W. Aharonov, J. Van-dam, Z. Kempe, S. Landau, O. Lloyd et al., Adiabatic quantum computation is equivalent to standard quantum computation, Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science -FOCS'04, pp.42-51, 2004.
DOI : 10.1109/focs.2004.8

URL : http://arxiv.org/abs/quant-ph/0405098

G. [. Bennett and . Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp.175-179, 1984.
DOI : 10.1016/j.tcs.2014.05.025

. H. Bbb-+-92-]-c, F. Bennett, G. Bessette, L. Bassard, J. Salvail et al., Experimental quantum cryptography, Journal of Cryptology, vol.5, issue.1, pp.3-28, 1992.

. H. Bbc-+-93-]-c, G. Bennett, C. Brassard, R. Crépeau, A. Jozsa et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett, vol.70, pp.1895-1899, 1993.

G. [. Bennett, C. Brassard, U. M. Crépeau, and . Maurer, Generalized privacy amplification, IEEE Transactions on Information Theory, issue.6, pp.411915-1923, 1995.

C. H. Bennett, G. Brassard, C. Crépeau, and M. H. Skubiszewska, Practical Quantum Oblivious Transfer, Proceedings of Advances in Cryptology - CRYPTO'91, pp.362-371, 1992.
DOI : 10.1007/3-540-46766-1_29

G. Brassard, C. Crépeau, R. Jozsa, and D. Langlois, A quantum bit commitment scheme provably unbreakable by both parties, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp.362-371, 1993.
DOI : 10.1109/SFCS.1993.366851

G. Brassard, C. Crépeau, D. Mayers, and L. Salvail, A brief review on the impossibility of quantum bit commitment, p.9712023, 1997.

]. H. Bcvd, R. Buhrman, W. Cleve, and . Van-dam, Quantum entanglement and communication complexity, SIAM Journal on Computing, vol.30, pp.1829-1841

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Physical Review A, vol.54, issue.5, pp.3824-3851, 1996.
DOI : 10.1103/PhysRevA.54.3824

URL : http://arxiv.org/abs/quant-ph/9604024

]. J. Bel64 and . Bell, On the Einstein-Podolsky-Rosen paradox, Physics Bennett. Logical reversibility of computation. IBM Journal of Research and Development, vol.1, issue.17, pp.195525-532, 1964.

]. C. Ben82 and . Bennett, The thermodynamics of computation? a review, International Journal of Theoretical Physics, vol.21, pp.905-940, 1982.

]. C. Ben92 and . Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett, vol.68, issue.21, pp.3121-3124, 1992.

]. C. Ben00 and . Bennett, Notes on the history of reversible computation, IBM Journal of Research and Development, vol.44, pp.270-277, 2000.

]. C. Ben03 and . Bennett, Notes on Landauer's principle, reversible computation, and Maxwell's demon. Studies in the History and Philosophy of Modern Physics, pp.501-510, 2003.

C. [. Brassard and . Fuchs, Quantum foundations in the light of quantum cryptography, Invited talk at Quantum Physics of Nature & 6th European QIPC Workshop, 2005.

T. [. Bennett, J. A. Mor, and . Smolin, Parity bit in quantum cryptography, Physical Review A, vol.54, issue.4, pp.2675-2684, 1996.
DOI : 10.1103/PhysRevA.54.2675

P. [. Bennett and . Shor, Quantum information theory, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2724-2742, 1998.
DOI : 10.1109/18.720553

]. J. Bub01a and . Bub, Maxell's demon and the thermodynamics of computation. Studies in the History and Philosophy of Modern Physics, pp.569-579, 2001.

]. J. Bub01b and . Bub, The quantum bit commitment theorem, Foundations of Physics, vol.31, issue.5, pp.735-756, 2001.
DOI : 10.1023/A:1017597528026

]. P. Bus97 and . Busch, Is the quantum state (an) observable? In Potentiality, Entanglement and Passion-At-A-Distance: Quantum Mechanical Studies for Abner Shimony, page 61, p.9604014, 1997.

S. [. Bennett and . Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Physical Review Letters, vol.69, issue.20, pp.2881-2884, 1992.
DOI : 10.1103/PhysRevLett.69.2881

J. [. Clifton, H. Bub, and . Halvorson, Characterizing quantum theory in terms of information-theoretic constraints, Foundations of Physics, vol.33, issue.11, pp.1561-1591, 2003.
DOI : 10.1023/A:1026056716397

]. Che03 and . Cheung, Quantum bit commitment can be unconditionally secure, pp.quant-ph, 2003.

J. [. Crépeau and . Kilian, Achieving oblivious transfer using weakened security assumptions, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pp.42-52, 1988.
DOI : 10.1109/SFCS.1988.21920

C. Crépeau, K. Morozov, and S. Wolf, Efficient Unconditional Oblivious Transfer from Almost Any Noisy Channel, Proceedings of Fourth Conference on Security in Communication Networks -SCN'04, pp.47-59, 2004.
DOI : 10.1007/978-3-540-30598-9_4

]. C. Cré88 and . Crépeau, Equivalence between two flavours of oblivious transfers, Proceedings of Advances in Cryptography -Crypto'87, pp.350-354, 1988.

]. C. Cré89 and . Crépeau, Verifiable disclosure of secrets and applications, Proceedings of Advances in Cryptology -EUROCRYPT'89, pp.181-191, 1989.

]. C. Cré90 and . Crépeau, Correct and Private Reductions among Oblivious Transfers, 1990.

]. C. Cré94 and . Crépeau, Quantum oblivious transfer Efficient cryptographic protocols based on noisy channels, Cré97] C. Crépeau Proceedings of Advances in Cryptology -EUROCRYPT'97, pp.412445-2454, 1994.

J. [. Cover and . Thomas, Elements of Information Theory, 1991.

M. [. Carter and . Wegman, Universal classes of hash functions, Proceedings of the 9th Annual ACM Symposium on Theory of Computing -STOC'77, pp.106-112, 1977.
DOI : 10.1016/0022-0000(79)90044-8

S. [. Christandl and . Wehner, Quantum Anonymous Transmissions, Proceedings of Advances in Cryptology -ASIACRYPT'05, pp.217-235, 2005.
DOI : 10.1007/11593447_12

]. Dan07 and . Dang, Improving unconditional oblivious transfer from noisy channels, Proceedings of The 6th WSEAS International Conference on Information Security and Privacy (ISP'07), pp.1-9, 2007.

]. D. Deu and . Deutsch, Lectures on quantum computation at the Center of Quantum Computation

S. [. Damgard, L. Fehr, C. Salvail, and . Schaffner, Cryptography in the bounded quantum-storage model, Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science -FOCS'05, pp.449-458, 2005.

M. [. Diffie and . Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6, pp.22644-654, 1976.
DOI : 10.1109/TIT.1976.1055638

]. D. Die88 and . Dieks, Overlap and distinguishability of quantum states, Physics Letters A, vol.126, pp.303-307, 1988.

J. [. Damgard, L. Kilian, and . Salvail, On the (im)possibility of basing oblivious transfer and bit commitment on weakened security assumtions, Proceedings of Advances in Cryptology -EUROCRYPT'99, pp.56-73, 1999.

G. M. Ariano, D. Kretschmann, D. Schlingmann, and R. F. Werner, Quantum bit commitment revisited: the possible and the impossible, p.605224, 2006.

R. De-wolf, Quantum communication and complexity, Theoretical Computer Science, vol.287, issue.1, pp.337-353, 2002.
DOI : 10.1016/S0304-3975(02)00377-8

O. [. Even, A. Goldreich, and . Lempel, A randomized protocol for signing contracts, Communications of the ACM, vol.28, issue.6, pp.637-647, 1985.
DOI : 10.1145/3812.3818

]. A. Eke91 and . Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett, vol.67, issue.6, pp.661-663, 1991.

B. [. Einstein, N. Podolsky, and . Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical Review, pp.777-780, 1935.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by adiabatic evolution, 2000.

T. [. Fredkin and . Toffoli, Conservative logic, International Journal of Theoretical Physics, vol.43, issue.3-4, pp.219-253, 1982.
DOI : 10.1007/BF01857727

]. C. Fuc95 and . Fuchs, Distinguishability and Accessible Information in Quantum Theory, pp.quant-ph, 1995.

]. C. Fvdg99, J. Fuchs, and . Van-de-graaf, Cryptographic distinguishability measures for quantum mechanical states, IEEE Transactions on Information Theory, vol.45, issue.4, pp.1216-1227, 1999.

H. [. Gottesman and . Lo, From Quantum Cheating to Quantum Security, Physics Today, vol.53, issue.11, p.22, 2000.
DOI : 10.1063/1.1333282

]. O. Gol01 and . Goldreich, Foundations of Cryptography -Volume I: Basic Tools, 2001.

]. O. Gol04 and . Goldreich, Foundations of Cryptography -Volume II: Basic Applications, 2004.

]. D. Gri04 and . Griffiths, Introduction to Quantum Mechanics, 2004.

]. L. Gro96 and . Grover, A fast quantum mechanical algorithm for database search, Proceedings of the 28th annual ACM Symposium on Theory of computing - STOC'96, pp.212-219, 1996.

[. Hillery, V. Buzek, and A. Berthiaume, Quantum secret sharing, Physical Review A, vol.59, issue.3, pp.1829-1834, 1999.
DOI : 10.1103/PhysRevA.59.1829

R. [. Hughston, W. K. Jozsa, and . Wootters, A complete classification of quantum ensembles having a given density matrix, Physics Letters A, vol.183, issue.1, pp.14-18, 1993.
DOI : 10.1016/0375-9601(93)90880-9

R. [. Hopcroft, J. D. Motwani, and . Ullman, Introduction to Automata Theory, Languages, and Computation, 2001.
DOI : 10.1145/568438.568455

]. I. Iva87 and . Ivanovic, How to differentiate between non-orthogonal states, Physics Letters A, vol.123, pp.257-259, 1987.

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, A fast and compact quantum random number generator, Review of Scientific Instruments, vol.71, issue.4, pp.1675-1680, 2000.
DOI : 10.1063/1.1150518

]. R. Joz94 and . Jozsa, Fidelity for mixed quantum states Jaeger and A. Shimony. Optimal distinction between two non orthogonal quantum states, J. Mod. Opt. Physics Letters A, vol.41, issue.197, pp.2315-232383, 1994.

]. A. Ken99 and . Kent, Coin tossing is strictly weaker than bit commitment, Phys. Rev. Lett, vol.83, pp.5382-9810067, 1999.

]. A. Ker83 and . Kerckhoffs, La cryptographie militaire, Journal des sciences militaires, vol.9, pp.5-83, 1883.

]. J. Kil88 and . Kilian, Founding cryptography on oblivious transfer, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp.20-31, 1988.

]. A. Kit02 and . Kitaev, Quantum coin-flipping. Talk at QIP 2003. Slides and videos available at http://www.msri.org/publications/ln/msri, 2002.

T. [. Kawachi, H. Koshiba, T. Nishimura, and . Yamakami, Computational indistinguishability between quantum states and its cryptographic application, Proceedings of Advances in Cryptology -EUROCRYPT'05, pp.268-284, 2005.

K. [. Korjik and . Morozov, Generalized Oblivious Transfer Protocols Based on Noisy Channels, Proceedings of the International Workshop on Information Assurance in Computer Networks -MMM-ACNS '01, pp.219-229, 2001.
DOI : 10.1007/3-540-45116-1_22

]. I. Kre95 and . Kremer, Quantum communication. Master's thesis, 1995.

]. R. Lan61 and . Landauer, Dissipation and heat generation in the computing process, IBM Journal of Research and Development, vol.5, pp.183-191, 1961.

H. [. Lo and . Chau, Is Quantum Bit Commitment Really Possible?, Physical Review Letters, vol.78, issue.17, pp.3410-3413, 1997.
DOI : 10.1103/PhysRevLett.78.3410

URL : http://arxiv.org/abs/quant-ph/9603004

H. [. Lo and . Chau, Why quantum bit commitment and ideal quantum coin tossing are impossible, Physica D: Nonlinear Phenomena, vol.120, issue.1-2, pp.177-187, 1998.
DOI : 10.1016/S0167-2789(98)00053-0

H. [. Lo and . Chau, Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances, Science, vol.283, issue.5410, pp.2050-2056, 1999.
DOI : 10.1126/science.283.5410.2050

Z. [. Lu, D. Ma, and . Feng, A computationally secure quantum oblivious transfer scheme, The 8th International Conference in Advanced Communication Technology -ICACT 2006, pp.1547-1551, 2006.

]. H. Lo97 and . Lo, Insecurity of quantum secure computations, Phys. Rev. A, vol.56, pp.1154-1162, 1997.

]. U. Mau93 and . Maurer, Secret key agreement by public discussion from common information, IEEE Transactions on Information Theory, vol.39, p.733, 1993.

]. D. May96 and . Mayers, The trouble with quantum bit commitment, p.603015, 1996.

]. D. May97 and . Mayers, Unconditionally secure quantum bit commitment is impossible, Phys. Rev. Lett, vol.78, pp.3414-3417, 1997.

]. K. Mor05 and . Morozov, On cryptographic primitives based on noisy channels, 2005.

N. [. Macwilliams and . Sloane, The Theory of Error-Correcting Codes, 1977.

I. [. Nielsen and . Chuang, Quantum Computation and Quantum Information, 2004.

]. M. Nie03 and . Nielsen, Universal quantum computation using only projective measurement , quantum memory, and preparation of the 0 state, Phys. Lett. A, vol.308, pp.96-100, 2003.

]. A. Per88 and . Peres, How to differentiate between non-orthogonal states, Physics Letters A, vol.128, p.19, 1988.

]. A. Per02 and . Peres, Quantum Theory: Concepts and Methods, 2002.

]. J. Pre and . Preskill, Lecture notes of caltech course on quantum information and quantum computation Available at http://www.theory.caltech

]. M. Rab81 and . Rabin, How to exchange secrets by oblivious transfer, 1981.

H. [. Raussendorf and . Briegel, A One-Way Quantum Computer, Physical Review Letters, vol.86, issue.22, pp.5188-5191, 2001.
DOI : 10.1103/PhysRevLett.86.5188

]. J. [-rol04 and . Roland, Adiabatic Quantum Computation, 2004.

]. C. Sha48 and . Shannon, A mathematical theory of communication, Bell System Technical Journal, vol.27, pp.379-423, 1948.

]. C. Sha49 and . Shannon, Communication theory of secrecy systems, Bell System Technical Journal, pp.28-4656, 1949.

]. P. Sho94 and . Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing, vol.26, issue.5, pp.1484-1509, 1994.

J. [. Shor and . Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution Protocol, Physical Review Letters, vol.85, issue.2, pp.441-444, 2000.
DOI : 10.1103/PhysRevLett.85.441

]. D. Sti95 and . Stinson, Cryptography -Theory and Practice, 1995.

]. A. Svd00, W. Steane, and . Van-dam, Physicists triumph at " guess my number, Physics Today, vol.53, pp.35-39, 2000.

S. [. Stebila and . Wolf, Efficient oblivious transfer from any non-trivial binarysymmetric channel, Proceedings of 2002 IEEE International Symposium on Information Theory -ISIT'02, p.293, 2002.

J. [. Tittel, H. Brendel, N. Zbinden, and . Gisin, Violation of Bell Inequalities by Photons More Than 10 km Apart, Physical Review Letters, vol.81, issue.17, pp.3563-3566, 1998.
DOI : 10.1103/PhysRevLett.81.3563

]. T. Tof80 and . Toffoli, Reversible computing, Proceedings of the 7th Colloquium on Automata , Languages and Programming, pp.632-644, 1980.

]. W. Van-dam, M. Mosca, and U. Vazirani, How powerful is adiabatic quantum computation?, Proceedings 2001 IEEE International Conference on Cluster Computing, pp.279-287, 2001.
DOI : 10.1109/SFCS.2001.959902

]. J. Wat99 and . Watrous, PSPACE has constant-round quantum interactive proof systems, Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science -FOCS'99, pp.112-119, 1999.

]. S. Wie83 and . Wiesner, Conjugate coding, ACM SIGACT News, vol.15, issue.1, pp.78-88, 1970.

A. D. Wyner, The Wire-Tap Channel, Bell System Technical Journal, vol.54, issue.8, pp.1355-1387, 1975.
DOI : 10.1002/j.1538-7305.1975.tb02040.x

W. [. Wootters and . Zurek, A single quantum cannot be cloned, Nature, vol.15, issue.5886, pp.802-803, 1982.
DOI : 10.1038/299802a0

]. A. Yao86 and . Yao, How to generate and exchange secrets, Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, pp.162-167, 1986.

]. A. Yao95 and . Yao, Security of quantum protocols against coherent measurements, Proceedings of the 27th Annual ACM Symposium on Theory of Computing - STOC'95, pp.67-75, 1995.

]. H. Yue97 and . Yuen, Quantum information theory, the entropy bound, and mathematical rigor in physics, Quantum Communication, Computing, and Measurement, pp.17-23, 1997.

]. H. Yue00 and . Yuen, Unconditionally secure quantum bit commitment is possible, pp.6109-6116, 2000.

]. H. Yue02 and . Yuen, Quantum bit commitment and unconditional security, pp.quant- ph, 2002.

]. H. Yue04 and . Yuen, How to build unconditionally secure quantum bit commitment protocols, 2004.

]. W. Zur91 and . Zurek, Decohenrence and the transition from quantum to classical, Physics Today, vol.44, pp.36-44, 1991.