over the streams of
the equivalent MIMO channel with a per-subcarrier convergence constraint £. The
distributed convergence constraint involves the highest singular value of the direct

channel, and is adaptively triggered, depending on the inter-cell interference level.

e An approximate analytical expression of the outage capacity, as a function of the
outage probability and of the SNR, is provided. The arithmetic mean of an upper
bound and of a lower bound on the outage capacity proves to be very close to the
outage capacity obtained via Monte-Carlo simulations, for various values of the outage
probability, and various antenna configurations. The analytical expression is concave
in the SNR for a fixed outage probability, thus turning the MA problem with MIMO
statistical CSIT into a convex optimization problem. A resource allocation method
for the MA problem with MIMO statistical CSIT is derived, based on the analytical
outage capacity expression. A distributed convergence criterion E is determined for

power control.

e Both methods are shown to be far more efficient than iterative water-filling to solve the
MA problem at medium to high load. Power divergence situations are avoided thanks
to the defined F convergence criterion. These results complete the ones obtained in
Chapter 5 for SISO, thus assessing the feasibility of distributed resource allocation for

RC users in all studied cases.



6.2 State of the art 91

6.2 State of the art

6.2.1 Resource allocation with full CSIT and linear processing

In the single-channel case, distributed joint power control and linear processing in MIMO
has been studied with various optimization objectives and system assumptions. In many
papers, an iterative method, that is built on network duality, is used. Network duality [74]
is based on the fact that for each channel, there exists a reciprocal channel, where the roles
of the transmitters and receivers are switched. The reciprocal channel matrix is equal to
the Hermitian of the original channel matrix. Distributed resource allocation thus first op-
timizes the direct channel parameters with fixed reciprocal channel parameters, and then
optimizes the reciprocal channel parameters with fixed direct channel parameters. At each
stage, the optimal receive matrix is determined for a fixed power allocation, and then the
optimal power allocation is updated, depending on the receive matrix. In the following, we
review the most relevant papers dealing with resource allocation in MIMO. It should be
noted that they all concern single-channel transmission.

The single-cell case with inter-stream interference is studied in [75] [76]. The authors con-
sider the following problems: RA and MA in [75], maximization of the weighted rate,
summed over all streams, under a total power constraint, and its dual, minimization of the
total power under a weighted sum rate requirement, in [76]. In both papers, it is shown
that the SINR per stream is maximized by using a MMSE receiver. Then the Minimum
Mean Square Error is equal to the inverse of (1 4+ SINR). Inserting the MMSE instead of
the SINR in the rate expression, for fixed MMSE filters, turns the power allocation problem
into a geometric programming problem, that has a unique global optimum. An iterative
process updating power levels and the MMSE filters is used, at receiver’s side, and then at
transmitter’s side. The iterative process is shown to converge to a local optimum with the
four optimization objectives.

Multi-cell networks with beamforming are studied for the uplink transmission without user
multiplexing in [77]. The signal obtained at the receiver is a weighted sum of the received
signals at each antenna, and the objective is to determine the optimum weights to solve
the RA and MA problems. For both problems, the authors propose an iterative, network
duality-based method. The iterative process for the MA problem does not converge if the
set of target SINRs is not feasible. These approaches are extended to the multi-cell, multi-
stream case in [78].

Distributed interference alignment for MIMO is presented in [79]. It consists in building
interference-free spatial channels for direct transmission via iterative linear processing at
transmitter and receiver. At each iterative step, the receive vector that aligns the interfer-
ence in the null space is determined. The useful signal is then received through a full rank
matrix, while interference is completely suppressed. The rank of the matrix corresponding
to the useful signal is equal to the generalized degrees of freedom for the user’s data. This
process is performed at receiver, and then at transmitter using network duality. It is shown
to converge, possibly to a local minimum of the interference, due to the non-convexity of
the problem. Interference alignment may be performed in space, frequency [80] or time [81].
Its main limitation is that, in order to offer a minimum generalized degree of freedom to

each user, the required bandwidth must grow with the number of users. Our work cannot
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directly be seen under the scope of interference alignment. However, the proposed power
allocation methods opportunistically make use of the least interfered streams and subcarri-
ers, and prevent transmission within highly interfered subcarriers.

Besides, we do not use iterative distributed linear processing based on network duality for
complexity purposes. The receive filter is MMSE, and the optimization variables of the
resource allocation problem are the transmit power and the precoder matrix.

6.2.2 Analytical expressions of the outage capacity

If only the statistical properties of the channel are known at transmitter, resource allocation
is performed on the outage capacity. Numerical evaluations of the outage capacity and
probability are feasible for a fixed SNR, either via Monte-Carlo snapshots, or via numerical
approximations. It is far more complicated to extract an analytical expression, even based
on an approximation, of the SNR required to reach a target outage capacity with a target
outage probability. However, this problem has to be solved in order to perform resource
allocation.

For the zero-mean i.i.d. MIMO channel, this problem has only been treated under high
SNR assumption, and for specific cases: when the minimum number of transmit and receive
antennas is equal to 1 [82], and for the per stream outage probability [83]. The distribution
of the mutual information was shown to be Gaussian in asymptotic cases, when the number
of antennas become large [84]. The Gaussian approximation is even quite close to the mutual
information’s distribution in the general case [85]. However, the mean and variance of the
Gaussian distribution are integrals in the SNR, and their formulas cannot be analytically
inverted. The details on the approximations that have been proposed in the literature are

provided in Appendix 6.A.

6.3 General framework for Margin Adaptive resource al-

location

Let N be a network composed of Ngg base stations equipped with n; antennas, and Kar
users equipped with n, antennas. 7, = min(nn,) is the minimum of the number of
transmit and receive antennas. Each BS transmits over Lgc orthogonal subcarriers. Oy is
the set of subcarriers assigned to user & by its BS. Let Ry target be the target data rate of
user k, Rfe the data rate of user k in subcarrier [, and P,é the power transmitted to user k

by its serving BS in subcarrier [. We consider the following MA optimization problem in
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multi-cell OFDMA :

Knr
min{p,@} Z Z P]i

k=11€6y

s.t. Y Rj > R targer, VE € {1,.., Ky}
€Oy,

Lsc

5. t.) P < Puax, Vnps € {1,..., Nps}
=1

Lsc

s.t.Y Ph..>0,¥(ngs,l) € {1,..., Nps} x {1,..., Lsc}
=1

s.t. O, N Ok = 0,Y(k, k") served by the same BS, k # k' (6.1)

Problem (6.1) is similar to the SISO MA resource allocation problem (5.1), when the
expression of the data rate is not clarified. The detailed MA power allocation problems
in MIMO, in the full CSIT and in the statistical CSIT cases, are derived in the following
sections.

Similarly to the SISO case, resource allocation consists of three separate steps (see Fig.
5.1): subcarrier allocation, power control and admission control. Subcarrier allocation is
carried out before power control, independently in each BS. Its aim is to use the least power,
assuming equal power allocation and equal interference level on all streams and subcarriers,
and also to maximize a given criterion per subcarrier, denoted as E!. Tt is similar to
the method described in Section 5.4.1. In an initialization step, each user is assigned the
subcarrier that maximizes E,lC It is followed by an iterative phase, that stops when all
users have reached their target data rate, or when there are no subcarriers left. At each
iteration, the user with lowest approximated data rate, k*, is identified, and is assigned the
free subcarrier that maximizes E!.. Whenever a new subcarrier is allocated to a user, its
approximated data rate is updated, under the aforementioned assumptions on power and
interference. In the full CSIT as well as in the statistical CSIT case, the chosen criterion is
the convergence criterion F, which is given by equations (6.12) and (6.28).

Finally, a simple admission control method is used after power control. If the sum power
exceeds the maximum P, on a BS, the users served by this BS are ordered by descending
sum transmit power value. Then the users with highest sum power are rejected from the
cell, until the sum power becomes less than P, .. A maximum power constraint P,i < Pax
per user k and subcarrier [ is also added in each iteration, in order to avoid too important
power divergences.

In the following, we detail the convergence criterion and the associated power control in

MIMO in two cases, corresponding to two levels of knowledge of the CSI at transmitter.
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6.4 Margin Adaptive objective, full CSIT

6.4.1 Linear processing on each subcarrier

Let us first focus on subcarrier [. The received vector for user k served by BS k, yfC € (Cm“,

is

Nes
Yi = \/ pLH ), + Z /’I’iv,7kH’lrL,kX’lrL +n' (6.2)
{n=1,n#k}

where x!, € C"**" is the vector transmitted by BS n, H', , € C""*™ is the normalized zero-
mean ii.d. channel matrix for the transmission between BS n and user k, and n' € crxt
is the normalized AWGN noise vector.

pﬁv = %'Op’i is the SNR of user k, and p,, = % is the INR corresponding to the
interference received by user k from BS n in subcarrier I. g, j is the channel gain between
BS n and user k, including path loss and shadowing. All channel matrices are independent
of each other and of the noise.

A linear precoder Vfc € C"*M ig used at transmission. The transmitted vector is equal
to x, = Visl, where st € CY*! is an isotropic complex Gaussian vector that contains
the M symbols to be transmitted. The precoder’s covariance matrix with unitary trace is
ol — VLV,

At the receiver, the estimated symbols vector is 8} = (Wi)H

H :
yh , where (WL)" e CM*™
is a normalized linear processing matrix.

As explained in Section 2.1.3, we use the general denomination ‘capacity’ here to express

the mutual information. The capacity of user k in subcarrier [ is [12]

H H H -1
Cl, = logy (det (ph(Wh)" (H @4 (F )" + QYWY ) ) — log, (det ((wh" qlwi) )

H H H -1
—tog, (et (T + k(W) By 510 W (Wi Qi) ) ) (6.3

where Qﬁv is the covariance matrix of the interference plus noise for user k,

Ngrs
H
Q= Y 4 H, @ )T+,
{n=1,n#k}

We use a MMSE receiver, defined as
—1
Q) H Vi
-1
@ v |

By substituting (6.4) into (6.3) and using the equivalence det(I + AB) = det(I + BA) for
square matrices, the capacity becomes [13] [86]

W, =

(6.4)

H —1
C}, = logy (det (T, + ph(H )" QL) HY @) (6.5)

Equation (6.5) shows that the inter-cell interference plus noise is a colored Gaussian noise

with covariance matrix Qf . The channel is equivalent to [87]

—1/2 -
= A Q) H o+
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l

where n' is a normalized noise vector. The Singular Value Decomposition (SVD) of the

equivalent channel is [88]
—1/2 H
Q) "THi i = U 1AL (U ) (6.6)

l l . . l _ . l l . .
where U} | and U} , are unitary matrices, and A; = diag {)\k’l, "")‘k,nmm} is a diagonal
. . —1/2 Z1 .
matrix with real non-negative elements. y} = {/pL(Q}) HﬁmxfC + 1! is equivalent to

- - - - H - H - H.
vt = /L ALRL 4+ B! where X! = (Uﬁﬁ,g) xt, yl = (Ugﬂ) y. and f! = (ULJ) n!. The
channel can consequently be represented as a parallel Gaussian channel composed of 1y

subchannels. For j = {1, ..., nmin },
< [ i\ sl =
Ykj = pgc)‘k,jxk,j +1n;

H —1 H . 2 2
The SVD leads to (E, ;) (QL) 'HY , = UL ,AL(UL )" where AL = dlag{()\z’l) (L }

k,Nmin

Consequently, the capacity is

H
Cj, = log, (det (I'fbt + PLUZ,QAZ((UZ,Q) 'ﬂg))

1/2 H 1/2
— logy (det (T, + p(A1)'*(ULo) " @l UL (A1) 7))

Tt is maximized when (U2,2)H<I>§CU§C,2 is diagonal, and when the per stream power allocation

policy is water-filling over the singular values of the equivalent channel.

6.4.2 Resource allocation in multi-cell OFDMA

This section details MA resource allocation for user k when full CSI is available at the
transmitter. Subcarrier allocation has been performed prior to power allocation with the
method described in Section 6.3., and has assigned [gc ; subcarriers to user k in set Oj.
), : N — N is defined as the function that maps the [*" subcarrier allocated to user k on its
absolute index, with regard to {1, ..., Lsc }. The MIMO channel in each subcarrier is used in
order to increase the transmission rate of one symbol, M = 1. The data rate per subcarrier

is then

Mmin

2
Rl = Bsc Y logy (1+ prdi;(M)°) (6.7)

j=1

. . . . wPy
where di,j is the normalized power per subcarrier [ and per stream j, p, = g’“]'\,% is the

SNR of user k corresponding to its sum power on all subcarriers, and {)\2)1, o AL }

E;nmin
are the singular values of the equivalent channel (Qﬁc)fl/zHﬁC’k. Bsc is the bandwidth per
subcarrier. We consider the equivalent channel of user k aggregated on all its subcarriers.
It is a diagonal block matrix, where the matrix in block [ is equal to the equivalent channel

matrix for user k in subcarrier 0y (l) :

4
H'Y Onxn, o Onxn,
Hk,k = Onrxnt HZ?]EQ) Onrxnt (68)

H9k(lsc,k)

OnT.Xnt OnT X1ng e k,k
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Then the sum data rate for user k is R, = Zle@k Rfc. The power allocation problem at
each iteration is:

min 0.1 E P!
{Pk7‘i’zk(l),-7 k(SCk)} k

leOy,
Z Ré} > Rk,target
ISSTR
s.t. PL>0,Vl €0, (6.9)

Its optimization variables are the power per subcarrier, Py, and the precoder matrix per

subcarrier, {@Zk(l), . @Zk(lsc”“)}. As the data rate is an increasing function of the power,

the minimum sum power is obtained when Zleek Rﬁc = Ry target -

Power control convergence criterion

We first determine the criterion for power control convergence in subcarrier [. The target
data rate of user k in subcarrier [ is Ré{:,target' All the streams are jointly used to achieve
Rf’mtarget' Per stream power control is not feasible, as this would require a diagonalization
of all interfering links in the same basis.

Our aim is to put the power control problem in the form (In,s — D'F') P! > v!, so that the
reasoning of section 5.3 on distributed power convergence can be applied. For that purpose,
it is assumed that only the path loss and shadowing gains g, j of the interfering links are
known at the transmitter, and that equal power allocation is used at transmission for all

links. Under these assumptions, the covariance matrix becomes
S Nes Lo ne+1)1 0
Ql _ {n=1,n#k} Fo 1/ Tt Mmin T —Nmin
Onlnin InT_nlnin
We consider the case n,, = nmin. Then the data rate of user k is

Pl/n H
Rl = Bsclog, | det [ I, + Niik e/ (H, ) HL, (6.10)
NO + Z{n:l,n;ﬁk} g"vkprlL/nt

Let (6,271)2 <. < (ﬁ}mmin)2 be the ordered eigenvalues of (chk)HHz,C The data rate

constraint, Zle(ak Rl > Ry target, becomes

Rl target min |
kBqu < H ( ]\i]zkpk/nt (Bllc j)2>
NO + Z{n#l,n;ﬁk} gnykP,i/nt

Pk target

Let fyk = ZBsc"mm — 1 be defined as the equivalent SINR for user k in subcarrier [. An

upper bound is obtained by considering only the highest eigenvalue:

- {
I < ngVPk/nt ( l )2
Ve = Nas I k,mmin
NO + Z{n:l,n;ﬁk} gn’kpn/nt
Tt can be written as (I, — D'F') P! > v!, where v! = [, ..., vl ] with v}, = %
k,k

min

~ ~ l
D! = diag {fyi, ...,yvas} , (Fl)(km) (6,997 if n # k and (Fl)(k k) = 0.

gk,
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As seen in Section 5.3.1, this inequality has a unique positive solution if p(D'F!) < 1. By
using the infinity norm as an upper bound on the spectral radius, we obtain the following

distributed criterion:

2
5 Bk nms) Ik

Vi < Nrs ,Vk € {1, ...,NBs} (6.].].)
Z{n:l,n#k} 9n.k

The upper bound on 'y;lg is denoted as EY,

l 2
E’lC - (ﬂk,nm;n) 9k, k (612)

TN
D {n=1 ntky Gnk

The convergence constraint (6.11) may be too restrictive if inter-cell interference is very

low. We thus add a criterion to trigger the use of E! on each subcarrier, depending on the

1
gn,kPn
n

inter-cell interference level. Let IL = Ny + Zf;zl’n#k} be the inter-cell interference

plus noise received by user k in subcarrier [ in the previous iteration, considering only the

path loss and shadowing gains. The transmitter for user k computes

7t = "t(lllﬂ _N0>
( ! )2 gk,kpmax gk,kpmax

Mmin
N
B D {ne1,nk} gnk P,
(BL10)” Gk P

Mmin

(6.13)

T}i provides an estimate for the inter-cell interference level and is upper-bounded by Eik:

—>7t>0 (6.14)

T

Ly

The transmitter assumes that inter-cell interference can be neglected if 7} is low with regard
1

to zr, that is, if E,lcrli < §, where § is a parameter that should be set depending on the

k
network characteristics.

Power control

The power allocation problem for user k at each iteration is equal to problem (6.9) with the
additional constraint

RL<RL .. —ecif Blrl>6Vico, (6.15)

k,max

where walax = BscNmin logy (1 + E,li) is the maximum data rate ensuring power conver-
gence, and ¢ is a small positive value, accounting for the strict inequality in (6.11).

The power allocation problem is equivalently optimized over the set of SNRs per subcarrier
and per stream, {pkdek‘(l),...,pkde’c(lscvk‘)}. It is a convex optimization problem, that is
solved by using the KKT conditions.

If condition (6.15) is fulfilled on subcarrier I, the solution is:

J’_
pidy, ;= [u - ] i € {1, .. Tnin} (6.16)

2
(Ak.7)
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Else, the solution is:

+
1 .
prd ;= luz - (/\1)2] V5 e {1, ..., Nmin} (6.17)
k’j

In the first case, u is a constant that applies to all subcarriers, and that is determined so
as to fulfill the target data rate constraint from (6.9). In the second case, y; is a constant

specific to subcarrier [, that is determined in order to fulfill the target data rate constraint
l

k,max

on subcarrier [, Rl = R — €. The proof is detailed in Appendix 6.B.

The convergence condition is tested during the bisection search that is used to obtain u.

For a given u, on each subcarrier [, after having computed pkdéw- with (6.16), the accuracy

of using criterion E is first evaluated by computing 7} with equation (6.13). If EL7! > 4,
condition (6.15) is tested. If (6.15) is not verified, the data rate on subcarrier [ is set to

R}, ax — € and the corresponding power values per stream dj, ; are given by (6.17).

Finally, once pu has been obtained by bisection search, the power of user k in subcarrier [

is computed as P} = Pich pkdfc)j. The power per stream j is Jﬁw = dfc}j/ (Z:L;l“ dﬁ)j), and

the precoder’s covariance matrix for user k in subcarrier [ is ®! = U§€72diag {JZJ, o ch’nmin} (Ufm)H,

where Ui@,2 is given by the SVD of the equivalent channel (6.6).

6.5 Margin Adaptive objective, statistical CSIT

6.5.1 Approximation of the outage capacity

In this section, our aim is to determine an approximate expression of the SNR required
to reach a target outage capacity with a target outage probability on the zero-mean i.i.d.
MIMO channel, y = Hx + n. p is the SNR, and {)‘i}{lgignm;n} are the singular values of
H. Equal power allocation over the transmit antennas is assumed. The outage probability,

for a given target rate C' in bits per channel use (bits/c.u.), is then
Pt =P (H (1 + pAﬁ) < 20>
i=1 e

The outage capacity for a target outage probability Py, target is defined as the maximum

rate C' leading to an outage probability P,y < Poug, target- Lhe approximate expression
should be concave in the SNR, in order to turn the MA problem into a convex optimization

problem. For that purpose, two bounds on the outage capacity are first determined.

An upper bound on the outage capacity
The inequality of arithmetic and geometric means gives

Tmin 1 Tmin T'min
11 (1 + pAf) < ( > (1 + pAf))
Ty Mmin i—1 Ty

i=1 i

The two functions are equal when all \;? have the same value. Consequently, this formula

Mmin
i=

gives us the best upper bound linear in ) ;™ A2. A lower bound on the outage probability,
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Pyut, min, is deduced from this inequality:

Pout, min = P | ngim= (D (1 + ”Af) <2¢
i=1 M
min’tt <
= (e < i (s 1))

||HHF2 = Y 'min A2 follows a chi-square law with 2n;n, degrees of freedom. The lower

bound on the outage probability is then

v ( npng, Bminlt (27min — 1
G i) 618

Pmlt, min —

where vy : (n,u) — fou e~ ®x"~!dx is the incomplete Gamma function and T : n +— fooo e Ta" tdx
is the complete Gamma function. This is equivalent to determining an upper bound on the

outage capacity Cpax, for a given outage probability Pyyy:

v (”rnu Nminny (2 et 1))
A
out F(nrnt)

Let us introduce u = fminte (2 Pmin — 1) and ®(u) = Pouy = % As ©(0) =0, u as a

function of P, near 0 is given by the Taylor series of ®~ ! in ( = (Pyut) o ,

w= F(Pou) = f(cmmey = 3 BV TO by oemy (6.19)

k=1

where (®~1)(*) is the k'" derivative of function ®~'. For instance, with n, = n; = 2, when

stopping the Taylor series at n = n,n, f(Pout) is equal to :
26 42 34¢3 388(4 4
P u Uz nt I
FP) = S0y =23 DSy B B ot

The values of f(P,,t) corresponding to practical Py, and antenna configurations are given
in Table 6.1.

Table 6.1: f(Pyy) for practical P,y values and antenna configurations

FPout 0.1 0.01 0.001

ng=2,n, =2 1.67148 | 0.81526 | 0.42732

ng=2,n,=4and n, =4, n, =2 || 5.17513 | 3.04051 | 2.00321

ng =3, N, =3 5.36784 | 3.50424 | 2.45223

n=4,n, =4 11.0458 | 8.17635 | 6.40502

An upper bound on the outage capacity as a function of the outage probability and of
the SNR is then:

NminTl

P()u
C(ma.x = Mmin 1Og2 (1 + MP) (620)
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A lower bound on the outage capacity

As N2 > 0,Vi € {1,...,nmin }, the following inequality stands
II <1+”Ai2> >14+ 2302
i=1 M i

The two functions are equal when only one \;? is different from zero. Consequently, this

Mmin

formula gives us the best lower bound linear in ;™" \?. An upper bound on the outage

Pout, max = P ((1 + 2y A{") < 2C>
ti=1

npmg, "1
:7( F(mnt; > (6.21)

This is equivalent to determining a lower bound on the outage capacity C,, for a given
outage probability Pyyg. Let u = % (20"“" - 1) and ®(u) = Py = % u = f(Pout)
is given by equation (6.19). Thus, a lower bound on the outage capacity as a function of
the outage probability and of the SNR is:

Cmin = log, <1 + ﬂPOUt)p) (6.22)
Tt

probability is then:

0.3 R

0.25f

0.2 N

7

(lambda2)?
o
o

0.1

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3
(lambda1)?

Figure 6.1: nyin = 2, bounds on the outage probability

These two bounds on the outage probability are illustrated on Fig. 6.1 for nyy, = 2.
The blue curve is 2¢ = (1 + %)\12)(1 + 7%)\22), and the blue area is P,,;. The green curve
is obtained with the arithmetic-geometric means inequality, 2v/2C = 2 + n%)\lz + %)\22,
and the green area is the lower bound, Fyy¢ min. Finally, the red curve is obtained by only
considering the trace, 20 = 1+%)\12+£)\22, and the red area is the upper bound, Py, max-
We used - =10 and C' = 2 bits/c.u.



6.5 Margin Adaptive objective, statistical CSIT 101

Accuracy of the mean of the upper and lower bounds

T T
O Pout=0.1, Monte Carlo
Pout=0.1, Gaussian approximation

—— Pout=0.1, Mean of upper and lower bounds

O Pout=0.01, Monte Carlo
------- Pout=0.01, Gaussian approximation
—— Pout=0.01, Mean of upper and lower bounds
8| * Pout=0.001, Monte Carlo
------- Pout=0.001, Gaussian approximation
—— Pout=0.001, Mean of upper and lower bounds

Cout (bits/c.u.)
o
T

Figure 6.2: n; = n, = 2, accuracy of the approximation

The arithmetic mean of the upper and lower bounds is a concave function of the SNR,

defined as:
C = % (nmin log, (1 + JC(POM)p) + log, (1 + Jc(POM)p)) (6.23)

TminTlt Ny

This approximation is compared with the outage capacity obtained with Monte-Carlo simu-
lations, with 100000 snapshots. Fig. 6.2 and Fig. 6.3 show that C is very close to the results
obtained via Monte-Carlo simulations for several antenna configurations. It is even closer
from the Monte-Carlo simulations than the Gaussian approximation from [85] at low SNR
when n; = n, = 2. The absolute relative distance between C' and Monte-Carlo simulations
increases with the SNR. If the outage capacity is lower than 10 bits/c.u., it remains lower
than 10% with n, = n; € {2,3,4}, and lower than 12% with (n¢,n,) = (2,4) and (4,2),
when Py € {1071,1072,1073}.

6.5.2 Resource allocation in multi-cell OFDMA

The approximate value (6.23) is used to model the outage capacity as a function of the outage
probability and of the SNR in the downlink OFDMA MA problem, when only statistical
CSI is available at the transmitter.

Let us consider power allocation for user k. To simplify notations, we introduce ai =
ﬂ%‘;“*)g’;—]l‘ck, where [ li is the inter-cell interference plus noise received by user k in subcarrier
l. Using the approximate outage capacity expression (6.23), the data rate per subcarrier
becomes

Ay

B l
Ry ==¢ <nmin log, (1 + Pzi) +logy (14 ai-Pzi)) (6.24)

Nmin
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10 T T =5 *
* Monte Carlo (2,2)
9 | ——Mean (2,2) h
O Monte Carlo (3,3)
81 | =——Mean (3,3) 7
O Monte Carlo (4,4)
7+ |——Mean (4,4) -

Cout (bits/c.u.)
o
T

| |
-15 -10 -5 0 5 10 15 20 25 30
SNR (dB)

Figure 6.3: P,y = 102, various number of antennas, accuracy of the approximations

The power allocation problem is the following:

min p, E P,i

€Oy
s. t. Z Rl = Rk,target
leOy,
s. t. PL>0,Vl €0, (6.25)

Power control convergence criterion

The outage capacity approximated by formula (6.23) is not linear in the power. In order
to put power control in the required form (INBS - DlFl) P! > v!, the upper bound on the
outage capacity (6.20) is considered. The data rate constraint per subcarrier is consequently

R;c,target P P!
gmeers o (14 {(Powt) Nﬁf’“”“ k (6.26)
Panin®e No + 356705 1y Gnk D) /1

R%C,tar et
Let 7. = 2Fscrmin — 1. The data rate constraint can be written as (INBS — DlFl) P! > vl

I — 1, A - I _ 7ENoneTmin U — g y/ U l _
where v = [v],..., vy, |" with v} = m, D' = dlag{wl,...,’yNBS} s (F) k) =

l
Nmingp - 1 o
m if n 7é k and (F )(k’k-) =0.

This problem has a unique positive solution if p(D'F!) < 1, where p(D'F!) is the spectral
radius of D'F!. By using the infinity norm as an upper bound on the spectral radius, we
obtain the following distributed criterion:

¥ < f(Pout>gk,k
Tk Ngs
Nmin Z{n:l,n#k} In.k

Yk e {1,..., Ngs} (6.27)
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The upper bound on ’y;lc is denoted as Ej,

f(POut)gk,k:

Ej, =
N,
Nmin z :{f:sl,n;ék} gn,k

(6.28)

Similarly to the full CSIT case, the power control convergence criterion is tested whenever
Elei > 0, where T}c is defined as:

l NminTlt ( I]lv N() )
T, = -
F f(Pout) gk,kpmax gk,kPmax

N;
o NminTt (Z{r]za_slyn¢k} gnkprl;,>

= 2
f(Pout) gk,kpmax (6 9)

Power control
The power allocation problem for user k in each iteration is equal to problem (6.25) with
the additional constraint

RL<RL . —¢if Elvl >6VlcO, (6.30)

k,max

where Rﬁamax = BscNmin l0gy (1 + Ej) is the maximum allowed data rate for power conver-
gence, and € > 0.

This problem is convex in Py. It is solved with the KKT conditions. The details are given
in Appendix 6.C. When condition (6.30) is fulfilled, P} is obtained by solving g(P}) = 0,

where ¢ is defined as

l
a 1 1
PHy=1—v| == +
g( k) D) 1+a§€Plé 1+nafcl P]é

This is equivalent to finding the roots of a polynomial of second order. If none of the roots
is real positive, then P,i is set to zero. Else, P,i is equal to the minimum, strictly positive
real solution. g is computed for a given Lagrange multiplier v, that accounts for the target
outage data rate constraint.

The convergence criterion is tested during the bisection search that is used to obtain v.
After having computed P} for a given v value by solving g(P,i) = 0, the accuracy of using
criterion F is evaluated by computing 7 with equation (6.29). If Ejr} > 4, condition (6.30)
is tested. If it is verified, P! is unchanged. Else, P} is computed so as to exactly reach
Rl = R}

k,max — €

It should be noted that even if criterion £ has the same value on all subcarriers, one test

per subcarrier is required, as the T,lc values differ from one subcarrier to the other.

6.6 Performance results

6.6.1 MIMO with full CSIT

The studied network is composed of two rings of omnidirectional cells with same inter-site
distance equal to 1.212 km. The path-loss model is Okumura-Hata, and the shadowing is

log-normal with standard deviation equal to 7 dB. The thermal noise spectral density is
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Figure 6.4: Full CSIT, percentage of rejected users depending on the load

100 T

90

80

70

60

50

40r

30

Percentage of active subcarriers (%)

20 >

—8— RTarget = 384 kbits/s, Proposed method S#o e e e e m e m e e m—m
10 - # - RTarget = 384kbits/s, Iterative water—filling i
—O— RTarget = 256 kbits/s, Proposed method
= + = RTarget = 256 kbits/s, Iterative water—fillin:
0 T T 1 1 1
32 64 96 128 160 192 224

Number of users per cell
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Figure 6.6: Full CSIT, inter-cell interference per active subcarriers, depending on the load

—174 dBm/Hz. The maximum transmit power for each BS is Ppa.x = 43 dBm. Each cell
transmits in OFDMA with Lgc = 256 subcarriers available for data transmission, and the
network bandwidth is 10 MHz. The number of antennas is n; = n,, = 2. The parameter
for using criterion E is § = 1073, Our proposed method is compared with iterative water-
filling [61]. In both cases, subcarrier allocation aims at maximizing criterion E (which is,
here, equivalent to maximizing the maximum singular value of the direct channel). We
consider two scenarios where all users have the same target data rate, Riarger = 256 or 384
kbits/s. Users that do not reach the target data rate are rejected.

In both scenarios, iterative water-filling leads to an abrupt increase of the percentage of
rejected users, whereas our proposed method avoids this behavior (Fig. 6.4). The percentage
of active subcarriers also decreases very rapidly with iterative water-filling when power
divergence occurs (see Fig. 6.5 and Fig. 6.6). The convergence criterion for full CSIT
MIMO only considers the statistical CSI from the interfering cells. As a consequence, we
cannot theoretically guarantee that there will not be any power divergence situation with
this criterion. However, the numerical results show that it is quite efficient compared to
iterative water-filling, both at low and high load. At low load, criterion E is not too
restrictive, thanks to the consideration of the highest singular value ﬂllé,nmin; whereas at high
load, it identifies the subcarriers with potential power divergences and efficiently limits the

allowed power levels on these subcarriers.

6.6.2 MIMO with statistical CSIT

The network parameters and assumptions are the same as in the full CSIT case, apart from
5 = 1072, and Ry target = 128 kbits/s. The proposed method is compared with iterative
water-filling. In both cases, subcarrier allocation considers all subcarriers with the same

priority, in the absence of per-subcarrier CSI.
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Fig. 6.7 shows that our proposed method is more efficient in terms of rejection rate than
iterative water-filling, whatever the outage probability value is. The maximum decrease in
rejection rate compared to iterative water-filling is between 33 and 35% in the three cases.
The proposed method avoids power divergence situations (see Fig. 6.9) that lead to many
users being rejected by admission control. The rejection rate and the percentage of active
subcarriers (Fig. 6.8) are not step-like functions as in the full CSIT case, emphasizing that
we are dealing with outage data rates on the statistical channel.

6.7 Conclusion

In this chapter, we have determined distributed resource allocation methods to solve the MA
problem in MIMO, when full CSI is available at transmission, and when only the statistical
properties of the channel are available at transmission. The convergence criterion F has been
derived in both cases, and included within subcarrier allocation and power control. In the
full CSIT case, power control performs water-filling over the subcarriers and streams, with
a per subcarrier convergence constraint E. In the statistical CSIT case, we have obtained
an approximate analytical expression of the outage capacity as a function of the SNR and of
the outage probability. This expression is concave in the power value, for a fixed inter-cell
interference level, thus the MA problem is solved via convex optimization. The convergence
criterion is triggered per subcarrier, depending on the interference level. In both cases, the
proposed method avoids power divergence situations, compared to iterative water-filling.
The percentage of rejected users and the inter-cell interference levels are consequently lower
with our proposed methods than with iterative water-filling, at any load. These results
complete the SISO results from Chapter 5, and show that the MA problem can be effectively

solved in a distributed way.
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Besides, the analytical expression of the outage capacity as a function of the SNR and of
the outage probability for MIMO may be used in various resource allocation problems. Its
concavity in the SNR is a very useful feature to solve resource allocation problems via convex
optimization. It may also be used for virtual MIMO, in order to study the causal network
coordination method from Chapters 3 and 4 with statistical CSIT. We do not investigate
this topic in the dissertation. The next chapter still deals with fully distributed networks.
As distributed resource allocation for RC users has been fully characterized in this chapter

and the previous one, we are now interested in BE users.
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APPENDIX

6.A Analytical expressions for the outage capacity

We consider the AWGN MIMO channel model y = Hx 4+ n, where H is zero-mean i.i.d. p
is the SNR, and C' is the target rate, in bits/c.u.

6.A.1 Exact anatytical expressions for n;, =1 or n, =1

In the SISO case, the outage probability is [14]

Pout(C) =1 —exp (—(20_1))

p

The outage capacity corresponding to a given outage probability P, is then
C(Pout) =logy (1 —In(1 — Pout) p)

The Multiple-Input Single-Output (MISO) and Single-Input Multiple-Output (SIMO) cases
have been treated in [12]. If n, = 1, then

Pout(C, p) = P (log, (det (I+ pHH")) < C) =P (log, (1 + pH"H) < C)

HPH =", |hi|* and each h; is a complex variable whose real and imaginary parts each
follow an independent normal law. Consequently, H” H follows a chi-square random variable
with 2n, degrees of freedom. The pdf of a chi-square random variable with 2n degrees of
freedom is

e—acxn—l e—wl,n—l

frn (@) = ) = = for z >0

where I' : n — fooo e~ 2" ldx is the Gamma function (defined for n € C and Re(n) > 0)
and v : (n,u) — fou e ?z"~dz is the incomplete Gamma function. Consequently,

P (€, p) = M

If n, = 1, similarly, the outage probability is

s (e 250)

I'(ne)
Approximate expressions for the high SNR MISO and SIMO cases have been obtained in [82],

by using the first order element of the Taylor series’ approximation of the incomplete gamma

Pout(Ca P) =

function in 0. For n; =1, it is equal to:

c .
Pout(cv p) = ! <(2 1)>

L(ny +1) P
And for n, = 1:

Pout(07 P) =

1 ¢ (2C — 1) "
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6.A.2 Asymptotic case

The distribution of the mutual information I is Gaussian in asymptotic cases, when the
number of antennas becomes large [84].

For large n, and fixed n;, as n, — oo,

, log, (¢)?
IQN(MO& (an) ntoga(e)>
Tt

Ty
For large n; and fixed n,., as ny — oo,

, 21 2
ImN(nrlogQ(l_Fp),?lp()'g?(e))

(1+p)?

For large n; and n,, as n; — oo and n,, — oo ,
N o 2
T~ (noplogs €), 22 o))

6.A.3 Gaussian approximation

The Gaussian approximation is even quite close to the mutual information distribution in the
general case [85]. The outage probability is consequently well approximated by a Gaussian

tail function:

C _ 2
Pout(ca ,0) = %/_' exXp <_UM> al

where p(p) is the mean of the Gaussian distribution, (o(p))? is its variance for a given SNR

2
p, and Q(z) = \/% [ et /2.
The Gaussian approximation is computed with the following formulas:

u(p) = / " logy (14 Ap/ne) K\ A)AA

oo
7o) = [ ok (14 dp/n))” KON
—/ / log, (1 + A1p/ny)logy (14 Aap/ny) K2 (A1, Ao)dA1dXo
0 0

where npip, = min(ng, n,.) and d = max(ng, 1) — Nmin, and :

Ky = 3 ®()bi(y)
=0
Bi(N) = | G LAWY

I AN
LI\ = Ee)‘)\ dw(e ANdH

L;j is the Laguerre polynomial of order 1.
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6.B Solution of power allocation, full CSIT case

The Lagrangian of the aggregate problem composed of (6.9) and (6.15) is:

Mmin Mmin

Ry tar 2
Liprd, 1. B,0) = > 3" prdy ; + plog(2) | =225 — 3 log, (1+pkd2,j(xz,j) )
j=1

1€6;, j=1 Bsc
=D D dmndi
€0y j=1
flail 2 (RL max 6)
+ > B 10g(2) | D togy (1+ prdh (A7) —
€0, j=1 s
(6.31)

where p1, 3, v are Lagrange multipliers. S'(7})* is set to 0 if EL7l < §, and is a positive
value if E,lCT,lc > 4.

2 2
8L(pkd,u,6,a) -1 :u()‘gc,j) Ozl4 + ﬁl(Tllc)Jr()‘gg,j)
] 2 2
A(prdy, ;) 1+ prdl (N ) D1+ pedl (N )
The KKT conditions impose that W = 0. Condition aé > 0 leads to
Y
A )2 LD )2
1_ w( k,]) B( k) ( k,;) >0 (6.32)

2
1+ pkd;c,j ()\;c,j) 1+ pkd%c,j ()\éc,j)

l

ol is a slack variable that can be set to zero [24]. From 22£sditB:2) —_ g and the positivity
J a(Pkdk’j)
constraint (6.32), the solution is:
+
d = | (= Byt - — 6.33
PrQ j (H B (7y.) ) 2 (6.33)
(A.;)

Let Rl = Bsc > log, (1 + pkdi:,j<)\§c,j)2> be the data rate on subcarrier [ computed

with (6.33). Due to the KKT condition g'(})* (RfC - (Rfm]ax - e)) = 0, the data rate
— €) must be fulfilled whenever 3'(7})* > 0. On the

—€) <0, then B(7})* = 0. Therefore, the solution on subcarrier

. . l _ l
constraint per subcarrier Ry, = (R} ..
contrary, if R} — (R}

k,max
[ is:
o If R}, — (R}, jpax — €) < 0:
1 +
Pkdfg,j = [u— ; 2] Vi e{l, ..., nmin} (6.34)
(Ak.;)
o Else:
+
Pkdfc,j = |fM - 7 2] ,V] S {1, ...,nmin} (635)
(Ak;)

where 1 = (u — B'(14)").

The constants p and p; are determined so as to fulfill the data rate constraint, summed over

all subcarriers in the first case, and restricted to subcarrier [ in the second case.
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6.C Solution of power allocation, statistical CSIT case

The aggregate problem composed of (6.25) and (6.30) is convex in Pj. Its Lagrangian is:

L(Py,v,Ba)=> Pi—> oP

€Oy, €Oy,
Ry, target 1 aﬁc [ L pl
+ vlog(2) T - Z 5 { nmin log, ( 1+ — Pj | +log, (1 + aiPy)
SC lcoy, min
]_ (Zl Rl max
+ Z B T log(2) | = ( Pminlog, (1 + k Pl +log, (1+a,Pl) ) — (7,
lco 2 min BSC
k

where v, 3, a are Lagrange multipliers. By the KKT conditions, the solution of (6.25) must
verify w =0and o'P, =0,Vl € {1,...,lsc .k }. The derivative of the Lagrangian is
k

OL(Py, v, al 1 1
%Zl_(y_ﬁl(ﬁlcﬁ) o Tpl T ] —a
oP] 2 \1+a,PL " | % pi

Nmin = K

=g(P) —a (6.36)

al = 0if P > 0. In that case, the optimum P} is a real positive solution is g(P}) = 0.
Solving g(P}) = 0 is equivalent to finding the roots of a polynomial of second order.
Let R! be the data rate on subcarrier I computed with the chosen solution of g(P}) = 0.

The KKT condition g(r})* (Rf€ - (Ri:,max - e)) = 0 imposes that the data rate constraint
per subcarrier R} = (R}, .., — €) be fulfilled whenever §'(7/)* > 0. On the contrary, if
Rl < (Rfmmax —¢€), then B!(7})* = 0 Therefore, the solution on subcarrier [ is:
o If Rl < (Rﬁc,max —€), Pl is a real positive solution of g(P}) = 0, where
(Py=1-v % ! + !
S 2 \T+aPi 14 % pl

If none of the solutions is real positive, then P,i = 0. Else, P,i is equal to the minimum,

strictly positive real solution.

l

k,max

e Else, P,i is computed so as to exactly reach R, = R — €.

The constant v is determined so as to reach the target data rate, summed over all subcarriers.

)



Chapter 7

Multi-cell weighted sum

throughput maximization

7.1 Introduction

In the previous two chapters, we have determined resource allocation methods for RC users.
The QoS objectives of these users are directly turned into the MA optimization problem,
that should be solved per TTI. In this chapter, we consider BE users, that, unlike RC users,
do not have any QoS constraint per TTI with regard to their data rate. However, when
the queue lengths are taken into account, we can argue that a possible QoS objective for
BE users is to avoid buffer overflows and their consequential data losses. In order to fulfill
this requirement, cross-layer optimization between the medium access layer and the physical
layer is needed. Radio resource allocation should therefore depend on the users’ queue state.
Consequently, the results of resource allocations in previous TTIs have an influence on the
resource allocation objective in the present TTI. In this chapter, the studied optimization
objective is Weighted Sum Throughput Maximization (WSTM). When the weight of each
user is proportional to its queue length, WSTM may be seen as a cross-layer resource allo-
cation problem for BE users. We will limit our study to SISO transmissions.

The chapter first reviews the literature relevant to our problem. Cross-layer resource al-
location with the objective to avoid buffer overflows has been studied under the scope of
information theory for the multi-access channel and for the broadcast channel. It was
shown that maximizing the weighted sum of data rates, where the weight of each user is
proportional to its queue length, leads to buffers’ stability. Cross-layer optimization on the
interference channel has not yet been studied. Based on the intuition that WSTM is a logical
optimization problem to manage users’ queue lengths, we study this problem in multi-cell
OFDMA networks. The different papers focusing on this problem all make a high SINR

assumption, that allows them to assure the convergence of their iterative methods. Indeed,

113
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the high SINR assumptions turns the originally non-convex optimization problem into a
geometric program. Our aim is to avoid performing this simplifying assumption, which is
untrue in cellular networks with high levels of interference. For that purpose, we investigate

two open issues:

e First, can we use subcarrier allocation to maximize the weighted sum data rate, based

on channel coefficients and weights’ knowledge?

e Second, how can we distinguish which users will eventually be in high SINR, prior to

power control?

The first item is studied in Section 7.4. In order to determine an efficient subcarrier alloca-
tion algorithm, we study the capacity region of interfering users when inter-cell interference
is treated as noise, and when each cell has a maximum power constraint. The simple case
of two cells, one subcarrier and one user per cell, provides an analytical solution for the
WSTM problem, and a criterion to evaluate if the joint transmission of both users leads to
the maximization of the weighted sum throughput. This criterion is deduced from the con-
vexity study of the capacity region, and from the relative links” weights. It can be extended
to multi-cell OFDMA, thus indicating whether each couple of users should be transmitting
on the same subcarrier or not. These binary conditions can be turned into an interference
graph. The proposed subcarrier allocation then forms, via graph coloring, groups of users
with allowed joint transmission.

The second item, studied in Section 7.5, deals with power control. Our aim is to determine a
distributed power control that is valid in all SINR regimes. We propose a two-stage method.
In the first step, power control is run for all users and subcarriers. Then a condition is tested
on the SINR per subcarrier, to reject the users from the subcarriers where the SINR is too
low. Finally, the second step uses a high SINR assumption for the remaining users and
subcarriers. The optimization problem is thus a geometric program, and converges in a
distributed way toward the global optimum. This method is compared with the optimum,
centralized power control in Section 7.5.3. Then, Section 7.6 evaluates the performance
results of the subcarrier allocation and power control methods, used jointly and separately,
and compares them with binary power allocation, both in static and dynamic scenarios.

The main contributions of this chapter are:

e The capacity region of interfering users, when interference is considered as noise, is
studied. A simple criterion for maximizing the weighted sum throughput per pair of
links is deduced. It depends on the convexity of their capacity region, and on their
relative links” weights. This criterion is extended to the multi-cell case by considering
pairwise WSTM. Consequently, it can be used to build an interference graph for the
network. A graph-based subcarrier allocation algorithm for OFDMA cellular networks
using graph coloring is then deduced. It can be combined with a distributed power
allocation algorithm operating in high SINR regime.

e A distributed power control algorithm is described for the WSTM problem. Unlike
previous work, it is suitable for any SINR regime, as it first determines which users
and subcarriers should be set to zero, and then operates in high SINR regime with

the remaining ones. A comparison of the performance results of this algorithm with
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the optimum, centralized power control shows that the proposed method leads to very

low degradations in terms of data rates and in terms of power values.

e The proposed methods, used jointly or separately, are assessed via dynamic numerical
simulations, where the weight of each user is proportional to its queue length. At
medium to high load, they lead to higher weighted sum throughput and fairer queue
length management than binary power allocation. Besides, graph-based subcarrier
allocation followed by power control importantly decreases the power and subcarriers

consumption.

7.2 State of the art

7.2.1 Information-theoretic results for multi-access channel and broad-
cast channel

Cross-layer resource allocation for the flat fading Gaussian multi-access channel (MAC)
has been studied in [89]. The system is assumed feasible if for none of the users, the
buffered queue is unbounded. A resource allocation policy that can stabilize a feasible
system without knowledge of the queues’ arrival rates is defined as throughput optimal. In
order to determine such a policy, the authors refer to Tse and Hanly [90]. In this paper,
all transmitters in a multi-access system have infinite backlogs of bits to send. Tse and
Hanly solve the problem max puR, where p is a vector of non-negative weights. In [89], the
authors show that a throughput optimal resource allocation policy for the MAC with random
packet arrivals is given by the Tse-Hanly solution, where the direction u is equal to the queue
length u. The optimal rate allocation is obtained by performing successive decoding, from
the shortest queue to the largest queue. Resource allocation for the broadcast channel is also
investigated in [89]. Similarly to the MAC, it is shown that a throughput optimal resource
allocation policy with random packet arrivals is given by the Tse, Li and Goldsmith [91] [92]
solution (obtained with an infinite backlog of bits), where the direction p is chosen equal to

the queue length u.

7.2.2 Application to single-cell OFDMA

The capacity region of a single-cell OFDMA system with orthogonal subcarrier allocation
is a sub-set of the capacity region of a single-cell OFDM system [93]. An OFDM cell with
Lsc subcarriers is composed of Lgc multi-access channels in uplink, that are linked with
one sum power constraint per user. Consequently, the stability properties defined in [89] for
the MAC channel are valid for uplink OFDM. A throughput optimal strategy for the MAC
channel is thus also valid for uplink OFDM and OFDMA. A similar result can be obtained
for the downlink due to the duality of the MAC and broadcast channels [15].

Few papers deal with cross-layer queuing management and resource allocation in OFDMA.
We here review the papers that consider the WSTM problem, where the weight of each user
is proportional to its queue length. A general utility-based scheduling scheme for single-cell
OFDMA is studied in [94]. It maximizes the projection of the data rates onto the gradient
of a system’s utility function. By choosing this gradient equal to the queue length, the

mathematical framework from [94] can be used for solving WSTM. Resource allocation on
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the long-term channel for users with heterogeneous services, namely dead-line sensitive and
BE applications, is considered in [95]. The authors solve the problem by formulating it as a
geometric program. This is only valid under a high SNR assumption. Several heuristics are
proposed for subcarrier allocation with a WSTM objective in OFDMA in [96] [97], when the
arrivals and channels are stochastic. They are compared with methods aiming at minimizing
the long-term average packet delay. The main conclusion is that at low to medium load,
balancing the queues between users is more critical than opportunistically taking advantage

of the channel variations, while the opposite becomes true at high load.

7.2.3 WSTM resource allocation on the interference channel

Tt is not known yet if the information-theoretic results obtained on the MAC and broadcast
channel extend to the interference channel. However, the WSTM resource allocation strategy
intuitively seems well suited to efficiently balance the queues of users in any multi-user
scenario. We will therefore consider the WSTM problem with the weight of each user
proportional to its queue length as an example of possible application, and evaluate its
influence on queue lengths management in the numerical assessments.

The interference channel is investigated in high SINR regime in [98]. In that case, the power
control problem is formulated as a geometric program, that can be solved in a distributed
way, by using Lagrange dual decomposition. In [99], Qiu and Chawla propose an iterative
method for solving the sum throughput maximization problem in the general case and in
the high SINR regime. In the general case, the obtained distributed solution may be a local
optimum, whereas there is only one global optimum in the high SINR regime, because the
objective function is then a standard interference function [69]. In [100], Chiang studies
power control in conjunction with congestion control at TCP layer. The weight for each
user in WSTM is proportional to the queuing delay. For a given weights’ set, power control
is then solved iteratively with the gradient method, under a high SINR assumption. Huang
et al. propose a similar approach in [101], where supermodular game theory is used to show
the convergence of the iterative process. In the same paper, the multi-channel case is solved
for the high SINR regime, through a decomposition in the dual space.

A binary approach in multi-cell TDMA networks has been studied in [102], where each BS
either transmits at full power, or does not transmit. The authors prove that for the two-
cells case with one user per cell, the binary power allocation is optimum to solve the sum
throughput maximization problem. This result does not extend to the cases with more than
two interfering BSs. However, numerical results show that the sum throughput with binary
allocation is very close to the optimum sum throughput. WSTM is not treated in [102].
Binary power allocation will serve a as reference for performance comparisons throughout
this chapter.

7.3 WSTM problem

We consider the downlink transmission in a network A" composed of Ky users and Ngg
BSs using OFDMA. Each BS has Lg¢ subcarriers available for data transmission. The total
available bandwidth is B, and the bandwidth per subcarrier is Bgc. The data rate of user
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k served by BS ngg is

(7.1)

GL P!
Ry = Z Bsc 10g2 1+ kik” k
l€6), (NO + 2 ntk Gln,kprlz)

where Oy, is the set of subcarriers assigned to user k by ngg, P]i is the power transmitted
to user k£ by nps in subcarrier [, Gi%k is the channel coefficient between BS n and user k
in subcarrier ! (including propagation loss, shadowing, and fast fading). Ny is the variance
of the AWGN noise. To simplify notations, we use Gﬁc’k for the channel coefficient between
user k and npg in subcarrier [, and P! = P! if subcarrier [ is allocated to user k.

nBs

Let wy be the weight of user k. The WSTM problem per TTT is:

Ky

max {P,®} Zkak (72)
k=1
Lsc

s. t. ZP,ZLBS < Prax, Vngs € {1,..., Nps}
=1
s. t. PL__>0,¥(ngs,1) € {1,.... Ngs} x {1,..., Lsc}

Sy
s.t. O, N Ok = 0,Y(k, k") served by the same BS, k # k'

This network-wide optimization problem is NP-hard due to the discrete subcarrier assign-
ment, and due to the non-convexity of the power allocation function S(P, ®) = ZkK;‘/l wi Ry,
even if subcarriers are already allocated [24]. Our aim is to determine sub-optimal solutions
to that problem. Distributed algorithms per BS are preferred, in order to allow for a simple
implementation in networks with flat architecture. We assume that subcarrier allocation is
performed separately from power allocation. In the following, we equivalently write S(P, ©)
as S(P), by including the subcarrier allocation constraint as a binary power allocation con-
straint: on each cell, ©p N O = 0,V(k, k') served by the same BS, k # k', is indeed
equivalent to VI € {1,...,Lsc},if P > 0 then P}, = 0,V(k, k") served by the same BS,
k#£K.

7.4 WSTM subcarrier allocation

In this section, we propose two subcarrier allocation methods for WSTM. The first one,
called graph-based subcarrier allocation, is deduced from the capacity region study. The
second one, called WSTM distributed subcarrier allocation, is a simple distributed method

that will be used in the numerical studies for comparison purposes.

7.4.1 Capacity region study : two users case

We first investigate the case with Ngg = 2 cells, 1 user per cell, and 1 subcarrier per cell. In
this section, we consider the normalized rates, with a bandwidth B = Bgc = 1. Therefore,
we remove B and the subcarrier index [ to simplify notations.

We have seen in Section 2.1.4 that, on the interference channel, the interference may be
jointly decoded by all receivers, when the transmitted information is composed of both

private and common information [19]. Such methods lead to an increase of the generalized
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degree of freedom of the interference channel [20], dsym(cr) (defined by equation (2.9)),

when a = 1125;];% exceeds 0.5. Fig. 7.1 depicts the capacity-achieving generalized degree of

freedom for the Gaussian symmetric interference channel with two users, in red. The green
line represents the generalized degree of freedom when interference is considered as noise by
both users. The blue line represents the generalized degree of freedom when users are never
jointly transmitting.

In this dissertation, we do not investigate methods involving common information exchanges,
and we restrict our study to either orthogonal transmission, or joint transmission when inter-
cell interference is treated as noise. Our aim is then to determine in which cases the joint
transmission of both users is more efficient than orthogonal transmission, with regard to the
WSTM objective.

i
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Figure 7.1: Generalized degree of freedom

The capacity region is defined as the set of all simultaneously achievable rate pairs
(R, Ry), under the set of per cell power constraints. The data rate of user k interfered by

user n is
Ry, = log, <1 +

with 0 < P, < Ppax and 0 < P, < Ppax-
The rate of user n can be expressed as a function of its power, P,, and of the interfering

Gie.i P
NO + Gn,kPn

link’s rate, Ry:

3 Gn nPn
Rn:fn(Rk;Pn):10g2 1+ G :

| (7.3)
No + ﬁ(QRk — 1)(N() + Gn,kpn)

Let us set a = Ng + %(ZR’C —1)Ny and b = %(2& —1)G,, k. Then, for any Ry,

8fn(Rk7Pn) aGn,n

- 0
P, 10g(2)(a + bPy)(a+ bPy + GrnPo)




7.4 WSTM subcarrier allocation 119

Table 7.1: Parameters for the studied cases

Gia Ga o Gi Ga1

i

Case 1, Interference-limited || 107'2 | 10712 | 10713 | 10~13

Case 2, Balanced case 1072 | 1072 | 107 | 107 ™
Case 3, Power-limited 10712 | 10712 | 10716 | 10716
Case 4, Asymmetric case 10712 | 10713 | 10713 | 10716

Consequently for a fixed Ry, the maximum of fn(R;C7 P,) is obtained when P,, = Py ax.
The capacity region is therefore determined by the following set of inequations:

Ry, < fu(Ri), V(n,k)e{1,2}* (7.4)

where fn(Rk) = fn(RIm Pmax)-
Four examples of capacity regions are represented on Fig. 7.2: an interference-limited case
with concave capacity region, and three other cases with convex capacity regions. On these

figures, the noise is Ny = —105 dBm, and the maximum power is Py, = 43 dBm. The

gain parameters are given in Table 7.1 .
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Figure 7.2: Capacity regions

The weighted sum data rate is S(P) = wy Ry +wy, Ry, with wy, +w,, = 1. If the solution
that maximizes S is different from the extrema, then it is tangent to one of the functions
fn- Consequently, f; (R;) = —=&. We assume that w,, > wy.

Two cases are possible regarding f, curvature:
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1. f, is convex on [0,+oco[. In that case, the solution to the weighted sum data rate

maximization is (Ppax, 0) or (0, Pnax)-

2. f, has only one inflexion point, Ri*ex. In that case, f, is first concave in [0, R,

and then convex in [RiM®* 400[. We focus on this second case in the following.

The candidate solutions of f;, (R;) = — 4 are R}, , = log, (“;\/a) and Iy , = log, (M>,

X
where

v =(wy, — WE)Gr kG onPmax — 2w Gr s No + 2w Gi .y (No + Gk Pmax)
a =G 1 GpnPmax [((wn — wk)QG;ﬁan’n + 4wkwnGk,nGn7k)Pmax

+ 4ww, No(Grn — Gk,k)]
X =2wrGrn (No + Gk Prax)

In the concave and convex areas of f,,, f/, varies in | — 1,0[. It is never equal to (—1). The

n
sum data rate maximization can consequently not be achieved by studying only one function

fn- Tts solution is binary, as shown in [102].

Let m;,, be the minimum for °* in the concave area of f,, and M,, its maximum. m,, is
equal to
m, = _f;l(o) _ Gk,nGn,anax (NO + Gn,kPmax) (75)
Gk,kNO (NO + Gn,npmax)
and M,, = —f/ (RiMex) The expression of M,, cannot easily be simplified and is therefore

not detailed here.
The solution R; must lie in the concave area of f,,, so that it lies in the convex capacity

region. Therefore only R} , may be suitable. There is a solution to f;,(Rx) = —* in the
concave area if =& € [my,, M,]. It is equal to Py = (NOJF%;ZJ;P'MX) (1 - vix‘/a). It belongs

to the capacity region if 0 < Py < Ppax. Consequently,

+
P = min { KW> (1 B v—ﬁﬂ p} 6)
Gk X

and the solution to the maximum weighted sum data rate is (P}, Pmax)-
If 2= ¢ [my,, My,], then the solution is binary. To conclude, the optimum solution for

maximizing S, if w,, > wy, belongs to the following set:

Pjoint = {(07 Pmax)a (Pma)u O)a (Rnaxv Prnax)a (P]:a Pmax)} (77)

We now study the convexity of the capacity region with regard to cell n through the sign
of f(0). If f7(0) > 0, then f, is convex, and the capacity region is concave. If f, (0) < 0,
then f,, is concave between 0 and the inflexion point, and the capacity region is convex in

this area.

f” (0) _ _IOg(2)Gk,nGn,anax (N(] + Gn,kPmax) v
' (Gi)2(N0)? (No + G Prax)”

where

¢ = Gk,kNO (NO + Gn,anax) - Gk,n (NO + Gn,kpmax) (2N0 + Gn,npmax)
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Consequently, f,: (0) <0 is equivalent to A, , > 0, where

Gk,kNO (2NO + Gn,anax)

Apny=———""2—""——Gin 7.8

- N(] + Gn,kpmax o (NO + Gn,npmax) ( )
. : Gn,nPmax G,k Pmax

In the following reasoning, we suppose that w,, log, (1 + T) > wy, logy (1 + T)

If the capacity region is not convex, the maximum weighted sum data rate is equal to

GrnnPmax

the capacity region is convex in [O,Rik“ﬂe"], any tangent to f, at a point in [O,Riknﬂex]

will have a higher ordinate S(P) = wyRj + w, R, than f,(0) = log, (1 + G"“TI:““) >

the maximum data rate when only user n transmits, S(P) = w, log, (1 +

wy, log, (1 + G”R[if“”‘) Consequently, if the capacity region is convex, and if a solution to

fr(Ry) = — 3 exists in [0, Ri*ex] | then the weighted sum data rate at R} is higher than
the weighted sum data rate obtained when transmission is limited to user 7.

Therefore, the weighted sum data rate can be increased by assigning subcarriers in order to
avoid having f, (0) > 0 or f, (0) > 0, which results in avoiding that A,, , < 0or Ay, <O0. It
should be noted that criterion (7.8) does not depend on the weight values, as it only charac-
terizes the convexity of the capacity region, which is independent of the weights. However,
we have seen that if = € [0,my,] or 3= € [0,my], the optimum solution is binary. As
in that case, the weight of one of the users is very low, it is highly likely that the binary
solution will be either (0, Pyax) O (Pmax,0). Consequently, we add a second condition,
dependent on the weights, to evaluate if the joint transmission of users k& and n leads to a
maximization of the weighted sum data rate.

To conclude, the conditions are :

Apn >0, Ay >0, il > m, and Wn > my (7.9)
Wnp, Wi

7.4.2 Graph-based subcarrier allocation for OFDMA

Let us now consider the interference channel with Ngg > 2 links. The weighted sum data
rate maximization problem on the whole network is too complex to be directly solved in the
general case. Therefore, we propose a sub-optimal subcarrier allocation method that aims
at maximizing the weighted sum data rate per couple of links (k,n). For each couple, the
weighted sum data rate is higher with joint transmission than with separate transmission if
conditions (7.9) are fulfilled.

We now extend our results to subcarrier allocation for OFDMA with Lgc subcarriers. The
aim of the proposed subcarrier allocation is to assign on the same subcarrier only the
users that verify conditions (7.9) on each pair. For that purpose, the coloration of the
interference graph deduced from conditions (7.9) must be determined. The interference
matrix F representing the interference graph is built as follows: (F)q, ) = 1if Ay, <0,
Ani < 0, 1%’2 < my, or Z—: < my, (pairwise interference condition), or if k£ and n are
different users served by the same BS (OFDMA intra-cell orthogonality condition). Else,
(F)(k,n) = 0. If vertex k and n are adjacent in the interference graph (i.e., (F)q ) = 1),
then their simultaneous transmission in the same subcarrier is forbidden, either because
this would decrease the weighted sum throughput, or because they are orthogonal users
belonging to the same cell.

Two examples with Nps = 2 cells and 2 users per cell are given in (7.10). The users are
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ordered as [{BS 1,user 1},{BS 1,user 2},{BS 2,user 1},{BS 2,user 2}]. In F!, user 1 of
BS 2 is highly interfered by both users of BS 1, and user 2 of BS 2 is not highly interfered
by the users of BS 1. In F2?, user 1 of BS 1 highly interferes both users of BS 2, whereas

user 2 of BS 1 does not generate high interference on the users of BS 2.

(7.10)

O = = O
o = O =
— O =
S = O O
= = = O
o O O =
- o o =
[ s R

The users that are allowed simultaneous transmission in the same subcarriers are ob-
tained through graph coloring. We use the greedy heuristic DSATUR [103] to solve the
NP-hard graph coloring problem. In order to limit the complexity, we consider the inter-
ference graph on the average channel (including propagation loss and shadowing), so the
same graph coloring is used in all subcarriers. The subcarrier allocation method is detailed
hereunder. It determines a user ¢ with higher priority, and then only allocates subcarriers

to the users that have the same color as 7. The algorithm runs in parallel for each subcarrier
le {1, ey Lsc}:

1. On each subcarrier [, order all users k of the network by descending value of weighted

1
rate wy, log, (1 + SNR@, where SNR?@ = %

[ with equal power allocation. Then allocate subcarrier [ to the user that maximizes
wy, logy (1 + SNR;C). Let BS™ be the base station that serves that user.

is the SNR of user k in subcarrier

2. For all BS # BS”*, list the set of allowed users: these are the users of BS that have
the same color as user k. If the set of allowed users is not empty, allocate subcarrier
[ to the allowed user that maximizes the weighted rate w, log, (1 + SNR;) in that

subcarrier.

With DSATUR, the complexity of graph-based subcarrier allocation is polynomial in
O((NpsK)?), where K is the number of users per cell. It should be noted that distributed
graph coloring methods could be used instead of DSATUR for implementation in distributed
networks. A review of the complexity of distributed graph coloring is provided in [104].

7.4.3 WSTM distributed subcarrier allocation

We here briefly detail a simple WSTM distributed subcarrier allocation, that is used to max-
imize the weighted sum throughput on each OFDMA cell in an uncoordinated way. Inter-cell
interference is therefore not considered. On each cell, each subcarrier [ € {1, ..., Lsc} is al-
located to the user k that maximizes the weighted rate wy, log, (1 + SNRZ). This method
is preferred to dynamic subcarrier allocation, where each cell iteratively updates subcar-
rier allocation by considering the SINR instead of the SNR. Indeed, in OFDMA, dynamic

subcarrier allocation may not converge to a stable state.
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7.5 WSTM power control

7.5.1 Proposed method

In this section, we detail a 2-Phases power control method for solving the WSTM problem
(7.2) when subcarrier allocation is set. Contrary to previous work [99] [100] [101], our
proposed method is suitable for distributed implementation in all SINR regimes, and is
adapted to multi-user OFDMA. It consists of two phases: first, identify the links that

should be set to zero, and then, operate in high SINR regime with the remaining links.

Phase I: all users and subcarriers

In Phase I, each subcarrier is considered as an independent interference channel. The aim
of Phase I is to evaluate which users should be set to zero on the interference channel. For
that purpose, all initial power values are set to Ppax, the maximum power per cell. In order
to account for the number of allocated subcarriers, we consider the weight per user and

subcarrier: ay = lSuC)?kk7 where Isc i is the number of subcarriers allocated to user k.
Then the iterative process from Qiu and Chawla [99], adapted for the WSTM problem, is
used in parallel on each subcarrier. Let €; be the set of interfering users that are active in

subcarrier [. The optimization problem on subcarrier [ € {1, ..., Lgc} is:

GL P
max pi || <1+ ’“I’j ’“) (7.11)
k

ke

S. t. P} € [Puin, Pmax), Vk €

l l
GrbPr .
7
us

where I,lC is the noise plus interference received by user k in subcarrier [, and ,Y]lc =
the SINR of user k in subcarrier [. P, > 0 is the minimum power per subcarrier.
Problem(7.11) is not convex due to inter-cell interference. It is solved with the following
iterative method:

Initialization: at iteration T = 0, Vk € €, set P}(0) = Ppax, and compute the corre-

sponding interference information: ¢! (0) = %
k k

Iterative process:

1. Power update: Compute the power of each user k € €, depending on its channel state,
weight, SINR, and on the interference information of the previous iteration, according
to the following equations:

PHT + 1) = P, if XL(PYT)) < Puin
PHT +1) = Puax, if Xp(PY(T)) > Prax
PL(T + 1) = X} (PY(T)), otherwise (7.12)

where

(1)

X4(P(1) =
'“ (14 24T) (S Chonh (D)

(7.13)
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2. Interference information update: For each user k € €, deduce 7% (T +1) and I} (T +1)
from the power values. Then compute the interference information depending on its

weight, SINR, and received noise plus interference,

B apy (T + 1)
G(T+1) = ILN(T +1) (I€1+%2(T+1)) (7.14)

The function to be maximized in (7.11) is positive, continuous, differentiable, and defined
over a compact set S = {Pl P <PI < Pmax}. Therefore, it has a global maximum on
S. Any fixed point of the iterative process converges to an optimum of this non convex
optimization problem (7.11). The proof is detailed in [99], and comes from the continuity
and differentiability of the studied function. As there may be several local optima, we cannot
be sure that the iterative process will converge to a good solution. This will depend on the
set of initial power values. However, numerical results show that, when starting from Py .y

for all users, if P,,;, = 0, the users whose power tends to 0 reach this value in few iterations.

High SINR condition

At the end of Phase I, a test is used to check whether each subcarrier fulfills the high SINR
condition, under a given precision. Only the subcarriers and users that fulfill that condition
should be considered in Phase II.
In subcarrier [, the high SINR condition under precision [ is fulfilled for user k € ; if and
only if:

ok logs (1 4 73,) — ax logy ()] < 8

This is equivalent to
Qg 1
—log <1 + ) <p
log(2) Ve

= (kal_l) (7.15)

If this condition is fulfilled, P,i is set to Pnax- Else, user k is no longer considered active on

subcarrier [ and is removed from €);.

Phase II: high SINR users and subcarriers

This phase is an adaptation of the Dual Asynchronous Distributed Pricing (DADP) algo-
rithm for the multi-channel case from Huang et al. [101], where we introduce an additional
condition on the power in the iterative process, in order to ensure that the high SINR
condition is always verified. The optimization problem in high SINR regime is (with the
approximation log(1 4+ SINR) ~ log(SINR)):

Lsc Gl pl Ok
e i (5

=1 ke,

Lsc

s. t. ZP,QBS < Puax, Vs € {1,..., Ngs}
=1

and P} > P i, V1 € {1,..., Lsc}, Vk € Q (7.16)
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where P!

% min > 0 is the minimum allowed power for user k in subcarrier .

The sum power constraint is relaxed by introducing a dual price per BS, p,,,.. In the dual
space, the initial problem is separated into Lgc problems, one per subcarrier. The iterative
algorithm performs power control on each subcarrier independently, taking into account the
dual prices. The dual prices are then updated, depending on whether the sum power con-
straint per BS is fulfilled or not. « is the step for the dual price evaluation. The following

iterative algorithm is used:

Initialization: at T,; = 0, set the initial power and price for all subcarriers [ and all users
k € Q, and the initial dual price per BS pnqs(0) > 0, Vnps € {1, ..., Nps}.

Tterative process:

1. Dual price update: at each iteration Ty, each BS ngg € {1,..., Ngs} updates its dual
price according to:

Lsc
finns (Ty) = max {MBS (Ty—1)+ & (Z P (Ty—1) - Pmax> ,o} (7.17)

=1

2. Tterative power and interference information update: for a given dual price setting, an
iterative process is used independently on each subcarrier [ € {1,..., Lsc }.
Initialization: at iteration T = 0, Vk € , set PL(0) = Pmax, and compute the

ay
1;.(0)

corresponding interference information: ¢(0) =

Tterative process:

(a) Power update: Compute the power of each user k € €, depending on its channel
state, weight, the interference information of the previous iteration, and on the

dual price of its serving BS ngs[k], fings) (Ta):
PYT 4+ 1) = Puax, if VH(PYT)) > Puax
PLT +1) = YL(PYT)), otherwise (7.18)

where
Qg

(it Gl ChlT) + fngaiir (T0))

YL(P(T)) = (7.19)

(b) Interference information update: Compute the interference information of each
user k € €; depending on its weight and received noise plus interference,

(T +1) = ﬁ (7.20)

At power update step, P}

k,min

subcarrier [ will always fulfill the high SINR condition:

(T + 1) is set to a specific value that ensures that user k in

LI
(2% — 1) ch,k

Ppin(T +1) = (7.21)



126 Chapter 7 Maulti-cell weighted sum throughput maximization

When the adaptive constraint P} > P}
Phin is fixed to a strictly positive value instead, this algorithm converges to the global opti-

‘min 18 DOt taken into consideration, and when
mum of problem (7.16). The convergence proof is similar to the one used for multi-channel
DADP in [101]. It is based on the fact that the studied optimization problem belongs to the
class of geometric programming [25], and can consequently be solved by Lagrangian relax-
ation. The dual price update can be viewed as a distributed gradient projection algorithm
for solving the master problem. This algorithm converges for small enough step size k. The
proof of [101] applies to our case even if, contrary to Huang et al., we consider several users
per cell, as the users served by the same BS are only differentiated by their channel gains,
and the sum power constraint applies to the whole cell.

Introducing the adaptive constraint P} > P} into the optimization problem (7.16), in-

,min
stead of P,i > Punin as in [101], may question the convergence of the iterative process.
However, numerical simulations have shown that, when the high SINR precision ( is accu-

rately set, P} rapidly converges to a fixed value per user and subcarrier, and under this

,min
condition, the convergence proof from [101] remains valid.
The complexity of the 2-Phases power control depends on the second phase. It is polynomial

in Nps: O(Lsc(Ngs)?).

7.5.2 Graph-based subcarrier allocation and power control

The graph-based subcarrier allocation process determined in Section 7.4.2 may be followed
by power control. As the users that are allowed to simultaneously transmit in the same
subcarrier are not highly interfering each other, we can make the assumption that these users
fulfill the high SINR condition. Consequently, we only use the second phase of the proposed
power control to maximize the weighted sum throughput. In the numerical assessments, we
will also evaluate the performance of graph-based subcarrier allocation followed by equal
power allocation, where each active subcarrier gets an equal share of P,,.x. In both cases,
the complexity is in O((NgsK)?3).

7.5.3 Assessment of distributed power control

In order to evaluate the relevance of our proposed 2-Phases power control, we compare it
with the optimum power control, and also with the binary power allocation from [102].
These two methods are centralized. The optimum power control is obtained by running the
algorithm corresponding to the the first phase of our algorithm, with several different initial
states. Indeed, this algorithm converges to a local optimum, that depends on its set of initial
values. An exhaustive search through all possible local optima provides the global optimum.
Similarly, the solution of binary power allocation is obtained through an exhaustive search,
by testing all possible binary states.

We consider a network composed of two rings of interfering cells, with one subcarrier and
one user per cell. The path loss model is Okumura-Hata with Rayleigh fast fading, and the
shadowing’s standard deviation is 7 dB. The thermal noise spectral density is Ny = —174
dBm/Hz. The maximum transmit power per BS is Pyax = 43 dBm. The inter-site distance
is dijs = 0.61 km.

In this section, we set fixed values for the weight of each user. As there is only one user, we

equivalently refer to it as the ‘cell’s weight’. Three cases are considered. In Case 1, all the
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Figure 7.3: Distribution of power per cell, Case 1

cells have the same weight, W = 0.5. In Case 2, the even cells have a weight W; = 0.67,
and the odd cells have a weight W5 = 0.33. Finally in Case 3, the even cells have a weight
Wiy = 0.75, and the odd cells have a weight W5 = 0.25.

A first numerical assessment shows that the high SINR criterion 8 = 0.15 is a good com-
promise. Indeed, our aim is to minimize the Kullback-Leibler distance on the power, that

measures the differences between two probability density functions, p; and po,

o= St ()

The power histograms for Cases 1 and 2 are represented on Fig. 7.3 and 7.4. The sub-optimal

algorithm provides a good match with the optimal algorithm. Binary power allocation is
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Figure 7.4: Distribution of power per cell, Case 2, W; = 0.67 (right) and W5 = 0.33 (left)
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far from the optimum. We then compare the performance results obtained with the optimal
centralized algorithm and with binary allocation, with this value of 5.

Table 7.2: Comparison of proposed power control with optimum power control and binary

power allocation

Case 1 | Case 2 Case 2 Case 3 Case 3
W=0.67 | W=0.33 | W=0.75 | W=0.25

Average capacity (bits/s/Hz)
Optimum PC 2.61 3.37 1.45 3.56 1.05
Proposed PC 2.56 3.25 1.47 3.4 1.11
Relative decrease (%) 1.91 3.56 1.38 4.5 5.71
Binary PA 2.41 2.84 1.7 2.99 1.36
Relative decrease (%) 7.66 18.67 -17.24 16 -22.8
Average Power (W)
Optimum PC 2.61 3.92 0.64 4.12 0.28
Proposed PC 2.61 3.79 0.71 3.94 0.35
Relative increase (%) 0 -3.32 10.9 -4.37 25
Binary PA 10.55 12.07 7.79 12.4 6.51
Relative increase (%) 304 218 1117 200 2225

Table 7.2 shows that the proposed power control algorithm leads to almost the same
average capacity as the optimal algorithm. The average power required on each type of cell
is also quite similar, with a small decrease in the power required for the users with highest
weight, and an increase in the power required for the users with lowest weight. This is due
to some inaccuracies at the end of Phase I: some users get to Phase II, although they should
be rejected. We can notice that binary power allocation is less accurate than the proposed
sub-optimal algorithm regarding capacity, and that it consumes too much power in all cases.
Binary power allocation also increases the capacity of the users with lowest weight, which
is useless with respect to the WSTM objective.

7.6 Numerical results

In this section, four methods are numerically compared: graph-based subcarrier allocation
without power control (referred to as ‘Graph-Based SC, NoPC’), graph-based subcarrier
allocation with high SINR power control (‘Graph-Based SC + PC’), distributed WSTM
subcarrier allocation followed by power control in 2 phases (‘2Phases PC’), and distributed
WSTM subcarrier allocation followed by binary allocation (‘Binary PA’). Binary PA selects
the binary combination of powers P! = {0, % for all cells n € {1, ..., Ngs}, that maxi-

mizes the weighted sum data rate, on each subcarrier [. The complexity of this method is
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exponential in Npg : O(Lgc2VPs).

7.6.1 Two cells, TDMA

We first consider the case of two interfering cells, one subcarrier and one user per cell. The
weight of each user is set to a fixed value. We compare the optimum resource allocation
(obtained with the analytical solution derived in Section 7.4.1) with the four methods, in
terms of achieved weighted sum data rate, by using Monte-Carlo simulations. The sum
weight is w; + wo = 1. The location of users is uniformly distributed within each cell. The
other parameters are the same as in Section 7.5.3.

Fig. 7.5 represents the relative weighted sum data rate loss between the optimum weighted
sum data rate and the four other methods. The optimum weighted sum data rate is between
70590 kbits/s for w; = 0.5 and 112958 kbits/s for w; = 1, and increases with wy. The relative
performance loss is always lower than 0.77% with Graph-Based SC + PC. This method is

the closest to the optimum resource allocation.

——&— Graph-Based SC + PC
=5 —%— Graph-Based SC, NOPC
—<&— 2Phases PC

—©— Binary PA

Relative difference (%) between the optimum
weighted sum data rate and sub—-optimum methods
l
w

_6 i i i i i i
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
w1

Figure 7.5: 2 cells, TDMA, relative difference to the optimum for weighted sum data rate

7.6.2 Dynamic simulations, 7 cells, multi-user OFDMA

We now consider a network composed of one central cell BSy, and one ring of 6 interfering
BSs, with two non-adjacent sets, C; = {BS;,BS3,BS5} and C; = {BS,,BS4,BSg}. The
FFT size and the number of available subcarriers per BS are Lgc = 256. The location of
users in each cell follows a uniform distribution and does not vary in a given Monte-Carlo
snapshot. The other network characteristics are the same as in Section 7.5.3.

We study a dynamic scenario where the weight of each user is equal to its normalized queue
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Figure 7.10: 7 cells, OFDMA, average queue length per user

length. Each user receives data in its queue with a Poisson traffic model, where the inter-
arrival law follows an exponential law of average equal to T; = 20 TTIs. The TTI duration
is 2 ms. The packet size follows a log-normal law with average 2.5 kbits for the users of
BSg, 5 kbits for the users of Cy, and 1.25 kbits for the users of C5. The packet size standard
deviation is equal to 0.1 kbits. The queue length is limited to 1024 kbits. Users are in buffer
overflow when their queue length reaches this value.

The weighted sum throughput on all cells is represented on Fig. 7.6. At low to medium
load, 2Phases PC leads to higher weighted sum throughput than the other methods. At very
low load (less than 8 users per cell), Binary PA is even better than Graph-Based methods.
Indeed, in that case, it is not necessary to take into account the interfering users in the
subcarrier allocation process, and it is more effective to assign all the subcarriers to the
users with highest weighted SNR in each cell. However, at medium to high load, inter-cell
interference limits the achievable data rate, and it is more efficient to allocate orthogonal
subcarriers with graph-based subcarrier allocation, in order to avoid interference situations,
rather than scheduling users simultaneously as in Binary PA. 2Phases PC determines which
users should be set to zero, and consequently leads to high weighted sum throughput at any
load.

The four methods are compared in terms of resource consumption on Fig. 7.7, 7.8 and
7.9. The percentage of active TTIs is equal to the ratio of TTIs where at least one user
is active. The performance results for three BSs with different load levels are represented.
With Graph-Based SC, the percentage of active TTIs is limited to 45% for the two least-
loaded cells (BSp and BSs), whereas it goes up to 90% with 2Phases PC, and to 95%
with Binary PA. Graph-Based SC enables the users of these cells to efficiently empty their

queues whenever they access to the resource, whereas the two other methods lead to useless
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resource access. This is due to the interference levels: with Graph-Based SC, the average
inter-cell interference is between 20 and 30 dBm lower than with Binary PA and 2Phases
PC. Therefore, 2Phases PC is less favorable than Graph-Based SC, although it leads to the
same weighted sum throughput at high load. Power control after Graph-Based SC allows
additional inter-cell interference limitations, as well as a power decrease. In that case, the
power of the users with the lowest weights (users of BSs) is decreased, in order to limit the
interference generated to the users with highest weights (users of BSy), that need higher
data rates to empty their queues.

Graph-Based SC and 2Phases PC favor the users of BS; that have the highest queue lengths,
at the cost of an increase in the queue lengths of the other users (Fig. 7.10). The lowest
queue lengths for users of BS; (and also for all users in the network) is obtained with 2Phases
PC at low load, and with Graph-Based SC at medium to high load. These results show that
the WSTM objective is indeed valid to balance the users’ queue lengths, and that Binary
PA is not efficient to address the WSTM objective.

7.7 Conclusion

This chapter has investigated resource allocation for the WSTM problem in SISO multi-cell
OFDMA networks. A graph-based subcarrier allocation and a distributed power control
have been proposed. These methods may be combined, or used independently. In the two
cells, TDMA case, graph-based subcarrier allocation followed by high SINR power control
leads to the lowest relative performance loss, which is almost negligible compared to the op-
timum resource allocation. For OFDMA with 7 cells and where each user’s weight is equal to
its normalized queue length, the proposed methods are all more efficient in terms of WTSM
than binary allocation, at medium to high load. Graph-based subcarrier allocation is very
effective to decrease resource consumption, leading to lower power and interference levels.
The results from this chapter show that inter-cell interference needs to be treated for BE
users in order to avoid buffer overflows. It may be treated directly through subcarrier alloca-
tion, by avoiding joint transmission of users that would be interfering too much. It should be
noted that our proposed method can be viewed both as dynamic subcarrier allocation and
as time-based scheduling. In both cases, the objective is to perform interference alignment
whenever inter-cell interference becomes the limiting feature to achieve the optimization
goal. This restriction of interference alignment to useful cases is a major difference with the
work from [81], where time-based interference alignment is performed in all cases. A possi-
ble extension of our work would therefore be a theoretically study of dynamic interference
alignment, not only for WSTM, but also for other optimization objectives.

Inter-cell interference may also be mitigated via power control. This method is particularly
needed whenever several potentially highly interfering users request simultaneous transmis-
sion. In that case, we have seen that decreasing the transmit power in order to mitigate the
interference generated to other users is globally efficient for all users. We may thus conclude
that, for BE users as well as for RC users, the global network performance is improved
when each cell not only considers the interference that it receives, but also the interference
that it generates to the other cells. For RC users, this conclusion directly stems from the

network-wide power convergence constraint on each subcarrier. For BE users, we cannot
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formalize the interdependences of power levels so directly, but the conclusions are quite close
if the objective of resource allocation is to avoid buffer overflows for all users. In multi-cell
networks, selfish resource allocation, performed within each BS irrespectively of the others,
leads to network performance degradations. We have seen that distributed resource allo-
cation with consideration of the other BSs is feasible, both for RC and BE users, at the
cost of sub-optimality with respect to centralized resource allocation, and possibly of small

information exchanges between the BSs.



Chapter 8

Conclusions and Perspectives

8.1 Conclusions

This thesis has studied distributed resource allocation in OFDMA multi-cell networks. Our
aim was to determine methods, distributed per BS, that provide the required QoS to all
users, whatever their location in the cell is. Subcarrier allocation and iterative power allo-
cation have been investigated in several cases.

First, we have proposed a network coordination method adapted to distributed networks,
and the complete resource allocation strategy for this type of causal coordination. Network
coordination is triggered for the users located at the border of cells, that suffer the most
from inter-cell interference. Four power control objectives with varying fairness levels have
been tested. It has been shown that network coordination brings additional fairness at any
load with all power allocation objectives, and increases the system throughput with fair
objectives. Network coordination however decreases the peak data rate when the power
allocation objective is unfair, as the data rate gain brought to users at cell edge is obtained
at the expense of the users in the best radio conditions. The data rates of coordinated users
are increased both thanks to the virtual MIMO diversity gain and to an inter-cell interfer-
ence decrease, as the most potential interferer becomes the coordinated BS.

Based on these conclusions, we have then determined a resource allocation method using
network coordination, that depends on the QoS constraint of each user. BE users follow an
unfair, Globally Optimal resource allocation objective, whereas RC users follow a fair MA
resource allocation objective. The proposed resource allocation algorithm aims at minimiz-
ing the sum power required for RC users to reach their target data rate, so that the sum
data rate of BE users is maximized. It favors RC users over BE users, and adapts both
subcarrier and power allocations to each QoS objective, including network coordination for
the RC users located at the border of cells. The proposed method is far more efficient
than the methods previously proposed in the literature. The conjugate effects of increasing

the capacity via network coordination and prioritizing resource allocation between RC and
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BE users lead to power and rejection rate decreases for RC users, and to a sum data rate
increase for BE users.

In the remainder of the dissertation, we have focused on fully distributed networks. We first
considered RC users, that follow a MA resource allocation problem, i.e., minimization of
the sum power required to reach a target data rate per user. This problem may not be fea-
sible due to inter-cell interference in multi-cell networks. We have determined a distributed
convergence criterion for power control on the interference channel with SISO transmission.
This criterion has been included into a distributed resource allocation method. It is used
as a maximization objective in subcarrier allocation, and is considered within power allo-
cation. Power control sets the SINR per user and subcarrier, in order to both guarantee
power convergence, and reach the target data rate. The convergence criterion is triggered
depending on the interference level. The proposed method is far more efficient than itera-
tive water-filling, as it does not lead to any power divergence situation. At medium to high
load, it thus increases the percentage of users fulfilling their QoS constraint, with far lower
inter-cell interference levels. It is therefore a relevant alternative to iterative water-filling in
distributed networks.

The MA resource allocation problem has then been studied in MIMO communication sys-
tems, both when full CSI is available at transmitter, and when only the statistical properties
of the channel are available at transmitter. In both cases, a convergence criterion for power
control has been determined. In the full CSIT case, water-filling is performed over the
subcarriers and streams with the aim to reach users’ target data rates. The convergence
criterion corresponds to a maximum allowed data rate per subcarrier. In the statistical
CSIT case, we have derived an approximate analytical expression of the outage capacity
as a function of the SNR and of the outage probability. As this analytical expression is
concave in the SNR, the MA problem is solved via convex optimization. The convergence
criterion for power control is included within power control. In both cases, the proposed
methods avoid power divergence situations at medium to high load, compared to iterative
water-filling. They consequently lead to more RC users reaching their target data rate, and
lower inter-cell interference levels.

Finally, we have investigated resource allocation for BE users in SISO. A possible QoS ob-
jective for these users is to avoid buffer overflows as much as possible. We have studied
the WSTM problem. If the weight of each user is proportional to its queue length, then
this objective is a trade-off between maximizing the sum data rate, and balancing the users’
queue lengths. The WSTM problem has first been addressed via subcarrier allocation, by
studying the capacity region in the two interfering links’ case. A simple characterization
of whether simultaneous transmission leads to higher weighted sum throughput than in-
sequence transmission has been obtained. Based on this characterization, a graph-based
subcarrier allocation method for multi-cell OFDMA has been derived. We have also pro-
posed a distributed power control method for WSTM. At medium to high load, the proposed
methods, whether used jointly or independently, lead to lower average queue lengths, and
fairer queue lengths’ distribution, than binary allocation. Graph-based subcarrier allocation

is particularly useful to decrease power consumption.
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8.2 Future work

This thesis has determined several distributed resource allocation methods for RC and BE
users in OFDMA multi-cell networks. These are first steps that should be complemented by
additional studies. We hereunder provide first insights into open issues that have not been
addressed in the thesis, and that could be studied as future work:

o Influence of the different simplifying assumptions taken throughout the dissertation:
The proposed methods assume that CSI is fully known at transmitter, that the chan-
nel remains stable during one TTI, and that all transmissions are synchronized. It
would be of interest to adapt them to more realistic conditions. The influence of sta-
tistical CSIT has been studied for the MIMO channel in Chapter 6, and the analytical
expression of the outage capacity as a function of the SNR obtained in this chapter
could be adapted to the network coordination method of Chapters 3 and 4.

e FExtension of causal network coordination:
Network coordination involving more than two BSs and using other protocols than data
forwarding could be investigated. Besides, in Chapters 3 and 4, we have considered
that the inter-BS transmission was perfect in terms of SNR. This assumption is valid
in the case of wired links, or directional radio links, but not for ad hoc networks. In
that case, the transmission protocol should be based on DF. Besides, it would also be
of interest to evalute the relevance of causal network coordination when the same air

interface is used on the link between the coordinated transmitters as on the downlink.

e Theoretical convergence of the proposed distributed methods:

The network-wide optimization objective has been decomposed into per BS sub-
problems, due to the constraint of distributed resource allocation. Inter-cell inter-
ference has been taken into consideration by iterating power allocation over the BSs.
The theoretical convergence of the proposed algorithms has not been proved in all
cases. Besides, even when the power control algorithms were shown to be convergent
(as in Chapters 5, 7, and 6 for the statistical CSIT case), the final state may be a local
optimum of the network-wide optimization problem. Most proposed methods belong
to the set of alternating minimization algorithms. The convergence of alternating min-
imization algorithms has been studied in the static case in [105], and in the dynamic
case, if the channel parameters are evolving during the iterative process, in [106].
These references may serve as bases to fully characterize the theoretical convergence
conditions of our distributed methods.

e Interference channel from an information-theoretic and signal processing point of view:
Many open issues remain on the interference channel, contrary to the multi-access and
broadcast channels. In this thesis, the main focus was not on studying the interference
channel, but rather on adapting resource allocation to it. Throughout the disserta-
tion, we have considered inter-cell interference as noise. The methods determined in
Chapters 5, 6 and 7 characterize the situations when neglecting inter-cell interference
is optimal (thus allowing joint transmission of interfering links), and, on the contrary,
when inter-cell interference should be removed. These two states could be comple-

mented by additional transmission states, implying that inter-cell interference is not
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treated as noise, as explained in [21].

The interference channel could also be studied from a cross-layer perspective, in order
to evaluate whether WSTM with the weight of each user proportional to its queue
length is throughput optimal. Finally, interference alignment could also be stud-
ied, both for the MIMO case, when interference alignment is performed on MIMO
streams [79], and for the general case, when interference alignment is performed in
time domain [81] or in frequency domain [80]. MIMO interference alignment could be
compared to our results on MIMO transmission with full CSIT, so as to determine
under which conditions interference alignment is more efficient than iterative water-
filling with power control convergence constraints. More generally, we could formalize
the various characterizations of joint transmission’s limitations within the scope of
interference alignment theory.
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