. Dans-la-suite-de-ce-travail, il sera intéressant d'évaluer la performance de cette famille en termes de convergence et de temps de calcul par rapport aux autres éléments 3D et aux autres éléments coques classiques pour une série plus complète de cas tests non-linéaires, Bibliographies, vol.137

F. Abed-meraim and A. Combescure, SHB8PS a new intelligent assumed strain continuum mechanics shell element for impact analysis on a rotating body. First M.I.T. Conference on Computational Fluid and Solid Mechanics Abed-Meraim F, Combescure A. SHB8PS, a new adaptive, assumed strain continuum mechanics shell element for impact analysis, Computers and Structures, vol.23, issue.80, pp.791-803, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00508068

S. Ahmad, R. J. Alves-de-sousa, R. P. Cardoso, F. Valente, R. A. et al., Analysis of thick and thin shell structures by curved finite elements, International Journal for Numerical Methods in Engineering, vol.6, issue.3, pp.419-451, 1970.
DOI : 10.1002/nme.1620020310

J. R. Alves-de-sousa, R. J. Cardoso, R. P. , F. Valente, R. A. et al., A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I-geometrically linear applications, International Journal for Numerical Methods in Engineering, vol.5, issue.7, pp.952-977, 2005.
DOI : 10.1002/nme.1226

J. R. Alves-de-sousa, R. J. , Y. J. Cardoso, R. P. , F. Valente et al., A new one-point quadrature enhanced assumed strain (EAS) solid?shell element with multiple integration points along thickness: Part II ? Nonlinear applications On the use of a reduced enhanced solid?shell (RESS) element for sheet forming simulations, International Journal for Numerical Methods in Engineering International Journal of Plasticity, vol.67, issue.23, pp.160-188490, 2006.

D. G. Ashwell and A. B. Sabir, A new cylindrical shell finite element based on simple independent strain functions, International Journal of Mechanical Sciences, vol.14, issue.3, pp.171-185, 1972.
DOI : 10.1016/0020-7403(72)90074-4

R. Ayad, B. J. Dhatt, and G. , Un élément quadrangulaire de plaque basé sur une formulation mixte-hybride avec projection en cisaillement. Revue Européenne des Eléments Finis, pp.415-440, 1995.

R. Ayad, G. Dhatt, and J. L. Batoz, A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP model, International Journal for Numerical Methods in Engineering, vol.6, issue.7, pp.1149-1179, 1998.
DOI : 10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2

W. E. Bachrach, An efficient formulation of hexahedral elements with high accuracy for bending and incompressibility, Computers & Structures, vol.26, issue.3, pp.453-467, 1987.
DOI : 10.1016/0045-7949(87)90046-0

K. J. Bathe and E. N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering, vol.1, issue.2, pp.367-383, 1985.
DOI : 10.1002/nme.1620210213

K. J. Bathe and E. N. Dvorkin, A formulation of general shell elements???the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering, vol.49, issue.3, pp.697-722, 1986.
DOI : 10.1002/nme.1620220312

K. J. Bathe and L. W. Ho, A simple and effective element for analysis of general shell structures, Computers & Structures, vol.13, issue.5-6, pp.673-681, 1981.
DOI : 10.1016/0045-7949(81)90029-8

J. L. Batoz, K. J. Bathe, and L. W. Ho, A study of three-node triangular plate bending elements, International Journal for Numerical Methods in Engineering, vol.31, issue.12, pp.1771-1812, 1980.
DOI : 10.1002/nme.1620151205

J. L. Batoz, B. Tahar, and M. , Evaluation of a new quadrilateral thin plate bending element, International Journal for Numerical Methods in Engineering, vol.37, issue.11, pp.1655-1678, 1982.
DOI : 10.1002/nme.1620181106

J. L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, Solides élastiques, Editions Hermès, 1990.

J. L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, 1990.

J. L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, 1990.

T. Belytschko and L. P. Bindeman, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol.88, issue.3, pp.311-340, 1991.
DOI : 10.1016/0045-7825(91)90093-L

T. Belytschko and L. P. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Computer Methods in Applied Mechanics and Engineering, vol.105, issue.2, pp.225-260, 1993.
DOI : 10.1016/0045-7825(93)90124-G

T. Belytschko, J. S. Ong, W. K. Liu, and K. J. , Hourglass control in linear and nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol.43, issue.3, pp.251-276, 1984.
DOI : 10.1016/0045-7825(84)90067-7

P. Betsch, F. Gruttmann, and E. Stein, A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Computer Methods in Applied Mechanics and Engineering, vol.130, issue.1-2, pp.57-79, 1996.
DOI : 10.1016/0045-7825(95)00920-5

M. Bischoff and E. Ramm, Shear deformable shell elements for large strains and rotations, International Journal for Numerical Methods in Engineering, vol.8, issue.23, pp.4427-4449, 1997.
DOI : 10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9

B. Brank, J. Korelc, and A. Ibrahimbegovic, Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation, Computers & Structures, vol.80, issue.9-10, pp.699-717, 2002.
DOI : 10.1016/S0045-7949(02)00042-1

B. Brendel and E. Ramm, Linear and nonlinear stability analysis of cylindrical shells, Computers & Structures, vol.12, issue.4
DOI : 10.1016/0045-7949(80)90130-3

. Internat and . Conf, on Engineering Application of Finite Element Method, 1979.

N. Buechter, E. Ramm, and D. Roehl, Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, International Journal for Numerical Methods in Engineering, vol.68, issue.2, pp.2551-2568, 1994.
DOI : 10.1002/nme.1620371504

R. P. Cardoso and J. W. Yoon, One point quadrature shell element with through-thickness stretch, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.9-11, pp.1161-1199, 2005.
DOI : 10.1016/j.cma.2004.06.017

D. Chapelle and K. J. Bathe, Fundamental considerations for the finite element analysis of shell structures, Computers & Structures, vol.66, issue.1, pp.19-36, 1998.
DOI : 10.1016/S0045-7949(97)00078-3

URL : https://hal.archives-ouvertes.fr/hal-00839732

Y. I. Chen and G. Y. Wu, A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique, Structural Engineering and Mechanics, vol.17, issue.1, pp.113-140, 2004.
DOI : 10.12989/sem.2004.17.1.113

Y. Cheung and C. W. , Refined hybrid method for plane isoparametric element using an orthogonal approach, Computers & Structures, vol.42, issue.5, pp.683-694, 1992.
DOI : 10.1016/0045-7949(92)90180-8

C. Cho, P. H. , and L. S. , Stability analysis using a geometrically nonlinear assumed strain solid shell element model, Finite Elements in Analysis and Design, vol.29, issue.2, pp.121-135, 1998.
DOI : 10.1016/S0168-874X(98)00021-3

G. Dhatt and G. Touzot, Une présentation de la méthode des éléments finis, 1986.

S. Doll, K. Schweizerhof, R. Hauptmann, and C. Freischlager, On volumetric locking of low???order solid and solid???shell elements for finite elastoviscoplastic deformations and selective reduced integration, Engineering Computations, vol.17, issue.7, pp.874-902, 2000.
DOI : 10.1108/02644400010355871

E. Domissy, Formulation et évaluation d'éléments finis volumiques modifiés pour l'analyse linéaire et non linéaire des coques, 1997.

J. Fish and T. Belytschko, Elements with embedded localization zones for large deformation problems, Computers & Structures, vol.30, issue.1-2, pp.247-256, 1988.
DOI : 10.1016/0045-7949(88)90230-1

D. P. Flanagan and T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International Journal for Numerical Methods in Engineering, vol.2, issue.5, pp.679-706, 1981.
DOI : 10.1002/nme.1620170504

K. M. Hsiao, Non-linear analysis of general shell structures by flat triangular shell element, Computers and Structures, vol.25, pp.665-75, 1987.

J. Hallquist, Theoretical manual for DYNA3D, 1983.

R. Hauptmann, S. Doll, M. Harnau, and K. Schweizerhof, `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials, Computers & Structures, vol.79, issue.18, pp.1671-1685, 2001.
DOI : 10.1016/S0045-7949(01)00103-1

R. Hauptmann and K. Schweizerhof, A systematic development of ???solid-shell??? element formulations for linear and non-linear analyses employing only displacement degrees of freedom, International Journal for Numerical Methods in Engineering, vol.61, issue.1, pp.49-69, 1998.
DOI : 10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2

R. Hauptmann, K. Schweizerhof, and S. Doll, Extension of the ?solid-shell? concept for application to large elastic and large elastoplastic deformations, International Journal for Numerical Methods in Engineering, vol.11, issue.9, pp.1121-1131, 2000.
DOI : 10.1002/1097-0207(20001130)49:9<1121::AID-NME130>3.0.CO;2-F

L. R. Hermann, A bending analysis for plates, Proc. 1 st Conf. on Matrix Meth. In structural Mech. Ohio, pp.577-602, 1965.

T. J. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, International Journal for Numerical Methods in Engineering, vol.3, issue.9, pp.1413-1418, 1980.
DOI : 10.1002/nme.1620150914

T. J. Hughes, M. Cohen, and M. Haroun, Reduced and selective integration techniques in the finite element analysis of plates, Nuclear Engineering and Design, vol.46, issue.1, pp.203-222, 1978.
DOI : 10.1016/0029-5493(78)90184-X

T. J. Hughes and W. K. Liu, Nonlinear finite element analysis of shells: Part I. three-dimensional shells, Computer Methods in Applied Mechanics and Engineering, vol.26, issue.3, pp.331-362, 1981.
DOI : 10.1016/0045-7825(81)90121-3

K. D. Kim, G. Z. Liu, and H. S. , A resultant 8-node solid-shell element for geometrically nonlinear analysis, Computational Mechanics, vol.35, issue.5, pp.315-331, 2005.
DOI : 10.1007/s00466-004-0606-9

Y. H. Kim, J. R. , and L. S. , Study of 20node solid element, Communications in Applied Numerical Methods, vol.2, issue.3, pp.197-205, 1990.
DOI : 10.1002/cnm.1630060306

S. Klinkel, F. Gruttmann, and W. Wagner, A continuum based three-dimensional shell element for laminated structures, Computers & Structures, vol.71, issue.1, pp.43-62, 1999.
DOI : 10.1016/S0045-7949(98)00222-3

S. Klinkel and W. Wagner, A geometrical non-linear brick element based on the EAS-method, International Journal for Numerical Methods in Engineering, vol.35, issue.24, pp.4529-4545, 1997.
DOI : 10.1002/(SICI)1097-0207(19971230)40:24<4529::AID-NME271>3.0.CO;2-I

A. Legay, Une méthode de calcul efficace pour l'étude paramétrique du flambage nonlinéaire des structures tridimensionnelles : application à la fiabilité, Thèse de doctorat du LMT de Cachan, 2002.

A. Legay and A. Combescure, Efficient algorithms for parametric non-linear instability analysis, International Journal of Non-Linear Mechanics, vol.37, issue.4-5, pp.709-722, 2002.
DOI : 10.1016/S0020-7462(01)00094-4

URL : https://hal.archives-ouvertes.fr/hal-01422436

A. Legay and A. Combescure, Elastoplastic stability analysis of shells using the physically stabilized finite elementSHB8PS, International Journal for Numerical Methods in Engineering, vol.3, issue.9, pp.1299-1322, 2003.
DOI : 10.1002/nme.728

D. Lemosse, Eléments finis isoparamétriques tridimensionnels pour l'étude des structures minces, 2000.

W. K. Liu, Y. Guo, S. Tang, and T. Belytschko, A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis, Computer Methods in Applied Mechanics and Engineering, vol.154, issue.1-2, pp.69-132, 1998.
DOI : 10.1016/S0045-7825(97)00106-0

R. Macneal and R. L. Harder, A proposed standard set of problems to test finite element accuracy, Finite Elements in Analysis and Design, vol.1, issue.1, pp.3-20, 1985.
DOI : 10.1016/0168-874X(85)90003-4

D. S. Malkus and T. J. Hughes, Mixed finite element methods ??? Reduced and selective integration techniques: A unification of concepts, Computer Methods in Applied Mechanics and Engineering, vol.15, issue.1, pp.63-81, 1978.
DOI : 10.1016/0045-7825(78)90005-1

C. Miehe, A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains, Computer Methods in Applied Mechanics and Engineering, vol.155, issue.3-4, pp.193-233, 1998.
DOI : 10.1016/S0045-7825(97)00149-7

E. Onate and J. Castro, Derivation of plate based on assumed shear strain fields, New Advances in Computational Structural Mechanics. Ladevèze & Zienkiewicz Eds, pp.237-288, 1992.

E. Onate, Z. O. Suarez, B. , and T. R. , A general methodology for deriving shear constrained Reissner-Mindlin plate elements, International Journal for Numerical Methods in Engineering, vol.3, issue.2, pp.345-367, 1992.
DOI : 10.1002/nme.1620330208

P. Papadopoulos and T. R. , A triangular element based on Reissner-Mindlin plate theory, International Journal for Numerical Methods in Engineering, vol.46, issue.5, pp.1029-1049, 1990.
DOI : 10.1002/nme.1620300506

M. Papadrakis, A. Samartin, and E. Onate, Reliability analysis of stability of shells based on combined finite element and response surface methods, 2000.

H. Parisch, Geometrical nonlinear analysis of shells, Computer Methods in Applied Mechanics and Engineering, vol.14, issue.2, pp.159-178, 1978.
DOI : 10.1016/0045-7825(78)90091-9

H. Parisch, A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration, Computer Methods in Applied Mechanics and Engineering, vol.20, issue.3, pp.323-350, 1979.
DOI : 10.1016/0045-7825(79)90007-0

H. Parisch, An investigation of a finite rotation four node assumed strain shell element, International Journal for Numerical Methods in Engineering, vol.39, issue.1, pp.127-150, 1991.
DOI : 10.1002/nme.1620310108

P. M. Pinsky and R. V. Jasti, A mixed finite element formulation for Reissner-Mindlin plates based on the use of bubble functions, International Journal for Numerical Methods in Engineering, vol.18, issue.7, pp.1677-1702, 1989.
DOI : 10.1002/nme.1620280715

B. G. Prathap and G. R. Bhashyam, Reduced integration and the shear-flexible beam element, International Journal for Numerical Methods in Engineering, vol.363, issue.2, pp.195-210, 1982.
DOI : 10.1002/nme.1620180205

M. A. Puso, A highly efficient enhanced assumed strain physically stabilized hexahedral element, International Journal for Numerical Methods in Engineering, vol.13, issue.8, pp.1029-1064, 2000.
DOI : 10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3

S. Reese, A large deformation solid-shell concept based on reduced integration with hourglass stabilization, International Journal for Numerical Methods in Engineering, vol.10, issue.8, pp.1671-1716, 2007.
DOI : 10.1002/nme.1827

S. Reese, P. Wriggers, and B. D. Reddy, A new locking-free brick element technique for large deformation problems in elasticity, Computers & Structures, vol.75, issue.3, pp.291-304, 2000.
DOI : 10.1016/S0045-7949(99)00137-6

A. B. Sabir and A. C. Lock, A curved, cylindrical shell, finite element, International Journal of Mechanical Sciences, vol.14, issue.2, pp.125-135, 1972.
DOI : 10.1016/0020-7403(72)90093-8

A. F. Saleeb and C. T. , An efficient quadrilateral element for plate bending analysis, International Journal for Numerical Methods in Engineering, vol.109, issue.6, pp.1123-1155, 1987.
DOI : 10.1002/nme.1620240607

A. F. Saleeb, C. T. Yingyeunyong, and S. , A mixed formulation ofC0-linear triangular plate/shell element???the role of edge shear constraints, International Journal for Numerical Methods in Engineering, vol.11, issue.5, pp.1101-1128, 1988.
DOI : 10.1002/nme.1620260508

J. C. Simo and T. J. Hughes, On the Variational Foundations of Assumed Strain Methods, Journal of Applied Mechanics, vol.53, issue.1
DOI : 10.1115/1.3171737

J. C. Simo and F. Armero, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, vol.29, issue.7, pp.1413-1449, 1992.
DOI : 10.1002/nme.1620330705

J. C. Simo, F. Armero, and T. R. , Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Computer Methods in Applied Mechanics and Engineering, vol.110, issue.3-4, pp.359-386, 1993.
DOI : 10.1016/0045-7825(93)90215-J

J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, vol.1, issue.8, pp.1595-1638, 1990.
DOI : 10.1002/nme.1620290802

H. Stolarski, T. Belytschko, and N. Carpenter, A simple triangular curved shell element, Engineering Computations, vol.1, issue.3, pp.210-218, 1984.
DOI : 10.1108/eb023574

K. Y. Sze, X. H. Liu, and S. H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design, pp.1551-1569, 2004.

K. Y. Sze and Y. L. , A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I?solid-shell element formulation, International Journal for Numerical Methods in Engineering, vol.28, issue.4, pp.545-564, 2000.
DOI : 10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6

R. L. Taylor, P. J. Beresford, and W. E. , A non-conforming element for stress analysis, International Journal for Numerical Methods in Engineering, vol.101, issue.6, pp.1211-1219, 1976.
DOI : 10.1002/nme.1620100602

L. Vu-quoc and X. G. Tan, Optimal solid shells for non-linear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.9-10, pp.975-1016, 2003.
DOI : 10.1016/S0045-7825(02)00435-8

L. Vu-quoc and X. G. Tan, Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.9-10, pp.1017-1059, 2003.
DOI : 10.1016/S0045-7825(02)00336-5

W. A. Wall, M. Bischoff, and E. Ramm, A deformation dependent stabilization technique, exemplified by EAS elements at large strains, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.4, pp.859-871, 2000.
DOI : 10.1016/S0045-7825(99)00365-5

X. J. Wang and T. Belytschko, An efficient flexurally super convergent hexahedral element, Engineering Computation, pp.281-288, 1987.
DOI : 10.1108/eb023706

E. L. Wilson, T. R. Doherty, W. P. Ghaboussi, and J. , Incompatible Displacement Models, Numerical and Computer Methods in Structural Mechanics, pp.43-57, 1973.
DOI : 10.1016/B978-0-12-253250-4.50008-7

P. Wriggers and S. Reese, A note on enhanced strain methods for large deformations, Computer Methods in Applied Mechanics and Engineering, vol.135, issue.3-4, pp.201-209, 1996.
DOI : 10.1016/0045-7825(96)01037-7

Y. Y. Zhu and S. Cescotto, Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method, Computer Methods in Applied Mechanics and Engineering, vol.129, issue.1-2, pp.177-209, 1996.
DOI : 10.1016/0045-7825(95)00835-7

O. C. Zienkiewicz and T. R. , The finite element method, Fourth Edition, Basic formulation and linear problems, 1998.

O. C. Zienkiewicz and T. R. , The finite element method, Fourth Edition, Solid and fluid mechanics dynamics and non-linearity, 1998.

O. C. Zienkiewicz and D. Lefebvre, A robust triangular plate bending element of the Reissner-Mindlin type, International Journal for Numerical Methods in Engineering, vol.1, issue.5, pp.1169-1184, 1988.
DOI : 10.1002/nme.1620260511

O. C. Zienkiewicz, T. R. Too, and J. M. , Reduced integration technique in general analysis of plates and shells, International Journal for Numerical Methods in Engineering, vol.4, issue.2, pp.275-290, 1971.
DOI : 10.1002/nme.1620030211