L. Remontet, Evolution de l'incidence et de la mortalité par cancer en France de, 1978.

P. Boyle and J. Ferlay, Cancer incidence and mortality in Europe, 2004, Annals of Oncology, vol.16, issue.3, pp.481-489, 2004.
DOI : 10.1093/annonc/mdi098

D. M. Parkin, Global Cancer Statistics, 2002, CA: A Cancer Journal for Clinicians, vol.55, issue.2, pp.74-108, 2002.
DOI : 10.3322/canjclin.55.2.74

G. J. Nabel, Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans., Proceedings of the National Academy of Sciences, vol.90, issue.23, pp.90-11307, 1993.
DOI : 10.1073/pnas.90.23.11307

N. G. Rainov, A Phase III Clinical Evaluation of Herpes Simplex Virus Type 1 Thymidine Kinase and Ganciclovir Gene Therapy as an Adjuvant to Surgical Resection and Radiation in Adults with Previously Untreated Glioblastoma Multiforme, Human Gene Therapy, vol.11, issue.17, pp.11-2389, 2000.
DOI : 10.1089/104303400750038499

T. Korn, R. Muller, and R. E. Kontermann, Bispecific Single-Chain Diabody-Mediated Killing of Endoglin-Positive Endothelial Cells by Cytotoxic T Lymphocytes, Journal of Immunotherapy, vol.27, issue.2, pp.99-106, 2004.
DOI : 10.1097/00002371-200403000-00003

G. Payne, Progress in immunoconjugate cancer therapeutics, Cancer Cell, vol.3, issue.3, pp.207-219, 2003.
DOI : 10.1016/S1535-6108(03)00057-6

B. G. Peng, Tumor vaccine against recurrence of hepatocellular carcinoma, World Journal of Gastroenterology, vol.11, issue.5, pp.700-704, 2005.
DOI : 10.3748/wjg.v11.i5.700

A. E. Pedersen, Phenotypic and Functional Characterization of Clinical Grade Dendritic Cells Generated from Patients with Advanced Breast Cancer for Therapeutic Vaccination, Scandinavian Journal of Immunology, vol.3, issue.2, pp.61-147, 2005.
DOI : 10.1007/s00262-003-0485-5

J. Karcher, Antitumor Vaccination in Patients with Head and Neck Squamous Cell Carcinomas with Autologous Virus-Modified Tumor Cells, Cancer Research, vol.64, issue.21, pp.64-8057, 2004.
DOI : 10.1158/0008-5472.CAN-04-1545

E. Horstmann, Risks and Benefits of Phase 1 Oncology Trials, 1991 through 2002, New England Journal of Medicine, vol.352, issue.9, pp.895-904, 1991.
DOI : 10.1056/NEJMsa042220

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, issue.21, pp.1182-1188, 1971.

O. Feron, Targeting the tumor vascular compartment to improve conventional cancer therapy, Trends in Pharmacological Sciences, vol.25, issue.10, pp.536-578, 2004.
DOI : 10.1016/j.tips.2004.08.008

M. Papetti and I. M. Herman, Mechanisms of normal and tumor-derived angiogenesis, AJP: Cell Physiology, vol.282, issue.5, pp.947-70, 2002.
DOI : 10.1152/ajpcell.00389.2001

J. P. Thomas, Phase I Pharmacokinetic and Pharmacodynamic Study of Recombinant Human Endostatin in Patients With Advanced Solid Tumors, Journal of Clinical Oncology, vol.21, issue.2, pp.223-254, 2003.
DOI : 10.1200/JCO.2003.12.120

S. Syed, A Phase I and Pharmacokinetic Study of Col-3 (Metastat), an Oral Tetracycline Derivative with Potent Matrix Metalloproteinase and Antitumor Properties, Clinical Cancer Research, vol.10, issue.19, pp.10-6512, 2004.
DOI : 10.1158/1078-0432.CCR-04-0804

B. Sivakumar, L. E. Harry, and E. M. Paleolog, Modulating Angiogenesis, JAMA, vol.292, issue.8, pp.292-972, 2004.
DOI : 10.1001/jama.292.8.972

H. Hurwitz, Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer, New England Journal of Medicine, vol.350, issue.23, pp.350-2335, 2004.
DOI : 10.1056/NEJMoa032691

M. S. Medinger, Phase I Dose-Escalation Study of AZD2171 in Advanced Cancers With Liver metastases ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration, The 40th Annual Meeting of the American Society of Clinical Oncology, pp.62-4645, 2002.

C. Ruegg, O. Dormond, and A. Mariotti, Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1654, issue.1, pp.1654-51, 2004.
DOI : 10.1016/j.bbcan.2003.09.003

E. Ruoslahti, Drug targeting to specific vascular sites, Drug Discovery Today, vol.7, issue.22, pp.1138-1181, 2002.
DOI : 10.1016/S1359-6446(02)02501-1

R. Pasqualini, Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis, Cancer Res, vol.60, issue.3, pp.722-729, 2000.

R. Bos, Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer, Histopathology, vol.115, issue.1, pp.31-37, 2005.
DOI : 10.1054/bjoc.2001.2018

A. Bikfalvi and R. Bicknell, Recent advances in angiogenesis, anti-angiogenesis and vascular targeting, Trends in Pharmacological Sciences, vol.23, issue.12, pp.576-82, 2002.
DOI : 10.1016/S0165-6147(02)02109-0

W. J. Rettig, Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.89-10832, 1992.
DOI : 10.1073/pnas.89.22.10832

G. Molema, D. K. Meijer, and L. F. De_leij, Tumor Vasculature Targeted Therapies, Biochemical Pharmacology, vol.55, issue.12, pp.55-1939, 1998.
DOI : 10.1016/S0006-2952(98)00011-2

D. F. Ranney, Biomimetic transport and rational drug delivery, Biochemical Pharmacology, vol.59, issue.2, pp.105-119, 2000.
DOI : 10.1016/S0006-2952(99)00316-0

B. St-croix, Genes Expressed in Human Tumor Endothelium, Science, vol.289, issue.5482, pp.289-1197, 2000.
DOI : 10.1126/science.289.5482.1197

F. J. Burrows and P. E. Thorpe, Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature., Proceedings of the National Academy of Sciences, vol.90, issue.19, pp.90-8996, 1993.
DOI : 10.1073/pnas.90.19.8996

D. W. Siemann, D. J. Chaplin, and M. R. Horsman, Vascular-targeting therapies for treatment of malignant disease, Cancer, vol.88, issue.12, pp.2491-2500, 2004.
DOI : 10.1002/cncr.20299

R. C. Ladner, Phage display-derived peptides as therapeutic alternatives to antibodies, Drug Discovery Today, vol.9, issue.12, pp.525-534, 2004.
DOI : 10.1016/S1359-6446(04)03104-6

O. H. Aina, Therapeutic cancer targeting peptides, Biopolymers, vol.256, issue.3, pp.184-99, 2002.
DOI : 10.1002/bip.10257

L. Hetian, A Novel Peptide Isolated from a Phage Display Library Inhibits Tumor Growth and Metastasis by Blocking the Binding of Vascular Endothelial Growth Factor to Its Kinase Domain Receptor, Journal of Biological Chemistry, vol.277, issue.45, pp.277-43137, 2002.
DOI : 10.1074/jbc.M203103200

M. Willis and E. Forssen, Ligand-targeted liposomes, Adv Drug Deliv Rev, vol.29, issue.3, pp.249-271, 1998.

S. Zalipsky, Poly(ethylene glycol)-Grafted Liposomes with Oligopeptide or Oligosaccharide Ligands Appended to the Termini of the Polymer Chains, Bioconjugate Chemistry, vol.8, issue.2, pp.111-119, 1997.
DOI : 10.1021/bc9600832

R. Pasqualini, E. Koivunen, and E. Ruoslahti, ??v Integrins as receptors for tumor targeting by circulating ligands, Nature Biotechnology, vol.47, issue.6, pp.542-548, 1997.
DOI : 10.1016/0092-8674(90)90009-4

W. Arap, R. Pasqualini, and E. Ruoslahti, Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model, Science, vol.279, issue.5349, pp.279-377, 1998.
DOI : 10.1126/science.279.5349.377

H. M. Ellerby, Anti-cancer activity of targeted pro-apoptotic peptides, Nat Med, vol.5, issue.9, pp.1032-1040, 1999.

W. Arap, Targeting the prostate for destruction through a vascular address, Proceedings of the National Academy of Sciences, vol.99, issue.3, pp.1527-1558, 2002.
DOI : 10.1073/pnas.241655998

E. Koivunen, Tumor targeting with a selective gelatinase inhibitor, Nature Biotechnology, vol.17, issue.8, pp.768-74, 1999.
DOI : 10.1038/11703

S. D. Rosen and C. R. Bertozzi, The selectins and their ligands, Current Opinion in Cell Biology, vol.6, issue.5, pp.663-73, 1994.
DOI : 10.1016/0955-0674(94)90092-2

H. Ulbrich, E. E. Eriksson, and L. Lindbom, Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease, Trends in Pharmacological Sciences, vol.24, issue.12, pp.24-640, 2003.
DOI : 10.1016/j.tips.2003.10.004

J. L. Magnani, The discovery, biology, and drug development of sialyl Lea and sialyl Lex, Archives of Biochemistry and Biophysics, vol.426, issue.2, pp.122-153, 2004.
DOI : 10.1016/j.abb.2004.04.008

R. Kannagi, Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis, Cancer Science, vol.60, issue.5, pp.377-84, 2004.
DOI : 10.1006/bbrc.2000.3768

N. Matsuura, Increased level of circulating adhesion molecules in the sera of breast cancer patients with distant metastases, Japanese Journal of Clinical Oncology, vol.27, issue.3, pp.135-144, 1997.
DOI : 10.1093/jjco/27.3.135

Y. J. Kim, P-selectin deficiency attenuates tumor growth and metastasis, Proceedings of the National Academy of Sciences, vol.95, issue.16, pp.95-9325, 1998.
DOI : 10.1073/pnas.95.16.9325

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21337

L. Borsig, Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.2193-2201, 2002.
DOI : 10.1073/pnas.261704098

J. Hosono, Involvement of adhesion molecules in metastasis of SW1990, human pancreatic cancer cells, Journal of Surgical Oncology, vol.177, issue.2, pp.77-84, 1998.
DOI : 10.1002/(SICI)1096-9098(199802)67:2<77::AID-JSO2>3.0.CO;2-I

T. Nakashio, The association of metastasis with the expression of adhesion molecules in cell lines derived from human gastric cancer, Anticancer Res, issue.1A, pp.17-293, 1997.

M. N. Fukuda, A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells, Cancer Research, vol.60, issue.2, pp.450-456, 2000.

B. W. Weston, Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells, Cancer Res, vol.59, issue.9, pp.2127-2162, 1999.

Y. Kakiuchi, Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis CD105 expression is a marker of high metastatic risk and poor outcome in breast carcinomas. Correlations between immunohistochemical analysis and long-term follow-up in a series of 929 patients, Cancer Res Am J Clin Pathol, vol.62, issue.53, pp.119-374, 2002.

E. J. Quackenbush and M. Letarte, Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies, J Immunol, vol.134, issue.2, pp.1276-85, 1985.

W. Graulich, Cell type specificity of the human endoglin promoter, Gene, vol.227, issue.1, pp.55-62, 1999.
DOI : 10.1016/S0378-1119(98)00585-X

L. Attisano and J. L. Wrana, Signal Transduction by the TGF-beta Superfamily, Science, vol.296, issue.5573, pp.1646-1653, 2002.
DOI : 10.1126/science.1071809

N. P. Barbara, J. L. Wrana, and M. Letarte, Endoglin Is an Accessory Protein That Interacts with the Signaling Receptor Complex of Multiple Members of the Transforming Growth Factor-?? Superfamily, Journal of Biological Chemistry, vol.274, issue.2, pp.584-94, 1999.
DOI : 10.1074/jbc.274.2.584

M. Guerrero-esteo, Extracellular and Cytoplasmic Domains of Endoglin Interact with the Transforming Growth Factor-beta Receptors I and II, Journal of Biological Chemistry, vol.277, issue.32, pp.277-29197, 2002.
DOI : 10.1074/jbc.M111991200

S. H. Wong, Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF-beta signalling receptors, Eur J Biochem, issue.17, pp.267-5550, 2000.

S. Cheifetz, Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells, J Biol Chem, issue.27, pp.267-19027, 1992.

D. W. Miller, Elevated expression of endoglin, a component of the TGF-?-receptor complex, correlates with proliferation of tumor endothelial cells, International Journal of Cancer, vol.1242, issue.4, pp.568-72, 1999.
DOI : 10.1002/(SICI)1097-0215(19990517)81:4<568::AID-IJC11>3.0.CO;2-X

P. Lastres, Endoglin modulates cellular responses to TGF-beta 1, The Journal of Cell Biology, vol.133, issue.5, pp.1109-1130, 1996.
DOI : 10.1083/jcb.133.5.1109

C. Li, CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells, FASEB J, vol.14, issue.1, pp.55-64, 2000.

L. Jonker and H. M. Arthur, Endoglin expression in early development is associated with vasculogenesis and angiogenesis, Mechanisms of Development, vol.110, issue.1-2, pp.193-199, 2002.
DOI : 10.1016/S0925-4773(01)00562-7

B. Guo, CD105 (Endoglin), Apoptosis, and Stroke, Stroke, vol.35, issue.5, pp.94-99, 2004.
DOI : 10.1161/01.STR.0000125309.37971.82

U. Raab, Expression of normal and truncated forms of human endoglin, Biochemical Journal, vol.339, issue.3, pp.579-88, 1999.
DOI : 10.1042/bj3390579

E. Fonsatti, Endoglin: An accessory component of the TGF-?-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies, Journal of Cellular Physiology, vol.111, issue.1, pp.1-7, 2001.
DOI : 10.1002/jcp.1095

N. Takahashi, Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin, Clin Cancer Res, vol.7, issue.3, pp.524-556, 2001.

S. Kumar, Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis, Cancer Res, vol.59, issue.4, pp.856-61, 1999.

F. Tanaka, Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti- CD34 antibody and anti-CD105 antibody, Clin Cancer Res, issue.711, pp.3410-3415, 2001.

C. Li, Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis, British Journal of Cancer, vol.88, issue.9, pp.1424-1455, 2003.
DOI : 10.1038/sj.bjc.6600874

E. Balza, Lack of specificity of endoglin expression for tumor blood vessels, International Journal of Cancer, vol.94, issue.4, pp.579-85, 2001.
DOI : 10.1002/ijc.1505

S. Bredow, Imaging of tumour neovasculature by targeting the TGF-?? binding receptor endoglin, European Journal of Cancer, vol.36, issue.5, pp.675-81, 2000.
DOI : 10.1016/S0959-8049(99)00335-4

E. Fonsatti, Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model, Clin Cancer Res, vol.6, issue.5, pp.2037-2080, 2000.

F. Matsuno, Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies, Clin Cancer Res, vol.5, issue.2, pp.371-82, 1999.

M. Tabata, Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using125I-labeled anti-endoglin monoclonal antibodies, International Journal of Cancer, vol.100, issue.5, pp.737-779, 1999.
DOI : 10.1002/(SICI)1097-0215(19990827)82:5<737::AID-IJC18>3.0.CO;2-8

N. Takahashi, Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide, Cancer Res, issue.21, pp.61-7846, 2001.

T. Volkel, Targeting of immunoliposomes to endothelial cells using a single-chain Fv fragment directed against human endoglin (CD105), Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1663, issue.1-2, pp.158-66, 2004.
DOI : 10.1016/j.bbamem.2004.03.007

P. An, Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library, International Journal of Cancer, vol.494, issue.2, pp.165-73, 2004.
DOI : 10.1002/ijc.20214

M. J. Savontaus, Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells, Gene Therapy, vol.9, issue.14, pp.972-981, 2002.
DOI : 10.1038/sj.gt.3301747

D. M. Nettelbeck, Targeting of Adenovirus to Endothelial Cells by a Bispecific Single-Chain Diabody Directed against the Adenovirus Fiber Knob Domain and Human Endoglin (CD105), Molecular Therapy, vol.3, issue.6, pp.882-91, 2001.
DOI : 10.1006/mthe.2001.0342

P. Chames and D. Baty, Antibody engineering and its applications in tumor targeting and intracellular immunization, FEMS Microbiology Letters, vol.189, issue.1, pp.1-8, 2000.
DOI : 10.1111/j.1574-6968.2000.tb09197.x

R. Cortese, Identification of biologically active peptides using random libraries displayed on phage, Current Opinion in Biotechnology, vol.6, issue.1, pp.73-80, 1995.
DOI : 10.1016/0958-1669(95)80012-3

W. G. Willats, Phage display: practicalities and prospects Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Plant Molecular Biology, vol.50, issue.6, pp.837-54, 1985.
DOI : 10.1023/A:1021215516430

G. Winter, Making Antibodies by Phage Display Technology, Annual Review of Immunology, vol.12, issue.1, pp.433-55, 1994.
DOI : 10.1146/annurev.iy.12.040194.002245

P. Chames, S. Coulon, and D. Baty, Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display, J Immunol, issue.10, pp.161-5421, 1998.

N. J. Macdonald, Endostatin Binds Tropomyosin. A POTENTIAL MODULATOR OF THE ANTITUMOR ACTIVITY OF ENDOSTATIN, Journal of Biological Chemistry, vol.276, issue.27, pp.276-25190, 2001.
DOI : 10.1074/jbc.M100743200

S. Coulon, Cyclic peptides selected by phage display mimic the natural epitope recognized by a monoclonal anti-colicin A antibody, Journal of Peptide Science, vol.20, issue.11, pp.10-648, 2004.
DOI : 10.1002/psc.574

G. Birkenmeier, Epitope mapping by screening of phage display libraries of a monoclonal antibody directed against the receptor binding domain of human ??2-macroglobulin, FEBS Letters, vol.128, issue.2, pp.193-199, 1997.
DOI : 10.1016/S0014-5793(97)01201-5

T. A. Al-bukhari, P. Tighe, and I. Todd, An immuno-precipitation assay for determining specific interactions between antibodies and phage selected from random peptide expression libraries, Journal of Immunological Methods, vol.264, issue.1-2, pp.163-71, 2002.
DOI : 10.1016/S0022-1759(02)00080-7

M. J. Mcguire, A Library-Selected, Langerhans Cell-Targeting Peptide Enhances an Immune Response, DNA and Cell Biology, vol.23, issue.11, pp.742-52, 2004.
DOI : 10.1089/dna.2004.23.742

L. Mazzucchelli, Cell-specific peptide binding by human neutrophils, Blood, vol.93, issue.5, pp.1738-1786, 1999.

R. J. Goodson, High-affinity urokinase receptor antagonists identified with bacteriophage peptide display., Proceedings of the National Academy of Sciences, vol.91, issue.15, pp.91-7129, 1994.
DOI : 10.1073/pnas.91.15.7129

S. E. Cwirla, Peptide Agonist of the Thrombopoietin Receptor as Potent as the Natural Cytokine, Science, vol.276, issue.5319, pp.1696-1705, 1997.
DOI : 10.1126/science.276.5319.1696

J. Hessling, M. J. Lohse, and K. N. Klotz, Peptide G protein agonists from a phage display library, Biochemical Pharmacology, vol.65, issue.6, pp.65-961, 2003.
DOI : 10.1016/S0006-2952(02)01653-2

W. Huang, A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays, Protein Eng, issue.11, pp.16-853, 2003.

R. B. Giannattasio and B. Weisblum, Modulation of Erm Methyltransferase Activity by Peptides Derived from Phage Display, Antimicrobial Agents and Chemotherapy, vol.44, issue.7, pp.44-1961, 2000.
DOI : 10.1128/AAC.44.7.1961-1963.2000

C. H. Papavoine, Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues, Journal of Molecular Biology, vol.282, issue.2, pp.401-420, 1998.
DOI : 10.1006/jmbi.1998.1860

S. S. Sidhu, Engineering M13 for phage display, Biomolecular Engineering, vol.18, issue.2, pp.57-63, 2001.
DOI : 10.1016/S1389-0344(01)00087-9

R. Binetruy-tournaire, Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis, The EMBO Journal, vol.19, issue.7, pp.1525-1558, 2000.
DOI : 10.1093/emboj/19.7.1525

S. A. Nicklin, Selective Targeting of Gene Transfer to Vascular Endothelial Cells by Use of Peptides Isolated by Phage Display, Circulation, vol.102, issue.2, pp.231-238, 2000.
DOI : 10.1161/01.CIR.102.2.231

R. J. Giordano, Biopanning and rapid analysis of selective interactive ligands, Nature Medicine, issue.711, pp.1249-53, 2001.

R. Pasqualini and E. Ruoslahti, Organ targeting In vivo using phage display peptide libraries, Nature, vol.380, issue.6572, pp.364-370, 1996.
DOI : 10.1038/380364a0

H. J. Schluesener and T. Xianglin, Selection of recombinant phages binding to pathological endothelial and tumor cells of rat glioblastoma by in-vivo display, Journal of the Neurological Sciences, vol.224, issue.1-2, pp.77-82, 2004.
DOI : 10.1016/j.jns.2004.06.010

H. B. Lowman, BACTERIOPHAGE DISPLAY AND DISCOVERY OF PEPTIDE LEADS FOR DRUG DEVELOPMENT, Annual Review of Biophysics and Biomolecular Structure, vol.26, issue.1, pp.401-425, 1997.
DOI : 10.1146/annurev.biophys.26.1.401

S. Mandava, RELIC??? A bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites, PROTEOMICS, vol.4, issue.5, pp.1439-60, 2004.
DOI : 10.1002/pmic.200300680

B. K. Kay, Convergent evolution with combinatorial peptides, FEBS Letters, vol.274, issue.1, pp.55-62, 2000.
DOI : 10.1016/S0014-5793(00)01778-6

M. A. Barry, W. J. Dower, S. A. Johnston, and S. A. , Toward cell???targeting gene therapy vectors: Selection of cell???binding peptides from random peptide???presenting phage libraries, Nature Medicine, vol.12, issue.3, pp.299-305, 1995.
DOI : 10.1016/0378-1119(91)90583-W

R. J. Giordano, Biopanning and rapid analysis of selective interactive ligands, Nat Med, issue.711, pp.1249-53, 2001.

G. Byk, Synthesis, Activity, and Structure???Activity Relationship Studies of Novel Cationic Lipids for DNA Transfer, Journal of Medicinal Chemistry, vol.41, issue.2, pp.41-229, 1998.
DOI : 10.1021/jm9704964

H. Farhood, N. Serbina, and L. Huang, The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer Optimization of plasmid backbone for gene expression in mammalian cells, Biochim Biophys Acta Gene Transfer and Expression in Mammalian Cells E. Science, vol.115, issue.2 9, pp.1235-289, 1995.

E. E. Simanek, Selectin???Carbohydrate Interactions:?? From Natural Ligands to Designed Mimics, Chemical Reviews, vol.98, issue.2, pp.833-862, 1998.
DOI : 10.1021/cr940226i

H. Rossiter, R. Alon, and T. S. Kupper, Selectins, T-cell rolling and inflammation, Molecular Medicine Today, vol.3, issue.5, pp.214-236, 1997.
DOI : 10.1016/S1357-4310(97)01040-X

D. Tyrrell, Structural requirements for the carbohydrate ligand of E-selectin., Proceedings of the National Academy of Sciences, vol.88, issue.22, pp.88-10372, 1991.
DOI : 10.1073/pnas.88.22.10372

C. Wong, Small Molecules as Structural and Functional Mimics of Sialyl Lewis X Tetrasaccharide in Selectin Inhibition:?? A Remarkable Enhancement of Inhibition by Additional Negative Charge and/or Hydrophobic Group, Journal of the American Chemical Society, vol.119, issue.35, pp.119-8152, 1997.
DOI : 10.1021/ja970920q

H. Tsujishita, Selectin???Ligand Interactions Revealed by Molecular Dynamics Simulation in Solution, Journal of Medicinal Chemistry, vol.40, issue.3, pp.362-371, 1997.
DOI : 10.1021/jm9606103

L. L. Kiessling and N. L. , Strength in numbers: non-natural polyvalent carbohydrate derivatives, Chemistry & Biology, vol.3, issue.2, pp.71-78, 1996.
DOI : 10.1016/S1074-5521(96)90280-X

G. Weitz-schmidt, An E-Selectin Binding Assay Based on a Polyacrylamide-Type Glycoconjugate, Analytical Biochemistry, vol.238, issue.2, pp.184-90, 1996.
DOI : 10.1006/abio.1996.0273

G. Kretzschmar, Oligosaccharide recognition by selectins: Synthesis and biological activity of multivalent sialyl lewis-X ligands, Tetrahedron, vol.51, issue.47, pp.51-13015, 1995.
DOI : 10.1016/0040-4020(95)00833-T

D. Vleeschauwer and M. , Design and synthesis of a new Sialyl Lewis X Mimetic: How selective are the selectin receptors?, Bioorganic & Medicinal Chemistry Letters, vol.11, issue.9, pp.1109-1121, 2001.
DOI : 10.1016/S0960-894X(01)00130-5

L. M. Work, [10] Use of phage display to identify novel peptides for targeted gene therapy, Methods Enzymol, vol.346, pp.157-76, 2002.
DOI : 10.1016/S0076-6879(02)46055-7

T. J. Molenaar, P-selectin as a candidate target in atherosclerosis, Biochemical Pharmacology, vol.66, issue.5, pp.859-66, 2003.
DOI : 10.1016/S0006-2952(03)00387-3

M. Raab, Variation of adhesion molecule expression on human umbilical vein endothelial cells upon multiple cytokine application, Clinica Chimica Acta, vol.321, issue.1-2, pp.11-17, 2002.
DOI : 10.1016/S0009-8981(02)00048-7

A. Rodriguez-romero, Primary and tertiary structures of the Fab fragment of a monoclonal anti-Eselectin 7A9 antibody that inhibits neutrophil attachment to endothelial cells, J Biol Chem, pp.273-11770, 1998.

C. L. Martens, Peptides Which Bind to E-selectin and Block Neutrophil Adhesion, Journal of Biological Chemistry, vol.270, issue.36, pp.21129-21165, 1995.
DOI : 10.1074/jbc.270.36.21129

M. J. Jedrzejas, Structure of a monoclonal anti-ICAM-1 antibody R6.5 Fab fragment at 2.8 A resolution Evidence for endocytosis of E-selectin in human endothelial cells, Acta Crystallogr D Biol Crystallogr European Journal of Immunology, issue.10, pp.51-73, 1992.

S. T. Hou, Identification of polypeptides with selective affinity to intact mouse cerebellar granule neurons from a random peptide-presenting phage library, Journal of Neuroscience Methods, vol.138, issue.1-2, pp.39-44, 2004.
DOI : 10.1016/j.jneumeth.2004.03.013

M. Lefranc, Présentation à la surface de phages filamenteux : les mutliples applications du phage display, 2003.

C. J. Edgell, C. C. Mcdonald, and J. B. Graham, Permanent cell line expressing human factor VIII-related antigen established by hybridization., Proceedings of the National Academy of Sciences, vol.80, issue.12, pp.80-3734, 1983.
DOI : 10.1073/pnas.80.12.3734

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC394125/pdf

T. J. Molenaar, Specific inhibition of P-selectin-mediated cell adhesion by phage display-derived peptide antagonists, Blood, vol.100, issue.10, pp.100-3570, 2002.
DOI : 10.1182/blood-2002-02-0641

A. P. Hinck, Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2, Biochemistry, issue.26, pp.35-8517, 1996.

S. W. Qian, Characterization of mutated transforming growth factor-beta s which possess unique biological properties, Biochemistry, issue.40, pp.33-12298, 1994.

M. N. Fukuda, A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells, Cancer Res, vol.60, issue.2, pp.450-456, 2000.

R. Renkonen, A peptide mimic of selectin ligands abolishes in vivo inflammation but has no effect on the rat heart allograft survival1, Transplantation, vol.74, issue.1, pp.2-6, 2002.
DOI : 10.1097/00007890-200207150-00002

T. Oyama, Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents, Cancer Letters, vol.202, issue.2, pp.219-249, 2003.
DOI : 10.1016/j.canlet.2003.08.011

S. Ringquist and D. Parma, Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: Binding affinity and specificity of univalent and bivalent ligands, Cytometry, vol.33, issue.4, pp.394-405, 1998.
DOI : 10.1002/(SICI)1097-0320(19981201)33:4<394::AID-CYTO2>3.0.CO;2-0

B. J. Hicke, DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice., Journal of Clinical Investigation, vol.98, issue.12, pp.98-2688, 1996.
DOI : 10.1172/JCI119092

S. Jeong, In Vitro Selection of the RNA Aptamer against the Sialyl Lewis X and Its Inhibition of the Cell Adhesion, Biochemical and Biophysical Research Communications, vol.281, issue.1, pp.237-280, 2001.
DOI : 10.1006/bbrc.2001.4327

S. Bonetto, I. Carlavan, and D. Baty, Isolation and characterization of antagonist and agonist peptides to the human melacortin 1 receptor, Peptides, p.p. accepté, 2005.

L. Makowski and A. Soares, Estimating the diversity of peptide populations from limited sequence data, Bioinformatics, vol.19, issue.4, pp.483-492, 2003.
DOI : 10.1093/bioinformatics/btg013

D. J. Rodi, A. S. Soares, and L. Makowski, Quantitative Assessment of Peptide Sequence Diversity in M13 Combinatorial Peptide Phage Display Libraries, Journal of Molecular Biology, vol.322, issue.5, pp.1039-52, 2002.
DOI : 10.1016/S0022-2836(02)00844-6

C. C. Appeldoorn, Rational Optimization of a Short Human P-selectin-binding Peptide Leads to Nanomolar Affinity Antagonists, Journal of Biological Chemistry, vol.278, issue.12, pp.278-10201, 2003.
DOI : 10.1074/jbc.M209267200