A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, pp.37-38, 1972.
DOI : 10.1038/238037a0

T. Maggos, A. Plassais, J. G. Bartzis, C. Vasilakos, N. Moussiopoulos et al., Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels, Environmental Monitoring and Assessment, vol.198, issue.1-3, pp.35-44, 2008.
DOI : 10.1007/s10661-007-9722-2

K. R. Zhu, M. S. Zhang, and J. M. Hong, Size effect on phase transition sequence of TiO2 nanocrystal, Materials Science and Engineering: A, vol.403, issue.1-2, pp.87-93, 2005.
DOI : 10.1016/j.msea.2005.04.029

C. S. Kim, I. M. Kwon, B. K. Moon, J. H. Jeong, B. C. Choi et al., Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2, Materials Science and Engineering: C, vol.27, issue.5-8, pp.1343-1346, 2007.
DOI : 10.1016/j.msec.2006.12.006

H. Tang, H. Berger, P. Schmid, F. Levy, and G. Burry, Photoluminescence in TiO2 anatase single crystals, Solid State Communications, vol.87, issue.9, pp.847-850, 1993.
DOI : 10.1016/0038-1098(93)90427-O

N. Serpone, D. Lawless, and R. Khairutdinov, Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?, The Journal of Physical Chemistry, vol.99, issue.45, pp.16646-16654, 1995.
DOI : 10.1021/j100045a026

S. T. Martin, H. Herrmann, W. Choi, and M. R. Hoffmann, photoreactivity and size quantization, J. Chem. Soc., Faraday Trans., vol.94, issue.21, pp.3315-3323, 1994.
DOI : 10.1039/FT9949003315

S. T. Martin, H. Herrmann, and M. R. Hoffmann, and the effect of adsorbates and light intensity on charge-carrier dynamics, J. Chem. Soc., Faraday Trans., vol.139, issue.21, pp.3323-3330, 1994.
DOI : 10.1039/FT9949003323

D. W. Bahnemann, M. Hilgendorff, and R. Memming, Particles:?? Reactivity of Free and Trapped Holes, The Journal of Physical Chemistry B, vol.101, issue.21, pp.4265-4275, 1997.
DOI : 10.1021/jp9639915

J. Kim and D. Lee, and Quantized Capacitors, Journal of the American Chemical Society, vol.129, issue.25, pp.7706-7707, 2007.
DOI : 10.1021/ja071329o

S. T. Martin, C. L. Morrison, and M. R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, The Journal of Physical Chemistry, vol.98, issue.51, pp.13695-13704, 1994.
DOI : 10.1021/j100102a041

S. Fukuzawa, K. M. Sancier, and T. Kwan, Photoadsorption and phofodesorption of oxygen on titanium dioxide, Journal of Catalysis, vol.11, issue.4, pp.364-369, 1968.
DOI : 10.1016/0021-9517(68)90060-2

G. Munuera, A. R. González-elipe, J. Soria, and J. Sanz, Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 3.???Role of H2O2 in photo-desorption of O2, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.76, issue.0, pp.1535-1546, 1980.
DOI : 10.1039/f19807601535

C. D. Jaeger and A. J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems, The Journal of Physical Chemistry, vol.83, issue.24, pp.3146-3152, 1979.
DOI : 10.1021/j100487a017

T. Tachikawa and T. Majima, Photocatalytic Reactions, Langmuir, vol.25, issue.14, pp.7791-7802, 2009.
DOI : 10.1021/la900790f

J. M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, vol.53, issue.1, pp.115-129, 1999.
DOI : 10.1016/S0920-5861(99)00107-8

A. Mills, R. H. Davies, and D. Worsley, Water purification by semiconductor photocatalysis, Chemical Society Reviews, vol.22, issue.6, pp.417-425, 1993.
DOI : 10.1039/cs9932200417

J. Mccormick, B. Zhao, S. Rykov, H. Wang, and J. Chen, Nanoparticles, The Journal of Physical Chemistry B, vol.108, issue.45, pp.17398-17402, 2004.
DOI : 10.1021/jp046874f

S. Seifried, M. Winterer, and H. Hahn, Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis, Chemical Vapor Deposition, vol.6, issue.5, pp.239-244, 2000.
DOI : 10.1002/1521-3862(200010)6:5<239::AID-CVDE239>3.0.CO;2-Q

M. Niederberger, M. Bartl, and G. Stucky, Benzyl Alcohol and Titanium TetrachlorideA Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles, Chemistry of Materials, vol.14, issue.10, pp.4364-4370, 2002.
DOI : 10.1021/cm021203k

M. Gómez, J. Rodríguez, S. Lindquist, and C. G. Granqvist, Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering, Thin Solid Films, vol.342, issue.1-2, pp.148-152, 1999.
DOI : 10.1016/S0040-6090(98)01482-5

M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, vol.216, issue.1-2, pp.505-516, 2003.
DOI : 10.1016/S0021-9517(02)00104-5

Z. Ding, X. J. Hu, G. Q. Lu, P. L. Yue, and P. F. Greenfield, Photocatalyst Synthesized by CVD Method, Langmuir, vol.16, issue.15, pp.6216-6222, 2000.
DOI : 10.1021/la000119l

R. L. Pozzo, M. A. Baltanás, and A. E. Cassano, Supported titanium oxide as photocatalyst in water decontamination: State of the art, Catalysis Today, vol.39, issue.3, pp.219-231, 1997.
DOI : 10.1016/S0920-5861(97)00103-X

E. Allain, Films composites nanoparticules d'oxyde de titane / silice mésoporeuse pour la photocatalyse, Thèse de l'Ecole Polytechnique ? Saint-Gobain Recherche, 2005.

E. Allain, S. Besson, C. Durand, M. Moreau, T. Gacoin et al., Transparent Mesoporous Nanocomposite Films for Self-Cleaning Applications, Advanced Functional Materials, vol.12, issue.4, pp.549-554, 2007.
DOI : 10.1002/adfm.200600197

C. Durand, Elaboration de films photocatalytiques, 2001.

T. Okumura, Y. Kinoshita, H. Uchiyama, and H. Imai, Photoluminescence of nitrogen-doped anatase, Materials Chemistry and Physics, vol.111, issue.2-3, pp.486-490, 2008.
DOI : 10.1016/j.matchemphys.2008.04.053

M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Layered Thin Films, Chemistry of Materials, vol.14, issue.11, pp.4714-4720, 2002.
DOI : 10.1021/cm020355c

R. Asahi, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, vol.293, issue.5528, pp.269-271, 2001.
DOI : 10.1126/science.1061051

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, Photocatalysts and Their Transformation at the Nanoscale, The Journal of Physical Chemistry B, vol.108, issue.4, pp.1230-240, 2004.
DOI : 10.1021/jp030843n

A. Mills and J. Wang, Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?, Journal of Photochemistry and Photobiology A: Chemistry, vol.127, issue.1-3, pp.123-134, 1999.
DOI : 10.1016/S1010-6030(99)00143-4

Y. Paz and A. Heller, Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention, Journal of Materials Research, vol.43, issue.10, pp.2759-2766, 1997.
DOI : 10.1557/JMR.1997.0367

J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung et al., Formation of crystalline TiO2???xNx and its photocatalytic activity, Journal of Solid State Chemistry, vol.179, issue.4, pp.1067-1075, 2006.
DOI : 10.1016/j.jssc.2006.01.004

H. Abe, T. Kimitani, M. Naito, and J. , Influence of NH3/Ar plasma irradiation on physical and photocatalytic properties of TiO2 nanopowder, Journal of Photochemistry and Photobiology A: Chemistry, vol.183, issue.1-2, pp.171-175, 2006.
DOI : 10.1016/j.jphotochem.2006.03.013

K. Kobayakawa, Y. Murakami, Y. Sato, and J. , Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, Journal of Photochemistry and Photobiology A: Chemistry, vol.170, issue.2, pp.177-179, 2005.
DOI : 10.1016/j.jphotochem.2004.07.010

J. Buha, I. Djerdj, M. Antonietti, and M. Niederberger, Thermal Transformation of Metal Oxide Nanoparticles into Nanocrystalline Metal Nitrides Using Cyanamide and Urea as Nitrogen Source, Chemistry of Materials, vol.19, issue.14, pp.3499-3505, 2007.
DOI : 10.1021/cm0701759

K. Kobayakawa, Y. Murakami, Y. Sato, and J. , Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, Journal of Photochemistry and Photobiology A: Chemistry, vol.170, issue.2, pp.177-179, 2005.
DOI : 10.1016/j.jphotochem.2004.07.010

L. Mi, P. Xu, H. Shen, P. Wang, and J. , Recovery of visible-light photocatalytic efficiency of N-doped TiO2 nanoparticulate films, Journal of Photochemistry and Photobiology A: Chemistry, vol.193, issue.2-3, pp.222-227, 2008.
DOI : 10.1016/j.jphotochem.2007.06.028

K. R. Zhu, M. S. Zhang, and J. M. Hong, Size effect on phase transition sequence of TiO2 nanocrystal, Materials Science and Engineering: A, vol.403, issue.1-2, pp.87-93, 2005.
DOI : 10.1016/j.msea.2005.04.029

C. S. Kim, I. M. Kwon, B. K. Moon, J. H. Jeong, B. C. Choi et al., Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2, Materials Science and Engineering: C, vol.27, issue.5-8, pp.1343-1346, 2007.
DOI : 10.1016/j.msec.2006.12.006

R. A. Back and J. Childs, Pyrolysis of HNCO vapor, Canadian Journal of Chemistry, vol.46, issue.6, pp.1023-1024, 1968.
DOI : 10.1139/v68-166

T. Ohno, K. Sarukawa, and M. Matsumura, Powder by Dissolving the Anatase Component in HF Solution, The Journal of Physical Chemistry B, vol.105, issue.12, pp.2417-2420, 2001.
DOI : 10.1021/jp003211z

K. Nelson and Y. Deng, Particles in a Cellulose Matrix, Langmuir, vol.24, issue.3, pp.975-982, 2008.
DOI : 10.1021/la702582u

D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai, Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles, Materials Letters, vol.62, issue.3, pp.447-450, 2008.
DOI : 10.1016/j.matlet.2007.05.060

D. Gal, Y. Mastai, G. Hodes, and L. Kronik, Band gap determination of semiconductor powders via surface photovoltage spectroscopy, Journal of Applied Physics, vol.86, issue.10, pp.5573-5577, 1999.
DOI : 10.1063/1.371562

N. Chino and T. Okubo, Nitridation mechanism of mesoporous silica: SBA-15, Microporous and Mesoporous Materials, vol.87, issue.1, pp.15-22, 2005.
DOI : 10.1016/j.micromeso.2005.07.034

N. C. Saha and H. G. Tompkins, Titanium nitride oxidation chemistry: An x???ray photoelectron spectroscopy study, Journal of Applied Physics, vol.72, issue.7, pp.3072-3079, 1992.
DOI : 10.1063/1.351465

S. Livraghi, M. R. Chierotti, E. Giamello, G. Magnacca, M. C. Paganini et al., Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials, The Journal of Physical Chemistry C, vol.112, issue.44, pp.17244-17252, 2008.
DOI : 10.1021/jp803806s

Y. Nosaka, M. Matsushita, J. Nishino, and A. Y. , Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Science and Technology of Advanced Materials, vol.112, issue.2, pp.143-148, 2005.
DOI : 10.1116/1.577661

Y. Wang, C. Feng, Z. Jin, J. Zhang, J. Yang et al., A novel N-doped TiO2 with high visible light photocatalytic activity, Journal of Molecular Catalysis A: Chemical, vol.260, issue.1-2, pp.1-3, 2006.
DOI : 10.1016/j.molcata.2006.06.044

B. O-'regan and M. , A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.
DOI : 10.1038/353737a0

A. Orlov, D. A. Jefferson, N. Macleod, and R. M. Lambert, Modified with Gold Nanoparticles in the Degradation of 4-Chlorophenol in Aqueous Solution, Catalysis Letters, vol.92, issue.1/2, pp.41-47, 2004.
DOI : 10.1023/B:CATL.0000011084.43007.80

V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid, Journal of Molecular Catalysis A: Chemical, vol.263, issue.1-2, pp.32-38, 2007.
DOI : 10.1016/j.molcata.2006.08.019

A. Sclafani, J. Herrmann, and J. , Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media, Journal of Photochemistry and Photobiology A: Chemistry, vol.113, issue.2, pp.181-188, 1998.
DOI : 10.1016/S1010-6030(97)00319-5

M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, vol.216, issue.1-2, pp.505-516, 2003.
DOI : 10.1016/S0021-9517(02)00104-5

D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, and M. I. Litter, Enhancement of the photocatalytic activity of various TiO2 materials by platinisation, Journal of Photochemistry and Photobiology A: Chemistry, vol.148, issue.1-3, pp.223-231, 2002.
DOI : 10.1016/S1010-6030(02)00048-5

H. Reiche, W. W. Dunn, and A. A. Bard, Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide powders, The Journal of Physical Chemistry, vol.83, issue.17, pp.2248-2251, 1979.
DOI : 10.1021/j100480a013

E. Allain, Films composites nanoparticules d'oxyde de titane / silice mésoporeuse pour la photocatalyse, Thèse de l'Ecole Polytechnique ? Saint-Gobain Recherche, 2005.

O. Carp, C. L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

T. He, Y. Ma, Y. Cao, X. Hu, H. Liu et al., Nanoparticles, The Journal of Physical Chemistry B, vol.106, issue.49, pp.12670-12676, 2002.
DOI : 10.1021/jp026031t

URL : https://hal.archives-ouvertes.fr/hal-01414841

S. R. Bathe and P. S. , Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique, Solar Energy Materials and Solar Cells, vol.91, issue.12, pp.1097-1101, 2007.
DOI : 10.1016/j.solmat.2007.03.005

H. Irie, H. Mori, and K. Hashimoto, Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property, Vacuum, vol.74, issue.3-4, pp.625-629, 2004.
DOI : 10.1016/j.vacuum.2004.01.036

M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Layered Thin Films, Chemistry of Materials, vol.14, issue.11, pp.4714-4720, 2002.
DOI : 10.1021/cm020355c

J. H. Pan and W. I. Lee, Films and Their Photocatalytic Properties, Chemistry of Materials, vol.18, issue.3, pp.847-853, 2006.
DOI : 10.1021/cm0522782

C. Shifu, C. Lei, G. Shen, and C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technology, vol.160, issue.3, pp.198-202, 2005.
DOI : 10.1016/j.powtec.2005.08.012

T. He, Y. Ma, Y. Cao, X. Hu, H. Liu et al., Nanoparticles, The Journal of Physical Chemistry B, vol.106, issue.49, pp.12670-12676, 2002.
DOI : 10.1021/jp026031t

URL : https://hal.archives-ouvertes.fr/hal-01414841

S. Y. Chai, Y. J. Kim, and W. I. Lee, Photocatalytic WO3/TiO2 nanoparticles working under visible light, Journal of Electroceramics, vol.212, issue.2-4, pp.909-912, 2006.
DOI : 10.1007/s10832-006-9073-3

W. Smith and Y. Zhao, Superior photocatalytic performance by vertically aligned core???shell TiO2/WO3 nanorod arrays, Catalysis Communications, vol.10, issue.7, pp.1117-1121, 2009.
DOI : 10.1016/j.catcom.2009.01.010

J. A. Chopoorian, G. H. Dorion, F. S. Model, and J. Inorg, Photochromism of metal oxides???I the light sensitivity of MoO3 or WO3 coprecipitated with TiO2, Journal of Inorganic and Nuclear Chemistry, vol.28, issue.1, pp.83-88, 1966.
DOI : 10.1016/0022-1902(66)80230-0

T. He and J. Yao, Photochromic materials based on tungsten oxide, Journal of Materials Chemistry, vol.23, issue.43, pp.4547-4557, 2007.
DOI : 10.1039/b709380b

S. Higashimoto, N. Kitahata, K. Mori, and M. Azuma, Photo-electrochemical properties of amorphous WO3 supported on TiO2 hybrid catalysts, Catalysis Letters, vol.5, issue.24, pp.49-51, 2005.
DOI : 10.1007/s10562-004-3748-7

Y. C. Nah, A. Ghicov, D. Kim, and P. Schmuki, Enhanced electrochromic properties of self-organized nanoporous WO3, Electrochemistry Communications, vol.10, issue.11, pp.1777-1780, 2008.
DOI : 10.1016/j.elecom.2008.09.017

J. Georgieva, S. Armyanov, E. Valova, I. Poulios, and S. Sotiropoulos, Enhanced photocatalytic activity of electrosynthesised tungsten trioxide???titanium dioxide bi-layer coatings under ultraviolet and visible light illumination, Electrochemistry Communications, vol.9, issue.3, pp.365-370, 2007.
DOI : 10.1016/j.elecom.2006.09.028

M. T. Nenadovic, T. Rajh, O. I. Micic, and A. J. Nozik, Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids, The Journal of Physical Chemistry, vol.88, issue.24, pp.5827-5830, 1984.
DOI : 10.1021/j150668a017

I. Bedja, S. Hotchandani, and P. V. Kamat, Photoelectrochemistry of quantized tungsten trioxide colloids: electron storage, electrochromic, and photoelectrochromic effects, The Journal of Physical Chemistry, vol.97, issue.42, pp.11064-11070, 1993.
DOI : 10.1021/j100144a027

D. Beydoun, R. Amal, G. K. Low, and S. Mcevoy, Novel Photocatalyst:?? Titania-Coated Magnetite. Activity and Photodissolution, The Journal of Physical Chemistry B, vol.104, issue.18, pp.4387-4396, 2000.
DOI : 10.1021/jp992088c

I. Bedja and P. V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites, The Journal of Physical Chemistry, vol.99, issue.22, pp.9182-9188, 1995.
DOI : 10.1021/j100022a035

W. Smith and . Zhao, Two-Layer Nanorod Arrays, The Journal of Physical Chemistry C, vol.112, issue.49, pp.19635-19641, 2008.
DOI : 10.1021/jp807703d

J. H. Pan and W. I. Lee, Films and Their Photocatalytic Properties, Chemistry of Materials, vol.18, issue.3, pp.847-853, 2006.
DOI : 10.1021/cm0522782

D. Ke, H. Liu, T. Peng, X. Liu, and K. De, Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles, Materials Letters, vol.62, issue.3, pp.447-450, 2008.
DOI : 10.1016/j.matlet.2007.05.060

%. Dans-un-premier-temps and C. Erba, porter à 60 °C pendant 1 h un mélange de 25 mL de TEOS (tétraéthoxysilane, 98 %, Fluka)

. Puis, 09 g de PE 6800 (BASF) et 110 mL de EtOH en chauffant légèrement pour faciliter la dissolution

. Enfin, les films déposés sont calcinés suivant une rampe de 30 min pour monter à 450 °C, puis un pallier de 1h30. Le refroidissement se fait selon l'inertie thermique du four

%. Dans-un-premier-temps and C. Erba, porter à 60 °C pendant 1 h un mélange de 25 mL de TEOS (tétraéthoxysilane, 98 %, Fluka)

. Puis, 09 g de PE 6800 (commercialisé par BASF) et 110 mL de EtOH en chauffant légèrement pour faciliter la dissolution

. Enfin, ajouter à 150 mL de ce mélange 13

. Dans-un-ballon, 97 %, Sigma-Aldrich) ont été additionnés à 2,9 mL de BuOH (butanol, 99 %, Sigma-Aldrich) Après 10 min d'agitation, OBu), vol.9, issue.4

. Enfin, 22 mL d'eau MilliQ et 9,4 mL d'éthanol absolu sont ajoutés goutte à goutte dans le sol précédent