J. Koenigsberger and K. Schilling, « On the conduction of electricity in solid elements and compounds, p.179, 1910.

M. Pope, H. P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals, Electroluminescence in organic crystals, pp.2042-2043, 1963.
DOI : 10.1063/1.1733929

J. Burroughes, D. Bradley, and A. Brown, Light-emitting diodes based on conjugated polymers, Light-emitting diodes based on conjugated polymers, pp.539-541, 1990.
DOI : 10.1038/347539a0

H. Ishii, N. Hayashi, and E. Ito, Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment, physica status solidi (a), vol.201, issue.6, pp.1075-1094, 2004.
DOI : 10.1002/pssa.200404346

S. Dushman, Electron Emission from Metals as a Function of Temperature, Physical Review, vol.21, issue.6, pp.623-636, 1923.
DOI : 10.1103/PhysRev.21.623

P. S. Davids, I. H. Campbell, and D. L. Smith, Device model for single carrier organic diodes, Journal of Applied Physics, vol.82, issue.12, pp.12-6319, 1997.
DOI : 10.1063/1.366522

J. Blochwitz, Organic light-emitting diodes with doped charge transport layers, Thèse de doctorat, 2001.

W. Gao and A. Kahn, -conjugated molecular films, Journal of Physics: Condensed Matter, vol.15, issue.38, pp.2757-2770, 2003.
DOI : 10.1088/0953-8984/15/38/014

URL : https://hal.archives-ouvertes.fr/in2p3-00309474

J. Blochwitz, T. Fritz, and M. Pfeiffer, Interface electronic structure of organic semiconductors with controlled doping levels, Organic Electronics, vol.2, issue.2, pp.97-104, 2001.
DOI : 10.1016/S1566-1199(01)00016-7

J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Applied Physics Letters, vol.73, issue.20, p.2866, 1998.
DOI : 10.1063/1.122612

M. Pfeiffer, K. Leo, and X. Zhou, Doped organic semiconductors: Physics and application in light emitting diodes, Organic Electronics, vol.4, issue.2-3, pp.89-103, 2003.
DOI : 10.1016/j.orgel.2003.08.004

J. X. Tang, K. M. Lau, and C. S. Lee, Substrate effects on the electronic properties of an organic/organic heterojunction, Applied Physics Letters, vol.88, issue.23, p.232103, 2006.
DOI : 10.1063/1.2209212

C. Tengstedt, W. Osikowicz, and W. R. Salaneck, Fermi-level pinning at conjugated polymer interfaces, Fermi-level pinning at conjugated polymer interfaces, p.53502, 2006.
DOI : 10.1063/1.2168515

J. X. Tang, C. S. Lee, and S. T. Lee, Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning, Journal of Applied Physics, vol.101, issue.6, p.64504, 2007.
DOI : 10.1063/1.2710297

V. I. Arkhipov, U. Wolf, and H. Bässler, Current injection from a metal to a disordered hopping system. II. Comparison between analytic theory and simulation, Physical Review B, vol.59, issue.11, pp.59-7514, 1999.
DOI : 10.1103/PhysRevB.59.7514

V. I. Arkhipov, E. V. Emelianova, and Y. H. Tak, Charge injection into light-emitting diodes: Theory and experiment, Journal of Applied Physics, vol.84, issue.2, pp.848-856, 1998.
DOI : 10.1063/1.368146

D. F. Blossey, « One-dimensional Onsager theory for carrier injection in metalinsulator systems, Phys. Rev. B, issue.9, pp.5183-5187, 1974.

M. A. Lampert and P. Mark, Current injection in solids, 1970.

T. Mori, T. Ogawa, and D. Cho, « A discussion of conduction in organic lightemitting diodes, Appl. Surf. Sci, pp.212-213, 2003.

W. Gao, Electrical doping of organic molecular semiconductors, Thèse de doctorat, 2004.

A. Ioannidis, E. Forsythe, and Y. Gao, Current???voltage characteristic of organic light emitting diodes, Applied Physics Letters, vol.72, issue.23, pp.23-3038, 1998.
DOI : 10.1063/1.121533

S. C. Jain, W. Geens, and A. Mehra, Injection- and space charge limited-currents in doped conducting organic materials, Journal of Applied Physics, vol.89, issue.7, pp.3804-3810, 2001.
DOI : 10.1063/1.1352677

E. Tuti?, M. N. Bussac, and B. Masenelli, Numerical model for organic light-emitting diodes, Journal of Applied Physics, vol.89, issue.1, pp.430-439, 2001.
DOI : 10.1063/1.1327286

W. Brütting, Physics of Organic Semiconductors, 2005.

Y. Preezant, Y. Roichman, and N. Tessler, Amorphous organic devices??degenerate semiconductors, Journal of Physics: Condensed Matter, vol.14, issue.42, pp.14-9913, 2002.
DOI : 10.1088/0953-8984/14/42/306

H. Ding and Y. Gao, Alkali metal doping and energy level shift in organic semiconductors, Applied Surface Science, vol.252, issue.11, pp.3943-3947, 2006.
DOI : 10.1016/j.apsusc.2005.09.071

R. J. Fleming, Upper Limit of Electron Effective Mass in Organic Semiconductors, The Journal of Chemical Physics, vol.56, issue.10, pp.4911-4916, 1972.
DOI : 10.1063/1.1676968

H. Ichikawa, T. Shimada, and A. Koma, Ordered growth and crystal structure of Alq 3 on alkali halide surfaces, Jpn. J. Appl. Phys, vol.40, pp.3-225, 2001.

S. M. Sze, Semiconductor devices : Physics and Technology, 1985.
DOI : 10.1002/0470068329

URL : http://dx.doi.org/10.1016/s1369-7021(03)00132-9

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1988.

Y. Roichman and N. Tessler, Generalized Einstein relation for disordered semiconductors???implications for device performance, Applied Physics Letters, vol.80, issue.11, pp.1948-1950, 2002.
DOI : 10.1063/1.1461419

T. H. Nguyen and S. K. Leary, Generalized Einstein relation for disordered semiconductors with exponential distributions of tail states and square-root distributions of band states, Applied Physics Letters, vol.83, issue.10, p.10, 1998.
DOI : 10.1063/1.1604178

Y. Peng, J. Yang, and F. Lu, Einstein relation in chemically doped organic semiconductors, Applied Physics A, vol.71, issue.2, pp.86-225, 2007.
DOI : 10.1007/s00339-006-3747-1

O. Tal, I. Epstein, and O. Snir, Measurements of the Einstein relation in doped and undoped molecular thin films, Physical Review B, vol.77, issue.20, p.201201, 2008.
DOI : 10.1103/PhysRevB.77.201201

W. D. Gill, Drift mobilities in amorphous charge-transfer complexes of trinitrofluorene and poly-n-vinylcarbazole, J. Appl. Phys, vol.43, pp.12-5033, 1972.

M. Wohlgenannt, « Polarons in ?-conjugated semiconductors : absorption spectroscopy and spin-dependent recombination », phys. stat. sol, pp.1188-1204, 2004.

M. N. Bussac and L. Zuppiroli, High-field mobility in an assembly of conjugated polymer segments, Physical Review B, vol.54, issue.7, pp.4674-4679, 1996.
DOI : 10.1103/PhysRevB.54.4674

H. Bässler, Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study, physica status solidi (b), vol.35, issue.1, p.15, 1993.
DOI : 10.1002/pssb.2221750102

S. V. Novikov, D. H. Dunlap, and V. M. Kenkre, Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials, Physical Review Letters, vol.81, issue.20, pp.20-4472, 1998.
DOI : 10.1103/PhysRevLett.81.4472

Y. N. Gartstein and E. M. , High-field hopping mobility in molecular systems with spatially correlated energetic disorder, Chemical Physics Letters, vol.245, issue.4-5, pp.351-358, 1995.
DOI : 10.1016/0009-2614(95)01031-4

L. Ke, S. J. Chua, and R. C. Han, Brownian motion field dependent mobility theory of hopping transport process, Journal of Applied Physics, vol.99, issue.11, p.114512, 2006.
DOI : 10.1063/1.2201852

F. Jansson, S. D. Baranovskii, and F. Gebhard, Effective temperature for hopping transport in a Gaussian density of states, Physical Review B, vol.77, issue.19, 2008.
DOI : 10.1103/PhysRevB.77.195211

V. I. Arkhipov, P. Heremans, and E. V. Emelianova, Charge carrier mobility in doped semiconducting polymers, Applied Physics Letters, vol.82, issue.19, pp.19-3245, 2003.
DOI : 10.1063/1.1572965

M. A. Baldo, Z. G. Soos, and S. R. Forrest, Local order in amorphous organic molecular thin films, Chemical Physics Letters, vol.347, issue.4-6, pp.297-303, 2001.
DOI : 10.1016/S0009-2614(01)01063-6

W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons, Physical Review, vol.87, issue.5, pp.835-842, 1952.
DOI : 10.1103/PhysRev.87.835

V. R. Nikitenko, O. V. Salata, and H. Bässler, Comparison of models of electroluminescence in organic double-layer light-emitting diodes, Journal of Applied Physics, vol.92, issue.5, pp.2359-2367, 2002.
DOI : 10.1063/1.1497717

N. C. Greenham and P. A. Bobbert, Two-dimensional electron-hole capture in a disordered hopping system, Physical Review B, vol.68, issue.24, p.245301, 2003.
DOI : 10.1103/PhysRevB.68.245301

I. Juri´cjuri´c, I. Batisti´cbatisti´c, and E. Tuti?, Recombination at heterojunctions in disordered organic media: Modeling and numerical simulations, Physical Review B, vol.77, issue.16, p.165304, 2008.
DOI : 10.1103/PhysRevB.77.165304

M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules, VCH publishers, 1995.

M. A. Baldo and D. F. O-'brien, Excitonic singlet-triplet ratio in a semiconducting organic thin film, Physical Review B, vol.60, issue.20, pp.20-14422, 1999.
DOI : 10.1103/PhysRevB.60.14422

M. Lu and J. C. Sturm, Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment, Journal of Applied Physics, vol.91, issue.2, pp.595-604, 2002.
DOI : 10.1063/1.1425448

W. Lukosz, Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers, Physical Review B, vol.22, issue.6, pp.3030-3038, 1980.
DOI : 10.1103/PhysRevB.22.3030

H. Riel, S. Karg, and T. Beierlein, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study, Journal of Applied Physics, vol.94, issue.8, pp.5290-5296, 2003.
DOI : 10.1063/1.1605256

. Landau, Electromagnetics of continuous media, 1960.

O. H. Crawford, Radiation from oscillating dipoles embedded in a layered system, The Journal of Chemical Physics, vol.89, issue.10, pp.6017-6027, 1988.
DOI : 10.1063/1.455416

L. Polerecký, J. Hamrle, and B. D. Maccraith, Theory of the radiation of dipoles placed within a multilayer system, Applied Optics, vol.39, issue.22, pp.3968-3977, 2000.
DOI : 10.1364/AO.39.003968

J. Burroughes, D. Bradley, and A. Brown, Light-emitting diodes based on conjugated polymers, Light-emitting diodes based on conjugated polymers, pp.539-541, 1990.
DOI : 10.1038/347539a0

P. S. Davids, I. H. Campbell, and D. L. Smith, Device model for single carrier organic diodes, Journal of Applied Physics, vol.82, issue.12, pp.12-6319, 1997.
DOI : 10.1063/1.366522

B. K. Crone, P. S. Davids, and I. H. Campbell, Device model investigation of single layer organic light emitting diodes, Journal of Applied Physics, vol.84, issue.2, pp.833-842, 1998.
DOI : 10.1063/1.368144

C. D. Blades and A. B. Walker, Simulation of organic light-emitting diodes, Synthetic Metals, vol.111, issue.112, pp.111-112, 2000.
DOI : 10.1016/S0379-6779(99)00359-8

G. G. Malliaras and J. C. Scott, The roles of injection and mobility in organic light emitting diodes, Journal of Applied Physics, vol.83, issue.10, pp.5399-5403, 1998.
DOI : 10.1063/1.367369

Y. Kawabe, M. M. Morrell, and G. E. Jabbour, A numerical study of operational characteristics of organic light-emitting diodes, Journal of Applied Physics, vol.84, issue.9, pp.5306-5314, 1998.
DOI : 10.1063/1.368779

J. Shen and J. Yang, Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A numerical study, Journal of Applied Physics, vol.83, issue.12, pp.7706-7714, 1998.
DOI : 10.1063/1.367942

D. J. Pinner, R. H. Friend, and N. Tessler, Transient electroluminescence of polymer light emitting diodes using electrical pulses, Journal of Applied Physics, vol.86, issue.9, pp.5116-5130, 1999.
DOI : 10.1063/1.371488

S. J. Martin, A. B. Walker, and A. J. Campbell, Electrical transport characteristics of single-layer organic devices from theory and experiment, Journal of Applied Physics, vol.98, issue.6, p.63709, 2005.
DOI : 10.1063/1.2058199

B. K. Crone, P. S. Davids, and I. H. Campbell, Device model investigation of bilayer organic light emitting diodes, Journal of Applied Physics, vol.87, issue.4, pp.1974-1982, 2000.
DOI : 10.1063/1.372123

B. Ruhstaller, S. A. Carter, and S. Barth, Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes, Journal of Applied Physics, vol.89, issue.8, pp.4575-4585, 2001.
DOI : 10.1063/1.1352027

S. J. Martin, G. L. Verschoor, and M. A. Webster, The internal electric field distribution in bilayer organic light emitting diodes, Organic Electronics, vol.3, issue.3-4, pp.129-141, 2002.
DOI : 10.1016/S1566-1199(02)00050-2

S. Chang, Y. Chang, and C. Yang, Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education, Light-Emitting Diodes: Research, Manufacturing, and Applications X, pp.6134-187, 2006.
DOI : 10.1117/12.645482

C. C. Lee, Y. Jong, and P. Huang, Numerical Simulation of Electrical Model for Organic Light-Emitting Devices with Fluorescent Dopant in the Emitting Layer, Japanese Journal of Applied Physics, vol.44, issue.11, pp.8147-8152, 2005.
DOI : 10.1143/JJAP.44.8147

C. Lee, M. Chang, and P. Huang, Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer, Journal of Applied Physics, vol.101, issue.11, p.114501, 2007.
DOI : 10.1063/1.2738445

M. A. Webster, J. Auld, and S. J. Martin, « Simulation of the external quantum efficiency for bilayer organic light-emitting devices, Org. Light-Emitt. Mat. Dev. VII, pp.5214-300, 2004.

M. C. Vissenberg, Matters, « Theory of the field-effect mobility in amorphous organic transistors, Phys. Rev. B, vol.57, p.20, 1998.

E. Tuti?, M. N. Bussac, and B. Masenelli, Numerical model for organic light-emitting diodes, Journal of Applied Physics, vol.89, issue.1, pp.430-439, 2001.
DOI : 10.1063/1.1327286

Y. S. Chen and D. C. Krupka, Limitation imposed by field clamping on the efficiency of high???field ac electroluminescence in thin films, Journal of Applied Physics, vol.43, issue.10, p.4089, 1972.
DOI : 10.1063/1.1660878

L. F. Marsal, J. Pallarès, and X. Correig, « Electrical model for amorphous/crystalline heterojunction silicon diodes, Semicond. Sci. Technol, issue.11, pp.1209-1213, 1996.
DOI : 10.1088/0268-1242/11/8/016

A. Takshi, J. D. Madden, and C. W. Fok, « Time dependant parallel resistance in an organic Schottky contact, Mater. Res. Soc. Symp. Proc, p.871, 2005.

M. A. Kroon and R. A. Van-swaaij, diodes, Journal of Applied Physics, vol.90, issue.2, p.994, 2001.
DOI : 10.1063/1.1379560

A. J. Campbell, M. S. Weaver, and D. G. Lidzey, Bulk limited conduction in electroluminescent polymer devices, Bulk limited conduction in electroluminescent polymer devices, pp.6737-6746, 1998.
DOI : 10.1063/1.369001

S. C. Jain, W. Geens, and A. Mehra, Injection- and space charge limited-currents in doped conducting organic materials, Journal of Applied Physics, vol.89, issue.7, pp.3804-3810, 2001.
DOI : 10.1063/1.1352677

A. Ioannidis, E. Forsythe, and Y. Gao, Current???voltage characteristic of organic light emitting diodes, Applied Physics Letters, vol.72, issue.23, pp.23-3038, 1998.
DOI : 10.1063/1.121533

D. Wang and J. Shen, A theoretical model for carrier transport in disordered organic materials, Synthetic Metals, vol.111, issue.112, pp.111-112, 2000.
DOI : 10.1016/S0379-6779(99)00365-3

K. Kim, Y. Tak, and Y. Han, Relationship between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light-Emitting Diode, Japanese Journal of Applied Physics, vol.42, issue.Part 2, No. 4B
DOI : 10.1143/JJAP.42.L438

M. Kemerink, J. M. Kramer, and H. H. Gommans, « Temperature-dependant built-in potential in organic semiconductors devices, Appl. Phys. Lett, vol.88, 2006.

S. M. Sze, Semiconductor devices : Physics and Technology, 1985.
DOI : 10.1002/0470068329

URL : http://dx.doi.org/10.1016/s1369-7021(03)00132-9

N. D. Arora, J. R. Hauser, and D. J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Transactions on Electron Devices, vol.29, issue.2, pp.29-292, 1982.
DOI : 10.1109/T-ED.1982.20698

P. Kumar, A. Misra, and M. N. Kamalasanan, Temperature Effect on Current???Voltage Characteristics of Molecular Organic Tris(8-hydroxyquinoline) Aluminium Complex, Japanese Journal of Applied Physics, vol.45, issue.10A, pp.7621-7624, 2006.
DOI : 10.1143/JJAP.45.7621

J. Blochwitz, Organic light-emitting diodes with doped charge transport layers, Thèse de doctorat, 2001.

N. D. Nguyen and M. Schmeits, Numerical simulation of impedance and admittance of OLEDs, physica status solidi (a), vol.201, issue.112, pp.1901-1914, 2006.
DOI : 10.1002/pssa.200622014

%. D1, :6)];%RSCLC [iout_D1,ind_D1]=oled_modeling(Vech,Y1,imaxP,option), %D1 Y2=[parameters(1),0,parameters(3:4),Inf%D1 [iout_D1D2,ind_D1D2]=oled_modeling, p.2

. Vsim=interp1, :)),'pchip');%do not take values <Vi(1) (otherwise non bijectivity of

G. Linewidth, );grid on

. Xlabel, 14);ylabel(sprintf('%s \n %s','relative error (%)

(. J. G6=semilogx, J. Vbulk,-'-sr-',, J. Vinj1,-'-sg-',, and V. , -sb');xlim([Imin Imax]);grid on; set(G6,'LineWidth',3);... xlabel('current density (mA/cm^2), p.14

G. Linewidth, 10) xlabel16);ylabel('Fit, J en mA/cm^2','fontsize',16);grid on file23:08] u XIV B.2. matlab main title(filename) set(gcf,'Name','Fit après optimisation');%gcf : get current figure legend('Gross measures','Sampling measures','Initial extraction, 2008.

. Ylim, title(filename) set(G310);xlabel('Voltage (V)','fontsize',16);... ylabel('Current density J (mA/cm^2)','fontsize',16);grid on set(gcf,'Name','Optimized fitting');%gcf : get current figure legend, SouthEast') h=text(Vi(1),3*Imax

G. Linewidth, ,3);grid on

. Xlabel, 14);ylabel(sprintf('%s \n %s','relative error (%)

(. J. G6=semilogx, J. Vbulk,-'-sr-',, J. Vinj1,-'-sk-',, and V. , -sb');xlim([Imin Imax]);grid on; set(G6,'LineWidth',3);... xlabel('current density (mA/cm^2), p.14

. Ylim, title(filename) set(G310);xlabel('Voltage (V)','fontsize',16);... ylabel('Current density J (mA/cm^2)','fontsize',16);grid on set(gcf,'Name','Optimized fitting');%gcf : get current figure legend, p.2

G. Linewidth, );grid on

. Xlabel, 14);ylabel(sprintf('%s \n %s','relative error (%)

(. J. G6=semilogx, J. Vbulk,-'-sr-',, and . Vinj, -sb');xlim([Imin Imax]);grid on; set(G6,'LineWidth',3);... xlabel('current density (mA/cm^2), p.14

Y. Inf, 0,parameters(5:6)]; [iout_D,ind_D]=oled_modeling(Vech,YD,imaxP,option);%Diode [iout_SCLC,ind_SCLC]=oled_modeling(Vech,YSCLC,imaxP,option)

G. Linewidth, 5);... grid on;xlim([Imin Imax]);ylim, p.10

. Xlabel, 14);ylabel(sprintf('%s \n %s','relative error (%)

(. J. G6=semilogx, J. Vbulk,-'-sr-',, J. Vinj2,-'-sb-',, and V. , -sk');xlim([Imin Imax]);grid on; set(G6,'LineWidth',3);... xlabel('current density (mA/cm^2), p.14

. Pmin=, ^lb(3:N)];pmin=pmin';%Vbi excluded (constant) pmax=[10.^ub(1), ^ub, vol.1010103, issue.1

. Vbi=starts-;-s=sprintf, %s \n %s \n %s','model 1=metal/orga Diode D1 + orga/orga Diode D2 + RSCLC -6 parameters-','model 2 =Vbi + orga/orga Diode D + RSCLC - 5 parameters

=. Button, Select the model

. Disp, Extraction of metal/orga diode D1 : N1 fixed, Js1~' dispstr(Is1,1)])

. Disp, Extraction of orga/orga diode D2 : Js2~' dispstr(Is2,1) ', N2~' dispstr(N2

. Disp, Extraction of RSCLC : K~' dispstr(K,1) ', m~' dispstr(m,0)]); paratmp=

J. Vbi, N. , and K. , Extraction of built-in voltage : Vbi~' dispstr(Vbi, Model, vol.2

. Disp, Extraction of diode D : Js~' dispstr(Is2,1) ', N~' dispstr(N2

. Disp, Extraction of RSCLC : K~' dispstr(K,1) ', m~' dispstr(m,0)]); paratmp=

. Disp, Extraction of diode D : Is~' dispstr(Is2,1) ', N~' dispstr(N2

. Disp, Extraction of RSCLC : K~' dispstr(K,1) ', m~' dispstr(m,0)]); paratmp=

. Disp, Calculation in progress...'); c1=clock; V_tmp=Vmes(a12:a32); i_tmp=imes(a12:a32)

. Disp, Extraction of the shunt resistance : Rp~' dispstr(Rp

. Disp, Extraction of the built-in voltage : Vbi~' dispstr(Vbi

. Vd=v_d_tmp-vbi, %Assumption: SCLC negligible here i_D=i_D_tmp-V_D_tmp./Rp; index=find(i_D>=0);i_D=i_D(index(:))

. Disp, Extraction of diode (D) : Is~' dispstr(Is,1) ', N~' dispstr

. Disp, Extraction of RSCLC : K~' dispstr(K,1) ', m~' dispstr(m

. Disp, Calculation in progress...'); c1=clock; V_tmp=Vmes(a1:a4); i_tmp=imes(a1:a4)

. Va=, ^(1/m) + (N*kB*T/q)*log(1+ia, Is) + (Ns*kB*T/q)*log

. Va=, ^(1/m)+(N*kB*T/q)*log(1+ia./Is)+Vbi;%voltage at the main branch M=, Vmes, vol.1, issue.112

. Va=, ^(1/m)+(N*kB*T/q)*log(1+ia

. Vb=linspace, Vbi,10)Vb=Vb';ib=Vb./Rp; ia=10.^(alpha:0.075:4);%alpha is not pertinent if leakage current is important, ia=ia, issue.0, pp.10-16

. Va=, ^(1/m)+(N*kB*T/q)*log(1+ia./Is)+ Vbi; if Rp==Inf M=, Vmes, vol.1, issue.12

M. Else, [Vb;Va],[ib;ia]];%good method if iRp<<ia M=sortrows(M,1)

. Vbshunt=linspace, Vbi-0.15,10);Vbshunt=Vbshunt'; ibshunt=Vbshunt

. Vb=linspace and . Vbi, 134)Vb=Vb';ib=Vb./Rp; %(Vb,ib) ok ia=10)

. Va=, ^(1/m)+(N*kB*T/q)*log(1+ia./Is)+ Vbi; %(Va,ia) ok if Rp==Inf M=, Vmes, vol.1, issue.12