R. B. Priddle and . Kyoto, Energy dynamics and climate stabilization, INTERNATIONAL ENERGY AGENCY. OECD, 2002.

M. Peters, C. Benson, T. Cerling, J. Curry, Y. Enzel et al., GSA Position Statement. Global Climate Change. USA, 2006.

C. Mandil and F. Birol, Les biocarburants. Revue n° 425, AIE, 2006.

L. Debiais, Production et consommation d'hydrogène aujourd'hui. Mémento de l'Hydrogène FICHE 1.3. Association Française de l'Hydrogène, 2008.

W. Kreuter, Electrolysis: The important energy transformer in a world of sustainable energy. Linde Process engineering and Contracting Division, 2006.

W. Hu, . Cao-x, F. Wang, and Y. Zhang, A novel cathode for alkaline water electrolysis, International Journal of Hydrogen Energy, vol.22, issue.6, pp.621-623, 1997.
DOI : 10.1016/S0360-3199(96)00191-7

E. Giilzow, Alkaline fuel cells: a critical view, Journal of Power Sources, vol.61, issue.1-2, pp.99-104, 1996.
DOI : 10.1016/S0378-7753(96)02344-0

P. Floch, S. Gabriel, C. Mansilla, and F. Werkoff, On the production of hydrogen via alkaline electrolysis during off-peak periods, International Journal of Hydrogen Energy, vol.32, issue.18, pp.4641-4647, 2007.
DOI : 10.1016/j.ijhydene.2007.07.033

J. Hopwood, The Next Generation of CANDU Technologies: Profiling the Potential for Hydrogen Fuel, pp.29-30

P. Kruger, Appropriate technologies for large-scale production of electricity and hydrogen fuel, International Journal of Hydrogen Energy, vol.33, issue.21, pp.5881-5886, 2008.
DOI : 10.1016/j.ijhydene.2008.08.001

V. Utgikar and T. Thiesen, Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy, International Journal of Hydrogen Energy, vol.31, issue.7, pp.939-944, 2006.
DOI : 10.1016/j.ijhydene.2005.07.001

W. Lattin, P. Vivek, and V. Utgikar, Global warming potential of the sulfur???iodine process using life cycle assessment methodology, International Journal of Hydrogen Energy, vol.34, issue.2, pp.737-744, 2009.
DOI : 10.1016/j.ijhydene.2008.10.059

M. Lewis, J. Masin, and P. O-'hare, Evaluation of alternative thermochemical cycles, Part I: The methodology, International Journal of Hydrogen Energy, vol.34, issue.9
DOI : 10.1016/j.ijhydene.2008.06.045

S. Kubo, S. Kasahara, H. Okuda, A. Terada, N. Tanaka et al., A pilot test plan of the thermochemical water-splitting iodine???sulfur process, Nuclear Engineering and Design, vol.233, issue.1-3, pp.1-3355, 2004.
DOI : 10.1016/j.nucengdes.2004.08.018

R. Elder and R. Allen, Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant, Progress in Nuclear Energy, vol.51, issue.3
DOI : 10.1016/j.pnucene.2008.11.001

S. Kubo, S. Shimizu, H. Nakajima, K. Onuki, S. Higashi et al., Construction of apparatus with thermochemical hydrogen production process, Proceedings of the 11th Canadian Hydrogen Conference, 2001.

M. Nomura, S. Kasahara, and K. Onuki, Estimation of thermal efficiency to produce hydrogen from water through IS process, 153c, Proceedings of the AIChE spring National meeting, 2003.

J. Hartvigsen, D. Swank, C. Schade, and R. Bordia, Large area cell for hybrid hydrogen co-generation process, 2005.

R. Rivera-tinoco, C. Mansilla, C. Bouallou, and F. Werkoff, On the Possibilities of Producing Hydrogen by High Temperature Electrolysis of Water Steam Supplied from Biomass or Waste Incineration Units, International Journal of Green Energy, vol.5, issue.5, pp.388-404, 2008.
DOI : 10.1016/j.ijhydene.2005.02.009

URL : https://hal.archives-ouvertes.fr/hal-00508153

J. Holladay, J. Hu, D. King, and Y. Wang, An overview of hydrogen production technologies, Catalysis Today, vol.139, issue.4, pp.244-260, 2009.
DOI : 10.1016/j.cattod.2008.08.039

J. Herring, J. O-'brien, C. Stoots, G. Hawkes, J. Hartvigsen et al., Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology, International Journal of Hydrogen Energy, vol.32, issue.4, pp.440-450, 2007.
DOI : 10.1016/j.ijhydene.2006.06.061

O. 'brien, J. Stoots, C. Hartvigsen, J. Herring, and J. , Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy. International Topical Meeting on Nuclear Reactor Thermal Hydraulics No11, pp.118-131, 2005.

M. Mckellar, J. O-'brien, and J. Herring, Commercial Scale performance predictions for High Temperature Electrolysis plants three advanced reactor types
DOI : 10.2172/926349

J. Sigurvinsson, C. Mansilla, P. Lovera, and F. Werkoff, Can high temperature steam electrolysis function with geothermal heat?, International Journal of Hydrogen Energy, vol.32, issue.9, pp.1174-1182, 2007.
DOI : 10.1016/j.ijhydene.2006.11.026

D. Ballerini, A. Toux, and N. L. Biocarburants, Etat de lieux, perspectives et enjeux du développement, 2006.

. Actes-du-séminaire, Biomasse, de nouveaux marchés ! Direction des énergies renouvelables des réseaux et des marches énergétiques. ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie), 2005.

A. Zbogar, F. Frandsen, P. Jensen, and P. Glarborg, Shedding of ash deposits, Progress in Energy and Combustion Science, pp.31-56, 2009.
DOI : 10.1016/j.pecs.2008.07.001

O. Eriksson, G. Finnveden, T. Ekvall, and A. Björklund, Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion, Energy Policy, vol.35, issue.2, pp.1346-1362, 2007.
DOI : 10.1016/j.enpol.2006.04.005

G. Finnveden, J. Johansson, P. Lind, and Å. Moberg, Life cycle assessment of energy from solid waste???part 1: general methodology and results, Journal of Cleaner Production, vol.13, issue.3, pp.213-229, 2005.
DOI : 10.1016/j.jclepro.2004.02.023

É. Déchets, environnement : étude prospective du potentiel de déchets mobilisables à des fins énergétiques en France à l'horizon. Club d'Ingénierie Prospective Energie-Environnement, 1996.

R. Bastier, A. Bocan, B. Gilbert, and G. Regnault, Fours de cimenterie : Ateliers de cuisson du clinker

L. Houdková, J. Borá?, V. Ucekaj, T. Elsäßer, and P. Stehlík, Thermal processing of sewage sludge ??? II, Applied Thermal Engineering, vol.28, issue.16, pp.2083-2088, 2008.
DOI : 10.1016/j.applthermaleng.2008.04.005

P. Stasta, J. Boran, L. Bebar, P. Stehlik, and J. Oral, Thermal processing of sewage sludge, Applied Thermal Engineering, vol.26, issue.13, pp.1420-1426, 2006.
DOI : 10.1016/j.applthermaleng.2005.05.030

B. Yildiz and M. Kazimi, Efficiency of hydrogen production systems using alternative nuclear energy technologies, International Journal of Hydrogen Energy, vol.31, issue.1, pp.77-92, 2006.
DOI : 10.1016/j.ijhydene.2005.02.009

E. Harvego, S. Reza, M. Richards, and A. Shenoy, An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor, Nuclear Engineering and Design, vol.236, issue.14-16, pp.1481-1489, 2006.
DOI : 10.1016/j.nucengdes.2006.04.014

K. Vervondern, V. Lensa, and W. , Past and present research in europe on the production of nuclear hydrogen with HTGR, Progress in Nuclear Energy, vol.47, issue.1-4, pp.1-4472, 2005.
DOI : 10.1016/j.pnucene.2005.05.048

V. Onufriev, Data processing technologies and diagnostics for water chemistry in nuclear power plants. IAEA. IAEA-TECDOC-1505 DAWAC, 2006.

E. Palier and W. , Tranches 1-2, Région d'équipement Paris, 2006.

A. Zrodnikov, G. Toshinsky, O. Komlev, Y. Dragunov, V. Stepanov et al., Nuclear power development in market conditions with use of multi-purpose modular fast reactors SVBR-75/100, Nuclear Engineering and Design, vol.236, issue.14-16, pp.1490-1502, 2006.
DOI : 10.1016/j.nucengdes.2006.04.005

G. Srinivasan, S. Kumar, K. Rajendran, B. Ramalingam, and P. , The Fast Breeder Test Reactor???Design and operating experiences, Nuclear Engineering and Design, vol.236, issue.7-8, pp.796-811, 2006.
DOI : 10.1016/j.nucengdes.2005.09.024

D. Haubensack, Cycles de conversion d'énergie pour le RNR-Na

C. Nt, Diffusion restreinte CEA, 2008.

K. Tucek, J. Carlsson, and H. Wider, Comparison of sodium and lead-cooled fast reactors regarding reactor physics aspects, severe safety and economical issues, Nuclear Engineering and Design, vol.236, issue.14-16, pp.1589-1598, 2006.
DOI : 10.1016/j.nucengdes.2006.04.019

R. Rivera-tinoco, C. Bouallou, C. Mansilla, and F. Werkoff, Economic study of water steam production by biomass or domestic waste incineration, Proceedings of European Congress of Chemical Engineering (ECCE-6), pp.16-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00222007

T. Cordero, F. Marquez, J. Rodríguez-mirasol, and J. Rodríguez, Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis, Fuel, vol.80, issue.11, pp.1567-1571, 2001.
DOI : 10.1016/S0016-2361(01)00034-5

E. Jannelli and M. Minutillo, Simulation of the flue gas cleaning system of an RDF incineration power plant, Waste Management, vol.27, issue.5, pp.684-690, 2007.
DOI : 10.1016/j.wasman.2006.03.017

I. Bois, Ministère de l'économie des finances et de l'industrie et les fournisseurs de combustibles, 2007.

F. Werkoff, S. Avril, C. Mansilla, and J. Sigurvinsson, Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives, European Nuclear Conference. France, 2005.

P. Quirion, Déchets ménagers : vers le tout-incinération Alternatives économiques, 1997.

F. Bourdon, Étude de la potentialité de l'incinération des déchets ménagers pour la production d'hydrogène par électrolyse haute température. CEA/LTED -Faculté des sciences de Rouen, IUP Génie des systèmes industriels. Master pro « Maîtrise de l'énergie », France, 2006.

E. Centrales-nucléaires-dans-le-monde, Draft using the IAEA's PRIS database ? CEA, 2002.

C. Forsberg, Futures for hydrogen produced using nuclear energy, Progress in Nuclear Energy, vol.47, issue.1-4, pp.1-4484, 2005.
DOI : 10.1016/j.pnucene.2005.05.049

Y. Shin, W. Park, J. Chang, and J. Park, Evaluation of the high temperature electrolysis of steam to produce hydrogen, International Journal of Hydrogen Energy, vol.32, issue.10-11, pp.1486-1491, 2007.
DOI : 10.1016/j.ijhydene.2006.10.028

L. Duigou, A. Lovera, and P. Scp, Electrolyse à Haute Température : Schémas de procédés de référence et schéma-usine pour l, pp.6-62, 2006.

J. Sigurvinsson, The production of hydrogen by high temperature electrolysis and alkaline electrolysis in a context of sustainable development, 2005.

C. Stoots, J. O-'brien, M. Mckellar, G. Hawkes, and S. Herring, Engineering Process Model For High-Temperature Electrolysis System Performance Evaluation, AIChE 2005 Annual Meeting, 2005.

A. Chauvel, G. Fournier, and C. Et-raimbault, Manuel d'évaluation économique des procédés, Publications de l'Institut Français du Pétrole, Editions Technip, 2001.

J. Paul-joseph, . Cea, . Den, . Dtn, . Stpa et al., Evaluation économique du procédé EHT complément de dimensionnement du procédé, 2007.

S. Fujiwara, S. Kasai, H. Yamauchi, K. Yamada, S. Makino et al., Hydrogen production by high temperature electrolysis with nuclear reactor, Progress in Nuclear Energy, vol.50, issue.2-6, pp.2-6422, 2008.
DOI : 10.1016/j.pnucene.2007.11.025

J. Herring, J. O-'brien, S. Stoots, J. Hartvigsen, M. Petri et al., Overview of High-Temperature Electrolysis for Hydrogen Production, 2007.

R. Tinoco and R. , Reporte de practica 7° Semestre -Givaudan. Escuela Superior de Ingenieria Quimica e Industrias Extractivas, 2003.

S. Jensen, Durability of Solid Oxide Electrolysis Cells for Hydrogen Production. Department of Solid State Chemistry and Fuel Cells, 1608.

M. Ni, M. Leung, and D. Leung, A modeling study on concentration overpotentials of a reversible solid oxide fuel cell, Journal of Power Sources, vol.163, issue.1, pp.460-466, 2006.
DOI : 10.1016/j.jpowsour.2006.09.024

M. Ni, M. Leung, and D. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), International Journal of Hydrogen Energy, vol.33, issue.9, pp.2337-2354, 2008.
DOI : 10.1016/j.ijhydene.2008.02.048

R. Hino, K. Haga, H. Aita, and K. Sekita, 38. R&D on hydrogen production by high-temperature electrolysis of steam, Nuclear Engineering and Design, vol.233, issue.1-3, pp.363-75, 2004.
DOI : 10.1016/j.nucengdes.2004.08.029

I. Balachov, S. Crouch-baker, M. Hornbostel, M. Mckubre, A. Sanjurjo et al., Modular system for hydrogen generation and oxygen recovery, 2005.

M. Ni, M. Leung, and D. Leung, Parametric study of solid oxide steam electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol.32, issue.13, pp.2305-2313, 2007.
DOI : 10.1016/j.ijhydene.2007.03.001

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.166, issue.1, pp.127-136, 2007.
DOI : 10.1016/j.jpowsour.2006.12.081

D. Noren and M. Hoffman, Clarifying the Butler???Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, Journal of Power Sources, vol.152, pp.175-181, 2005.
DOI : 10.1016/j.jpowsour.2005.03.174

Y. Hao, Z. Shao, J. Mederos, W. Lai, D. Goodwin et al., Recent advances in singlechamber fuel cells: experiment and modelling, Solid State Ionics, vol.177, pp.19-252013, 2006.

M. Ni, M. Leung, and D. Leung, An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production, Chemical Engineering & Technology, vol.233, issue.5, pp.636-642, 2006.
DOI : 10.1002/ceat.200500378

P. Li and M. Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources, vol.124, issue.2, pp.487-498, 2003.
DOI : 10.1016/j.jpowsour.2003.06.001

P. Lovera, N. Cea, and . Dpc, Electrolyse à haute température : Modélisation préliminaire, 2004.

S. Pratihar, A. Sharma, R. Basu, and H. Maiti, Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells, Journal of Power Sources, vol.129, issue.2, pp.138-142, 2004.
DOI : 10.1016/j.jpowsour.2003.11.023

M. Han, X. Tang, H. Yin, and S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs, Journal of Power Sources, vol.165, issue.2, pp.757-763, 2007.
DOI : 10.1016/j.jpowsour.2006.11.054

O. Kwon and G. Choi, Electrical conductivity of thick film YSZ, Solid State Ionics, vol.177, issue.35-36, pp.3057-3062, 2006.
DOI : 10.1016/j.ssi.2006.07.039

J. Yu, G. Park, S. Lee, and S. Woo, Microstructural effects on the electrical and mechanical properties of Ni???YSZ cermet for SOFC anode, Journal of Power Sources, vol.163, issue.2, pp.926-932, 2007.
DOI : 10.1016/j.jpowsour.2006.10.017

S. Pratihar, A. Sharma, R. Basu, and H. Maiti, Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells, Journal of Power Sources, vol.129, issue.2, pp.138-142, 2004.
DOI : 10.1016/j.jpowsour.2003.11.023

S. Kim, H. Moon, S. Hyun, J. Moon, J. Kim et al., Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells, Solid State Ionics, vol.177, issue.9-10, pp.931-938, 2006.
DOI : 10.1016/j.ssi.2006.02.007

K. Han, Y. Jeong, H. Lee, and C. Kim, Fabrication of NiO/YSZ anode material for SOFC via mixed NiO precursors, Materials Letters, vol.61, issue.4-5, pp.1242-1245, 2007.
DOI : 10.1016/j.matlet.2006.07.005

A. Rahman, J. Kim, K. Lee, and B. Lee, Microstructure characterization and electrical conductivity of electroless nano Ni coated 8YSZ cermets, Surface and Coatings Technology, vol.10, pp.2182-2188, 2008.

G. Li, Z. Sun, H. Zhao, C. Chen, and R. Ren, Effect of temperature on the porosity, microstructure, and properties of porous La0.8Sr0.2MnO3 cathode materials, Ceramics International, vol.33, issue.8, pp.1503-1507, 2007.
DOI : 10.1016/j.ceramint.2006.04.020

P. Romero, Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs), Journal of Power Sources, vol.171, pp.552-557, 2007.

S. Ambhorn-chandra, Utilisation d'aciers inoxydables ferritiques comme interconnecteurs dans les SOFC

S. Pratihar, R. Basu, S. Mazumdar, and H. Maiti, Solid Oxide Fuel Cells (SOFC VI, Proceedings, p.513, 1999.

G. Wen, Z. Guo, and C. Davies, Microstructural characterisation of electroless-nickel coatings on zirconia powder, Scripta Materialia, vol.43, issue.4, p.307, 2000.
DOI : 10.1016/S1359-6462(00)00409-7

B. Yildiz, Material Challenges in High Temperature Processes for Hydrogen Production. GCEP- MIT Fission Energy Workshop, 2007.

B. Yu, W. Zhang, J. Chen, J. Xu, and S. Wang, Advance in highly efficient hydrogen production by high temperature steam electrolysis, Science in China Series B: Chemistry, vol.177, issue.12, pp.289-304, 2008.
DOI : 10.1007/s11426-008-0054-z

J. Udagawa, P. Aguiar, and N. P. Brandon, Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.354-364, 2008.
DOI : 10.1016/j.jpowsour.2008.01.069

Y. Shi, N. Cai, C. Li, C. Bao, E. Croiset et al., Modeling of an anode-supported Ni???YSZ|Ni???ScSZ|ScSZ|LSM???ScSZ multiple layers SOFC cell, Journal of Power Sources, vol.172, issue.1, pp.235-245, 2007.
DOI : 10.1016/j.jpowsour.2007.04.037

Y. Qi, B. Huang, and J. Luo, Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics, Chemical Engineering Science, vol.61, issue.18, pp.6057-6076, 2006.
DOI : 10.1016/j.ces.2006.05.030

Y. Ji, K. Yuan, J. Chunga, and Y. Chen, Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells, Journal of Power Sources, vol.161, issue.1, pp.380-391, 2006.
DOI : 10.1016/j.jpowsour.2006.04.097

R. Suwanwarangkul, E. Croiset, M. Fowler, P. Douglas, E. Entchev et al., Performance comparison of Fick???s, dusty-gas and Stefan???Maxwell models to predict the concentration overpotential of a SOFC anode, Journal of Power Sources, vol.122, issue.1, pp.9-18, 2003.
DOI : 10.1016/S0378-7753(02)00724-3

E. Hernandez-racheco, D. Singh, P. Hutton, N. Patel, and M. Mann, A macro-level model for determining the performance characteristics of solid oxide fuel cells, Journal of Power Sources, vol.138, issue.1-2, pp.174-186, 2004.
DOI : 10.1016/j.jpowsour.2004.06.051

S. Chan, K. Khor, and Z. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources, vol.93, issue.1-2, pp.130-140, 2001.
DOI : 10.1016/S0378-7753(00)00556-5

M. Khaleel, Z. Lin, P. Singh, W. Surdoval, and D. Collin, A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC??, Journal of Power Sources, vol.130, issue.1-2, pp.136-148, 2004.
DOI : 10.1016/j.jpowsour.2003.11.074

S. Beale, Calculation procedure for mass transfer in fuel cells, Journal of Power Sources, vol.128, issue.2, pp.185-192, 2004.
DOI : 10.1016/j.jpowsour.2003.09.053

Y. Shi, N. Cai, and C. Li, Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion, Journal of Power Sources, vol.164, issue.2, pp.639-648, 2007.
DOI : 10.1016/j.jpowsour.2006.10.091

P. Baurens, Convertisseurs électrochimiques. Description et notions sur les phénomènes principaux. Cours d'électrochimie ?ENC, 2007.

M. Ni, M. Leung, and D. Leung, Micro-scale modelling analyses for advanced design of solid oxide steam electrolyser to enhance hydrogen production, Proceedings of the 5th International conference-hydrogen economy and hydrogen treatment of materials, pp.199-204, 2007.

C. Mmt-brochures, Technologies Hydrogen Economy Technologies, 2009.

M. Technique and D. Greth, Pertes de pression et transfert de chaleur dans les échangeurs à plaques en simple phase

C. Mansilla, J. Sigurvinsson, A. Bontemps, A. Maréchal, and F. Werkoff, Heat management for hydrogen production by high temperature steam electrolysis. Energy, pp.423-430, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00200379

S. Perry, Heat Exchangers, Chemical Engineering Handbook. Seventh Edition, Mc Graw Hill. Pages 11-52, 1997.

J. Smith, H. Van-ness, and M. Abott, Introduccion a la termodinamica en ingenieria Quimica. 5a Edicion, pp.289-294, 1997.

J. Thijssen, The impact of scale-up and production volume on SOFC manufacturing cost

C. Guillaumin, C. Plihon, and D. , Appréciation de l'euro ou baisse du dollar ? Quelques éléments d'analyse. CEPN, 2008.

C. Mansilla, Contribution à l'optimisation technico-économique de systèmes énergétiques Ecole Centrale des Arts et Manufactures, Thèse pour obtenir le grade de Docteur en Génie Industriel, 2006.

Z. Belohlav, P. Zamonsny, and T. Herink, The kinetic model of thermal cracking for olefins production, Chemical Engineering and Processing: Process Intensification, vol.42, issue.6, pp.261-473, 2003.
DOI : 10.1016/S0255-2701(02)00062-4

R. Simpson, A. Abakarov, and A. Teixeira, Variable retort temperature optimization using adaptive random search techniques, Food Control, vol.19, issue.11, pp.1023-1032, 2008.
DOI : 10.1016/j.foodcont.2007.10.010

URL : http://ufdc.ufl.edu/LS00001210/00012

R. Salcedo, M. J. Gonçalves, and S. Feyo-de-azevedo, An improved random-search algorithm for non-linear optimization, Computers & Chemical Engineering, vol.14, issue.10, pp.1111-1126, 1990.
DOI : 10.1016/0098-1354(90)85007-W

G. Arnaud, M. Dumas, . Cea, . Sfme, . Letr et al., Manuel d'utilisation de Vizir (algorithmes génétiques) Rapport, pp.4-013, 2004.

A. Brisse, J. Schefold, and M. Zahid, High temperature water electrolysis in solid oxide cells, International Journal of Hydrogen Energy, vol.33, issue.20, pp.5375-5382, 2008.
DOI : 10.1016/j.ijhydene.2008.07.120

W. Mccabe, J. Smith, and P. Harriot, Operaciones unitarias en Ingenieria Quimica, Capitulo Apéndice, vol.17, issue.19, pp.551-588, 2001.