]. P. Martin and . Martin, Integrated product and manufacturing process: Virtual Manufacturing of Reconfigurable Manufacturing Systems, Proceedings of the 15th International Conference on Manufacturing Systems ? ICMaS, 2006.

]. M. Mehrabi, A. G. Ulsoy, and Y. Koren, Reconfigurable Manufacturing Systems: Key to Future Manufacturing, Department of Mechanical Engineering and Applied Mechanics, pp.48109-2125, 2000.

]. M. Mehrabi, A. G. Ulsoy, Y. K. , and P. Heytler, Trends and perspectives in flexible and reconfigurable manufacturing systems, Machine à commande numérique, pp.135-146, 1997.
DOI : 10.1023/A:1014536330551

. Moon, ]. Y. Kota, S. Moon, . Kota-]-y, S. Moon et al., Generalized Kinematic Modeling Method for Reconfigurable Machine Tools Generalized Kinematic Modeling of Reconfigurable Machine Tools Reconfigurable Machine Tool Design: Theory and Applications Multi-functional machine tool Multi-functional machine tool, Proceedings of DETC' 98, ASME Design Engineering Technical Conferences CIRP - Manufacturing Technology, pp.47-51, 1998.

. Moyne, Reconfigurable Factory Testbed (RFT): A distributed test-bed for reconfigurable manufacturing systems, Proceedings of 2004 JUSFA Japan ? USA Symposium on Flexible Automation Références bibliographiques Machine Outil Reconfigurable -188, 2004.

. Paredis, A Rapidly, 1996.

P. Et-khosla, ]. C. Paredis, and P. K. Khosla, Kinematic Design of Serial Link Manipulator From Task Specification, International Journal of Robotics Research, vol.12, issue.3, pp.274-286, 1993.

P. Et-khosla, ]. C. Paredis, and P. K. Khosla, Mapping Tasks into Fault Tolerant Manipulators, Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994.

]. C. Paredis, An Agent-Based Approach to the Design of Rapidly Deployable Fault Tolerant Manipulators, 1996.

]. H. Paris, « Contribution à la conception automatique des gammes d'usinage : le problème du posage et du bridage des pièces, Thèse de doctorat, 1995.

. Pritschow, Requirements for controllers in reconfigurable machining systems, CIRP -2nd International Conference on Reconfigurable Manufacturing, 2003.

P. Et-junghans, ]. G. Pritschow, and G. Junghans, Open system controllers ? a Challenge for the future of the machine tool industry, Annals of the CIRP, vol.421, pp.449-452, 1993.

. Rameshbabu, ]. V. Shunmugam, M. S. Rameshbabu, and . Shunmugam, Hybrid feature recognition method for setup planning from STEP AP-203, Robotics and Computer-Integrated Manufacturing, vol.25, issue.2, pp.393-408, 2009.
DOI : 10.1016/j.rcim.2007.09.014

]. W. Regli, S. K. Gupta, and D. S. Nau, Towards multiprocessor feature recognition, Computer-Aided Design, vol.29, issue.1, pp.37-51, 1997.
DOI : 10.1016/S0010-4485(96)00047-4

]. W. Regli, Geometric algorithms for recognition of features from solid models, Thèse de doctorat, 1995.

R. Et-bottaci, ]. G. Rogers, and L. Bottaci, Modular Production Systems: A New Manufacturing Paradigm, Journal of Intelligent Manufacturing, vol.8, pp.147-156, 1997.

V. Sabourin, F. Sabourin, and . Villeneuve, an expert CAPP system, Advances in Engineering Software, pp.51-59, 1996.
DOI : 10.1016/0965-9978(95)00085-2

URL : https://hal.archives-ouvertes.fr/hal-01355773

]. L. Sabourin, Expertise en conception de gammes d'usinage : approche par entité et propagation de contraintes, Thèse de doctorat, LURPA (ENS de Cachan), 1995.

]. R. Schuktschik, Requirements for structures of automated machine tool, Annals of the CIRP, vol.32, issue.1, 1983.

K. Seo, T. Seo, and . Kim, Structure modelling of machine tools and internet-based implementation, Proceedings of the Winter Simulation Conference, 2005.

C. She, C. She, and . Chang, Development of a five-axis postprocessor system with a nutating head, Journal of Materials Processing Technology, vol.187, issue.188, pp.187-188, 2007.
DOI : 10.1016/j.jmatprotec.2006.11.101

]. G. Sohlenius, Concurrent Engineering, CIRP Annals - Manufacturing Technology, vol.41, issue.2, pp.645-655, 1992.
DOI : 10.1016/S0007-8506(07)63251-X

. Subrahmanyam, Fixturing features selection in feature-based systems, Computers in Industry, vol.48, issue.2, pp.99-108, 2002.
DOI : 10.1016/S0166-3615(02)00037-4

]. K. Sorby, Inverse kinematics of five-axis machines near singular configurations Robust Production System Evolution Considering Integrated Evolution Scenarios, International Journal of Machine Tools & Manufacture, pp.47-299, 2007.

. Spyridi, ]. A. Requicha, A. Spyridi, and . Requicha, Accessibility analysis for the automatic inspection of mechanical parts by coordinate measuring machines, Proceedings., IEEE International Conference on Robotics and Automation, pp.1284-1289, 1990.
DOI : 10.1109/ROBOT.1990.126176

. Srinivasan, . M. Sheng, P. Srinivasan, and . Sheng, Feature-based process planning for environmentally conscious machining ??? Part 1: microplanning, Robotics and Computer-Integrated Manufacturing, vol.15, issue.3, pp.15-257, 1999.
DOI : 10.1016/S0736-5845(99)00017-4

. Srinivasan, . M. Sheng, P. Srinivasan, and . Sheng, Feature based process planning in environmentally conscious machining ??? Part 2: macroplanning, Robotics and Computer-Integrated Manufacturing, vol.15, issue.3, pp.15-271, 1999.
DOI : 10.1016/S0736-5845(99)00018-6

]. M. Stampfer-et-rétfalvi, A. Stampfer, and . Rétfalvi, Integrated Process and Fixture Planning System, SISY, 4th Serbian-Hungarian Joint Symposium on Intelligent Systems, 2006.

T. Et-khan, ]. P. Tandon, and M. R. Khan, Three dimensional modeling and finite element simulation of a generic end mill, Computer-Aided Design, vol.41, pp.106-114, 2009.

. Tichkiewitch, Advances in Integrated Design and Manufacturing in Mechanical Engineering, 2007.
DOI : 10.1007/978-1-4020-6761-7

URL : https://hal.archives-ouvertes.fr/hal-00183559

]. M. Tiwari, K. R. Kotaiah, and S. Bhatnagar, A Case-Based Computer-Aided Process-Planning System for Machining Prismatic Components, Conception de produits mécanique, méthodes modèles et outils, pp.400-411, 1998.
DOI : 10.1007/s001700170158

]. Tseng-]-o, H. Y. Tutunea-fatan, . Feng-]-h, B. Van, J. Wyns et al., Fixturing design analysis for successive feature-based machining [Tutunea-Fatan et Feng Configuration analysis of five-axis machine tools using a generic kinematic model [Van Brussel et al Reference architecture for holonic manufacturing systems: PROSA " , Computers In Industry, special issue on intelligent manufacturing systems Ascendante de processus application aux entités d'usinage de type alésage Génération ascendante d'un processus d'usinage, proposition d'une formalisation de l'expertise, application aux entités alésages, Computers in Industry Thèse de doctorat Contribution à la génération des processus d'usinage et à l'intégration des contraintes de fabrication en conception de produits », habilitation à diriger des recherches de l'institut national Polytechnique de Grenoble, LURPA (ENS de Cachan), 1999. [Patriti, 1998] V. PATRITI, « Systèmes de pilotage auto-organisés et gammes distribuées : méthode de conception et application à une machine-outil Thèse de doctorat Références bibliographiques Machine Outil Reconfigurable -192, pp.249-262, 1990.

. Wang, Graphics-assisted approach to rapid collision detection for multi-axis machining, The International Journal of Advanced Manufacturing Technology, vol.1, issue.6, pp.852-863, 2006.
DOI : 10.1007/s00170-005-0127-5

. Yao, VMMC: a test-bed for machining, Computers in Industry, vol.47, issue.3, pp.255-268, 2002.
DOI : 10.1016/S0166-3615(01)00153-1

. Yao, Modeling of virtual workpiece with machining errors representation in turning, Journal of Materials Processing Technology, vol.172, issue.3, pp.437-444, 2006.
DOI : 10.1016/j.jmatprotec.2005.11.005

Y. Et-jingying, ]. H. Yongtao, and M. Jingying, A knowledge-based autoreasoning methodology in hole-machining process planning, Computers in Industry, vol.57, pp.297-304, 2006.

]. O. Zirmi, Analyse de fabricabilité en conception de gammes d'usinage pour l'aéronautique, Thèse de doctorat, 2006.

. Dans, on s'est appuyé sur le protocole STEP AP-224 ISO 10303 (Mechanical product definition for process planning using machining features), qu'a édité comme norme ISO standard en, 1999.

L. Figure and V. , 1 résume le protocole STEP AP-224 d'après la publication de SCARA

. La-deuxième-Édition-de-ap-224, a classifié 16 catégories des entités d'usinage caractérisées par 51 paramètres. Chacune d'entité a une forme stéréotypée constituée par plusieurs paramètres. Par exemple, pour spécifier un trou, les paramètres incluent le diamètre, profile circulaire (circular-profile) et profondeur (hole-depth), 2001.