. La-cornée-est-la-couche-la, Elle a un rôle de protection et constitue le premier élément réfractif de l'oeil, comptant pour les 2/3 du dioptre oculaire Elle mesure en moyenne, chez l'adulte, 11 mm de diamètre et son épaisseur diminue de la périphérie (environs 600 µm) vers le centre (environs 500 µm) La cornée est composée de plusieurs couches (figure 7.1), ? l'épithélium, qui est formé de 5 à 7 couches de cellules. Il a un rôle de barrière et facilite la dispersion du film de larme à la surface de la cornée

@. La-membrane-de-bowman, C'est une couche acellulaire de 8 à 14 µm d'épaisseur séparant l'épithélium du stroma. Elle est constituée de fibres de collagène réparties de façon non ordonnée dans une matrice de substance fondamentale. Cette membrane

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells, Optics Express, vol.15, issue.16, pp.10303-10320, 2007.
DOI : 10.1364/OE.15.010303

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses, Applied Physics B, vol.89, issue.2, pp.247-53, 2005.
DOI : 10.1007/s00340-004-1701-5

G. B. Benedek, Theory of Transparency of the Eye, Applied Optics, vol.10, issue.3, pp.459-73, 1971.
DOI : 10.1364/AO.10.000459

P. S. Binder, Flap dimensions created with the IntraLase FS laser, Journal of Cataract & Refractive Surgery, vol.30, issue.1, pp.26-32, 2004.
DOI : 10.1016/S0886-3350(03)00578-9

M. Born and E. Wolf, Principles of Optics, 1999.
DOI : 10.1017/CBO9781139644181

J. L. Boulnois, Photophysical processes in recent medical laser developments: A review, Lasers in Medical Science, vol.46, issue.1, pp.47-66, 1986.
DOI : 10.1007/BF02030737

L. J. Bour, Visual optics and instrumentation, chapter, Boca Raton, pp.310-325, 1991.

R. W. Boyd, Nonlinear optics, 1992.

L. Buratto and E. Bohm, The Use of the Femtosecond Laser in Penetrating Keratoplasty, American Journal of Ophthalmology, vol.143, issue.5, pp.737-779, 2007.
DOI : 10.1016/j.ajo.2007.01.056

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation, Biophysical Journal, vol.77, issue.6, pp.3341-3390, 1999.
DOI : 10.1016/S0006-3495(99)77165-1

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge et al., The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges, Canadian Journal of Physics, vol.83, issue.9, pp.863-905, 2005.
DOI : 10.1139/p05-048

A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media, Physics Reports, vol.441, issue.2-4, pp.47-189, 2007.
DOI : 10.1016/j.physrep.2006.12.005

URL : https://hal.archives-ouvertes.fr/hal-00454778

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi et al., 3-Dimensional imaging of collagen using second harmonic generation, Journal of Structural Biology, vol.141, issue.1, pp.53-62, 2003.
DOI : 10.1016/S1047-8477(02)00576-2

A. S. Craig and D. A. Parry, Collagen fibrils of the vertebrate corneal stroma, Journal of Ultrastructure Research, vol.74, issue.2, pp.172-75, 1981.
DOI : 10.1016/S0022-5320(81)80081-0

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.
DOI : 10.1126/science.2321027

F. Docchio, C. A. Sacchi, and J. Marshall, Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations, Lasers Ophthalmol, vol.1, pp.83-93, 1986.

D. Donate, O. Albert, K. Plamann, J. P. Colliac, P. Sabatier et al., Ultrastructural and histologic studies of femtosecond laser incisions in human cornea, Invest. Ophthalmol. Vis. Sci, vol.46, p.4359, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00527882

F. Droun, F. Balembois, and P. Georges, Laser crystals for the production of ultra-short laser pulses, Annales de Chimie Science des Mat??riaux, vol.28, issue.6, pp.47-72, 2003.
DOI : 10.1016/j.anncsm.2003.10.001

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, with pulse widths from 7 ns to 150 fs, Applied Physics Letters, vol.64, issue.23, pp.3071-73, 1994.
DOI : 10.1063/1.111350

D. Du, J. Squier, R. Kurtz, V. Elner, X. Liu et al., Ultrafast Phenomena IX, chapter Damage Threshold as a Function of Pulse Duration in Biological Tissue, pp.254-55, 1994.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, Influence of optical properties on two-photon fluorescence imaging in turbid samples, Applied Optics, vol.39, issue.7, pp.1194-1201, 2000.
DOI : 10.1364/AO.39.001194

D. S. Durrie and G. M. Kezirian, Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis, Journal of Cataract & Refractive Surgery, vol.31, issue.1, pp.120-146, 2005.
DOI : 10.1016/j.jcrs.2004.09.046

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 1996.

R. Ell, U. Morgner, F. X. Aârtner, J. G. Fujimoto, E. P. Ippen et al., Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser, Optics Letters, vol.26, issue.6, pp.373-75, 2001.
DOI : 10.1364/OL.26.000373

R. A. Farrell and R. L. Mccally, Corneal transparency, chapter 57 in "Principles and Practice of Ophthalmology, pp.629-673, 2000.

T. Feuk, On the Transparency of the Stroma in the Mammalian Cornea, IEEE Transactions on Biomedical Engineering, vol.17, issue.3, pp.1866-90, 1970.
DOI : 10.1109/TBME.1970.4502732

S. Fine and W. P. Hansen, Optical Second Harmonic Generation in Biological Systems, Applied Optics, vol.10, issue.10, pp.2350-53, 1971.
DOI : 10.1364/AO.10.002350

I. Freund and M. Deutsch, Second-harmonic microscopy of biological tissue, Optics Letters, vol.11, issue.2, pp.94-96, 1986.
DOI : 10.1364/OL.11.000094

J. G. Fujimoto, W. Z. Lin, C. A. Puliafito, E. P. Ippen, and R. F. Steinert, Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation , and cavitation, Invest. Ophthalmol. Vis. Sci, vol.26, pp.1771-77, 1985.

E. Fukada, Piezoelectric properties of biological macromolecules, Advan. in Biophys, vol.6, pp.121-55, 1974.

L. Gallais, Endommagement laser dans les composants optiques : métrologie, analyse statistique et photo-induite des sites initiateurs, 2002.

E. G. Gamaly, A. V. Rode, and B. Luther-davies, Ultrafast laser-ablation and film deposition , chapter 5 in "Pulsed laser deposition of thin films: applications-led growth of functional materials, 2007.

R. Gauderon, P. B. Lukins, and C. J. Sheppard, Simultaneous multichannel nonlinear imaging: combined two-photon excited fluorescence and second-harmonic generation microscopy, Micron, vol.32, issue.7, pp.685-89, 2001.
DOI : 10.1016/S0968-4328(00)00067-6

D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard et al., Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling, Journal of the Optical Society of America A, vol.24, issue.6, pp.1562-68, 2007.
DOI : 10.1364/JOSAA.24.001562

I. K. Gipson and N. C. Joyce, Principles and Practice of Ophthalmology Anatomy and cell biology of the cornea superficial limbus and conjunctiva, pp.612-641, 2000.

M. Gisselberg, J. I. Clark, S. Vaezy, and T. B. Osgood, A quantitative evaluation of Fourier components in transparent and opaque calf cornea, American Journal of Anatomy, vol.9, issue.4, pp.408-426, 1991.
DOI : 10.1002/aja.1001910408

Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses, Applied Optics, vol.35, issue.34, pp.6810-6823, 1996.
DOI : 10.1364/AO.35.006810

T. J. Gyi, K. M. Meek, and G. F. Elliott, Collagen interfibrillar distances in corneal stroma using synchrotron X-ray diffraction: a species study, International Journal of Biological Macromolecules, vol.10, issue.5, pp.265-69, 1988.
DOI : 10.1016/0141-8130(88)90002-5

M. Han, G. Giese, and J. F. Bille, Second harmonic generation imaging of collagen fibrils in cornea and sclera, Optics Express, vol.13, issue.15, pp.5791-97, 2005.
DOI : 10.1364/OPEX.13.005791

M. Han, L. Zickler, M. Walter, G. Giese, F. H. Loesel et al., Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation, Journal of Biomedical Optics, vol.9, issue.4, pp.760-66, 2004.
DOI : 10.1117/1.1756919

R. W. Hart and R. A. Farrell, Light Scattering in the Cornea*, Journal of the Optical Society of America, vol.59, issue.6, pp.766-74, 1969.
DOI : 10.1364/JOSA.59.000766

A. Heisterkamp, T. Mamom, W. Drommer, W. Ertmer, and H. Lubatschowski, Photodisruption with ultrashort laser pulses for intrastromal refractive surgery, Laser Physics, vol.13, pp.743-791, 2003.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling et al., Nonlinear side effects of fs pulses inside corneal tissue during photodisruption, Applied Physics B: Lasers and Optics, vol.74, issue.4-5, pp.419-444, 2002.
DOI : 10.1007/s003400200825

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, Penetrating Keratoplasty Using Femtosecond Laser, American Journal of Ophthalmology, vol.143, issue.3, pp.524-550, 2007.
DOI : 10.1016/j.ajo.2006.08.029

C. Hönninger, F. Morier-genoud, M. Moser, U. Keller, L. R. Brovelli et al., Efficient and tunable diode-pumped femtosecond Yb:glass lasers, Optics Letters, vol.23, issue.2, pp.126-128, 1998.
DOI : 10.1364/OL.23.000126

C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system, Optics Letters, vol.22, issue.23, pp.1790-92, 1997.
DOI : 10.1364/OL.22.001790

M. Y. Hu, J. P. Mcculley, H. D. Cavanagh, R. W. Bowman, S. M. Verity et al., Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers, Journal of Cataract & Refractive Surgery, vol.33, issue.4, pp.673-81, 2007.
DOI : 10.1016/j.jcrs.2006.12.021

A. Artola, J. I. Belda, and J. Alió, Diffuse lamellar keratitis 6 months after uneventful laser in situ keratomileusis, J. Refract. Surg, vol.19, pp.70-71, 2003.

C. H. Dohlman-b, J. N. Kravitt, G. B. Goldman, and . Benedek, Structural alterations affecting transparency in swollen human corneas, Invest. Ophthalmol, vol.7, pp.501-520, 1968.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou et al., A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Applied Physics B, vol.50, issue.1, pp.25-30, 2003.
DOI : 10.1007/s00340-003-1246-z

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials, Optical Engineering, vol.28, issue.10, pp.1039-68, 1989.
DOI : 10.1117/12.7977089

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water, Lasers in Surgery and Medicine, vol.83, issue.1, pp.91-98, 1994.
DOI : 10.1002/lsm.1900150112

T. Juhasz, F. H. Loesel, C. Horvath, R. M. Kurtz, and G. Mourou, Corneal refractive surgery with femtosecond lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.4, pp.902-912, 1999.
DOI : 10.1109/2944.796309

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses, Physical Review B, vol.61, issue.17, pp.11437-50, 2000.
DOI : 10.1103/PhysRevB.61.11437

F. X. Kartner and U. Keller, Stabilization of solitonlike pulses with a slow saturable absorber, Optics Letters, vol.20, issue.1, pp.16-18, 1995.
DOI : 10.1364/OL.20.000016

L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, vol.20, pp.1307-1321, 1965.

G. M. Kezirian and K. G. Stonecipher, Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis, Journal of Cataract & Refractive Surgery, vol.30, issue.4, pp.804-815, 2004.
DOI : 10.1016/j.jcrs.2003.10.026

D. Kopf, F. X. Kartner, U. Keller, and K. J. Weingarten, Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry???Perot saturable absorber, Optics Letters, vol.20, issue.10, pp.1169-71, 1995.
DOI : 10.1364/OL.20.001169

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann et al., Femtosecond Optical Breakdown in Dielectrics, Physical Review Letters, vol.80, issue.18, pp.4076-79, 1998.
DOI : 10.1103/PhysRevLett.80.4076

D. W. Leonard and K. M. Meek, Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma, Biophysical Journal, vol.72, issue.3, pp.1382-87, 1997.
DOI : 10.1016/S0006-3495(97)78784-8

H. L. Little, H. C. Zweng, and R. R. Peabody, Argon laser slit-lamp retinal photocoagulation, Trans. Am. Acad. Ophthalmol. Otolaryngol, vol.74, pp.85-97, 1970.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model, IEEE Journal of Quantum Electronics, vol.32, issue.10, pp.1717-1739, 1996.
DOI : 10.1109/3.538774

H. Lubatschowski, Laser in Medicine: Laser-Tissue Interaction and Applications -A Handbook for Physicists, 2005.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer et al., Application of ultrashort laser pulses for intrastromal refractive surgery, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.238, issue.1
DOI : 10.1007/s004170050006

M. S. El-agha, H. D. Cavanagh, M. S. Chung, and J. S. Pepose, Confocal microscopic findings in a case of delayed-onset bilateral diffuse lamellar keratitis after laser in situ keratomileusis, J. Cataract Refract. Surg, vol.28, pp.1467-70, 2002.

A. P. Forsback, P. Saukko-r, M. Penttinen, J. Tommila, E. Jokinen et al., Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats, Acta Biomater, vol.4, pp.354-61, 2008.

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich et al., Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery, Journal of Optics A: Pure and Applied Optics, vol.2, issue.1, pp.59-64, 2000.
DOI : 10.1088/1464-4258/2/1/311

J. Marburger, Self-focusing: Theory, Progress in Quantum Electronics, vol.4, pp.35-110, 1975.
DOI : 10.1016/0079-6727(75)90003-8

D. M. Maurice, The structure and transparency of the cornea, The Journal of Physiology, vol.136, issue.2, pp.263-86, 1957.
DOI : 10.1113/jphysiol.1957.sp005758

K. M. Meek and C. Boote, The organization of collagen in the corneal stroma, Experimental Eye Research, vol.78, issue.3, pp.503-515, 2004.
DOI : 10.1016/j.exer.2003.07.003

K. M. Meek and N. J. Fullwood, Corneal and scleral collagen -a microscopist's perspective . Micron, pp.261-72, 2001.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, Transparency, swelling and scarring in the corneal stroma, Eye, vol.17, issue.8, pp.927-963, 2003.
DOI : 10.1038/sj.eye.6700574

C. Meltendorf, J. Schroeter, R. Bug, T. Kohnen, and T. Deller, Corneal Trephination With the Femtosecond Laser, Cornea, vol.25, issue.9, pp.1090-92, 2006.
DOI : 10.1097/01.ico.0000228784.46463.e9

Q. Mohamed, M. C. Gillies, and T. Y. Wong, Management of Diabetic Retinopathy, JAMA, vol.298, issue.8, pp.261-72, 2007.
DOI : 10.1001/jama.298.8.902

T. Moller-pedersen, Keratocyte reflectivity and corneal haze, Experimental Eye Research, vol.78, issue.3, pp.553-60, 2004.
DOI : 10.1016/S0014-4835(03)00208-2

P. F. Moulton, Spectroscopic and laser characteristics of Ti:Al_2O_3, Journal of the Optical Society of America B, vol.3, issue.1, pp.125-158, 1986.
DOI : 10.1364/JOSAB.3.000125

A. S. Neubauer and M. W. Ulbig, Laser Treatment in Diabetic Retinopathy, Ophthalmologica, vol.221, issue.2, pp.95-102, 2007.
DOI : 10.1159/000098254

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Biological and Medical Physics, Biomedical Engineering, 2007.

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, Threshold fluence measurements for plasma-mediated ablation in corneal tissue. Laser pulse duration was between 120 fs and 100 ps. Laser and light in ophthalmology, pp.149-55, 1993.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. , Two-photon ionization and dissociation of liquid water by powerful laser UV radiation, Chemical Physics, vol.77, issue.1, pp.131-174, 1983.
DOI : 10.1016/0301-0104(83)85070-8

J. Noack and A. Vogel, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density, IEEE Journal of Quantum Electronics, vol.35, issue.8, pp.1156-67, 1999.
DOI : 10.1109/3.777215

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suarez, T. Juhasz et al., Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series, J. Refract. Surg, vol.19, pp.8-14, 2003.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, Two-photon microscopy in brain tissue: parameters influencing the imaging depth, Journal of Neuroscience Methods, vol.111, issue.1, pp.29-37, 2001.
DOI : 10.1016/S0165-0270(01)00438-1

I. G. Pallikaris, M. E. Papatzanaki, O. Frenschock, E. Z. Stathi, and A. Georgiadis, Laser in situ keratomileusis, Lasers in Surgery and Medicine, vol.1, issue.5, pp.463-68, 1990.
DOI : 10.1002/lsm.1900100511

A. Pena, T. Dartigalongue, T. Boulesteix, and M. Schanne-klein, Chiroptical Effects in the Second Harmonic Signal of Collagens I and IV, Journal of the American Chemical Society, vol.127, issue.29, pp.10314-10336, 2005.
DOI : 10.1021/ja0520969

URL : https://hal.archives-ouvertes.fr/hal-00829225

M. Pessot, P. Maine, and G. Mourou, 1000 times expansion/compression of optical pulses for chirped pulse amplification, Optics Communications, vol.62, issue.6, pp.419-421, 1987.
DOI : 10.1016/0030-4018(87)90011-3

D. W. Piston, B. R. Masters, and W. W. Webb, Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, Journal of Microscopy, vol.12, issue.1, pp.20-27, 1995.
DOI : 10.1111/j.1365-2818.1995.tb03576.x

C. A. Puliafito and R. F. Steinert, Short-pulsed Nd:YAG laser microsurgery of the eye: Biophysical considerations, IEEE Journal of Quantum Electronics, vol.20, issue.12, pp.1442-1490, 1984.
DOI : 10.1109/JQE.1984.1072343

A. J. Quantock, The cornea is clear -but why? OT, www.optometry.co.uk, pp.32-35, 2000.

P. E. Tatham, R. A. Farrell, and R. L. Mccally, Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications, J. Physiol, vol.233, pp.589-612, 1973.

B. Rethfeld, Free-electron generation in laser-irradiated dielectrics, Physical Review B, vol.73, issue.3, pp.35101-35107, 2006.
DOI : 10.1103/PhysRevB.73.035101

S. Roth and I. Freund, Second harmonic generation in collagen, The Journal of Chemical Physics, vol.70, issue.4, pp.1637-1680, 1979.
DOI : 10.1063/1.437677

S. Roth and I. Freund, Optical second-harmonic scattering in rat-tail tendon, Biopolymers, vol.238, issue.6, pp.1271-90, 1981.
DOI : 10.1002/bip.1981.360200613

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen et al., Femtosecond Laser Posterior Lamellar Keratoplasty, Cornea, vol.24, issue.3, pp.328-361, 2005.
DOI : 10.1097/01.ico.0000138830.50112.f4

Z. Sayers, M. H. Koch, S. B. Whitburn, K. M. Meek, G. F. Elliott et al., Synchrotron X-ray diffraction study of corneal stroma, Journal of Molecular Biology, vol.160, issue.4, pp.593-607, 1982.
DOI : 10.1016/0022-2836(82)90317-5

C. Schaffer, A. Brodeur, and E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Measurement Science and Technology, vol.12, issue.11, pp.1784-94, 2001.
DOI : 10.1088/0957-0233/12/11/305

B. Seitz, H. Brünner, A. Viestenz, C. Hofmann-rummelt, U. Schlötzer-schrehardt et al., Inverse Mushroom-shaped Nonmechanical Penetrating Keratoplasty Using a Femtosecond Laser, American Journal of Ophthalmology, vol.139, issue.5, pp.941-985, 2005.
DOI : 10.1016/j.ajo.2004.11.028

B. Seitz, A. Langenbucher, C. Hofmann-rummelt, U. Schlotzer-schrehardt, and G. O. Naumann, Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation, American Journal of Ophthalmology, vol.136, issue.4, pp.769-72, 2003.
DOI : 10.1016/S0002-9394(03)00449-5

Y. R. Shen, The principles of nonlinear optics, 1992.

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes, Ophthalmology, vol.12, pp.44-49, 2005.

D. E. Spence, P. N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Optics Letters, vol.16, issue.1, pp.42-44, 1991.
DOI : 10.1364/OL.16.000042

R. F. Steinert, T. S. Ignacio, and M. A. Sarayba, ???Top Hat??????Shaped Penetrating Keratoplasty Using the Femtosecond Laser, American Journal of Ophthalmology, vol.143, issue.4, pp.689-91, 2007.
DOI : 10.1016/j.ajo.2006.11.043

K. Stonecipher, N. M. Stonecipher, and T. S. Ignacio, Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability, Current Opinion in Ophthalmology, vol.17, issue.4, pp.368-72, 2006.
DOI : 10.1097/01.icu.0000233957.88509.2d

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, vol.55, issue.6, pp.447-496, 1985.
DOI : 10.1016/0030-4018(85)90151-8

M. Strupler, A. Pena, M. Hernest, P. Tharaux, J. Martin et al., Second harmonic imaging and scoring of collagen in fibrotic tissues, Optics Express, vol.15, issue.7, pp.4054-65, 2007.
DOI : 10.1364/OE.15.004054.m003

URL : https://hal.archives-ouvertes.fr/hal-00824058

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Physical Review B, vol.53, issue.4, pp.1749-61, 1996.
DOI : 10.1103/PhysRevB.53.1749

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters, vol.74, issue.12, pp.2248-51, 1995.
DOI : 10.1103/PhysRevLett.74.2248

L. Sudrie, Propagation non-linéaire des impulsions laser femtosecondes dans la silice, 2002.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration, Physical Review Letters, vol.82, issue.19, pp.3883-86, 1999.
DOI : 10.1103/PhysRevLett.82.3883

D. B. Tran, M. A. Sarayba, Z. Bor, Y. J. Duh, C. Garufis et al., Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes, Journal of Cataract & Refractive Surgery, vol.31, issue.1, pp.97-105, 2005.
DOI : 10.1016/j.jcrs.2004.10.037

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas et al., Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption, Applied Optics, vol.38, issue.16, pp.3636-3679, 1999.
DOI : 10.1364/AO.38.003636

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues, Applied Physics B, vol.18, issue.2???3, pp.1015-1062, 2005.
DOI : 10.1007/s00340-005-2036-6

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch et al., Energy balance of optical breakdown in water at nanosecond to femtosecond time scales, Applied Physics B, vol.68, issue.2, pp.271-80, 1996.
DOI : 10.1007/s003400050617

A. Vogel and V. Venugopalan, Mechanisms of Pulsed Laser Ablation of Biological Tissues, Chemical Reviews, vol.103, issue.2, pp.577-644, 2003.
DOI : 10.1021/cr010379n

A. J. Welch, J. H. Torres, and W. F. Cheong, Laser physics and laser-tissue interaction, Tex Heart Inst J, vol.16, pp.141-190, 1989.

W. E. White, F. G. Patterson, R. L. Combs, D. F. Price, and R. L. Shepherd, Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems, Optics Letters, vol.18, issue.16, pp.1343-1388, 1993.
DOI : 10.1364/OL.18.001343

A. T. Yeh, N. Nassif, A. Zoumi, and B. J. Tromberg, Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence, Optics Letters, vol.27, issue.23, pp.2082-84, 2002.
DOI : 10.1364/OL.27.002082

P. D. Yurchenco and J. C. Schittny, Molecular architecture of basement membranes, FASEB J, vol.4, pp.1577-90, 1990.

A. Zoumi, A. Yeh, and B. J. Tromberg, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11014-11033, 2002.
DOI : 10.1073/pnas.172368799

P. V. List-of, F. Nuzzo, M. Aptel, K. Savoldelli, D. Plamann et al., Histological and ultrastructural characterization of corneal femtosecond laser trephination Accepted to be published in Cornea V Deposit of glass fragments during femtosecond laser penetrating keratoplasty . Graefe's Archive for Ophthalmic Technologies XVIII, Laser parameters , focusing optics, and side effects in femtosecond laser corneal surgery. Proc. SPIE, p.68440, 2008.

E. Bruce, V. Stuck, K. Nuzzo, M. Plamann, M. Savoldelli et al., In situ Monitoring of Second Harmonic Generation in Human Corneas to Compensate for Femtosecond Laser Pulse Attenuation Applied to Keratoplasty, pp) (also selected by the Virtual Journal of Ultrafast Science, p.64032, 2007.

K. Plamann, V. Nuzzo, O. Albert, G. Mourou, M. Savoldelli et al., Femtosecond laser corneal surgery with in-situ determination of the laser attenuation and ablation threshold by second harmonic generation Ophthalmic Technologies XVII, Proc. SPIE, 2007.