J. Bouguet, Pyramidal implementation of the Lucas Kanade feature tracker : Description of the algorithm, 1999.

T. Fraichard and H. Asama, Inevitable collision states ??? a step towards safer robots?, Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems, pp.388-393, 2003.
DOI : 10.1163/1568553042674662

URL : https://hal.archives-ouvertes.fr/inria-00182082

S. Petti and T. Fraichard, Safe navigation of a car-like robot in a dynamic environment, Proceedings of the European Conference on Mobile Robots, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00182047

Y. Ma, S. Soatto, J. Kosecká, S. Shankar, and . Sastry, An invitation to 3- D vision : from images to geometric models, Interdisciplanary applied mathematics, 2000.
DOI : 10.1007/978-0-387-21779-6

J. E. Cutting and P. M. Vishton-the, Perceiving layout and knowing distances : the integration, relative potency, and contextual use of different information about depth, Perception of Space and Motion, pp.69-117, 1995.

B. Rogers and M. Graham, Motion Parallax as an Independent Cue for Depth Perception, Perception, vol.45, issue.2, pp.125-134, 1979.
DOI : 10.1068/p080125

J. Zhou and B. Li, Robust Ground Plane Detection with Normalized Homography in Monocular Sequences from a Robot Platform, 2006 International Conference on Image Processing, 2006.
DOI : 10.1109/ICIP.2006.312972

A. Wedel, T. Schoenemann, T. Brox, and D. Cremers, WarpCut ??? Fast Obstacle Segmentation in Monocular Video, Lecture Notes in Computer Science, pp.264-273, 2007.
DOI : 10.1007/978-3-540-74936-3_27

]. W. Trobin, T. Pock, D. Cremers, and H. Bischof, An Unbiased Second-Order Prior for High-Accuracy Motion Estimation, DAGM Symposium, pp.396-405, 2008.
DOI : 10.1007/978-3-540-69321-5_40

D. Aubert and C. Thorpe, Color image processing for navigation : two road trackers, CMU Robotics Institute Laboratory, 1990.

S. Beucher and M. Bilodeau, Road segmentation and obstacle detection by a fast watershed transformation, Proceedings of the Intelligent Vehicles '94 Symposium, pp.296-301, 1994.
DOI : 10.1109/IVS.1994.639531

A. Broggi and S. Berte, Vision-based road detection in automotive systems : a real-time expectation driven approach, Journal of Artificial Intelligence Research, vol.3, pp.325-348, 1995.

F. Paetzold and U. Franke, Road recognition in urban environment, Image and Vision Computing, pp.377-387, 2000.
DOI : 10.1016/S0262-8856(99)00033-5

T. M. Huang, V. Kecman, and I. Kopriva, Kernel based algorithms for mining huge data sets, supervised, semi-supervised, and unsupervised learning, 2006.

A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau, Vehicle detection combining gradient analysis and adaboost classification, Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., 2005.
DOI : 10.1109/ITSC.2005.1520202

M. A. Sotelo, I. Parra, D. Fernández, and E. Naranjo, Pedestrian Detection Using SVM and Multi-Feature Combination, 2006 IEEE Intelligent Transportation Systems Conference, 2006.
DOI : 10.1109/ITSC.2006.1706726

D. Hoiem, A. A. Efros, and M. Hebert, Closing the loop in scene interpretation, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587587

N. Soquet and D. Aubert, Road Segmentation Supervised by an Extended V-Disparity Algorithm for Autonomous Navigation, 2007 IEEE Intelligent Vehicles Symposium, 2007.
DOI : 10.1109/IVS.2007.4290108

N. Simond and M. Parent, Obstacle detection from IPM and super-homography, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
DOI : 10.1109/IROS.2007.4399253

URL : https://hal.archives-ouvertes.fr/inria-00141922

M. Yang, Q. Yu, H. Wang, and B. Zhang, <title>Vision-based real-time obstacle detection and tracking for autonomous vehicle guidance</title>, Real-Time Imaging VI, pp.65-74
DOI : 10.1117/12.458534

W. Miled, J. Pesquet, and M. Parent, Robust Obstacle Detection Based on Dense Disparity Maps, the Eleventh International Conference on Computer Aided Systems Theory, 2007.
DOI : 10.1007/978-3-540-75867-9_143

URL : https://hal.archives-ouvertes.fr/inria-00129750

S. Lefebvre, S. Ambellouis, and F. Cabestaing, Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering, 2006 IEEE Intelligent Transportation Systems Conference, 2006.
DOI : 10.1109/ITSC.2006.1706830

URL : https://hal.archives-ouvertes.fr/hal-00521114

N. B. Touzene and S. Larabi, Obstacle Detection from Uncalibrated Cameras, 2008 Panhellenic Conference on Informatics, 2008.
DOI : 10.1109/PCI.2008.34

R. Labayrade and D. Aubert, In-vehicle obstacles detection and characterization by stereovision, Proceedings of the IEEE International Conference on Cognitive Computer Vision Systems, 2003.

J. Wang, Z. Hu, H. Lu, and K. Uchimura, Motion Detection in Driving Environment Using U-V-Disparity, Lecture Notes in Computer Science, pp.307-316, 2006.
DOI : 10.1007/11612032_32

Y. Gao, Etude psychophysiologique de la vision en relief humaine en télévision stéréo, Thèse de Génie Biologique et Médical à l'institut national des sciences appliquées de Lyon, 1992.

H. H. Nagel, Extending the ???Oriented smoothness constraint??? into the temporal domain and the estimation of derivatives of optical flow, Lecture Notes in Computer Science, pp.139-148, 1990.
DOI : 10.1007/BFb0014860

M. J. Black, Robust incremental optical flow, 1992.

C. Koch, H. T. Wang, B. Mather, A. Hsu, and H. Suarez, Computing optical flow in resistive networks and in the primate visual system, [1989] Proceedings. Workshop on Visual Motion, pp.62-72, 1989.
DOI : 10.1109/WVM.1989.47095

H. H. Nagel, On the estimation of optical flow: Relations between different approaches and some new results, Artificial Intelligence, vol.33, issue.3, pp.299-324, 1987.
DOI : 10.1016/0004-3702(87)90041-5

A. D. Jepson and M. Black, Mixture models for optical flow computation, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.760-761, 1993.
DOI : 10.1109/CVPR.1993.341161

]. A. Singh, Incremental estimation of image flow using a Kalman filter, Proceedings of the IEEE Workshop on Visual Motion, pp.36-43, 1991.
DOI : 10.1016/1047-3203(92)90029-S

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-204, 1981.
DOI : 10.1016/0004-3702(81)90024-2

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, Performance of optical flow techniques, International Journal of Computer Vision, vol.54, issue.1, pp.43-77, 1994.
DOI : 10.1007/BF01420984

B. Lucas and T. Kanade, An iterative image registration technique with an application to stereovision, Proceedings of the DARPA IU Workshop, pp.121-130, 1981.

S. Beauchemin and J. Barron, The computation of optical flow, ACM Computing Surveys, pp.433-467, 1995.
DOI : 10.1145/212094.212141

D. Pellerin, A. Spinéi, and A. Guérin-dugué, Calcul du flot optique par filtrages de Gabor combinés, Traitement du Signal, 1996.

D. J. Heeger, Optical flow using spatiotemporal filters, International Journal of Computer Vision, vol.300, issue.5892, pp.279-302, 1988.
DOI : 10.1007/BF00133568

V. Argyriou and T. Vlachos, A study of sub-pixel motion estimation using phase correlation, Procedings of the British Machine Vision Conference 2006, 2004.
DOI : 10.5244/C.20.40

C. D. Kuglin and D. C. Hines, The phase correlation image alignment method, Proceedings of the Conference Cybernetics Society, pp.163-165, 1975.

Y. T. Wu, T. Kanade, J. Cohn, and C. C. Li, Optical flow estimation using wavelet motion model, Proceedings of the Sixth International Conference on Computer Vision, 1998.

R. Szeliski and H. Shum, Motion Estimation with Quadtree Splines, 1995.
DOI : 10.1109/iccv.1995.466862

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9101

C. Bernard, Discrete Wavelet Analysis for Fast Optic Flow Computation, Applied and Computational Harmonic Analysis, vol.11, issue.1, pp.32-63, 2001.
DOI : 10.1006/acha.2000.0341

W. Li and E. Salari, Successive elimination algorithm for motion estimation, IEEE Transactions on Image Processing, 1995.
DOI : 10.1109/83.350809

X. Jing and L. P. Chaud, An Efficient Three-Step Search Algorithm for Block Motion Estimation, IEEE Transactions on Multimedia, 2004.
DOI : 10.1109/TMM.2004.827517

Y. Nie and K. K. Ma, Adaptive rood pattern search for fast block matching motion estimation, IEEE Transactions on Image Processing, 2002.

F. Essannouni, R. O. Thami, A. Salam, and D. Aboutajdine, An efficient fast full search block matching algorithm using FFT algorithms, International Journal of Computer Science and Network Security, vol.6, issue.3b, 2006.

C. Q. Davis, Z. Z. Karul, and D. M. Freeman, Equivalence of subpixel motion estimators based on optical flow and block matching, Proceedings of International Symposium on Computer Vision, ISCV, 1995.
DOI : 10.1109/ISCV.1995.476969

J. Barron and R. Klette, Quantitative color optical flow, Object recognition supported by user interaction for service robots, pp.251-255, 2002.
DOI : 10.1109/ICPR.2002.1047444

P. Golland and A. M. Bruckstein, Motion from Color, Computer Vision and Image Understanding, vol.68, issue.3, 1997.
DOI : 10.1006/cviu.1997.0553

J. Marzat, Estimation temps réel du flot optique, Rapport de Stage Ingénieur Institut National de Recherche en Informatique et Automatique, 2008.

J. Marzat, Y. Dumortier, and A. Ducrot, Real-time Dense and Accurate Parallel Optical Flow using CUDA, International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00346710

E. Mémin, Estimation du flot-optique : contributions et panorama de différentes approches, Habilitation à Diriger des Recherches Université Rennes 1, 2003.

M. Orkisz and P. Clarysse, Estimation du flot optique en présence de discontinuités : une revue, Traitement du Signal, pp.489-513, 1996.

R. Deriche and O. Faugeras, Les EDP en traitement des images et vision par ordinateur, Rapport de Recherche Institut National de Recherche en Informatique et Automatique, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00073993

D. A. Danielson, Vectors and tensors in engineering and physics, Advanced Book Program, 2003.

G. Medioni and M. S. Lee, A computational framework for segmentaion and grouping, 2000.

M. Nicolescu and G. Medioni, 4-D voting for matching, densification and segmentation into motion layers, Object recognition supported by user interaction for service robots, pp.303-308, 2002.
DOI : 10.1109/ICPR.2002.1047854

Y. Dumortier, I. Herlin, and A. Ducrot, 4-D Tensor Voting motion segmentation for obstacle detection in autonomous guided vehicle, 2008 IEEE Intelligent Vehicles Symposium, pp.379-384, 2008.
DOI : 10.1109/IVS.2008.4621203

URL : https://hal.archives-ouvertes.fr/inria-00292702

Y. Dumortier and I. Herlin, Monocular Moving Obstacle Detection for Autonomous Guided Vehicles, Transport Research Arena, 2008.

K. Mullet and D. Sano, Designing visual interfaces : Communication oriented techniques, 1995.
DOI : 10.1145/257089.257354

B. Giai-checa, P. Bouthemy, and T. Vieville, Segment-based detection of moving objects in a sequence of images, Proceedings of 12th International Conference on Pattern Recognition, pp.384-389, 1994.
DOI : 10.1109/ICPR.1994.576304

G. Csurka and O. Faugeras, Algebraic and geometric tools to compute projective and permutation invariants, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.1, pp.58-65, 1999.
DOI : 10.1109/34.745735

C. Cappelle, M. Najjar, F. Charpillet, and D. Pomorski, Obstacle detection and localization method based on 3D model: Distance validation with ladar, 2008 IEEE International Conference on Robotics and Automation, pp.4031-4036, 2008.
DOI : 10.1109/ROBOT.2008.4543830

URL : https://hal.archives-ouvertes.fr/inria-00332456

Z. Zhang, M. Li, K. Huang, and T. Tan, 3D model based vehicle localization by optimizing local gradient based fitness evaluation, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761603

A. Broggi and S. Berte, Vision-based road detection in automotive systems : a real-time expectation driven approach, Journal of Artificial Intelligence Research, vol.3, pp.325-348, 1995.

Y. Li, K. He, and P. J. Tsinghua, Road Markers Recognition Based on Shape Information, 2007 IEEE Intelligent Vehicles Symposium, pp.117-122, 2007.
DOI : 10.1109/IVS.2007.4290101

A. Kuehnle, Symmetry-based recognition of vehicle rears, Pattern Recognition Letters, vol.12, issue.4, pp.249-258, 1991.
DOI : 10.1016/0167-8655(91)90039-O

T. Zielke, M. Brauckmann, and W. Von-seelen, Intensity and edge-based symmetry detection with an application to car-following, Graphical Models and Image Processing, pp.177-190, 1993.

Y. He, H. Wang, and B. Zhang, Color-based road detection in urban trafic scenes, IEEE Intelligent Transportation Systems, pp.309-318, 2004.

P. Paalanen, V. Kyrki, and J. Kamarainen, Towards monocular on-line 3D reconstruction, Workshop on Vision in Action : Efficient strategies for cognitive agents in complex environments, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00325795

T. L. Gandhi, S. Devadiga, R. Kasturi, and O. I. Camps, Detection of obstacles on runway using ego-motion compensation and tracking of significant features, Proceedings or the 3rd IEEE Workshop on Applications of Computer Vision, pp.168-173, 1996.

S. Beucher and F. Meyer, The morphological approach to segmentation : the watershed transformation, Mathematical Morphology in Image Processing Ed. E.R. Dougherty, pp.433-481, 1993.

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3, pp.301-324, 2005.
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

J. C. Klein, Conception et réalisation d'une unité logique pour l'analyse quantitative d'images, 1976.

J. Serra and P. Salembier, Connected operators and pyramids, Image Algebra and Mathematical Morphology, vol.2030, pp.65-76, 1993.

P. Salembier and J. Serra, Flat zones filtering, connected operators, and filters by reconstruction, IEEE Transactions on Image Processing, pp.1153-1160, 1995.
DOI : 10.1109/83.403422

L. Vincent, Morphological gray scale reconstruction in image analysis applications and efficients algorithms, IEEE Transactions on Image Processing, pp.176-201, 1993.

F. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, vol.1, issue.1, pp.21-46, 1990.
DOI : 10.1016/1047-3203(90)90014-M

P. Salembier, L. Torres, F. Meyer, and C. Gu, Region-based video coding using mathematical morphology, Proceedings of IEEE, pp.843-857, 1995.
DOI : 10.1109/5.387088

C. Vachier, Utilisation d'un critère volumique pour le filtrage d'image, 11th Conference on Shape recognition and artificial intelligence, pp.307-315, 1998.

J. Bouguet, Camera Calibration Toolbox for Matlab

Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.11, pp.1330-1334, 2000.
DOI : 10.1109/34.888718

Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.666-673, 1999.
DOI : 10.1109/ICCV.1999.791289

L. S. Davis, D. Oberkampf, and D. Dementhon, Iterative pose estimation using coplanar feature points, Computer Vision and Image Understanding, pp.495-511, 1996.

D. Dementhon and L. S. Davis, Model-based object pose in 25 lines of code, European Conference on Computer Vision, pp.335-343, 1992.

Y. Dumortier, M. Kais, and R. Benenson, Real-time vehicle motion estimation using texture learning and monocular vision, International Conference on Computer Vision and Graphics, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00117116

O. Faugeras and F. Lustman, MOTION AND STRUCTURE FROM MOTION IN A PIECEWISE PLANAR ENVIRONMENT, International Journal of Pattern Recognition and Artificial Intelligence, vol.02, issue.03, pp.485-508, 1988.
DOI : 10.1142/S0218001488000285

URL : https://hal.archives-ouvertes.fr/inria-00075698

O. Faugeras, Three-dimensional computer vision : a geometric viewpoint, 1993.

Z. Zhang and A. R. Hanson, 3D Reconstruction based on homography mapping, Proceedings of ARPA, pp.1007-1012, 1996.

A. Agarwal, C. V. Jawahar, and P. J. Narayanan, A survey of planar homography estimation techniques, technical report of Indian International Institute of Information Technology, 2005.

E. Malis and M. Vargas, Deeper understanding of the homography decomposition for vision-based control, Rapport de Recherche de l'INRIA, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00174036

M. Irani and P. Anadan, Parallax geometry of pairs of points for 3D scene analysis, European Conference on Computer Vision, pp.17-30, 1996.
DOI : 10.1007/BFb0015520

L. Seiler, Larrabee, ACM Transactions on Graphics, vol.27, issue.3, pp.1-15, 2008.
DOI : 10.1145/1360612.1360617

T. R. Halfhill, Parallel Processing with CUDA, Microprocessor Report, 2008.

R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu et al., Learning long-range vision for autonomous off-road driving, Journal of Field Robotics, vol.23, issue.9, pp.120-144, 2009.
DOI : 10.1002/rob.20276

R. Hartley and A. Zisserman, Multiple view geometry in computer vision, 2000.
DOI : 10.1017/CBO9780511811685

G. W. Stewart, On the Early History of the Singular Value Decomposition, technical report of University of Maryland, 1992.
DOI : 10.1137/1035134