A. R. Simpson and R. G. Harrison, Hydraulic Model Testing of Pump Sump. The Institution of Engineers Australia, Conference on Hydraulics in Civil Engineering, pp.38-44, 1990.

H. Q. Anawar, J. A. Weller, and M. B. Amphlett, Similarity Of Free-Vortex At Horizontal Intake, Journal of Hydraulic Research, vol.94, issue.3, pp.95-105, 1978.
DOI : 10.1051/lhb/1955047

H. Q. Anawar and M. B. Amphlett, VORTICES AT VERTICALLY INVERTED INTAKE, Journal of Hydraulic Research, vol.100, issue.11, pp.123-134, 1980.
DOI : 10.1017/S002211206600171X

. M. Ansar, . T. Nakato, and G. Constantinescu, Numerical Simulation of Iinviscid Three-Dimensional at Single and Dual Pump-Intakes, Journal of Hydraulic Research, 2002.

F. Antunes and J. Holman, Formed Suction Inlets on Large Specific Speed Pumps, ASME, vol.81, 1989.

A. Auckland, R. Townsend, and I. Nistor, Flow and Hdraulic Effeiciency of Vertical Drop Structure Intakes: An Experimental Study. Congrés Annual, 2008.

G. S. Constantinescu and V. C. Patel, Numerical Model for Simulation of Pump-Intake Flow and Vortices, Journal of Hydraulic Engineering, vol.124, issue.2, pp.123-134, 1998.
DOI : 10.1061/(ASCE)0733-9429(1998)124:2(123)

G. S. Constantinescu and V. C. Patel, Role of Turbulence Model in Prodiction of Pump-Bay Vortices, ASCE. Journal of hydraulic Research, vol.126, issue.5, pp.123-134, 2000.

. L. Daggett and G. H. Keulegan, Similitude Condition in Free Surface Vortex Formation, ASCE. Journal of hydraulic Division, vol.100, issue.11, pp.1565-1580, 1972.

W. W. Durgin and . G. Hecker, The Modeling of vortices at Intake Structures. Joint Symposium on the Design and Operating of Fluid Machinery, pp.381-391, 1978.

C. Farrell and R. Angelo, Characteristics and Modeling of Intake Vortices, Journal of Engineering Mechanics, vol.110, issue.5, pp.723-742, 1984.
DOI : 10.1061/(ASCE)0733-9399(1984)110:5(723)

J. Funaki, M. Neya, M. Hattori, H. Tanigawa, and K. Hirata, Flow Measurements in a Suction Sump by UVP, Journal of Fluid Science and Technology, vol.73, issue.726, pp.68-79, 2007.

J. S. Gulliver, R. A. Lindblom, and K. C. , Designinig Intakes to Avoid Free- Surface Vortices, 1986.

L. Hai-feng, C. Hong-xum, M. Zheng, and . Z. Yi, Experimental and Numerical Investigation of Free Surface Vortex, Journal of Hydrodynamics, vol.20, issue.4, pp.485-491, 2008.

R. T. Hatteersly, Hydraulic Design of Pump Intakes, Journal of hydraulic Division. ASCE, vol.95, issue.2, pp.223-228, 1965.

G. Hecker, Model-Prototype Comparison of Free Surface Vortices, Journal of hydraulic Division. ASCE, vol.107, issue.10, pp.1243-1259, 1981.

G. Hecker, Scale Effects in Modeling Vortices. Symposium on Scale Effects in Modeling Hydraulic Structures, International Association for Hydraulic Research, 1984.

. Hydraulic-institute-standards, Centrifugal, Rotary and Reciprocating Pumps, 1983.

E. C. Isbasoiu, T. Muntean, C. A. Safta, and P. Stanescu, Swirling Flows in the Suction Sumps of Vertical Pumps. Theoretical Approach. Workshop on Vortex Dominated Flows-Achievements and Open problems, 2005.

. A. Issa, . A. Bayeul-lainé, and . G. Bois, Numerical Simulation of Flow Filed Formed in Water Pump-Sump. IAHR. 24 th symposium on Hydraulic Machinery and systems, Foz Do Iguassu, 2008.

. A. Issa, . A. Bayeul-lainé, and . G. Bois, Numerical Study of the influence of Geometrical Parameters on Flow in Water Pump-Sump, 14 th International Conference on Fluid Flow Technologies, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00785840

. W. Iversen-h, Studies of Submergence Requirement of High Specific Speed Pumps, Transactions American of Mechanical Engineers, vol.75, pp.635-641, 1953.

A. K. Jain, R. Raju, and R. J. Garde, Vortex Formation at Vertical Pipe Intakes, Journal of hydraulic Division. ASCE, vol.104, issue.10, pp.1429-1445, 1978.

A. E. Johansson, P. S. Stacy, D. K. White, and F. Lin, Advancements In Hydraulic Modeling of Cooling Water Intakes in Power Plants, ASME 2005 Power Conference, 2005.
DOI : 10.1115/PWR2005-50041

E. John, J. Hite, and W. C. Mih, Velocity of Air-Core Vortices at Hydraulic Intakes, 1994.

J. Y. Kim, C. K. Kim, H. G. Kim, and Y. H. , Flow Analysis of the Subsurface Vortices in Pump Sump Models, 2006.

T. Kougnima and R. Kahawita, Etude de Formation de Vortex au voisinage de l'Aspiration Vertical Inversée Dans un Puits de Pompage, pp.369-383, 1983.

P. Mahadevan and G. Hecker, Scale effects in Pump Sump Models, ASCE. Journal of Hydraulic Engineering, vol.110, 1984.

S. H. Marghzar, H. Rahimzadeh, and N. Montazerin, Flow Filed, Turbulence and Critical condition at a Horizontal Water Intake?, 2003.

J. Matsui, K. Kamemoto, and T. Okamura, CFD Benchmark and a Model Experiment on the in Pump Sump, 2006.

T. Nagahara, T. Sato, and T. Okamura, Effect of Submerged Vortex Cavitation Occurred in Pump Suction Intake on hydraulic Forces of Mixed Flow Pump Impeller, First International Symposium on Cavitation, pp.1-8, 2001.

T. Nagahara, T. Sato, and T. Okamura, Measurement of the Flow around the Submerged Vortex Cavitation in a Pump n Intake by Means of PIV, Fifth International Symposium on Cavitation. Osaka. Japan, pp.1-7, 2003.

T. Nagahara, T. Sato, and T. Okamura, Unsteady simulation of the Flow Field around a Submerged Vortex Cavitation in a Pump Intake Sump, Sixth International Symposium on Cavitation. Wageningen. The Netherlands, pp.1-6, 2006.

T. Nakato and B. Yoon, A Model Study of the Proposed St. Louis County Water Company's Water Intake near River Mile 37 on the Missouri River, 1992.

A. J. Odgaard, Free???Surface Air Core Vortex, Journal of Hydraulic Engineering, vol.112, issue.7, pp.610-620, 1986.
DOI : 10.1061/(ASCE)0733-9429(1986)112:7(610)

Y. Oh, Y. Kim, D. Lee, H. Kim, B. Kim et al., An Experimental Study on Vortex Behavior at Partitioned Pump Sump Configuration, 2006.

M. Padamanabhan and G. Heecker, Scale effets in Pump Sump Models, ASCE. Journal of Hydraulic Engineering, vol.110, 1984.

M. J. Prosser, The Hydraulic Design of Pump sump and Intakes, BHRA, Fluid Engineering. CIRIA. P, pp.1-48, 1977.

M. C. Quick, Scale Relationship between Geometry similar Free Spiral Formations, 1962.

M. C. Quick, Efficiency of Air-Entraining Vortex Formation at Water Intake, Journal of hydraulic Division. ASCE, vol.96, issue.7, pp.1403-1415, 1970.

V. P. Rajendran, G. S. Constantinescu, and V. C. Patel, Experiments on Flow in a Model Water-Pump Intake Sump to Validate a Numerical Model.ASME Fluids Engineering Division Summer Meeting, pp.1-10, 1998.

V. P. Rajendran, G. S. Constantinescu, and V. C. Patel, Experimental Validation of Numerical Model of Flow in Pump-Intake Bays, Journal of Hydraulic Engineering, vol.125, issue.11, 1999.
DOI : 10.1061/(ASCE)0733-9429(1999)125:11(1119)

V. P. Rajendran and V. C. Patel, Measurement of Vortices in Model Pump-Intake Bay by PIV, Journal of Hydraulic Engineering, vol.126, issue.5, pp.322-334, 2000.
DOI : 10.1061/(ASCE)0733-9429(2000)126:5(322)

T. Shibata, R. Iwano, T. Nagahara, and T. Okamura, A Numerical Method for Predicting the Cavitation Inception of a submerged Vortex in Pump Sumps, 2000.

S. Shukla and J. T. Kshirsagar, Numerical Prediction of Air Entrainment in Pump Intake, Proceedings of the 24 International Pump Users Symposiums, pp.29-33, 2008.

A. J. Stepanoff, Centrifugal and Axial Flow Pumps, 1957.

F. Suerich-gulick, S. Gaskin, M. Villeneuve, and E. Parkinson, Experimental and Numerical Analysis of Free Vortices at a Hydropower Intake, Rroc. 7 th InT. Conf. on Hydroscience and Engineering, 2006.

F. Suerich-gulick, S. Gaskin, M. Villeneuve, and E. Parkinson, Numerical Simulation of a Free Surface Vortex Formed in the Wake Pier at a Hydropower Intake, 2006.

C. E. Sweeney, R. A. Elder, and H. A. Duncan, Pump Sump Design Experience: Summary, Journal of hydraulic Division, vol.108, issue.3, p.137, 1982.

. P. Tanjuy, Simulation de l'Hydrodynamique des Réacteurs Biologiques à Culture Libre, 2003.

T. E. Tokyay and G. S. Constantinescu, LES and RANS Simulation of Flow in a Realistic Pump-Intake. World Water and Environmental Resourcs Congress, pp.1-11, 2005.

. Tsou, L. John, B. W. Melville, R. Ettema, and T. Natako, Review of flow Problems at Water Intake Pump Sump, 1994.

J. P. Tullis, Modeling in Design of Pumping Pits, Journal of hydraulic Division, vol.105, issue.9, pp.1053-1063, 1979.

G. E. Urroz and J. Tullis, Model study of the Water Pump Pits at Nevada Power Clark Station Combined Cycle Conversion Project, 1990.

J. Wijdieks, Practice and criteria of Pump Sump Model Investigation, 1985.

P. Notre-objectif-Était-de-créer-un-maillage-structuré-comme-celui-de, Pour cela, nous avons choisi de diviser le domaine de calcul en 3 blocs, fig

. A. Fig, 1 : les 3 blocks du maillage La figure A.2 montre les différentes sections et noeuds principales du maillage La figure A.2 : les différentes sections et noeuds principales du maillage 140

A. La-figure, 3 montre le maillage et sa direction de densité pour la section A-A La figure A.4 montre le maillage et sa direction de densité pour le plan, pp.11-11

A. La-figure, 3 : le maillage et sa direction de densité pour la section A-A

A. La-figure, 4 le maillage et sa direction de densité pour le plan (A11-C11, pp.41-41

A. Vorticité, . De, and . Tangentielle, Dans la configuration du bassin telle quelle : (z=0,75d-l=0.9d-h=2d-b=2.6d)

(. B. Les-figures and ?. , et B.12) présentent la vitesse axiale dans le cas de b1(I)

(. B. Les-figures and ?. 13, 16) présentent la vitesse tangentielle dans le cas de b1/d=1.25 et b2/d=1.35(I) pour différentes plans de Z dans le tuyau

(. B. Les-figures and ?. 25, et B.28) présentent la vitesse axiale dans le cas de b1

(. B. Les-figures and ?. 29, et B.32) présentent la vitesse tangentielle dans le cas de b1

(. B. Les-figures, 36) présentent la vorticité dans le plan (x-z), avec k-? Les figures (B.37,??..et B.40) présentent la vorticité dans le plan (y-z), avec k-? Les figures (B.41,??..et B.48), p.146

(. B. Les-figures and ?. 49, et B.56) présentent la vitesse axiale dans les cas de ?=30 °

(. B. Les-figures and ?. 57, et B.64) présentent la vitesse tangentielle les cas de ?=0 °

(. B. Les-figures and ?. 65, et B.72) présentent la vitesse tangentielle les cas de ?=30 °

(. C. Les-figures and ?. , C.4) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration, pp.25-25

(. C. Les-figures and ?. , C.8) montrent la comparaison de pression dans différents plans de Z pour k-?(l' indice a) et k-? (l'indice b) pour la configuration, pp.0-9

(. C. Les-figures and ?. , C.12) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration (z=d, h=1, pp.75-75

L. Figures, 14) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration (z=0,85d, h=0, pp.75-75

(. C. Les-figures and ?. 15, et C.22) montrent la comparaison de pression dans différents plans de Z deux configurations

(. C. Les-figures and ?. 23, et C.30) montrent la comparaison de pression dans différents plans de Z deux configurations (z=0, 75d

(. C. Les-figures and ?. 31, et C.38) montrent la comparaison de pression dans différents plans de Z deux configurations (z=d, h=2 d, l=0

(. C. Les-figures and ?. 39, C.42) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration, pp.2-135

(. C. Les-figures and ?. 43, C.46) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration, pp.2-14

(. C. Les-figures and ?. 47, C.50) montrent la comparaison de pression dans différents plans de Z pour k-? (l'indice a) et k-? (l'indice b) pour la configuration (z=0, pp.2-16

(. C. Les-figures and ?. 51, et C.58) montrent la comparaison de pression dans différents plans de Z pour la configuration (z=0,75d, h=2 d, l=0.9d, b=2

(. C. Les-figures and ?. 58, et C.66) montrent la comparaison de pression dans différents plans de Z pour la configuration (z=0,75d, h=2 d, l=0.9d, b=2