Y. Amor, C. H. Haigler, S. Johnson, M. Wainscott, and D. P. Delmer, A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants., Proceedings of the National Academy of Sciences, vol.92, issue.20, pp.9353-9357, 1995.
DOI : 10.1073/pnas.92.20.9353

S. Baud, J. P. Boutin, M. Miquel, L. Lepiniec, and C. Rochat, An integrated overview of seed development in Arabidopsis thaliana ecotype WS, Plant Physiology and Biochemistry, vol.40, issue.2, pp.151-160, 2002.
DOI : 10.1016/S0981-9428(01)01350-X

S. Baud, M. N. Vaultier, and C. Rochat, Structure and expression profile of the sucrose synthase multigene family in Arabidopsis, Journal of Experimental Botany, vol.55, issue.396, pp.397-409, 2004.
DOI : 10.1093/jxb/erh047

Z. Bieniawska, D. H. Paul-barratt, A. P. Garlick, V. Thole, N. J. Kruger et al., Analysis of the sucrose synthase gene family in Arabidopsis, The Plant Journal, vol.7, issue.5, pp.810-828, 2007.
DOI : 10.1111/j.1365-313X.2006.03011.x

S. J. Carlson and P. S. Chourey, Evidence for plasma membrane-associated forms of à 15 JAF en citrate, 1996.

. Dans-la-plupart-des-plantesmartin, une partie du carbone organique produit par la photosynthèse est affecté à la synthèse du saccharose, qui est transporté vers les organes puits

. La-mesure-de, La réaction s'effectue en deux étapes (1) une étape spécifique de la formation de l'UDPG par l'enzyme (2) la détermination de la quantité d'UDPG formé via l'UDPG déshydrogénase (UDPG-DH) Les graines isolées de 3 siliques ont été broyées dans 200 µl de tampon Tris-borate pH 7 Après centrifugation, une aliquote du surnageant est incubée 15 min à 30°C dans 100µl de tampon Hepès-KOH 30 mM pH 6,7, 50 µl de saccharose 1 M, 5µl d'UDP 340mM. Après de la réaction, 60 µl de glycine-KOH 500mM pH9,3 et 5µl d'UDPG-DH,sont ajoutés la plaque est alors incubée 20 min sous agitation à 37°C, saccharose synthase a été effectuée en microplaques selon le protocole adapté de Egger et Hampp, 1976.

4. Min, les acides nucléiques du surnageant sont précipités en présence d'acétate de sodium 3 M (1 :10, v/v) par ajout d'un volume d'isopropanol

R. Allen, F. Bernier, P. Lessard, and R. Beachy, Nuclear Factors Interact with a Soybean [beta]-Conglycinin Enhancer, THE PLANT CELL ONLINE, vol.1, issue.6, pp.623-631, 1989.
DOI : 10.1105/tpc.1.6.623

G. Avigad, Sucrose-Uridine Diphosphate Glucosyltransferase from Jerusalem Artichoke Tubers, J. Biol. Chem, vol.239, pp.3613-3618, 1964.

L. Barker, C. Kuhn, A. Weise, A. Schulz, C. Gebhardt et al., SUT2, a Putative Sucrose Sensor in Sieve Elements, THE PLANT CELL ONLINE, vol.12, issue.7, pp.1153-1164, 2000.
DOI : 10.1105/tpc.12.7.1153

D. Barratt, L. Barber, N. Kruger, A. Smith, T. Wang et al., Multiple, Distinct Isoforms of Sucrose Synthase in Pea, PLANT PHYSIOLOGY, vol.127, issue.2, pp.655-664, 2001.
DOI : 10.1104/pp.010297

S. Baud, J. Boutin, M. Miquel, L. Lepiniec, and C. Rochat, An integrated overview of seed development in Arabidopsis thaliana ecotype WS, Plant Physiology and Biochemistry, vol.40, issue.2, pp.151-160, 2002.
DOI : 10.1016/S0981-9428(01)01350-X

. Arabidopsis, Metabolic and developmental control of seed filling The Arabidopsis Book, In ASP Biologists, pp.10-11990113, 2008.

S. Baud, M. Vaultier, and C. Rochat, Structure and expression profile of the sucrose synthase multigene family in Arabidopsis, Journal of Experimental Botany, vol.55, issue.396, pp.397-409, 2004.
DOI : 10.1093/jxb/erh047

S. Baud, S. Wuilleme, B. Dubreucq, A. De-almeida, C. Vuagnat et al., Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana???, The Plant Journal, vol.52, issue.3, pp.405-419, 2007.
DOI : 10.1111/j.1365-313X.2007.03232.x

S. Braybook, S. Stone, S. Park, A. Bui, B. Le et al., Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis, Proceedings of the National Academy of Sciences, vol.103, issue.9, pp.3468-3473, 2006.
DOI : 10.1073/pnas.0511331103

I. Brocard-gifford, T. Lynch, and R. Finkelstein, Regulatory Networks in Seeds Integrating Developmental, Abscisic Acid, Sugar, and Light Signaling, PLANT PHYSIOLOGY, vol.131, issue.1, pp.78-92, 2003.
DOI : 10.1104/pp.011916

J. Browse, P. Mccourt, and C. Somerville, Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue, Analytical Biochemistry, vol.152, issue.1, pp.141-145, 1986.
DOI : 10.1016/0003-2697(86)90132-6

T. Brun, E. Roche, K. Kim, and M. Prentki, Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1), J. Biol. Chem, vol.268, pp.18905-18911, 1993.

P. Buchner, M. Poret, and C. Rochat, Cloning and Characterization of a cDNA (Accession No, 1998.

D. Bush and T. Chiou, Sucrose transporters in assimilate partitioning and plant growth, Sucrose metabolism. ASPP, pp.198-205, 1995.

C. Cardini, L. Leloir, and J. Chiriboga, The biosynthesis of sucrose, J. Biol. Chem, vol.214, pp.149-155, 1955.

S. Carlson, P. Chourey, T. Helentjaris, and R. Datta, Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants shoxw evidence for a third SuSy gene, Plant Molecular Biology, vol.49, issue.1, pp.15-29, 2002.
DOI : 10.1023/A:1014457901992

S. Chopra, J. Del-favero, R. Dolferus, and M. Jacobs, Sucrose synthase ofArabidopsis: Genomic cloning and sequence characterization, Plant Molecular Biology, vol.4, issue.1, pp.131-134, 1992.
DOI : 10.1007/BF00018465

P. Chourey, Genetic control of sucrose synthetase in maize endosperm, MGG Molecular & General Genetics, vol.114, issue.3, pp.372-376, 1981.
DOI : 10.1007/BF00352507

P. Chourey, E. Talierco, S. Carlson, and Y. Ruan, Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis, Mol. Gen. Genet, vol.259, pp.88-96, 1998.

P. Chourey and O. Nelson, The enzymatic deficiency conditioned by the shrunken-1, 1976.

P. Chourey and D. Schwartz, Ethyl methanesulfonate-induced mutations of the Sh1 protein in maize, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.12, issue.2, pp.151-157, 1971.
DOI : 10.1016/0027-5107(71)90136-9

P. Chourey, E. Talierco, and E. Kane, Tissue-Specific Expression and Anaerobically Induced Posttranscriptional Modulation of Sucrose Synthase Genes in Sorghum bicolor M., PLANT PHYSIOLOGY, vol.96, issue.2, pp.485-490, 1991.
DOI : 10.1104/pp.96.2.485

I. Cieresko and L. Kleczkowski, Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms, Plant Physiology and Biochemistry, vol.40, issue.11, 2002.
DOI : 10.1016/S0981-9428(02)01452-3

S. Clough and A. Bent, Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana, The Plant Journal, vol.56, issue.6, pp.735-743, 1998.
DOI : 10.1046/j.1365-313x.1998.00343.x

C. Martin and A. Smith, Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase, Plant J, vol.17, pp.353-362, 1999.

N. Dali, D. Michaud, and S. Yelle, Evidence for the Involvement of Sucrose Phosphate Synthase in the Pathway of Sugar Accumulation in Sucrose-Accumulating Tomato Fruits, PLANT PHYSIOLOGY, vol.99, issue.2, pp.434-438, 1992.
DOI : 10.1104/pp.99.2.434

D. Godt, A. Riegel, and T. Roitsch, Regulation of Sucrose Synthase Expression in Chenopodium rubrum: Characterization of Sugar Induced Expression in Photoautotrophic Suspension Cultures and Sink Tissue Specific Expression in Plants, Journal of Plant Physiology, vol.146, issue.3, pp.231-238, 1995.
DOI : 10.1016/S0176-1617(11)82046-8

D. Godt and T. Roitsch, Regulation and Tissue-Specific Distribution of mRNAs for Three Extracellular Invertase Isoenzymes of Tomato Suggests an Important Function in Establishing and Maintaining Sink Metabolism, Plant Physiology, vol.115, issue.1, pp.273-282, 1997.
DOI : 10.1104/pp.115.1.273

R. Goldberg, G. De-paiva, and R. Yadegari, Plant Embryogenesis: Zygote to Seed, Science, vol.266, issue.5185, pp.605-614, 1994.
DOI : 10.1126/science.266.5185.605

L. Gutierrez, O. Van-wuytswinkel, M. Castelain, and C. Bellini, Combined networks regulating seed maturation, Trends in Plant Science, vol.12, issue.7, pp.294-300, 2007.
DOI : 10.1016/j.tplants.2007.06.003

C. Haigler, M. Ivanova-datcheva, P. Hogan, V. Salnikov, S. Hwang et al., Carbon partitioning to cellulose synthesis, Plant Mol. Biol, vol.47, pp.29-51, 2001.
DOI : 10.1007/978-94-010-0668-2_3

J. Harada, Seed Maturation and Control of Germination, Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic, pp.554-592, 1997.
DOI : 10.1007/978-94-015-8909-3_15

J. Harada, Role of Arabidopsis LEAFY COTYLEDON genes in seed development, Journal of Plant Physiology, vol.158, issue.4, pp.405-409, 2001.
DOI : 10.1078/0176-1617-00351

G. Harrington and D. Bush, The Bifunctional Role of Hexokinase in Metabolism and Glucose Signaling, THE PLANT CELL ONLINE, vol.15, issue.11, pp.2493-2496, 2003.
DOI : 10.1105/tpc.151130

J. Heath, R. Weldon, C. Monnot, and D. Meinke, Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana, Planta, vol.5, issue.3, pp.304-312, 1986.
DOI : 10.1007/BF00392124

K. Herbers and U. Sonnewald, Molecular determinants of sink strength, Current Opinion in Plant Biology, vol.1, issue.3, pp.207-216, 1998.
DOI : 10.1016/S1369-5266(98)80106-4

L. Hill, E. Morley-smith, and S. Rawsthorne, Metabolism of Sugars in the Endosperm of Developing Seeds of Oilseed Rape, PLANT PHYSIOLOGY, vol.131, issue.1, pp.228-236, 2003.
DOI : 10.1104/pp.010868

N. Hiraiwa, M. Nishimura, and I. Hara-nishimura, Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae, The Plant Journal, vol.12, issue.4, pp.819-829, 1997.
DOI : 10.1046/j.1365-313X.1997.12040819.x

L. Ho, Metabolism and Compartmentation of Imported Sugars in Sink Organs in Relation to Sink Strength, Annual Review of Plant Physiology and Plant Molecular Biology, vol.39, issue.1, pp.355-378, 1988.
DOI : 10.1146/annurev.pp.39.060188.002035

M. Holdsworth, S. Kurup, and R. Mckibbin, Molecular and genetic mechanisms regulating the transition from embryo development to germination, Trends in Plant Science, vol.4, issue.7, pp.275-280, 1999.
DOI : 10.1016/S1360-1385(99)01429-6

A. Huang, Oleosins and Oil Bodies in Seeds and Other Organs, Plant Physiology, vol.110, issue.4, pp.1055-1061, 1996.
DOI : 10.1104/pp.110.4.1055

J. Jang, P. Leon, L. Zhou, and J. Sheen, Hexokinase as a Sugar Sensor in Higher Plants, THE PLANT CELL ONLINE, vol.9, issue.1, pp.5-19, 1997.
DOI : 10.1105/tpc.9.1.5

J. Jang and J. Sheen, Sugar Sensing in Higher Plants, THE PLANT CELL ONLINE, vol.6, issue.11, pp.1665-1679, 1994.
DOI : 10.1105/tpc.6.11.1665

R. Jefferson, T. Kavanagh, and M. Bevan, GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J, vol.6, pp.3901-3907, 1987.

Y. Kagaya, K. Ohmiya, and T. Hattori, RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants, Nucleic Acids Research, vol.27, issue.2, pp.470-478, 1999.
DOI : 10.1093/nar/27.2.470

Y. Kagaya, R. Toyoshima, R. Okuda, H. Usui, A. Yamamoto et al., LEAFY COTYLEDON1 Controls Seed Storage Protein Genes through Its Regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3, Plant and Cell Physiology, vol.46, issue.3, pp.399-406, 2005.
DOI : 10.1093/pcp/pci048

K. Keith, M. Kraml, N. Dengler, and P. Mccourt, fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis, THE PLANT CELL ONLINE, vol.6, issue.5, pp.589-600, 1994.
DOI : 10.1105/tpc.6.5.589

I. Kim and P. Zambryski, Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis, Current Opinion in Plant Biology, vol.8, issue.6, pp.593-599, 2005.
DOI : 10.1016/j.pbi.2005.09.013

S. King, J. Lunn, and R. Furbank, Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques, Plant Physiology, vol.114, issue.1, pp.153-160, 1997.
DOI : 10.1104/pp.114.1.153

K. Koch, CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.47, issue.1, 1996.
DOI : 10.1146/annurev.arplant.47.1.509

K. Koch, Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development, Current Opinion in Plant Biology, vol.7, issue.3, pp.235-246, 2004.
DOI : 10.1016/j.pbi.2004.03.014

K. Koch, K. Nolte, E. Duke, D. Mccarty, and W. Avigne, Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes, THE PLANT CELL ONLINE, vol.4, issue.1, pp.59-69, 1992.
DOI : 10.1105/tpc.4.1.59

A. Komatsu, T. Moriguchi, K. Koyama, M. O. Akihama, and T. , Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships, Journal of Experimental Botany, vol.53, issue.366, pp.61-71, 2002.
DOI : 10.1093/jxb/53.366.61

C. Koncz, F. Kreuzaler, Z. Kalman, and J. Schell, A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and a-actin in plant tumors, EMBO J, vol.3, pp.1029-1037, 1984.

M. Koornneef, G. Reuling, and C. Karssen, The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana, Physiologia Plantarum, vol.5, issue.3, pp.377-383, 1984.
DOI : 10.1007/BF00386409

E. Krebbers, L. Herdies, D. Clercq, A. Seurinck, J. Leemans et al., Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family, PLANT PHYSIOLOGY, vol.87, issue.4, pp.859-866, 1988.
DOI : 10.1104/pp.87.4.859

T. Kroj, G. Savino, C. Valon, J. Giraudat, and F. Parcy, Regulation of storage protein gene expression in Arabidopsis, Development, vol.130, issue.24, pp.6065-6073, 2003.
DOI : 10.1242/dev.00814

URL : https://hal.archives-ouvertes.fr/hal-00135703

C. Kuhn, L. Barker, L. Burkle, and W. Frommer, Update on sucrose transport in higher plants, Journal of Experimental Botany, vol.50, issue.Special_Issue, pp.935-953, 1999.
DOI : 10.1093/jxb/50.Special_Issue.935

J. Landry and S. Delhaye, A Simple and Rapid Procedure for Hydrolyzing Minute Amounts of Proteins with Alkali, Analytical Biochemistry, vol.243, issue.1, pp.191-194, 1996.
DOI : 10.1006/abio.1996.0503

T. Laux and G. Jurgens, Embryogenesis: A New Start in Life, THE PLANT CELL ONLINE, vol.9, issue.7, pp.989-1000, 1997.
DOI : 10.1105/tpc.9.7.989

T. Laux, T. Wurschum, and H. Breuninger, Genetic Regulation of Embryonic Pattern Formation, THE PLANT CELL ONLINE, vol.16, issue.suppl_1, pp.190-202, 2004.
DOI : 10.1105/tpc.016014

H. Lee, R. Fischer, R. Goldberg, and J. Harada, Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor, Proceedings of the National Academy of Sciences, vol.100, issue.4, 2003.
DOI : 10.1073/pnas.0437909100

M. Lehti-shiu, B. Adamczyk, and D. Fernandez, Expression of MADS-box genes during the embryonic phase in Arabidopsis, Plant Molecular Biology, vol.279, issue.1, pp.89-107, 2005.
DOI : 10.1007/s11103-005-4546-3

L. Lepiniec, I. Debeaujon, J. Routaboul, A. Baudry, L. Pourcel et al., GENETICS AND BIOCHEMISTRY OF SEED FLAVONOIDS, Annual Review of Plant Biology, vol.57, issue.1, pp.405-430, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105252

A. Macquet, M. Ralet, J. Kronenberger, A. Marion-poll, and H. North, In situ, Chemical and Macromolecular Study of the Composition of Arabidopsis thaliana Seed Coat Mucilage, Plant and Cell Physiology, vol.48, issue.7, pp.984-999, 2007.
DOI : 10.1093/pcp/pcm068

S. Mansfield and L. Briarty, Endosperm cellularization in Arabidopsis thaliana L, 1990.

S. Mansfield and L. Briarty, during reserve deposition, Canadian Journal of Botany, vol.70, issue.1, pp.151-164, 1992.
DOI : 10.1139/b92-021

C. Marana, F. Garcia-olmedo, and P. Carbonero, Linked sucrose synthase genes, p.7, 1988.

T. Martin, W. Frommer, M. Salanoubat, and L. Willmitzer, Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs, The Plant Journal, vol.4, issue.2, pp.367-377, 1993.
DOI : 10.1046/j.1365-313X.1993.04020367.x

K. Mayer, R. Torres-ruiz, T. Berleth, S. Missera, and G. Jürgens, Mutations affecting body organization in the Arabidopsis embryo, Nature, vol.353, issue.6343, pp.402-407, 1991.
DOI : 10.1038/353402a0

D. Mccarty, J. Shaw, and L. Hannah, The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize, Proceedings of the National Academy of Sciences, vol.83, issue.23, pp.9099-9103, 1986.
DOI : 10.1073/pnas.83.23.9099

D. Meinke, Genetic nomenclature guide. Arabidopsis thaliana, Trends Genet, pp.22-23, 1995.

D. Meinke, A Homoeotic Mutant of Arabidopsis thaliana with Leafy Cotyledons, Science, vol.258, issue.5088, 1992.
DOI : 10.1126/science.258.5088.1647

D. Meinke, L. Franzmann, T. Nickle, and E. Yeung, Leafy Cotyledon Mutants of Arabidopsis, THE PLANT CELL ONLINE, vol.6, issue.8, pp.1049-1064, 1994.
DOI : 10.1105/tpc.6.8.1049

S. Meyer, C. Lauterbach, M. Niedermeier, I. Barth, R. Sjolund et al., Wounding Enhances Expression of AtSUC3, a Sucrose Transporter from Arabidopsis Sieve Elements and Sink Tissues, PLANT PHYSIOLOGY, vol.134, issue.2, pp.684-693, 2004.
DOI : 10.1104/pp.103.033399

M. Miquel and J. Browse, Lipid biosynthesis in developing seeds Seed development and germination, pp.169-193, 1995.

G. Monke, L. Altschmied, A. Tewes, W. Reidt, H. Mock et al., Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA, Planta, vol.219, issue.1, pp.158-166, 2004.
DOI : 10.1007/s00425-004-1206-9

B. Moore, L. Zhou, R. F. Hall, Q. Cheng, W. Liu et al., Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling, Science, vol.300, issue.5617, pp.332-336, 2003.
DOI : 10.1126/science.1080585

E. Morley-smith, M. Pike, K. Findlay, W. Kockenberger, L. Hill et al., The Transport of Sugars to Developing Embryos Is Not via the Bulk Endosperm in Oilseed Rape Seeds, PLANT PHYSIOLOGY, vol.147, issue.4, pp.2121-2130, 2008.
DOI : 10.1104/pp.108.124644

E. Münch, Plant PhysiologyTransport in the phloem, pp.135-194, 1930.

E. Nambara and A. Marion-poll, ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM, Annual Review of Plant Biology, vol.56, issue.1, pp.165-185, 2005.
DOI : 10.1146/annurev.arplant.56.032604.144046

E. Nambara, S. Naito, and P. Mccourt, A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele, The Plant Journal, vol.1, issue.4, pp.435-441, 1992.
DOI : 10.1007/BF00019521

J. Napier, A. Stobart, and P. Shewry, The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins, Plant Molecular Biology, vol.108, issue.5, pp.945-956, 1996.
DOI : 10.1007/BF00040714

B. Nguyen-quoc, M. Krivitzky, S. Huber, and A. Lecharny, Sucrose Synthase in Developing Maize Leaves: Regulation of Activity by Protein Level during the Import to Export Transition, PLANT PHYSIOLOGY, vol.94, issue.2, pp.516-523, 1990.
DOI : 10.1104/pp.94.2.516

T. Nomura and T. Akazawa, Enzymic mechanism of starch synthesis in ripening rice grains, Archives of Biochemistry and Biophysics, vol.156, issue.2, 1973.
DOI : 10.1016/0003-9861(73)90316-0

. Vii, Purification and enzymic properties of sucrose synthetase, Arch. biochem. biophys, vol.156, pp.644-652

G. Norton and J. Harris, Compositional changes in developing rape seed (Brassica napus L.), Planta, vol.44, issue.2, pp.163-174, 1975.
DOI : 10.1007/BF00383865

J. Oard and S. Dronavalli, Rapid isolation of rice and maize DNA for analysis by random-primer PCR, Plant Molecular Biology Reporter, vol.18, issue.3, pp.236-241, 1992.
DOI : 10.1007/BF02668356

P. Pang, R. Pruitt, and E. Meyerowitz, Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana, Plant Molecular Biology, vol.201, issue.6, 1988.
DOI : 10.1007/BF00019521

F. Parcy, C. Valon, M. Raynal, P. Gaubier-comella, M. Delseny et al., Regulation of Gene Expression Programs during Arabidopsis Seed Development: Roles of the ABI3 Locus and of Endogenous Abscisic Acid, The Plant Cell, vol.6, issue.11, pp.1567-1582, 1994.
DOI : 10.2307/3869944

J. Patrick, PHLOEM UNLOADING: Sieve Element Unloading and Post-Sieve Element Transport, Annual Review of Plant Physiology and Plant Molecular Biology, vol.48, issue.1, 1997.
DOI : 10.1146/annurev.arplant.48.1.191

H. Potter, Application of Electroporation in Recombinant DNA Technology, Methods Enzymol, vol.217, pp.461-478, 1993.
DOI : 10.1016/B978-0-12-765561-1.50037-0

L. Qu and Y. Zhu, Transcription factor families in Arabidopsis: major progress and outstanding issues for future research, Current Opinion in Plant Biology, vol.9, issue.5, pp.544-549, 2006.
DOI : 10.1016/j.pbi.2006.07.005

V. Raz, J. Bergervoet, and M. Koornneef, Sequential steps for developmental arrest in Arabidopsis seeds, Development, vol.128, pp.243-252, 2001.

C. Rochat and J. Boutin, Carbohydrates and nitrogenous compounds changes in the hull and in the seed during the pod development of pea, Plant Physiol. Biochem, vol.27, pp.881-887, 1989.

A. Rohde, R. De-rycke, T. Beeckman, G. Engler, M. Van-montagu et al., ABI3 Affects Plastid Differentiation in Dark-Grown Arabidopsis Seedlings, THE PLANT CELL ONLINE, vol.12, issue.1, pp.35-52, 2000.
DOI : 10.1105/tpc.12.1.35

T. Roitsch, Source-sink regulation by sugar and stress, Current Opinion in Plant Biology, vol.2, issue.3, pp.198-206, 1999.
DOI : 10.1016/S1369-5266(99)80036-3

T. Roitsch, M. Bittner, and D. Godt, Induction of Apoplastic Invertase of Chenopodium rubrum by D-Glucose and a Glucose Analog and Tissue-Specific Expression Suggest a Role in Sink-Source Regulation, Plant Physiology, vol.108, issue.1, pp.285-294, 1995.
DOI : 10.1104/pp.108.1.285

F. Rolland, B. Moore, and J. Sheen, Sugar sensing and signaling in plants, Plant Cell, vol.14, pp.185-205, 2002.

F. Rolland, J. Winderickx, and J. Thevelein, Glucose-sensing mechanisms in eukaryotic cells, Trends in Biochemical Sciences, vol.26, issue.5, pp.310-317, 2001.
DOI : 10.1016/S0968-0004(01)01805-9

H. Rolletschek, K. Koch, U. Wobus, and L. Borisjuk, Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo, The Plant Journal, vol.121, issue.4, pp.69-83, 2005.
DOI : 10.1111/j.1365-313X.2005.02352.x

H. Rolletschek, T. Nguyen, R. Hausler, T. Rutten, C. Gobel et al., Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage, The Plant Journal, vol.55, issue.3, pp.468-484, 2007.
DOI : 10.1111/j.1365-313X.2007.03155.x

H. Rosen, A modified ninhydrin colorimetric analysis for amino acids, Archives of Biochemistry and Biophysics, vol.67, issue.1, pp.10-15, 1957.
DOI : 10.1016/0003-9861(57)90241-2

Y. Ruan, D. Llewellyn, and R. Furbank, Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development, THE PLANT CELL ONLINE, vol.15, issue.4, pp.952-964, 2003.
DOI : 10.1105/tpc.010108

S. Ruuska, T. Girke, C. Benning, and J. Ohlrogge, Contrapuntal Networks of Gene Expression during Arabidopsis Seed Filling, THE PLANT CELL ONLINE, vol.14, issue.6, pp.1191-1206, 2002.
DOI : 10.1105/tpc.000877

M. Salanoubat and G. Belliard, The steady-state level of potato sucrose synthase mRN A is dependent on wounding, anaerobiosis and sucrose concentration, Gene, vol.84, issue.1, pp.181-185, 1989.
DOI : 10.1016/0378-1119(89)90153-4

M. Santos-mendoza, B. Dubreucq, S. Baud, F. Parcy, M. Caboche et al., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, The Plant Journal, vol.8, issue.4, pp.608-620, 2008.
DOI : 10.1101/gad.1318705

URL : https://hal.archives-ouvertes.fr/hal-00297574

J. Schwender, F. Goffman, J. Ohlrogge, and Y. Shachar-hill, Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature, vol.25, issue.7018, pp.779-782, 2004.
DOI : 10.1016/S0167-7799(98)01290-6

J. Schwender, J. Ohlrogge, and Y. Shachar-hill, Understanding flux in plant metabolic networks, Current Opinion in Plant Biology, vol.7, issue.3, pp.309-317, 2004.
DOI : 10.1016/j.pbi.2004.03.016

J. Schwender and J. Ohlrogge, Probing in Vivo Metabolism by Stable Isotope Labeling of Storage Lipids and Proteins in Developing Brassica napus Embryos, PLANT PHYSIOLOGY, vol.130, issue.1, pp.347-361, 2002.
DOI : 10.1104/pp.004275

J. Schwender and J. Ohlrogge, A Flux Model of Glycolysis and the Oxidative Pentosephosphate Pathway in Developing Brassica napus Embryos, Journal of Biological Chemistry, vol.278, issue.32, pp.29442-29453, 2003.
DOI : 10.1074/jbc.M303432200

S. Smeekens, Sugar regulation of gene expression in plants, Current Opinion in Plant Biology, vol.1, issue.3, pp.230-234, 1998.
DOI : 10.1016/S1369-5266(98)80109-X

C. Solfanelli, A. Poggi, E. Loreti, A. Alpi, and P. Perata, Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis, PLANT PHYSIOLOGY, vol.140, issue.2, pp.637-646, 2006.
DOI : 10.1104/pp.105.072579

R. Stadler, C. Lauterbach, and N. Sauer, Cell-to-Cell Movement of Green Fluorescent Protein Reveals Post-Phloem Transport in the Outer Integument and Identifies Symplastic Domains in Arabidopsis Seeds and Embryos, PLANT PHYSIOLOGY, vol.139, issue.2, pp.701-712, 2005.
DOI : 10.1104/pp.105.065607

W. Weckwerth, M. Loureiro, K. Wenzel, and O. Fiehn, Differential metabolic networks unravel the effects of silent plant phenotypes, Proceedings of the National Academy of Sciences, vol.101, issue.20, pp.7809-7814, 2004.
DOI : 10.1073/pnas.0303415101

H. Weber, Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism, Plant J, vol.55, pp.909-926, 2008.

D. Weijers and G. Jurgens, Auxin and embryo axis formation: the ends in sight?, Current Opinion in Plant Biology, vol.8, issue.1, pp.32-37, 2005.
DOI : 10.1016/j.pbi.2004.11.001

M. West and J. Harada, Embryogenesis in Higher Plants: An Overview, THE PLANT CELL ONLINE, vol.5, issue.10, pp.1361-1369, 1993.
DOI : 10.1105/tpc.5.10.1361

J. Benning and C. , A new set of Arabidopsis expressed sequence tags from developing seeds, 2000.

W. Xiao, J. Sheen, and J. Jang, The role of hexokinase in plant sugar signal transduction and growth and development, Plant Molecular Biology, vol.44, issue.4, pp.451-461, 2000.
DOI : 10.1023/A:1026501430422

K. Shinozaki and S. Yokoyama, Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1, Plant Cell, vol.16, pp.3448-3459, 2004.

B. Yazdi-samadi, R. Rinne, and R. Seif, Components of Developing Soybean Seeds: Oil, Protein, Sugars, Starch, Organic Acids, and Amino Acids1, Agronomy Journal, vol.69, issue.3, pp.481-486, 1977.
DOI : 10.2134/agronj1977.00021962006900030037x