Apprentissage automatique des classes d'occupation du sol et représentation en mots visuels des images satellitaires - Archive ouverte HAL Access content directly
Theses Year : 2009

Automatic learning of land cover classes and visual words representation of satellite images

Apprentissage automatique des classes d'occupation du sol et représentation en mots visuels des images satellitaires

Abstract

Land cover recognition from automatic classifications is one of the important methodological researches in remote sensing. Besides, getting results corresponding to the user expectations requires approaching the classification from a semantic point of view. Within this frame, this work aims at the elaboration of automatic methods capable of learning classes defined by cartography experts, and of automatically annotating unknown images based on this classification. Using corine land cover maps, we first show that classical approaches in the state-of-the-art are able to well-identify homogeneous classes such as fields, but have difficulty in finding high-level semantic classes, also called mixed classes because they consist of various land cover categories. To detect such classes, we represent images into visual words, in order to use text analysis tools which showed their efficiency in the field of text mining. By means of supervised and not supervised approaches on one hand, we exploit the notion of semantic compositionality: image structures which are considered as mixtures of land cover types, are detected by bringing out the importance of spatial relations between the visual words. On the other hand, we propose a semantic annotation method using a statistical text analysis model: latent dirichlet allocation. We rely on this mixture model, which requires a bags-of-words representation of images, to properly model high-level semantic classes. The proposed approach and the comparative studies with gaussian and gmm models, as well as svm classifier, are assessed using spot and quickbird images among others.
La reconnaissance de la couverture des sols à partir de classifications automatiques est l'une des recherches méthodologiques importantes en télédétection. Par ailleurs, l'obtention de résultats fidèles aux attentes des utilisateurs nécessite d'aborder la classification d'un point de vue sémantique. Cette thèse s'inscrit dans ce contexte, et vise l'élaboration de méthodes automatiques capables d'apprendre des classes sémantiques définies par des experts de la production des cartes d'occupation du sol, et d'annoter automatiquement de nouvelles images à l'aide de cette classification. A partir des cartes issues de la classification CORINE Land Cover, et des images satellitaires multispectrales ayant contribué à la constitution de ces cartes, nous montrons tout d'abord que si les approches classiques de la littérature basées sur le pixel ou la région sont suffisantes pour identifier les classes homogènes d'occupation du sol telles que les champs, elles peinent cependant à retrouver les classes de haut-niveau sémantique, dites de mélange, parce qu'étant composées de différents types de couverture des terres. Pour détecter de telles classes complexes, nous représentons les images sous une forme particulière basée sur les régions ou objets. Cette représentation de l'image, dite en mots visuels, permet d'exploiter des outils de l'analyse de textes qui ont montré leur efficacité dans le domaine de la fouille de données textuelles et en classification d'images multimédia. A l'aide d'approches supervisées et non supervisées, nous exploitons d'une part, la notion de compositionnalité sémantique, en mettant en évidence l'importance des relations spatiales entre les mots visuels dans la détermination des classes de haut-niveau sémantique. D'autre part, nous proposons une méthode d'annotation utilisant un modèle d'analyse statistique de textes : l'Allocation Dirichlet Latente. Nous nous basons sur ce modèle de mélange, qui requiert une représentation de l'image dite en sacs-de-mots visuels, pour modéliser judicieusement les classes riches en sémantique. Les évaluations des approches proposées et des études comparatives menées avec les modèles gaussiens et dérivés, ainsi qu'avec le classificateur SVM, sont illustrées sur des images SPOT et QuickBird entre autres.
Fichier principal
Vignette du fichier
these_Lienou.pdf (17.53 Mo) Télécharger le fichier
Loading...

Dates and versions

pastel-00005585 , version 1 (19-10-2010)

Identifiers

  • HAL Id : pastel-00005585 , version 1

Cite

Marie Lauginie Lienou. Apprentissage automatique des classes d'occupation du sol et représentation en mots visuels des images satellitaires. Traitement du signal et de l'image [eess.SP]. Télécom ParisTech, 2009. Français. ⟨NNT : ⟩. ⟨pastel-00005585⟩
499 View
2122 Download

Share

Gmail Facebook Twitter LinkedIn More