O. Reactions and .. , 35 I.4. Gold Complexes Used in Homogeneous Catalysis (III), p.36

.. Au-(-i-)-complexes, 37 Cationic Gold(I)?Phosphine Complexes, p.38

.. Pd-catalyzed-transformations, 51 Reaction of Alkylidene Cyclic Carbonates with, p.53

S. Methods and .. , 56 II.2.1. Synthesis from Propargylic Alcohols and CO 2 56 Reaction of Propargylic Alcohols with CO 2 Catalyzed by 56 Reaction of Propargylic Alcohols with CO 2 Catalyzed by Copper, 57 Reaction of Propargylic Alcohols with CO 2 Catalyzed by 58 Reaction of Propargylic Alcohols with CO 2 Catalyzed by Silver ............................... 59 Reaction of Propargylic Alcohols with CO 2 Catalyzed by Tertiary Phospines ........... 60 Reaction of Propargylic Alcohol with CO 2 Catalyzed by Inorganic Bases, p.60

.. Solid-phase-preparation, 95 III.2.6. Specific Synthesis of 5-Methylene-oxazolidin-2-ones, p.95

.. From-acetylenic-amines, 96 Synthesis from Propargylic Alcohols or, p.98

D. Ring, .. C=o-bonds, and .. , 153 V.2.1. Addition of Nucleophiles to 153 V.2.2. Metathesis Reactions, Radical Cyclisations, vol.2, p.156

H. Cyclization, 165 Silver Promoted Cyclisations, p.165

P. Conclusion, 181 VI. Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters: an Efficient Access to Functionalized 1,3-Butadien-2-ol 183 VI.2. Synthesis and Reactions of 1,3-Butadien-2-ol, 183 VI.2.1. Synthesis and Reactions of 1,3-Butadien-2-ol Esters Obtained from Enones ... 183 VI.2.2. Synthesis of 1,3-Butadien-2-ol Esters starting from Allenyl or Propargyl Derivatives

. .. Skeleton and .. Diazocompounds, 214 Decomposition Reactions of, Lewis Acid Catalyzed Reactions Leading to the Bicyclo, p.215

.. Dictamnoside and E. , 257 VIII.3.5 Au-Catalyzed Hydroxy-and Alkoxycyclizations Leading to Substituted Cyclopentene Derivatives 259 VIII.4. Our Synthetic Approach. First Results and Optimization of the Catalytic System263 VIII.5. Synthesis of the 266 VIII.6. Gold(I)-Catalyzed Alkoxycyclization of 1 268 VIII.6.1. Variation of the 274 VIII.7. Gold(I)-Catalyzed Hydroxycyclization of 1 277 VIII.9. Transformation of the Functionalized Cyclopentenes Obtained by Gold Catalysis. Towards the Synthesis of 278 VIII.10. Conclusion and Perspectives 284 IX. Gold(I)-catalyzed [4+2] Cycloaddition of N-(Hex-5-enynyl) tert-butyloxycarbamates .285 IX.1. Introduction, VIII.3.3. Ru-Catalyzed Hydroxy-and Alkoxycyclizations Leading to Substituted Cyclopentene Derivatives 256 VIII.3.4. Pt-Catalyzed Hydroxy-and Alkoxycyclizations Leading to Substituted Cyclopentene Derivatives 285 IX.2. Synthetic Methods Leading to the Bicyclic Oxazinone Skeleton 285 IX.3. Preliminary Work in the Literature.. 290 IX.5. Gold(I)-Catalyzed [4+2] Cycloaddition of N-(Hex-5-enynyl) tert-butylcarbamates292 IX.5.1. Optimisation of the Catalytic System, p.292

.. , E. Compounds, . In, and .. Experimental-part, 299 II. Gold(I)-Catalyzed Formation of 5-Methylene-dioxolan-2-ones, IX.6. Conclusion and Perspectives, p.301

.. Au-(-i-)-catalyzed-transformations, 304 V. Gold(I) Catalyzed Stereoselective Formation of Functionalized 2,5-Dihydrofurans305 VI. Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters: an Efficient Access to Functionalized 1,3-Butadien-2-ol306 VII. Gold(I) Catalyzed Isomerization of 5-en-2-yn-1-yl Acetates: an Efficient Access to Acetoxy Bicyclo[3.1.0]hexenes and 2-Cycloalken-1-ones307 VIII. Gold(I)-Catalyzed 5-endo Hydroxy-and Alkoxy-Cyclization of 1,5-enynes: an Efficient Access to, 308 IX. Gold(I)-Catalyzed [4+2] Cycloaddition of N-(Hex-5-enynyl) tert-butyloxycarbamates, p.310

G. Methods and .. , 312 II. Gold(I)-Catalyzed Formation of 5-Methylene-dioxolan-2-ones313 II.1. Synthesis and Characterisation of Propargylic tert-butylcarbonates, 313 II.2. Gold(I)-Catalyzed Formation of 4-Alkylidene-1, pp.3-5

I. Gold-ones and .. , 331 III.1. Synthesis of Propargylic tert-butylcarbamates, p.348

.. Au-(-i-)-catalyzed-transformations, (I)-Catalyzed Formation of, Cu Oxazolones, p.361

V. Gold-esters and .. , 375 VI.1. Synthesis of the Allenic Substrates(I)-Catalyzed Isomerization of, Catalyzed Isomerization of Allenyl Carbinol Esters: an Efficient Access to Functionalized, p.379

V. Gold and .. , Acetates: an Efficient Access to Acetoxy Bicyclo[3.1.0]hexenes and 2-Cycloalken-1-ones385 VII.1. Synthesis of 5-en-2-yn-1-yl acetate substrates(I) Catalyzed Isomerization of 5-en-2-yn-1-yl, p.390

V. Gold-cyclopentenes and .. , 395 VIII.1. Synthesis of 1,5-Enyne Substrates 395 VIII.2. Gold(I)-Catalyzed Hydroxy-and Alkoxycyclization of 1, Transformation of the Cyclized Products, vol.1, issue.5, pp.5-411

I. Gold and .. , Hex-5-enynyl) tert-butyloxycarbamates 415 IX.1. Synthesis of the Precursor N-(Hex-5-enynyl) tert-butyloxycarbamates 415 IX.2. Gold(I)-Catalyzed, p.420

A. S. Hashmi, J. P. Weyrauch, M. Rudolph, and E. Kurpejovic, Gold Catalysis: The Benefits of N and N,O Ligands, Angewandte Chemie International Edition, vol.6, issue.47, p.6545, 2004.
DOI : 10.1002/anie.200460232

B. D. Sherry and F. D. Toste, Gold(I)-Catalyzed Propargyl Claisen Rearrangement, Journal of the American Chemical Society, vol.126, issue.49, p.15978, 2004.
DOI : 10.1021/ja044602k

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.604.7272

D. A. Evans, J. M. Takacs, L. R. Mcgee, M. D. Ennis, and D. Mathre, 159 For earlier reviews see: a), J

C. W. Chung and P. H. Toy, Chiral auxiliaries in polymer-supported organic synthesis, Tetrahedron: Asymmetry, vol.15, issue.3, p.387, 2004.
DOI : 10.1016/j.tetasy.2003.12.015

H. Kakeya, M. Morishita, K. Kobinata, M. Osono, M. Ishizuka et al., sp., The Journal of Organic Chemistry, vol.64, issue.3, p.1052, 1126.
DOI : 10.1021/jo981922b

H. Drautz, H. Zahner, E. Kupfer, and W. Keller-schierlein, Stoffwechselprodukte von Mikroorganismen 205. Mitteilung.. Isolierung und Struktur von Streptazolin, Helvetica Chimica Acta, vol.17, issue.6, p.1752, 1981.
DOI : 10.1002/hlca.19810640605

C. Puder, S. Loya, A. Hizi, and A. Zeeck, New Co-metabolites of the Streptazolin Pathway, Journal of Natural Products, vol.64, issue.1, p.42, 2001.
DOI : 10.1021/np000377i

G. Butora, T. Hudlicky, S. P. Fearnley, A. G. Gum, M. R. Stabile et al., Chemoenzymatic synthesis of the morphine skeleton via radical cyclization and a C10???C11 closure, Tetrahedron Letters, vol.37, issue.45, pp.8155-665, 1996.
DOI : 10.1016/0040-4039(96)01867-9

D. J. Ager, I. Prakash, and D. R. Schaad, 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis, Chemical Reviews, vol.96, issue.2, p.835, 1996.
DOI : 10.1021/cr9500038

B. Franck and . Angew, Citreoviridins fromAspergillus terreus, Angewandte Chemie International Edition in English, vol.23, issue.6, p.461, 1980.
DOI : 10.1002/anie.198004611

F. Perron and K. F. Albizati, Chemistry of spiroketals, Chemical Reviews, vol.89, issue.7, p.1617, 1989.
DOI : 10.1021/cr00097a015

J. Erdsack and N. Krause, Synthesis 2007, 3741, and references cited therein, Angew. Chem. Int. Ed, vol.39, p.2980, 2000.

M. J. Lopez, S. Echavarren, A. M. Fürstner, A. Stimson, C. C. Hashmi et al., 46, 8845; For [4+2] cycloadditions involving furans, see: d), Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. W. Org. Lett, vol.130, issue.122, pp.6178-3769, 2000.

C. Nmr, CDCl 3 , 100 MHz) 199

C. Nmr, CDCl 3 , 100 MHz) 207

C. Tert-butyl-x, J. =. Art, C. 1h, 1. Arm, and C. Ar, phenylsulfonyl)methylcarbamate III, p.5440807032

C. Nmr, 100 MHz) 162.0 (OC qAr, 137.5 (C qAr ), 133.4 (HC Ar ), pp.55-61

C. Nmr, CDCl 3 , 100 MHz) 156, HC Ar )HC Ar )HC Ar ), vol.3, issue.3, pp.28-30

C. Nmr, CDCl 3 , 100 MHz, pp.45-50

C. Nmr, CDCl 3 , 100 MHz) 155.2 (C=O), pp.42-47

1. , C. Ar, 1. Ar, 1. , 1. et al., AuNTf 2 (generally 1 mol %) The reaction mixture was stirred at room temperature until the consumption of the starting material (reaction monitored by TLC), then filtered through a small pad of silica and the solvent was removed under reduced pressure. The residue was then purified by flash column chromatography to give the corresponding oxazolidinones. 7.35-7.31 (m, 2H, 2 x CH Ar, =CH Allyl ), 4.79 (m, 1H, =CH), 4.60 (dd, J =5.2, 1.4 Hz, 2H, CH 2 O), p.983129

C. Nmr, CDCl 3 , 100 MHz) 156, HC Ar ), 126.7 (C qAr ), pp.69-55

C. Nmr, 100 MHz) 163, HC Ar )HC Ar ), vol.3, issue.735 20 2 2, pp.74-73

C. Nmr, 100 MHz) For the major isomer: 168

1. Hz, 1. Ar, C. Arm, 1. , and C. Ar, 94 (402 mg, 2.00 mmol) in dry DMF (2 mL) under argon were sequentially added K 2 CO 3 (386 mg, 2.80 mmol), 7.63 (d, J = 9, CHOAc), 6.69-6.32 (m, 2H, 2 x =CH), pp.8168-8173

1. , C. Ar, 1. , and C. Ar, hex-5-en-2-ynyl acetate VII, p.36

1. Hz and C. Ar, 42 (t, J = 1.9 Hz, 1H, CHOAc), 5.85-5.75 (m, 1H, CH 2 =CH), 5.30 (ddd, pp.2-11

C. Nmr, 100 MHz) 169, 139.8 (C qAr ), 128.3 (HC Ar ), pp.31-33

1. Hz and C. Ar, 54 (t, J = 1.9 Hz, 1H, CHOAc), 5.88- 5.79 (m, 1H, CH 2 =CH), pp.6-7

C. Nmr, 100 MHz) 169, OC qAr ), 132.0 (C qAr )

C. Ar, 1. Ch-cyclopentene, 1. Ch-cyclopentene, and . Ch-cyclopropan, 21-7.16 (m, 3H, 3 x CH Ar ), 5.80 (s, 1H, =CH), 2.73 (t, J = 8, HRMS, vol.7, issue.208, pp.0-69, 1949.

1. , C. Ar, 1. , and C. Ar, Calculated for C 17 H 20 O 2 : 256.1463. Found for C 17 H 20 O 2 : 256, HRMS, vol.7, issue.21, p.19

1. , C. Ar, 1. , and C. Ar, Calculated for C 14 H 12 Cl 2 O 2 : 282.0214. Found for C 14 H 12 Cl 2 O 2 : 282, HRMS, vol.7, issue.20, p.27

1. Hz and 1. Ch-ar-hz, 75 (m, 1H, CH 2 =CH), 5.19 (dd, pp.5085-511

1. and C. Ar, Calculated for C 14 H 12 Cl 2 O 2 : 282.0214. Found for C 14 H 12 Cl 2 O 2 : 282, HRMS, vol.7, issue.2 2, p.2

C. Ard, J. =. , C. Ar, 1. =ch-)-1h, 1. Ch-cyclopentene et al., 19 (ddd, J = 17.2, 6.8, 1.6 Hz, 1H, CH cyclopentene, pp.95-101, 2002.

C. Nmr, CDCl 3 , 100 MHz) 171, 171.3 (CO 2 Me)

1. Hz, 28 (bd, J = 9.1 Hz, 1H, CHOAc), 2.73 (dd, J = 16.7, 6.1 Hz, 1H, CH) 1H, CH), pp.78-81

C. Nmr, CDCl 3 , 100 MHz) 169, pp.25-31

C. Nmr, 100 MHz) For the cis isomer: 170, 131.6 (HC Ar ), 128.2 (HC Ar ), pp.25-32

C. Nmr, 100 MHz) For the cis isomer: 170, pp.25-29

1. Hz, 07 (s, 3H, COCH 3 ), 1.01 (s, 3H, CH 3, pp.0-97

1. Hz and C. , 04 (s, 3H, COCH 3 ), 1.23 (s, 3H, 30 (m, 2H, 2 x CH), pp.36-38

C. Nmr, CDCl 3 , 100 MHz) 171, pp.28-34

C. Nmr, CDCl 3 , 100 MHz) 171, HC Ar )HC Ar ), vol.3, issue.215, pp.28-31

1. Hz, 1. Arbs, and J. =. =ch-)-dd, 81 (d, J = 5.6 Hz, 1H, CHOAc), 3.77 (s, 3H, OCH 3 ), 3.59 (s, 1H, CH), pp.85-91

1. Hz and J. =. Arddd, 51 (d, J = 5.85 Hz, 1H, CHOAc), 3.38 (s, 1H, CH), pp.34-34

C. Nmr, CDCl 3 , 100 MHz) 170, 138.5 (C qAr ), pp.25-25

1. and C. Ar, 3-phenylcyclopent-3-enyl acetate VIII.88e For the minor isomer: 7.37 (d, J = 7, Hz, 2H, 2 x CH Ar ), 7.30 (d, J = 7.2 Hz, 2H, 2 x CH Ar ), 7.25 (t, J = 7.2 Hz, =CH), 3.57 (d, J = 0.5 Hz, 1H, CH), 3.05 (s, 3H, OCH 3 ) ), 2.38 (dd, J = 18.9, 2.9 Hz, 1H, CH 2 ), 2.08 (s, 3H, COCH 3 ), 2.00 (m, 1H, CH), 1.89 (m, 1H, CH), pp.66-67

. For-the-major-isomer, 23 (m, 5H, 5 x CH Ar ), 5.88 (s, 1H, pp.7-36

1. Hz, 1. Choac, 1. =ch-)-s, and C. , 16 (s, 3H, OCH 3 ), 2.92 (dd, pp.489161-489162

. 1s, (R)-2-Hydroxy-6-methylhept-5-en-2-yl)-3-vinylcyclopent-3-enyl acetate VIII, p.2

1. , =. , 2. =ch, and C. , 94 (s, 1H, CH), dd, J = 19.2, 5.8 Hz, 1H, CH 2 ), 2.34-2.28 (m, 2H, CH and OH), 2.09 (m, 2H, CH 2 ), 2.03 (s, 3H, COCH 3 ), pp.5-91

C. Nmr, 100 MHz) 171, 131.7 (=C q ), pp.24-32

1. Hz, 05 (s, 3H, COCH 3 ), 1.66 (s, 3H, CH 3 ), 1.60 (s, 3H, CH 3, pp.12-14

. 1s, (R)-2-Hydroxy-6-methylhept-5-en-2-yl)-3-(2-phenylethynyl)cyclopent-3- enyl acetate VIII, p.2

C. Nmr, CDCl 3 , 100 MHz) 172, pp.24-31

1. Hz, J. =. 1h, and C. , 01 (s, 3H, COCH 3 ), 1.92-1.85 (m, 2H, Hz, 1H, CH 2 ), pp.2-442213

5. Arm and 1. , 70 (sextuplet, J = 6.6, 13.6 Hz, 1H, HC), 5.50 (q, HC), 5.30 (m, 1H, CH), pp.975973-975974

C. Nmr, CDCl 3 , 100 MHz) 169.7 (CH 3 C=O), pp.72-77

O. Tert-butyl and . Mf, 4-acetoxy-6,10-dimethylundeca-5,9-dien-1-ynylbenzylcarbamate IX, pp.27-37

C. Nmr, CDCl 3 , 100 MHz) 154, HC Ar )HC Ar ), vol.141, issue.279

1. and C. Ar, the corresponding amount of catalyst was added. The reaction was stirred at RT. When completed, the reaction mixture was concentrated under reduced pressure and the crude was purified by chromatography over silica gel. (4R,4aS,5R)-1-benzyl-1,2,4,4a,5,6-hexahydro-2-oxo-4-phenylcyclopenta[d][1,3]oxazin- 5-yl acetate IX, Method IX.2. To a solution of substrate (1 equiv.) in DCM (0.1 M) 5.23 (q, J = 7.9 Hz, 1H, HC), 5.05 (d, J = 11.1 Hz, 1H, HC), 4.90 (s, 2H, CH 2 ), 4.75 (m, 1H, HC), 3.35 (m, 1H, CH) Hz, 1H, AcOHC), p.802755

1. and C. Ar, 14 (t, J = 5.3 Hz, 1H, HC), 5.02 (d, J = 15, Hz, 1H, HC), 4.87 (m, 2H, CH 2 ), 3.38 (m, 1H, HC), 2.75 (tttt, 1H, CH), 2.36 (dd, J = 17.4, 2.9 Hz, 1H, AcOHC), pp.18-19

1. Hz and C. , 06 (s, 3H, COCH 3 ), 1.68 (s, 3H, 1H, HC), 2.15, pp.51-52

5. and C. Ar, 39 (s, 1H, HC=), 4.81 (d, J= 16, Hz , 1H, CHN), 4.74 (m, 2H, 2 x HC=) 1H, CHN), 3.88 (m, 1H, HC), 2.26 (m, 2H, CH 2 ), 2.11 (m, 1H, CH), 1.73 (m, 1H, CH), p.6344

5. and C. Ar, -phenylethyl)cyclopenta[d][1,3]oxazin-2(1H)- one IX, (q, J = 7.1 Hz, 1H, HC), 4.63, pp.4-53
URL : https://hal.archives-ouvertes.fr/hal-00554365