
HAL Id: pastel-00005513
https://pastel.hal.science/pastel-00005513

Submitted on 11 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse Grouping and Invariant Representations for
Estimation and Recognition

Guoshen Yu

To cite this version:
Guoshen Yu. Sparse Grouping and Invariant Representations for Estimation and Recognition. Math-
ematics [math]. Ecole Polytechnique X, 2009. English. �NNT : �. �pastel-00005513�

https://pastel.hal.science/pastel-00005513
https://hal.archives-ouvertes.fr


Sparse Grouping and Invariant Representations for

Estimation and Recognition

A dissertation presented

by

Guoshen Yu

in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the subject of Applied Mathematics

Ecole Polytechnique

Palaiseau, France

June 30, 2009

Jury

Emmanuel Bacry Examiner
Michael Elad Reviewer
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Stéphane Mallat Advisor
Jean-Michel Morel Examiner
Jean Ponce Reviewer
Guillermo Sapiro Examiner
Jean-Jacques Slotine Examiner



Thesis advisor Author
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Abstract

This thesis develops several contributions for signal and image processing as well as

for computer vision. The first part includes a new audio denoising algorithm and a super-

resolution algorithm for image zooming. These algorithms are based on some new sparse

representations by blocks. A time-frequency block thresholding procedure is introduced for

the audio denoising, which enables noise reduction without introducing artifacts, with the

results superior to the state-of-the-art. This first part also develops a general approach to

solve inverse problems with some piecewise linear sparser representations over the blocks.

The application to the image super-resolution allows obtaining a fast algorithm, which

clearly improves the PSNR relatively to the existing algorithms.

The second part of the thesis introduces an algorithm (ASIFT) of establishing corre-

spondences between images, which is invariant to affine transforms. It is demonstrated that

this algorithm satisfies the invariance constraints and it is able to make correspondences

between objects observed under arbitrary angles. Its numeric complexity is of the same

order as the most efficient algorithms, with a significantly higher robustness thanks to its

affine invariance.

The third part of the thesis introduces a biologically plausible implementation of visual

grouping. Inspired by the mechanism of neural synchronization in perceptual grouping, a

general algorithm based on neural oscillators is proposed to make visual grouping. The

same algorithm is shown to achieve promising results on several classical visual grouping

problems, including point clustering, contour integration, and image segmentation.
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Chapter 1

Introduction

Image, audio processing and computer vision have myriad applications, from digital

cameras, video surveillance, phones, image web searching to medical and satellite imaging

analysis. In many applications, signal quality improvement is desired: One wishes to es-

timate better quality signals, with less noise or higher resolution, from observed ones. In

other applications, automatic image recognition is required.

In the last two decades or so, science and technology in image and signal processing

have achieved revolutionary progress. Among the fundamental contributions, sparse signal

representation and processing have an important position. Wavelets [141, 126] and non-

linear estimation with wavelets [49] opened the door to sparse signal representation and

processing. To improve the wavelet representations for images including edges that are ge-

ometrically regular, a number of multiscale directional transforms such as curvelet [20, 19]

and bandlet [99, 98, 129] dictionaries have been introduced. Given these redundant dic-

tionaries, computationally efficient algorithms including matching pursuit [131] and l1 pur-

suit [28] have been developed to calculate good sparse signal approximations. Connections

between approximation, sparsity and dictionary coherence properties were investigated and

1



CHAPTER 1. INTRODUCTION 2

became more apparent [189, 70]. While sparse signal representation and processing have

direct applications in image and signal processing problems such as compression, noise re-

duction and inverse problems, it deeply influences computer vision as well. Recent pattern

recognition algorithms extract salient features in sparse representations [199, 177, 222, 221].

Sparse features are further incorporated with invariance to achieve viewpoint invariant im-

age recognition [119, 89, 21].

An ideal dictionary should provide all types of signals with sparse representations that

contain as few as possible coefficients completely decorrelated. Due to the high complexity

of images and sounds, however, constructing such a dictionary is impossible. Redundancy

is not completely removed from sparse representations for typical images and sounds. For

example, geometrical structures such as contours and harmonic lines are presented in image

wavelet representations and audio time-frequency representations. Taking advantage of

this geometric prior information improves image and signal processing. The first part of

this thesis investigates coefficient processing by block in sparse representations. Grouping

coefficients in blocks adapted to signal geometry improves non-linear estimations, which

leads to better audio and image noise reduction results. Calculating oriented blocks adapted

to image geometry amounts to identifying a geometric image model that can be used as

prior to solve inverse problems and, in particular, image super-resolution zooming.

In computer vision, sparse features are important for pattern recognition since robust

recognition of one object against the others requires a small number of salient features

that capture the characteristics of the object. Sparse salient features should at the same

time be invariant to variation of pattern observation conditions, for example viewpoint

changes in image recognition, so that the recognition is independent to observation con-

ditions. The SIFT method (scale-invariant feature transform) [118, 119] successfully in-

corporates scale, translation and rotation invariance in sparse features and has achieved
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unprecedented success in image recognition applications. While SIFT is fully invariant to

image zoom, translation and rotation [154], its robustness to view angle changes is modest.

Its performance drops quickly when the view angle change between two images under com-

parison increases. A number of algorithms have been proposed to improve the view angle

invariance [135, 145, 147, 190, 191, 192, 159, 160, 21, 149], however, improvements seem

marginal and SIFT continues to be the leader by far. In the second part of the thesis we

attack this viewpoint invariance challenge and propose a new fully affine invariant image

comparison algorithm Affine-SIFT (ASIFT).

While coefficient grouping allows to improve signal estimation in sparse representa-

tions, visual grouping is an important tool in computer vision applications as well. Gestalt

psychology [210, 140, 92, 65] formalizes the laws of visual perception and addresses some

grouping principles including proximity, good continuation and color constancy. Biological

evidences have shown that in the brain the neural synchronization provides a general func-

tional mechanism for perceptual grouping [15, 209]. In computer vision, visual grouping

problems have been studied in various frameworks [157, 153, 179, 47, 43, 41, 127], however,

comparatively little attention has been devoted to exploiting neural-like mechanism in vi-

sual grouping. The last part of the thesis introduces a biologically plausible visual grouping

implementation with neural oscillators and shows applications on point clustering, contour

integration and image segmentation.

1.1 Sparse Image and Audio Processing with Blocks

In sparse image and audio representations, the presence of geometrical regularity such

as contours and harmonic lines motivates treating the representation coefficients by block

rather than individually. Based on the work of Cai and Silverman in mathematical statis-
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tics [17, 18, 16], Chapter 2 introduces a new non-diagonal audio denoising algorithm through

time-frequency block thresholding [219], with rectangular blocks whose sizes are adjusted

automatically by the Stein risk estimator [185]. The block thresholding is generalized in

Chapter 3 with oriented blocks that adaptively follow geometrical regularity. A block pur-

suit algorithm is introduced to decompose sparse representation coefficients into blocks

selected from a block dictionary. Applications on image denoising are shown. The block

pursuit procedure identifies geometric image model and calculates structured sparse repre-

sentation. An image super-resolution zooming algorithm is derived in Chapter 4 by direc-

tional interpolation along the block directions in which the image is directionally regular.

1.1.1 Block Thresholding Denoising

Image and audio signals are often corrupted by noise during the signal acquisition.

Signal denoising aims at attenuating the noise while retaining the underlying signals.

Let y be a noisy signal that is the sum of a clean signal f and a noise w of zero mean:

y[n] = f [n] + w[n], n = 0, . . . , N − 1.

The noisy signal y is decomposed over a dictionary of vectors D = {gp}p∈Γ that is supposed

to be a tight frame [126] with frame bound A:

Y [p] = 〈y, gp〉, p ∈ Γ.

A denoising algorithm modifies transform coefficients by multiplying each of them by an

attenuation factor a[p] to attenuate the noise component. The resulting “denoised” signal

estimator is

f̂ [n] =
1

A

∑
p∈Γ

F̂ [p] gp[n] =
1

A

∑
p∈Γ

a[p]Y [p] gp[n]. (1.1)

The dictionary D is said to provide a sparse representation for f if the transform

coefficients F [p] = 〈f, gp〉, p ∈ Γ, are mostly zero with a few large coefficients. Signal
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denoising is more efficient in sparse representations, in which most coefficients Y [p] contain

purely noise and can be filtered without degrading the signal.

Donoho and Johnstone have introduced thresholding operators whose risk is close to

the lower bound for Gaussian white noise [49]. For example, a soft thresholding operator

attenuates each empirical coefficient Y [p] by a factor

a[p] =

(
1 − λσ[p]

|Y [p]|

)
+

(1.2)

where σ[p] is the standard deviation of the noise coefficient indexed p, λ is the thresholding

parameters and (z)+ = max(z, 0). Since the attenuation factor a[p] depends only on the

empirical coefficient Y [p] and the noise amplitude σ[p] of the same index, these operators

are called diagonal denoising estimators.

Diagonal denoising estimators are simple and do not take into account the coefficient

redundancy in sparse signal representations. As shown in Figures 1.1 and 1.3, geometrical

structures such as harmonic lines and contours are presented in audio time-frequency rep-

resentations and image wavelet representations. Combining this geometric information in

denoising estimation helps to improve the denoising performance.

Block thresholding operators are non-diagonal and were introduced by Cai and Sil-

verman [17, 18] in mathematical statistics to improve the asymptotic decay of diagonal

thresholding estimators. Block thresholding provides a nice tool to incorporate signal ge-

ometric redundancy in thresholding estimation. The coefficients Y [p] are partitioned in I

disjoint blocks Bi in which indices are grouped together. A block thresholding estimator

multiplies all coefficients within Bi with a same attenuation factor ai

f̂ =
1

A

I∑
i=1

∑
p∈Bi

ai Y [p] gp, (1.3)

where each ai depends on all coefficients Y [p] for p ∈ Bi. For example soft block thresholding
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has the attenuation factors

ai =

(
1 −

λ ‖σ‖2
Bi

‖Y ‖2
Bi

)
+

, (1.4)

where

‖Y ‖2
Bi

=
∑
p∈Bi

|Y [p]|2 and ‖σ‖2
Bi

=
∑
p∈Bi

|σ[p]|2,

and λ is the thresholding parameter. Adjusting the block size can be interpreted as trading-

off bias and variance of block thresholding risk. Block size can be adjusted automatically

by minimizing a Stein estimator [185] of the block thresholding risk [16].

1.1.2 Audio Denoising by Time-Frequency Block Thresholding

Audio signals are often contaminated by background environment noise and buzzing or

humming noise from audio equipments. Time-frequency audio-denoising procedures com-

pute sparse audio time-frequency representations and processes the resulting coefficients to

attenuate the noise.

Diagonal denoising estimators such as power subtraction [10, 11, 110], which is a variant

of the soft thresholding (1.2), make scalar decision without time-frequency regularization.

The resulting attenuated coefficients thus lack of time-frequency regularity. It produces

isolated time-frequency coefficients which restore isolated time-frequency structures that

are perceived as a musical noise [22, 217].

To reduce musical noise as well as the estimation risk, several authors have proposed

non-diagonal denoising algorithms that regularize the estimation with time-frequency fil-

tering [54, 55, 35, 137, 77, 121]. Non-diagonal estimators clearly outperform diagonal es-

timators but depend upon regularization filtering parameters. Large regularization filters

reduce the noise energy but introduce more signal distortion [22, 36, 54, 52]. It is desirable

that filter parameters are adjusted depending upon the nature of audio signals. In practice,

however, they are selected empirically [22, 35, 36, 54, 55]. Moreover, the estimators that
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Figure 1.1: (a),(b): Log-spectrograms of the original and noisy “Mozart” signals. (c),(d):
attenuation coefficients calculated with a power subtraction and a block thresholding. Black
pixels correspond to 1 and white to 0. (a’)(b’)(c’)(d’): zooms over rectangular regions
indicated in (a)(b)(c)(d).
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are derived with a Bayesian approach [35, 36, 54, 55] model audio signals with Gaussian,

Gamma or Laplacian processes. Although such models are often appropriate for speech,

they do not take into account the complexity of other audio signals such as music, that

include strong attacks.

Chapter 2 introduces a new non-diagonal audio denoising algorithm through adaptive

time-frequency block thresholding [219], based on the work of Cai and Silverman in math-

ematical statistics [17, 18, 16]. For audio time-frequency denoising, we show that block

thresholding regularizes the estimate and is thus effective in musical noise reduction. Block

parameters are automatically adjusted by minimizing a Stein estimator of the block thresh-

olding risk [185], which is calculated analytically from the noisy signal values with no prior

stochastic audio signal model. Numerical experiments show that this new adaptive estima-

tor is robust to signal type variations and improves the SNR and the perceived quality with

respect to state-of-the-art audio denoising algorithms.

Figure 1.1 compares the power subtraction and time-frequency block thresholding de-

noising of a short recording of the Mozart oboe concerto with an additive Gaussian white

noise. Figure 1.1(a) and 1.1(b) show respectively the log spectrograms log |F [l, k]| and

log |Y [l, k]| of the original signal f and its noisy version y, with l and k respectively the

time and frequency indexes. Figure 1.1(c) displays a diagonal power subtraction attenuation

map a[l, k], with black points corresponding to values close to 1. The zoom in Figure 1.1(c’)

shows that this attenuation map contains many isolated coefficients close to 1 (black points).

These isolated coefficients restore isolated windowed Fourier vectors gl,k[n] that produce a

musical noise. Figure 1.1(d) displays a block thresholding attenuation map ai. The zoom

in Figure 1.1(d’) shows that non-diagonal block thresholding attenuation factors are much

more regular than the diagonal power subtraction attenuation factors in Figure 1.1(c’).

Isolated points responsible for musical noise are not kept and signal structure is better
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restored.

1.1.3 Image Denoising by Block Pursuit Thresholding

Wavelet representations are sparse for most natural images [126]. As shown in Fig-

ure 1.3, wavelet coefficients are quasi-zero where image is uniform and large coefficients are

concentrated along the contours. Diagonal denoising estimation is efficient in sparse wavelet

representations, however, improvement can be achieved by grouping coefficients in blocks

to take better advantage of the geometrical regularity in the representations.

Block thresholding techniques have been investigated [126, 25, 30] to remove noise from

images. Similar to audio time-frequency block denoising, image wavelet coefficients are

partitioned in square blocks in which a block attenuation rule is applied. As sparse image

representations contain geometrical structures more complex than those in audio time-

frequency representations that are mainly horizontal and vertical lines, square or rectangular

blocks are inadequate to fit image geometry, which increases the risk of the resulting block

thresholding estimators. Oriented blocks adapted to image geometry are required.

Chapter 3 introduces a block pursuit thresholding algorithm that generalizes block

thresholding method by computing oriented blocks adapted to image geometry. Calculating

adaptive oriented blocks amounts to a set covering problem [45] that seeks to cover the image

geometry with oriented blocks. A greedy block pursuit procedure is proposed to calculate

the oriented blocks selected from a dictionary of blocks. Applications on image denoising

are shown.

Geometry in sparse image representations are represented by large coefficients that

locally present some oriented geometric structures. To cover these coefficients on the prior

structures, a dictionary DB of oriented blocks are constructed. As illustrated in Figure 1.2,

each block is set of points whose shape may fit some part of the prior structures. The blocks
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Figure 1.2: Examples of oriented blocks.

are translated to cover the image plane. A greedy block pursuit procedure computes the

coefficient energy in all the blocks in DB and selects the blocks iteratively one by one in a

decreasing order according to the block energy. The block pursuit algorithm has complexity

O
(
(log2 K)B#K

)
, where K is the size of the block dictionary DB and B# is the block size.

Figure 1.3 compares block pursuit thresholding image denoising with block thresholding

and hard thresholding. The block thresholding attenuation is piecewise constant. The

attenuation in the blocks that go across the contour degrades the contour and protects the

noise. The block pursuit thresholding has oriented block accurately follow the contour and

therefore improves the denoising with respect to block thresholding. Compared with hard

thresholding that removes some contour coefficients, block pursuit thresholding groups the

coefficients along the contour and protects them better, which results to a better contour

restoration.

1.1.4 Sparse Super-Resolution with Block Pursuits

The block pursuit procedure allows to identify geometric image model that can be used

as prior to solve inverse problems and, in particular, image super-resolution zooming.

Zooming operators that increase the size of images are often needed for digital display
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Figure 1.3: From left to right. First row: noisy image y, translation-invariant wavelet
coefficients (1st scale, horizontal band) of noisy image and of clean image. Second row:
attenuation factors of hard thresholding (HT), block thresholding (BT) and block pursuit
thresholding (BPT). Gray-level from white to black: value from 0 to 1. Third row: denoised
wavelet coefficients (1st scale, horizontal band) by HT, BT and BPT. Fourth row: denoised
image with HT (39.50 dB), BT (39.39 dB) and BPT (40.76 dB).
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of images or videos. Linear interpolations [187] are simple and fast, but they introduce

artifacts such as zigzag patterns when images are aliased. Super-resolution estimations that

take advantage of image prior information are required to restore better images [125, 134].

A large body of super-resolution literature relies on a sequence of low-resolution images

or a training process to reconstruct a high-resolution image (see for example [61, 68, 50]).

Applications of these methods are restricted when the only relevant data available is a single

low-resolution image of interest, or if the memory resource is limited.

Single image super-resolution zooming is more difficult but is possible by interpolating

the image along directions for which it is geometrically regular. Directional interpolations,

usually known as edge-directed or content-adaptive interpolation, interpolate along direc-

tions that are computed with ad-hoc directional regularity estimations [105, 206, 31].

Sparse super-resolution algorithms rely on a sparsity prior. If a signal has a sparse rep-

resentation in a dictionary then a super-resolution estimation may be computed from lower-

resolution measurements [80, 196, 156], and reliable recovery requires that the dictionary

is sufficiently incoherent [126]. This approach has been used successfully for seismic sparse

spike inversion or image inpainting [51, 58, 126]. Sparse prior is related to image geometric

regularity. Geometrically regular images have a sparse representation in curvelet [20, 19]

or bandlet [99, 98, 129] dictionaries. However, subsampling a curvelet or a bandlet dictio-

nary does not define a sufficiently incoherent dictionary to recover sparse super-resolution

estimations for image zooming. Recovering these vectors individually from a subsampled

signal requires a full search in a large dictionary which leads to errors. It is necessary to

further constrain the sparse representation.

Directional interpolations are much more constraint since locally all pixels are recov-

ered by performing an interpolation with a single direction. Taking advantage of this prior

information, Chapter 4 introduces a super-resolution algorithm that computes structured
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sparse representation by projecting image wavelet coefficients over vector spaces instead of

individual vectors [218, 130]. Selecting the vector spaces amounts to identifying a geometric

image model and is calculated with the block pursuit procedures in the wavelet domain.

A hierarchical cascade of block pursuit procedures, which factorizes the vector space selec-

tion in angle estimation and location assignment, regularizes the geometry estimation and

reduces the computational load. Super-resolution estimation is obtained by directionally

interpolating the image wavelet coefficients in the vector spaces where there is directionally

regularity. This can be interpreted as selecting the linear approximation vectors in the

chosen spaces.

Figure 1.4 compares a separable cubic spline interpolation with a super-resolution inter-

polation computed with the proposed algorithm. The super-resolution achieves a significant

PSNR improvement and improves the visual image quality where the image is geometrically

regular. High-frequencies are restored along the direction of regularity.

Figure 1.4: Left: High-resolution image. Middle: Cubic spline interpolation 21.37 dB.
Right: Super-resolution 23.82 dB
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1.2 Affine Invariant Image Comparison

The notion of sparsity is not only applied in signal denoising and super-resolution, but

in computer vision as well. In pattern recognition, an object is often sparsely represented

by a small set of salient features and recognition is performed by classifying or matching

these sparse features. We will focus on an important problem in computer vision — image

comparison — for which feature invariance is essential in addition to sparsity and saliency.

Image comparison aims at establishing correspondences between same objects that

appear in different images. This is a fundamental step in many computer vision and image

processing applications such as image recognition, image retrieval, 3D reconstruction, object

tracking, robot localization and image registration [62].

Following the Gestalt psychophysical invariance laws proposed by Wertheimer, At-

tneave and Kanizsa [210, 3, 91], a good image matching algorithm should satisfy the fol-

lowing requirements [21]:

1. Robust to partial occlusions.

2. Invariant to illumination changes.

3. Insensitive to the noise inherent to any image acquisition device.

4. Independent of the viewpoint changes.

A typical image matching consists in, for each of the concerned image, first detect-

ing points of interest and selecting a region around each point, and then associating each

region with a descriptor. Correspondences may thus be established by matching the de-

scriptors [148]. Detectors and descriptors should have some invariance according to the

“good matching” requirements above.
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The first three “good matching” requirements are relatively easy to satisfy. Local

descriptors induce robustness to partial occlusion. Features based on directions of gradients

or level sets have certain invariance to illumination changes. Noise can be reduced by

prefiltering the images before comparison.

The fourth requirement viewpoint invariance is however much more challenging. Image

deformation due to viewpoint changes can be locally approximated by affine transforms,

which can be decomposed to rotation, translation, zoom, camera axis latitude and longitude

angles, as illustrated in Figure 1.5. The latitude angle θ introduces an important concept

tilt t = 1/ cos θ that is a directional subsampling factor of the frontal image in the direction

given by the longitude φ. As shown in Figure 1.6, while the absolute tilt that is the tilt

between a frontal view and a slanted view is relatively small (at maximum about 6), the

transition tilt that is the tilt from one slanted view to another can be as high as the product

of the absolute tilts of the two images (62 = 36). Since images under comparison are usually

both of slanted view, affine invariant image comparison algorithms should be invariant to a

very high transition tilt.

State-of-the-art local image detectors can be classified by their incremental invariance

properties. All of them are translation invariant. The Harris point detector [85] is also rota-

tion invariant. The Harris-Laplace, Hessian-Laplace and the DoG (Difference-of-Gaussian)

region detectors [144, 147, 119, 64] are invariant to rotations and changes of scale. Some

moment-based region detectors [112, 6] including the Harris-Affine and Hessian-Affine re-

gion detectors [145, 147], an edge-based region detector [190, 192], an intensity-based region

detector [191, 192], an entropy-based region detector [90], and two level line-based region

detectors MSER (“maximally stable extremal region”) [135] and LLD (“level line descrip-

tor”) [159, 160, 21] are designed to be invariant to affine transforms.

In his milestone paper [119], Lowe has proposed a scale-invariant feature transform
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Figure 1.5: Geometric interpretation affine deformation. The camera is looking at u0 that is
a flat physical object. The angles φ and θ are respectively the camera optical axis longitude
and latitude. A third angle ψ parameterizes the camera rotation, and λ is a zoom parameter.
The camera can have in addition translation in parallel to u0, which is not shown in the
figure.

Figure 1.6: The frontal image (above) is squeezed in one direction on the left image by
a slanted view, and squeezed in an orthogonal direction by another slanted view. The
compression factor or absolute tilt is about 6 in each view. The resulting compression
factor, or transition tilt from left to right is actually 36.
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(SIFT) that is invariant to image scaling and rotation and partially invariant to illumina-

tion and viewpoint changes. The SIFT method combines the DoG region detector that

is fully rotation, translation and scale invariant [154] with a descriptor based on the gra-

dient orientation distribution in the region, which is partially illumination and viewpoint

invariant [119]. The SIFT descriptor has been shown to be superior to other many descrip-

tors [146, 148] such as the distribution-based shape context [8], the geometric histogram [2]

descriptors, the derivative-based complex filters [6, 173], and the moment invariants [195].

A number of SIFT descriptor variants and extensions, including PCA-SIFT [93], GLOH

(gradient location-orientation histogram) [148] and SURF (speeded up robust features) [7]

have been developed ever since [67, 103]. They claim more robustness and distinctiveness

with scaled-down complexity.

The mentioned state-of-the-art methods have achieved brilliant success. However, none

of them is fully affine invariant. MSER, LLD, Harris-Affine and Hessian-Affine attempt to

achieve affine invariance by normalizing all the affine parameters. However, as we point out,

zoom cannot be normalized without simulating blur because a camera zoom-out consists

in essentially blurring the image before subsampling. As a tilt is a zoom operation along

one dimension, this applies to tilt as well. In consequence, these normalization methods

are not scale invariant and have limited affine invariance. It is verified experimentally that

Harris-Affine and Hessian-Affine are robust to transition tilts of maximum value τmax ≈ 2.5

and MSER and LLD τmax ≈ 10 under best conditions. SIFT is actually the only method

that is fully scale invariant [154]. However, since it does not treat the camera latitude and

longitude angles, its performance drops quickly under substantial viewpoint changes. SIFT

is robust to transition tilt smaller than τmax ≈ 2.

Chapter 6 introduce a new affine invariant image comparison framework Affine-SIFT

(ASIFT) [155, 220]. Unlike MSER, LLD, Harris-Affine and Hessian-Affine which normalize
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Figure 1.7: Top: Image pair with transition tilt t ≈ 36. (SIFT, Harris-Affine, Hessian-Affine
and MSER fail completely.) Bottom: ASIFT finds 120 matches out which 4 are false.

all the six affine parameters, ASIFT simulates three parameters and normalizes the rest. The

scale and the changes of the camera axis orientation are the three simulated parameters. The

other three, rotation and translation, are normalized. More specifically, ASIFT simulates

the two camera axis angles, and then applies SIFT which simulates the scale and normalizes

the rotation and the translation. Mathematically, ASIFT is proved fully affine invariant, up

to sampling errors. Against any prognosis, simulating all views depending on the two camera

orientation parameters is feasible with no dramatic computational load. A sparse sampling

of the simulated parameters is proposed. A coarse-to-fine two-resolution implementation

of ASIFT is described, which has about twice the complexity of a single SIFT routine.

As shown by the example in Figure 1.7, ASIFT permits to reliably identify features that

have undergone transition tilts of large magnitude, up to 36 and higher, and outperforms

significantly the state-of-the-art, including SIFT, MSER, Harris-Affine and Harris-Affine.
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1.3 Visual Grouping by Neural Oscillators

While coefficient grouping helps to improve signal estimation, visual grouping is an

important tool for image recognition as well. Consider Figure 1.8. Why do we perceive

in these visual stimuli a cluster of points, a straight contour and a hurricane? How is

the identification achieved between a subgroup of stimuli and the perceived objects? These

classical questions can be addressed from various points of view, physiological, mathematical

and biological.

Figure 1.8: Left: a cloud of points in which a dense cluster is embedded. Middle: a random
direction grid in which a vertical contour is embedded. Right: an image in which a hurricane
is embedded.

Many physiological studies, e.g. [65, 86, 101, 216], have shown evidence of grouping in

visual cortex. Gestalt psychology [210, 140, 92, 48] formalizes the laws of visual perception

and addresses some grouping principles such as proximity, good continuation and color con-

stancy, in order to describe the construction of larger groups from atomic local information

in the stimuli.

In computer vision, visual grouping has been studied in various mathematical frame-

works, including graph-based methods [164, 79] and in particular normalized cuts [179,

43], harmonic analysis [127], probabilistic approaches [57, 47, 46, 48], variational formula-

tions [157, 153, 4], Markov Random Fields [74], statistical techniques [71, 29, 41], among



1.3. VISUAL GROUPING BY NEURAL OSCILLATORS 20

others [193, 165].

In the brain, at a finer level of functional detail, the distributed synchronization known

to occur at different scales has been proposed as a general functional mechanism for per-

ceptual grouping [15, 180, 209]. In computer vision, however, comparatively little at-

tention has been devoted to exploiting neural-like oscillators in visual grouping. Wang

and his colleagues have performed very innovative work using oscillators for image seg-

mentation [186, 204, 205, 116, 26] and have extended the scheme to auditory segrega-

tion [12, 202, 203]. They constructed oscillator networks with local excitatory lateral

connections and a global inhibitory connection. Adopting similar ideas, Yen and Finkel

have simulated facilitatory and inhibitory interactions among oscillators to conduct con-

tour integration [216]. Li has proposed elaborate visual cortex models with oscillators

and applied them on lattice drawings segmentation [106, 107, 108, 109]. Kuzmina and

his colleagues [96, 97] have constructed a simple self-organized oscillator coupling model,

and applied it on synthetic lattice images as well. Faugeras et al. have started studying

oscillatory neural mass models in the contexts of natural and machine vision [63].

Chapter 7 introduces a simple and general biologically plausible visual grouping imple-

mentation with neural oscillators [223, 224], based on diffusive connections and concurrent

synchronization [166]. A neural oscillator network is constructed, with each oscillator asso-

ciated to an atomic element in the stimuli, for example a point, an orientation or a pixel.

Without coupling, the oscillators are desynchronized and oscillate in random phases. Un-

der diffusive coupling with the coupling strength appropriately tuned, they may converge to

multiple groups of synchronized elements, namely concurrent synchronization. The synchro-

nization of oscillators within each group indicates the perceptual grouping of the underlying

stimulative atoms, while the desynchronization between groups suggests group segregation.

As illustrated in Figure 1.9(a), a neural oscillator is a dynamical system ẋ = f(x, t)
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a b

Figure 1.9: a. the oscillation trace of a single oscillator. b. synchronization of two oscillators
coupled through diffusive connections. The two oscillators start to be fully synchronized at
about t = 5.

that oscillates when it receives appropriate input, where x is the state vector and t is the

time index. The oscillators are connected with diffusive coupling [207]

ẋi = f(xi, t) +
∑
i�=j

kij(xj − xi), i = 1, . . . , N (1.5)

where kij is the coupling strength. Oscillators i and j are said to be synchronized if xi

remains equal to xj . Once the elements are synchronized, the coupling terms in (1.5)

disappear, so that each individual element exhibits its natural and uncoupled behavior, as

illustrated in Figure 1.9(b). A larger value of kij tends to reduce the state difference xi−xj

and thus to reinforce the synchronization between oscillators i and j.

The key to using diffusively-coupled neural oscillators for visual grouping is to tune the

couplings so that the oscillators synchronize if their underlying atoms belong to the same

visual group, and desynchronize otherwise. According to Gestalt psychology [210, 92, 140],

visual stimulative atoms having similarity (e.g. gray-level, color, orientation) or proximity

tend to be grouped perceptually. This suggests making strong coupling between neural

oscillators whose underlying stimuli are similar. Such coupling is implemented by a Gaussian

tuning

kij = e
−|si−sj |

2

β2 . (1.6)

where si and sj are stimuli of the two oscillators, for example position for point clustering,
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orientation for contour integration and gray-level for image segmentation, and β is a tuning

parameter. The coupling strength falls off as a Gaussian function of the distance between

the stimuli.

Figure 1.10 illustrates an example in which a dense cluster of 100 Gaussian distributed

points is embedded in a cloud of 300 points uniformly randomly distributed. The neural

oscillator system converges to one synchronized group that corresponds to the cluster with

all the “outliers” totally desynchronized in the background, as shown in Figure 1.10(b).

The resulting identification of the underlying cluster is shown in Figure 1.10(c). Normalized

cuts [179] confuses a large number of outliers around the cluster of interest, as illustrated

in Figure 1.10(d).

The same algorithm is applied on contour integration and image segmentation. As

shown in Figures 1.11 and 1.12, it achieves promising results compared with state-of-the-

art computer vision approaches normalized-cuts [179, 43].

a b c d

Figure 1.10: a. A cloud of points made of 300 points uniformly randomly distributed in
a space of size 100 × 100, in addition to a cluster of 100 Gaussian distributed points with
standard deviation equal to 3×3. b. The neural oscillator system converges to one synchro-
nized group that corresponds to the cluster with all the “outliers” totally desynchronized
in the background. c. and d. Clustering results by respectively neural oscillators and
normalized cuts: blue dots represent the cluster detected by the algorithm and red crosses
are the “outliers”. In the latter many outliers are confused with the cluster of interest.
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Figure 1.11: From left to right: A vertical contour is embedded in a uniformly distributed
orientation grid, contour integration by neural oscillators and normalized cuts.

Figure 1.12: Real image segmentation. From left to right: a radar image (128 × 128);
segmentation in 20 classes by neural oscillators and multiscale normalized cuts.
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1.4 Thesis Organization

This thesis consists of three parts. The first part of the thesis is devoted to image and

audio estimation with grouping in sparse representations. Chapter 2 introduces a time-

frequency block thresholding procedure for audio denoising. Chapter 3 generalizes block

thresholding and introduces a block pursuit algorithm. Applications in image denoising

are shown. An image super-resolution zooming algorithm is derived in Chapter 4 with

the block pursuit procedures that identify geometric image model and calculate structured

sparse representations.

The second part of the thesis addresses invariant image comparison. A short Chap-

ter 5 is devoted to the mathematical arguments proving that SIFT is similarity invariant.

Chapter 6 introduces a new ASIFT algorithm that is fully affine invariant.

In the third part of the thesis, Chapter 7 introduces a visual grouping implementation

with networks of neural oscillators and shows applications on point clustering, contour

integration and image segmentation.



Part I

Sparse Image and Audio

Processing with Blocks
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Chapter 2

Audio Denoising by

Time-Frequency Block

Thresholding

This Chapter introduces a new time-frequency block audio denoising algorithm based

on the block thresholding estimation [17, 18, 16]. Block sizes are automatically adjusted

by minimizing a Stein estimator of the block thresholding risk [185]. The numerical exper-

iments show that the proposed method removes efficiently the “musical noise” artifact and

improves the SNR and the perceived quality with respect to state-of-the-art audio denoising

algorithms.

2.1 Introduction

Audio signals, whether music or speech, are often corrupted by noise during recording

and transmission. Audio denoising procedures are designed to attenuate the noise and

retain the signal of interest.

26
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Diagonal time-frequency audio denoising algorithms attenuate the noise by processing

each window Fourier or wavelet coefficient independently, with empirical Wiener [139],

power subtraction [10, 11, 110] or thresholding operators [49]. These algorithms create

isolated time-frequency structures that are perceived as a “musical noise” [22, 217]. Ephraim

and Malah [54, 55] showed that this musical noise is strongly attenuated with non-diagonal

time-frequency estimators that regularize the estimation by recursively aggregating time-

frequency coefficients. This approach has further been improved by optimizing the SNR

estimation with parameterized filters [35] that rely on stochastic audio models. However,

these parameters should be adjusted to the nature of the audio signal, which often varies

and is unknown. In practice, they are empirically fixed [22, 35, 54, 55].

This Chapter introduces a new non-diagonal audio denoising algorithm through adap-

tive time-frequency block thresholding [217]. Block thresholding has been introduced by

Cai and Silverman in mathematical statistics [17, 18, 16] to improve the asymptotic decay of

diagonal thresholding estimators. For audio time-frequency denoising, we show that block

thresholding regularizes the estimate and is thus effective in musical noise reduction. Block

parameters are automatically adjusted by minimizing a Stein estimator of the risk [185],

which is calculated analytically from the noisy signal values. Numerical experiments show

that this new adaptive estimator is robust to signal type variations and improves the SNR

and the perceived quality with respect to state of the art audio denoising algorithms.

The Chapter first reviews the state of the art time-frequency audio denoising algorithms

by emphasizing the difference between diagonal and non-diagonal methods. Section 2.3

introduces time-frequency block thresholding and computes a Stein unbiased estimate of

the resulting risk to adjust automatically the block parameters. Numerical experiments

and comparisons are presented in Section 2.4, with objective and subjective measures.
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2.2 State of the Art

2.2.1 Time-frequency Audio Denoising

Time-frequency audio-denoising procedures compute a short-time Fourier transform

or a wavelet transform or a wavelet packet transform of the noisy signal, and processes

the resulting coefficients to attenuate the noise. These representations reveal the time-

frequency signal structures that can be discriminated from the noise. We concentrate on the

coefficient processing as opposed to the choice of representations. Numerical experiments

are performed with short-time Fourier transforms that are most commonly used in audio

processing.

The audio signal f is contaminated by a noise w that is often modeled as a zero mean

Gaussian process independent of f :

y[n] = f [n] + w[n], n = 0, 1, . . . , N − 1. (2.1)

A time-frequency transform decomposes the audio signal y over a family of time-frequency

atoms {gl,k}l,k where l and k are the time and frequency (or scale) localization indices. The

resulting coefficients shall be written:

Y [l, k] = 〈y, gl,k〉 =
N−1∑
n=0

y[n] g∗l,k[n] .

where ∗ denotes the conjugate. These transforms define a complete and often redundant

signal representation. In this Chapter we shall suppose that these time-frequency atoms

define a tight frame [40, 126], which means that there exists A > 0 such that

‖y‖2 =
1

A

∑
l,k

|〈y, gl,k〉|2.

This implies a simple reconstruction formula

y[n] =
1

A

∑
l,k

Y [l, k] gl,k[n].
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The constant A is a redundancy factor and if A = 1 then a tight frame is an orthogonal

basis. A tight frame behaves like a union of A orthogonal bases.

A frame representation provides an energy control. The redundancy implies that a

signal f has a non-unique way to be reconstructed from a tight frame representation: f [n] =

1
A

∑
l,k C[l, k] gl,k[n], but all such reconstructions satisfy

‖f‖2 ≤ 1

A

∑
l,k

|C[l, k]|2 , (2.2)

with an equality if C[l, k] = 〈f, gl,k〉,∀l, k.

Short-time Fourier atoms can be written: gl,k[n] = s[n− lu] exp
(

i2πkn
K

)
, where s[n] is a

time window of support size K, which is shifted with a step u ≤ K. l and k are respectively

the integer time and frequency indices with 0 ≤ l < N/u and 0 ≤ k < K. In this Chapter,

s[n] is the square root of a Hanning window and u = K/2 so one can verify that the resulting

window Fourier atoms {gl,k}l,k define a tight frame with A = 2.

A denoising algorithm modifies time-frequency coefficients by multiplying each of them

by an attenuation factor a[l, k] to attenuate the noise component. The resulting “denoised”

signal estimator is:

f̂ [n] =
1

A

∑
l,k

F̂ [l, k] gl,k[n] =
1

A

∑
l,k

a[l, k]Y [l, k] gl,k[n] . (2.3)

Time-frequency denoising algorithms differ through the calculation of the attenuation fac-

tors a[l, k]. The noise coefficient variance

σ2[l, k] = E{|〈w, gl,k〉|2}

is supposed to be known or estimated with methods such as [34, 49, 132]. If the noise is

stationary, which is often the case, then the noise variance does not depend upon time:

σ2[l, k] = σ2[k].
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2.2.2 Diagonal Estimation

Simple time-frequency denoising algorithms compute each attenuation factor a[l, k]

only from the corresponding noisy coefficient Y [l, k] and are thus called diagonal estimators.

These algorithms have a limited performance and produce a musical noise.

To minimize an upper bound of the quadratic estimation risk

r = E{‖f − f̂‖2} ≤ 1

A

∑
l,k

E{|F [l, k] − F̂ [l, k]|2}, (2.4)

(2.4) being a consequence of (2.2), one can verify [49] that the optimal attenuation factor is

a[l, k] = 1 − 1

ξ[l, k] + 1
(2.5)

where ξ[l, k] = F 2[l, k]/σ2[l, k] is the a priori SNR. The resulting risk lower bound, also

called oracle risk ro, is

r0 ≤ 1

A
Ro where Ro =

∑
l,k

|F [l, k]|2σ2[l, k]

|F [l, k]|2 + σ2[l, k]
. (2.6)

This lower bound cannot be reached because the “oracle” attenuation factor (2.5) depends

upon the a priori SNR ξ[l, k] which is unknown. It is thus necessary to estimate this SNR.

Diagonal estimators of the SNR ξ[l, k] are computed from the a posteriori SNR defined

by γ[l, k] = |Y [l, k]|2/σ2[l, k]. One can verify that

ξ̂[l, k] = γ[l, k] − 1 (2.7)

is an unbiased estimator. Inserting this estimator in the oracle formula (2.5) defines the

empirical Wiener estimator [110, 139]

a[l, k] =

(
1 − 1

ξ̂[l, k] + 1

)
+

(2.8)

with the notation (z)+ = max(z, 0). Variants of this empirical Wiener are obtained by

minimizing a sum of signal distortion and residual noise energy [56, 53, 87, 122] or by

computing a maximum likelihood estimate [110, 139, 214].
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Power subtraction estimators [10, 11, 110, 178, 183] generalize the empirical Wiener

attenuation rule:

a[l, k] =

⎛⎝1 − λ

[
1

ξ̂[l, k] + 1

]β1
⎞⎠β2

+

(2.9)

where β1, β2 ≥ 0 and λ ≥ 1 is an over-subtraction factor to compensate variation of noise

amplitude.

Following the statistical work of Donoho and Johnstone [49], thresholding estimators

have also been studied for audio noise removal. A hard thresholding [60, 95, 102, 200]

either retains or sets to zero each noisy coefficient with

a[l, k] = 1{ξ̂[l,k]+1>λ2}. (2.10)

Soft-thresholding estimator [24, 88, 104, 176] is a special case of power subtraction (2.9)

with β1 = 1/2, β2 = 1. Donoho and Johnstone have proved that for Gaussian white noises,

the quadratic risk of thresholding estimators is close to the oracle lower bound [49].

The attenuation factor a[l, k] of these diagonal estimators only depends upon Y [l, k]

with no time-frequency regularization. The resulting attenuated coefficients a[l, k]Y [l, k]

thus lack of time-frequency regularity. It produces isolated time-frequency coefficients which

restore isolated time-frequency structures that are perceived as a musical noise. Figure 2.1

shows the denoising of a short recording of the Mozart oboe concerto with an additive

Gaussian white noise. Figure 2.1(a) and 2.1(b) show respectively the log spectrograms

log |F [l, k]| and log |Y [l, k]| of the original signal f and its noisy version y. Figure 2.1(c)

displays a power subtraction attenuation map a[l, k], with black points corresponding to

values close to 1. The zoom in Figure 2.1(c’) shows that this attenuation map contains many

isolated coefficients close to 1 (black points). These isolated coefficients restore isolated

windowed Fourier vectors gl,k[n] that produce a musical noise.
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Figure 2.1: (a),(b): Log-spectrograms of the original and noisy “Mozart” signals. (c),(d):
attenuation coefficients calculated with a power subtraction and a block thresholding. Black
pixels correspond to 1 and white to 0. (a’)(b’)(c’)(d’): zooms over rectangular regions
indicated in (a)(b)(c)(d).
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2.2.3 Non-diagonal Estimation

To reduce musical noise as well as the estimation risk, several authors have proposed

to estimate the a priori SNR ξ[l, k] with a time-frequency regularization of the a posteriori

SNR γ[l, k]. The resulting attenuation factors a[l, k] thus depend upon the data values

Y [l′, k′] for (l′, k′) in a whole neighborhood of (l, k) and the resulting estimator f̂ [n] =

1
A

∑
l,k a[l, k]Y [l, k] gl,k[n] is said to be non-diagonal.

In their pioneer paper Ephraim and Malah [54] have introduced a decision-directed

SNR estimator obtained with a first order recursive time filtering:

ξ̂[l, k] = α ξ̃[l − 1, k] + (1 − α) (γ[l, k] − 1)+, (2.11)

where α ∈ [0, 1] is a recursive filter parameter and ξ̃[l − 1, k] = |F̂ [l − 1, k]|2/σ2[l, k] is an

empirical SNR estimate of F [l − 1, k] based on the previously computed estimate. This

decision-directed SNR estimator has been applied with various attenuation rules such as

empirical Wiener estimator (2.8) [32], Ephraim and Malah’s minimum mean-square error

spectral amplitude (MMSE-SA) [54], log spectral amplitude estimator (MMSE-LSA) [55]

and Wolfe and Godsill’s minimum mean-square error spectral power estimator (MMSE-

SP) [211] that are derived from a Bayesian formulation using a Gaussian speech model [36,

33, 39, 54, 55, 95, 124], as well as Martin’s MMSE estimators using a Gamma speech

model [133]. These work clearly showed that the regularization of the SNR estimation

reduces musical noise as well as the estimation risk r = E{‖f̂ − f‖2}.

Cohen [35] improved the decision-directed SNR estimator by combining a causal re-

cursive temporal filter with a noncausal compactly supported time-frequency filter to get a

first SNR estimation. He then refines this estimation in a Bayesian formulation by comput-

ing a new SNR estimation using the MMSE-SP attenuation rule [211] from the first SNR

estimate. This noncausal a priori SNR estimator has been combined with attenuation rules
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derived from Gaussian [35, 36], Gamma and Laplacian speech models [37]. Other SNR

estimators have been proposed by Cohen [38] with generalized autoregressive conditional

heteroscedasticity (GARCH), applied with MMSE-LSA attenuation rules of Gamma and

Laplacian speech models [38].

Matz and Hlawatsch have also proposed to estimate the SNR with a rectangular time-

frequency filter and to use it together with the empirical Wiener estimator (2.8) [137]. In

one example, they showed a noticeable performance gain with respect to a diagonal SNR

estimation. The same non-diagonal SNR estimation has been applied in [138] where the

authors automatically adapted the size of the short-time Fourier windows to the signal

properties.

Thresholding estimators [49] have also been studied with time-regularized thresholds

[77, 121], which are indirectly based on non-diagonal SNR estimations ξ̂[l, k]. Such thresh-

olds can further be adapted to a detection of speech presence [5, 27, 188].

Non-diagonal estimators clearly outperform diagonal estimators but depend upon reg-

ularization filtering parameters. Large regularization filters reduce the noise energy but

introduce more signal distortion [22, 36, 54, 52]. It is desirable that filter parameters are

adjusted depending upon the nature of audio signals. In practice, however, they are selected

empirically [22, 35, 36, 54, 55]. Moreover, the attenuation rules and the a priori SNR esti-

mators that are derived with a Bayesian approach [35, 37, 36, 38, 33, 39, 54, 55, 95, 124]

model audio signals with Gaussian, Gamma or Laplacian processes. Although such models

are often appropriate for speech, they do not take into account the complexity of other

audio signals such as music, that include strong attacks.
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2.3 Time-Frequency Block Thresholding

Block thresholding was introduced in statistics by Cai and Silverman [17, 18, 16] and

studied by Hall et al. [82, 81, 83] to obtain nearly minimax signal estimators. The “p-point

uncertainty model” proposed by Matz and Hlawatsch [137] also led to a block thresholding

estimator with fixed parameters that are chosen empirically. For audio signal denoising, we

describe an adaptive block thresholding non-diagonal estimator that automatically adjusts

all parameters. It relies on the ability to compute an estimate of the risk, with no prior

stochastic audio signal model, which makes this approach particularly robust.

2.3.1 Block Thresholding Algorithm

A time-frequency block thresholding estimator regularizes power subtraction estima-

tion (2.9) by calculating a single attenuation factor over time-frequency blocks. The time-

frequency plane {l, k} is segmented in I blocks Bi whose shape may be chosen arbitrarily.

The signal estimator f̂ is calculated from the noisy data y with a constant attenuation

factor ai over each block Bi

f̂ [n] =
1

A

I∑
i=1

∑
(l,k)∈Bi

ai Y [l, k] gl,k[n]. (2.12)

To understand how to compute each ai, one relates the risk r = E{‖f − f̂‖2} to the

frame energy conservation (2.2) and obtains

r = E{‖f − f̂‖2} ≤ 1

A

I∑
i=1

∑
(l,k)∈BK

E{|aiY [l, k] − F [l, k]|2}. (2.13)

Since Y [l, k] = F [l, k] + W [l, k] one can verify that the upper bound of (2.13) is minimized

by choosing

ai = 1 − 1

ξi + 1
(2.14)
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where ξi = F 2
i /σ2

i is the average a priori SNR in Bi. It is calculated from

F 2
i =

1

B#
i

∑
(l,k)∈Bi

|F [l, k]|2 and σ2
i =

1

B#
i

∑
(l,k)∈Bi

σ2[l, k] ,

which are the average signal energy and noise energy in Bi, and B#
i is the number of

coefficients (l, k) ∈ Bi. The resulting oracle block risk rbo satisfies

rbo ≤ 1

A
Rbo where Rbo =

I∑
i=1

B#
i

F 2
i σ2

i

F 2
i + σ2

i

. (2.15)

The oracle block attenuation coefficients ai in (2.14) can not be calculated because

the a priori SNR ξi is unknown. Cai and Silverman [17] introduced block thresholding

estimators that estimate the SNR over each Bi by averaging the noisy signal energy:

ξ̂i =
Y 2

i

σ2
i

− 1 (2.16)

where

Y 2
i =

1

B#
i

∑
(l,k)∈Bi

|Y [l, k]|2 .

Observe that if σ[l, k] = σi for all (l, k) ∈ Bi then ξ̂i is an unbiased estimator of ξi. The

resulting attenuation factor ai is computed with a power subtraction estimator (2.9)

ai =

(
1 − λ

ξ̂i + 1

)
+

. (2.17)

A block thresholding estimator can thus be interpreted as a non-diagonal estimator

derived from averaged SNR estimations over blocks. Each attenuation factor is calculated

from all coefficients in each block, which regularizes the time-frequency coefficient esti-

mation. Fig 2.1(d) displays a block thresholding attenuation map ai with black points

corresponding to values close to 1. The zoom in Fig 2.1(d’) shows that non-diagonal block

thresholding attenuation factors are much more regular than the diagonal power subtrac-

tion attenuation factors in Fig 2.1(c’) and they do not keep isolated points responsible for

musical noise.
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2.3.2 Block Thresholding Risk and Choice of λ

An upper bound of the risk of the block thresholding estimator is computed by ana-

lyzing separately the bias and variance terms. Observe that the upper bound of the oracle

risk rbo in (2.15) with blocks is always larger than that of the oracle risk ro in (2.6) without

blocks, because the former is obtained through the same minimization but with less param-

eters as attenuation factors remain constant over each block. A direct calculation shows

that

Rbo − Ro =
I∑

i=1

∑
(l,k)∈Bi

ξiξ[l, k](σ2
i − σ2[l, k]) + (F 2

i − |F [l, k]|2)
(ξi + 1)(ξ[l, k] + 1)

≥ 0. (2.18)

Rbo is close to Ro if both the noise and the signal coefficients have little variation in each

block. This bias term is thus reduced by choosing the blocks so that in each block Bi either

(i) F [l, k] and σ[l, k] vary little; or (ii) ξ[l, k] 
 1 and σ[l, k] varies little; or (iii) ξ[l, k] � 1

and F [l, k] varies little.

Block thresholding (2.17) approximates the oracle block attenuation (2.14) by replacing

ξi with an estimate ξ̂i in (2.16) and by setting an over-subtraction factor λ ≥ 1 to control

the variance term of risk due to the noise variation. If the noise w is a Gaussian white noise,

then the resulting risk r = E{‖f − f̂‖2} can be shown to be close to the oracle risk (2.15).

The average noise energy over a block Bi is

W 2
i =

1

B#
i

∑
(l,k)∈Bi

|W [l, k]|2. (2.19)

If the frame is an orthogonal basis, in the particular case where all blocks Bi have the same

size B# and the noise is Gaussian white noise with variance σ2 (hence W 2
i = W 2) then

Cai [17] proved that

r = E{‖f̂ − f‖2} ≤ 2λRbo + 4Nσ2Prob{W 2 > λσ2}, (2.20)

where Prob{} is the probability measure. We have mentioned that a tight frame behaves

very similarly to a union of A orthogonal bases. Therefore the oracle inequality with a
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frame representation holds as well:

r = E{‖f̂ − f‖2} ≤ 2λ

A
Rbo +

4M

A
σ2Prob{W 2 > λσ2}, (2.21)

where M ≥ N is the number of vectors gl,k in the frame. For the window Fourier frame

used in this Chapter, M = 2N and A = 2.

The second term 4Mσ2Prob{W 2 > λσ2} is a variance term corresponding to a prob-

ability of keeping pure noise coefficients, i.e., f is zero (y = w) and ai �= 0 (c.f. (2.17)).

Prob{W 2 > λσ2} is the probability to keep a residual noise. The oracle risk and the variance

terms in (2.21) are competing. When λ increases the first term increases and the variance

term decreases. Similarly, when the block size B# increases the oracle risk Rbo increases

whereas the variance decreases. Adjusting λ and the block sizes B# can be interpreted as

an optimization between the bias and the variance of our block thresholding estimator. The

parameter λ is set depending upon B# by adjusting the residual noise probability

Prob{W 2 > λσ2} = δ. (2.22)

The probability δ is a perceptual parameter. We set δ = 0.1% in (2.22) as our psychoacoustic

experiments show that with a residual noise probability δ ≈ 0.1%, musical noise is hardly

perceptible.

Let B#
i = Li×Wi be a rectangular block size, where Li ≥ 2 and Wi ≥ 2 are respectively

the block length in time and the block width in frequency (the unit being the time-frequency

index in the window Fourier transform). One can verify that with half overlapping Hanning

windows the average noise energy W 2 follows approximatively a χ2 distribution degrees with

B#
i degree of freedom. Thus solving λ in (2.22) amounts to looking up a χ2 table. Table 2.1

gives values for a frequency width Wi ≥ 2. Due to discretization effects, λ takes nearly the

same values for Wi = 1 and Wi = 2. We thus compute λ for Wi = 1 by multiplying B#
i by
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2 and looking at Table 2.1. That (2.22) holds with λ shown in Table 2.1 can also be verified

by Monte Carlo simulation.

B#
i 4 8 16 32 64 128

λ 4.7 3.5 2.5 2.0 1.8 1.5

Table 2.1: Thresholding level λ calculated for different block size B# with δ = 0.1%.

2.3.3 Adaptive Block Thresholding

A block thresholding segments the time-frequency plane in disjoint rectangular blocks

of length Li in time and width Wi in frequency. In the following by “block size” we mean

a choice of block shapes and sizes among a collection of possibilities. The adaptive block

thresholding chooses the sizes by minimizing an estimate of the risk.

The risk E{‖f − f̂‖2} cannot be calculated since f is unknown, but it can be estimated

with a Stein risk estimate [185]. Best block sizes are computed by minimizing this estimated

risk. We saw in (2.13) that the block thresholding risk satisfies

r = E{‖f − f̂‖2} ≤ 1

A

I∑
i=1

∑
(l,k)∈Bi

E{|aiY [l, k] − F [l, k]|2}. (2.23)

Since Y [l, k] = F [l, k] + W [l, k] and W [l, k] has a zero mean, F [l, k] is the mean of Y [l, k].

To estimate the block thresholding risk Cai [16] uses the Stein estimator of the risk when

computing the mean of a random vector, which is given by Stein theorem [185].

Theorem (Stein Unbiased Risk Estimate SURE). Let Y = (Y1, . . . , Yp) be a normal random

vector with the identity as covariance matrix and mean F = (F1, . . . , Fp). Let Y+h(Y) be an

estimator of F, where h = (h1, . . . , hp) : Rp → Rp almost differentiable (hj : Rp → R1,∀j).

Define � · h =
∑p

j=1
∂

∂Yj
hj . If E

{∑p
j=1 | ∂

∂Yj
hj(Y)|

}
< ∞, then

R = E‖Y + h(Y) − F‖2 = p + E
{
‖h(Y)‖2 + 2� · h(Y)

}
. (2.24)
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So

R̂ = p + ‖h(Y)‖2
2 + 2� · h(Y) (2.25)

is an unbiased estimator of the risk R of Y + h(Y), called Stein Unbiased Risk Estima-

tor [185].

An estimation of the risk E{‖f̂ −f‖2} upper bound (2.23) is derived from this theorem

by computing an estimator R̂i of the risk in each block Bi: Ri =
∑

(l,k)∈Bi
E{|F [l, k] −

aiY [l, k]|2}. Over a block Bi, the mean vector Fi = (F [l, k])(l,k)∈Bi
of Yi = (Y [l, k])(l,k)∈Bi

is estimated by F̂i = (F̂ [l, k])(l,k)∈Bi
with F̂i = aiYi = Yi + h(Yi). From the expression

(2.17) of ai we derive that

h(Yi) = −Yi

(
λ

σ2
i

Y
2
i

1
Y

2
i ≥λσ2

i

+ 1
Y

2
i <λσ2

i

)
.

Under the hypothesis that the noise variance remains constant on each block, σ2[l, k] = σ2
i

for (l, k) ∈ Bi, the resulting Stein estimator of the risk Ri =
∑

l,k∈Bi
E{|F [l, k]−aiY [l, k]|2}

is

R̂i = σ2
i

(
B#

i + E
{
‖h(Yi/σi)‖2 + 2� · h(Yi/σi)

})
(2.26)

and a direct calculation shows that

R̂i = σ2
i

(
B#

i +
λ2B#

i − 2λ(B#
i − 2)

Y 2
i /σ2

i

1
Y 2

i ≥λσ2
i

+ B#
i (Y 2

i /σ2
i − 2)1

Y 2
i <λσ2

i

)
. (2.27)

If the noise is Gaussian white and the frame is an orthogonal basis then the noise coeffi-

cients are uncorrelated with same variance and Stein theorem proves that R̂i is an unbiased

risk estimator of the risk Ri. If the noise is not white but stationary then the noise variance

does not change in time. If the blocks Bi are sufficiently narrow in frequency then the noise

variance still remains constant over each block so the risk estimator remains unbiased. We

mentioned that a tight frame behaves very similarly to a union of A orthogonal bases. As
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Figure 2.2: Partition of macroblocks into blocks of different sizes.

a consequence, the theorem result applies approximately and the resulting estimator mains

nearly unbiased.

The adaptive block thresholding groups coefficients in blocks whose sizes are adjusted

to minimize the Stein risk estimate and it attenuates coefficients in those blocks. To reg-

ularize the adaptive segmentation in blocks, the time-frequency plane is first decomposed

in macroblocks Mj, j = 1, 2 . . . , J , as illustrated in Figure 2.2. Each macroblock Mj is

segmented in blocks Bi of same size which means that B#
i = Pj is constant over a mac-

roblock Mj . The Stein risk estimation over Mj is 1
A

∑
i∈Mj

R̂i. Several such segmentations

are possible and we want to choose the one that leads to the smallest risk estimation. The

optimal block size and hence Pj is calculated by choosing the block shape that minimizes∑
i∈Mj

R̂i. Once the block sizes are computed, coefficients in each Bi are attenuated with

(2.17), where λ is calculated with (2.22).

In numerical experiments, each macroblock is segmented with 15 possible block sizes

L × W with a combination of block length L = 8, 4, 2 and block width W = 16, 8, 4, 2, 1.
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The size of macroblocks is set to be equal to the maximum block size 8 × 16. Figure 2.2

illustrates different segmentations of these macroblocks into time-frequency blocks of same

size. Minimizing the estimated risk adapts the blocks to the signal time-frequency prop-

erties. In particular, it eliminates “pre-echo” artifacts on signal onsets and results in less

distortion on signal transients.

Figure2.3(a) zooms on the onset of “Mozart” signal whose log-spectrogram is illustrated

in Fig 2.1(b). The attenuation factors of block thresholding with a fixed block size L = 8

and W = 1 are displayed in Figure2.3(b). At the beginning of the harmonics, blocks of

large attenuation factors spread beyond the onset of the signal. Fig2.3(b’) illustrates the

horizontal blocks at the onsets marked in Figs 2.3(a) and (b). In the time interval where

the blocks exceed the signal onset, moderate attenuation is performed, and since the noise

is not eliminated a transient noise component is heard before the signal beginning. This

can be called as a “pre-echo” artifact. On the other hand, this moderate attenuation in the

blocks that exceeds signal onsets muffles the onsets as well.

In Figs 2.3(c)(c’), the adaptive block method chooses blocks of shorter length L in

the first part of “Mozart”, which hardly exceed the onset of the signal. This reduces

considerably the “pre-echo” artifact. After the onset, the adaptive block method chooses

narrow horizontal blocks, to better capture the harmonic signal structures.

2.3.4 Non-Diagonal Wiener Post-Processing and Masking Noise

Similarly to the bootstrapping algorithm of Cohen [35] which performs a second SNR

estimation from the signal obtained after a first denoising, the block thresholding estimation

is improved by applying a second thresholding estimation. A block-thresholding algorithm

regularizes the time-frequency estimation as compared to a diagonal thresholding, but it

outputs a time-frequency estimation with some block structures as shown in Figure 2.4(b).
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(a) (b) (b’) (c) (c’)

Figure 2.3: Zoom on the onset of “Mozart”. (a): Log-spectrogram. (b): Attenuation
coefficients of a fixed block thresholding. (b’): Block sizes in the time-frequency rectangle
at the signal onset. (c): Attenuation coefficients of an adaptive block thresholding. (c’):
Adapted block sizes at the signal onset.

This first estimation is used as an input to compute a Wiener time-frequency estimation

that takes advantage of the time-frequency regularization provided by the block thresholding

estimation.

Let f̂ be the block thresholding estimation from the noisy data y. Similarly to the

post-processing proposed by Baraniuk for images denoising [76], this first estimation is post-

processed by computing a new attenuation factor using the oracle formula (2.5) calculated

from its time-frequency coefficients F̂ [l, k] = 〈f̂ , gl,k〉:

ã[l, k] =
|F̂ [l, k]|2

|F̂ [l, k]|2 + σ2[l, k]
. (2.28)

This new attenuation factor is applied on the noisy time-frequency coefficients to reconstruct

a second estimator.

f̃ [n] =
1

A

∑
l,k

ã[l, k]Y [l, k] gl,k[n] .

This Wiener estimator is non-diagonal since the attenuation coefficients ã[l, k] depend upon

values of Y [l′, k′] in a time-frequency neighborhood of (l, k). Comparing with Fig 2.4(b),

Fig 2.4(c) shows that the amplitude of the non-diagonal Wiener attenuation factors ã[l, k]

is more regular then the block thresholding attenuation factors and is closer to the oracle
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attenuation (2.5) displayed in Figure 2.4(d). Experiments show that this post-processing

increases the SNR on average by about 0.2 dB and improves the audio quality of denoised

signals.

Retaining a low-amplitude noise is sometimes desirable to mask artifices generated by

an estimation procedure [10, 178]. Following [10], one can retain a masking noise by setting

a floor value to the attenuation factor:

ãM [l, k] = max(ã[l, k], a0) (2.29)

where 0 < a0 � 1 is the minimum attenuation factor of the noise.

(a) (b)

time (ms)

fr
eq

ue
nc

y 
(H

z)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

time (ms)

fr
eq

ue
nc

y 
(H

z)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) (d)

time (ms)

fr
eq

ue
nc

y 
(H

z)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

time (ms)

fr
eq

ue
nc

y 
(H

z)

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 2.4: (a): log-spectrogram of “TIMIT-F”. (b),(c),(d): attenuation coefficients re-
spectively of a block thresholding, of a non-diagonal Wiener estimator, and of an oracle
estimator.
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2.4 Experiments and Results

The experiments presented below have been performed on various types of audio sig-

nals: “Piano” is a simple example that contains a single clear clavier stroke; “Mozart”

is a musical excerpt that contains relatively quick notes played by a solo oboe; “TIMIT-

M” and “TIMIT-F” are respectively male and female utterances taken from the TIMIT

database [72]. “TIMIT-M” and “TIMIT-F” are sampled at 16 kHz whereas all the other

signals are sampled at 11 kHz. They were corrupted by Gaussian white noise of different

amplitude. Short-time Fourier transform with half-overlapping windows were used in the

experiments. These windows are square root of Hanning windows of size 50 ms for “Piano”

and “Mozart” and 20 ms for “TIMIT-M” and “TIMIT-F”.

For each sound, denoising with “partial noise removal” and “maximum noise removal”

were applied: the former retains some low-amplitude residual noise; the latter removes

almost all the original noise.

Block thresholding was configured as described in Sections 2.3.3 and 2.3.4. For partial

noise removal and maximum noise removal, we respectively set a0 ≈ 0.05 (the residual noise

was calibrated to have similar energy for all methods under comparison) and a0 = 0 in

(2.29).

MMSE-LSA attenuation rule [55] of Ephraim and Malah was also used in our evalu-

ation. Combined with the decision-directed a priori SNR estimator (2.11) with α = 0.98

as proposed in [54, 55], this algorithm (referred to as LSA-DD) led to satisfactory results

for partial noise removal. However, it resulted in too much signal distortion for maximum

noise removal as a larger α was configured. Consequently, for this case, we substituted

the decision-directed SNR estimator by the noncausal SNR estimator recommended in [35]

which has been shown more effective in noise reduction. The so-obtained algorithm is
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referred to as LSA-NC.

Power subtraction (2.9) was configured with λ = 5, β1 = β2 = 1 as recommended

in [10]. The floor value a0 in (2.29) has the same values as the ones chosen for block

thresholding (a0 ≈ 0.05 for partial noise removal and a0 = 0 for maximum noise removal).

Both objective and subjective evaluations have been performed. The objective mea-

sures are respectively the SNR and the segmental SNR [169] defined as

SNR = 10 log10

∑N−1
n=0 f2[n]∑N−1

n=0 (f [n] − f̂ [n])2
(2.30)

SegSNR =
1

H

H−1∑
l=0

T
(

10 log10

∑S−1
n=0 f2[n + lS/2]∑S−1

n=0(f [n + lS/2] − f̂ [n + lS/2])2

)
(2.31)

where H represents the number of frames in the signal, S is the number of samples per

frame that corresponds to 32 ms, and T (x) = min[max(x,−10), 35] confines the SNR in

each frame to a perceptually meaningful range between 35 dB and -10 dB. Segmental SNR

has been shown to have a higher correlation with perceived quality than SNR does [169].

Table 2.2 compares the SNR and the segmental SNR of the three denoising algorithms

: block thresholding (BT), MMSE-LSA based algorithms (LSA-DD or LSA-NC) and power

substraction (PS). One can observe that the MMSE-LSA based algorithms achieved sys-

tematically a better SNR than the power subtraction method, the average gain being 0.3 dB

for partial noise removal and 1.3 dB for maximum noise removal. Yet another systematic

SNR improvement was achieved by block thresholding over MMSE-LSA, with an average

gain of 0.9 dB for partial noise removal and 0.8 dB for maximum noise removal. With

respect to segmental SNR, though the average gains are smaller, these results are con-

firmed: block thresholding outperformed MMSE-LSA based algorithms which performed

better than power substraction.

The subjective evaluation was performed by a large group of 200 adult listeners. All

subjects claimed to have normal hearing, 151 claimed to listen to music regularly, 58 claimed
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Signal & SNR Partial Noise Removal Maximum Noise Removal

PS LSA-DD BT PS LSA-NC BT

Mozart -2.73 dB 8.68 8.91 11.12 8.75 10.15 11.90

Mozart 3.46 dB 13.01 13.21 14.46 12.92 14.01 14.45

Mozart 9.23 dB 17.17 17.93 18.40 16.98 18.10 18.45

Mozart 14.73 dB 21.11 21.12 22.49 20.87 21.99 22.43

Piano 4.75 dB 17.70 18.24 19.95 18.30 19.45 20.47

TIMIT-M 10.76 dB 18.65 18.84 19.46 18.55 19.16 19.70

TIMIT-F 20.63 dB 25.15 25.21 26.46 24.95 25.88 26.38

Signal & SSNR Partial Noise Removal Maximum Noise Removal

PS LSA-DD BT PS LSA-NC BT

Mozart -5 dB 6.32 7.17 8.53 6.80 8.23 9.77

Mozart 0 dB 10.56 11.61 12.12 10.76 12.14 12.24

Mozart 5 dB 14.79 15.87 15.92 14.79 16.01 16.14

Mozart 10 dB 18.68 19.31 19.96 18.52 19.78 19.90

Piano -5 dB 5.74 6.70 7.53 6.77 8.42 8.94

TIMIT-M 0 dB 9.16 9.97 9.98 9.61 10.85 11.02

TIMIT-F 10 dB 15.04 15.70 16.51 14.88 15.67 16.45

Table 2.2: Comparison of Power Subtraction (PS), Ephraim and Malah (LSA-DD or LSA-
NC) and Block Thresholding (BT) algorithms, on 4 types of noisy signals with different
noise levels. The top table gives the SNR values for partial noise removal and maximum
noise removal, and the bottom table gives the segmental SNR values.

to have some general knowledge on signal processing and 26 claimed to have had experience

using audio processing softwares. The authors were obviously excluded from this test.

Each subject participated in an evaluation of successively the 7 sounds mentioned

above. The evaluation of each sound consisted in 3 consecutive steps: partial noise removal,

maximum noise removal and a comparison between these two noise removals. For the first

two steps, each subject had to rank the 3 denoising results (block thresholding, MMSE-LSA

and power subtraction) according to their global appreciation of the sounds. Let us note

that they had the possibility to give a same rank to several methods each time. In the third

step, each subject had to select between the 2 previously top ranked denoising results (i.e.,

the top ranked partial denoising result and the top ranked maximum denoising result) the
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one they appreciated the most. In all cases, the subjects could listen to the denoising results

as well as to the noisy sounds as many times as they wished. The order of the sounds and

of the denoising results were randomized in order to minimize any bias. The overall test for

a single subject lasted for about 15 minutes.

The subjective evaluation showed clearly that the power subtraction algorithm is by

far the least favored as it obtained less than 4% top ranking votes for each of the sounds.

The major complaint the subjects had about it was the strong musical noise artifact.

Signal & SSNR Partial Noise Removal Maximum Noise Removal

BT LSA-DD EQU. BT LSA-NC EQU.

Mozart -5 dB 47.0 26.0 27.0 80.1 10.5 9.4

Mozart 0 dB 47.3 21.6 31.1 44.1 37.5 18.4

Mozart 5 dB 53.2 22.8 24.0 40.4 38.7 20.9

Mozart 10 dB 54.7 12.0 33.3 41.3 24.7 34.0

Piano -5 dB 54.7 29.3 16.0 70.0 12.1 17.9

TIMIT-M 0 dB 61.9 10.7 27.4 39.4 38.5 22.1

TIMIT-F 10 dB 34.5 30.9 34.5 37.0 26.0 37.0

Music 51.4 22.3 26.3 55.2 24.7 20.1
95% CI (48.2, 54.5) (19.8, 25.0) (23.6, 29.1) (52.1, 58.3) (22.1, 27.5) (17.7, 22.7)

Speech 48.2 20.8 31.0 38.2 32.3 29.5
95% CI (43.2, 53.2) (16.9, 25.1) (26.5, 35.8) (33.4, 43.1) (27.7, 37.1) (25.1, 34.2)

Table 2.3: Subjective comparison between Block Thresholding (BT) and Ephraim and
Malah (LSA-DD and LSA-NC), for partial noise removal and maximum noise removal.
The columns BT and LSA give the percentage of listeners that preferred the corresponding
algorithm over the other one, for each noisy signal. The column EQU. gives the percentage of
listeners for whom the quality of both algorithms is equal. The last two table rows aggregate
the results for all Music signals (Mozart and Piano) and all Speech signals (TIMIT-M and
TIMIT-F), and they give the 95% confidence interval (CI) derived from the number of
listeners.

Table 2.3 concentrates on the comparison between block thresholding and the MMSE-

LSA algorithms. Confirming the previous (segmented) SNR results, in the case of musical

sounds, the subjects showed a clear preference for block thresholding over MMSE-LSA for

both partial noise removal and maximum noise removal. Again, for the male speech sound
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TIMIT-M, block thresholding is very clearly preferred over the MMSE-LSA algorithm in

the case of partial noise removal. Besides, a slight preference for block thresholding is

shown for the female sound TIMIT-F in the case of maximum noise removal. On the other

speech sounds (TIMIT-M with maximum noise removal and TIMIT-M with partial noise

removal), the results do not show any significant difference. Table 2.3 also displays the

95% confidence intervals of the overall votes on music and speech signals. For example,

the statistics show that one is 95% confident that between 48.2% and 54.5% of subjects

favor block thresholding for music signals in the case of partial noise removal. These small

confidence intervals, nonoverlapping in most cases, demonstrate the high reliability of this

subjective evaluation and confirm the preference for block thresholding.

For musical sounds, one can explain the improvement of block thresholding over MMSE-

LSA based algorithms as follow. For partial noise removal, the residual noise is more

uniform, closer to a white noise and less “metallic” than the one obtained by LSA-DD. For

maximum noise removal, block thresholding produces less musical noise than LSA-NC, and

it results in less distortion on signal transients. With the Piano sound for instance, which

corresponds to one of the highest vote in favor of block thresholding, the clavier stroke is

much less muffled by block thresholding than by LSA-NC, due to its adaptive block size

adjustment as explained in Section 2.3.3. These improvements are not significant enough

for speech sounds (except for the partial noise removal of the male voice TIMIT-M for which

the vote is clearly in favor of block thresholding) to lead to a clear distinction between the

two algorithms.

Finally, the third step of the evaluation showed that maximum noise removal was most

of the time preferred to partial noise removal. A little musical noise does not seem to be as

annoying as a small residual noise. However, such preference is much stronger for musical

sounds (99.2% v.s. 9.8%) than for speech sounds (71.7% v.s. 29.3%) for which intelligibility
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and a clear articulation (i.e., clear transients) appear to be one of the main criteria.

Mozart W = 16 W = 8 W = 4 W = 2 W = 1

L = 8 25.3 10.4 5.2 4.0 11.5

L = 4 10.7 4.2 3.0 1.9 3.6

L = 2 5.1 2.5 2.2 3.0 7.3

TIMIT-M W = 16 W = 8 W = 4 W = 2 W = 1

L = 8 26.4 9.1 6.3 1.7 3.9

L = 4 12.3 7.8 1.5 1.3 2.4

L = 2 11.9 6.7 3.0 1.7 3.9

Table 2.4: Percentage of the different block size selected by the block thresholding algorithm
for Mozart (top) and TIMIT-M (bottom).

The block size distribution presented in Table 2.4 shows the adaptivity of the block

thresholding algorithm. The largest block size L × W = 8 × 16 is most frequently selected

because it is optimal for large time-frequency regions where the signal energy is uniformly

dominated by the noise energy. The blocks of size 8 × 1 having a narrow frequency width

occur relatively often for musical signals such as Mozart recording because it matches their

narrow frequency harmonics. On the contrary, the speech signal TIMIT-M privileges 2×16

blocks having a narrow time width because speech signals contain many short transients.

As expected, the adaptive window size adjustment follows the signal time-frequency energy

distribution properties.



Chapter 3

Image Denoising by Block Pursuit

Thresholding

In Chapter 2, time-frequency block thresholding with rectangular blocks is introduced

for audio noise removal. Block size is adjusted by the Stein risk estimator [185] to better fit

the audio time-frequency properties. However, as block orientation is not adaptive, blocks

cannot precisely adapt to image geometry.

This Chapter generalizes block thresholding by introducing a block pursuit procedure

that calculates a covering of the image sparse representation coefficients with oriented blocks

selected from a block dictionary appropriately designed. The selected blocks follow the

image geometry. Block thresholding with these blocks reduces the block thresholding risk.

3.1 Introduction

Numerical images are always contaminated by noise, CCD noise for example. Image

denoising aims at removing the noise while retaining the underlying image content.

Similar to audio time-frequency block denoising, block thresholding techniques have

51
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been investigated for image denoising [126, 25, 30]. The authors proposed to group image

wavelet coefficients in square blocks and apply block attenuation rules, and showed im-

provements over diagonal estimations [49]. Sparse image representations such as wavelet

representations, on the other hand, contain geometrical structures much more complex than

those in audio time-frequency representations that are mainly horizontal and vertical lines.

In consequence, square or rectangular blocks are inadequate to fit image geometry, which

increases the risk of the resulting block thresholding estimators. Oriented blocks adapted to

image geometry are required for improvement. Calculating adaptive oriented blocks that fit

image geometry is more difficult than adjusting the rectangular block size, which has been

solved by using the Stein risk estimator [185] in audio time-frequency block denoising [219].

This Chapter generalizes the block thresholding by introducing a block pursuit proce-

dure that calculates a covering of the image sparse representation coefficients with blocks

selected from a block dictionary appropriately designed. For image denoising applications,

the block pursuit algorithm calculates blocks that follow the image geometry. The resulting

block pursuit thresholding improves the PSNR with respect to block thresholding.

We concentrate on coefficient processing as opposed to the choice of signal represen-

tations. Numerical experiments are performed with translation-invariant wavelets most

commonly used in image denoising. Translation-invariant wavelet transform is recalled in

Section 3.2. Section 3.3 reviews briefly the block thresholding estimators. The block pursuit

algorithm and a fast implementation are described in Section 3.4. Image denoising by block

pursuit thresholding is presented in Section 3.5.
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3.2 Wavelet Representations

Wavelet dictionaries provide sparse representations for most natural images. A two-

dimensional separable translation dyadic wavelet tight frames [126]

{ψd
j,u, φJ,u}1≤d≤3, 1≤j≤J, 0≤u≤N−1

is obtained by translating and dilating wavelet functions of three directions {ψd}1≤d≤3 and

a scaling function φ, whose Fourier transform is shown in Figure 3.1:

ψd
j,u[n] =

1

2j
ψd

(
n − u

2j

)
and φJ,u[n] =

1

2J
φ

(
n − u

2J

)
.

Figure 3.1: Fourier transform of a scaling function and 3 wavelet functions.

Figure 3.2 displays the wavelet coefficients Fd and the approximation coefficients F of

an image f

Fd,j [u] = 〈f, ψd
j,u〉 and FJ [u] = 〈f, φJ,u〉.

The wavelet image representation is sparse, as most wavelet coefficients are almost zero (in

gray). A few large coefficients are concentrated along the contours.
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Figure 3.2: First row, from left to right: Image Cameraman and its third-scale translation-
invariant approximation coefficients. From second to fourth row, from left to right. 1st,
2nd and 3rd translation-invariant wavelet coefficients at horizontal, vertical and diagonal
directions. White and black gray-levels represent positive and negative values. Coefficients
in gray are near zero.
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The wavelet tight frame representation satisfies an energy conservation

‖f‖2 =
1

A

⎛⎝ 3∑
d=1

J∑
j=1

N−1∑
u=0

|Fd,j [u]|2 +

N−1∑
u=0

|FJ [u]|2
⎞⎠ ,

where A ≥ 1 is the frame bound of the wavelet dictionary. This implies a simple recon-

struction

f =
1

A

⎛⎝ 3∑
d=1

J∑
j=1

N−1∑
u=0

Fd,j [u]ψd
j,u +

N−1∑
u=0

FJ [u]φJ,u

⎞⎠ .

3.3 Block Thresholding

We recall the main formulas of the block thresholding estimators that have been de-

scribed in Section 2.3. Let y be a noisy image that is the sum of a clean image f and a

Gaussian noise w of zero mean: y[n] = f [n]+w[n], n = 0, . . . , N −1. y is decomposed over

a dictionary of vectors D = {gp}p∈Γ that is supposed to be a tight frame with frame bound

A:

Y [p] = 〈y, gp〉,

which induces the energy conservation

‖y‖2 =
1

A
‖Y ‖2,

and the signal reconstruction

y =
1

A

∑
p∈Γ

Y [p]gp.

The noise coefficient variance is denoted as

|σ[p]|2 = E{|〈w, gp〉|2}.

A block thresholding estimator [17, 18, 16] partitions the coefficients Y [p] in I disjoint

blocks Bi in which indices are grouped together, and multiplies all coefficients within each
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Bi with a same attenuation factor ai

f̂ =
1

A

I∑
i=1

∑
p∈Bi

ai Y [p] gp, (3.1)

where each ai depends on all coefficients Y [p] for p ∈ Bi.

Cai [17, 18] has introduced a soft block thresholding estimator

ai =

(
1 −

λs ‖σ‖2
Bi

‖Y ‖2
Bi

)
+

, (3.2)

and a hard block thresholding estimator

ai =

⎧⎪⎨⎪⎩
1 if ‖Y ‖2

Bi
≥ λh‖σ‖2

Bi

0 if ‖Y ‖2
Bi

< λh‖σ‖2
Bi

. (3.3)

where

‖Y ‖2
Bi

=
∑
p∈Bi

|Y [p]|2 and ‖σ‖2
Bi

=
∑
p∈Bi

|σ[p]|2.

are the empirical signal energy and the noise energy in the block Bi, λs and λh are soft

and hard thresholding parameters. For Gaussian white noises, Cai has proved that the

quadratic risk of block thresholding estimators is close to the oracle block thresholding risk

lower bound [17].

As explained in Chapter 2, the block thresholding estimators have small risk if in each

block Bi the coefficients are either far above or far below the noise amplitude

∀p ∈ Bi, |F [p]| 
 σ[p] or ∀p ∈ Bi, |F [p]| � σ[p]. (3.4)

This implies that to reduce the block thresholding risk, a block should not mix the coef-

ficients that have signal-to-noise ratio (SNR) ξ[p] = |F [p]|2/σ2[p] 
 1 and � 1. In other

words, it requires that image structures and pure noise coefficients are separated in dif-

ferent blocks. The blocks should therefore fit signal geometry. While rectangular blocks

approximate sufficiently well geometrical structures in audio signal spectrograms that are



3.4. BLOCK PURSUITS 57

mainly horizontal and vertical lines as shown in Chapter 2, they are not adequate to fit

richer geometry in images. Figure 3.3 illustrates a simple image example with a slanted

contour. Square and rectangular blocks necessarily go across the contour and therefore

mixes coefficients of very different SNR. The block thresholding on these blocks degrades

the contour and/or retains the noise along the contour. Blocks with orientation adapted to

the image geometry are required for improvement.

3.4 Block Pursuits

Images have geometrical regularity. In sparse wavelet representations, large coefficients

concentrate along the contours. As illustrated in Figure 3.4, oriented blocks of different

orientations are required to fit the image geometry, so that (3.4) can be satisfied which

leads to a small block thresholding risk.

More generally, although we work in sparse image representations, coefficients are not

completely decorrelated and present some prior structures. To reduce the block thresholding

risk, a dictionary DB of blocks are constructed to cover the large coefficients on the prior

structures: Each block is set of points whose shape may fit some part of the prior structures.

Covering the large coefficients with a dictionary of blocks is a set covering problem [45]. A

greedy block pursuit algorithm is introduced to calculate this set covering with blocks of

arbitrary shapes.

3.4.1 Block Pursuit Algorithm

The block pursuit algorithm is a greedy procedure that iteratively selects the blocks

from a dictionary DB = {Bk}k one by one in a decreasing order according to the block

energy. All blocks in the dictionary have the same size B# so that the they generate

comparable energy.
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Figure 3.3: From left to right. First row: noisy image y, translation-invariant wavelet
coefficients (1st scale, horizontal band) of noisy image Y and of clean image F . Second row:
attenuation factors of hard thresholding (HT), block thresholding (BT) and block pursuit
thresholding (BPT). Gray-level from white to black: value from 0 to 1. Third row: denoised
wavelet coefficients (1st scale, horizontal band) by HT, BT and BPT. Fourth row: denoised
image f̂ with HT (39.50 dB), BT (39.39 dB) and BPT (40.76 dB). BPT adapts the image
geometry and therefore restores better the contour and removes more efficiently the noise
along the contour.
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Figure 3.4: Adaptive oriented blocks are required to fit the image geometry.

The block pursuit algorithm is initialized with R0Y = Y . At the iteration m, it selects

the block that yields the largest energy

‖RmY ‖2
Bkm

= max
k

‖RmY ‖2
Bk

, (3.5)

where

‖RmY ‖2
Bk

=
∑
p∈Bk

|RmY [p]|2, ∀k (3.6)

is the energy of the coefficients in the block Bk. The non-zero coefficients in the selected

block Bkm
are set to zero:

Rm+1Y [p] =

⎧⎪⎨⎪⎩
0 if p ∈ Bkm

and RmY [p] �= 0

RmY [p] otherwise

. (3.7)

Inserting (3.7) in (3.6) yields

‖Rm+1Y ‖2
Bk

= ‖RmY ‖2
Bk

−
∑

p∈Bk∩Bkm

|RmY [p]|2, ∀k. (3.8)

Block pursuit converges in M ≤ N iterations as in each iteration at least one coefficient is

set to 0.
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For denoising applications, the block pursuit procedure stops when the residual coef-

ficients RM−1Y have energy comparable to noise. The coefficients covered by the selected

blocks {Bkm
}0≤m<M correspond to image geometry and are thus retained, which amounts

to a hard block thresholding (3.3). Assume that the noise is Gaussian white with variance

σ2. The hard block thresholding (3.3) implies that the block pursuit procedure should stop

at the M -th iteration when

‖RM−1Y ‖2
BkM−1

≤ λhB#
kM−1

σ2, (3.9)

where B#
kM−1

is the number of non-zero coefficients RM−1Y in BkM−1
and λh is the hard

block thresholding parameter. The threshold λh trades off between noise removal and

signal restoration. Indeed when the underlying signal coefficients are zero, the block energy

‖RM−1Y ‖2
BkM−1

follows approximately a χ2 distribution with B#
kM−1

degrees of freedom.

Increasing λh reduces the probability to keep the residual noise, but may result in the

removal of the coefficients due to the image geometry. The coefficients that are not covered

by the selected blocks have energy comparable to noise and are attenuated with the more

conservative standard soft block thresholding (3.2).

Observe that if the transform coefficients Y [p] = 〈y, φp〉 are calculated with an or-

thogonal basis D = {gp}p=1,...,N , then the block pursuit can be interpreted as an orthogonal

space matching pursuit that decomposes y with a dictionary of vector spaces DW = {Wk}k,

where the vector space Wk is generated by a family of vectors {gp}p∈Bk
.

3.4.2 Fast Implementation

To calculate the complexity of the block pursuit algorithm, let us define L[p] the num-

ber of blocks that cover the coefficient Y [p]. As each block covers B# coefficients and in

total
∑N

p=1 L[p] coefficient-times are covered, the number of blocks in the dictionary DB
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is K =
∑N

p=1 L[p]/B#. Observe that the block energy update (3.8) that has complexity

O
(∑

p∈Bkm ,RmY [p] �=0 L[p]
)

is more computationally efficient than recalculating the block en-

ergy with (3.6) in O
(∑N

p=1 L[p]
)
. The block pursuit procedure is thus initialized with (3.6)

and calculates at each iteration with two types of operations: one maximum operation (3.5)

and
∑

p∈Bkm ,RmY [p] �=0 L[p] times data access for the energy update (3.8).

The block pursuit procedure can be implemented with different data structures. We will

see that a heap data structure provides faster implementation than conventional unordered

data array.

With an unordered data array of size K, calculating the maximum element requires

complexity O(K) and reading and writing an element has complexity O(1). Therefore for

one iteration, (3.5) and (3.8) have respectively complexity O(K) and O
(∑

p∈Bkm ,RmY [p] �=0 L[p]
)
.

The part with O(K) due to the maximum operation (3.5) typically dominates the complex-

ity. To see this, let us take a typical example where all the points are covered by a constant

number of L[p] = L blocks. As the image size N is typically bigger than the square of block

size B#, O(K) = O(NL/B#) > O
(∑

p∈Bkm ,RmY [p] �=0 L[p]
)

= O(LB#). The complexity

per iteration of the unordered array implementation is thus O(K).

Figure 3.5: A heap viewed as a binary tree (left) and an array (right). The number within
the circle at each node in the tree is the value stored in the node. The number next to the
node is the corresponding index in the array. This figure is adapted from [42].

A heap is a binary tree data structure that satisfies the heap property : For each node
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other than the root, its value is at most the value of its parent [42]. Figure 3.5 shows

a heap example. A heap allows to manage information during the execution of the algo-

rithm [42]. A heap of size K is transferred from an unordered array with complexity O(K).

It returns the maximum element fast in O(1), but requires longer time O(log2 K) to in-

sert and delete an element in order to maintain the heap structure [42]. Using the heap

structure, the complexity of block pursuit is dominated by the energy update (3.8) which

is in O
(
(log2 K)

∑
p∈Bkm ,RmY [p] �=0 L[p]

)
per iteration. With L[p] = L, the complexity for

the first iteration is O
(
(log2 K)LB#

)
. Since more and more residual coefficients RmY [p]

become zero, the complexity per iteration decreases when the number of iteration increases.

Let us compare the complexity of the unordered array and the heap implementa-

tions. The initialization (3.6) is common for the two and is calculated with complex-

ity O
(∑N

p=1 L[p]
)

= O
(
B#K

)
. The unordered array implementation requires O(MK)

for M iterations. As the block size B# is typically much smaller than the number M

of iterations, the overall complexity of the unordered array implementation for M itera-

tions is O(MK). In worse case when M = N , its complexity is O(NK). On the other

hand, the heap implementation requires O(K) to build the heap and its complexity for

M iterations is upper bounded by O
(
(log2 K)MLB#

)
. Since K = NL/B# and typ-

ically N > (B#)2, the heap implementation is typically faster than the unordered ar-

ray implementation. As O
(
(log2 K)

∑M−1
m=0

∑
p∈Bkm ,RmY [p] �=0 L[p]

)
is upper bounded by

O
(
(log2 K)

∑N
p=1 L[p]

)
= O

(
(log2 K)B#K

)
, which dominates the heap building and is in

the same order as the initialization operations up to a log2 K factor, the worse-case overall

complexity of the heap implementation is O
(
(log2 K)B#K

)
.
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3.5 Image Denoising by Block Pursuit Thresholding

The block pursuit thresholding denoising is applied in translation-invariant wavelet

representations described in Section 3.2. As illustrated in Figure 3.2, sparse wavelet image

representations contain some geometry: Large coefficients concentrate along the contours.

In order to identify the geometry, we construct a dictionary DB = {Bk}k that contains

elongated blocks with orientations uniformly sampled in [0, π), some examples being illus-

trated in Figure 3.6. Each block in the dictionary may locally fit the image geometry. The

blocks are translated to cover the whole image plane. A same size is imposed on each block

so that no one is privileged over the others.

Figure 3.6: Examples of oriented blocks.

As the wavelet coefficients along the contour dilate by a factor of 2j in the direction

orthogonal to the contour when the wavelet scale j goes higher, the width of the oriented

blocks are set proportional to 2j . On a contour, first-scale translation-invariant wavelet

coefficients have at least a width of 2 pixels. The block width is thus W2 = 2 in the first

scale. In the experiments blocks of size W1 × W2 = 12 × 2j are used.

The hard block pursuit threshold in (3.9) is set equal to λh = 6 which results in general

the highest PSNR. Comparing to the threshold value 32 = 9 that is often used in diagonal
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hard thresholding, a smaller threshold allows to restore better the image geometry. Blocks

calculated with a smaller λh tends to fit the noise and thus decreases the PSNR. The block

pursuit residual coefficients have comparable energy to noise and are partitioned into square

blocks of size Ws × Ws with Ws = 3 × 2j , where j is the wavelet scale, and are attenuated

with the soft block thresholding (3.2) with the threshold λs = 1.5, which has been shown

good for image block thresholding denoising [126].

In the experiments images are contaminated by Gaussian white noise of different am-

plitude. The hard thresholding used the threshold 3σ and the (soft) block thresholding are

configured with block size Ws × Ws where Ws = 3 × 2j , where j is the wavelet scale, and

the threshold λs = 1.5.

Figure 3.7 illustrates a denoising example on the image Cameraman. Block thresholding

improves 0.2 dB with respect to hard thresholding while the block pursuit thresholding gains

0.4 dB over block thresholding. The block pursuit thresholding fits the image geometry much

more precisely than the block thresholding that has block-wise constant attenuation factors,

and therefore restores sharper contours and removes more efficiently the noise. Compared

with hard thresholding, block pursuit thresholding is more regular and restores better image

details.

Table 3.1 compares the block pursuit thresholding with hard thresholding and block

thresholding on various images. Block pursuit thresholding improves on average 0.6 dB

PSNR with respect to hard thresholding. The gain of block pursuit thresholding over block

thresholding, about 0.3 dB on average, is of the same order as that of block thresholding

over hard thresholding.

Let us notice that rather than optimizing the image representations [44, 123, 127,

184, 128, 14] we concentrate on improving the thresholding techniques. Donoho and John-

stone [49] have shown that hard thresholding risk is upper bounded by 2 loge N times the
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Figure 3.7: From left to right. First row: noisy image Cameraman with σ = 20, de-
noised image by block pursuit thresholding (BPT) 29.15 dB, adaptive oriented blocks on
the second-scale wavelet vertical band, zoom of noisy image. Second row: zoom of clean
image, of image denoised by hard thresholding (HT) 28.53 dB (on the whole image), block
thresholding (BT) 28.75 dB, and BPT 29.15 dB. Third row: zoom of noisy wavelet coef-
ficient modules in the first-scale wavelet vertical directions, corresponding HT attenuation
factors, BT attenuation factors, BPT adaptive oriented blocks. Fourth row: the same as
the third row in the second wavelet scale.
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oracle diagonal estimation risk. As block thresholding risk is upper bounded by the oracle

block thresholding risk, which is itself upper bounded by the oracle diagonal risk, its gain

over hard thresholding can be no larger than a limited factor 2 loge N . With the same

translation-invariant wavelet representation, the about 0.6 dB block pursuit thresholding

with respect to hard thresholding is pretty important. Further PSNR improvement is pos-

sible through optimizing the image representations by retransforming the coefficients in the

blocks once the blocks are calculated.

Another factor that prevents the block pursuit thresholding from achieving a more

substantial PSNR improvement is the limitation of the block shapes in the dictionary. In

order to approach the oracle diagonal estimation risk, the blocks should always group the

coefficients that have either large or small SNR. This requires that the dictionary contains

blocks with rich enough shapes. In numerical computation, however, the number of block

shapes is limited for computational efficiency consideration.

In the next Chapter, block pursuit is applied in image super-resolution, where captur-

ing directional geometry information is essential for restoring sharper images and reducing

artifacts. Super-resolution with block pursuits will be shown to achieve significant improve-

ments with respect to cubic-spline interpolation.
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Cameraman 256 × 256
σ 5 10 15 20 25 30 35 40 Avg. Impr.

PSNR 34.16 28.13 24.61 22.11 20.16 18.59 17.28 16.10 w.r.t. HT

HT 36.94 32.51 30.10 28.53 27.36 26.40 25.64 25.02

BT 37.45 32.89 30.38 28.75 27.59 26.58 25.87 25.21 + 0.28

BPT 37.62 33.19 30.77 29.15 27.98 26.97 26.20 25.57 + 0.62

House 256 × 256
σ 5 10 15 20 25 30 35 40 Avg. Impr.

PSNR 34.16 28.13 24.61 22.11 20.16 18.59 17.28 16.10 w.r.t. HT

HT 37.43 34.26 32.45 31.09 30.07 28.92 28.19 27.57

BT 38.33 34.63 32.65 31.32 30.27 29.17 28.48 27.88 + 0.34

BPT 38.36 34.89 33.00 31.70 30.60 29.52 28.72 28.11 + 0.61

Peppers 512 × 512
σ 5 10 15 20 25 30 35 40 Avg. Impr.

PSNR 34.16 28.13 24.61 22.11 20.16 18.59 17.28 16.10 w.r.t. HT

HT 36.57 33.99 32.45 31.16 30.09 29.17 28.32 27.67

BT 37.16 34.17 32.51 31.25 30.20 29.30 28.51 27.91 +0.20

BPT 37.19 34.43 32.86 31.66 30.60 29.71 28.90 28.25 +0.52

Lena 512 × 512
σ 5 10 15 20 25 30 35 40 Avg. Impr.

PSNR 34.16 28.13 24.61 22.11 20.16 18.59 17.28 16.10 w.r.t. HT

HT 37.61 34.55 32.64 31.33 30.20 29.30 28.51 27.75

BT 38.16 34.98 33.01 31.70 30.57 29.73 28.93 28.24 +0.43

BPT 38.20 35.16 33.24 31.96 30.81 29.94 29.13 28.38 +0.61

Boat 512 × 512
σ 5 10 15 20 25 30 35 40 Avg. Impr.

PSNR 34.16 28.13 24.61 22.11 20.16 18.59 17.28 16.10 w.r.t. HT

HT 35.95 32.56 30.64 29.24 28.13 27.26 26.58 25.95

BT 36.70 33.01 31.04 29.62 28.50 27.60 26.94 26.29 +0.42

BPT 36.73 33.18 31.27 29.86 28.75 27.84 27.16 26.48 +0.62

Table 3.1: Comparison of PSNR over hard thresholding (HT), block thresholding (BT) and
block pursuit thresholding (BPT). The far right column in each table shows the average
PSNR improvement of BT and BPT with respect to HT.



Chapter 4

Sparse Super-Resolution by Block

Pursuits

Super-resolution image interpolation requires to identify image geometric regularity.

Block pursuit procedure identifies geometric image model in sparse representations. The

block pursuit algorithm projects sparse transform coefficients over structured vector spaces

instead of individual vectors and regularizes the sparse decomposition. A super-resolution

image zooming is derived. Numerical experiments illustrate the efficiency of the proposed

super-resolution procedure compared to cubic spline interpolations.

4.1 Introduction

Zooming operators that increase the size of images are often needed for digital display

of images or videos. When images are aliased, linear interpolations [187] introduce artifacts

such as Gibbs oscillations or zigzag along edges, and restore a blurred image. Better images

can be estimated with super-resolution procedures which take advantage of this aliasing

together with some geometric image properties.

68
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A super-resolution algorithm computes a signal estimation in a space of dimension

larger than the input signal size [126]. Super-resolution algorithms are necessarily non-linear

and can recover high frequency information by taking advantage of prior signal information.

A large body of super-resolution literature relies on a sequence of low-resolution images or

a training process to reconstruct a high-resolution image (see for example [61, 68, 50]).

Applications of these methods are restricted when the only relevant data available is a

single low-resolution of interest, or if the memory resource is limited.

Single image super-resolution zooming is more difficult but is possible by interpolating

the image along directions for which it is geometrically regular. Directional interpolations,

usually known as edge-directed or content-adaptive interpolation, interpolate along direc-

tions that are computed with ad-hoc directional regularity estimations [105, 206, 31]. These

algorithms are used in industry with good numerical results.

If a signal has a sparse representation in a dictionary then a super-resolution estimation

may be computed from lower-resolution measurements [80, 196, 156], and reliable recovery

requires that the dictionary is sufficiently incoherent. This approach has been used suc-

cessfully for seismic sparse spike inversion or image inpainting [51, 58, 126]. Geometrically

regular images have a sparse representation in curvelet [20, 19] or bandlet [99, 98, 129]

dictionaries. However, subsampling a curvelet or a bandlet dictionary does not define a

sufficiently incoherent dictionary to recover sparse super-resolution estimations for image

zooming. Recovering these vectors individually without constraint from a subsampled signal

requires a full search in a large dictionaries which leads to errors.

This Chapter introduces a super-resolution algorithm which computes structured sparse

representations by projecting the image wavelet coefficients over selected subspaces and then

making linear approximation in the selected subspaces. For super-resolution interpolation,

this algorithm takes better advantage of prior image information by selecting vector spaces
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as opposed to individual vectors, which also reduces the computational complexity. These

vector spaces are selected with a cascade of block pursuit procedures described in Chapter 3.

Directional interpolations derived from this sparse representation yields a super-resolution

image estimation.

The Chapter first relates directional interpolations to sparse super-resolution image

zooming and reviews sparse super-resolution approaches. A novel directional interpolator

is introduced in Section 4.2.2. Section 4.3 introduces structured sparse representations by

selecting vector spaces with block pursuit algorithms. A super-resolution interpolation is

derived, and numerical experiments provide comparisons with cubic spline interpolations.

4.2 Directional Interpolation and Sparsity

Image super-resolution zooming is possible by interpolating the image along directions

for which it is geometrically regular. Sparse super-resolution algorithms identifies geo-

metrical regularity by decomposing the image with a curvelet or bandlet dictionary and

interpolates the image along the directions of selected vectors.

4.2.1 Directional Interpolation

Let f [n] be a high-resolution image whose frequency support is in [−π, π]2. The mea-

sured low-resolution image y is obtained from a subsampling of f

y[n1, n2] = f [Kn1,Kn2] + w[n1, n2], (4.1)

where w models the noise and K > 1 is the subsampling factor. In the following we assume

K = 2 for simplicity. An image zooming computes an estimate f̃ of f from y.
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Figure 4.1: (a): high-resolution edge image f [n] and its Fourier transform. (b): a low-
resolution image y[n] = f [2n] and its aliased Fourier transform. The spectrum component
circled by the ellipse in the center corresponds to the edge. The other components circled by
the dashed ellipse are due to the aliasing. (c): super-resolution estimation with directional
interpolation along the contour direction (62.42 dB). (d): 2D cubic-spline interpolation
(43.37 dB).

If w = 0, the Fourier transform ŷ of y is related to the Fourier transform f̂ of f by

ŷ(ω1, ω2) =
∑

k1=0,1

∑
k2=0,1

f̂(ω1 + k1π, ω2 + k2π). (4.2)

If y is free of aliasing, i.e., if the frequency support of f is included in [−π/2, π/2]2 then

a perfect reconstruction f̃ = f is obtained with a 2D linear sinc interpolation, which is a

low-pass filtering:

ˆ̃
f(ω1, ω2) = ŷ(ω1, ω2) ĥ(ω1, ω2) = f̂(ω1, ω2), (4.3)

with

ĥ(ω1, ω2) =

⎧⎪⎨⎪⎩
1 (ω1, ω2) ∈ [−π/2, π/2]2

0 otherwise

. (4.4)

If the frequency support of f̂ exceeds [−π/2, π/2]2, which is most often the case then

y is aliased and (4.3) does no hold anymore. Any 2D linear interpolation introduces errors

that result in artifacts such as Gibbs oscillations, blur and zigzag patterns along contours,
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as shown in Figure 4.1(d). The ideal low-pass filter (4.4) is generally replaced by a cubic

spline interpolation filter which reduces artifacts.

If the image f has some directional regularity, it is possible to improve this estimation

and recover signal frequencies higher than π/2 by interpolating the image in the appropriate

direction. Indeed, if the image is locally regular in a direction θ then its local Fourier

transform has a narrow low-pass frequency support along this direction θ. Figure 4.1(a) gives

a simple illustration with a straight edge of direction θ whose Fourier transform is elongated

in the direction θ + π/2. As shown in Figure 4.1(b), the spectrum of the subsampled image

y is aliased, but the aliased parts circled by the dashed ellipses do not overlap the main

component due to the spectrum of f circled by the big ellipse in the center. Observe that

if the low-pass filter h is replaced by a directional interpolator hθ whose Fourier transform

has a support that includes the main component and vanishes at the aliased parts, then it

recovers an estimation f̃ whose Fourier transform satisfies

ˆ̃
f(ω1, ω2) = ŷ(ω1, ω2) ĥθ(ω1, ω2) ≈ f̂(ω1, ω2), (4.5)

and thus achieves an almost perfect reconstruction by eliminating the aliased components,

as shown in Figure 4.1(c). If θ = 0 or θ = π/2 then the support of f̂(ω1, ω2) overlaps its

aliased components and it is therefore impossible to separate them with a filter. In this

case, no super-resolution is possible and the interpolation is implemented with a low-pass

filter h.

Adaptive interpolation algorithms finds locally if there exists a direction θ along which

the image variations are more regular than other directions, in which case it performs the

interpolation in this direction with the interpolator Iθ. For complex images, measuring the

“best direction of regularity” is difficult. Ad-hoc algorithms have been developed to do so

and are used in industry for non-linear image zooming.
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4.2.2 Directional Interpolator

As illustrated in Figure 4.1(b), to restore the directional structure and remove the

aliasing from a low-resolution image requires a directional interpolator Iθ whose Fourier

transform support includes the main component and vanishes at the aliased parts. An ideal

directional low-pass filter whose Fourier transform is an indicator function with an elongated

support oriented along θ + π/2 (which corresponds to the central ellipse in Figure 4.1(b))

satisfies this condition, but it creates Gibbs oscillation artifact due to its infinite support

in space. On the other hand, the directional interpolator should have high enough order,

cubic spline as opposed to the first order linear interpolation for example, to achieve more

precise recovery. In addition, for fast implementation, the direction interpolator should be

separable. [206] describes a directional bilinear interpolator that generalizes the standard

bilinear interpolation, but extending it to higher order interpolation is indirect.

The proposed separable directional interpolator is factorized in three steps with each

step a one-directional interpolation and it fully takes advantage of directional regularity

along θ. Interpolating along θ implies that the underlying filter is low-pass in θ and elongated

along θ + π/2 in Fourier. The order of the resulting directional interpolator can be easily

adjusted by changing one dimensional interpolation kernel.

Multiplying by 2 the image rows and columns requires computing interpolations along

two directions. A one-dimensional interpolation along θ provides accurate coefficient es-

timations if the image is regular in the direction of θ. The mid-point between any two

points having an angle θ is calculated with such an interpolation. This will oversample by

a factor two either the image rows, or the image columns or the diagonals of angle ±π/4.

Along these oversampled rows, columns or diagonals, one can now compute a cubic spline

interpolation with little aliasing error. These directions are interpolated to further increase

the number of samples. The position of these new samples are chosen so that any missing
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upscaled image coefficient is in the middle of two new samples having a relative position of

angle θ. These missing image coefficients are then computed with an interpolation along θ

from new samples. This last interpolation along θ is precise as the image is regular in the

direction of θ.

Figure 4.2 illustrates this interpolation procedure with an example for θ = arctan 1/2.

The subsampled grid shown with ×. The algorithm is decomposed in three steps.

1. Computation of the mid-point © between any two pair of samples having an angle θ,

which are located along image columns for θ = arctan 1/2.

2. Interpolation along the oversampled image columns to compute new sample values •.

3. Computation of the up-scaled image values at positions � by interpolating the new

samples • along θ.

Figure 4.2: Directional interpolation in three steps:a one-dimensional interpolations along
angle θ, a vertical interpolation and another interpolation along θ.

Figure 4.1(c) shows a directional interpolation example. With the cubic spline kernel,

the proposed directional interpolator achieves almost perfect reconstruction with 62.42 dB

PSNR, which is about 20 dB higher than the standard cubic spline interpolation. High
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Figure 4.3: Spectrum of the directional interpolator Iθ. Gray-level from black to white:
value from 1 to 0. Compare with Figure 4.1(b): The ellipse in the center corresponds the
spectrum component of the edge that will be retained; the other dashed ellipse correspond
to the spectrum components due to the aliasing that will be eliminated.

frequency information is restored along the contour and the result is free of zigzag artifact.

Changing the directional interpolation kernel to the first order linear interpolation degrades

about 6 dB PSNR with respect to that with the cubic spline, which shows the importance

of using a higher order kernel.

A comparison between the spectrum of the directional interpolator Iθ shown in Fig-

ure 4.3 and Figure 4.1(b) confirms that Iθ allows to cancel the aliasing and restore the

contour that is regular along the direction θ.

4.2.3 From Directional Interpolation to Sparsity

If a signal f has some directional geometrical regularity then it has a sparse represen-

tation in a dictionary D = {gp}p∈Γ of curvelets [20, 19] or bandlets [99, 98, 129]. Finding an

appropriate direction of interpolation can be connected to sparse super-resolution estima-

tion, although we shall see that this sparse super-resolution estimation may not perform well

for image interpolation. In the following we shall concentrate on a dictionary of curvelets
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but the same conclusions apply to a bandlet dictionary. A curvelet is an elongated oscilla-

tory waveform whose Fourier transform is concentrated along a particular direction in the

Fourier plane, as illustrated in Figure 4.4. If f is an image with contours that are geomet-

rically regular then it has a sparse representation in a curvelet dictionary. The signal f

can thus be approximated by a small number |Λ| of curvelets in a set Λ which specifies the

directions, scales and positions of these curvelets

f = fΛ + wΛ with fΛ =
∑
p∈Λ

a[p] gp. (4.6)

The approximation error wΛ has a relatively small norm.

−pi 0 pi

−pi

0

pi
−pi 0 pi

−pi

0

pi

a b c d

Figure 4.4: (a): curvelet gp[n]. (b): Fourier transform ĝp(ω). (c): subsampled curvelet Ugp.

(d): Aliased fourier transform Ûgp(ω).

Let us denote y = Uf + w the low-resolution measurements where U is a subsampling

operator. An estimation of f from y is computed by calculating an estimation of the sparse

approximation support Λ of f in D [126] [51]. This is done by observing that y has a sparse

representation with this same approximation support

y =
∑
p∈Λ

a[p]Ugp + w′ with w′ = UwΛ + w, (4.7)

in the subsampled dictionary

DU = {Ugp}p∈Γ . (4.8)

The approximation support Λ is estimated by computing a sparse approximation ỹ of y in
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DU

ỹ =
∑
p∈Λ̃

ã[p]Ugp , (4.9)

with an l1 pursuit [28] or a matching pursuit [126]. A super-resolution estimation f̃ of f is

derived by inverting U on the decomposition (4.9) of ỹ. This is equivalent to applying an

interpolation operator Ip to each subsampled Ugp to recover gp:

f̃ =
∑
p∈Λ̃

ã[p] Ip(Ugp) =
∑
p∈Λ̃

ã[p] gp . (4.10)

This estimation can thus be interpreted as an adaptive interpolation of each Ugp, and the

adaptive interpolation is performed along the curvelet direction to recover the curvelet gp.

The estimated curvelet support Λ̃ defines the directions and supports of the interpolators

that are used to compute f̃ from y.

The directional interpolation f̃ is an accurate estimation of f if the estimated support

Λ̃ providing the regularity directions is an appropriate estimation of the approximation

support Λ of f . The work of Tropp [189] shows that such a recovery is possible if the vectors

in the transformed dictionary DU = {Ugp}p∈Γ are highly incoherent. However this condition

does not hold for a dictionary obtained by subsampling curvelets on a uniform subgrid.

Indeed, the finest scale curvelets gp, which are responsible for high-frequency information

restoration, when subsampled by the operator U , have no more vanishing moment and a

relatively large energy at low frequencies. Therefore they have a large correlation with

other subsampled curvelets Ugp at different scales and orientations. Since the dictionary

DU is highly redundant and not sufficiently incoherent, the computed support Λ̃ may be

very different from the sparse approximation support Λ of f [189]. It leads to interpolation

along inappropriate directions which introduces errors. As a result, on typical images, this

type of super-resolution interpolation in curvelet dictionaries does not provide better results

then cubic spline interpolations. The same conclusion applies when using a dictionary of
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bandlet vectors.

4.3 Structured Super-Resolution with Block Pursuits

As explained in Section 4.2, sparse super-resolution algorithms are highly flexible but

suffer from this flexibility. In a curvelet or bandlet dictionary, a signal is sparse if it is well

approximated by a small number of curvelets or bandlets, but there is no constraint on the

properties of these curvelets or bandlets. Recovering these curvelets from a subsampled

signal requires a full search in a large dictionaries which leads to errors. Directional inter-

polations are much more constraint since locally all pixels are recovered by performing an

interpolation with a single direction.

To better take advantage of this property, instead of decomposing the signal over dictio-

nary vectors that are selected individually, a structured sparse super-resolution interpolation

is computed by projecting the signal over vector spaces. The space projection is calculated

with the block pursuits described in Section 3.4. The choice of spaces is regularized by a

hierarchical cascade of block pursuits that first selects locally the most appropriate angles

in square neighborhoods and then finding the locations for these angles. The factorization

of the block computation to angle estimation and location assignment reduces the computa-

tional complexity. In the selected spaces where the signal is directionally regular, the signal

is linearly approximated which amounts to a directional linear interpolation.

4.3.1 Interpolations in Wavelet Domain

Observe in Figure 4.1(b) that there is very little aliasing in the low-frequency square

[−π/2, π/2]2 of ŷ(ω). Errors introduced by linear interpolations are mostly concentrated

at high frequencies. To separate low and high frequencies, y is decomposed with the finest
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scale wavelets {ψd
n}1≤d≤3,n and the scaling functions {φn}n

y = yH + yL =
1

A

(
3∑

d=1

N−1∑
u=0

Yd[u]ψd
u +

N−1∑
u=0

Y [u]φu

)
, (4.11)

where

Yd[u] = 〈y, ψd
u〉, 1 ≤ d ≤ 3 and Y [u] = 〈y, φu〉 (4.12)

are respectively the finest-scale translation-invariant wavelet coefficients along the three

directions and the approximation coefficients, A is the wavelet frame bound, yH and yL are

respectively the high-frequency and low-frequency components of y.

Since yL is almost aliasing-free, it can be interpolated with a linear cubic-spline interpo-

lator Il. However, an optimized non-linear directional interpolation operator In is required

to estimate the signal higher frequencies by interpolating yH while removing the aliasing:

f̃ = In(yH) + Il(yL). (4.13)

Observe that both interpolation and translation-invariant wavelet transform involve

convolution operations that are commutable. Image interpolation can thus be casted as

interpolation in the wavelet domain. The approximation coefficients are interpolated with

the cubic spline interpolator

F̃ = Il(Y ) (4.14)

and the wavelet coefficients are interpolated with the non-linear directional interpolator

F̃d = In(Yd), 1 ≤ d ≤ 3. (4.15)

The convolution operations in interpolations are defined in the low-resolution grid, therefore

the zoomed coefficients need to be separated to 4 sub-grids and each sub-grid reconstructs

the corresponding sub-image, as illustrated in Figure 4.5. The super-resolution estimation

f̃ is obtained by combining the sub-images.



4.3. STRUCTURED SUPER-RESOLUTION WITH BLOCK PURSUITS 80

Figure 4.5: The zoomed wavelet and approximation coefficients are separated to four sub-
grid represented by the four shapes. Each sub-grid reconstructs a sub-image. The super-
resolution estimation is obtained by combining the sub-images.

4.3.2 Structured Sparsity and Directional Interpolation

The structured sparse super-resolution is conducted in the wavelet domain. To struc-

ture the sparse representation, the wavelet coefficients Yd are projected to spaces selected

from a dictionary {Wk}k of vector spaces

Yd =
M−1∑
m=0

PWkm
Yd. (4.16)

The choice of the subspaces {Wkm
}0≤m<M is optimized to provide a sparse representation.

As illustrated in Figure 4.6, a space Wk is generated by a block Bk of diracs defined

simultaneously in the three wavelet orientations. The blocks are elongated with different

directions that may locally fit the geometry. They are of same size so the spaces have

constant dimension dim(Wk) = B#, ∀k. The decomposition (4.16) depends on Yd and is

therefore non-linear.

The super-resolution is performed by associating an interpolator Im to each selected

space Wkm
. If the coefficients in Wkm

are directionally regular, PWkm
is well approximated

by a linear approximation

˜PWkm
Yd =

P−1∑
p=0

〈PWkm
Yd, g

m
p 〉gm

p , P < B#, (4.17)

and Im is a linear directional interpolation. Otherwise Im is a separable cubic spline inter-
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Figure 4.6: A block Bk covers simultaneously the finest scale wavelet image coefficients Yd

in the three orientations d = 1, 2, 3 (from left to right). For clarity, only 3 blocks are shown.

polation. The super-resolution estimation (4.15) can thus be written

F̃d = In

(
M−1∑
m=0

PWkm
Yd

)
=

M−1∑
m=0

Im

(
PWkm

Yd

)
=

P−1∑
p=0

〈PWkm
Yd, g

m
p 〉Im(gm

p ). (4.18)

4.3.3 Window Fourier and Wavelet Block Pursuits

A hierarchical cascade of block pursuits in window Fourier and wavelet domains is

proposed to select the vector spaces. The hierarchical procedure that factorizes the space

computation to angle selection and location assignment regularizes the estimation and re-

duces the computational complexity.

Appropriate block directions correspond to orientations along which the image is lo-

cally regular. If the image is regular in the direction θ then its subsampling has an energy

concentrated in a frequency band of angle θ+π/2 plus some aliasing components illustrated

in Figure 4.1(b). Directions of regularity in an image window can thus be identified by com-

puting the energy concentration of a local image window Fourier transform along oriented

frequency blocks, which is implemented with a block pursuit procedure.

Since a single direction must be estimated for each image pixel for directional interpo-

lation, the window Fourier block pursuit is calculated over the finest scale image component
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yH that contains all the three wavelet orientations. yH are localized in square windows by

a multiplication with translated Hanning windows of 16 × 16 pixels. Let s be such a high

frequency image window. The Fourier transform S of s gives the window Fourier transform

of yH . As the spectrum of an image window that contains some geometrical regularity is

concentrated in an oriented band as shown in Figure 4.1(b), a dictionary Db = {bk}1≤k≤K

of oriented blocks that pass the origin as illustrated in Figure 4.7 is constructed to identify

the spectrum support of the directional regularity. The block orientations are uniformly

sampled in [0, π) over K = 20 angles in the numerical computation and all the blocks are

adjusted to the have same size.

The direction identification in S is performed with a block pursuit procedure explained

in Section 3.4 with the block dictionary Db. Selecting a family of blocks {bkm
}0≤m<M

amounts to selecting a family of local directions {θm}0≤m<M along which the image window

has some regularity. The block pursuit procedure in window Fourier identifies M directions

in an image window, with M typically small since an image contains locally a small number

of directions. In other words, the block pursuit procedure stops after M iterations. In

the numerical computation, M = 5 over an image window of 162 pixels, and is thus much

smaller than the total number K = 20 of possible angles.

The window Fourier block pursuit selects M directions along which the image window

has some directional regularity, but it does not tell the location of directional regularity.

A block pursuit procedure over the wavelet coefficients Yd localized in the same window

is cascaded to find the location. As shown in Figure 4.8, a dictionary DB of blocks that

corresponds to the M selected directions is constructed. Blocks of size W1×W2 = 12×2 are

used in the experiments. Using blocks with width W2 = 2 instead of pure one-dimensional

blocks with W2 = 1 takes advantage of the fact that the translation-invariant wavelet

coefficients along the contour have always more than one pixel wide, and reinforces the
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Figure 4.7: Blocks in window Fourier.

block selection decision. The blocks are translated to cover the window. As shown in

Figure 4.6, a block Bk is defined simultaneously in the three wavelet orientations. The

three wavelet orientations {Yd}1≤d≤3 are thus combined in the block pursuit procedure so

that locally a single direction is calculated. The block pursuit procedure stops until the

residue RmYd in the window goes to zero, when the wavelet coefficients are fully covered by

the selected blocks.

Figure 4.8: Examples of geometric blocks.

In order to avoid the border effect due to the local windows, in the numerical compu-

tation, the Hanning window is translated with half-overlapping to cover the image plane in
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window Fourier block pursuits. In each 16 × 16 image window S, only the directions cal-

culated for the central 8 × 8 pixels are retained. Selecting locally M angles by the window

Fourier block pursuit procedure can be interpreted as pruning the wavelet block dictionary

DB by retaining M directions in each window. The wavelet block pursuit is performed on

the whole wavelet coefficients array Yd with the pruned block dictionary.

4.3.4 Directional Regularity

As explained in Section 4.2.1, an accurate directional interpolation requires that the

image is regular in the interpolation direction. An oriented block Bkm
is selected such that

wavelet coefficients have a high energy within block given that its angle is selected among

local directions of regularity. To verify that wavelet coefficients are indeed regular in the

block Bkm
of angle θ, we check that their derivatives in the block direction have a small

energy

γ

3∑
d=1

∑
u∈Bkm

∣∣∣∣Yd[u] − Yd[u − θ]√
2

∣∣∣∣2 ≤
3∑

k=1

∑
u∈Bkm

|Yd[u]|2,

where γ > 1 is a threshold. If this is indeed the case, then wavelet coefficients do have a

regular variation along the direction θ of Bkm
and are thus interpolated along this direction

θ with the directional interpolator Iθ introduced in Section 4.2.2. Otherwise, if the regu-

larity is not sufficient in the direction θ, a more conservative cubic spline interpolation is

applied. A larger γ imposes a higher directional regularity requirement. In the numerical

experiments, γ is set equal to 3.

Figure 4.9 compares a separable cubic spline interpolation with a super-resolution in-

terpolation computed with the proposed super-resolution algorithm. The super-resolution

achieves a significant PSNR improvement and improves the visual image quality where the

image is geometrically regular. High-frequencies are restored along the direction of regular-

ity. This clearly appears in the straws, the hat border and the hairs of various directions.
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High-resolution image Cubic spline 21.37 dB Super-resolution 23.82 dB

High-resolution image Cubic spline 34.74 dB Super-resolution 35.81 dB

High-resolution image Cubic spline 29.89 dB Super-resolution 30.35 dB

High-resolution image Cubic spline 33.72 dB Super-resolution 34.00 dB

Figure 4.9: From left to right: high-resolution image, cubic-spline interpolation, proposed block
pursuit super-resolution.
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However, on the hat image at the bottom, because of Moiré effects, the window Fourier

block pursuit does not identify appropriate directions from the lower-resolution hat im-

age, and the super-resolution barely improves the cubic-spline result. When the image is

too complex, the aliasing may destroy the directions of image regularity, in which case no

super-resolution is achieved.
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Affine Invariant Image Comparison

87



Chapter 5

On the Consistency of the SIFT

Method

The notion of sparsity is not only applied in signal denoising and super-resolution,

but in computer vision as well. In computer vision, sparse features are important for

pattern recognition since robust recognition of one object against the others requires a

small number of salient features that capture the characteristics of the object. Sparse

salient features should at the same time be invariant to variation of pattern observation

conditions, for example viewpoint changes in image recognition, so that the recognition is

independent to observation condition. In his milestone paper [119], Lowe has introduced

the SIFT method (scale-invariant feature transform) that successfully incorporates scale,

translation and rotation invariance in sparse features and has achieved brilliant success in

image recognition applications.

This short Chapter is devoted to the mathematical arguments proving that SIFT is

indeed similarity invariant. The mathematical proof is given under the assumption that

the Gaussian smoothing performed by SIFT gives aliasing free sampling. The validity of

88
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this main assumption is confirmed by a rigorous experimental procedure. These results

explain why SIFT outperforms all other image feature extraction methods when it comes

to scale invariance. The SIFT consistency proof contributes to the demonstration in the

following Chapter 6 where we show that the new proposed method Affine-SIFT is fully

affine invariant.

5.1 Introduction

Image matching aims at establishing correspondences between same objects that ap-

pear in different images. This is a fundamental step in many computer vision and image

processing applications such as image recognition, 3D reconstruction, object tracking, robot

localization and image registration [62].

The general (solid) shape matching problem starts with several photographs of a phys-

ical object, possibly taken with different cameras and viewpoints. These digital images are

the query images. Given other digital images, the search images, the question is whether

some of them contain, or not, a view of the object taken in the query image. This problem

is by far more restrictive than the categorization problem, where the question is to recognize

a class of objects, like chairs or cats. In the shape matching framework several instances of

the very same object, or of copies of this object, are to be recognized.

A typical image matching method first detects points of interest, then selects a region

around each point, and finally associates with each region a descriptor. Correspondences

between two images may be established by matching the descriptors of both images.

Many variations exist on the computation of interest points, following the pioneering

work of Harris and Stephens [85]. The Harris-Laplace and Hessian-Laplace region detec-

tors [144, 147] are invariant to rotation and scale changes. Some moment-based region detec-
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tors [112, 6] including Harris-Affine and Hessian-Affine region detectors [145, 147], an edge-

based region detector [192], an intensity-based region detector [192], an entropy-based re-

gion detector [90], and two independently developed level line-based region detectors MSER

(“maximally stable extremal region”) [135] and LLD (“level line descriptor”) [159, 160, 21]

are designed to be invariant to affine transformations. These two methods stem from the

Monasse image registration method [150] that used well contrasted extremal regions to reg-

ister images. MSER is the most efficient one and has shown better performance than other

affine invariant detectors [149]. However, as pointed out in [119], no known detector is

actually fully affine invariant: All of them start with initial feature scales and locations

selected in a non-affine invariant manner. The difficulty comes from the scale change from

an image to another: This change of scale is actually an under-sampling, which means that

the images differ by a blur.

In his milestone paper [119], Lowe has addressed this central problem and has pro-

posed the so called scale-invariant feature transform (SIFT) descriptor, that is invariant

to image translations and rotations, to scale changes (blur), and robust to illumination

changes. It is also surprisingly robust to large enough orientation changes of the viewpoint

(up to 60 degrees). Based on the scale-space theory [111], the SIFT procedure simulates

all Gaussian blurs and normalizes local patches around scale covariant image key points

that are Laplacian extrema. A number of SIFT variants and extensions, including PCA-

SIFT [93] and gradient location-orientation histogram (GLOH) [148], that claim to have

better robustness and distinctiveness with scaled-down complexity have been developed ever

since [67, 103]. Demonstrated to be superior to other descriptors [146, 148], SIFT has been

popularly applied for scene recognition [59, 151, 172, 197, 78, 174] and detection [69, 162],

robot localization [9, 163, 158], image registration [213], image retrieval [84], motion track-

ing [194, 94], 3D modeling and reconstruction [171, 198], building panoramas [1, 13], or
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photo management [212, 100, 23].

The initial goal of the SIFT method is to compare two images (or two image parts) that

can be deduced from each other (or from a common one) by a rotation, a translation, and a

zoom. The method turned out to be also robust to large enough changes in view point angle,

which explains its success. In this method, following a classical paradigm, stable points of

interest are supposed to lie at extrema of the Laplacian of the image in the image scale-

space representation. The scale-space representation introduces a smoothing parameter σ.

Images u0 are smoothed at several scales to obtain w(σ, x, y) =: (Gσ ∗ u0)(x, y), where

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The notation ∗

stands for the space 2-D convolution in (x, y). The description of the SIFT method involves

sampling issues, which we shall discuss later.

Taking apart all sampling issues and several thresholds whose aim is to eliminate un-

reliable features, the whole method can be summarized in one single sentence:

One sentence description The SIFT method computes scale-space extrema (σi, xi, yi) of

the space Laplacian of w(σ, x, y), and then samples for each one of these extrema a square

image patch whose origin is (xi, yi), whose x-direction is one of the dominant gradients

around (xi, yi), and whose sampling rate is
√

σ2
i + c2.

The constant c = 0.8 is the tentative standard deviation of the image blur. The

resulting samples of the digital patch at scale σi are encoded by their gradient direction,

which is invariant under nondecreasing contrast changes. This accounts for the robustness

of the method to illumination changes. In addition, only local histograms of the direction

of the gradient are kept, which accounts for the robustness of the final descriptor to changes

of view angle (see Figure 5.2).
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Figure 5.1: A result of the SIFT method, using an outliers elimination method [170]. Pairs
of matching points are connected by segments.

The goal of this short Chapter is to give the mathematical arguments proving that

the SIFT method indeed is scale invariant, and that its main assumption, that images are

well-sampled under Gaussian blur, is right. Thus, this Chapters does not intend to propose

a new variant or extension of the SIFT method; on the contrary it intends to demonstrate

that no other method will ever improve more than marginally the SIFT scale invariance

(see Figures 5.1 and 5.7 for striking examples). To the best of our knowledge, and in spite

of the more than thousand papers quoting and using SIFT, the analysis presented here does

not seem to have been done previously.

The Chapter is organized as follows. A simple formalism (Section 5.2) is introduced to

obtain a condensed description of the SIFT shape encoding method. Using this formalism

Section 5.4 proves mathematically that the SIFT method indeed computes translation, ro-

tation and scale invariants. This proof is correct under the main assumption that image blur

can be assumed to be Gaussian, and that images with a Gaussian blur larger than 0.8 are

approximately (but accurately) well-sampled and can therefore be interpolated. Section 5.3

gives a procedure and checks the validity of this crucial Gaussian blur assumption.
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5.2 Image Operators Formalizing SIFT

All continuous image operators including the sampling will be written in bold capital

letters A, B and their composition as a mere juxtaposition AB. For any affine map A

of the plane consider the affine transform of u defined by Au(x) =: u(Ax). For instance

Hλu(x) =: u(λx) denotes an expansion of u by a factor λ−1. In the same way if R is a

rotation, Ru =: u ◦ R is the image rotation by R−1.

Sampling and Interpolation

Let us denote by u(x) a continuous and bounded image defined for every x = (x, y) ∈

R2, and by u a digital image, only defined for (n1, n2) ∈ Z2. The δ-sampled image u = Sδu

is defined on Z2 by

Sδu(n1, n2) = u(n1δ, n2δ); (5.1)

Conversely, the Shannon interpolate of a digital image is defined as follows [73]. Let u be

a digital image, defined on Z2 and such that
∑

n∈Z2 |u(n)|2 < ∞ and
∑

n∈Z2 |u(n)| < ∞.

(Of course, these conditions are automatically satisfied if the digital has a finite number of

non-zero samples, which is the case here.) We call Shannon interpolation Iu of u the only

L2(R2) function having u as samples and with spectrum support contained in (−π, π)2. Iu

is defined by the Shannon-Whittaker formula

Iu(x, y) =:
∑

(n1,n2)∈Z2

u(n1, n2)sinc(x − n1)sinc(y − n2),

where sinc x =: sin πx
πx . The Shannon interpolation has the fundamental property S1Iu = u.

Conversely, if u is L2 and band-limited in (−π, π)2, then

IS1u = u. (5.2)
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In that case we simply say that u is band-limited. We shall also say that a digital image

u = S1u is well-sampled if it was obtained from a band-limited image u.

The Gaussian Semigroup

G denotes the convolution operator on R2 with the Gaussian kernel Gσ(x1, x2) =

1
2π(cσ)2

e
−x2

1+x2
2

2(cσ)2 , namely Gu(x, y) =: (G ∗ u)(x, y). Gσ satisfies the semigroup property

GσGβ = G√
σ2+β2 . (5.3)

The proof of the next formula is a mere change of variables in the integral defining the

convolution.

GσHγu = HγGσγu. (5.4)

Using the above notation, the next paragraph formalizes the SIFT method.

Formalized SIFT Scale Invariant Features Transform

The SIFT method is easily formalized in the continuous setting, while in practice

images are always digital. The main assumption of the SIFT method being that all blurs

can be assumed Gaussian, it will be crucial to prove that Gaussian blur gives in practice

well-sampled images.

1. Geometry: there is an underlying infinite resolution bounded planar image u0(x)

that has undergone a similarity Au0 (modeling a rotation, translation, and homoth-

ety) before sampling.

2. Sampling and blur: the camera blur is assimilated to a Gaussian with standard

deviation c. The typical value of c will be fixed thereafter. In Lowe’s paper, c belongs

to [0.5, 0.8]. The initial digital image is therefore u = S1GcAu0;
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3. Sampled scale space: at all scales σ > 0, the SIFT method computes a good

sampling of u(σ, ·) = GσGcAu0 and “key points” (σ,x), namely scale and space

extrema of Δu(σ, ·);

4. Covariant resampling: the blurred u(σ, ·) image is sampled around each key point

at a rate proportional to
√

c2 + σ2. The directions of the sampling axes are fixed by

a dominant direction of ∇u(σ, ·) in a σ-neighborhood of the key point. This yields

rotation, translation and scale invariant samples in which the 4 parameters of A have

been eliminated (see Figure 5.3);

5. Illumination invariance: the final SIFT descriptors keep only the orientation of

the samples gradient to gain invariance with respect to light conditions.

Figure 5.2: Each key-point is associated a square image patch whose size is proportional to
the scale and whose side direction is given by the assigned direction. Example of a 2 × 2
descriptor array of orientation histograms (right) computed from an 8 × 8 set of samples
(left). The orientation histograms are quantized into 8 directions and the length of each
arrow corresponds to the magnitude of the histogram entry.

Steps 1 to 5 are the main steps of the method. We have omitted all details that are not

relevant in the discussion to follow. Let them be mentioned briefly. The Laplacian extrema

are kept only if they are larger than a fixed threshold that eliminates small features mainly

due to noise. This threshold is not scale invariant. The ratio of the eigenvalues of the

Hessian of the Laplacian must be close enough to 1 to ensure a good key point localization.
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Figure 5.3: SIFT key points. The arrow starting point, length and the orientation signify
respectively the key point position, scale, and dominant orientation. These features are
covariant to any image similarity change.

(Typically, straight edge points have only one large Hessian eigenvalue, are poorly localized,

and are therefore ruled out by this second threshold, which is scale invariant.)

Two more features, however, must be commented upon. Lowe assumes that the initial

image has a c = 0.5 Gaussian blur. (We call c Gaussian blur a convolution with a Gaussian

with standard deviation c). This implies a slight under-sampling that is compensated by a

complementary Gaussian blur applied to the image, that puts the actual initial blur to 0.8.

In accordance with this choice, a 2-sub-sampling in the SIFT scale-space computations is

always preceded by a 2 × 0.8 = 1.6 Gaussian blur.

Of course, the Gaussian convolution cannot be applied to the continuous image but

only to the samples. This is valid if and only if a discrete convolution can give an account

of the underlying continuous one, that is, if the image is well-sampled.

The discrete Gaussian convolution applied to a digital image is defined as a digital

operator by

Gδu =: S1GδIu. (5.5)
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This definition maintains the Gaussian semi-group used repeatedly in SIFT,

GδGβ = G√
δ2+β2 . (5.6)

Indeed, using twice (5.5) and once (5.3) and (5.2),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√
δ2+β2Iu = G√

δ2+β2u.

The SIFT method uses repeatedly this formula and a 2-sub-sampling of images with Gaus-

sian blur larger than 1.6. To summarize, the SIFT sampling manoeuvres are valid if and

only if:

Claim 1. For every σ larger than 0.8 and every continuous and bounded image u0, the

Gaussian blurred image Gσu0 is well sampled, namely IS1Gσu0 = Gσu0.

This claim is not a mathematical statement, but it will be checked experimentally in

the next Section.

5.3 The Right Gaussian Blur to Achieve Well-sampling

Images need to be blurred before they are sampled. In principle Gaussian blur cannot

lead to a good sampling because it is not stricto sensu band limited. Therefore the Shannon-

Whittaker formula does not apply. However, in practice it does. The aim here is to define

a procedure that checks that a Gaussian blur works and to fix the minimal variance of the

blur ensuring well-sampling (up to a minor mean square and visual error).

One must distinguish two types of blur: The absolute blur with standard deviation ca

is the one that must be applied to an ideal infinite resolution (blur free) image to create

an approximately band-limited image before 1-sampling; The relative blur σ = cr(t) is the

one that must be applied to a well-sampled image before a sub-sampling by a factor of t.
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Figure 5.4: Top left: u Lena. Top right: RMSE(u1, u2) vs cr(4). Middle (from left to right):
u1 and u2 (zoomed) with cr(4) = 1.6. RMSE(u1,u2)=2.3. Bottom (from left to right): u1

and u2 (zoomed) with cr(4) = 3.2. RMSE(u1, u2)=0.1.
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In the case of Gaussian blur, because of the semi-group formula (5.3), the relation between

the absolute and relative blur is

t2c2
a = c2

r(t) + c2
a,

which yields

cr(t) = ca

√
t2 − 1. (5.7)

In consequence, if t 
 1, then cr(t) ≈ cat.

Two experiments have been designed to calculate the anti-aliasing absolute Gaussian

blur ca ensuring that an image is approximately well-sampled. The first experiment com-

pares for several values of cr(t) the digital images

u1 =: Gcr(t)u = S1Gcr(t)Iu and u2 =: (S1/tI)StGcr(t)u = (S1/tI)StGcr(t)Iu,

where u is an initial digital image that is well-sampled, St is a t sub-sampling operator, S1/t a

t over-sampling operator, and I a Shannon-Whitakker interpolation operator. The discrete

convolution by a Gaussian is defined in (5.5). Since t is an integer, the t sub-sampling is

trivial. The Shannon over-sampling S1/tI with an integer zoom factor t is obtained by the

classic zero-padding method. This method is exactly Shannon interpolation if the initial

image is both band-limited and periodic [73].

If the anti-aliasing filter size cr(t) is too small, u1 and u2 can be very different. The

right value of cr(t) should be the smallest value permitting u1 ≈ u2. Figure 5.4 shows u1

and u2 with t = 4 and plots their root mean square error RMSE(u1, u2). An anti-aliasing

filter with cr(4) = 1.6 is clearly not broad enough: u2 presents strong ringing artifacts. The

ringing artifact is instead hardly noticeable with cr(4) = 3.2. The value cr(4) � 3.2 is a

good visual candidate, and this choice is confirmed by the curve showing that RMSE(u1, u2)

decays rapidly until cr(4) gets close to 3.2, and is stable and small thereafter. By (5.7),

this value of cr yields ca = 0.83. This value has been confirmed by experiments on ten
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digital images. A doubt can be cast on this experiment, however, because its result slightly

depends on the assumption that the initial blur on u is equal to ca. A second experiment

is performed to verify this assumption.

In the second experiment, ca has been evaluated directly by using a binary image u0

that does not contain any blur. As illustrated in Figure 5.5, u0 is obtained by binarizing

Lena (Figure 5.4) with its median value as the threshold. Since u0 is now blur-free, we can

compare for several values of ca and for t = 4, which is large enough, the digital images

u1 =: Gtcau = S1GtcaIu and u2 =: (S1/tI)StGtcau = (S1/tI)StGtcaIu,

As shown in Figure 5.5, ca = 0.8 is the smallest value ensuring no visual ringing in u2.

Under this value, for example for ca = 0.4, clear ringing artifacts are present in u2. That

ca = 0.8 is the correct value is confirmed by the RMSE(u1, u2) curve showing that the mean

square error decays rapidly until ca goes down to 0.8, and is stable and small thereafter.

The result, confirmed in ten experiments with different initial images, is consistent with the

value obtained in the first experimental setting.

Figure 5.6 illustrates the same experiment on a Gaussian white noise image that has

constant spectrum energy over all frequencies. This example reflects the texture image

sampling issue. The critical value ca = 0.8 is reconfirmed. Under this value, for example

for ca = 0.4, u2 looks clearly different than u1, while the two are almost identical with

ca = 0.8.

5.4 Scale and SIFT: Consistency of the Method

We denote by T an arbitrary image translation, by R an arbitrary image rotation, by

H an arbitrary image homothety, and by G an arbitrary Gaussian convolution, all applied

to continuous images. We say that there is strong commutation if we can exchange the
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Figure 5.5: Top left: u Binarized Lena (gray-levels 50 and 0). Top right: RMSE(u1, u2)
vs ca. Middle (from left to right): u1 and u2 (zoomed) with ca = 0.4. RMSE(u1, u2)=1.5.
Bottom (from left to right): u1 and u2 (zoomed) with ca = 0.8. RMSE(u1, u2)=0.07.



5.4. SCALE AND SIFT: CONSISTENCY OF THE METHOD 102

Figure 5.6: Top left: u Gaussian white noise (σ = 30). Top right: RMSE(u1, u2) vs ca.
Middle (from left to right): u1 and u2 (zoomed) with ca = 0.4. RMSE(u1, u2)=2.8. Bottom
(from left to right): u1 and u2 (zoomed) with ca = 0.8. RMSE(u1, u2)=0.1.
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order of application of two of these operators. We say that there is weak commutation

between two of these operators if we have (e.g.) RT = T ′R, meaning that given R and T

there is T ′ such that the former relation occurs. The next lemma is straightforward.

Lemma 1. All of the aforementioned operators weakly commute. In addition, R and G

commute strongly.

In this Section, in conformity with the SIFT model of Section 5.2, the digital image

is a frontal view of an infinite resolution ideal image u0. In that case, A = HT R is the

composition of a homethety H, a translation T and a rotation R. Thus the digital image

is u = S1GδHT Ru0, for some H, T , R as above. Assuming that the image is not aliased

boils down, by the experimental results of Section 5.3, to assuming δ ≥ 0.8.

Lemma 2. For any rotation R and any translation T , the SIFT descriptors of S1GδHT Ru0

are identical to those of S1GδHu0.

Proof. Using the weak commutation of translations and rotations with all other operators

(Lemma 1), it is easily checked that the SIFT method is rotation and translation invari-

ant: The SIFT descriptors of a rotated or translated image are identical to those of the

original. Indeed, the set of scale space Laplacian extrema is covariant to translations and

rotations. Then the normalization process for each SIFT descriptor situates the origin at

each extremum in turn, thus canceling the translation, and the local sampling grid defining

the SIFT patch has axes given by peaks in its gradient direction histogram. Such peaks are

translation invariant and rotation covariant. Thus, the normalization of the direction also

cancels the rotation. �

Lemma 3. Let u and v be two digital images that are frontal snapshots of the same con-

tinuous flat image u0, u = S1GβHλu0 and v =: S1GδHμu0, taken at different distances,
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with different Gaussian blurs and possibly different sampling rates. Let w(σ,x) = (Gσu)(x)

denote the scale space of u. Then the scale spaces of u and v are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(μ
√

σ2 + δ2, μx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, μδ), then it corresponds to a key

point of u at the scale σ1 such that λ
√

σ2
1 + β2 = s0, whose SIFT descriptor is sampled

with mesh
√

σ2
1 + c2, where the constant c = 0.8 is the tentative standard deviation of the

initial image blur. In the same way (s0,x0) corresponds to a key point of v at scale σ2 such

that s0 = μ
√

σ2
2 + δ2, whose SIFT descriptor is sampled with mesh

√
σ2

2 + c2.

Proof. The interpolated initial images are by (5.2)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHμu0 = GδHμu0.

Computing the scale-space of these images amounts to convolving these images for every

σ > 0 with Gσ , which yields, using the commutation relation (5.4) and the semigroup

property (5.3):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HμGμ
√

σ2+δ2u0.

Let us set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(μ
√

σ2 + δ2, μx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space function w.

If s0 ≥ max(λβ, μδ), an extremal point occurs at scales σ1 for (the Laplacian of) u(σ,x)

and σ2 for (the Laplacian of) v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = μ

√
σ2

2 + δ2. (5.8)
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We recall that each SIFT descriptor at a key point (σ1,x1) is computed from space samples

of x → u(σ,x). The origin of the local grid is x1, the intrinsic axes are fixed by one of the

dominant directions of the gradient of u(σ1, ·) around x1, in a circular neighborhood whose

size is proportional to σ1. The SIFT descriptor sampling rate around the key point is also

proportional to
√

σ2
1 + c2 in u(σ1,x), and to

√
σ2

2 + c2 in u(σ2,x). �

Theorem 1. Let u and v be two digital images that are frontal snapshots of the same

continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHμu0, taken at different

distances, with different Gaussian blurs and possibly different sampling rates, and up to a

camera translation and rotation around its optical axe. Without loss of generality, assume

λ ≤ μ. Then if the blurs are identical (β = δ = c, where the constant c = 0.8 is the tentative

standard deviation of the initial image blur), all SIFT descriptors of u are identical to SIFT

descriptors of v. If β �= δ (or β = δ �= c), the SIFT descriptors of u and v become (quickly)

similar when their scales grow, namely as soon as σ1
max(c,β) 
 1 and σ2

max(c,δ) 
 1.

Proof. By the result of Lemma 2, we can neglect the effect of translations and rotations.

Therefore assume without loss of generality that the images under comparison are as in

Lemma 3. Assume a key point (s0,x0) of w has scale s0 ≥ max(λβ, μδ). This key point

has a sampling rate proportional to s0. There is a corresponding key point (σ1,
x0
λ ) for u

with sampling rate
√

σ2
1 + c2 and a corresponding key point (σ2,

x0
μ ) with sampling rate√

σ2
2 + c2 for v. To have a common reference for these sampling rates, it is convenient to

refer to the corresponding sampling rates for w(s0,x0), which are λ
√

σ2
1 + c2 for the SIFT

descriptors of u at scale σ1, and μ
√

σ2
2 + c2 for the descriptors of v at scale σ2. Thus the

SIFT descriptors of u and v for x0 will be identical if and only if λ
√

σ2
1 + c2 = μ

√
σ2

2 + c2.

Now, we have λ
√

σ2
1 + β2 = μ

√
σ2

2 + δ2, which implies λ
√

σ2
1 + c2 = μ

√
σ2

2 + c2 if and only



5.4. SCALE AND SIFT: CONSISTENCY OF THE METHOD 106

if

λ2β2 − μ2δ2 = (λ2 − μ2)c2. (5.9)

Since λ and μ correspond to camera distances to the observed object u0, they are pretty

arbitrary. Thus in general the only way to get (5.9) is to have β = δ = c, which means that

the blurs of both images have been guessed correctly. In any case, β = δ = c does imply

that the SIFT descriptors of both images are identical.

The second statement is straighforward: if σ1 and σ2 are large enough with respect to

β, δ and c, the relation λ
√

σ2
1 + β2 = μ

√
σ2

2 + δ2, implies λ
√

σ2
1 + c2 � μ

√
σ2

2 + c2. �

Figure 5.7: Scale invariance of SIFT, an illustration of Theorem 1. Left: a very small digital
image u with its 28 key points. For the conventions to represent key points and matches, see
the comments in Figure 5.3. Middle: this image is over sampled by a 32 factor to S1/32Iu.

It has 86 key points. Right: 22 matches found between u and H1/32u.

The almost perfect scale invariance of SIFT stated in Theorem 1 is illustrated by the

striking example of Figure 5.7. The 28 SIFT key points of a very small image u are compared

to the 86 key points obtained by zooming in u by a 32 factor: The resulting digital image

is v = S1/32Iu, again obtained by zero-padding. For better observability, both images are

displayed with the same size by enlarging the pixels of u. Almost each key point (22 out of
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28) of u finds its counterpart in v. 22 matches are detected between the descriptors as shown

on the right. If we trust Theorem 1, all descriptors of u should have been retrieved in v.

This does not fully happen for two reasons. First, the SIFT method thresholds (not taken

into account in the theorem) eliminate many potential key points. Second, the zero-padding

interpolation giving v is imperfect near the image boundaries.

By the second part of Theorem 1, the reliability of the SIFT matching increases with

scale. This fact is illustrated in Figure 5.8. Starting from a high resolution image u0,

two images u and v are obtained by simulated zoom out, u = S1GβHλu0 = SλGλβu0

and v = SμGμδu0, with λ = 2, μ = 4, β = δ = 0.8. Pairs of SIFT descriptors of u and

v in correspondence, established by a SIFT matching, are compared using an Euclidean

distance d. The scale rate σ1/σ2 as well as the distance d between the matched key points

are plotted against σ2 in Figure 5.8. That σ1/σ2 ≈ 2 for all key points confirms that the

SIFT matching process is reliable. As stated by the theorem, the rate σ1/σ2 goes to μ/λ = 2

when σ2 increases, and the distance d goes down. However, when the scale is small (σ2 < 1),

σ1/σ2 is very different from 2 and d is large.
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Figure 5.8: Top (from left to right): u0, u, v. Middle: Rate of scales σ1/σ2 of matched
keypoints in u and v against σ2. Bottom: Distance between matched descriptors of u and
v against σ2.



Chapter 6

ASIFT: A Fully Affine Invariant

Image Comparison Method

In Chapter 5, the SIFT method [119] has been shown fully invariant with respect zoom,

rotation and translation. SIFT simulates the zoom in the scale space and normalizes the

rotation and translation. However, as SIFT does not treat the camera axis orientation

parameters, its performance drops considerably when view angle change increases.

The method proposed in this Chapter, Affine-SIFT (ASIFT), simulates all image views

obtainable by varying the two camera axis orientation parameters, namely the latitude and

the longitude angles, left over by the SIFT method. Then it covers the other four parameters

by using the SIFT method itself. The resulting method will be mathematically proved to

be fully affine invariant. Against any prognosis, simulating all views depending on the two

camera orientation parameters is feasible with no dramatic computational load. A coarse-

to-fine two-resolution scheme further reduces the ASIFT complexity to about twice that of

SIFT. Many experiments show that ASIFT outperforms significantly the state-of-the-art

methods, including SIFT, MSER, Harris-Affine, and Hessian-Affine.

109
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6.1 Introduction

Image matching aims at establishing correspondences between same objects that appear

in different images and is a fundamental step in many computer vision and image processing

applications. A major difficulty of image matching is viewpoint change. The change of

camera position induces an apparent deformation of the object image. Thus, recognition

must be invariant to such deformations.

The state-of-the-art image matching algorithms usually consist of two parts: detector

and descriptor. They first detect points of interest in the images under comparison and select

a region around each point of interest, and then associate an invariant descriptor or feature

to each region. Correspondences may thus be established by matching the descriptors.

Detectors and descriptors should be as invariant as possible.

In recent years local image detectors have bloomed. They can be classified by their

incremental invariance properties. All of them are translation invariant. The Harris point

detector [85] is also rotation invariant. The Harris-Laplace, Hessian-Laplace and the DoG

(Difference-of-Gaussian) region detectors [144, 147, 119, 64] are invariant to rotations and

changes of scale. Some moment-based region detectors [112, 6] including the Harris-Affine

and Hessian-Affine region detectors [145, 147], an edge-based region detector [190, 192],

an intensity-based region detector [191, 192], an entropy-based region detector [90], and

two level line-based region detectors MSER (“maximally stable extremal region”) [135] and

LLD (“level line descriptor”) [159, 160, 21] are designed to be invariant to affine transforms.

MSER, in particular, has been demonstrated to have often better performance than other

affine invariant detectors, followed by Hessian-Affine and Harris-Affine [149].

In his milestone paper [119], Lowe has proposed a scale-invariant feature transform

(SIFT) that is invariant to image scaling, rotation and translation, and partially invariant
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to illumination and viewpoint changes. The SIFT method combines the DoG region detector

that is rotation, translation and scale invariant (a mathematical proof of its scale invariance

is given in [154]) with a descriptor based on the gradient orientation distribution in the

region, which is partially illumination and viewpoint invariant [119]. These two stages

of the SIFT method will be called respectively SIFT detector and SIFT descriptor. The

SIFT detector is a priori less invariant to affine transforms than the Hessian-Affine and the

Harris-Affine detectors [144, 147]. However, when combined with the SIFT descriptor [149],

its overall affine invariance turns out to be comparable, as we shall see in many experiments.

The SIFT descriptor has been shown to be superior to other many descriptors [146, 148]

such as the distribution-based shape context [8], the geometric histogram [2] descriptors,

the derivative-based complex filters [6, 173], and the moment invariants [195]. A number

of SIFT descriptor variants and extensions, including PCA-SIFT [93], GLOH (gradient

location-orientation histogram) [148] and SURF (speeded up robust features) [7] have been

developed ever since [67, 103]. They claim more robustness and distinctiveness with scaled-

down complexity. The SIFT method and its variants have been popularly applied for scene

recognition [59, 151, 172, 197, 78, 174, 215, 152] and detection [69, 162], robot localization [9,

175, 163, 158], image registration [213], image retrieval [84], motion tracking [194, 94], 3D

modeling and reconstruction [171, 198], building panoramas [1, 13], photo management [212,

100, 182, 23], as well as symmetry detection [120].

The mentioned state-of-the-art methods have achieved brilliant success. However, none

of them is fully affine invariant. As pointed out in [119], Harris-Affine and Hessian-Affine

start with initial feature scales and locations selected in a non-affine invariant manner.

The non-commutation between optical blur and affine transforms shown in Section 6.3 also

explains the limited affine invariance performance of the normalization methods MSER,

LLD, Harris-Affine and Hessian-Affine. As shown in [21], MSER and LLD are not even
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Figure 6.1: The frontal image (above) is squeezed in one direction on the left image by
a slanted view, and squeezed in an orthogonal direction by another slanted view. The
compression factor or absolute tilt is about 6 in each view. The resulting compression
factor, or transition tilt from left to right is actually 36. See Section 6.2 for the formal
definition of these tilts. Transition tilts quantify the affine distortion. The aim is to detect
image similarity under transition tilts as large as this one.

fully scale invariant: they do not cope with the drastic changes of the level line geometry

due to blur. SIFT is actually the only method that is fully scale invariant. However, since

it is not designed to cover the whole affine space, its performance drops quickly under

substantial viewpoint changes.

The present Chapter proposes a fully affine-invariant image comparison method Affine-

SIFT (ASIFT). Unlike MSER, LLD, Harris-Affine and Hessian-Affine which normalize all

the six affine parameters, ASIFT simulates three parameters and normalizes the rest. The

scale and the camera axis orientation angles are the three simulated parameters. The other

three, rotation and translation, are normalized. More specifically, ASIFT simulates the two

camera axis parameters, and then applies SIFT which simulates the scale and normalizes

the rotation and the translation. A coarse-to-fine two-resolution implementation of ASIFT

is proposed, that has about twice the complexity of a single SIFT routine. To the best

of our knowledge the first work suggesting to simulate affine parameters appeared in [168]
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where the authors proposed to simulate four tilt deformations in a cloth motion capture

application.

The Chapter introduces a crucial parameter for evaluating the performance of affine

recognition, the transition tilt. The transition tilt measures the degree of viewpoint change

from one view to another. Figures 6.1 and 6.2 give a first intuitive approach to absolute

tilt and transition tilt. They illustrate why simulating large tilts on both compared images

proves necessary to obtain a fully affine invariant recognition. Indeed, transition tilts can

be much larger than absolute tilts. In fact they can behave like the square of absolute tilts.

The affine invariance performance of the state-of-the-art methods will be evaluated by their

attainable transition tilts.

Figure 6.2: Top: Image pair with transition tilt t ≈ 36. (SIFT, Harris-Affine, Hessian-Affine
and MSER fail completely.) Bottom: ASIFT finds 120 matches out which 4 are false. See
comments in text.

The Chapter is organized as follows. Section 6.2 describes the affine camera model

and introduces the transition tilt. Section 6.3 reviews the state-of-the-art image matching

method SIFT, MSER, Harris-Affine and Hessian-Affine and explains why they are not fully
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affine invariant. The ASIFT algorithm is described in Section 6.4. Section 6.5 gives a

mathematical proof that ASIFT is fully affine invariant, up to sampling approximations.

Section 6.6 is devoted to extensive experiments where ASIFT is compared with the state-

of-the art algorithms.

A website with an online demo is available.

http://www.cmap.polytechnique.fr/∼yu/research/ASIFT/demo.html. It allows the users to test

ASIFT with their own images. It also contains an image dataset (for systematic evaluation

of robustness to absolute and transition tilts), and more examples.

6.2 Affine Camera Model and Tilts

Figure 6.3: The projective camera model u = S1G1Au0. A is a planar projective transform
(a homography). G1 is an anti-aliasing Gaussian filtering. S1 is the CCD sampling.

As illustrated by the camera model in Figure 6.3, digital image acquisition of a flat

object can be described as

u = S1G1AT u0 (6.1)

where u is a digital image and u0 is an (ideal) infinite resolution frontal view of the flat

object. T and A are respectively a plane translation and a planar projective map due to the

camera motion. G1 is a Gaussian convolution modeling the optical blur, and S1 is the stan-
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dard sampling operator on a regular grid with mesh 1. The Gaussian kernel is assumed to

be broad enough to ensure no aliasing by the 1-sampling, namely IS1G1AT u0 = G1AT u0,

where I denotes the Shannon-Whittaker interpolation operator. A major difficulty of the

recognition problem is that the Gaussian convolution G1, which becomes a broad convolu-

tion kernel when the image is zoomed out, does not commute with the planar projective

map A.

6.2.1 The Affine Camera Model

Figure 6.4: The global deformation of the ground is strongly projective (a rectangle becomes
a trapezoid), but the local deformation is affine: each tile on the pavement is almost a
parallelogram.

We shall proceed to a further simplification of the above model, by reducing A to an

affine map. Figure 6.4 shows one of the first perspectively correct Renaissance paintings

by Paolo Uccello. The perspective on the ground is strongly projective: the rectangular

pavement of the room becomes a trapezoid. However, each tile on the pavement is almost

a parallelogram. This illustrates the local tangency of perspective deformations to affine

maps. Indeed, by the first order Taylor formula, any planar smooth deformation can be

approximated around each point by an affine map. The apparent deformation of a plane

object induced by a camera motion is a planar homographic transform, which is smooth,

and therefore locally tangent to affine transforms. More generally, a solid object’s apparent
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deformation arising from a change in the camera position can be locally modeled by affine

planar transforms, provided the object’s facets are smooth. In short, all local perspective

effects can be modeled by local affine transforms u(x, y) → u(ax + by + e, cx + dy + f) in

each image region.

Figure 6.5 illustrates the same fact by interpreting the local behavior of a camera as

equivalent to multiple cameras at infinity. These cameras at infinity generate affine de-

formations. In fact, a camera position change can generate any affine map with positive

determinant. The next theorem formalizes this fact and gives a camera motion interpreta-

tion to affine deformations.

Figure 6.5: A camera at finite distance looking at a smooth object is equivalent to multiple
local cameras at infinity. These cameras at infinity generate affine deformations.

Theorem 2. Any affine map A =

⎡⎢⎣ a b

c d

⎤⎥⎦ with strictly positive determinant which is not

a similarity has a unique decomposition

A=HλR1(ψ)TtR2(φ)=λ

⎡⎢⎣cos ψ − sin ψ

sin ψ cos ψ

⎤⎥⎦
⎡⎢⎣ t 0

0 1

⎤⎥⎦
⎡⎢⎣cos φ − sinφ

sin φ cos φ

⎤⎥⎦ (6.2)

where λ > 0, λ2t is the determinant of A, Ri are rotations, φ ∈ [0, π), and Tt is a tilt,

namely a diagonal matrix with first eigenvalue t > 1 and the second one equal to 1.
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The theorem follows the Singular Value Decomposition (SVD) principle. The proof is

given in the Appendix A.

Figure 6.6: Geometric interpretation of the decomposition (6.2). The image u is a flat
physical object. The angles φ and θ are respectively the camera optical axis longitude and
latitude. A third angle ψ parameterizes the camera spin, and λ is a zoom parameter.

Figure 6.6 shows a camera motion interpretation of the affine decomposition (6.2):

φ and θ = arccos 1/t are the viewpoint angles, ψ parameterizes the camera spin and λ

corresponds to the zoom. The camera is assumed to stay far away from the image and

starts from a frontal view u, i.e., λ = 1, t = 1, φ = ψ = 0. The camera can first move

parallel to the object’s plane: this motion induces a translation T that is eliminated by

assuming (without loss of generality) that the camera axis meets the image plane at a fixed

point. The plane containing the normal and the optical axis makes an angle φ with a

fixed vertical plane. This angle is called longitude. Its optical axis then makes a θ angle

with the normal to the image plane u. This parameter is called latitude. Both parameters

are classical coordinates on the observation hemisphere. The camera can rotate around its

optical axis (rotation parameter ψ). Last but not least, the camera can move forward or

backward, as measured by the zoom parameter λ.

In (6.2) the tilt parameter, which has a one-to-one relation to the latitude angle t =
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1/ cos θ, entails a strong image deformation. It causes a directional subsampling of the

frontal image in the direction given by the longitude φ.

6.2.2 Transition Tilts

The parameter t in (6.2) is called absolute tilt, since it measures the tilt between the

frontal view and a slanted view. In real applications, both compared images are usually

slanted views. The transition tilt is designed to quantify the amount of tilt between two

such images.

Figure 6.7: Illustration of the difference between absolute tilt and transition tilt. The small
parallelograms on the top represent the cameras looking at u. Left: longitudes φ = φ′,
latitudes θ = 30◦, θ′ = 60◦, absolute tilts t = 1/ cos θ = 2/

√
3, t′ = 1/ cos θ′ = 2, transition

tilts τ(u1, u2) = t′/t =
√

3. Right: longitudes φ = φ′ + 90◦, latitudes θ = 60◦, θ′ = 75.3◦,
absolute tilts t = 1/ cos θ = 2, t′ = 1/ cos θ′ = 4, transition tilts τ(u1, u2) = t′t = 8.

Definition 1. Consider two views of a planar image, u1(x, y) = u(A(x, y)) and u2(x, y) =

u(B(x, y)) where A and B are two affine maps such that BA−1 is not a similarity. With

the notation of (6.2), we call respectively transition tilt τ(u1, u2) and transition rotation

φ(u1, u2) the unique parameters such that

BA−1 = HλR1(ψ)Tτ R2(φ). (6.3)

One can easily check the following structure properties for the transition tilt:
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• The transition tilt is symmetric, i.e., τ(u1, u2) = τ(u2, u1);

• The transition tilt only depends on the absolute tilts and on the longitude angle

difference: τ(u1, u2) = τ(t, t′, φ − φ′);

• One has t′/t ≤ τ ≤ t′t, assuming t′ = max(t′, t);

• The transition tilt is equal to the absolute tilt: τ = t′, if the other image is in frontal

view (t = 1).

Figure 6.7 illustrates the affine transition between two images taken from different view-

points, and in particular the difference between absolute tilt and transition tilt. On the

left, the camera is first put in two positions corresponding to absolute tilts t and t′ with

the longitude angles φ = φ′. The transition tilt between the resulting images u1 and

u2 is τ(u1, u2) = t′/t. On the right the tilts are made in two orthogonal directions:

φ = φ′ + π/2. A simple calculation shows that the transition tilt between u1 and u2 is

the product τ(u1, u2) = tt′. Thus, two moderate absolute tilts can lead to a large transition

tilt! Since in realistic cases the absolute tilt can go up to 6, which corresponds to a latitude

angle θ ≈ 80.5◦, the transition tilt can easily go up to 36. The necessity of considering high

transition tilts is illustrated in Figure 6.8.

6.3 State-of-the-art

Since an affine transform depends upon six parameters, it is prohibitive to simply

simulate all of them and compare the simulated images. An alternative way that has been

tried by many authors is normalization. As illustrated in Fig. 6.9, normalization is a magic

method that, given a patch that has undergone an unknown affine transform, transforms

the patch into a standardized one that is independent of the affine transform.
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Figure 6.8: This figure illustrates the necessity of considering high transition tilts to match images
under all possible views of a flat object. Two cameras look at a flat object lying in the center of
the hemisphere. Their optical axes point towards the center of the hemisphere. The first camera is
positioned at the center of the bright region drawn on the first hemisphere. Its latitude is θ = 80◦

(absolute tilt t = 5.8). The black regions on the four hemispheres represent the positions of the
second camera for which the transition tilt between the two cameras are respectively higher than
2.5, 5, 10 and 40. Only the fourth hemisphere is almost bright, but it needs a transition tilt as large
as 40 to cover it well.

Translation normalization can be easily achieved: a patch around (x0, y0) is translated

back to a patch around (0, 0). A rotation normalization requires a circular patch. In this

patch, a principal direction is found, and the patch is rotated so that this principal direction

coincides with a fixed direction. Thus, out of the six parameters in the affine transform, three

are easily eliminated by normalization. Most state-of-the-art image matching algorithms

adopt this normalization.

For the other three parameters, namely the scale and the camera axis angles, things get

more difficult. This Section describes how the state-of-the-art image matching algorithms

SIFT [119], MSER [135] and LLD [159, 160, 21], Harris-Affine and Hessian-Affine [145, 147]

deal with these parameters.

Figure 6.9: Normalization methods seek to eliminate the effect of a class of affine transforms
by associating the same standard patch to all transformed patches.
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6.3.1 Scale-Invariant Feature Transform (SIFT)

The initial goal of the SIFT method [119] is to compare two images (or two image parts)

that can be deduced from each other (or from a common one) by a rotation, a translation

and a scale change. The method turned out to be also robust to rather large changes in

viewpoint angle, which explains its success.

SIFT achieves the scale invariance by simulating the zoom in the scale-space. Following

a classical paradigm, SIFT detects stable points of interest at extrema of the Laplacian of the

image in the image scale-space representation. The scale-space representation introduces a

smoothing parameter σ. Images u0 are smoothed at several scales to obtain w(σ, x, y) :=

(Gσ ∗ u0)(x, y), where

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The notation ∗

stands for the space 2-D convolution.

Taking apart all sampling issues and several thresholds eliminating unreliable features,

the SIFT detector can be summarized in one single sentence:

The SIFT method computes scale-space extrema (σi, xi, yi) of the spatial Laplacian of w(σ, x, y),

and then samples for each one of these extrema a square image patch whose origin is (xi, yi),

whose x-direction is one of the dominant gradients around (xi, yi), and whose sampling rate

is
√

σ2
i + c2, where the constant c = 0.8 is the tentative standard deviation of the initial

image blur.

The resulting samples of the digital patch at scale σi are encoded by the SIFT descriptor

based on the gradient direction, which is invariant to nondecreasing contrast changes. This

accounts for the robustness of the method to illumination changes. The fact that only local

histograms of the direction of the gradient are kept explains the robustness of the descriptor
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to moderate tilts. The following theorem proved in Chapter 5 confirms the experimental

evidence that SIFT is almost perfectly similarity invariant.

Theorem 1. Let u and v be two digital images that are frontal snapshots of the same

continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHμu0, taken at different

distances, with different Gaussian blurs and possibly different sampling rates, and up to a

camera translation and rotation around its optical axe. Without loss of generality, assume

λ ≤ μ. Then if the blurs are identical (β = δ = c, where the constant c = 0.8 is the tentative

standard deviation of the initial image blur), all SIFT descriptors of u are identical to SIFT

descriptors of v. If β �= δ (or β = δ �= c), the SIFT descriptors of u and v become (quickly)

similar when their scales grow, namely as soon as σ1
max(c,β) 
 1 and σ2

max(c,δ) 
 1.

The extensive experiments in Section 6.6 will show that SIFT is robust to transition

tilts smaller than τmax ≈ 2, but fails completely for larger tilts.

6.3.2 Maximally Stable Extremal Regions (MSER)

MSER [135] and LLD [159, 160, 21] try to be affine invariant by an affine normalization

of the most robust image level sets and level lines. Both methods normalize all of the six

parameters in the affine transform. We shall focus on MSER, but the discussion applies to

LLD as well.

Extremal regions is the name given by the authors to the connected components of

upper or lower level sets. Maximally stable extremal regions, or MSERs, are defined as

maximally contrasted regions in the following way. Let Q1, ..., Qi−1, Qi, ... be a sequence

of nested extremal regions Qi ⊂ Qi+1, where Qi is defined by a threshold at level i. In

other terms, Qi is a connected component of an upper (resp. lower) level set at level i.

An extremal region in the list Qi0 is said to be maximally stable if the area variation

q(i) := |Qi+1 \Qi−1|/|Qi| has a local minimum at i0, where |Q| denotes the area of a region
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|Q|. Once MSERs are computed, an affine normalization is performed on the MSERs before

they can be compared. Affine normalization up to a rotation is achieved by diagonalizing

each MSER’s second order moment matrix, and by applying the linear transform that

performs this diagonalization to the MSER. Rotational invariants are then computed over

the normalized region.

As pointed out in [21] MSER is not fully scale invariant. This fact is illustrated in

Figure 6.10. In MSER the scale normalization is based on the size (area) of the detected

extremal regions. However, scale change is not just a homothety: it involves a blur followed

by subsampling. The blur merges the regions and changes their shape and size. In other

terms, the limitation of the method is the non-commutation between the optical blur and

the affine transform. As shown in the image formation model (6.1), the image is blurred

after the affine transform A. The normalization procedure does not eliminate exactly the

affine deformation, because A−1G1Au0 �= G1u0. Their difference can be considerable when

the blur kernel is broad, i.e., when the image is taken with a big zoom-out or with a large

tilt. This non-commutation issue is actually a limitation of all the normalization methods.

The feature sparsity is another weakness of MSER. MSER uses only highly contrasted

level sets. Many natural images contain few such features. However, the experiments

in Section 6.6 show that MSER is robust to transition tilts τmax between 5 and 10, a

performance much higher than SIFT. But this performance is only verified when there is no

substantial scale change between the images, and if the images contain highly contrasted

objects.

6.3.3 Harris-Affine and Hessian-Affine

Like MSER, Harris-Affine and Hessian-Affine normalize all the six parameters in the

affine transform. Harris-Affine [145, 147] first detects Harris key points in the scale-space
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Figure 6.10: Top: the same shape at different scales. Bottom: Their level lines (shown at
the same size). The level line shape changes with scale (in other terms, it changes with the
camera distance to the object).

using the approach proposed by Lindeberg [111]. Then affine normalization is realized by an

iterative procedure that estimates the parameters of elliptical regions and normalizes them

to circular ones: at each iteration the parameters of the elliptical regions are estimated by

minimizing the difference between the eigenvalues of the second order moment matrix of

the selected region; the elliptical region is normalized to a circular one; the position of the

key point and its scale in scale space are estimated. This iterative procedure due to [113, 6]

finds an isotropic region, which is covariant under affine transforms. The eigenvalues of the

second moment matrix are used to measure the affine shape of the point neighborhood. The

affine deformation is determined up to a rotation factor. This factor can be recovered by

other methods, for example by a normalization based on the dominant gradient orientation

like in the SIFT method.

The Hessian-Affine is similar to the Harris-Affine, but the detected regions are blobs

instead of corners. Local maximums of the determinant of the Hessian matrix are used as

base points, and the remainder of the procedure is the same as for Harris-Affine.

As pointed out in [119], in both methods the first step, namely the multiscale Harris

or Hessian detector, is clearly not affine covariant. The features resulting from the iterative

procedure should instead be fully affine invariant. The experiments in Section 6.6 show that
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Harris-Affine and Hessian-Affine are robust to transition tilts of maximal value τmax ≈ 2.5.

This disappointing result may be explained by the failure of the iterative procedure to

capture large transition tilts.

6.4 Affine-SIFT (ASIFT)

The idea of combining simulation and normalization is the main ingredient of the SIFT

method. The SIFT detector normalizes rotations and translations, and simulates all zooms

out of the query and of the search images. Because of this feature, it is the only fully scale

invariant method.

As described in Figure 6.11, ASIFT simulates with enough precision all distortions

caused by a variation of the camera optical axis direction. Then it applies the SIFT method.

In other words, ASIFT simulates three parameters: the scale, the camera longitude angle

and the latitude angle (which is equivalent to the tilt) and normalizes the other three

(translation and rotation). The mathematical proof that ASIFT is fully affine invariance

will be given in Section 6.5. The key observation is that, although a tilt distortion is

irreversible due to its non-commutation with the blur, it can be compensated up to a scale

change by digitally simulating a tilt of same amount in the orthogonal direction. As opposed

to the normalization methods that suffer from this non-commutation, ASIFT simulates and

thus achieves the full affine invariance.

Against any prognosis, simulating the whole affine space is not prohibitive at all with

the proposed affine space sampling. A two-resolution scheme will further reduce the ASIFT

complexity to about twice that of SIFT.

6.4.1 ASIFT Algorithm

ASIFT proceeds by the following steps.
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1. Each image is transformed by simulating all possible affine distortions caused by the

change of camera optical axis orientation from a frontal position. These distortions

depend upon two parameters: the longitude φ and the latitude θ. The images undergo

φ-rotations followed by tilts with parameter t =
∣∣ 1
cos θ

∣∣ (a tilt by t in the direction of

x is the operation u(x, y) → u(tx, y)). For digital images, the tilt is performed by a

directional t-subsampling. It requires the previous application of an antialiasing filter

in the direction of x, namely the convolution by a Gaussian with standard deviation

c
√

t2 − 1. The value c = 0.8 is the value chosen by Lowe for the SIFT method [119].

As shown in Chapter 5, it ensures a very small aliasing error.

2. These rotations and tilts are performed for a finite and small number of latitude and

longitude angles, the sampling steps of these parameters ensuring that the simulated

images keep close to any other possible view generated by other values of φ and θ.

3. All simulated images are compared by a similarity invariant matching algorithm

(SIFT).

The sampling of the latitude and longitude angles is specified below and will be ex-

plained in detail in Section 6.4.2.

• The latitudes θ are sampled so that the associated tilts follow a geometric series 1, a,

a2, , . . . , an, with a > 1. The choice a =
√

2 is a good compromise between accuracy

and sparsity. The value n can go up to 5 or more. In consequence transition tilts

going up to 32 and more can be explored.

• The longitudes φ are for each tilt an arithmetic series 0, b/t, . . . , kb/t, where b � 72◦

seems again a good compromise, and k is the last integer such that kb/t < 180◦.
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Figure 6.11: Overview of the ASIFT algorithm. The square images A and B represent the
compared images u and v. ASIFT simulates all distortions caused by a variation of the
camera optical axis direction. The simulated images, represented by the parallelograms, are
then compared by SIFT, which is invariant to scale change, rotation and translation.

6.4.2 Latitude and Longitude Sampling

The ASIFT latitude and the longitude sampling will be determined experimentally.

Sampling Ranges

The camera motion illustrated in Figure 6.6 shows φ varying from 0 to 2π. But, by

Theorem 2, simulating φ ∈ [0, π) is enough to cover all possible affine transforms.

The sampling range of the tilt parameter t is more critical. Object recognition under

any slanted view is possible only if the object is perfectly planar and Lambertian. Since this

is never the case, a practical physical upper bound tmax must be experimentally obtained by

using image pairs taken from indoor and outdoor scenes, each image pair being composed

of a frontal view and a slanted view. Two case studies were performed. The first one

was a magazine placed on a table with the artificial illumination coming from the ceiling

as shown in Figure 6.12. The outdoor scene was a building façade with some graffiti as

illustrated in Figure 6.13. The images have 600 × 450 resolution. For each image pair, the
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true tilt parameter t was obtained by on site measurements. ASIFT was applied with very

large parameter sampling ranges and small sampling steps, thus ensuring that the actual

affine distortion was accurately approximated. The ASIFT matching results of Figures 6.12

and 6.13 show that the physical limit is tmax ≈ 4
√

2 corresponding to a view angle θmax =

arccos 1/tmax ≈ 80◦. The sampling range tmax = 4
√

2 allows ASIFT to be invariant to

transition tilt as large as (4
√

2)2 = 32. (With higher resolution images, larger transition

tilts would definitely be attainable.)

Figure 6.12: Finding the maximal attainable absolute tilt. From left to right, the tilt
t between the two images is respectively t ≈ 3, 5.2, 8.5. The number of correct ASIFT
matches is respectively 151, 12, and 0.

Sampling Steps

In order to have ASIFT invariant to any affine transform, one needs to sample the tilt

t and angle φ with a high enough precision. The sampling steps �t and �φ must be fixed

experimentally by testing several natural images.

The camera motion model illustrated in Fig. 6.6 indicates that the sampling precision

of the latitude angle θ = arccos 1/t should increase with θ: the image distortion caused by
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Figure 6.13: Finding the maximal attainable absolute tilt. From left to right, the absolute
tilt t between the two images is respectively t ≈ 3.8, 5.6, 8; the number of correct ASIFT
matches is respectively 116, 26 and 0.

a fixed latitude angle displacement �θ is more drastic at larger θ. A geometric sampling

for t satisfies this requirement. Naturally, the sampling ratio �t = tk+1/tk should be

independent of the angle φ. In the sequel, the tilt sampling step is experimentally fixed to

�t =
√

2.

Similarly to the latitude sampling, one needs a finer longitude φ sampling when θ =

arccos 1/t increases: the image distortion caused by a fixed longitude angle displacement

�φ is more drastic at larger latitude angle θ. The longitude sampling step in the sequel

will be �φ = 72◦

t .

The sampling steps �t =
√

2 and �φ = 72◦

t were validated by applying successfully

SIFT between images with simulated tilt and longitude variations equal to the sampling

step values. The extensive experiments in Section 6.6 justify the choice as well. Figure 6.14

illustrates the resulting irregular sampling of the parameters θ = arccos 1/t and φ on the

observation hemisphere: the samples accumulate near the equator.
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Figure 6.14: Sampling of the parameters θ = arccos 1/t and φ. The samples are the black
dots. Left: perspective illustration of the observation hemisphere (only t = 2, 2

√
2, 4 are

shown). Right: zenith view of the observation hemisphere. The values of θ are indicated
on the figure.

6.4.3 Acceleration with Two Resolutions

The coarse-to-fine two-resolution procedure accelerates ASIFT by applying the ASIFT

method described in Section 6.4.1 on a low-resolution version of the query and the search

images. In case of success, the procedure selects the affine transforms that yielded matches

in the low-resolution process, then simulates the selected affine transforms on the original

query and search images, and finally compares the simulated images by SIFT. The two-

resolution method is summarized as follows.

1. Subsample the query and the search images u and v by a K×K factor: u′ = SKGKu

and v′ = SKGKv, where GK is an anti-aliasing Gaussian discrete filter and SK is

the K × K subsampling operator.

2. Low-resolution ASIFT: apply ASIFT as described in Section 6.4.1 to u′ and v′.

3. Identify the M affine transforms yielding the biggest numbers of matches between u′

and v′.

4. High-resolution ASIFT: apply ASIFT to u and v, but simulate only the M affine
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transforms.

Fig. 6.15 shows an example. The low-resolution ASIFT that is applied on the K×K = 3×3

subsampled images finds 19 correspondences and identifies the M = 5 best affine transforms.

The high-resolution ASIFT finds 51 correct matches.

Figure 6.15: Two-resolution ASIFT. Left: low-resolution ASIFT applied on the 3 × 3 sub-
sampled images finds 19 correct matches. Right: high-resolution ASIFT finds 51 matches.

6.4.4 ASIFT Complexity

The complexity of the ASIFT method will be estimated under the recommended con-

figuration: the tilt and angle ranges are [tmin, tmax] = [1, 4
√

2] and [φmin, φmax] = [0◦, 180◦],

and the sampling steps are �t =
√

2, �φ = 72◦

t . A t tilt is simulated by t times subsampling

in one direction. The query and the search images are subsampled by a K × K = 3 × 3

factor for the low-resolution ASIFT. Finally, the high-resolution ASIFT simulates the M
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best affine transforms that are identified, but only in case they lead to enough matches. In

real applications where a query image is compared with a large database, the likely result

for the low-resolution step is failure. The final high-resolution step counts only when the

images matched at low resolution.

Estimating the ASIFT complexity boils down to calculate the image area simulated by

the low-resolution ASIFT. Indeed the complexity of the image matching feature computation

is proportional to the input image area. One can verify that the total image area simulated

by ASIFT is proportional to the number of simulated tilts t: the number of φ simulations is

proportional to t for each t, but the t subsampling for each tilt simulation divides the area

by t. More precisely, the image area input to low-resolution ASIFT is

1 + (|Γt| − 1)180◦

72◦

K × K
=

1 + 5 × 2.5

3 × 3
= 1.5

times as large as that of the original images, where |Γt| = |{1,
√

2, 2, 2
√

2, 4, 4
√

2}| = 6 is the

number of simulated tilts and K×K = 3×3 is the subsampling factor. Thus the complexity

of the low-resolution ASIFT feature calculation is 1.5 times as much as that of a single SIFT

routine. The ASIFT algorithm in this configuration is invariant to transition tilts up to 32.

Higher transition tilt invariance is attainable with larger tmax. The complexity growth is

linear and thus marginal with respect to the exponential growth of transition tilt invariance.

Low-resolution ASIFT simulates 1.5 times the area of the original images and generates

in consequence about 1.5 times more features on both the query and the search images. The

complexity of low-resolution ASIFT feature comparison is therefore 1.52 = 2.25 times as

much as that of SIFT.

If the image comparisons involve a large database where most comparisons will be

failures, ASIFT stops essentially at the end of the low-resolution procedure, and the overall

complexity is about twice the SIFT complexity, as argued above.
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If the comparisons involve a set of images with high matching likeliness, then the

high resolution step is no more negligible. The overall complexity of ASIFT depends on

the number M of the identified good affine transforms simulated in the high-resolution

procedure as well as on the simulated tilt values t. However, in that case, ASIFT ensures

many more detections than SIFT, because it explores many more viewpoint angles. In that

case the complexity rate per match detection is in practice equal to or smaller than the per

match detection complexity of a SIFT routine.

The SIFT subroutines can be implemented in parallel in ASIFT (for both the low-

resolution and the high-resolution ASIFT). Recently many authors have investigated SIFT

accelerations [93, 67, 103]. A realtime SIFT implementation has been proposed in [181].

Obviously all the SIFT acceleration techniques directly apply to ASIFT.

6.5 The Mathematical Justification

This Section proves mathematically that ASIFT is fully affine invariant, up to sampling

errors. The key observation is that a tilt can be compensated up to a scale change by another

tilt of the same amount in the orthogonal direction.

The proof is given in a continuous setting which is by far simpler, because the image

sampling does not interfere. Since the digital images are assumed to be well-sampled, the

Shannon interpolation (obtained by zero-padding) paves the way from discrete to continu-

ous.

To lighten the notation, Gσ will also denote the convolution operator on R2 with

the Gauss kernel Gσ(x, y) = 1
2π(cσ)2 e

−x2+y2

2(cσ)2 , namely Gu(x, y) := (G ∗ u)(x, y), where the

constant c = 0.8 is chosen for good anti-aliasing [119, 154]. The one-dimensional Gaussians

will be denoted by Gx
σ(x, y) = 1√

2πcσ
e
− x2

2(cσ)2 and Gy
σ(x, y) = 1√

2πcσ
e
− y2

2(cσ)2 . Gσ satisfies the
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semigroup property

GσGβ = G√
σ2+β2 (6.4)

and it commutes with rotations:

GσR = RGσ. (6.5)

We shall denote by ∗y the 1-D convolution operator in the y-direction. In the notation

G∗y, G is a one-dimensional Gaussian depending on y and

G ∗y u(x, y) :=

∫
Gy(z)u(x, y − z)dz.

6.5.1 Inverting Tilts

Let us distinguish two tilting procedures:

Definition 2. Given t > 1, the tilt factor, define

• the geometric tilt : T x
t u0(x, y) := u0(tx, y). In case this tilt is made in the y direction,

it will be denoted by T y
t u0(x, y) := u0(x, ty);

• the simulated tilt (taking into account camera blur): Tx
t v := T x

t Gx√
t2−1

∗x v. In case

the simulated tilt is done in the y direction, it is denoted T
y
t v := T y

t Gy√
t2−1

∗y v.

As described by the image formation model (6.1), an infinite resolution scene u0 ob-

served from a slanted view in the x direction is distorted by a geometric tilt before it is

blurred by the optical lens, i.e., u = G1T
x
t u0. Reversing this operation is in principle im-

possible, because of the tilt and blur non-commutation. However, the next lemma shows

that a simulated tilt T
y
t in the orthogonal direction provides actually a pseudo inverse to

the geometric tilt T x
t .

Lemma 4. T
y
t = HtG

y√
t2−1

∗y (T x
t )−1.
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Proof. Since (T x
t )−1u(x, y) = u(x

t , y),

(
G√

t2−1 ∗y (T x
t )−1u

)
(x, y) =

∫
G√

t2−1(z)u(
x

t
, y − z)dz.

Thus

Ht

(
G√

t2−1 ∗y (T x
t )−1u

)
(x, y) =

∫
G√

t2−1(z)u(x, ty − z)dz =(
Gy√

t2−1
∗y u

)
(x, ty) =

(
T y

t Gy√
t2−1

∗y u
)

(x, y).

�

By the next Lemma, a tilted image G1T
x
t u can be tilted back by tilting in the orthogonal

direction. The price to pay is a t zoom out. The second relation in the lemma means that

the application of the simulated tilt to a well-sampled image yields an image that keeps the

well-sampling property. This fact is crucial to simulate tilts on digital images.

Lemma 5. Let t ≥ 1. Then

T
y
t (G1T

x
t ) = G1Ht; (6.6)

T
y
t G1 = G1T

y
t . (6.7)

Proof. By Lemma 4, T
y
t = HtG

y√
t2−1

∗y (T x
t )−1. Thus,

T
y
t (G1T

x
t ) = HtG

y√
t2−1

∗y ((T x
t )−1G1T

x
t ). (6.8)

By a variable change in the integral defining the convolution, it is an easy check that

(T x
t )−1G1T

x
t u =

(
1

t
G1(

x

t
, y)

)
∗ u, (6.9)

and by the separability of the 2D Gaussian in two 1D Gaussians,

1

t
G1(

x

t
, y) = Gt(x)G1(y). (6.10)
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¿From (6.9) and (6.10) one obtains

(T x)−1G1T
x
t u = ((Gx

t (x)Gy
1(y)) ∗ u = Gx

t (x) ∗x Gy
1(y) ∗y u,

which implies

Gy√
t2−1

∗y (T x)−1G1T
x
t u = Gy√

t2−1
∗y (Gx

t (x) ∗x Gy
1(y) ∗y u) = Gtu.

Indeed, the 1D convolutions in x and y commute and Gy√
t2−1

∗ Gy
1 = Gy

t by the Gaussian

semigroup property (6.4). Substituting the last proven relation in (6.8) yields

T
y
t G1T

x
t u = HtGtu = G1Htu.

The second relation (6.7) follows immediately by noting that Ht = T y
t T x

t . �

6.5.2 Proof that ASIFT works

The meaning of Lemma 5 is that we can design an exact algorithm that simulates all

inverse tilts, up to scale changes.

Theorem 3. Let u = G1AT1u0 and v = G1BT2u0 be two images obtained from an infinite

resolution image u0 by cameras at infinity with arbitrary position and focal lengths. (A

and B are arbitrary affine maps with positive determinants and T1 and T2 arbitrary planar

translations.) Then ASIFT, applied with a dense set of tilts and longitudes, simulates two

views of u and v that are obtained from each other by a translation, a rotation, and a camera

zoom. As a consequence, these images match by the SIFT algorithm.

Proof. We start by giving a formalized version of ASIFT using the above notation.

(Dense) ASIFT

1. Apply a dense set of rotations to both images u and v.

2. Apply in continuation a dense set of simulated tilts Tx
t to all rotated images.
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3. Perform a SIFT comparison of all pairs of resulting images.

Notice that by the relation

Tx
t R(

π

2
) = R(

π

2
)Ty

t , (6.11)

the algorithm also simulates tilts in the y direction, up to a R(π
2 ) rotation.

By the affine decomposition (6.2),

BA−1 = HλR1T
x
t R2. (6.12)

The dense ASIFT applies in particular:

1. Tx√
t
R2 to G1AT1u0, which by (6.5) and (6.7) yields ũ = G1T

x√
t
R2AT1u0 := G1ÃT1u0.

2. R(π
2 )Ty√

t
R−1

1 to G1BT2u0, which by (6.5) and (6.7) yields G1R(π
2 )T y√

t
R−1

1 BT2u0 :=

G1B̃T2u0.

Let us show that Ã and B̃ only differ by a similarity. Indeed,

B̃−1R(
π

2
)H√

tÃ = B−1R1T
y√

t
−1T

x√
t
H√

tR2A = B−1R1T
x
t R2A = B−1(H 1

λ
BA−1)A = H 1

λ
.

It follows that B̃ = R(π
2 )Hλ

√
tÃ. Thus,

ũ = G1ÃT1u0 and ṽ = G1R(
π

2
)Hλ

√
tÃT2u0

are two of the images simulated by ASIFT, and are deduced from each other by a rotation

and a λ
√

t zoom. It follows from Theorem 1 that their descriptors are identical as soon as

the scale of the descriptors exceeds λ
√

t. �

Remark 1. The above proof gives the value of the simulated tilts achieving success: if the

transition tilt between u and v is t, then it is enough to simulate a
√

t tilt on both images.
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6.5.3 Algorithmic Sampling Issues

Although the above proof deals with asymptotic statements when the sampling steps

tend to zero or when the SIFT scales tend to infinity, the approximation rate is quick, a

fact that can only be checked experimentally. This fact is actually extensively verified by

the huge amount of experimental evidence on SIFT, that shows first that the recognition

of scale invariant features is robust to a rather large latitude and longitude variation, and

second that the scale invariance is quite robust to moderate errors on scale. Section 6.4.2

has evaluated the adequate sampling rates and ranges for tilts and longitudes.

The above algorithmic description has neglected the image sampling issues, but care

was taken that input images and output images be always written in the G1u form. For the

digital input images, which always have the form u = S1G1u0, the Shannon interpolation

algorithm I is first applied, to give back IS1G1u0 = G1u0. For the output images, which

always have the form G1u, the sampling S1 gives back a digital image.

6.6 Experiments

ASIFT image matching performance will be compared with the state-of-the-art ap-

proaches using the detectors SIFT [119], MSER [135], Harris-Affine, and Hessian-Affine [144,

147], all combined with the most popular SIFT descriptor [119]. The MSER detector com-

bined with the correlation descriptor as proposed in the original work [135] was initially

included in the comparison, but its performance was found to be slightly inferior to that

of the MSER detector combined by the SIFT descriptor, as indicated in [146]. Thus only

the latter will be shown. In the following, the methods will be named after their detectors,

namely ASIFT, SIFT, MSER, Harris-Affine and Hessian-Affine.

The experiments include extensive tests with the standard Mikolajczyk database [143],
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a systematic evaluation of methods’ invariance to absolute and transition tilts and other

images of various types (resolution 600 × 450).

In the experiments the Lowe [117] reference software was used for SIFT. For all the

other methods we used the binaries of the MSER, the Harris-Affine and the Hessian-Affine

detectors and the SIFT descriptor provided by the authors, all downloadable from [143].

The low-resolution ASIFT applied a 3 × 3 image subsampling. ASIFT may detect

repeated matches from the image pairs simulated with different affine transforms. All

the redundant matches have been removed. (A match between two points p1 and p2 was

considered redundant with a match between p3 and p4 if d2(p1, p3) < 3 and d2(p2, p4) < 3,

where d(pi, pj) denotes the Euclidean distance between pi and pj .)

6.6.1 Standard Test Database

The standard Mikolajczyk database [143] was used to evaluate the methods’ robustness

to four types of distortions, namely blur, similarity, viewpoint change, and jpeg compression.

Five image pairs (image 1 vs images 2 to 6) with increasing amount of distortion were used

for each test. Figure 6.16 illustrates the number of correct matches achieved by each method.

For each method, the number of image pairs m on which more than 20 correct matches are

detected and the average number of matches n over these m pairs are shown for each test.

Among the methods under comparison, ASIFT is the only one that works well for the entire

database. It also systematically finds more correct matches. More precisely:

• Blur. ASIFT and SIFT are very robust to blur, followed by Harris-Affine and Hessian-

Affine. MSER are not robust to blur.

• Zoom plus rotation. ASIFT and SIFT are very robust to zoom plus rotation,

while MSER, Harris-Affine and Hessian-Affine have limited robustness, as explained

in Section 6.3.
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• Viewpoint change. ASIFT is very robust to viewpoint change, followed by MSER.

On average ASIFT find 20 times more matches than MSER. SIFT, Harris-Affine and

Hessian-Affine have comparable performance: they fail when the viewpoint change is

substantial.

The test images (see Figure 6.17) provided optimal conditions for MSER: the camera-

object distances are similar, and well contrasted shapes are always present.

• Compression. All considered methods are very robust to JPEG compression.

Blur Zoom plus rotation

Viewpoint JPEG compression

Figure 6.16: Number of correct matches achieved by ASIFT, SIFT, MSER, Harris-Affine,
and Hessian-Affine under four types of distortions, namely blur, zoom plus rotation, view-
point change and jpeg compression, in the standard Mikolajczyk database. On the top-right
corner of each graph m/n gives for each method the number of image pairs m on which
more than 20 correct matches were detected, and the average number of matches n over
these m pairs.

Fig. 6.17 shows the classic image pair Graffiti 1 and 6. ASIFT finds 925 correct matches.

SIFT, Harris-Affine and Hessian-Affine find respectively 0, 3 and 1 correct matches: the
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τ ≈ 3.2 transition tilt is just a bit too large for these methods. MSER finds 42 correct

correspondences.

Figure 6.17: Two Graffiti images with transition tilt τ ≈ 3.2. ASIFT (shown), SIFT
(shown), Harris-Affine, Hessian-Affine and MSER(shown) find 925, 2, 3, 1 and 42 correct
matches.

The next sections describe more systematic evaluations of the robustness to absolute

and transition tilts of the compared methods. The normalization methods MSER, Harris-

Affine, and Hessian-Affine have been shown to fail under large scale changes (see another

example in Fig. 6.18). To focus on tilt invariance, the experiments will therefore take image

pairs with similar scales.

6.6.2 Absolute Tilt Tests

Figure 6.19-a illustrates the experimental setting. The painting illustrated in Fig-

ure 6.20 was photographed with an optical zoom varying between ×1 and ×10 and with

viewpoint angles between the camera axis and the normal to the painting varying from 0◦

(frontal view) to 80◦. It is clear that beyond 80◦, to establish a correspondence between
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Figure 6.18: Robustness to scale change. ASIFT (shown), SIFT (shown), Harris-Affine
(shown), Hessian-Affine, and MSER find respectively 221, 86, 4, 3 and 4 correct matches.
Harris-Affine, Hessian-Affine and MSER are not robust to scale change.

the frontal image and the extreme viewpoint becomes haphazard. With such a big change

of view angle on a reflective surface, the image in the slanted view can be totally different

from the frontal view.

Table 6.1 summarizes the performance of each algorithm in terms of number of correct

matches. Some matching results are illustrated in Figures 6.22 to 6.23. MSER, which uses

maximally stable level sets as features, obtains most of the time many less correspondences

than the methods whose features are based on local maxima in the scale-space. As depicted

in Fig. 6.21, for images taken at a short distance (zoom ×1) the tilt varies on the same

flat object because of the perspective effect, an example being illustrated in Fig. 6.22. The

number of SIFT correspondences drops dramatically when the angle is larger than 65◦ (tilt

t ≈ 2.3) and it fails completely when the angle exceeds 75◦ (tilt t ≈ 3.8). At 75◦, as shown

in Figure 6.22, most SIFT matches are located on the side closer to the camera where the

actual tilt is actually smaller. The performance of Harris-Affine and Hessian-Affine decays
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a b

Figure 6.19: The settings adopted for systematic comparison. Left: absolute tilt test. An
object is photographed with a latitude angle varying from 0◦ (frontal view) to 80◦, from
distances varying between 1 and 10, which is the maximum focus distance change. Right:
transition tilt test. An object is photographed with a longitude angle φ that varies from 0◦

to 90◦, from a fixed distance.

Figure 6.20: The painting (left) and the magazine cover (right) that were photographed in
the absolute and transition tilt tests.
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considerably when the angle goes over 75◦ (tilt t ≈ 3.8). The MSER correspondences are

always fewer and show a noticeable decline over 65◦ (tilt t ≈ 2.4). ASIFT works until 80◦

(tilt t ≈ 5.8).

Consider now images taken at a camera-object distance multiplied by 10, as shown

in Figure 6.23. For these images the SIFT performance drops considerably: recognition is

possible only with angles smaller than 45◦. The performance of Harris-Affine and Hessian-

Affine declines steeply when the angle goes from 45◦ to 65◦. Beyond 65◦ they fail completely.

MSER struggles at the angle of 45◦ and fails at 65◦. ASIFT functions perfectly until 80◦.

Figure 6.21: When the camera focus distance is small, the absolute tilt of a plane object
can vary considerably in the same image due to the strong perspective effect.

Rich in highly contrasted regions, the magazine shown in Figure 6.20 is more favorable

to MSER. Table 6.2 shows the result of a similar experiment performed with the magazine,

with the latitude angles from 50 to 80◦ on one side and with the camera focus distance

×4. Figure 6.24 shows the result with 80◦ angle. The performance of SIFT, Harris-Affine

and Hessian-Affine drops steeply with the angle going from 50 to 60◦ (tilt t from 1.6 to

2). Beyond 60◦ (tilt t = 2) they fail completely. MSER finds many correspondences until

70◦ (tilt t ≈ 2.9). The number of correspondences drops when the angle exceeds 70◦ and

becomes too small at 80◦ (tilt t ≈ 5.8) for robust recognition. ASIFT works until 80◦.

The above experiments suggest an estimate of the maximal absolute tilts for the method

under comparison. For SIFT, this limit is hardly above 2. The limit is about 2.5 for Harris-

Affine and Hessian-Affine. The performance of MSER depends on the type of image. For
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Figure 6.22: Correspondences between the painting images taken from short distance (zoom
×1) at frontal view and at 75◦ angle. The local absolute tilt varies: t ≈ 4 (middle), t < 4
(right part), t > 4 (left part). ASIFT (shown), SIFT (shown), Harris-Affine, Hessian-Affine,
and MSER (shown) find respectively 202, 15, 3, 1, and 5 correct matches.

Figure 6.23: Correspondences between long distance views (zoom ×10), frontal view and 80◦

angle, absolute tilt t ≈ 5.8. ASIFT (shown), SIFT, Harris-Affine (shown), Hessian-Affine,
and MSER (shown) find respectively 116, 1, 1, 0, and 2 correct matches.
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Z × 1

θ/t SIFT HarAff HesAff MSER ASIFT

−80◦/5.8 1 16 1 4 110

−75◦/3.9 24 36 7 3 281

−65◦/2.3 117 43 36 5 483

−45◦/1.4 245 83 51 13 559

45◦/1.4 195 86 26 12 428

65◦/2.4 92 58 32 11 444

75◦/3.9 15 3 1 5 202

80◦/5.8 2 6 6 5 204

Z × 10

θ/t SIFT HarAff HesAff MSER ASIFT

−80◦/5.8 1 1 0 2 116

−75◦/3.9 0 3 0 6 265

−65◦/2.3 10 22 16 10 542

−45◦/1.4 182 68 45 19 722

45◦/1.4 171 54 26 15 707

65◦/2.4 5 12 5 6 468

75◦/3.9 2 1 0 4 152

80◦/5.8 3 0 0 2 110

Table 6.1: Absolute tilt invariance comparison with photographs of the painting in Fig-
ure 6.20. Number of correct matches of ASIFT, SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), and MSER for viewpoint angles between 45◦ and 80◦. Top: images taken
with zoom ×1. Bottom: images taken with zoom ×10. The latitude angles and the absolute
tilts are listed in the left column. For the ×1 zoom, strong perspective effect is present and
the tilts shown are average values.

images with highly contrasted regions, MSER reaches a 5 absolute tilt. However, if the

images do not contain highly contrasted regions, the performance of MSER can drop under

small tilts. For ASIFT, a 5.8 absolute tilt that corresponds to an extreme viewpoint angle

of 80◦ is easily attainable.

6.6.3 Transition Tilt Tests

The magazine shown in Figure 6.20 was placed face-up and photographed to obtain

two sets of images. As illustrated in Figure 6.19-b, for each image set the camera with a
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θ/t SIFT HarAff HesAff MSER ASIFT

50◦/1.6 267 131 144 150 1692

60◦/2.0 20 29 39 117 1012

70◦/2.9 1 2 2 69 754

80◦/5.8 0 0 0 17 349

Table 6.2: Absolute tilt invariance comparison with photographs of the magazine cover
(Figure 6.20). Number of correct matches of ASIFT, SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), and MSER for viewpoint angles between 50 and 80◦. The latitude angles
and the absolute tilts are listed in the left column.

Figure 6.24: Correspondences between magazine images taken with zoom ×4, frontal view
and 80◦ angle, absolute tilt t ≈ 5.8. ASIFT (shown), SIFT (shown), Harris-Affine, Hessian-
Affine, and MSER (shown) find respectively 349, 0, 0, 0, and 17 correct matches.
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Figure 6.25: Correspondences between the magazine images taken with absolute tilts t1 =
t2 = 2 with longitude angles φ1 = 0◦ and φ2 = 50◦, transition tilt τ ≈ 3. ASIFT (shown),
SIFT (shown), Harris-Affine, Hessian-Affine and MSER (shown) find respectively 745, 3, 1,
3, 87 correct matches.

fixed latitude angle θ corresponding to t = 2 and 4 circled around, the longitude angle φ

growing from 0 to 90◦. The camera focus distance and the optimal zoom was ×4. In each

set the resulting images have the same absolute tilt t = 2 or 4, while the transition tilt τ

(with respect to the image taken at φ = 0◦) goes from 1 to t2 = 4 or 16 when φ goes from

0 to 90◦. To evaluate the maximum invariance to transition tilt, the images taken at φ �= 0

were matched against the one taken at φ = 0.

Table 6.3 compares the performance of the algorithms. When the absolute tilt is t = 2,

the SIFT performance drops dramatically when the transition tilt goes from 1.3 to 1.7. With

a transition tilt over 2.1, SIFT fails completely. Similarly a considerable performance decline

is observed for Harris-Affine and Hessian-Affine when the transition tilt goes from 1.3 to 2.1.

Hessian-Affine slightly outperforms Harris-Affine, but both methods fail completely when

the transition tilt goes above 3. Figure 6.25 shows an example that SIFT, Harris-Affine and

Hessian-Affine fail completely under a moderate transition tilt τ ≈ 3. MSER and ASIFT
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work stably up to a 4 transition tilt. ASIFT finds ten times as many correspondences as

MSER covering a much larger area.

Under an absolute tilt t = 4, SIFT, Harris-Affine and Hessian-Affine struggle at a 1.9

transition tilt. They fail completely when the transition tilt gets bigger. MSER works

stably until a 7.7 transition tilt. Over this value, the number of correspondences is too

small for reliable recognition. ASIFT works perfectly up to the 16 transition tilt. The

above experiments show that the maximum transition tilt, about 2 for SIFT and 2.5 for

Harris-Affine and Hessian-Affine, is by far insufficient. This experiment and others confirm

that MSER ensures a reliable recognition until a transition tilt of about 10, but this is

only true when the images under comparison are free of scale change and contain highly

contrasted regions. The experimental limit transition tilt of ASIFT goes easily up to 36

(see Figure 6.2).

6.6.4 Other Test Images

ASIFT, SIFT, MSER, Harris-Affine and Hessian-Affine will be now tried with various

classic test images and some new ones. Proposed by Matas et al. in their online demo [136]

as a standard image to test MSER [135], the images in Figure 6.26 show a number of

containers placed on a desktop 1. ASIFT, SIFT, Harris-Affine, Hessian-Affine and MSER

find respectively 255, 10, 23, 11 and 22 correct correspondences. Figure 6.27 contains two

orthogonal road signs taken under a view change that makes a transition tilt τ ≈ 2.6. ASIFT

successfully matches the two signs finding 50 correspondences while all the other methods

totally fail. The pair of aerial images of Pentagon shown in Figure 6.28 shows a moderate

transition tilt τ ≈ 2.5. ASIFT works perfectly by finding 378 correct matches, followed by

MSER that finds 17. Harris-Affine, Hessian-Affine and SIFT fail by finding respectively

1We thank Tinne Tuytelaars for having kindly provided us with the images [192].
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t1 = t2 = 2

φ2/τ SIFT HarAff HesAff MSER ASIFT

10◦/1.3 408 233 176 124 1213

20◦/1.7 49 75 84 122 1173

30◦/2.1 5 24 32 103 1048

40◦/2.5 3 13 29 88 809

50◦/3.0 3 1 3 87 745

60◦/3.4 2 0 1 62 744

70◦/3.7 0 0 0 51 557

80◦/3.9 0 0 0 51 589

90◦/4.0 0 0 1 56 615

t1 = t2 = 4

φ2/τ SIFT HarAff HesAff MSER ASIFT

10◦/1.9 22 32 14 49 1054

20◦/3.3 4 5 1 39 842

30◦/5.3 3 2 1 32 564

40◦/7.7 0 0 0 28 351

50◦/10.2 0 0 0 19 293

60◦/12.4 1 0 0 17 145

70◦/14.3 0 0 0 13 90

80◦/15.6 0 0 0 12 106

90◦/16.0 0 0 0 9 88

Table 6.3: Transition tilt invariance comparison (object photographed: the magazine cover
shown in Figure 6.20). Number of correct matches of ASIFT, SIFT, Harris-Affine (HarAff),
Hessian-Affine (HesAff), and MSER for viewpoint angles between 50 and 80◦. The affine
parameters of the two images are φ1 = 0◦, t1 = t2 = 2 (above), t1 = t2 = 4 (below). φ2 and
the transition tilts τ are in the left column.
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6, 2 and 8 matches. The Statue of Liberty shown in Figure 6.29 presents a strong relief

effect. ASIFT finds 22 good matches. The other methods fail completely. Figure 6.30 shows

some deformed cloth (images from [114, 115]). ASIFT outperforms significantly the other

methods by finding respectively 141 and 370 correct matches, followed by SIFT that finds

31 and 75 matches. Harris-affine, Hessian-affine and MSER do not get a significant number

of matches.

Figure 6.26: Image matching (images used by Matas et al [136]). Transition tilt: τ ∈
[1.6, 3.0]. From top to bottom, left to right: ASIFT (shown), SIFT, Harris-Affine, Hessian-
Affine and MSER (shown) find respectively 254, 10, 23, 11 and 22 correct matches.

Figure 6.27: Image matching: road signs. Transition tilt τ ≈ 2.6. ASIFT (shown), SIFT,
Harris-Affine, Hessian-Affine and MSER (shown) find respectively 50, 0, 0, 0 and 1 correct
matches.
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Figure 6.28: Pentagon, with transition tilt τ ≈ 2.5. ASIFT (shown), SIFT (shown),
Harris-Affine, Hessian-Affine and MSER(shown) find respectively 378, 6, 2, 8 and 17 correct
matches.

Figure 6.29: Statue of Liberty, with transition tilt τ ∈ [1.3,∞). ASIFT (shown), SIFT
(shown), Harris-Affine, Hessian-Affine and MSER find respectively 22, 1, 0, 0 and 0 correct
matches.
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Figure 6.30: Image matching with object deformation. Left: flag. ASIFT (shown), SIFT,
Harris-Affine, Hessian-Affine and MSER find respectively 141, 31, 15, 10 and 2 correct
matches. Right: SpongeBob. ASIFT (shown), SIFT, Harris-Affine, Hessian-Affine and
MSER find respectively 370, 75, 8, 6 and 4 correct matches.
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Chapter 7

Visual Grouping by Neural

Oscillators

In the first part of the thesis, coefficient grouping is applied to improve signal estimation

in sparse representations. In computer vision, visual grouping is an important tool as well.

This Chapter introduces a biologically plausible visual grouping implementation with neural

oscillators and shows its applications on point clustering, contour integration and image

segmentation. Based on the framework of concurrent synchronization of dynamical systems,

simple networks of neural oscillators are constructed. The oscillators are connected with

diffusive coupling appropriately tune so that synchronization of oscillators within each group

indicates perceptual grouping of the underlying stimulative atoms, while desynchronization

between groups corresponds to group segregation.

7.1 Introduction

Let us consider Figure 7.1. Why do we perceive in these visual stimuli a cluster of

points, a straight contour and a hurricane? How is the identification achieved between

155
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atomic stimuli and the perceived objects?

Figure 7.1: Left: a cloud of points in which a dense cluster is embedded. Middle: a random
direction grid in which a vertical contour is embedded. Right: an image in which a hurricane
is embedded.

Gestalt psychology [210, 140, 92, 48] proposes some visual grouping principles such as

proximity, good continuation and color constancy that describe the construction of larger

groups from atomic local information in the stimuli. In computer vision, various mathe-

matical frameworks have been investigated to implement visual grouping [179, 43, 127, 57,

47, 157, 153, 74, 193, 165].

In the brain the distributed neural synchronization has been proposed as a general

functional mechanism for perceptual grouping [15, 180, 209]. Among a relative small body

of work that exploit neural-like oscillators in visual grouping [216, 106, 107, 108, 109, 96,

97, 63], Wang and his colleagues have performed pioneering and very innovative work using

oscillators for image segmentation [186, 204, 205, 116, 26] and have extended the scheme

to auditory segregation [12, 202, 203]. They constructed oscillator networks with local

excitatory lateral connections and a global inhibitory connection.

This Chapter proposes a simple biologically plausible visual grouping implementation

with networks of neural oscillators, based on diffusive connections and concurrent synchro-

nization [166]. The key idea is to embed the desired grouping properties in the choice of

diffusive couplings between oscillators, so that the oscillators synchronize if their underlying
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visual stimulative atoms belong to the same visual group and desynchronize otherwise. The

same algorithm is applied to point clustering, contour integration and image segmentation.

The Chapter is organized as follows. Section 7.2 introduces a basic model of neural oscil-

lators with diffusive coupling connections, and proposes a general visual grouping algorithm.

Sections 7.3, 7.4 and 7.5 describe in detail the neural oscillator solutions for point clustering,

contour integration and image segmentation and show a number of examples. The results

are compared with normalized cuts, a popular computer vision method [179, 43]. As de-

tailed in Sec 7.2.5, the method differs from the work of Wang et al [186, 204, 205, 116, 26] in

several fundamental aspects, including the synchronization/desynchronization mechanism

and the coupling structure.

7.2 Model and Algorithm

The model is a network of neural oscillators coupled with diffusive connections. Each

oscillator is associated to an atomic element in the stimuli, for example a point, an orienta-

tion or a pixel. Without coupling, the oscillators are desynchronized and oscillate in random

phases. Under diffusive coupling with the coupling strength appropriately tuned, they may

converge to multiple groups of synchronized elements. The synchronization of oscillators

within each group indicates the perceptual grouping of the underlying stimulative atoms,

while the desynchronization between groups suggests group segregation.

7.2.1 Neural Oscillators

A neural oscillator is an elementary unit associated to an atomic element in the stimuli,

and it models the perception of the stimulative atom. We use a modified form of FitzHugh-
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Nagumo neural oscillators [66, 161], similar to [116, 26],

v̇i = 3vi − v3
i − v7

i + 2 − wi + Ii (7.1)

ẇi = c[α(1 + tanh(ρvi)) − wi] (7.2)

where vi is the membrane potential of the oscillator, wi is an internal state variable rep-

resenting gate voltage, Ii represents the external current input and α, ρ and c are strictly

positive constants. This elementary unit oscillates if Ii exceeds a certain threshold and α,

ρ and c are in an appropriate range (within this range, the grouping results have low sen-

sitivities to the values of α, ρ and c — in all experiments we use α = 12, c = 0.04, ρ = 4).

Figure 7.2(a). plots the oscillation trace of membrane potential vi. Other spiking oscillator

models can be used similarly.

7.2.2 Diffusive Connections

Oscillators are coupled to form a network which aggregates the perception of individual

atoms in the visual stimulus. The oscillators are coupled through diffusive connections.

Let us denote by xi = [vi, wi]
T the state vectors of the oscillators introduced in Sec-

tion 7.2.1, each with dynamics ẋi = f(xi, t). A neural oscillator network is composed of N

oscillators, connected with diffusive coupling [207]

ẋi = f(xi, t) +
∑
i�=j

kij(xj − xi), i = 1, . . . , N (7.3)

where kij is the coupling strength.

Oscillators i and j are said to be synchronized if xi remains equal to xj . Once the

elements are synchronized, the coupling terms in (7.3) disappear, so that each individual

element exhibits its natural and uncoupled behavior, as illustrated in Figure 7.2. A larger

value of kij tends to reduce the state difference xi − xj and thus to reinforce the synchro-

nization between oscillators i and j (see the Appendix A for more details).
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a b

Figure 7.2: a. the oscillation trace of a single oscillator. b. synchronization of two oscillators
coupled through diffusive connections. The two oscillators start to be fully synchronized at
about t = 5.

The key to using diffusively-coupled neural oscillators for visual grouping is to tune the

couplings so that the oscillators synchronize if their underlying atoms belong to the same

visual group, and desynchronize otherwise. According to Gestalt psychology [210, 92, 140],

visual stimulative atoms having similarity (e.g. gray-level, color, orientation) or proximity

tend to be grouped perceptually. This suggests making strong coupling between neural

oscillators whose underlying stimuli are similar. Such coupling is implemented by a Gaussian

tuning

kij = e
−|si−sj |

2

β2 . (7.4)

where si and sj are stimuli of the two oscillators, for example position for point clustering,

orientation for contour integration and gray-level for image segmentation; and β is a tuning

parameter: the coupling strength falls off as a Gaussian function of the distance between

the stimuli. Psychophysical evidence of Gaussian tuning in vision has been observed [167].

In computer vision, Gaussian tuning has been applied in various applications such as image

denoising [14], segmentation [179, 165], recognition [177], mean shift clustering [71, 29, 41]

and contour integration [216].
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7.2.3 Concurrent Synchronization and Stability

In perception, fully synchronized elements in each group are bound, while different

groups are segregated [201]. Concurrent synchronization analysis provides a mathematical

tool to study stability and convergence properties of the corresponding neural oscillator

networks.

In an ensemble of dynamical elements, concurrent synchronization is defined as a regime

where the whole system is divided into multiple groups of fully synchronized elements, but

elements from different groups are not necessarily synchronized [166]. Networks of oscillators

coupled by diffusive connections defined in Sections 7.2.2 are specific cases of this general

framework [166, 207].

A subset of the global state space is called invariant if trajectories that start in that

subset remain in that subset. In our synchronization context, the invariant subsets of inter-

est are linear subspaces, corresponding to some components of the overall state being equal

(xi = xj) in (7.3). Concurrent synchronization analysis quantifies stability and convergence

to invariant linear subspaces. Furthermore, a property of concurrent synchronization anal-

ysis, which turns out to be particularly convenient in the context of grouping, is that the

actual invariant subset itself needs not be known a priori to guarantee stable convergence

to it.

Concurrent synchronization may first be studied in an idealized setting, e.g., with ex-

actly equal inputs to groups of oscillators, and noise-free conditions. This allows one to

compute minimum coupling gains to guarantee global exponential convergence to the in-

variant synchronization subspace. Robustness of concurrent synchronization, a consequence

of its exponential converge properties, allows the qualitative behavior of the nominal model

to be preserved even in non-ideal conditions. In particular, it can be shown and quantified

that for high convergence rates, actual trajectories differ little from trajectories based on
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an idealized model [207].

A more specific discussion of stability and convergence is given in the Appendix A.

The reader is referred to [166] for more details on the analysis tools.

7.2.4 Visual Grouping Algorithm

A basic and general visual grouping algorithm is obtained by constructing a neural

oscillator network according to the following steps.

1. Construct a neural oscillator network. Each oscillator (7.1, 7.2) is associated to one

atom in the stimuli. Oscillators are connected with diffusive connections (7.3) using

the Gaussian-tuned gains (7.4). The coupling tuning for point clustering, contour

integration and image segmentation will be specified in the following Sections.

2. Simulate the so-constructed network. The oscillators converge to concurrently syn-

chronized groups.

3. Identify the synchronized oscillators and equivalently the visual groups. A group

of synchronized oscillators indicates that the underlying visual stimulative atoms are

perceptually grouped. Desynchronization between groups suggests that the underlying

stimulative atoms in the two groups are segregated.

The differential equations (7.1) and (7.2) are solved using a Runge-Kutta method (with

the Matlab ODE solver). Once the system converges to the invariant synchronization

subspace (typically within 2 or 3 cycles), synchronization can be identified. As shown

in Figures 7.3-b and 7.4-b, traces of synchronized oscillators coincide in time, while those

of desynchronized groups are separated [201]. For point clustering and contour integration,

the identification of synchronization in the oscillation traces is implemented by thresholding

the correlation among the traces as proposed in [216]. For image segmentation, a k-means
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algorithm (with random initialization and correlation distance measure) is applied on the

oscillation traces to identify the synchronization. A complete description of the image

segmentation algorithm is given in Figure 7.9, and the algorithm applies to point clustering

and contour integration as well.

7.2.5 Relation to Previous Work

Among the relatively small body of previous work based on neural oscillators mentioned

in Section 7.1, the pioneering work of Wang et al. [186, 204, 205, 26] on image segmentation

called LEGION (locally excitatory globally inhibitory oscillator networks) is most related to

the present Chapter. Yen and Finkel [216] have studied similar ideas for contour integration.

While its starting point is the same, namely achieving grouping through oscillator synchro-

nization and tight coupling between oscillators associated to similar stimuli, the method

presented in this Chapter differs fundamentally from LEGION in the following aspects:

• Synchronization mechanism. A global inhibitor that allows active oscillators to

inhibit others is a key element in LEGION in order to achieve synchronization within

one group and distinction between different groups: At one time only one group of

oscillators is active and the others are inhibited. The present work relies on concurrent

synchronization [166] and does not contain any inhibitor: All oscillators are active

simultaneously; multiple groups of oscillators, synchronized within each group and

desynchronized between groups, coexist.

• Coupling mechanism. The oscillators coupling in LEGION is obtained through

stimulation: Local excitation coupling is implemented through positive stimulation

which tends to activate the oscillators in the neighborhood; global inhibition is ob-

tained by negative stimulation which tends to deactivate other oscillators. The cou-
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pling in the present work is based on diffusive connections (7.3): The coupling term

is a state difference which tends to zero as synchronization occurs [207].

• Robustness. The original LEGION was shown to be sensitive to noise [186, 204].

A concept of lateral potential for each oscillator was introduced in a later version

of LEGION [205, 26] to improve its robustness and reduce over-segmentation in real

image applications. The proposed method based on non-local diffusive connections

has inherent robustness to noise.

In turn, these fundamental differences make the proposed neural oscillator framework fairly

simple and general. It provides solutions not only for image segmentation, but also for point

clustering and contour integration, as detailed in the following Sections.

7.3 Point Clustering

Point clustering with neural oscillators is based on diffusive connections (7.3) and fol-

lows directly the general algorithm in Section 7.2.4. Let us denote ci = (ix, iy) the co-

ordinates of a point pi. Each point pi is associated to an oscillator xi. The proximity

Gestalt principle [210, 92, 140] suggests strong coupling between oscillators corresponding

to proximate points. More precisely, the coupling strength between xi and xj is

kij =

⎧⎪⎨⎪⎩ e
−|ci−cj |

2

β2 if j ∈ Ni

0 otherwise

, (7.5)

where Ni is the set of M points closest to pi: an oscillator xi is coupled with its M

nearest neighbors. Oscillators may be indirectly coupled over larger distances through

synchronization propagation (e.g., if x1 is coupled with x2 and x2 is coupled with x3, then

x1 is indirectly coupled with x3.) M and β tune the coupling and thus adjust the size of

the clusters one expects to detect. In the experiments, M = 10 and β = 3. The external
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inputs Ii of the oscillators in (7.1) are chosen as uniformly distributed random variables in

the appropriate range.

Figure 7.3 illustrates an example in which the points make clearly two clusters (Gaus-

sian distributed, centered at (25,40) and (40,60) with standard deviation equal to 3 × 3).

As shown in Figure 7.3(b), the oscillator system converges to two concurrently synchro-

nized groups separated in the time dimension, each corresponding to one cluster. The

identification of the two groups induces the clustering of the underlying points, as shown in

Figure 7.3(c).

a b c

Figure 7.3: a. Points to cluster. b. The oscillators converge to two concurrently synchro-
nized groups. c. Clustering results. The blue circles and the red crosses represent the two
clusters.

Figure 7.4 presents a more challenging setting where one seeks to identify a dense cluster

in a cloud of points. The cloud is made of 300 points uniformly randomly distributed in a

space of size 100×100, in addition to a dense cluster of 100 Gaussian distributed points with

standard deviation equal to 3×3. The neural oscillator system converges to one synchronized

group that corresponds to the cluster with all the “outliers” totally desynchronized in the

background, as shown in Figure 7.4(b). As in [216], the synchronized traces are segregated

from the background by thresholding the correlation among all the traces (threshold =

0.99), which results in the identification of the underlying cluster as shown in Figure 7.4(c).

The result of normalized cuts [179] is shown in Figure 7.4(d): a large number of outliers
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around the cluster of interest are confused with the cluster.

In this experiment, the neural oscillator solution implemented with Matlab on a Pen-

tium 4 PC takes about 10 seconds.

a b c d

Figure 7.4: a. A cloud of points made of 300 points uniformly randomly distributed in
a space of size 100 × 100, in addition to a cluster of 100 Gaussian distributed points with
standard deviation equal to 3×3. b. The neural oscillator system converges to one synchro-
nized group that corresponds to the cluster with all the “outliers” totally desynchronized
in the background. c. and d. Clustering results by respectively neural oscillators and
normalized cuts: blue dots represent the cluster detected by the algorithm and red crosses
are the “outliers”. In the latter many outliers are confused with the cluster of interest.

7.4 Contour Integration

Field et al. [65] have performed interesting experiments to test human capacity of

contour integration, i.e., of identifying a path within a field of randomly-oriented Gabor

elements. They made some quantitative observations in accordance with the Gestalt “good

continuation” law [210, 216]:

• Contour integration can be made when the successive elements in the path, i.e., the

element-to-element angle β (see Figure 7.5), differ by 60◦ or less.

• There is a constraint between the element-to-element angle β and the element-to-path

angle α (see Figure 7.5). The visual system can integrate large differences in element-

to-element orientation only when those differences lie along a smooth path, i.e., only
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when the element-to-path angle α is small enough. For example, with α = 15◦ and

β = 0◦ the contour integration is difficult, even though the observers can easily track

a 15◦ orientation difference when there is no variation (α = 0◦ and β = 15◦).

Figure 7.5: The element-to-element angle β is the difference in angle of orientation of each
successive path segment. The element-to-path angle α is the angle of orientation of the
element with respect to the path. This figure is adapted from [65].

Figures 7.6-7.8 show the setting of our contour integration experiments, similar to that

in [65]. An orientation value oi ∈ [0, 2π) is defined for each point i = (ix, iy) in a grid,

as illustrated by the arrows. Smooth contours potentially imbedded in the grid are to be

detected.

Following the general visual grouping algorithm described in Section 7.2.4, neural os-

cillators with diffusive connections (7.3) are used to perform contour integration. Each

orientation in the grid is associated to one oscillator. The coupling of the oscillators i

and j follows the Gestalt law of “good continuation” and, in particular, the results of the

psychovisual experiments of [65]:

kij =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− |oi−oj |2

δ2 − | oi+oj

2
−oij |2

γ2

)
if |i − j| ≤ w

0 otherwise

. (7.6)

where

oij =

⎧⎪⎨⎪⎩
θij if |θij − |oi+oj |

2 | < |θij + π − |oi+oj |
2 |

θij + π otherwise

is the undirectional orientation of the path ij (the closest to the average element-to-element

orientation
|oi+oj|

2 modulo π), with θij = arctan
(

iy−jy

ix−jx

)
. Oscillators with a small element-
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to-element angle β (the first term in (7.6)) and a small element-to-path angle α (the second

term in (7.6)) are coupled more tightly. The neural oscillator system makes therefore

smooth contour integration. δ and γ tune the smoothness of the detected contour. As

contour integration is known to be rather local [65], the coupling (7.6) is effective within a

neighborhood of size (2w +1)× (2w+1). In the experiments the parameters are configured

as δ = 20◦, γ = 10◦ and w = 1, in line with the results of the psychovisual experiments of

Field et al [65]. The external inputs Ii of the oscillators in (7.1) are set proportional to the

underlying orientations oi.

Figure 7.6(a) presents a grid in which orientations are uniformly distributed in space,

except for one vertical contour. The orientation of the elements on the vertical contour

undertakes furthermore a Gaussian perturbation of standard deviation σ = 10◦. The neural

oscillator system converges to one synchronized group that corresponds to the contour with

all the other oscillators desynchronized (the traces are similar to Figure 7.4(b)). As in [216],

the synchronized group is segregated from the background by thresholding the correlation

among the traces (threshold = 0.99). This results in the “pop-out” of the contour shown

in Figure 7.6(b). As shown in Figure 7.6(c), the multiscale normalized cut [43] does not

succeed to segregate the contour from the background. (Normalized cuts fail in the following

contour integration experiments as well and are not shown.) Figure 7.7 illustrates a similar

example with two intersecting straight contours.

Figure 7.8(a) illustrates a smooth curve embedded in the uniformly randomly dis-

tributed orientation background. With some minor effort, subjects are able to identify the

curve due to its “good continuation”. Similarly the neural system segregates the curve from

the background with the oscillators lying on the curve fully synchronized, as illustrated in

Figure 7.8(b).
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a b c

Figure 7.6: a. A vertical contour is embedded in a uniformly distributed orientation grid.
b. and c. Contour integration by respectively neural oscillators and normalized cuts.

a b c

Figure 7.7: a. Two contours are embedded in a uniformly distributed orientation grid. b.
and c. the two identified contours identified by neural oscillators.
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In these experiment, the neural oscillator solution implemented with Matlab on a Pen-

tium 4 PC takes about 10 seconds.

a b

Figure 7.8: a. A smooth curve is embedded in a uniformly distributed orientation grid. b.
The curve identified by neural oscillators.

7.5 Image Segmentation

The proposed image segmentation scheme follows the general visual grouping algorithm

described in Section 7.2.4. One oscillator is associated to each pixel in the image. Within

a neighborhood the oscillators are non-locally coupled with a coupling strength

kij =

⎧⎪⎨⎪⎩ e
−|ui−uj |

2

β2 if |i − j| < w

0 otherwise

. (7.7)

where ui is the pixel gray-level at coordinates i = (ix, iy) and w adjusts the size of the

neighborhood. Pixels with similar gray-levels are coupled more tightly, as suggested by the

color constancy Gestalt law [210, 92, 140]. As in [216, 14], a Gaussian function of gray-level

difference is used to tuned to the coupling strength. Non-local coupling plays an important

role in regularizing the image segmentation, with a larger w resulting in more regularized
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segmentation and higher robustness to noise. A complete image segmentation algorithm

description is given in Figure 7.9.

Figure 7.10(a) illustrates a synthetic image (the gray-levels of the black, gray and white

parts are 0, 128, and 255) contaminated by white Gaussian noise of moderate standard

deviation σ = 10. The segmentation algorithm was configured with β = σ and w = 3.

The external inputs Ii of the oscillators in (7.1) are set proportional to the underlying

orientation ui. The oscillators converge into three concurrently synchronized groups as

plotted in Figure 7.10(b), which results in a perfect segmentation as shown in Figure 7.10(c).

K-means with a random initialization and a correlation distance measure is applied to detect

oscillator synchronization in all the image segmentation experiments.

Figure 7.11 shows some real image segmentation examples in comparison with the

multiscale normalized cuts [43]. Both methods obtain rather regular segmentation with

hardly any “salt and pepper” holes. Using the same number of classes, the segmentation

obtained by neural oscillators seems more subtle and closer to human perception: in the

sagittal MRI (Magnetic Resonance Imaging), salient regions such as cortex, cerebellum and

lateral ventricle are segregated with good accuracy; in the radar image, the cloud boundaries

and eye of the hurricane are more precisely segregated.
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Image segmentation.

1. Construct the neural oscillator network.

(a) Make N neural oscillators xi = [vi, wi]
T following (7.1,7.2): α = 12, c = 0.04,

ρ = 4, Ii = a(ui), where ui is the gray level (0-255) of pixel i, i = 1, . . . , N , with

N the number of pixels in the image, and a(ui) = (ui − umin) Imax−Imin

umax−umin

+ Imin

is an affine mapping that maps the gray level the appropriate external input range

[Imin, Imax], with umin = mini ui and umin = maxi ui, Imin = 0.8 and Imax = 2.

(b) Couple the N oscillators with diffusive connections (7.3), where the coupling

strength kij follows the non-local Gaussian tuning (7.7). The coupling is stronger

with bigger β and w. Typical parameter configuration is: β = 20 for real images,

β = σ for synthetic images contaminated by white Gaussian noise of standard

deviation σ; w = 3 for images with little or moderate noise, w = 5 for very noisy

images.

2. Simulate the neural network by solving the differential equation system constructed in

Step 1. In the experiments, the Matlab ODE solver is used to solve the differential equa-

tions. Typically the simulation is performed for 6 oscillation cycles and the oscillators

converge within 2 or 3 cycles.

3. Apply a k-means algorithm (with random initialization and correlation distance measure)

on the oscillation traces starting from the 3rd cycle after which the oscillators have

typically converged. The oscillation traces are clustered in M classes, the corresponding

oscillators and underlying pixels follow the same classification.

Figure 7.9: Complete algorithm description: image segmentation.
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a b c

Figure 7.10: a. A synthetic image (the gray-levels of the black, gray and white parts
are respectively 0, 128, 255) contaminated by white Gaussian noise of standard deviation
σ = 10. b. The traces of the neural oscillation (β = σ, w = 3). The oscillators converge
into three concurrently synchronized groups. c. Segmentation result.

Figure 7.11: Real image segmentation. From top to bottom, left to right: a sagittal MRI
image (128 × 128); segmentation in 15 classes by neural oscillators and multiscale normal-
ized cuts; a radar image (128 × 128); segmentation in 20 classes by neural oscillators and
multiscale normalized cuts. Neural oscillator network is configured with β = 20 and w = 3.



Chapter 8

Conclusion

This thesis contributes to three aspects in image, signal processing and computer vision.

The first part is devoted to sparse geometric image and signal processing with blocks. Sparse

representation coefficients are grouped in blocks that adapt to signal geometrical regularity

and coefficient processing is conducted by block. We introduce a time-frequency block

thresholding audio denoising algorithm that thresholds the time-frequency coefficients by

block, and adapts the block size to the time-frequency regularity of the audio signal. The

adaptation is performed by minimizing a Stein unbiased risk estimator calculated from the

data. The proposed algorithm removes efficiently the musical noise artifact and improves the

SNR and the perceived quality with respect to state-of-the-art audio denoising algorithms.

Furthermore, we generalize block thresholding with oriented blocks that adapt to image

geometrical regularity. Oriented blocks are calculated with a block pursuit procedure that

decomposes sparse representation coefficients to blocks selected from a dictionary of blocks.

The resulting block pursuit thresholding improves PSNR with respect to block thresholding.

The block pursuit procedure identifies geometrical image model and calculates structured

sparse representations. A super-resolution zooming algorithm is derived by directional

173



CHAPTER 8. CONCLUSION 174

interpolation along the block directions in which image is directionally regular. Numerical

experiments illustrate the efficiency of this super-resolution procedure compared to cubic

spline interpolations.

In the second part of the thesis, we propose a new affine invariant image comparison

algorithm ASIFT. While the state-of-the-art image comparison method SIFT is fully simi-

larity invariant by simulating the zoom in the scale space and normalizing the translation

and the rotation, the new method simulates in addition the two camera axis orientation

angles. More specifically, ASIFT simulates the camera axis latitude and longitude angles,

and then applies SIFT which simulates the scale and normalizes the rotation and the trans-

lation. Mathematically, ASIFT is proved fully affine invariant, up to sampling errors. A

sparse sampling of the simulated parameters is proposed. A coarse-to-fine implementation

of ASIFT is described, that has about twice the complexity of a single SIFT routine. Many

numerical experiments show that ASIFT outperforms significantly the state-of-the-art, in-

cluding SIFT, MSER, Harris-Affine and Harris-Affine.

In the third part we introduce a biologically inspired visual grouping implementation

based on dynamical systems. Simple networks of neural oscillators coupled with diffusive

connections are proposed to solve visual grouping problems. The key idea is to embed the

desired grouping properties in the choice of the diffusive couplings, so that synchronization

of oscillators within each group indicates perceptual grouping of the underlying stimulative

atoms, while desynchronization between groups corresponds to group segregation. Com-

pared with state-of-the-art approaches, the same algorithm is shown to achieve promising

results on several classical visual grouping problems, including point clustering, contour

integration, and image segmentation.
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2. G. Yu and J.M. Morel, Proédé et dispositif de reconnaissance invariante-affine de
formes (Process and system of affine-invariant shape recognition), FR 08/53244, filed
May 15, 2008.

3. Fast pattern classification based on a sparse transform, US/PCT 13191, filed June 2,
2008.



Appendix A

Appendix

Proof of Theorem 2

Proof. Consider the real symmetric positive semi-definite matrix AtA, where At denotes
the transposed matrix of A. By classic spectral theory there is an orthogonal transform O
such that AtA = ODOt where D a diagonal matrix with ordered eigenvalues λ1 ≥ λ2. Set
O1 = AOD− 1

2 . Then O1O
t
1 = AOD− 1

2 D− 1
2 OtAt = AOD−1OtAt = A(AtA)−1At = I. Thus,

there are orthogonal matrices O1 and O such that

A = O1D
1
2 Ot. (A.1)

Since the determinant of A is positive, the product of the determinants of O and O1 is
positive. If both determinants are positive, then O and O1 are rotations and we can write
A = R(ψ)DR(φ). If φ is not in [0, π), changing φ into φ − π and ψ into ψ + π ensures
that φ ∈ [0, π). If the determinants of O and O1 are both negative, replacing O and

O1 respectively by

(
−1 0
0 1

)
O and

(
−1 0
0 1

)
O1 makes them into rotations without

altering (A.1), and we can as above ensure φ ∈ [0, π) by adapting φ and ψ. The final

decomposition is obtained by taking for λ the smaller eigenvalue of D
1
2 . �

Convergence and Stability

One can verify ([166], to which the reader is referred for more details on the analysis
tools) that a sufficient condition for global exponential concurrent synchronization of an
oscillator network is

λmin(VLVT ) > sup
a,t

λmax

(
∂

∂x
(a, t)

)
, (A.2)

where λmin(A) and λmax(A) are respectively the smallest and largest eigenvalues of the sym-
metric matrix As = (A+AT )/2, L is the Laplacian matrix of the network (Lii =

∑
j �=i kij ,

Lij = −kij for j �= i) and V is a projection matrix on M⊥. Here M⊥ is the subspace
orthogonal to the subspace M in which all the oscillators are in synchrony − or, more
generally in the case of a hierarchy, where all oscillators at each level of the hierarchy are in
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synchrony (i.e., x1 = · · · = xN at each level). Note that M itself need not be invariant (i.e.
all oscillators synchronized at each level of the hierarchy need not be a particular solution
of the system), but only needs to be a subspace of the actual invariant synchronization
subspace ([75], [166] section 3.3.i.), which may consist of synchronized subgroups according
to the input image. Indeed, the space where all xi are equal (or, in the case of a hierarchy,
where at each level all xi are equal), while in general not invariant, is always a subspace of
the actual invariant subspace corresponding to synchronized subgroups.

These results can be applied e.g. to individual oscillator dynamics of the type (7.1). Let
Ji denote the Jacobian matrix of the individual oscillator dynamics (7.1), Ji = ∂[v̇i ẇi]

T /∂[vi, wi]
T .

Using a diagonal metric transformation Θ = diag(
√

cαβ, 1), one easily shows, similarly
to [207, 208], that the transformed Jacobian matrix ΘJiΘ

−1 − diag(k, 0) is negative defi-
nite for k > 3 + αβ

4 . More general forms of oscillators can also be used. For instance,
other second-order models can be created based on a smooth function f(.) and an arbitrary
sigmoid-like function σ(.) ≥ 0 such that 0 ≤ σ′(.) ≤ 1 , in the form

v̇i = f(vi) − wi + Ii (A.3)

ẇi = c[ασ(βvi) − wi] (A.4)

with the transformed Jacobian matrix negative definite for k > f ′(vi) + αβ
4 .

From a stability analysis point of view, the coupling matrix K of the Gaussian-tuned
coupling, composed of coupling coefficients kij in (7.4), presents desirable properties. It is
symmetric, and the classical theorem of Schoenberg (see [142]) shows that it is positive def-
inite. Also, although it may actually be state-dependent, the coupling matrix K can always
be treated simply as a time-varying external variable for stability analysis and Jacobian
computation purposes, as detailed in ([207], section 4.4, [166], section 2.3).
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