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Abstract

A Networked Virtual Environment (NVE) is a synthetic world where human-
controlled avatars can interact. Multiplayer on-line games such as Quake and World
of Warcraft are the most popular applications for NVEs. In early 2003, Second Life
(SL), a NVE where avatars can invent a new social life, was launched. The main in-
novative feature of SL is user-generated content: avatars participate in the develop-
ment of the virtual environment by creating objects such as cars, trees, and buildings.
SL rapidly became the most popular NVE, reaching more than 16 million registered
users in September 2009.

The state of the art for NVEs design is a Client/Server architecture where multiple
servers maintain the state of the virtual world and distribute it to the users. This
architecture is very expensive as large amount of servers need to be deployed, op-
erated and maintained. Moreover, scalability is an issue. These drawbacks motivate
alternative designs such as Peer-to-Peer (P2P). Ideally, a P2P virtual world can scale
with the number of its users as each user dedicates some of its resources (storage,
CPU, bandwidth) to the management of the virtual world. Moreover, P2P can dra-
matically cut server and network cost for the virtual world provider.

The contribution of the thesis is threefold. First, due to the lack of publicly available
data about NVEs such as avatar movement patterns or object distribution, we per-
form an extensive analysis of SL. We deploy a crawler and a player application and
monitor objects, avatars, user Quality of Experience and servers performance in the
public part of SL over one month.

Second, we design and build a distributed object management for user-generatedNVEs.
We first integrate this distributed object management on the top of KAD, the P2P
network that supports millions of eMule users, and perform large-scale experi-
ments. Then, we propose Walkad, a structured P2P network designed to manage
user-generated objects in P2P-based NVEs.
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Third, we investigate the feasibility of a distributed avatar management using the
Delaunay triangulation. To start with, we evaluate the performance of the Delaunay
triangulation via realistic experiments performed in SL using a modified client we
developed. Then, we design two optimizations for Delaunay triangulation: (1) a
clustering algorithm to efficiently handle large avatar groups, and (2) a secured ex-
tension to the Delaunay triangulation that leverages the social component of NVEs.



Résumé

Un Environnement Virtuel en Ligne (NVE) est unmonde synthétique où les utilisateurs
peuvent intéragir à travers des avatars. Les jeux en ligne comme “Quake” et “World
of Warcraft” sont les applications les plus populaires pour les NVEs. Au début de
l’année 2003, est apparu Second Life (SL), un monde virtuel où les avatars peuvent
créer une nouvelle vie sociale. La principale caractéristique innovatrice de SL est
le contenu créé par les utilisateurs : les avatars participent au développement de
l’environnement virtuel par la création d’objets tels que des voitures, des arbres et
des bâtiments. SL est devenu rapidement le monde virtuel le plus populaire, avec
plus de 16 millions d’utilisateurs en Septembre 2009.

L’état de l’art pour la conception des NVEs est principalement une architecture
Client/Serveur où plusieurs serveurs maintiennent l’état du monde virtuel pour le
transférer aux utilisateurs. Cette architecture est très chère puisqu’une grande quan-
tité de serveurs doivent être déployés, exploités et maintenus. Par ailleurs, cette ar-
chitecture ne passe pas à l’échelle. Ces inconvénients motivent la conception des
architectures innovatrices tels que l’architecture Pair-à-Pair (P2P). Idéalement, une
architecture P2P pour les NVEs passe à l’échelle, car chaque utilisateur consacre
une partie de ses ressources (stockage, CPU, bande passante) à la gestion du monde
virtuel. En outre, le P2P peut considérablement réduire le coût pour le fournisseur
du monde virtuel.

Il y a trois contributions majeures dans cette thèse. Premièrement, en raison du
manque de statistiques sur les mondes virtuels (par exemple, mouvement des
avatars et distribution des objets), nous procèdons à une analyse exhaustive de
SL. Pour cette raison, on a implémenté deux applications qui surveillent, pendant
un mois, objets, avatars, Qualité d’Expérience des utilisateurs et performance des
serveurs dans la partie publique de SL.

Deuxièmement, nous concevons une gestion distribuée des objets pour les NVEs
générées par ses utilisateurs. Nous intégrons cette infrastructure de communication
sur KAD, le réseau P2P utilisé par des millions d’utilisateurs d’eMule, et réalisons des



vi

expériences à grande échelle. Ensuite, nous concevons Walkad un réseau P2P struc-
turé spécialement conçu pour gérer les objets générés par les utilisateurs dans un
monde virtuel.

Troisièmement, nous étudions la faisabilité d’une gestion distribuée des avatars en util-
isant la triangulation de Delaunay. D’abord, nous évaluons la performance de la trian-
gulation de Delaunay par des expériences réalisées dans SL grâce à un client modifié
que nous avons développé. Successivement, nous concevons et évaluons deux op-
timisations pour la triangulation de Delaunay : (1) un algorithme de clustering qui
améliore la réactivité des interactions entre les avatars en présence de larges groupes
d’avatars ; (2) le réseau Delaunay social, un réseau P2P qui résout le problème de la
sécurité dans un NVE en utilisant les relations d’amitié qui existent entre les avatars.
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CHAPTER1
Introduction

“...and you will see, if you look, a low wall built

along the way, like the screen which marionette

players have in front of them, over which they

show the puppets.”

– Plato –

1.1 Networked Virtual Environments

Plato introduces the concept of virtual reality in the Republic, a dialogue written ap-
proximately in 380 BC, through the famous allegory of the cave. For Plato, human
beings live in a form of virtual reality that we are deceived into thinking is true [43].

Technology realizes Plato’s allegory of the cave through virtual environments. A vir-
tual environment is a computer-simulated environment that reproduces either a real
or an imaginary world. The virtual environment can be enriched by objects such as
cars, trees, and buildings. Users access a virtual environment through their digi-
tal representation called avatar. Avatars are controlled using keyboard and mouse,
while the environment simulation is displayed on a screen.

Avatars and objects are very different entities. Avatars are characterized by a small
state defined by simple information such as the avatar position and appearance.
Avatars are generally dynamic entities as they allow their users to explore the virtual
world. Moreover, avatars are non-persistent entities: when a user disconnects from
a virtual world, its avatar leaves too. Objects are generally described by a rich state
that may include textures, music and video. They are generally static, i.e., they re-

1



2 CHAPTER 1. INTRODUCTION

side in the place where they are created, but some of them may move, e.g., cars and
bullets. With few exceptions such as potions or food, objects are mostly persistent.

Virtual environments rapidly evolve into Networked Virtual Environments (NVEs).
NVEs are Internet-based virtual environments accessible to multiple concurrent
users located world-wide. NVEs were originally introduced by the SIMNET
project [18] in order to interconnect several war simulators. Successively, NVEs were
applied to Multi-player Online Games (MOGs), video games that aim at supporting
thousands or even millions of concurrent players. Below, we describe the three main
MOGs genres [41] that are of interest for the understanding of the thesis.

• Role-Playing Games (RPGs) are MOGs where users assume the roles of fictional
characters [50]. RPG users behave accordingly to a formal system of rules and
actions defined by the character they are playing. The main goal of RPG play-
ers is increase their character abilities. In most RPGs there is a game master,
either human or computer controlled, that chooses the setting in which players
play. The decisions of the game master as well as participants improvisation
define the outcome of the game. Currently, the most popular RPG is World
of Warcraft [115] counting more than 15 Millions subscribers, i.e., players who
pay monthly fees in order to take part to the virtual world. Other very popular
RPGs are Everquest [30], Final Fantasy [32] and Ultima Online [97].

• First-Person Shooters (FPSs) are MOGs centered on weapon-based combat
where the player experiences the game through the eyes of its avatar. The main
goal of FPS players is to kill the maximum number of opponents. Some of the
most popular FPS games are Wolfenstein [114], Doom [26], Half-Life [37], and
more recently Quake [77] and Halo [38].

• Social Virtual Worlds (SVWs) are recent MOGs where users invent and emu-
late a virtual social life. Other innovative features of SVWs are world-building
and virtual economy. World-building is the possibility to participate in the de-
ployment and modification of the virtual environment through the creation of
user-generated objects. A virtual economy is the possibility to buy and sell ob-
jects, services and lands. Second Life [83] (SL), launched in 2003 by Linden
Lab, has become the most popular SVW, reaching more than 16 million regis-
tered users in September 2009. Other very popular SVWs are ActiveWorlds [3],
Kaneva [51], There [96], PS3 Home [75] and The Sims Online [95].

Different applications running on top of a NVE may have different requirements.
However, there are some fundamental requirements that are common to most NVE-
based applications, namely:
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• Consistency: In order to have meaningful user experiences in a NVE, each
avatar has to perceive the same state of the virtual world, e.g., land and avatars
appearance. To do so, the NVE architecture needs to ensure an almost simul-
taneous distribution of the virtual world state to the active users. However, a
number of issues such as delayed traffic on the Internet or unpredictability of
the user demand make consistency in NVEs a very challenging task.

• Responsiveness: User experience in virtual worlds is positive when avatars
perceive quickly enough changes in the virtual world state [22], e.g., neighbor
avatar movements or the creation of a new object. Thus, avatars need to be
informed in real-time about any action performed as well as its consequence.
Different NVE-based applications have different responsiveness requirements,
e.g., 300 ms for FPSs and 1 sec for RPGs [22].

• Scalability: NVEs aims at interconnecting millions of users within a shared
environment, i.e., NVEs should ideally scale to an unlimited number of par-
ticipants. Precisely, a NVE architecture is required to sustain a theoretically
unbounded growth in the user demand with a sub-linear impact on the user
experience.

• Persistency: Contents within a NVE may need to exist persistently. For in-
stance, information about a user score as well as user-generated objects should
not be lost during the evolution of the virtual world.

• Security: In computer science, security is the prevention of risk or danger such
as the exposure, destruction or alteration of personal information [72]. Appli-
cations running on top of a NVE have created complex virtual economies as
well as strong competitions among users. Therefore, a NVE architecture needs
to guarantee security in order to ensure fairness among its users as well as
privacy of user information. Nevertheless, cheating has recently emerged as
a major security concern in NVEs. NVE users cheat in several ways, e.g., de-
laying packet transmission or modifying the user client. The reader can found
in [116] a detailed classification of cheating in NVEs.

Table 1.1 compares the requirements of FPSs, RPGs and SVWs. All three MOGs gen-
res require an high level of consistency and security. Scalability is fundamental for
RPGs and SVWs where the level of fun is determined also by the number of con-
current users, e.g., World of Warcraft recently claimed to have reached peaks of one
million concurrent players [115]. Conversely, typical game sessions of current FPSs
involve only up to a few tens of players, and too crowded sessions make the game
hard to play. For this reason, scalability is not a strong requirement for FPSs. Persis-
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RPGs FPSs SVWs
Consistency high high high

Responsiveness medium high low
Scalability high low high
Persistency low low high
Security high high high

Table 1.1: Comparison of MOGs requirements.

tency is an important requirement for SVWs where the virtual world is mostly user-
generated. On the contrary, the virtual world object composition of both RPGs and
FPSs is pre-located at the clients, e.g., via CD distribution or BitTorrent like down-
load [115]. Thus, persistency is a negligible requirement for RPGs and FPSs. Finally,
responsiveness is not an issue in SVWs where users mostly interact by chat and barely
move. RPGs require an higher level of responsiveness since avatars perform more
interactive actions, e.g., combats or competitions. Instead, fast paced avatar interac-
tions characterize FPSs that so require high level of responsiveness.

1.2 The Future of Networked Virtual Environments

Future NVEs are expected to become more complex and realistic, somehow com-
petitive with real life.1 Improvements in computational power, three dimensional
rendering, and available bandwidth may make the vision come true in the near fu-
ture.

NVEs could also be run on a variety of devices, e.g., not only computers or TVs, but
also on Personal Digital Assistants and mobile phones. They may be build on top of
infrastructure-less networks such as Delay Tolerant Networks [53] where users are
either connected to closeby devices or they have only intermittent Internet connectiv-
ity. For example, NVEs running on infrastructure-less communication architectures
seem a promising platform for “mixed reality games” [110]. These are MOGs where
the physical location of a player drives its avatar location in the virtual world.

Our vision of a future NVE is a user-generated virtual environment where avatars can
have fast paced interactions. Such a NVE would allow a tremendous evolution in
MOGs: we can imagine a FPS game, e.g., Quake, where avatars interact in a user-
generated environment like Second Life. Thus, future NVEs have much stronger re-
quirements than common NVEs, and need to leverage an architecture that provides

1http://www.wired.com/gamelife/2008/02/ray-kurzweil-lo/
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high level of Consistency, Responsiveness, Scalability, Persistency and Security. Nev-
ertheless, an architecture for future NVEs must be flexible enough to be run over a
dedicated infrastructure as well as over infrastructure-less environments.

We identify in Second Life (SL) the first step towards future NVEs. In fact, SL is
much more than a simple virtual world. Indeed, SL is a virtual reality-based Internet

in the spirit of themetaverse described in “Snow Crash” [93]. In the thesis, we make a
major effort to analyze SL. The rational is that studying user behavior in SL as well as
the dynamics of the virtual world evolution, e.g., user-generated content, is crucial
in order to drive the architectural design of future NVEs.

1.3 Architectures for Networked Virtual Environments

Today, most NVEs are implemented using a Client/Server (C/S) architecture. The
virtual world is divided into independent lands eachmanaged by a dedicated server.
The tasks of a NVE server are: avatar management and object management. The
avatar management consists in updating each avatar about the status of its neighbor
avatars in real time. The object management consists in maintaining the user-created
objects over time, and informing each avatar about the objects in their visibility area.
The role of the client in a C/S NVE is to simply capture user input, e.g., avatar
movements or the creation of a new object, and send this information to the server.

The advantages of a C/S architecture for NVEs are multiple. C/S architectures are
naturally consistent and persistent when communication is reliable. Moreover, secu-
rity is enforced as all significant information, e.g.,user scores and accounts, are main-
tained by trusted authorities, i.e., the servers. However, a C/S architecture for NVEs
has also many drawbacks:

• Servers have to be deployed, operated and maintained.

• Scalability: each server can only handle a finite number of users, so the cluster
of servers must be dimensioned according to the expected peak demand.

• The server is a single point of failure, and may limit service availability.

• C/S is not optimal from a delay point of view since all the communications
are relayed by the server. Consequently, the responsiveness of the NVE may be
reduced.
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These drawbacks, the high cost of a centralized solution, and players frustration due
to low performance are the motivations to investigate alternative designs. Specifi-
cally, Peer-to-Peer (P2P) solutions where the virtual world is maintained leveraging
user own resources seem to be a promising alternative.

The key point for the feasibility of P2P NVEs is locality of interest. Avatars within
a NVE are only interested in a small portion of the virtual world called Area-Of-
Interest. For example, an avatar requires only to see the objects that are located in
its surroundings or it only interacts with closeby avatars. This means that each peer
needs only to be connected to the peers whose avatars are located closeby or that
are responsible for closeby objects. Conversely, without locality of interest each peer
would need to broadcast the data it manages to all peers whose avatars are active in
the NVE.

P2P for NVEs have several advantages. (1) If we make the assumption that each user
joins the NVEwith enough spare resources to maintain its share of the virtual world,
scalability comes for free. (2) A P2P architecture for NVEs significantly reduces the
required investment compared to C/S. In fact, there is no need to deploy a large
amount of resources, and all players can benefit from the shared resources (storage,
CPU and bandwidth). (3) P2P is more robust than C/S as there is no single point
of failure. (4) P2P allows direct communication among peers, i.e., an optimal design
to achieve responsiveness. Aside these practical advantages of P2P, future NVEs may
require to be based on P2P technologies, e.g., infrastructure-less mixed reality games.

The goal of this thesis is to design a P2P architecture for future NVEs. This is a
very challenging task since the architecture needs to deal with the different require-
ments and characteristics of objects and avatars. For this reason, we choose a divide

and conquer approach: we conceive two overlay designs dedicated respectively to a
distributed object management and a distributed avatar management.

1.4 Thesis Organization

The organization of the thesis is driven by a style of research that consists in un-
derstanding experimentally the behavior of an existing large scale system, before
to propose “yet-another” distributed architecture. The information gathered during
this understanding phase drives the system design. A quick but realistic implemen-
tation of the system allows to evaluate the feasibility of the design. Successive iter-
ations on system design and implementation allow to make it more complete and
realistic.
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We took Second Life as the most representative example of future NVEs. In Chapter
3, we conduct a large study of SL. This study allows us to identify the main design
principles of a P2PNVEwhile collecting useful avatar and object traces for the evalu-
ation of our P2P architecture. Chapter 4 addresses the problem of a distributed object
management for NVEs. We propose a simple but realistic communication infrastruc-
ture that allows us to perform large scale experiments over the Internet. Then, we
design and evaluate a P2P network dedicated to object management in NVEs. Chap-
ter 5 focuses on the problem of a distributed avatar management. We first conduct
an experimental evaluation of a simple distributed avatar management that we in-
tegrate in the SL client. Then, we design and evaluate several enhancements to this
simple distributed avatar management that allow to overcome the weaknesses iden-
tified by the previous experimental evaluation. Finally, Chapter 6 gives a summary
of the work presented in the thesis and discusses future work and open issues.

1.5 Thesis Contributions

This thesis makes several contributions:

• We perform a large analysis of SL. To do so, we deploy a crawler and a player
application that gather traces about objects, avatars, user Quality of Experience
and server statistics in the public portion of SL.

• We integrate a distributed object management for NVEs over KAD [29], cur-
rently the most popular P2P network. We exploit KAD as an experimental plat-
form to evaluate how SL would perform over a standard P2P network already
deployed over the Internet.

• We design and deployWalkad, an extension to Kademlia [63] that ensures fast
responsiveness for object lookups in user-generatedNVEs. Walkad exploits the
predictability of avatar movement patterns to improve the distributed storage
and retrieval of virtual objects.

• We deploy a P2P-SL client that allows end-users to directly manage the prop-
agation of their avatar state updates in SL. To do so, the client relies on the
Delaunay Network [69][9], a very popular design for distributed avatar man-
agement. We use the P2P-SL client in order to compare a centralized versus a
distributed avatar management for SL.

• We analyze the strengths and weaknesses of a distributed avatar management
constructed on top of the DelaunayNetwork. Based on this analysis, we design
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a clustering algorithm that improves user Quality of Experience in Delaunay-
based NVEs.

• We design the Social Delaunay Network, a distributed avatar management
that enforces security in a NVE leveraging a network of virtual friendships.



CHAPTER2
Related Work

This Chapter surveys the subjects of Peer-to-Peer (P2P) and Networked Virtual En-
vironments (NVEs) in a broad perspective. Section 2.1 describes the most popular
applications for NVEs. Section 2.2 describes the P2P designs related to this thesis or
that have been an inspiration for our design. Section 2.3 focuses on the most popular
P2P architectures for NVEs. Section 2.4 presents the studies conducted on Second
Life (SL). Section 2.5 summarizes the previous research conducted on on-line social
networks. Section 2.6 presents the most popular solutions to handle range-queries
over Distributed Has Tables (DHTs). Section 2.7 discusses the pieces of work that are
relevant to the Delaunay Network.

2.1 Networked Virtual Environments

Military Simulation Military simulation was the original application for NVEs.
Simulator Networking or SIMNET [18] was a research project of early 80s that aims
at networking war simulators located world-wide in real-time. SIMNET describes
the virtual world as a collection of objects, e.g., vehicles and weapons, that inter-
act through events, e.g., “tank t destroys building b”. The SIMNET architecture is
completely distributed. Each war simulator continually broadcasts to all other war
simulators the objects and events it manages. The rationale of this design choice is
that the architecture has to be robust, with no single point of failure. SIMNET in-
troduces also dead reckoning [7], a mechanism to predict the movement of a remote
object given its previous position and velocity.

The protocol used in SIMNET was successively formalized and standardized by
IEEE with the Distributed Interactive Simulation (DIS) standard [76]. DIS extends

9
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SIMNET by introducing the possibility to simulate more military tasks, e.g., training
operators of tanks, aircraft and ships, and to use multiple types of vehicles in the
same simulation.

Recently, military simulation research evolved into the High Level Architecture
(HLA) [46] IEEE standard. HLA does not specify any particular technology, but
simply provides a general architecture for distributed simulation. Thus, HLA can be
used for military simulations as well as for on-line games.

Multiplayer On-Line Games Multi-User Dungeon (MUD) [11] created in 1978 by
Roy Trubshaw and Richard Bartle is considered the first Multiplayer On-line Game
(MOG). Precisely, MUD is a text-based MOG that can be classified as a Role Playing
Game (RPG) (cf. Chapter 1). The virtual world of MUD was stored into a database
running on a DECsystem-10 computer [25] located at the University of Essex. Multi-
ple players could access MUD simultaneously and interact with other users as well
as with the virtual world. The objective of MUD players was to accumulate skill
points by collecting objects and treasures, or by killing other players. Interestingly,
players could also augment the environment by adding content into the database
using a programming language.

In 1993, id Software released Doom [26], the first multi-player First Person Shooter
(FPS) (cf. Chapter 1) game for personal computers. Doom multi-player mode lever-
ages a simple P2P strategy where each player broadcasts its avatar state (e.g., po-
sition and health status) to all other players. Doom became soon the scourge of
network administrators due to its broadcast nature [19] and the lack of any con-
gestion control mechanisms. Successively, id Software released its next generation
FPS game, Quake [77], that abandons the P2P design and introduces a Client/Server
(C/S) architecture.

In late 90s, the text-based MUD inspired the design of several three dimensional
RPGs. EverQuest [30], launched from Sony in 1999, quickly became the most suc-
cessful RPG. In EverQuest, players use their characters to explore a fantasy world
and fight enemies to gather treasures and experience points. From a system prospec-
tive, EverQuest leverages a C/S architecture. The game is replicated on multiple
“game servers”, where a game server consists in a cluster of machines. Each player
is associated to the game server where it creates its character, and thus can only play
on that server.

Recently, World of Warcraft (WoW) [115] (launched in November 2004) became the
most famousMOG counting more than 15 Million players [115], i.e., the largest play-
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ers community in the history of MOGs. The main reason of WoW success is its atten-
tion to new players: WoWmakes very easy to its players to get into the game and feel
immediately very important in the community. Similarly to EverQuest, WoW lever-
ages a C/S architecture where the game-play is replicated over different servers.

2.2 Peer-to-Peer

Peer-to-Peer (P2P) networks are distributed systems where peers form an overlay
network on top of the Internet. P2P networks are classified into unstructured and
structured according to how peers are connected to each other. In unstructured P2P
networks (e.g., Gnutella [54]) the overlay links among peers are formed arbitrarily.
In structured P2P networks (e.g., CAN [80] and Kademlia [63]) links between peers
are formed according to a set of rules. The P2P architecture for NVEs we design
leverages a structured P2P network. For this reason, we now discuss several research
works that investigate the design and analysis of structured P2P networks that are
relevant to the thesis.

CAN [80] is a structured P2P network that provides hash table-like functionality.
CAN introduces a relationship between a logical Cartesian space and a key-space.
At any point in time, the Cartesian space can be dynamically partitioned to achieve
a uniform distribution of the key-space responsibilities among peers. The authors
show by simulation that CAN is scalable, fault-tolerant and guarantees low latency.
CAN inspired the mechanism we use to dynamically partition the virtual world re-
sponsibilities among NVE users (cf. Chapter 4).

The P2P communication infrastructure we develop to manage objects in a NVE is
designed as a Kademlia [63] extension. Kademlia is a P2P network that uses the
XOR distance between peer identifiers in order to organize peers as a structured
overlay. Interestingly, the Kademlia topology has the property that every message
exchanged in the network refreshes useful contact information both at the sender
and at the receiver. Kademlia uses this property to tolerate node failures without
active probing.

The Kademlia protocol was implemented by several P2P applications such as Over-
net [71], eMule [29], aMule [1] and Azureus [8]. The Kademlia implementation
adopted by eMule and aMule, named KAD, is a largely studied research topic as
it has the highest number of simultaneously connected users. Since we use KAD as
a test-bed to evaluate a distributed object management for NVEs, we now briefly
describe the most important research studies related to KAD.
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Stutzbach et al. [94] are the first to look at KAD. To do so, they crawl a subset of
the KAD identifier space for few days. They compare KAD with other two widely
deployed P2P systems, Gnutella [54] and BitTorrent [15], in order to analyze churn

in large P2P systems. Their main results are: (i) overall dynamics are similar across
different P2P systems, (ii) session lengths are not exponential, (iii) a large portion of
active peers are highly stable while the remaining peers leave very quickly, and (iv)
peer session lengths are correlated over a short time scale.

Successively, Steiner et al. [90][91] conduct a comprehensive analysis of KAD. They
develop a crawler application to explore KAD and monitor a fraction of the KAD key-
space for about six months. They identify two classes of peers: long-lived peers that
participate in KAD for weeks and short-lived peers that remain in KAD no more than
few days. Moreover, they observe that the distribution of peer arrivals and depar-
tures is well described by a Negative Binomial distribution, and that user session
lengths follow a Weibull distribution.

2.3 P2P Networked Virtual Environments

Recently, several P2P architectures for virtual worlds have been proposed. These
P2P architectures mainly address the problem of distributed avatar management,
i.e., neighbor avatars discovery and avatar state updates dissemination. For the ob-
ject management, these solutions simply assume that the virtual world object com-
position is pre-located at the clients.

To our knowledge, MiMaze [34][35] was the first server-less on-line game, deployed
using IP multicast [78]. MiMaze introduces a distributed synchronization mecha-
nism that guarantees consistency despite the presence of heterogeneous network
delays. In MiMaze, avatar entities are globally replicated and kept consistent us-
ing lock-step synchronization and broadcast updates. As a consequence, the P2P
game can only scale to a limited number of users, and responsiveness is limited to
the speed of the slowest client.

Knutsson et al. [55] address the limitations of MiMaze designing SimMud, a dis-
tributed massively multi-player on-line game. SimMud leverages a P2P network to
handle the transient game state (e.g., avatar state information) and a central server to
manage persistent user state (e.g., landscape information and user accounts). Sim-
Mud users exchange avatar state updates through Scribe [82], an application-layer
multicast built on top of the Pastry [81] DHT.
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A different approach is adopted by Solipsis [52]. In Solipsis, each peer is directly
connected to the peers whose avatars are contained within its avatar Area of Interest
(AoI). Collaboration among neighbor peers is required to achieve local awareness,
i.e., detect whether avatars enter or leave an avatar AoI. Interestingly, the authors
show that global connectivity is obtained if each peer is connected to at least the
peers whose neighbor avatars describe a polygon around the avatar coordinates.
However, neighbor discovery is occasionally incomplete as newcomers may be un-
known to directly-connected neighbors.

S.-Y. Hu et al. [42] design VON, a P2P-based NVE that leverages the Voronoi Network

(i.e., the dual of the Delaunay Network) to solve the neighbor discovery problem
of Solipsis. Similarly to Solipsis, each VON peer is directly connected to its avatar
AoI neighbors, i.e., peers whose avatars are contained in an avatar AoI. In addition,
peers are connected to Voronoi neighbors, i.e., peers whose avatars are responsible
of closeby Voronoi zones. These Voronoi neighbors ensure that avatars are always
included in a polygon as required to solve the neighbor discovery problem [52].

Bharambe et al. [14] design Colyseus, a P2P architecture for NVEs that uses a pub-
lish/subscribe mechanism over a DHT. Users publish their avatar states in the DHT
and subscribe to zones of the NVE to discover information about their neighbor
avatars. Once the peers responsible of neighbor avatars are located in the DHT, a di-
rect overlay link is formed in order to allow an efficient dissemination of avatar state
updates. Since lookups in DHTs can be very slow, Colyseus uses also predictabil-
ity in data access patterns to prefetch data to the NVE users and hide long lookup
latencies. Colyseus can work on top of common DHTs as well as on range-based
DHTs [12].

Recently, Bharambe et al [13] design and deploy Donnybrook, a P2P architecture
dedicated to build epic-scale battles in fast paced on-line games. Donnybrook pro-
poses a shift from the conventional approach in P2P NVEs based on AoI filtering

to interest filtering: peers dynamically estimate to which avatars their avatar is pay-
ing attention to, and consequently build their peer-sets. Since human beings have
a limited budget of attention [64], peer-sets have a finite size even with high avatar
density. Finally, avatars not included into an avatar interest set are represented as
bots, i.e., automated avatars. These bots are guidable artificial intelligences that per-
form realistically through low-rate guidance information updates [27].
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2.4 Second Life

Given the lack of information released by the SL provider, recent work has fo-
cused on studying some of its aspects. Some authors have analyzed in detail the
SL client [58] and the network traffic it generates [92][47][6], while others have char-
acterized avatar mobility [59][60]. We are not aware of any large scale data collection
performed in SL, as well as of any analysis of its user Quality of Experience.

Fernandes et al. [92] propose the first study related to SL. They collect the traffic ex-
changed in a SL Client/Server session, measuring bandwidth consumption, packet
size and packet inter-arrival times. They show that SL makes an intensive use of
network resources, much more than other existing applications for virtual worlds
such as on-line games. Moreover, they show that the down-link traffic is strongly
impacted by avatar actions: an avatar that simply stands in SL consumes about 20
Kbps in the down-link, whereas as soon as the avatar moves the down-link traffic
grows up to 110 Kbps.

Kinicky et al. [47] extend the SL traffic analysis proposed by Fernandes et al. [92]
by focusing on regions with different object compositions. They reproduce some of
the results obtained in [92], and they show that regions with high avatar and object
density require a bandwidth 10 times larger than empty regions. In [6], the same
authors develop traffic models for SL.

Kumar et al. [58] analyze the CPU usage of a high-end desktop machine running
the SL client. They find that sorting translucent objects and decompressing textures
stored as JPEG are themost CPU expensive operations. Similarly to [92] they also an-
alyze the network traffic exchanged between client and server. Their results confirm
the high bandwidth demand of SL, and also underline the benefits of object caching
to reduce network traffic. Finally, they analyze server performance and show that
the management of a region with only 5,000 rigid-body objects requires about 72%
of the server computational power. As SL-like virtual worlds are expected to become
more complex and realistic several CPU cores will be required.

In a different approach, La and Michiardi [59] retrieve information directly from SL
servers. They deploy a simple crawler application that monitors avatar movements
for short periods of time. The analysis of their traces reveals that avatars tend to
interact similarly to their human counterpart, e.g., the distribution of avatar contact-
times is similar to that observed in real-world experiments. In Chapter 3, we adopt a
similar methodology to deploy the crawler application we used to monitor the entire
SL.
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Liang et al. [60] use a similar approach to [59] and collect mobility traces of 84,208
avatars spanning 22 SL regions over two months. Based on their analysis of avatar
mobility, the authors suggest an hybrid avatar mobility model that incorporates both
random way-point mobility model (for regions poor of objects) and pathway mobil-
ity model (for regions rich of objects).

2.5 On Line Social Networks

In Chapter 3, we study the social network formed by avatars that interact in SL. We
now present the measurement studies conducted on the most popular on-line social
networks.

Mislove et al. [65] study in detail the structural properties of Flickr [33] and
Orkut [70], currently two very popular on-line social networks. They show that on-
line social networks have structural properties very different from natural networks
(e.g., they exhibit a high level of local clustering). Subsequently, Chun et al. [20] an-
alyze Cyworld [23], a large South Korean social networking service. They compare
the friend relationships network— the network defined by friendships among Cyworld
users —with the activity network— the network defined by user activities, e.g., mak-
ing friend relationships, sharing photos, and writing comments. They show that the
two networks have a similar structure, suggesting that interactions between users in
a social network tend to follow the declaration of friend relationships.

Recently, Wilson et al. [112] conduct a similar study to the one in [20]. They focus
on Facebook [31], currently the most popular social networking service. In contrast
to [20], they show that the activity network derived from user activities in Facebook
exhibits significantly lower levels of the small-world properties shown in the Face-
book social network.

2.6 Range Queries

Distributed Hash Tables are popular P2P architectures used to store and retrieve
content. DHTs use a hash function (e.g., SHA-1 [68]) in order to distribute content
equally among peers. This design is very efficient to build a scalable P2P lookup
system, but allows only to address content punctually. However, innovative appli-
cations such as P2P NVEs require the capability to respond to more complex queries
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such as range queries. These are requests for content whose attributes fall within a
given range of the attributes space.

Range-queries over DHTs have been a very fertile research area. Ramabhadran et
al. [79] propose the usage of a binary trie to handle range queries over a DHT. A
binary trie is a tree-based data structure that uses prefix bits to direct branching in
a tree. Each node in the trie is associated to a label composed by the set of bits that
indicate the path in the trie to reach the node. They use the binary trie to design the
Prefix Hash Tree (PHT), a distributed data structure that organizes keys in the DHT
as a binary trie, and uses the DHT lookup operation to handle range queries.

P-Grid [2] goes one step further than PHT and integrates the indexing algorithm
with the underlying routing algorithm. Specifically, P-Grid uses a self-organization
process to structure peers directly in a binary trie. In this way, P-Grid dramatically
reduces the number of routing hops to answer range queries compared to PHT.

In a different approach, Bharambe et al. [12] propose Mercury a scalable protocol
to handle range queries. Mercury differs from previous range-based query systems
in that it does not use a cryptographic hash function to index peers and content.
Mercury organizes peers in several circular (logical) overlays each dedicated to an
attribute of the query space. Then, each peer is statically assigned to a portion of each
attribute space and it is responsible of answering the queries that fall in this range.
In this way, Mercury eliminates the randomness introduced by the hash function in
DHTs and allows to easily handle range queries. The drawback of this approach is
that load in Mercury may be unevenly distributed. Thus, explicit overlay modifi-
cations are needed to adapt to load variations. This additional cost due to network
rewirings can become intolerable in presence of churn, i.e., peer arrivals and depar-
tures, and large object sizes.

We also make a contribution in the field of range-queries over DHTs. Chapter 4
designsWalkad, an extension to the Kademlia [63] DHT specifically designed to han-
dle range queries. Walkad is similar to Mercury [12] for the design rational of re-
moving the randomness introduced by the hash function in classic DHTs. However,
Walkad balances the load in the P2P network without requiring to move responsi-
bilities around nodes in the network. Similarly to P-Grid [2], Walkad also integrates
the indexing algorithm with the underlying routing algorithm. However, Walkad
uses an innovative indexing algorithm optimized for P2P Networked Virtual Envi-
ronments.
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2.7 Delaunay Network

The usage of the Voronoi/Delaunay Network for avatar management in virtual
worlds has been a very fertile area of research. There are several pieces of work
in this area that are relevant to the thesis.

Backus and Krause [9] study benefits and problems of Voronoi-based P2P virtual
worlds. They look at bandwidth usage, scalability and consistency of Voronoi-based
virtual worlds. They show by simulation that while Voronoi-based virtual worlds
perform quite well when avatars move according to a RandomWaypoint model [66],
consistency is greatly reduced when groups of avatars get close and avatar speed
exceeds the mean distance among avatars. We also study the performance of a
Delaunay-based NVE (cf. Chapter 5). Our work is complementary to [9] as we use
an experimental approach. Furthermore, we introduce user Quality of Experience as
a measure of the Delaunay Network performance.

Jiang et al. [49] analyze the problem of the dissemination of avatar state updates
on top of a Voronoi/Delaunay network. They propose two innovative mechanisms:
VoroCast and FiboCast. Vorocast constructs a spanning tree across all AoI neighbors
to improve data forwarding. FiboCast dynamically adjusts the frequencies at which
avatar state updates are sent by a Fibonacci sequence, such that nodes with smaller
hop counts from the sender receive messages more frequently than others. We deal
with a similar problem in the thesis in order to efficiently disseminate avatar state
updates within a group of avatars (cf. Chapter 5). However, our solution leverages
an efficient utilization of peer resources rather than a dynamic adaptation of the
dissemination rate.

Steiner and Biersack [87] design a clustering algorithm for a three dimensional De-
launay Network. The main idea of their clustering algorithm is to classify links
between adjacent peers in the Delaunay network into short intra-cluster and long

inter-cluster links. The clustering is useful for faster navigation in the Delaunay Net-
work and to reduce the number of messages a node receives when it travels through
the NVE. In Chapter 5, we design a clustering algorithm to efficiently handle large
groups of avatars in Delaunay-based virtual worlds. The main difference with our
clustering algorithm is that the described solution does not take into account mobil-
ity. Conversely, our solution takes into account avatar mobility to define the cluster-
ing threshold.
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CHAPTER3
Exploring Second Life

3.1 Introduction

This Chapter presents a comprehensive study of Second Life (SL). Our motivation is
twofold: (1) understand avatar behavior and object characteristics in order to allow
further improvements of the SL architecture, (2) improve user Quality of Experience
(QoE) in SL-like virtual worlds. Part of this work has been published in [107].

In order to conduct this study, we design and deploy a crawler and a player. The
crawler is an application that connects to SL servers and exploits standard avatar
capabilities to collect information about the virtual world. The player is a modified
SL client that emulates the behavior of an avatar in SL, while capturing its user QoE.

We use the crawler to explore SL at different time and spatial resolutions. (1) We
monitor the object composition of approximately 13, 000 public regions during one
month (Section 3.4). (2) We track avatar distribution and server statistics in the entire
virtual world (i.e., public and private regions) over one week (Section 3.4). (3) We
fine-grain monitor five very popular regions over three days (Section 3.5). (4) We
monitor avatar social behavior in the most popular region for 10 days (Section 3.6).

We use the player to explore user QoE in SL (Section 3.7). To do so, we run the player
over multiple Planetlab [74] machines located worldwide, and we associate to each
player a realistic avatar and user behavior extracted from the avatar traces previ-
ously collected by the crawler. Three SL servers whose regions exhibit a different
object composition are used as a playground for our controlled avatars.

19
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Our findings are as follows: at a global scale, the number of objects per region was
roughly constant during one month. The active population at any point of time was
between 30, 000 and 50, 000 avatars, i.e., about 0.3% of the registered avatars. Quite
surprisingly, about 30% of the regions were continuously empty during six days.
Servers were often overloaded even when managing only 40 concurrent avatars.

We observe that avatars tend to organize in small groups of 2 to 10 avatars. This
observation suggests that the human “attention budget” theory [64][73] (i.e., human
attention is bounded by a constant) may also hold in social virtual worlds. Large
groups of avatars are very rare, and are mostly driven by events such as concerts
or shows. Avatars tend to visit the same virtual places across different sessions.
Surprisingly, around 5% of the avatar population stays connected almost all the time,
and is most likely identifiable as bots (i.e., automated avatars).

We then construct the social network defined by avatar interactions, i.e., the time
avatars spend being close to each other in the virtual world. We find that the SL
social network is a small-world network that is much more similar to real life net-
works [108][109] than popular on-line social networks [65][112].

From a user perspective, we observe that the density of objects in a region can have
a negative impact on the QoE. Specifically, we measure that in a region crowded
with virtual objects, half of the time avatars have an inconsistent view of their neigh-
bor avatars, i.e., either they do not see them or they see them at a wrong location.
Moreover, in 50% of the cases this inconsistency lasts more than one second. Since
acceptable values for responsiveness in on-line games varies between 300 ms and 1
sec [22], these results indicate poor user QoE under the current SL architecture.

3.2 Second Life

3.2.1 Virtual World

The virtual world of SL is composed of regions, independent lands of 256x256 meters
in size. Each region has a maximum of four adjacent regions and can be either public
or private. The public regions are owned by Linden Lab, while the private regions
are purchased by individuals or companies. Owners of private regions have total
control over their virtual land. They can, for instance, limit access to a selected set of
avatars. Both region types run on Linden Lab servers called “Simulators”.
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The appearance of a region is defined by the objects it contains. Each region has a
specific policy on object creation and destruction. For instance, “Sandbox” regions
are used by avatars to test new objects, which are automatically destroyed shortly
after their creation.

SL provides a map of the virtual world, i.e., a compact visual representation of both
public and private regions. The map shows the number of avatars connected to each
region by displaying points located at the avatar coordinates. Avatar identities are
not visible on the map.

3.2.2 Client/Server Architecture

The SL design is based on a Client/Server architecture: each region is managed
by a dedicated server, and users run “thin” clients that simply perform the three-
dimensional rendering of the virtual world and cache the virtual objects located in
recently visited regions [58]. The SL Client/Server protocol is not public, however
reverse engineering efforts are underway. The libsecondlife [61] project released a
set of C# libraries that allow third party applications to interact with SL servers.

Since our crawler interacts with SL servers, we now shortly describe the server-side
of SL. Amore complete description of the SL architecture can be found in [92] and [6].

The Login Server is the entry point in SL, and handles username and password ver-
ifications. The Login Server is also responsible for granting or denying access to
the regions (e.g., access may be denied during server failures or maintenance opera-
tions). It maintains the following statistics: number of connected users and number
of logins in the last 24 hours.

Simulators are the servers responsible for SL regions. Each simulator maintains the
state of a region and performs the visibility computation [58], i.e., identify for each ava-
tar located in the region the information about objects, land features and avatars that
need to be transmitted to the clients. It also manages chats among avatars located
within the region. A Simulator handles a maximum of 100 avatars [111]. However,
larger populations are possible by mirroring the region server [58]. For clarity, we
refer to simulators as servers.

We do not know the total number of servers in SL, nor whether SL employs load bal-
ancing techniques among servers. Moreover, SL does not mention protective mea-
sures against Denial of Services attacks and crawling operations.
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3.2.3 Avatar Capabilities

A user creates an avatar by registering at the SL website [83]. This registration re-
quires filling out an on-line form with personal information and a valid e-mail ad-
dress. We now give a short description of the avatar capabilities that are used by our
crawler to monitor SL.

A user entering SL must perform a login procedure. After authentication, its avatar
joins the virtual world. The region where the avatar appears is either specified in the
login request or derived from the avatar coordinates at its last connection. An avatar
can walk,run and fly within a region, and also directly move to adjacent regions,
provided they are public. It is also possible to perform a teleport operation to rapidly
cover large distances. The target destination of the teleport can be within either the
same region, or any other region selected from the map.

Avatars have a limited visibility area called Area of Interest (AoI). This area corre-
sponds roughly to a sphere with a radius of 35 meters. Avatars teleporting to a
region are informed by the server about the locations and identifiers of all objects in
the region. In the following, we refer to this event as “initialization phase”. Finally,
an avatar can request several region statistics to a server. A complete description of
these statistics can be found at wiki.secondlife.com.

Automated avatars called bots are frequently used by region owners to show some
activity in their regions or simply to welcome visitors. In order to prevent the usage
of bots, SL disconnects avatars that have not moved during the last 15 minutes. Not
surprisingly, simple scripts allow bots to perform repetitive actions, such as head
movements, which is enough to circumvent SL’s bot detection mechanism. Thus,
we can assume that avatars that barely move and remain connected for a long time
are most likely bots. We recognize that this strategy may incorrectly identify some
human-controlled avatars as bots, but it still intuitively captures the presence of bots
in SL.

3.2.4 Message Types

Second Life currently uses 473 different message types in the communication be-
tween servers and clients [58]. However, three main packet types can be identified:
control, region and avatar packets.

• The control packets are used to enforce security in SL and to check the state of
the client connections.
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• The region packets carry information about a region appearance and its object
composition. The region packets received by a user contain the description of
the portion of the region intersecting its avatar AoI.

• The avatar packets carry information about the state, i.e., position and body ap-
pearance, of an avatar, and about the chat messages exchanged by avatars. The
avatar packets received by a user refer to the state of the avatars located within
its avatar AoI.

3.3 Methodology

We use two different methodologies to study SL. First, we crawl all the information
publicly available in SL. Second, we “play” SL and monitor the performance experi-
enced by several controlled players. We first describe the crawler and the player, and
then discuss the limitations and problems we encountered in our study.

3.3.1 Crawler

The main idea behind the crawler is to exploit standard avatar capabilities to ob-
tain information about the virtual world. Our crawler is composed of multiple sub-

crawlers, each specialized in a different monitoring task (see Figure 3.1). The reasons
for this are twofold. First, different types of information can be collected using dif-
ferent crawling techniques. Second, splitting the crawling into different tasks allows
us to control the temporal resolution of each type of information we collect. For
instance, tracing the movement of avatars requires sampling their position very fre-
quently (e.g., every 30 seconds), whereas determining the total number of objects in
the system can be done much less often (e.g., once per day).

Each subcrawler is a modified SL client implemented using the libsecondlife [61]
libraries. A subcrawler must be associated to an avatar registered on the SL web-
site in order to be able to log in to the virtual world. We use multiple instances of
each subcrawler (associated to different avatar identities) in order to parallelize the
crawling.

For each subcrawler, we describe its role, crawling technique and relationship with
the other subcrawlers.
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Figure 3.1: Architecture of the crawler.

• The Region subcrawler monitors SL to maintain an up-to-date list of its regions.
This information is dynamically updated as new regions can be added to the
SL virtual world. The region discovery is performed via a randomwalk among
adjacent regions (we use a list of regions obtained at http://stats.slbuzz.com/ to
bootstrap). The Region subcrawler teleports to each region in the list to retrieve
the set of adjacent regions. As new regions are discovered they are added to the
list. In addition, region accessibility is verified to determine whether a region is
public or private. The list of public regions is then used by the Statistics, Avatar
and Object subcrawler, while the complete list (public and private regions) is
used by the Map subcrawler.

• The Object subcrawler tracks the evolution of objects in all public regions. It
teleports to a public region and accomplishes the initialization phase, during
which it is informed by the server of the coordinates and identifiers of all ob-
jects on the region. Then, it dumps this information and teleports to a new
region.

• The Statistics subcrawler collects the statistics maintained by the servers of the
public regions. It teleports to a public region, queries its server, dumps the
results, and then moves to another public region. We collect the following
server statistics: number of connected avatars, time dilation, which expresses
the load on the server, and total number of packets going in and out from the
server.
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Figure 3.2: Architecture of the player.

• The Map subcrawler monitors the location of avatars as shown on the SL map.
For each region, the subcrawler locates it on the map, and collects the coor-
dinates of all the avatars currently connected to it. This task simply requires
logging in to SL. Unfortunately, the Map subcrawler cannot identify the avatar
identities as they are not shown on the map, which led us to develop the Avatar
subcrawler.

• TheAvatar subcrawler obtains the identity and position of the avatars connected
to public regions. First, it uses the map to determine the position of avatars
within a region. Then, it teleports to each of these coordinates to obtain the
identities of nearby avatars and to determine their coordinates with greater
accuracy. Therefore, the Avatar subcrawler may need to teleport several times
in order to crawl the entire region.

Note that the Avatar, Statistics and Map subcrawlers collect partially redundant in-
formation. We exploit this redundancy to check the correctness of our methodology.

3.3.2 Player

We reproduce avatar behaviors via controlled SL clients in order to evaluate user
QoE. To do so, we use libsecondlife [61] to implement a player that emulates and
automates avatar behavior while collecting traces related to user QoE.

The player performs the login of an avatar to a target region and moves the avatar in
the region according to an input mobility pattern. Figure 3.2 shows the architecture
of the player, which consists of the following components.
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• The libsecondlife module handles the communication between an avatar and a
server. It contains the API that allows an avatar to perform actions such as
login or movements.

• Themovement enginemanages the movements of an avatar according to a given
mobility pattern. It uses the libsecondlife module to inform a server of the
avatar behavior, e.g., movements in the region.

• The AoI table is a data structure that contains the positions and names of all
avatars within an avatar AoI. The AoI table is updated according to the infor-
mation received from the server. A snapshot of the AoI table is copied to the
disk every 200 ms or when a modification of its content occurs.

• The traffic analyzer records all the incoming and outgoing packets exchanged
between client and server. Subsequently, it parses each packet to extract infor-
mation about its content, e.g., avatar, region or control traffic (Section 3.2.4),
and volume.

3.3.3 Problems and Limitations

To collect data in a scalable and accurate way, we had to solve several problems. We
now discuss these problems as well as the limitations of our crawling strategies.

Crawling Performance

We refer to crawling performance as the number of regions a subcrawler monitors in
a given time. As mentioned in Section 3.3.1, we run multiple instances of each sub-
crawler in parallel in order to increase the crawling performance. However, we ob-
served that increasing the number of parallel instances does not necessarily improve
performance. Figure 3.3 shows that the performance of the Statistics subcrawler de-
grades beyond 60 concurrent instances. We suspect that SL employs a rate-limiting
policy against IP addresses that generate a large amount of traffic.

Experimental Hazards

Officially, SL does notmention any banning policies against avatars with unusual be-
haviors. However, many of the avatars associated to our subcrawlers were banned.
The banning procedure consists of an exclusion due to “account verification”. While
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Figure 3.3: Crawling performance [Statistics subcrawler ; 18 hrs experience].

we could not identify the exact behavior that causes banning, we found that a heavy
usage of the teleport action increases the chances of being banned.

If a banned avatar attempts to login several times, its IP address is blacklisted.
To avoid getting blacklisted, our each of our subcrawler detects when it has been
banned and automatically replaces the associated avatar identity with a new one.

Finally, we also observed a high degree of instability in SL. During a period of one
month, the service was down multiple times due to maintenance, server updates, or
crashes [84]. While our short traces were mostly unaffected, outages had an impact
on our long-term ones (see gap in Figure 3.8).

Teleport Inefficiency

The Avatar subcrawler uses the teleport operation to get close to avatars on a re-
gion and collect their identities. We observed that a teleport can “fail”, i.e., reach an
incorrect location, when the coordinates of its destination lie inside an object. This
“teleport inefficiency” can limit the completeness of the traces. In order to quantify
this crawling error, we compared the number of avatars observed by the Avatar sub-
crawler with those shown on the SL map during a 12-hour period. Figure 3.4 shows
the Complementary Cumulative Distribution Function (CCDF) of the percentage of
avatars per region the Avatar subcrawler correctly identifies. We notice that the Ava-
tar subcrawler identifies all avatars present on the region only in 50% of the regions.
In the other regions, a fraction of the avatar identities is not retrieved introducing a
crawling error.
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Figure 3.4: Completeness of the Avatar subcrawler [Avatar subcrawler ; Map subcrawler ; 12
hrs experience].

Our original Avatar subcrawler suffered also from heavy banning due to a high num-
ber of teleports. We solved this by assigning a unique IP address and subcrawler
instance to a given region, and modifying the assignment every hour. This avoids
banning, but requires a number of IP addresses and avatars that is linear with the
number of regions, limiting crawling scalability. For this reason, we decided to limit
the scope of the Avatar subcrawler to a few very popular regions. Furthermore, we
verify that the object composition of the selected regions does not cause any teleport
failure and the consequent crawling error.

Realism of the Player

Libsecondlife implements a simplified Client/Server communication protocol com-
pared to the official SL protocol [61]. Analyzing the incoming traffic at the player,
we notice that many packets are ignored since they are unknown to the libsec-
ondlife libraries. For this reason, the traffic volume exchanged between our player
and the servers is generally smaller than what we would observe with the official
client [92][47]. However, building a player with the official SL client would have the
following limitations: (i) need of real users to control the avatars (ii), limited access
to the data retrieved by the clients.

Finally, we measure user QoE by “re-playing” real (monitored) avatar behaviors us-
ing bots. Intuitively, avatar behavior on a region changes according to factors such
as the performance perceived by its user, user interest in the region, and objects en-
countered. Our methodology cannot capture these factors. We also use bots that do
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not have any customization (e.g., fancy clothes) and that perform only simple move-
ments. However, creating SL sessions that involve real players is an hard task, and
does not allow a fair comparison of different regions.

3.4 A Global View at Second Life

We focus on the data collected by our crawler and on some data provided by SL
through their website and Login Server in order to analyze SL-wide characteristics.
When possible, we compare our results with these two sources to check their con-
sistency. Finally, we use visual inspection to confirm some of our observations and
interpretations.

3.4.1 Data Collection

Each subcrawler collects data at a different time resolution. In addition, some sub-
crawlers can traverse a set of regions much faster than others, according to the tech-
nique they use to collect information. We call crawling frequency, the frequency at
which a subcrawler completely monitors a set of target regions. Finally, some sub-
crawlers require more resources than others (e.g., IP addresses and avatar identities),
and are therefore executed for shorter periods of time.

We monitored the evolution of all regions and objects in SL during 28 days with a
crawling frequency of 24 hours. We used three instances of the Region subcrawler
and five instances of the Object subcrawler. Traces were collected betweenMarch 29,
2008 and April 25, 2008, except for April 4 and 5 when the SL service was down [84].

We ran 60 concurrent instances of the Statistics subcrawler, as this yields the high-
est crawling performance (Figure 3.3). With this configuration, the Statistics sub-
crawler can crawl about 11, 000 regions in one hour. On March 29, 2008, the Region
subcrawler identified 12, 765 public regions, so we set the crawling frequency of the
Statistics subcrawler to 90 minutes to be able to monitor all public regions with a safe
time margin. Traces were collected for 6 days between March 29, 2008, and April 4,
2008.

We monitored the SL map with 40 instances of the Map subcrawler and a crawling
frequency of 15 minutes. Traces were collected between April 18, 2008 and April 21,
2008. The traces refer to the total 17, 526 regions identified by the Region subcrawler
on April 18, 2008.
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Table 3.1 summarizes each subcrawler configuration, trace length, and crawling fre-
quency.

subcrawler Instances IP@s Regions Frequency Days
Region 3 1 - 1/24 hrs 28
Object 5 1 - 1/24 hrs 28

Statistics 60 1 12,765 1/90 min 6
Map 40 1 17,526 1/15 min 3

Table 3.1: Second Life crawling summary.

3.4.2 Regions

Table 3.2 summarizes the total number of regions discovered by the Region sub-
crawler, as well as the official number reported by the SL website.

We observe that the Region subcrawler discovered a larger number of regions com-
pared to official figures. These additional regions are not reachable and were discov-
ered as adjacent of active ones. Therefore, they are probably a fraction of the virtual
world reserved for future customers, and thus do not count in the official statistics.

March 29 April 18 April 25
Public regions (RS) 12,765 13,220 13,261
Total regions (RS) 17,280 17,526 17,573
Total regions (SLW) 13,693 N/A 14,150

Table 3.2: Number of regions in SL (RS=Region subcrawler, SLW=Second Life website).

The 6-day trace collected by the Statistics subcrawler shows that many regions ex-
perienced periods of unavailability. There are two possible causes for this: (i) the
region server was down, or (ii) the maximum number of avatars per server has been
reached.

We compute the region availability as the probability that a server accepts a connec-
tion from the Statistics subcrawler, i.e., the number of times it accepts a connection
divided by the total number of connection attempts during 6 days. Figure 3.5 shows
the Cumulative Distribution Function (CDF) of region availability. We observe that
90% of the regions have an availability of 0.9 or more, but only 1% show a high
availability of 0.99 or higher. This is probably due to short maintenance operations
or failures. The bottom 1% of the regions have an availability of 0.7 or lower. Our
traces show that these highly unstable regions are not among the most popular ones
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Figure 3.5: CDF of region availability [Statistics subcrawler].

(Section 3.4.6), suggesting that their unavailability is not due to server overload, but
it is more likely due to server failures.

3.4.3 Users

Figure 3.6 shows the evolution over time of the number of on-line users, as measured
by the Map subcrawler and reported by the Login Server (this data is obtained by
monitoring the Login Server [85]). Both curves exhibit the same daily cycle. How-
ever, the Login Server reports 10,000-20,000 more users than the Map subcrawler.
Moreover, during a major SL outage on Friday at 14:00, the Login Server reported
a drop of 10,000 avatars, while our Map subcrawler observed a decrease by 20,000.
This suggests that the values provided by the Login Server may be inaccurate, and
probably averaged over long time periods.

3.4.4 Server Traffic

The Statistics subcrawler collects information about the rate of outgoing server pack-
ets as reported by the SL servers. The curve of the aggregate traffic generated by all
servers shows a daily cycle ranging from 1.7 to 3.2 million packets per second. More-
over, the traffic’s daily cycle closely follows that of Figure 3.6, which is to be expected
for a Client/Server architecture. The correlation coefficient between the number of
avatars in a region and the traffic volume is 0.8.
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Figure 3.6: Active population over time [Map subcrawler ; SL Login Server ; Coordinated
Universal Time - 5].

Knowing that the mean packet size in SL is 500 bytes [92], the aggregate traffic gen-
erated by all servers at peak time can be estimated to be around 13 Gbps. The peak
number of users is 47, 000 measured on Sunday at 18:00, which yields an average
bandwidth consumption of 280 kbps per client. This confirms the results reported
in [92] and shows the high bandwidth consumption of the SL service.

3.4.5 Object Distribution and Dynamics

We analyze the 28-day trace collected by the Object subcrawler with a crawling fre-
quency of 24 hours in order to understand SL object characteristics.

Object Distribution

We identified about 7 million unique user-generated objects across all public regions.
Figure 3.7 shows the CCDF of the number of objects. Since the distribution did not
significantly change over 4 weeks, we only plot the data for the first day (March 29,
2008) and for the last day (April 25, 2008). 30% of the regions are almost empty,
containing less than 100 objects. Around 65% of the regions contain a relatively low
object count, between 100 to 1, 000, while only 5% of the regions have 1, 000 objects
or more. The richest region contains nearly 13, 000 objects. We would like to recall
that the Object subcrawler cannot collect information about object sizes as this would
take too much time and make the crawl operation very slow. Therefore, it is possible
that some regions with a low object count actually have amore complex environment
(e.g., bigger objects) compared to other regions with a larger object count.
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Figure 3.7: CCDF of the object distribution across regions ; [Object subcrawler].

Object Dynamics

We now analyze the evolution of the number of objects over time. For each region,
we compute the difference between the number of objects it contains at day i, and
its initial object count observed at day 1, i.e., the first day of the monitoring (March
29, 2008). Figure 3.8 shows some significant percentiles of the distribution of these
differences measured for all regions (the gap between days 6 and 9 is due to a SL
outage). We observe that 50% of the regions (between the 25th and 75th percentiles)
are almost completely static, showing a small variation between ±50 objects after 28
days. The 10th and 90th percentiles remain between ±250 objects, showing modest
object variation rates in most regions. The median value is nearly zero, and the per-
centiles are almost symmetrical, indicating a similar object creation and destruction
rate. In fact, our traces show that the total number of objects in SL remains approx-
imately constant over time. Notice the presence of two drops between days 20-25
and 25-27. During these days, the SL website reported that their servers were being
updated. Thus, we believe that these drops correspond to objects being lost during
server updates and then slowly recovered. Finally, although not shown in Figure 3.8,
we observedminimum andmaximum variations close to±4000 objects. This implies
that the regions at the bottom and top 10% of the distribution show a highly unstable
behavior, with a large number of objects being continuously created and destroyed.
These are mostly regions where users test their objects (e.g., sandbox regions), and
which typically erase objects soon after they are created.
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Figure 3.8: Percentiles of the variation of the no. of objects per region ; [Object subcrawler].

3.4.6 Region Popularity

We use the 6-day trace collected by the Statistics subcrawler in order to analyze the
popularity of regions in terms of the number of avatars that visit them.

As the number of avatars in a given region is highly dynamic, we study for each
region the evolution of the population with time. For each region we calculate the
population CDF, i.e., the Cumulative Distribution Function (CDF) of the number of
avatars observed during the 6-day period. Since we cannot plot the population CDFs
for the 12, 765monitored regions, we will take a few significative percentiles and plot
their distribution among all regions.

Figure 3.9 shows the distribution among regions of the 0th, 25th, 50th, 75th, and
100th percentiles of the population CDFs. Note that the 100th and the 0th percentile
correspond respectively to the maximum and minimum population observed for a
given region. Similarly, the 75th percentile may be interpreted as a peak popula-
tion, the 50th percentile as a median or typical population, and the 25th percentile
as a residual population. Accordingly, Figure 3.9 shows that 30% of the regions are
empty all the time, while around 45% of the regions have always less than 5 avatars.
The 75th percentile curve overlaps with the 100th percentile one between 0 and 4

avatars. As a consequence, regions whose population is small most of the time have
a small population all the time with no exception. The 0th percentile curve indi-
cates that about 30% of the regions are never completely empty. However, the curve
rapidly goes to zero, showing that regions with continuous activity are rare, e.g., less
than 1% of the regions have a minimum population of 10 avatars. Focusing now on
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Figure 3.9: CCDF of several percentiles of the population CDFs ; [Statistics subcrawler].

larger populations, we observe that around 5% of regions have at least 30 avatars as
a maximum population, but that this number drops to 18 avatars for a peak popu-
lation (75th percentile) and to 12 avatars for a typical population (50th percentile).
Hence, although a non-negligible number of regions are occasionally densely pop-
ulated, they usually contain few avatars. These results indicate that different SL
regions have different population characteristics, and may necessitate different re-
source provisioning according to their popularity profile.

3.4.7 Virtual Groups

We are interested in determining to what degree avatars concentrate in groups, i.e.,
aggregation of avatars where each avatar is within visibility range from each other
(35 meters as defined by SL). The rationale is that avatars located within such vir-

tual groups are highly likely to interact with each other. The results we present in
this Section are obtained from the analysis of the 3-day trace collected by the Map
subcrawler with a crawling frequency of 15 minutes.

We estimate the number of virtual groups in a region by using the k-means clustering
algorithm [5] to partition avatars in circles of radius r ≤ 35 meters. We proceed as
follows. Let n be the number of avatars in a region. The algorithm takes the avatar
coordinates ai = (xi, yi) with 1 ≤ i ≤ n, and a number of target partitions k. It then
clusters the avatars into k circular areas with center coordinates cj = (xj, yj) and
radius rj , where 1 ≤ j ≤ k. We run the algorithm iteratively for increasing values of
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k until all circles have a radius rj ≤ 35 meters. The final value of k gives the number
of virtual groups in the region, and cj the coordinates of the group center.

We use the k-means clustering algorithm since it minimizes the distance of avatars
from the center of the virtual group. Note that this algorithm does not track groups
that move across the region. However, since avatars in SL tend to have a static be-
havior, this limitation has only a minor impact on our clustering scheme.

Virtual Group Sizes

Figure 3.10 shows the CDF of virtual group sizes across all regions. We observe
that 50% of the avatars don’t form groups. Surprisingly, 45% of the virtual groups
are made of only 2-10 avatars. This could be explained by the budget of attention

theory [64], which suggests that human beings can only focus their attention to a
maximum of 5-9 entities at the same time. Finally, we observe a negligible number
of virtual groups with more than 20 avatars. Note that large avatar crowds which
extend beyond 35 meters may be split by our algorithm into smaller groups.

Figure 3.10: CDF of virtual group sizes [Map subcrawler].

Points of Interest (POIs)

Regions usually contain Points-of-Interest (POIs), i.e., spots that attract several av-
atars. In order to detect the presence of POIs, we look for virtual groups that are
stable with respect to time and location. Therefore, we use a metric that we call the
group’s spot lifetime, which is defined as follows. For every new group, we record
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its initial center coordinates. Since the group may move or dissolve, we compute its
spot lifetime as the time elapsed from its creation until we observe no virtual groups
centered within 35 meters (the avatar visibility area) from its initial center coordi-
nates. If the center of a group moves more than 35 meters from its original position,
we consider that a new group has formed at the new center coordinates.

Figure 3.11 shows the CDF of spot lifetimes for all groups and for different ranges
of S, the average group size. We notice that groups with large sizes tend to have a
larger lifetime. This suggests the presence of POIs near the center of groups with
high spot lifetimes. We also observe that 50% of the large virtual groups (S > 10)
have a rather short spot lifetime. These groups can be event-driven groups, i.e.,
located near short-lived POIs.1 Conversely, the remaining 50% have a very long
spot lifetime. Intuitively, the area around popular POIs is unlikely to become empty,
especially in popular regions, resulting in very long spot lifetimes.

Figure 3.11: CDF of spot lifetimes for different average group size S [Map subcrawler].

Figure 3.11 also provides some interesting insight about isolated avatars. Around
40% of these avatars have a spot lifetime of a few minutes. These avatars are most
likely exploring a region. Thus, the area traversed by these avatars are unlikely to
be POIs. However, 10% have a lifetime between 5 and 32 hours, i.e., they stay at
the same spot for a very long time without interacting with any other avatar. It is
unlikely that this behavior is coming from human beings, so we suspect that these
avatars are computer controlled, i.e., bots. Given that 50% of the virtual groups are
composed by a single avatar (see Figure 3.10), we conjecture that at least 5% of the
entire SL population consists of bots.

1Wevisually inspected some of the regionswherewe found these short-lived POIs, andwe verified
the presence of concerts and shows.
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3.5 In-Depth Analysis of the Most Popular Regions

The analysis of SL at the global scale has left many open questions, such as “how
do avatars behave and socialize?”, “how do SL servers perform in presence of dif-
ferent avatar populations?”. To answer these questions, we need to do a fine-grain
monitoring of SL, e.g., collect avatar identities and server statistics with a very high
resolution. We now describe the fine-grain crawl of five very popular regions and an
in-depth analysis of these regions.

3.5.1 Data Collection

We combined in a single application the functionalities of the Statistics, Map and
Avatar subcrawler (we refer to it as Stat/Map/Av subcrawler). Given the limitations
of the Avatar subcrawler (Section 3.3.3), we selected 5 highly popular regions where
the Avatar subcrawler achieves a 100% accuracy. We used 5 Planetlab [74] machines
and a crawling frequency of 30 seconds. Traces were collected during 3 days between
May 1 and May 4, 2008. We now give a brief description of the five regions we
crawled.

• Bella Italia is a meeting place made of a central square with some trees and
benches.

• Chained Lust is a shop with adult content. The land contains a single building
with lots of objects. Avatars teleporting to this region automatically enter this
building.

• Japan Resort is an island with few trees and thatched huts.

QTeaz is a region dedicated to leisure. It consists of few small buildings with
games and other activities.

• Tropicana is a resort. There is a beach, a small lake and several vacation facil-
ities. There are advertisements about music events where avatars can dance
and meet.

3.5.2 Region Popularity and Sever Load

Figure 3.12(a) shows the population CDF (see Section 5.3) for the five regions. QTeaz
and Japan Resort are respectively the least andmost popular regions, while the other
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(a) Population

(b) Server load

Figure 3.12: Population and server load ; [Stat/Map/Av subcrawler].

three regions have a comparable popularity. Notice that all regions are almost never
empty. In addition, Japan Resort has never less than 20 avatars. The active popula-
tion per region rarely exceeds 40 concurrent avatars, except for Japan Resort, whose
peak population is 84 avatars.

In SL, servers “slow down” the virtual time as a way to cope with high loads. This
is called time dilation (td), and is defined as follows: td = 1 means that the server
is running at full speed, whereas td = 0.5 means that it is running at half-speed. We
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consider L = (1 − td) as a measure of load on a server, e.g., td = 0 means maximum
load (e.g., L = 1) and td = 1 means minimum load (e.g., L = 0). We measure time
dilation and so load in the regions by simply interrogating the servers (Section 3.3.1).
Figure 3.12(b) plots the CDF of the load per region. As expected, the more a region
is popular, the more its server is loaded. We can see that half of the time, Japan
Resort has a load larger than 0.35. Interestingly, we observe that both Japan Resort
and Chained Lust exhibit very high load values (e.g., larger than 0.8) despite the
significant difference in their population CDFs.

We now analyze the impact of avatar population on the server load. Figure 3.13
shows a scatter-plot of the number of avatars and the server load. We only plot the
data for Chained Lust and Japan Resort since they are the most representative.

Figure 3.13(a) shows a weak positive correlation of 0.6, and the presence of two dif-
ferent trends. When the population in the region is lower than 40-50 avatars, the
server load is very variable, probably impacted by avatar behaviors. However, when
the population grows over 50 avatars the server is always very loaded, as we never
observe load values smaller than 0.6. The trends we highlighted in Figure 3.13(a) are
representative of all regions, with the exception of Japan Resort (see Figure 3.13(b)).
This region shows a lower correlation coefficient of 0.34. In addition, we observe a
general trend similar to Chained Lust, but starting at around twice the population
size. This result may suggest that Japan Resort is assigned more server resources
than other regions.

3.5.3 Avatar Behavior

Avatars join and leave a region multiple times. We use the term session to denote the
time an avatar spends in a region. Note that a session does not spanmultiple regions,
as we cannot detect whether avatars leaving a region are moving to another region
or leaving SL. We also assume that each user is associated with a unique avatar.
Figure 3.14 shows the CDF of user session times for each region. Despite the regions
different popularities, users spend roughly the same time in each region. 50% of the
users stay connected less than 10 minutes per session while 15% stay connected 100

minutes or more. Finally, 5% stay connected more than 10 hours. An analysis of the
movement of these 5% shows that 98% of the time they do not change their position
at all, suggesting that they are bots.

Figure 3.15 illustrates an analysis of avatar movement patterns. We distinguish be-
tween standing, walking, running, flying and teleporting according to the avatar’s
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(a) Chained Lust

(b) Japan Resort

Figure 3.13: No. of avatars versus server load ; [Stat/Map/Av subcrawler].

speed. Surprisingly, avatars stand on the same point more than 80% of the time.
The remaining time they mostly teleport or walk (flying and running only account
for negligible values). This highly static behavior is probably due to two factors.
First, in popular regions avatars spend most of their time chatting with nearby av-
atars. Second, these regions experience high server load (see Figure 3.13), which
introduces a lag and thus makes avatar movements more difficult.

To understand if avatars tend to go back to previously visited places in SL, we ana-
lyze the interaction between avatars and the virtual groups. Figure 3.16 shows the
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Figure 3.14: CDF of user session times ; [Stat/Map/Av subcrawler].

Figure 3.15: Avatar movement patterns ; [Stat/Map/Av subcrawler].

CDF of avatar visits to the same virtual group during 3 days. About 50% of the
avatars come back at least once in 3 days to a previously visited group, while 30%

revisit the same group at least once per day. Consequently, there exists a high level of
predictability in avatar behavior, which can be explained by the social nature of SL:
avatars are attracted to places they like, or where they can meet avatars they already
know or who share similar interests.
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Figure 3.16: CDF of avatar visits to the same virtual group ; [Stat/Map/Av subcrawler].

3.6 Second Life as a Social Network Service

Researchers have shown that avatars in virtual worlds tend to interact similarly to
human beings in real life [59]. They meet, spend time together and make friends.
This behavior suggests that avatars construct an on-line social network, an Internet-
based network that represents the social relationships existing among human beings.
Popular examples of on-line social networks are the ones created on social sites (e.g.,
Facebook [31] and Cyworld [23]), content sites (e.g., Flickr [33]), or game sites (e.g.,
World of Warcraft [115]).

In this Section, we first describe our methodology for constructing a social graph
among SL avatars based upon a trace of SL avatar interactions. Then, we analyze the
characteristics of the SL social graph.

3.6.1 Contact and Social Graph

We define contacts in SL based upon proximity in the virtual world. An intuitive
result in human communication is that “closer together” means “more likely to con-
verse” [28]. Recent work has shown that avatars share behavior similar to human
beings [59], e.g., they gather in popular places to meet friends. Hence, we assume
that the distance between avatars plays an important role in avatar communication.

We assume that two avatars are interacting, i.e., there exists a contact between them,
when their Euclidean distance is less than an interaction range R. We recognize



44 CHAPTER 3. EXPLORING SECOND LIFE

that this assumption may identify contacts where avatars are not directly interacting
(e.g., “strangers” avatars passing each other), but it still intuitively captures avatar
contacts and the possibility of interaction. We define contact time as the time interval
during which two avatars have an Euclidean distance smaller than R. Finally, we
define session time as the continuous on-line time of an avatar.

We now introduce the contact graph similar to that previously described in [67]. The
contact graph Gt = (Vt, Et) is the collection Vt of avatars connected to a SL region as
well as the edges Et connecting the avatars at a time t. Gt is an unweighted graph,
i.e., edges are not assigned any a-priori weight. An edge < i, j >t connecting nodes
i and j in V (Gt) equals 0 when the Euclidean distance d between the coordinates of
avatars i and j at time t is greater than R, whereas it equals 1 when d < R. Gt is also
an undirected graph, i.e., < i, j >t=< j, i >t for any i and j.

Similar to the activity network studied in [20] and the interaction network studied
in [112], we now introduce the social graph as the network of friendships that users
construct with their behaviors. More formally, the social graph G = (V, E) is the
collection of avatars V visiting SL as well as the edges E connecting these avatars.
G is a weighted and directed graph, i.e., each edge < i, j > connecting two avatars i

and j in V (G) has two associated weights wi,j and wj,i. We compute wi,j and wj,i as
the ratio of the sum of all contact times between avatars i and j and the sum of the
session times of respectively avatar i and avatar j. Intuitively, wi,j is the fraction of
“virtual” time avatar i spends being close to j. Therefore, the pair of weights wi,j and
wj,i captures the “importance” of the social connection between avatars i and j, e.g.,
acquaintances, friends or relatives.

3.6.2 Data Collection and Limitations

In order to construct an instance of the SL social graph, we need to overcome the
limitation of the Stat/Map/Av subcrawler that can only monitor avatars for 3 days
due to IP blacklisting from Linden Lab (Section 3.3.3). In fact, such a short time
period is not sufficient to capture social relationships among avatars.

We proceed as follows. First, we crawl a single region. Second, we modify the
crawler to toggle its Internet connection by interacting with an home gateway router.
This procedure triggers the Internet Service Provider to assign a new public IP ad-
dress to the connection, circumventing the IP blacklisting mechanism adopted from
the SL provider.
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Traces α (in) α (out) C
Cer

L
Ler

Flickr [65] 1.74 1.78 47,200 -
Orkut[65] 1.5 1.5 7,240 -

Facebook [112] 1.5 1.5 21,866 -
Film Actors [109][10] 3 3 2,925 1.22
Power grid [109][4] - - 16 1.50
C.elegans [109][48] 2.2 2.2 5.6 1.17

Second Life 2.2 2.2 70 1.1

Table 3.3: Comparison of the SL social network with several real life networks and on-line
social networks.

We crawl the popular “Japan Resort” region for 10 days between July 22, 2008 and
August 2, 2008, and wemonitor 3, 291 unique avatars. According to SL statistics [86],
these avatars account for about 1% of the unique avatars logged in during this time.
The traces contain a large gap of about 20 hours due to a major outage of the region,
and other minor gaps of a few minutes likely due to server updates. These holes do
not represent a loss of information since no avatar activity was possible.

In order to choose a value for the interaction range R, we compute the minimum
distance observed between any pair of avatars at each crawling snapshot. We found
that 99% of the minimum distance values are smaller than 5 meters. Therefore, we
set R to 5 meters.

3.6.3 A “Real” On-line Social Network

We now characterize the features of the SL social graph defined by the traces of
avatar contacts in the “Japan Resort” region. When discussing these features, we also
compare and contrast them with the characteristics of both on-line social networks
and other networks, e.g., power grid and film actors. Table 3.3 summarizes the SL
social graph features and how they compare to the characteristics of other networks
as determined by previous studies.

We focus on the analysis of the complete graph G, i.e., two nodes i and j in G are
connected if wi,j and consequently wj,i are non-zero. Thus, we do not discuss the
embedded social graphs formed by filtering weak social connections among avatars.
This feature of the social graph will be used in Chapter 5.
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Degree

The degree of a node v ∈ V (G) is the number of edges incident to v, and represents
the number of unique avatars encountered by avatar v during the crawl period. We
start with a quantitative analysis of the node degree distribution computed over G

as defined at the end of the crawl period. We observe that 90% of the values in the
node degree distribution are between 1–30. This range implies that avatars are either
very isolated, e.g., they explore the region without meeting any other avatar, or they
interact with a restricted set of avatars, e.g., they meet their friends. The highest per-
centiles of the node degree distribution, however, approach 300. Intuitively, avatars
with such high node degrees are either extremely social or controlled by automated
scripts. A further analysis of the traces shows that these avatars have the longest
session durations as well, e.g., they are consecutively connected for about 90% of the
crawl duration. This persistence suggests that their node degree simply represents
the number of avatars theymeet, rather than the number of avatars they interactwith.

Given that social networks are often characterized by a power law distribution of
their node degrees [65][108], we examine how well a power law fits the node de-
gree distribution of G. As in other studies, we use the maximum likelihood method
to calculate the best power law coefficient α as well as the lower bound xmin from
which the law holds. Moreover, we use the Kolmogorow-Smirnow goodness-of-fit
to evaluate the fit quality (D) [21].

Figure 3.17 plots the estimation of α, xmin and D for the node degree distribution
computed on G every 15 minutes for the duration of the trace. During the first 24

hours, the estimations of α, xmin and D change rapidly. This phenomenon is due
to the fact that we incrementally construct the social graph using the interactions
that occur among avatars over time. Therefore, the initial hours simply represent
a transient phase in the definition of the social graph. Subsequently, α slowly de-
creases to a value of 2.2 and D varies around 0.05, indicating that the power law
well approximates the node degree distribution. The estimation of xmin oscillates
around a degree value of 20–25, i.e., the power law fit is verified for about 25% of
the avatars. Note that [20][65] verify the power law fit for about 10% of users. For
comparison, observations from other networks indicate a value of α between 2 and
3 [4][10][48], whereas a value of α smaller than 2 is observed in most on-line social
networks [112][65].

Figure 3.17 shows two high peaks in the estimation of both α and xmin at t = 96 hrs
and t = 108 hrs, respectively. These times correspond with two short interruptions
of the region service likely due to a server update. At those times the tail of the
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Figure 3.17: Power law analysis of the node degree over time for α, xmin, D.

node degree distribution becomes more skewed, causing a shift of the power law fit,
i.e., higher xmin and α. This shift indicates that the avatars responsible for the very
high values in the node degree distribution are the most responsive in re-connecting
to the region when the service becomes available. The same phenomenon is even
more visible at t = 192 hrs when the SL service returns after an outage of 20 hrs
(Section 3.6.2). In this case, the node degree distribution is significantly impacted and
α and xmin return to the values measured before the outage only after 48 hrs. This
means that while the majority of users return to a region with some delay in presence
of server failures, the high-degree nodes are much more aggressive. We conjecture
that these high-degree nodes correspond to bots that reconnect to the region as soon
as the service is available using automated probing.

Clustering Coefficient

The clustering coefficient is often used to characterize the extent to which nodes in
social graphs form a small-world network. The clustering coefficient for a node
v ∈ V (G) is the ratio of the number of edges between the nodes within v’s neighbor-
hood2 and the total number of edges that could possibly exist between them [108].
Figure 3.18 shows a scatter plot of a node’s degree and its clustering coefficient for
all nodes in the SL social graph at steady state (i.e., the graph constructed at time
t = 256 hrs). We observe no clear relationship between a node’s degree and its clus-
tering coefficient for nodes with a degree less than 30 (about 90% of the nodes in G).

2The set of nodes in G sharing an edge with v.
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Conversely, the clustering coefficient of nodes with a degree greater than 30 quickly
decreases since the node degree value grows so high. Looking at the neighborhoods
of these nodes in more detail reveals that, for 99% of them, the median value of the
weight of their edges is smaller than 0.1, i.e., they spend less than 1% of their virtual
time in close proximity to the avatars they contact. This results suggests that avatars
associated with nodes with very high degree establish very fragile social relation-
ships, again suggesting that these avatars are likely bots.

Figure 3.18: Node degree (log scale) vs. clustering coefficient ; t = 256 hrs.

Betweenness Centrality

The betweenness centrality of a node reflects its relative importance in a graph, indi-
cating, for instance, how important a person is within a social network. Formally, the
betweenness centrality for a node v in V (G) is the number of times node v occurs in
a shortest path between any two other nodes in V (G) divided by all existing shortest
paths in G [108]; the shortest path length for a node v in V (G) is the minimum number
of edges connecting v to all other nodes in V (G).

Figure 3.19 shows several percentiles of the distribution of the betweenness central-
ity over time (the gaps again correspond to SL service outages). Figure 3.19 shows
that nearly 90% of the nodes appear in less than 1% of all shortest paths. Interestingly,
this result is similar to what Mtibaa et al. [67] observed when analyzing centrality
in the social network constructed by human beings via a mobile social application.
However, in the SL social network we also observe that about 5% of the nodes are
very central and intersect with up to 10% of all the existing shortest paths. These very
central nodes, though, also have high degrees and again most likely correspond to
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Figure 3.19: Percentiles of the betweenness centrality distribution over time.

bots. This results indicates that the presence of bots may have a significant impact
on the structure of the social network.

3.7 Playing Second Life

So far, we have passively measured SL characteristics. This methodology does not
allow us to measure the Quality of Experience (QoE) perceived by SL users, e.g.,
how fast and correctly users obtain information about avatars and objects located
in their avatar surroundings. In fact, passive measurement misses two fundamental
pieces of information to capture user QoE: (1) avatar locations at any point in time
constructed according to real user inputs, and (2) the local view of each avatar, i.e.,
the evolution over time of the avatar and object updates each user receives from
the server. We now adopt an active measurement strategy in order to collect this
information. In the reminder of this Section, we describe how the measurement is
performed, and we introduce the metrics to evaluate user QoE.

3.7.1 Experimental Setting

The key idea of our QoE measurement strategy is to replay avatar traces collected
in a popular SL region over unused regions that we use as test-beds. We use our
player in order to automate the behavior of an avatar within a test-bed region while
collecting information about avatars and objects that intersect its AoI. We launch the
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player from multiple Internet end-points and we teleport our controlled avatars into
a target SL region. In this way, we capture the local view of each avatar through
the traces collected by each player (Section 3.3.2). Moreover, we can easily build the
“ground truth” at any point in time since we control all avatars that interact in the
region. Note that we require that no external avatars, i.e., real SL users, interfere
during our experiments to correctly evaluate user QoE. This is why we use unused
regions as test-bed regions (remember from Section 3.4.6 that 30% of SL regions are
unused).

We execute the SL player on several Planetlab [74] machines located worldwide in
order to emulate realistic network conditions. We select stable Planetlab machines
in terms of CPU load, free memory and network activity. We obtain real avatar mo-
bility traces from the avatar traces in the Japan Resort region. We use the one hour
period where we observe the maximum number of avatars, i.e., 84 concurrent av-
atars for a total of 207 different avatars during one hour, and for each avatar we
generate its mobility trace. Due to a crawling frequency of about 30 seconds, we
only have very coarse sampling of avatar movements. In order to reproduce fluid
avatar movements in the region, whenever an avatar changes coordinates between
two successive crawling snapshots we compute its speed and we interpolate its tra-
jectory.

We run our experiments on three regions empty of avatars, and that represent the
diversity in object composition observed in SL (Figure 3.7). We select respectively a
low density (6 objects), a normal density (130 objects) and a high density (541 objects)
region according to the number of objects they contain. During the experiments, we
also continuously check that no external user connects to the region and interfere
with our measurements.

Note that the presence of objects in these test-bed regions may cause avatars to be
blocked in their movements, e.g., when they encounter a big building. We solve this
issue by making our avatars deviate their mobility pattern and get around objects.
While this strategy avoids having avatars stuck in the region, it also biases the avatar
mobility pattern we are injecting in the regions. We analyze the impact of these
modifications in avatar mobility when comparing user QoE in the three regions.

3.7.2 Metric Definition

Currently, game providers characterize user QoE by looking at the cancellation rate,
i.e., the number of user accounts canceled during a given period of time, and/or
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Mean Opinion Score3 which is based on user feedback. Given that we cannot use
these two techniques, we choose to compute user perception instead. Precisely, we
compute three metrics that we formally define next: the inconsistency, the inconsis-

tency duration and the discovery latency.

Inconsistency

In order to have meaningful interactions among avatars, each avatar needs to have
correct information about the avatars contained in its AoI. Temporarily missing in-
formation as well as incorrect information make an avatar AoI inconsistent.

We call A(t) the set of avatars connected to a region at time t. For an avatar a, we
denote with ID(a) its identity and with P (a, t) its coordinates in the region at time
t. Remember that we know the exact location of each avatar at any point in time.
Therefore, we can determine AoI(A, t), i.e., the set of avatars that should be included
in the AoI of an avatar A at time t, for any A and t. We define AoI(A, t) as follows:

AoI(A, t) = {a ∈ A(t) s.t. dist(a, A) ≤ 35 meters} (3.1)

Each player continuously logs the information about avatars in its surrounding as
informed by the region server. We use this data to compute SAoI (A, t), i.e., the set
of avatars that intersect A’s AoI at time t, for ∀A and ∀t, given the information trans-
mitted by the region server.

The information contained in the AoI of an avatar A at time t is correct if the percep-
tion of A’s neighbor avatars given the data received by the server (i.e., SAoI (A, t)) is
congruent with the ground truth given by the mobility traces (i.e., AoI(A, t)). This
happens if (i) the two sets SAoI (A, t) and AoI(A, t) are identical, and (ii) each avatar
that intersects A’s AoI has the correct identifier and coordinates given the ground
truth defined by AoI(A, t). More formally:

(i) |AoI(A, t)| = |SAoI (A, t)|
(ii) ∀a ∈ SAoI (A, t) ∃a

′ ∈ AoI(A, t)

s.t. ID(a) = ID(a
′

) ∧ P (a, t) = P (a
′

, t)

(3.2)

3http://en.wikipedia.org/wiki/Mean_opinion_score
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We say that an avatar AoI is inconsistent when Condition 3.2 is violated. Violation
occurs if (i) AoI(A, t) and SAoI (A, t) differ, i.e., when an avatar is in one set but not in
the other one, or if (ii) an avatar is in both sets but not at the same position. Formally,
we define the number of errors Nerr(A, t) as:

Nerr(A, t) =| {(AoI(A, t) ∪ SAoI (A, t)) s.t.

(a ∈ AoI(A, t) ∧ a /∈ SAoI (A, t))∨
(a /∈ AoI(A, t) ∧ a ∈ SAoI (A, t))∨
(a ∈ AoI(A, t) ∧ a

′ ∈ SAoI (A, t) ∧ ID(a) = ID(a
′

)∧
P (a, t) 6= P (a

′

, t))} |

(3.3)

Then, the inconsistency is computed as:

Nerr(A, t)

|(AoI(A, t) ∪ SAoI (A, t)| (3.4)

The inconsistency as defined in 3.4 takes values between 0 and 1 where 0 means that
all the information contained in an avatar AoI is correct, and 1 means that all the
information contained in an avatar AoI is wrong.

Inconsistency Duration

User experience in virtual worlds is positive when avatars perceive quickly enough
changes in the nearby avatar states [22]. This guarantees interactivity among ava-
tars. We introduce the inconsistency duration as the time an avatar needs to achieve a
consistent view of the avatars in its AoI. We compute the inconsistency duration by
starting a timer whenever an inconsistency is detected in SAoI (A, t) and stopping it
as soon as SAoI (A, t) becomes consistent again, i.e., it equals AoI(A, t).

Discovery Latency

When an avatar moves and thus its AoI changes, the avatar may have to retrieve
the information about the virtual objects located in its surroundings from the SL
server. The discovery latency is the time an avatar needs to retrieve all virtual objects
contained in its AoI. Therefore, the discovery latency holds similarities with the in-
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consistency duration. The difference between the two metrics is that the discovery
latency refers to objects, while the inconsistency duration refers to avatars.

We measure the discovery latency by parsing the traffic received by a player in order
to isolate the packets that refer to the virtual objects. When a region packet (Section
3.2.4) is received, we detect that the server is currently updating the avatar AoI and
we start a timer. We stop this timer when no more region packets are received, indi-
cating that all objects that intersect the avatar AoI have been correctly received.4 In
case the avatar moves or leaves the region before it has correctly received a descrip-
tion of all virtual objects in its AoI, we simply stop and re-start the timer as soon as
its position is stable again.

3.7.3 User QoE in Second Life

Inconsistency

We evaluate the inconsistency for each avatar AoI every 200 ms or anytime a modi-
fication of the AoI occurs. Figure 3.20 plots the evolution over time of the 25th, 50th,
75th, 90th and 99th percentiles of the inconsistency distribution among avatars. Each
plot also shows the evolution over time of the number of avatars connected to the
region.

Figure 3.20 shows that the inconsistency values measured in the low density region
are very stable over time: 99% of the time avatars have less than 30% of the infor-
mation contained in their AoIs that is not correct. This means that the low density
region server is nearly not impacted by the variation in the number of concurrent
users, and guarantees to its users a satisfactory level of correctness. Conversely, in
both the normal and high density regions the inconsistency curves oscillate over
time. SL users that interact in these two regions perceive a less correct experience
compared to avatars in the low density region, e.g., the median value of inconsis-
tency grows from 0.1 in the low density region to 0.4-0.5 in the high density region.
This means that, as expected, the number of objects contained within a region has
a significant impact on the user experience. In fact, due to the effort required for a
SL server to manage virtual objects [58], the server has only few free resources to
perform the visibility computation (Section 3.2.2) for each avatar. As a consequence,
the server cannot guarantee to its users a satisfactory level of consistency.

4Packets lost or corrupted trigger retransmissions at the SL servers.



54 CHAPTER 3. EXPLORING SECOND LIFE

(a) low density (b) normal density

(c) high density

Figure 3.20: Percentiles of the avatar inconsistency over time.

The increase of inconsistency we measure for the high density region could also be
due to the high density of objects that prevent an avatar to move exactly as indicated
by the mobility traces (Section 3.7.1). For example, larger avatar groups may be
created, causing additional load at the server and consequently an unfair comparison
with the other regions. We compare the number of avatars intersecting each avatar
AoI during the experiments. We find out that in the high density region avatars have
on average less than 10%more avatars intersecting their AoIs than in respectively the
low and normal density region. We believe that such a small variation of the avatar
mobility does not justify the increase in avatar inconsistency we measured in the
normal and high density regions.

We now want to understand how frequently inconsistency events affect an avatar
during its journey in SL. Figure 3.21 plots the CDFs of the ratio between the sum
of the durations of an avatar inconsistency periods and the total time the avatar
stays in a region. We observe again that in the high density region, avatars are more
inconsistent than in the other two regions. For example, in the high density region
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more than 90% of the avatars suffer from inconsistency, whereas this number goes
down to only 30% in both the low and normal density region. Interestingly, Figure
3.21 shows that avatars with an almost completely inconsistent SL experience are
equally likely in the three regions, e.g., about 8% of the avatars have an inconsistent
AoI during about 80-90% of their SL journey. The reason beyond this phenomenon
is that the SL server spends a lot of time to correctly perform avatar login/logout as
we will investigate next. Subsequently, avatars with very short session times have
an inconsistent AoI most of the time.

Figure 3.21: CDFs of the fraction of time an avatar is inconsistent.

Interactivity

We now analyze the inconsistency duration measured in the three regions in order
to understand how fast SL servers react to avatar inconsistencies. Figure 3.22 shows
the CDFs of the inconsistency duration values as measured in the three regions. We
notice that avatar inconsistency lasts for more than one second in 40%-50% of the
cases. Even worse, 5% to 10% of the inconsistencies last for more than 5 seconds.
These inconsistency duration values are very long if we consider that acceptable
latency values in virtual worlds vary between 300 ms and 1 sec [22], and indicate
that SL servers provide poor interactivity to their avatars. Figure 3.22 also shows
that the inconsistency duration measured in the three regions can reach a maximum
value of about 20 seconds. These extremely high values are measured in presence
of churn, i.e., avatar login and logout operations, and they are due to the fact that
SL servers spend several seconds to accomplish avatar login/logout. Surprisingly,
Figure 3.22 shows that the number of objects contained within a region does not
impact the inconsistency duration, e.g., 50% of the inconsistency values measured
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Figure 3.22: CDF of the duration of inconsistencies.

in the normal density region are lower than the values measured in the low density
region. In the absence of official information form Linden Labs, we conjecture that
SL servers choose, when over-loaded, to increase the number of inconsistencies but
to reduce their durations.

Discovery Latency

Finally, we analyze how fast avatars retrieve the objects located in their surround-
ings. Figure 3.23 shows the CDFs of the discovery latency measured in the three
regions. Not surprisingly, the higher the density of content in a region, the longer
it takes for an avatar to reconstruct the virtual world in its AoI. The median discov-
ery latency grows from about 4 seconds in the low and normal density region to
about 30 seconds in the high density region. In our experiments, we verify that the
user’s network connection is not a bottleneck. Therefore, this result indicates that the
longer discovery latency measured in the high density region is due to the fact that
the server limits its outgoing traffic rate. However, Figure 3.23 shows also that the
curves for the low and normal density region overlap for latency values larger than
20 seconds, i.e., high discovery latency values are more likely in the low density re-
gion than in the normal density region, which is counter-intuitive. This phenomenon
is due to the fact that object density is not uniform in a region. Therefore, these high
values of discovery latency measured in the low density region happen in portions
of the region where the local density is much higher than the average object density
of the normal density region.
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Figure 3.23: CDFs of the discovery latency.

Finally, Figure 3.23 shows that the maximum discovery latency measured in both the
low and normal density region can reach a couple of minutes. Conversely, about 15%

of the inconsistency values measured in the high density region are larger than one
minute, and they can grow up to one hour, i.e., the entire length of the experiment.
This result indicates that some avatars in the high density region are never able to
correctly render the virtual world in their surrounding during their entire SL journey.

3.8 Conclusions

We have carried out a detailed evaluation of a large portion of Second Life (SL) and
made some interesting observations. Almost 30% of the regions do not attract any
visitors, and only few regions are quite popular. Moreover, the number of concur-
rent participants barely reaches 50,000. In comparison, World of Warcraft, a popular
multi-player on-line game, reaches peaks of one million concurrent players. So one
is tempted to paraphrase the famous American comedianW. C. Fields saying “I went
to Second Life and it was closed”. We also find that avatars exhibit a behavior that
very much resembles that of humans: they get together in popular places, where
they frequently meet their friends. Consequently, the SL social network is more sim-
ilar to real life networks than to popular on-line social networks. From a systems
perspective, we observe that SL shows poor scalability.

Our results also indicate that the quality of user experience in SL is generally poor:
most of the time avatars have an inconsistent view of their surrounding, missing in-
formation about some avatars or visualizing them in an incorrect position. Moreover,
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this inconsistency takes generally more than one second to be resolved. Finally, in a
region crowded with virtual objects, avatars can spend tens of seconds to completely
retrieve the description of the virtual world they are interested in.

Based on these observations, the next Chapter discusses the design and deployment
of a distributed object management for NVEs. Our design is inspired by some character-
istics of the SL virtual world. Moreover, we leverage some of the SL traces described
in this Chapter in order to perform a realistic evaluation.



CHAPTER4
Distributed Object Management

4.1 Introduction

In user-generated Networked Virtual Environments (NVEs) such as Second Life
(SL), avatars can participate in the development of the virtual world by creating
objects such as cars, trees, and buildings. Consequently, the persistent information
about the virtual world, e.g., objects and land appearance, cannot be pre-located at
the clients via CD distribution or BitTorrent like download [115] as it happens for the
majority of the NVEs. Instead, data need to be transmitted to NVE users on demand
according to their avatar locations in the virtual world.

The object management consists of maintaining a persistent copy of all virtual ob-
jects created in a NVE, while ensuring that NVE users have consistent information
about the objects located within their avatar surroundings. Virtual objects need to
be quickly transfered to the users in order not to affect NVE responsiveness. Never-
theless, the object management should be scalable, i.e., not affected by the number of
objects and avatars that animate the NVE.

In a Client/Server NVE, the object management is a simple task. Servers store a copy
of all virtual objects created on their portion of the virtual world, while clients inter-
rogate the servers about the objects located within their avatar surroundings. This
operation is a range query, i.e., a request for content whose attributes fall in a given
range of the attribute spaces. The advantage of a centralized object management for
NVEs is simplicity, while the limitations are scalability [58], high networking cost
and slow responsiveness (cf. Chapter 3).

59
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A distributed object management can be a scalable and cheap design for user-
generated NVEs. However, maintaining object consistency and persistency in a Peer-
to-Peer (P2P) network with unpredictable peer behaviors is a very challenging task.
In addition, an efficient data storage and retrieval strategy must be designed in order
to ensure good NVE responsiveness. Nevertheless, securitymight also be a issue.

This Chapter designs and evaluates a distributed object management for NVEs. Ini-
tially, we introduce a simple approach that can be easily integrated over any stan-
dard structured P2P network (Section 4.3). Then, we perform large-scale experi-
ments over the Internet (Section 4.4.5) that allow us to understand how the under-
lying structured P2P network should be designed. We use this knowledge to design
Walkad (Section 4.4), a structured P2P network based on the Kademlia protocol [63]
that ensures fast responsiveness in user-generated NVEs. The avatar management as
well as security issues are beyond the scope of this Chapter. Part of this work has
been published in [100][105][103][104].

The distributed object management we design consists of dynamically partitioning
the virtual world into cells, and assigning responsibility for those cells to peers orga-
nized in a structured Peer-to-Peer (P2P) network (Section 4.3), e.g., Distributed Hash
Tables (DHTs) [63][81]. We integrate this distributed object management on the top
of KAD, the DHT formed by eMule users [29]. Thanks to KAD, we perform realistic
experiments on the Internet using the resources provided by eMule users. We emu-
late Second Life over KAD using avatar and object traces collected in a SL region by
a crawler application (cf. Chapter 3).

We show (Section 4.3.7) that it is possible to construct a consistent, persistent, and
scalable object management for NVEs on top of a structured P2P network already
deployed over the Internet. However, in case of large number of objects, avatars can
experience a long latency to recover from an inconsistent view of the virtual world.
Moreover, search inefficiency in KAD introduces additional latency. Based on these
observations, we design Walkad (Section 4.4).

The Walkad design derives from the following observation. Range queries in NVEs
can be divided into local and non-local. A local query consists in a request for objects
located in the avatar surroundings, e.g., avatars generate local queries when they
walk, run or fly, in order to constantly update their visibility area. A non-local query
is a request for virtual objects that are located far away from the avatar coordinates,
e.g., avatars generate non-local queries when they suddenly cover a very large dis-
tance via the teleport operation. Intuitively, local queries are the most popular in
NVEs [59]. For this reason, Walkad aims at assigning “close” cells of the virtual
world to “close” peers in the Walkad network.
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We design Walkad as an extension of the Kademlia DHT [63]. Walkad organizes
the Kademlia key-space in a reverse binary trie, i.e., a tree-based data structure where
nodes of each level of the tree are labeled using the Gray Code [36]. In this way,
Walkad maps closeby cells to keys that are closeby in the Kademlia key-space. In
other words, a Walkad peer responsible for a cell maintains routing information to-
wards peers responsible for closeby cells. Local queries, originated by avatars mov-
ing from a cell to its neighbor cells, are quickly answered by “walking” across the
Kademlia routing tables.

We evaluate Walkad via network emulation [98]. We build a Walkad network with
up to 1024 peers and we use object traces from Second Life (cf. Chapter 3) to emulate
a realistic virtual world. In addition, synthetic traces of avatar movements are used
to study different types of range queries. Our results show that in a virtual world
made of five Second Life regions indexed in a Walkad network of 1024 peers, local
queries are answered in less than 150 ms (on average), whereas non-local queries
require about 200 ms. In addition, Walkad equally distributes the object load to
peers as the network and virtual world sizes increase.

4.2 Background

Since we use KAD as a test-bed to evaluate a distributed object management for
NVEs, we now briefly describe KAD andKademlia, the routing protocol KAD is based
on.

4.2.1 Kademlia

Kademlia [63] is a structured P2P network, where peers and content are identified
by a random 160-bit identifier. Given two identifiers, a and b, Kademlia defines the
distance between them as their bitwise exclusive or (XOR), i.e., d(a; b) = a ⊕ b. This
distance is calculated bitwise on the identifiers of the two nodes, e.g., the distance
between a = 1011 and b = 0111 is d(a, b) = 1011 ⊕ 0111 = 1100, and the distance
between a = 1011 and c = 1100 is d(a, c) = 0111. Thus, a is closer to c than b, since
d(a, c) < d(a, b). The XOR distance metric is symmetric, i.e., if a is close to b, then b is
also close to a. This means that peers in Kademlia learn useful routing information
from the queries they receive.
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Figure 4.1: Kademlia k-bucket organization ; k=2.

A Kademlia peer keeps for each 0 ≤ i < 160 bit of its identifier a list of peers whose
identifiers have XOR distance 2i ≤ d < 2(i+1) from its identifier. These lists are called
k-buckets, where k defines the maximum number of entries per bucket. The entries
in the nth k-bucket have a different nth bit from the peer identifier. Each k-bucket is
kept sorted by a most-recently-seen metric.

Figure 4.1 shows an example of the k-bucket organization for a peer P in a Kademlia
network with k = 2 and identifiers composed by b = 4 bits. The top of Figure 4.1
shows the space of possible XOR distances from P ’s identifier. Accordingly, a dis-
tance of 0000 means that a peer’s identifier has all four bits equal to P ’s identifier,
i.e., the black dot in Figure 4.1 represents P ’s identifier, whereas a distance of 1111

means that a peer’s identifier has all four bits that differ from P ’s identifier. Since
peer identifiers are composed by four bits, peer P allocates four k-buckets. The rout-
ing information towards the 2(p−1) peers whose identifiers differ from P ’s identifier
in the first bit (e.g., 8 peers in the example of Figure 4.1) are stored in the first k-
bucket. Since the k-buckets have size k = 2, only the information about two out of
these 2(p−1) peers can be kept. The other k-buckets are filled similarly. Figure 4.1
clearly shows that peer P has much more detailed information about peers whose
identifiers are XOR close to P’s identifier.

Routing in Kademlia is done iteratively and is based on prefix matching. A node
a forwards a query, destined to a node b, to the node c in its k-bucket that has the
smallest XOR-distance to b. Successively, node c performs the same operation and
sends back to a the routing information towards b’s closest node it knows. Each step
allows to locate nodes that are closer to b until either b is found or no more closer
nodes to b are available. This strategy allows Kademlia, like many other DHTs, to
contact for routing only O(log(n)) nodes out of a total of n nodes in the network.

In order to store a <key,value> pair in Kademlia, a peer locates the k closest nodes
to the key and sends them the value to be stored. Each peer re-publishes the
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<key,value> pairs it manages every hour in order to ensure their persistency. In ad-
dition, the original publishers of a <key,value> pair re-publishes it every 24 hours.
Otherwise, all<key,value> pairs expire 24 hours after the original publishing in order
to limit stale information in the P2P network. Finally, in order to maintain consis-
tency in the publishing-searching life-cycle of a <key,value> pair, whenever a node
w observes a new node u that is closer to some of w’s <key,value> pairs, w replicates
these pairs on u.

In order to find a <key,value> pair, a peer performs a Kademlia lookup to locate the
k nodes with IDs closest to the target key. The procedure ends as soon as any node
returns the target value.

4.2.2 Kad

KAD is a Kademlia-based [63] DHT routing protocol that is implemented by several
P2P applications such as Overnet [71], eMule [29], aMule [1], and Azureus [8]. In the
following, we describe the main differences between KAD and the original Kademlia
protocol.

In KAD, each peer is identified by a 128-bit KAD ID and routing is based on pre-
fix matching, i.e., the smallest XOR-distance. Empirical measurements conducted
over KAD [89] show that at most four routing hops are enough to reach any target
node. This means that, since the KAD network has more than one million concur-
rent users [91], the k-buckets are very detailed and contain on average about 1,000
contacts.

KAD distinguishes between two different keys:

• A source key that identifies the content of a file and is computed by hashing
the content of a file.

• A keyword key that classifies the content of a file and is computed by hashing
a single token from the name of a file. A metadata is attached to a keyword key
that contains information about a file such as its length, name and type.

The publication scheme in KAD differs from Kademlia, since the XOR minimum dis-
tance is not applied [88]. A key is published on 10 peers whose KAD ID agree at least
in the first 8-bits with the key: this fraction of the key-space is called the tolerance

zone. Since the KAD network is currently composed by millions of users, at any point
in time there are about 10,000 nodes that fall in the tolerance zone of a given key [88].
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As for the publication scheme, the republication scheme in KAD differs from the
original Kademlia. Keys are simply periodically republished by their owners, source
keys every 5 hours and keyword keys every 24 hours. Moreover, a node responsible
for a given key does not republish the key to a new node identified as closest to this
key.

4.3 A Simple Approach

In this Section, we design and evaluate a simple distributed object management for
NVEs. First, we describe the mechanisms we use to share the virtual world respon-
sibilities among NVE participants organized as a structured P2P network. Then, we
explain how we adapt our architecture to work on KAD as there is no possibility
to modify the KAD routing algorithm. Finally, we perform a realistic experimental
evaluation over KAD.

Note that we do not claim that this P2P communication infrastructure is completely
innovative. It has been designed to allow realistic experiments on the Internet and
to help us understand how to design an efficient P2P architecture for next genera-
tion NVEs. The innovation lies in the way we adapt KAD to handle the storage and
retrieval of virtual objects of a P2P NVE.

4.3.1 Adaptive Cell-Based Management

We introduce here an adaptive cell-based partition of the virtual world. This simple
mechanism is inspired from the scheme used by CAN [80] to dynamically assign
the identifiers to its peers. In the context of NVEs, we use a similar approach to
dynamically adapt the virtual world division to the object distribution.

We call a cell a portion of the virtual world. We denote a cell by C l
i where l indicates

that the cell is originated by the l-th split of the world, and i is a simple incremental
index. We call No(C

l
i , t) the number of objects contained within C l

i at time t. Initially,
the virtual space is identified by a single cellC0

0 . Then,C
0
0 is successively divided into

multiple cells such that C0
0 =

⋃

∀(i,l)

{

C l
i

}

. Cells are split when the number of objects
they contain exceeds a threshold Dmax. Therefore, Dmax is the maximum number of
objects that can be contained within a cell. We call Dmin the minimum number of
objects contained within two adjacent cells.
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(a) Initial Cell (b) First Split (c) Second Split (d) Third Split

Figure 4.2: Adaptive cell-based partition ; Dmax = 3.

Whenever a user notices that No(C
l
i , t) ≥ Dmax, it performs a split operation that

creates cells C l+1
2i+1 and C l+1

2i+2. In the same way, when (No(C
l+1
2i+1, t) + No(C

l+1
2i+2, t)) ≤

Dmin, a merge operation is performed originating cell C l
i . Split and merge operations

are accomplished according to a well defined order. Assuming a two dimensional
space, a cell is first split in the vertical dimension, then in the horizontal, and so on.

Figure 4.2 shows an example of the evolution of a cell-based two dimensional NVE
with Dmax = 3. In Figure 4.2(a), two objects are created in the original cell. Then, in
Figure 4.2(b) two other objects appear. Given Dmax = 3, the first split operation is
performed. Figures 4.2(c) and 4.2(d) show how the adaptive cell-based management
incrementally partitions the virtual world according to the distribution of objects.

4.3.2 Virtual Space and Distributed key-space

In structured P2P networks peers and content are each identified by a key from the
same identifier space named the key-space. Each cell is assigned a unique identifier in
the key-space called cell-ID. We now describe how cell-IDs are associated to cells of
the virtual world. The mechanism we describe is inspired by PHT [79], a distributed
data structure that enables range queries over DHTs.

We call kl
i the cell-ID associated with cell C l

i . The cell-IDs are organized into a l-
level binary tree with 0 ≤ l ≤ (log(Nc) − 1) where Nc is the number of cell/cell-IDs
in the NVE. Whenever a virtual cell C l

i is split, two active cell-IDs kl+1
2i+1 and kl+1

2i+2

are derived as a function of kl
i and associated with cells C l+1

2i+1 and C l+1
2i+2. We associate

kl+1
2i+1 to west (vertical) or north (horizontal) originated cells and kl+1

2i+2 to east (vertical)
or south (horizontal) originated cells.

Given a cell-ID kl
i, we derive kl+1

2i+1 and kl+1
2i+2 as follows. LetH be some hash function.

For convention, kl+1
2i+1 = H(kl

i) and kl+1
2i+2 = H(NOT (kl

i)). All the peers agree on a
unique root for the tree, e.g., k0

0, and on the hash function, e.g., H=MD4 [17]. The
hash function distributes cell-IDs uniformly in the key-space independently from



66 CHAPTER 4. DISTRIBUTED OBJECTMANAGEMENT

Figure 4.3: Cell-IDs organization.

the distribution of objects and cells in the NVE. Thus, load balancing is achieved
among peers.

In order to follow the evolution of the NVE cell division, the cell-IDs are divided
into active and control cell-IDs. We call an active cell-ID the identifier of a cell that
represents an active portion of the world, i.e., a leaf in the tree. We call a control
cell-ID, the identifier used to retrieve information about the cells organization of the
virtual world, i.e., an inner node of the tree. Figure 4.3 shows the tree organization
of the cell-IDs associated to the evolution of the NVE described in Figure 4.2.

4.3.3 Operations

Structured P2P networks such as Kademlia have three fundamental functionali-
ties [24]:

• STORE – it allows to store a value in the P2P network.

• FIND_NODE – it allows to find the peer associated with a given key in the P2P
network.

• FIND_VALUE – it allows to retrieve a value (if present) in the P2P network.

The participants of our P2P-NVE use these functionalities to perform additional op-
erations related to the construction and management of the virtual world:

COORDINATOR_SELECTION - We call coordinators the peers that are responsible
for the (cell/cell-ID) pairs of the NVE. NVE users select these peers using the
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FIND_NODE function. For each (cell/cell-ID) pair of the NVE, R coordinators are
selected. The rationale of this replication factor is to maintain consistency and per-
sistency under churn.

INITIALIZATION - A bootstrap node identifies the R coordinators of the initial cell
C0

0 by performing a COORDINATOR_SELECTION for cell-ID k0
0. At this time, these R

peers are responsible for the entire virtual world. They store all objects created in C0
0

and answer all range queries.

PUBLICATION - When an avatar creates an object in the NVE, we say that the object
is published in the P2P network. An object located at coordinates (x, y) in the virtual
world is published under the key kl

i associated to cell C l
i such that (x, y) ∈ C l

i . The
publication is done using the STORE function, i.e., by informing the R coordinators
for cell C l

i of the new created object. This means that each object in a cell is replicated
R times at R different peers.

SPLIT - When a cell C l
i is split into cells C l+1

2i+1 and C l+1
2i+2, a special object called pointer

is published in cell C l
i through a PUBLICATION operation. In this way, an user that

joins the NVE at any time is notified that kl
i is a control cell-ID, i.e., that a split oper-

ation was performed.

RANGE_QUERY - An avatar in the virtual world needs to be constantly informed
about the objects located in its Area of Interest (AoI). This operation is a range query
with range equal to the AoI’s size. A range query is performed via the FIND_VALUE

operation requested to the coordinators for the (cell/cell-ID) pairs that intersect the
avatar AoI. In case one of the cells that intersects an avatar AoI is a control cell-ID, it
is used as the entry point in the tree. Then, the set of active cell-IDs is retrieved by
going through the tree. We call this operation DISCOVERY.

DISCOVERY - This operation is performed when an avatar joins the NVE and every
time it moves to a cell that has been previously partitioned. In each hop of the dis-
covery, the cell coordinators must be found. Generally, in a structured P2P network
this operation is logarithmic with the number of users N . In the worst case, a new-
comer has to go through the entire tree, e.g., log(Nc) hops are required where Nc is
the number of cell/cell-IDs in the NVE. Therefore, the complexity of a DISCOVERY

operation is O(log(N) ∗ log(Nc)).
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4.3.4 Implementation over Kad

We use the KAD API [17] in order to integrate our distributed object management
with KAD. Note that we cannot modify the behavior of peers that participate to KAD.
These peers are used as dumb nodes for an experimental purpose. However, we can
modify the KAD API at the peers that we control. In the following, we explain: (1)
how we integrate our distributed object management with KAD, and (2) how and
why we modify the KAD API at our peers.

Control and active cell-IDs are coded into 120-bit KAD keywords. Object descriptions
(e.g., coordinates and name) and pointer information (e.g., timestamp) are stored
within the fields of a keywordmetadata. In addition, a unique identifier is associated
to objects and pointers of the NVE in order to distinguish them from the content
inserted into KAD by eMule users.

The publication scheme implemented by KAD differs from the original Kademlia
protocol (Section 4.2.2). Thus, the performance of our NVE could be reduced by KAD

design choice. For this reason, we modify the KAD STORE function at our clients in
order to use the XOR minimum distance rule. Precisely, whenever a user subscribes
to a cell C l

i it initially derives the set of peers in the tolerance zone of kl
i as in the

common KAD STORE function. Then, the user extracts the R coordinators for cell C l
i

by selecting the peers whose identifiers are the closest to kl
i according to the XOR

distance.

As for the publication scheme, the republication scheme in KAD differs from the
original Kademlia. In order to ensure NVE consistency, we must ensure that at any
point in time the R closest peers to a given cell-ID have the same information about
the objects located in the cell. For this purpose, we modify the KAD republication
scheme. We introduce a generalization of the Kademlia solution that we call the
delta publication: whenever a peer p realizes that a peer Q is one of the R closest
peers to a cell-ID kl

i, p republishes on Q any objects Oi(x, y) ∈ C l
i it notices Q is

missing. This means that when a peer p receives from a coordinator P the set of
objects contained within cell C l

i , it computes ∆(t) = (Vp(t) − (Vp(t) ∩ VP (t))) where
Vi(t) is the set of objects contained within the AoI of peer i at time t. Then, if ∆(t) 6= ∅
p publishes onto P the set of objects Oi(x, y) contained in ∆(t) (Algorithm 1).
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Algorithm 1: The Delta Publication

foreach Coordinator P in C l
i do1

∆(t) = (Vp(t) − (Vp(t) ∩ VP (t))) ;2

if (∆(t) 6= ∅) then3

republish(P,∆(t));4

end5

Vp(t) = Vp(t) ∪ (VP (t) − (Vp(t) ∩ VP (t))) ;6

end7

4.3.5 Experimental Methodology

We perform a realistic experimental evaluation of our simple distributed object man-
agement for NVEs in two steps. Initially, we design a client prototype that imple-
ments the functionalities described in the previous Section, i.e., KAD routing, cell
management, avatar movement across the virtual world, and object insertion and
lookup. Then, we use object and avatar traces collected in SL to emulate the behav-
ior of a P2P version of SL. We reduce the SL objects to simple (name,coordinates)
pairs, i.e., we do not consider any additional object attribute such as textures, in
order to store them within the fields of the metadata associated to a KAD keyword.

We use our Second Life crawler (cf. Chapter 3) to collect avatar and object traces in
theMoney Tree Island region for a period of 10 hours. In our traces, we observe about
500 different avatars, with at most 90 concurrent avatars and at least 20 avatars in
this region. 90% of the avatars barely move and visit less than 13% of the region. The
most adventurous avatar traverses 65% of the region. We found a constant number
of 586 objects in the region. While collecting the traces, we also measured that these
conditions force the SL region server to slow down the simulation in about 50% of
the times.

We emulate the activity of the Money Tree Island region by replaying its traces using
our P2P client. We run several instances of the P2P client on a cluster of machines
that participate to the KAD network. In this way, objects are stored on KAD nodes and
searched through the Internet. A snapshot of each avatar AoI is copied to disk every
200 ms or when a modification of its content occurs. We also introduce a generic
user acting as a sniffer that we refer to as the monitor. The monitor can see the entire
region. The task of the monitor is to constantly measure the availability of objects in
the NVE, without interfering with the experiments.

One issue with this methodology is that we do not know the history of objects cre-
ation in the Money Tree Island prior to the monitoring period. Therefore, we create
an initialization phase of duration Ti where avatars randomly insert new objects. Ob-
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ject coordinates are extracted from the traces in order to be real. The initialization
phase lasts 20 min. Once the initialization phase is completed, there is no object cre-
ation or deletion in the region. Therefore, all split operations are performed during
the initialization phase and they do not impact our performance evaluation. This
strategy is representative of the evolution of the object composition of most SL re-
gions (cf. Chapter 3). The maximum number of objects per cell (Dmax) is set to 20.
The number of coordinators per cell varies from 5 to 20 (default value is 20). We
approximate the AoI of each avatar as a circle centered on the avatar coordinates,
and we vary its radius AoIr between 5 and 35 units (default value is 35). With these
parameters, we distribute the 586 objects of the Money Tree Island region across 44

cells and a tree of 9 levels.

The numbers above are (1) derived from observations in multiple SL regions (cf.
Chapter 3), and (2) chosen to make the experimental analysis tractable.

4.3.6 Metric Definition

We now formally define the three performance metrics that we evaluate. For sim-
plicity, we consider a two dimensional region, i.e., a Cartesian space Ω = [0, Xmax] ×
[0, Ymax], where Xmax, Ymax are the maximum extension of the region along the x,y
dimension. However, extension to three dimensional virtual worlds is straightfor-
ward. An object is a piece of content identified by its name and coordinates. We
denote it with Oi(x, y). We call O(t) the set of objects created within the region be-
fore time t. We call A some finite portion of the region. We call state, i.e., S(t, A),
the set of objects contained in an area A of the region at time t. We define S(t, A) as
follows:

S(t, A) = {Oi(x, y) ∈ O(t) s.t. (x, y) ∈ A} (4.1)

We call AoIi(t) the AoI of an avatar i at time t. We call Vi(t, A) the set of objects seen
by an avatar i at time t within an area A. Note that Vi(t, AoIi(t)) ⊆ S(t, AoIi(t)), i.e.,
an avatar may not see all the objects in its AoI due to inconsistency in the NVE.

Consistency: A NVE is consistent if at time t all the active avatars N (t) see the same
set of objects (whether they exist or not). In order to define the consistency, we call
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SAoIi(t), or shared AoIi(t), the portion of AoIi(t) contained in at least anotherAoIj(t)

at time t. We define SAoIi(t) as follows:

SAoIi(t) =
⋃

j 6=i

{AoIi(t) ∩ AoIj(t)} (4.2)

For a generic user i at time t we define the consistency of a NVE as follows:

Ki(t) =
| (Vi(t, SAoIi(t)) ∩

⋃

j 6=i {Vj(t, SAoIi(t))} |
| ⋃

j 6=i {Vj(t, SAoIi(t))} | (4.3)

The consistency as defined in 4.3 takes values between 0 and 1. Consistency equals
0 for an avatar a when the objects contained within a’s AoI are completely different
from the set of objects seen by all the other avatars with same AoI as a. Consistency
equals 1 for an avatar a when all objects contained within a’s AoI are equal to the
objects seen by all the other avatars with same AoI as a. In case that SAoIi(t) = ∅,
we consider that Ki(t) = 1. Note that the consistency is a user-dependent value.

Persistency: A NVE is persistent if no object gets lost during the evolution of the
virtual world. If we assume that no object is removed from the NVE, the persistency
is defined by the following property:

S(t, Ω) ⊆ S(t
′

, Ω) t
′

> t (4.4)

Scalability: the consistency and persistency of a NVE must not be affected by the
number of concurrent users and objects. Therefore, we have identified two ap-
proaches to establish the scalability of a NVE. First, prove that the P2P layer is itself
scalable. Second, analyze how increasing and reducing object density impacts the
consistency and the persistency of the NVE. Given we use KAD, a well know P2P
network that supports millions of users, we decided to focus the scalability analysis
on the second issue.
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4.3.7 Performance Analysis

We now present the performance results. Please note that it was not possible to
compare the performance of P2P SL to the real SL as we cannot perform similar
measurements on SL. The goal of this work is to show the feasibility of a distributed
object management for NVEs, and to give us insights on how to design a dedicated
P2P infrastructure.

Region Consistency

Figure 4.4(a) shows the Complementary Cumulative Distribution Function (CCDF)
of the consistency experienced by the avatars for different values of the AoI radius.
For AoI radius up to 20 units, the region is perfectly consistent in 96% of the cases.
For a more realistic value of 35 units, each avatar has a consistent view of the region
90% of the time. Intuitively, a larger AoI radius increases the discovery time and the
likelihood of inconsistency.

We identify three origins of avatars inconsistency: (1) avatar movements among
cells, (2) avatars joining the region, (3) P2P hazards, i.e., Internet latency, peer churn
and failures. Among the inconsistency values, avatar movements are cause of incon-
sistency in 45% of the cases, and they are responsible of consistency reduction from
99 to 65 percent (Figure 4.4(a)). In the same range of consistency values, accessing
data in a real and large P2P network is a cause of inconsistency in 35% of the cases.
Finally, the most dramatic inconsistency values (between 0% and 65%) occur when
an avatar joins the region. These join operations cause 20% of the inconsistency val-
ues. In all cases, inconsistency is temporary and all avatars always succeed to reach
100% consistency after a while. The time it takes to come back to a consistent view
of the region is discussed later in this Section.

Figure 4.4(a) shows three vertical steps respectively at 35, 50 and 65% of consistency.
These steps indicate popular levels of inconsistency. When an avatar joins the region,
it performs a DISCOVERY operation (Section 4.3.3). During this period, it only has
a partial view of the region. Given that avatars tend to join a region always at the
same locations (cf. Chapter 3), they miss more or less the same objects. A low level of
consistency during the DISCOVERY operation is not really a problem as the effective
join of a NVE user can be delayed until its view is consistent.

Inconsistency can either affect isolated avatars, or sets of avatars. We now measure
the probability that a fraction of the avatars is inconsistent at the same time (Figure
4.4(b)). We notice that all avatars are perfectly consistent in about 55% of the cases,
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(a) CCDF of region consistency ; AoIr =
[35; 20; 10; 5] units.

(b) CDF of the fraction of not consistent avatars ; AoIr =
35 units.

Figure 4.4: Region consistency analysis ; R = 20

and that only 35% of the time a maximum of 10% of the avatars is simultaneously
inconsistent. Finally, the number of inconsistent avatars is always lower than half of
the avatars. These results demonstrate that inconsistency is never related to the P2P
architecture, as it only affects a small subset of the region population.
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Replica Consistency

We now analyze the impact of the number of coordinators R on the consistency.
By default each user selects 20 coordinators per cell, i.e., each object is replicated
20 times. In order to simulate several values of R during a single emulation, we
perform the emulation with R = 20 and then reconstruct the view of the region for
each avatar using different subsets of the number of coordinators.

Figure 4.5 shows an evaluation of the impact of R on region consistency. We notice
that we achieve comparable consistency levels for 10 to 20 replicas per object, and 5

replicas is clearly not enough to maintain the region consistency. In order to inves-
tigate deeper the impact of the number of replicas on consistency, we compute the
probability that avatars access different coordinator sets for a given cell. We observe
that avatars contact the same set of coordinators only 50% of the time. This is due to
churn in KAD, obsolete information in some nodes routing tables and avatars join-
ing a cell (i.e., selecting the set of coordinators) at different times. In addition, we
observe that for R = 5, there is a non negligible probability that all avatars in a cell
get the objects from a totally disjoint set of coordinators. This explains the reduction
of consistency observed in Figure 4.5. These results are clearly impacted by the KAD

users session characteristics and could be different with P2P nodes being associated
to SL users.

Figure 4.5: CCDF of region consistency ; R = [20; 15; 10; 5] ; AoIr = 35 units.

Recovery Latency

We now investigate the time avatars spend in an inconsistent state in order to have
a measure of the NVE responsiveness. Figure 4.6 plots the cumulative distribution
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function (CDF) of the time it takes to an avatar to recover from an inconsistent view
of the region. In the following, we refer to this time as the recovery latency. The
recovery latency is smaller than 1 second around 35% of the times. 40% of the times,
it takes to an avatar between 4 and 16 seconds to re-establish a consistent view of
the region. About 20% of the times this latency can be longer of 16 seconds and
reach couple of minutes. We recall that this latency is only related to the discovery
of objects in a region, and it does not refer to avatar interactions.

Figure 4.6: CDF of the recovery latency ; R = 20 ; AoIr = 35 units.

In Table 4.1, we assign the recovery latency to each cause of inconsistency identified
earlier. Latency values lower than one second correspond to normal network condi-
tions we observe in KAD. Latency values between 4 and 16 seconds are experienced
by avatars that move as they often have to perform a lookup operation in KAD. We
observe that this lookup time in KAD is generally close to 4 seconds, as also observed
by Steiner et al. [89]. During the lookup, the objects contained in the new cell that
falls in the avatar AoI are not yet visible to the avatar. In addition, in case the new
intersecting cell is a control cell, a DISCOVERY operation has to be initiated. There-
fore, multiple lookups in KAD are performed, and the recovery latency can reach 16

seconds. Finally, values between 16 and 100 seconds are observed by avatars who
join the region. Ideally, we should never observe delays larger than 40 seconds as the
cells tree organization in the emulation has a maximum depth equal to 9. However,
in some cases, avatars join the region and immediately start to move across cells, e.g.,
they travel the region to reach some friends. This behavior causes avatars to change
cell even before they obtain a consistent view of the current cell, with a dramatic
impact on the recovery latency.
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Cause Percentage Recovery Latency (sec)
Moving 45 4-16

P2P Hazards 35 ≤ 1
Joining 20 16-100

Table 4.1: Causes of inconsistency.

Persistency

Persistency characterizes the ability of our P2P architecture not to loose objects over
time. Remember that after the initialization period where all objects are created, no
more object appear or is removed. Moreover, a keyword in KAD is removed after
24 hours if not republished. Since we exploit KAD keywords to store SL objects, all
objects should be discoverable by any avatar 24 hours after the last time they are
re-published.

We measure region persistency through four monitors that systematically access all
cells in the region and report statistics on the objects they contain. In order to eval-
uate the impact of a different number of coordinators R, each monitor contacts re-
spectively 20,15,10 and 5 coordinators per cell.

In Figure 4.7, we plot the time evolution of respectively the fraction of persistent
objects (Figure 4.7(a)) and the average fraction of persistent object replicas (Figure
4.7(b)). The vertical dotted lines at t = [10; 24; 34] hrs in Figure 4.7 indicate time pe-
riods associated to interesting events that we explain in the following. Note that an
object is persistent when at least one of its replica is available in KAD. The first 20

minutes correspond to the initialization phase. During this period, the cell organiza-
tion changes frequently as new objects are created. This explains why the persistency
grows from 0.7 to 1 in Figure 4.7(a). Once the initialization phase is completed, SL
is perfectly persistent during the entire emulation (i.e., 10 hours) for R = [20; 15; 10].
For R = 5, we notice two “glitches” (i.e., persistency decreases) in the curves of both
Figure 4.7(a) and Figure 4.7(b) at t = 5 hrs and t = 6 hrs. At these times, the monitors
could not find some objects in KAD as all their replicas had disappeared from the P2P
network. The cause of this phenomenon is the difficulty to constantly maintain a set
of consistent coordinators under the presence of churn, failures, etc. Anyway, in both
cases the persistency goes back to 1 at the next measure performed by the monitors.
This is because, as soon as an avatar observes that some objects have disappeared, it
immediately performs a (delta) publication and persistency is recovered.

The emulation ends after 10 hrs, which means that objects are not republished any-
more for t > 10 hrs. Figure 4.7(a) shows that for t > 10 hrs the glitches in the curve
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(a) Time evolution of the fraction of persistent objects

(b) Time evolution of the average fraction of persistent
object replicas

Figure 4.7: Persistency analysis ; R = [20; 15; 10; 5].

with R = 5 happen more frequently than in the first 10 hours. In addition, we ob-
serve a continuous decrease of the average fraction of persistent object replicas in
Figure 4.7(b). This is due to the absence of the delta publication, which goal is to
actively maintain a minimum number of replicas in the network. However, until
t = 24 hrs the region remains perfectly persistent for R > 5. In addition, even for
R = 5 SL persistency goes back to 1 from time to time. This behavior is explained by
the presence of churn in KAD: even if objects are no more constantly republished, old
coordinators that temporarily disconnected from KAD eventually come back restor-
ing the persistency of the region.
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The delta publication algorithm seems to be too conservative when the number of
object replicas in the P2P network is larger than R = 5. In order to study how our
P2P SL would behave without the delta publication, we study persistency in the
[10, 34] hours period where the delta publication is not active anymore. For this
reason, we now analyze the behavior of the KAD nodes selected at least once to be
coordinators in the [0, 10] hours period. We compute respectively their continuous
on-line time and availability to serve SL objects in the time interval [10, 34] hours, i.e.,
the likelihood to be selected as coordinators. We observe that 80% of the coordinators
have a continuous on-line time smaller than 3 hrs, and only 1% of the coordinators is
on line during the entire time interval [10, 34] hours. On one hand, this is due to the
KAD user session characteristics [90]. On the other hand, it depends by the high level
of churn in KAD [90] that causes frequent changes in the sets of cell coordinators.
Precisely, 50% of the coordinators serve SL objects only for 10% of the time in the
interval [10, 34] hours. However, 15% of the coordinators serve objects for more than
60% of the time. These nodes guarantee persistency despite the presence of many
unstable nodes.

Finally, we analyze the time interval [24, 34] hours. Since objects in KAD are removed
after 24 hours if not republished, in this time period we expect all objects to be
deleted and the persistency of P2P SL to go to zero. As expected, the average num-
ber of objects replicas decreases quickly (Figure 4.7(b)). However, for t ≥ 34 hrs, 20%

of the objects created are surprisingly still present in KAD. The reason is that some
third-party eMule clients increase the lifetime of KAD keywords in order to reduce
the volume of publishing/republishing operations [29].

The persistency results we have presented are impacted by the behavior of peers in
the KAD network. We expect to observe a different behavior of peers in a structured
P2P network maintained among avatars of a NVE. However, these results underline
two strong features of the distributed object management. First, it can support a very
high churn in the P2P network. Second, it is enough to have a low number of stable
peers to maintain excellent persistency.

Scalability

We need to discuss two aspects of scalability. First, we must demonstrate that our
P2P SL scales with an increase in the number of users. This is easy as our system in-
herits its scalability from KAD. Therefore, we decided not to perform any emulation
with large number of participants as the scalability of KAD and Kademlia has been
shown already [88][90].
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objects active cell-IDs max tree depth
586 44 9
112 15 5
82 6 4
29 3 2

Table 4.2: Cell configuration.

Second, we evaluate the impact of the number of objects (which in turn impacts the
number of cells) on the scalability of our P2P architecture. To do so, we perform four
emulations varying the number of objects in the region, namelyN = [29; 82; 112; 586].
Object locations are randomly chosen from the objects population of the Money Tree
Island. The different configurations of cells and objects for the emulations are sum-
marized in Table 4.2.

We analyze first the impact of the number of objects on the consistency perceived by
the avatars. Figure 4.8 plots the CCDF of the consistency for different values of N .
We observe that for N = 29, the consistency is nearly always equal to 100%. This
is due to the fact that the limited depth of the cell tree organization reduces the im-
pact of the join operation and consequently of the DISCOVERY operation. Moreover,
avatars move less frequently among cells as cells have large extensions. Finally, we
see that increasing the number of objects has a sub-linear impact on the consistency;
increasing by one order of magnitude the number of objects causes a reduction of
consistency by less than 10%.

Figure 4.8: CCDF of region consistency ; R = 20 ; AoIr = 35 units ; N = [586; 112; 82; 29].

In Figure 4.9 we plot the CDF of the recovery latency for different values of N . There
is not clear impact of the cell organization on latency values smaller than 1 second.
In fact, these values only depend on the KAD nodes involved in the emulations and
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on the network conditions. All curves meet at 4 seconds, which corresponds to the
discovery latency of one cell as we have seen in Figure 4.6. For recovery latency
values larger than 4 seconds, we observe a clear impact of the different complexity
of the cell organization in the four emulations. For N = 29, 90% of the recovery
latency values are smaller than 8 sec. Since the maximum depth of the tree is two,
8 seconds correspond to the time duration of a DISCOVERY operation of length two
in the tree. Then, the depth of the tree increases with N . This in turn increases the
probability to experience a larger recovery latency. In particular, we notice that when
the recovery latency is larger than 4 seconds, increasing the number of objects by one
order of magnitude causes a latency increase of about 30%. This result shows that
the duration of lookup operations in KAD limits the scalability of our P2P SL.

Figure 4.9: CDF of the recovery latency ; R = 20 ; AoIr = 35 units ; N = [586; 112; 82; 29].

4.4 Walkad

The long latency we experience running Second Life over KAD is also due to the fact
that KAD like all other DHTs, use a hash function to distribute content fairly among
peers. This design is very efficient to build P2P lookup systems where content is
only addressed punctually. Conversely, this design is not efficient for P2P-NVEs
where users address content within a range, e.g., they need to discover all the objects
located in their AoIs. Based on this observation, this Section introduces Walkad, a
structured P2P network specifically designed to store and retrieve virtual objects in
NVEs.



4.4. WALKAD 81

4.4.1 The Gray Code

The Walkad key indexing algorithm leverages the Gray Code [36]. This is a binary
numeral system where two successive values differ in only one digit. The (n + 1)-bit
Gray Code is constructed as follows: (1) reflect the 2n values of the n-bit Gray Code,
i.e., list them in the reverse order, (2) prefix the original values with a bit set to 0, and
the reflected values with a bit set to 1, (3) concatenate the reverse list to the original
list.

Figure 4.10 shows the construction of the 3-bit Gray Code. On the left portion of
Figure 4.10, we can see the 1-bit Gray Code, i.e., the most basic Gray Code, G =

{0, 1}. In order to construct the 2-bit Gray Code, we reflect G = {0, 1} obtaining
G

′

= {1, 0}. Then, we prefix the original values (G) with a 0, and the new values (G
′

)
with a 1, obtaining the 2-bit Gray Code, G = {00, 01, 11, 10}. The same procedure is
applied to construct the 3-bit Gray Code.

Figure 4.10: Example of the Gray Code construction.

4.4.2 Key Indexing

We first define the notion of “locality” in a cell-based virtual world as described in
Section 4.3.1. We say that two cells are neighbor cells if: (1) they are adjacent, i.e.,
they have a side in common, or (2) they are symmetric according to the axis used in
previous split operations. We say that two cell-IDs are neighborswhen their cell-IDs
have a Hamming distance of one, i.e., when they differ only by one bit. By definition,
a cell-ID with l significant bits has l neighbor cell-IDs. To illustrate this, we consider
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an example of a one-dimensional virtual world (Figure 4.11). We denote the i-th
cell/cell-ID generated by l splits respectively as C l

i and kl
i.

The top portion of Figure 4.11 shows the initial cell organization. At this stage, there
is only one cell, C0

0 , that covers the whole virtual world. The middle part of Figure
4.11 shows the virtual world configuration after the first split, where two new cells
are created, C1

1 and C1
2 . These two cells are obviously neighbors. The bottom part

of Figure 4.11 shows the result of splitting again both cells, obtaining cells C2
3 , C2

4 ,
C2

5 and C2
6 . Let’s consider cell C2

3 . Its neighbor cells are cell C2
4 which is adjacent

and cell C2
6 which is symmetric to C2

3 according to the long dashed line crossing the
middle of the line (indicating a previous split). A generic cell C l

i generated after l

split operations has l neighbor cells in the virtual world.

Walkad organizes the cell-IDs in a reverse binary trie in order to associate neighbor
cell-IDs to neighbor cells. A binary trie is a tree-based data structure that uses prefix
bits to direct branching in a tree. Conventionally, a 0 represents a left branch and a
1 represents a right branch. Each node in the trie is associated to a label composed
of the set of bits indicating the path in the trie to reach that node. In a reverse binary
trie, the nodes of each level of the trie are labeled with the Gray Code [36] (Section
4.4.1).

We now explain howwe organize the cell-IDs in a reverse binary trie considering the
example of Figure 4.11. For convention, cell C0

0 is assigned cell-ID k0
0 = 0∗. When C0

0

splits, two neighbor sub-cells are created. We generate the corresponding cell-IDs by
taking k0

0 = 0∗, and setting the least significant bit respectively to 0 and 1. We thus
obtain two cell-IDs, k1

1 = 0∗ and k1
2 = 1∗, which have a Hamming distance of one.

The intuition is that to build a reverse binary trie in some cases we need to reverse
the added bits (i.e., add a 1 to the left cell-ID). Figure 4.11 shows that splitting cell

Figure 4.11: 1-dimensional virtual world indexed by Walkad.
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C1
2 required setting the least significant bit to 0 for k2

6 = 10∗ and to 1 for k2
5 = 11∗ in

order to guarantee that cells C2
3 and C2

6 , which are neighbors, are assigned neighbor
cell-IDs as well. We see that the code generated at level 2 of the trie is the 2-bit Gray
Code.

The generalization to the multi-dimensional case is straightforward, as the cell split
mechanism is applied independently to each dimension of the virtual world.

The Walkad indexing algorithm as described above generates a distribution of cell-
IDs within the key-space that follows the shape of the trie. Therefore, an unbalanced
trie will result in an unbalanced distribution of cell-IDs and so of load among peers.
In order to restore the uniform distribution of the cell-IDs, we divide the world into
regions (as in Second Life), and we allocate to each region a region-ID. Then, we per-
form a XOR operation between the cell-IDs and the region-ID. In this way, the Ham-
ming distance property defined among cell-IDs of the same region is maintained and
load balancing is achieved among cell-IDs of different regions.

4.4.3 Operations

Walkad leverages Kademlia without requiring any changes to its routing algorithm.
However, similarly to Section 4.3.3 some additional operations are required to con-
struct and manage the virtual world. Here below, we re-define some of these opera-
tions and we define few new ones that are specific to Walkad. Note that the INITIAL-
IZATION and PUBLICATION operations (Section 4.3.3) remain unchanged and so we
do not discuss them.

COORDINATOR_SELECTION The coordinator for a cell C l
i indexed by cell-ID kl

i is se-
lected using the Kademlia FIND_NODE operation. Accordingly, a coordinator for a
cell C l

i is the XOR closest peer to kl
i. For each (cell/cell-ID) pair there are R coordina-

tors, i.e., each object and consequently cell is replicated at R peers.

SPLIT - When a cell C l
i is split in cells C l+1

2i+1 and C l+1
2i+2, its coordinators do the fol-

lowing operations: (1) select the coordinators for C l+1
2i+1 and C l+1

2i+2 by performing a
COORDINATOR_SELECTION for cell-IDs kl+1

2i+1 and kl+1
2i+2, (2) transfer to the coordina-

tors of C l+1
2i+1 and C l+1

2i+2 the list of C l
i neighbor cell/cell-IDs , (3) distribute the virtual

objects currently located in C l
i to the coordinators of cell C l+1

2i+1 and C l+1
2i+2 according to

the object coordinates. Note that a merge operation is done similarly.

COORDINATOR_TASKS - A peer selected to be a coordinator for a cell C l
i with cell-ID

kl
i does the following operations: (1) derive the l cell-IDs with Hamming distance
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equal to 1 from kl
i, (2) compare each of these cell-IDs with the list of cell-IDs received

during the SPLIT in order to identify the existing neighbor cell-IDs, (3) perform a
COORDINATOR_SELECTION operation for each existing neighbor cell-ID to populate
its k-buckets with the routing information towards the neighbor coordinators, (4)
inform the coordinators of the neighbor cells that a new cell was created.

RANGE_QUERY - We suppose that a peer P that generates a range query already
knows the R coordinators of the cell where its own avatar is located. P sends the
range query to one of these coordinators. The coordinator answers the query or a
portion of it according to the information it has about the neighbor cells. Then, it
sends back to P the information it may know, i.e., routing information towards the
coordinators for the cells that intersect with the query’s range. In case a coordinator
has not a complete view of the entire range, it forwards the query to the coordinators
it knows that manage the closest cells to this range. Intuitively, these coordinators
have amore detailed view of this portion of the virtual world. This procedure is done
iteratively until the range is completely covered. Finally, P directly contacts the set
of coordinators responsible of the query’s range in order to retrieve the information
about the virtual objects located in this portion of the virtual world.

We now give an example of how a range query is performed in Walkad considering
the virtual world described in Figure 4.11. We consider a peer P whose avatar is
located in cell C2

4 and the query’s range to be contained in cell C2
6 . Peer P submits

its query to a coordinator for cell C2
4 . This coordinator cannot solve the query, so it

identifies cell C2
5 as the closest cell to the query range. Therefore, it searches in its k-

buckets the routing information towards the R coordinators for cell C2
5 and selects a

coordinator to whom it forwards the query. The selected coordinator for cell C2
5 has a

more detailed view of this portion of the virtual world. So, it identifies C2
6 as the cell

that contains the query’s range. The query is now solved and the coordinator of C2
5

can send to P the list of coordinators for cell C2
6 . Peer P can now directly contact the

coordinators of cell C2
6 and download the description of the objects located within

the query’s range.

4.4.4 Cost Analysis for Range Queries

We now analyze the cost of range queries in Walkad in terms of number of routing
hops. Let k be the size of a k-bucket and R the number of coordinators per cell.
N is the number of active peers and Nc the number of cells composing a region of
the virtual world. We assume N >> (R ∗ Nc) such that each cell-ID is stored at R

different coordinators.
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In case of a uniform distribution of cells within the world, all the leaves of the trie are
at the same level l. In this case, every cell has l neighbor cells associated to l different
cell-IDs. Therefore, local queries are answered in a single routing hop, while non
local queries require log(Nc) routing hops.

Figure 4.12 shows an example of a two-dimensional virtual world composed by a
uniform distribution of cells. The arrows indicate neighbor (cell/cell-ID) pairs as
well as routing information, e.g., the coordinators for cell-ID 001∗ keeps routing links
towards the coordinators for cell-IDs 000∗, 011∗ and 101∗. We clearly see that all local
queries require a single routing hop. Let’s consider a non-local query, e.g., an avatar
P located in the cell identified by the cell-ID 001∗ that wants to teleport to the cell
identified by cell-ID 110∗. In this case, the query goes through the coordinators of
cell-IDs 101∗, 111∗ and 110∗ to be solved, i.e., it requires log(Nc) routing hops.

Figure 4.12: Uniform cell division of a 2-dimensional virtual world.

A skewed distribution of cells within the virtual world results in an unbalanced trie.
In this case, a cell that is close to the root of the trie may have more neighbor cells
than neighbor cell-IDs. Let’s consider two cell-IDs kl

i and kf
j respectively located at

level l and f of the trie with f < l. In this case, there are R ∗ 2(l−f) coordinators
“colliding” on the same k-bucket of the coordinators for cell-ID kf

j . If k < R ∗ 2(l−f),
the coordinators of kf

j select only a subset of the 2(l−f) neighbor cells to maintain a
direct route towards their coordinators.

Figure 4.13 shows an example of a two dimensional virtual world composed by a
skewed distribution of cells. The arrows indicate routing links among the coordina-
tors, respectively in the case of k = R (Figure 4.13(a)) and k = 2R (Figure 4.13(b)).
We can see that the neighbor cells for the cell identified by cell-ID 1∗ are the cells
indexed by 011∗ and 00∗, which are adjacent, and 010∗ which is symmetric to the
vertical split. However, by definition, cell-ID 1∗ has only a single neighbor cell-ID
that is 0∗. Therefore, if k = R the coordinators for cell-ID 1∗ keep a single link to-
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(a) k=R

(b) k=2R

Figure 4.13: Skewed cell division of a 2-dimensional virtual world.

wards the coordinators for cell-ID 00∗, whereas if k = 2R these coordinators keep
two links towards the coordinators for cell-ID 010∗ and 00∗.

We now derive an expression for the number of routing hops in Walkad in case of
an unbalanced trie. Let’s consider again two arbitrary cell-IDs kl

i and kf
j located at

level l and f of the trie. In case kl
i and kf

j are neighbor cell-IDs, a query from kl
i

to kf
j or vice-versa is local and requires (|l−f |)

⌊log( k

R
)⌋

routing hops. In case kl
i and kf

j are
not neighbor cell-IDs, the query is non-local and requires an intermediate step at a
cell-ID kc

k that has routing information towards the destination cell-ID. Therefore,
the number of routing hops is equal to (|l−c|+|c−f |)

⌊log( k

R
)⌋

. Note that in the worst case the
number of routing hops is O(Nc) for both local and non-local queries.

In conclusion, the number of routing hops inWalkad varies between O(1) and O(Nc)

according to the skewness of the cell distribution and the type of range query. In-
tuitively, prefix expansion [99] can be used to reduce the number of routing hops in
case of a very unbalanced trie. For comparison, the simple approach of Section 4.3
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and P-Grid [2] require respectively log(N)∗ log(Nc) and log(N) routing hops for both
local and non-local queries.

4.4.5 Experimental Evaluation

We cannot evaluate Walkad using the KAD network as a test-bed (Section 4.3.5) as
this would require to change the behavior of KAD peers. Therefore, we evaluate
Walkad using network emulation. We deploy up to 1024 peers (i.e., avatars) on a
local cluster, and we use Modelnet [98] to emulate wide-area latencies and band-
widths. We use a synthetic Internet topology generated by Inet [113]. We use a
classic Kademlia setup with k-bucket size k = 20 and R = 10 [63].

We construct a realistic virtual world using object locations from five popular Second
Life regions (cf. Chapter 3) that contain respectively a minimum of 70 objects and
a maximum of 350 objects. A bootstrap Walkad node computes the virtual world
division in cells, and informs all coordinators of their role. We use synthetic traces
for avatar movements generated via the RandomWaypoint Mobility model [66] with
different speeds to simulate avatar walking (1 m/s), running (3 m/s), flying (10 m/s)
and teleporting (100 m/s). The avatar traces last for one hour. We use synthetic
traces for avatar movements and not real avatar traces in order to analyze Walkad
performance under controlled avatar behaviors.

In the evaluation, we do not focus on consistency, persistency and scalability as
these metrics have been already extensively evaluated over KAD (Section 4.3.5). Con-
versely, we focus on routing hops and latency to answer range queries, and on load
balancing properties. For comparison, we also present some results obtained with
the simple approach (Section 4.3) implemented over Kademlia.

Routing Hops and Latency

We analyze first the number of routing hops as a function of Dmax, the maximum
number of objects per cell. By varying Dmax we simulate different divisions of the
virtual world. We consider a Walkad network composed by 1024 peers and a single
avatar walking in the virtual world. This means that all range queries are local and
the “load” in terms of concurrent number of queries in the network is small.

Figure 4.14 shows that 90% of the local queries in Walkad require only one or two
routing hops to be solved. This percentage becomes even larger as we increase Dmax,
e.g., when Dmax = 100 all local queries are answered in a single hop with no excep-
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tion. In fact, increasing the number of objects per cell systematically results in a
more simple cell organization of the virtual world. However, if we focus on the re-
sults obtained with Dmax = [30; 10] we notice that the number of routing hops is
comparable or even smaller for Dmax = 10, which seems contradictory. The cause of
this phenomenon is that for Dmax = 10, the condition N >> (R ∗ Nc) is not verified.
Therefore, peers are coordinators of multiple cells, and the Walkad indexing algo-
rithm tends to aggregate closeby cells on the same peer. The side effect is a reduction
in the number of effective routing hops especially for local queries.

Figure 4.14: Dmax = [10; 30; 60; 100] ; N = 1024 ; Avatar=[Walk].

We now evaluate the latency, i.e., the time required to answer range queries, as a
function of the network size N and type of range query (Figure 4.15). In order to
generate different range queries, we consider a single avatar walking, running, flying
and teleporting in the virtual world. Figure 4.15 plots also the latency values for the
simple approach. For the simple approach, we only consider the case of an avatar
walking as the type of range query does not impact the way routing performs.

Figure 4.15 shows that range queries generated by an avatar walking, running or
flying are all resolved in about the same time, i.e., 100 − 130 ms in average. In fact,
all these movements generate local queries. Conversely, non local queries generated
by an avatar teleporting in the virtual world require about twice the time, e.g., up
to 200 ms. For comparison, the average latency for the simple approach is between
800 ms and 1500 ms, i.e., 8 times larger than in Walkad. Figure 4.15 shows also that
the overall latency only slightly increases with the size of the network N . In fact, the
number of routing hops to solve range queries in Walkad depends on the size of the
virtual world rather than on the size of the network (Section 4.4.4). However, when
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Figure 4.15: Dmax = 10 ; N = [16 − 1024] ; Avatar=[Walk;Run;Fly;Teleport].

the network is very small, peers are coordinators of multiple cells, thus reducing the
number of routing hops and latency as well.

We now evaluate the impact of load, i.e., concurrent number of range queries, on the
latency. We set Dmax = 10, N = 1024, and we vary Na, i.e., the fraction of peers
whose associated avatars walk, i.e., generate local queries, in the virtual world. Fig-
ure 4.16 shows different percentiles of the distribution of latency values as a function
of load. We observe that Walkad is very robust to load, as the overall latency is not
impacted by a large value of Na. The fluctuations we observe for each curve de-
pend on the different overlay organizations in the experiments. Figure 4.16 shows
another interesting result: 75% of the latency values are smaller than 200 ms. This
confirms that Walkad solves local queries fast as already observed in Figure 4.14 and
4.15. Only 1% of the latency values are significantly higher, and reach a maximum of
1000 ms. These values occur when avatar move across cells located at different levels
in the trie (e.g., Figure 4.13). However, even the largest latency value we observe in
Walkad is significantly smaller than the average latency value we observe with the
simple approach (Figure 4.15).

Load Balancing

We now analyze the load balancing properties ofWalkad , i.e., how the responsibility
of the virtual world is distributed among peers. We choose Dmax = 10. Figure 4.17
shows several percentiles of the distribution of the fraction of cell-IDs per peer as a
function of N . Load balancing is achieved when each peer manages a comparable
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Figure 4.16: Dmax = 10 ; N = 1024 ; Na = [10; 20; 40; 80; 100]% ; Avatar=[Walk].

Figure 4.17: Some percentiles of the distribution of the fraction of cell-IDs per peer ; five
Second Life regions ; Dmax = 10 ; N = [16 − 1024].

number of cell-IDs, i.e., when all percentiles of the distribution for a given N assume
the same value. Note that this is always the case for the simple approach.

Figure 4.17 shows that as the size of the Walkad network increases the load distribu-
tion becomes more uniform among the active peers. For example, when N is larger
than 256, for about 90% of the peers the difference in the fraction of cell-IDs they
manage is smaller than 1%. The remaining 10% of the peers are responsible of a
larger fraction of cell-IDs. This is due to the fact that we are considering a small vir-
tual world composed by only five Second Life regions. Therefore, the global cell-ID
organization is still impacted by the specific cell-ID organization within each region.
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Figure 4.18: Some percentiles of the distribution of the fraction of cell-IDs per peer ; Dmax =
10 ; N = 1024 ; No. of regions=[1 − 100].

We also evaluate the distribution of the virtual world responsibilities as a function
of the virtual world size, i.e., number of Second Life regions indexed with Walkad
(Figure 4.18). To do so, we set Dmax = 10, N = 1024 and we vary the number
of Second Life regions between 1 and 100 using the dataset described in Chapter
3. Figure 4.18 shows that when the virtual world is small, i.e., composed by less
than five regions, we cannot identify a general trend for the curves. In fact, the
different object compositions strongly impact the general distribution of the cell-
IDs. By focusing on a number of regions ≥ 10, we observe that the division of the
virtual world responsibilities becomes more and more uniform as the size of the
virtual world increases. For example, in a virtual world composed by 100 Second
Life regions only 1% of the peers store a larger portion of the virtual world, which
consists in worst case of only 1% of the entire virtual world.

4.5 Conclusions

This Chapter presented: (1) an experimental evaluation of a distributed object man-
agement for Networked Virtual Environments (NVEs), and (2) Walkad, a Kademlia-
based Peer-to-Peer (P2P) network designed to manage objects in NVEs.

The distributed object management consists of dynamically partitioning the virtual
world into cells, and assigning responsibility for those cells to peers named coordi-

nators. This simple distributed object management can be implemented over any
structured P2P network. In order to perform realistic experiments, we integrate the
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object management over KAD, a widely deployed structured P2P network based on
the Kademlia routing protocol. Then, we use traces of user activity (i.e., movement,
churn and object creation) in Second Life (SL) to perform a realistic emulation of a
P2P NVE on the Internet.

Our evaluation shows that the architecture we have designed achieves acceptable
levels of consistency, persistency and scalability. Inconsistency is temporary and lim-
ited to avatars that enter new cells or join the P2P NVE. Persistency is excellent for
the whole duration of the emulation. Nevertheless, the architecture can scale up to
the number of objects contained in a typical SL region. However, we also show that
avatars experience long latency to recover from an inconsistent view of the virtual
world. The causes of these inconsistencies are mainly: (1) avatars joining the P2P
architecture, (2) avatar movements across cells.

The recovery latency due to newcomers joining our P2P NVE can be easily reduced.
The tree based organization of the cells could be cached at the clients and re-used
across different sessions. During the initial connection to the NVE or in case the cell
organization has changed between two sessions, the effective join of an avatar could
be easily delayed. Reducing the recovery latency due to avatar movements is a more
complex problem to solve. Pre-locating the coordinators for all adjacent cells can
help reduce boundary-crossing latencies. However, this solution would come at the
expense of increased traffic and load on the coordinators.

In order to reduce the recovery latency in presence of avatar movements, we design
Walkad. Walkad maps cells that are close in a region of the NVE to peers that are
overlay-close in Walkad. This allows a faster navigation in the virtual world with
no additional cost on the coordinators. Walkad leverages on the Kademlia routing
protocol and on an indexing algorithm based on a reverse binary trie.

We evaluate a prototype of Walkad via network emulation with up to 1024 peers.
We simulate a realistic virtual world using object traces from 5 and up to 100 Second
Life regions. Our results show that Walkad ensures to NVE users a fast retrieval of
the objects located in their avatar surroundings. Moreover, the management load of
the virtual world is fairly distributed among peers as both the network and virtual
world grow.

The distributed object management described could be generalized to the manage-
ment of avatars. The state of an avatar could be represented as a “dynamic object”
and indexed over Walkad. In the thesis, we do not investigate this approach as it
is very inefficient for the following reasons. First, the dynamism of avatars (move-
ments in the virtual world and churn) would cause the world to be continuously split



4.5. CONCLUSIONS 93

and merged, i.e., reducing object consistency. Second, avatars are non-persistent en-
tities. That said, the mechanisms described to ensure object persistency are useless
and inefficient when handling avatar states. Third, the state of an avatar changes
continuously causing high rate of publish and search operations. These issues mo-
tivate Chapter 5 where we investigate the design and deployment of a distributed

avatar management.
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CHAPTER5
Distributed Avatar Management

5.1 Introduction

The avatar management in Networked Virtual Environments (NVEs) consists of in-
forming each avatar about the status of its neighbor avatars in real time. In a
Client/Server (C/S) NVE this operation is straightforward. The server maintains
a copy of all avatar states given the information received by the clients, and simply
computes for each avatar the set of avatars that intersect the avatar Area of Interest
(AoI). However, even this simple operation can become very difficult in presence of
un-predictable number of concurrent users and avatar behavior. For example, Sec-
ond Life (SL) servers get easily over-loaded with as little as 40 concurrent avatars (cf.
Chapter 3).

A scalable approach to avatar management consists in delegating to each user the
management of its own avatar state, i.e., adopting a distributed avatar management. A
Peer-to-Peer (P2P) network is formed among NVE users such that each NVE user
is connected to the set of peers whose avatars are located in its avatar AoI. Then,
peers continuously exchange information about their avatar states. Previous work
shows (by simulation) that the Delaunay Network [69][9] allows to efficiently manage
avatars in a distributed way. The Delaunay Network is a structured P2P network
where peers connectivity is driven by their avatar coordinates in the NVE.

In this Chapter, we first study experimentally the Quality of Experience (QoE) that a
distributed avatar management provides to NVE users. To do so, we deploy a P2P-
SL client that leverages the DelaunayNetwork in order to manage the dissemination
of avatar state updates in SL. Then, we design and evaluate several optimizations to
Delaunay-based NVEs: (1) a clustering algorithm to efficiently manage large avatar

95
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groups, and (2) the Social Delaunay Network, a secured Delaunay Network obtained
by taking into account the friendship relationships that exist among avatars in a
NVE. Part of this work has been published in [101][102][106].

We compare P2P versus C/S Second Life by focusing on the QoE perceived by mul-
tiple SL users. We execute several instances of the P2P-SL client on Planetlab ma-
chines [74] and we populate a SL region with our controlled avatars. SL avatar mo-
bility traces (cf. Chapter 3) are used to reproduce real avatar behaviors. We show
that a distributed avatar management for SL always outperforms the current C/S
design. In a P2P Second Life, 20% of the times users perceive a more correct view
of their neighbor avatars compared to C/S. About 90% of the times inconsistency in
P2P is solved in less than one second, i.e., five times faster than in C/S. However,
the experimental evaluation of the Delaunay Network shows also that user QoE is
reduced in presence of avatar groups, fast movements, and churn.

We evaluate the clustering algorithm for Delaunay-based NVEs with Matlab sim-
ulation and using a 30 minute avatar trace. Our results show that the clustering
is effective in reducing the volume of maintenance traffic of a Delaunay Network.
Most importantly, the clustering achieves an efficient utilization of peer resources
that allows to improve the responsiveness of avatar interactions in the NVE.

Finally, we evaluate the Social Delaunay Network using Matlab simulations and the
10 day traces of avatar mobility and social behavior collected in the Japan Resort
region (cf. Chapter 3). We show that enforcing security in the Delaunay Network
comes at the cost of a server effort to manage the interactions among avatars not
socially connected. However, for a reasonable value of acquaintance required among
avatars to be directly connected, still 80% of the avatars manage the propagation
of about 75% of their avatar state updates without any server help. Interestingly,
our results indicate also that the Social Delaunay Network slightly improves the
responsiveness of avatar interactions in the NVE compared to the classic Delaunay
Network.

5.2 The Delaunay Network

The Delaunay Network [69] is an overlay network whose topology is defined by a De-
launay triangulation. In the following, we give a formal definition of the Delaunay
triangulation:
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Figure 5.1: Distributed avatar management leveraging the Delaunay Network.

Definition 1 The Delaunay triangulation of a set of N points in ℜ2 is a triangulation of

points DT (N) such that no point p lies inside the circumcircle of any triangle in DT (N).

The coordinates of avatars in the virtual world are used to generate the Delaunay
triangulation, and consequently build a Delaunay Network among the respective
end-users. In this way, the interactions among avatars on a proximity metric basis
are reflected into Internet connections among their end-users. An inner node in a De-
launay triangulation, i.e., a node not on the convex hull1 of the triangulation, with a
sufficiently large population has an average number of neighbors limited to six [16].
This means that each peer in the corresponding Delaunay Network is connected to a
finite number of peers independently from the NVE population. Figure 5.1 shows an
example of a Delaunay triangulation constructed among avatars in a virtual world.

An avatar that participates to a Delaunay Network continually monitors the position
of its neighbor avatars in order to maintain a valid triangulation over time. As ava-
tars move or enter/leave the NVE, Delaunay links are added and removed through
flip operations in order to maintain a valid and consistent triangulation. We explain
how a flip operation works with an example (Figure 5.2). We start with a Delau-
nay triangulation that involves nodes A,B,C,D,E and X (Figure 5.2(a)). The gray

1The convex hull for a set of pointsX in a vector space V ∈ ℜk is the minimal convex set containing
X .
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area is the portion of the Delaunay triangulation where node X can move without
violating Definition 1. In Figure 5.2(b), node X moves and enters circumcircle Ccde.
Consequently, triangle Tcde is disrupted and triangles Txce and Txde are created. To
do so, link CD flips to XE. Figure 5.2(b) shows a more complex scenario. Node X

moves out from circumcircle Cabc and so triangle Tabc can be formed, i.e., link XB

flips to AC. This flipping technique is possible because the Delaunay triangulation
maximizes the minimum angle of its triangles, i.e., it tends to avoid the creation of
skinny triangles [16].

(a) Delaunay triangulation of nodes
A,B,X ,D,C and E

(b) Node X enters circumcircle Ccde, link
CD is replaced by link XE

(c) Node X leaves circumcircle Cabc, link
XB is replaced by link AC

Figure 5.2: Evolution of a Delaunay triangulation via flip operations.
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5.3 A Distributed Avatar Management for Second Life

In this Section, we design a P2P-SL client that performs a distributed avatar man-
agement. Then, we evaluate the effectiveness of this distributed avatar management
through realistic experiments conducted in Second Life.

5.3.1 P2P-SL Client

We use the libsecondlife [61] libraries to deploy a P2P-SL client. The P2P-SL client
includes the fundamental features of the official SL client, e.g., login/logout opera-
tions and avatar movements, while removing the CPU intensive operations, e.g., the
three dimensional rendering of the virtual world.

The P2P-SL client does not require to be human-controlled. Avatar traces, e.g., move-
ment and churn, can be used to automate client operations. The innovative feature of
the P2P-SL client is the possibility to directly communicate with other P2P-SL clients
without the need of a server.

In order to permit direct communications among SL users, the P2P-SL client imple-
ments the Delaunay Network protocol using HyperCast [45]. HyperCast is a set
of Java libraries that allows to build several overlays such as the Delaunay Net-
work [16] and Pastry [81]. HyperCast provides to the P2P-SL client aNeighborhood
table that contains the routing information towards the one-hop Delaunay neighbors
of a peer. A complete description of HyperCast can be found in [62].

We build a distributed avatar management for SL on top of the Delaunay Network
constructed among P2P-SL clients. To do so, we intercept the avatar state updates
generated by the client and transmitted to the SL server and we duplicate them into
the Delaunay Network. Note that the avatar state updates sent to the server are now
redundant as each avatar already manages its state updates via the Delaunay Net-
work. However, we experienced that suppressing or reducing this traffic causes two
main problems: (i) the server continually queries the P2P-SL client about its avatar
state, (ii) the server can label our avatars as “misbehaving” and temporarily exclude
them from its region. Nevertheless, this strategy is extremely useful to perform a fair
comparison between P2P and C/S Second Life (Section 5.3.2).

We use UDP as transport layer protocol for the dissemination of the avatar state
updates over the Delaunay Network. The official SL client also uses UDP commu-
nication to transport the avatar traffic. Similarly to the SL design choice, we opted
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Figure 5.3: The P2P-SL client design.

for UDP since the avatar state updates are transmitted at a constant rate, and do not
need delivery guarantees.

We now propose a detailed description of the P2P-SL client (Figure 5.3). In the fol-
lowing, we call node the representation of an avatar in the Delaunay triangulation.

• TheC/Smodule is the core of the P2P-SL client. It manages the communication
between the P2P-SL client and a SL server, i.e., avatar, object and landscape dis-
covery. It receives as input the avatar mobility pattern that it uses to emulate
a realistic avatar behavior on a SL region. Most importantly, it duplicates the
traffic dedicated to the avatar state management and forwards it to the Delau-
nay Network module.

• The C/S-AoI table is the data structure that contains up-to-date avatar state
information for the avatars located within an avatar AoI. This data structure is
constantly updated using the avatar traffic received from the SL server. A snap-
shot of the C/S-AoI table is copied to disk every 200ms or when amodification
of its content occurs.

• TheNeighborhood table is the data structure maintained by the HyperCast li-
braries. It contains routing information towards the Delaunay one-hop neigh-
bors of a peer. A snapshot of the Neighborhood table is copied to disk every
200 ms or when a modification of its content occurs.

• The Delaunay Network module manages the Delaunay Network, and the
transmission/reception of avatar state updates. It receives as input the ava-
tar mobility pattern that it uses to update the coordinates of the correspond-
ing node in the Delaunay triangulation. This information is propagated to the
nodes contained in the node’s Neighborhood table via heartbeat messages at a
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fast or slow rate. The fast rate (1 message every 200 ms) is used during the join
of a new node and in case of unstable neighborhood, e.g., when a node changes
position or a newcomer joins the network. The slow rate (1 message every sec)
is used when the neighborhood is stable. Rate values are chosen according
to [62]. The Delaunay Network module receives as input the traffic generated
by the C/S module for the avatar state updates. This traffic is flooded into
the Delaunay Network with AoI filtering, i.e., packets are not forwarded farther
than an avatar AoI (35 meters as default in SL). Local forwarding decisions at
nodes are made using compass routing, e.g., among three nodes A, B and C that
are all one-hop Delaunay neighbors of a node D, the node that forwards the
avatar state update received by a node R is the node that minimizes the angle
it forms with R and D [57].

• The P2P-AoI table is the data structure that contains up-to-date avatar states
information for the avatars located within an avatar AoI. This data structure
is constantly updated using the avatar traffic received from the Delaunay Net-
work module. A snapshot of the P2P-AoI table is copied to disk every 200 ms
or when a modification of its content occurs.

5.3.2 Evaluation

We compare a P2P versus a C/S architecture for Second Life by focusing on the
user Quality of Experience (QoE) perceived by automated SL users. We adopt a
methodology similarly to the one used in Section 3.7.1. We launch the P2P-SL player
over multiple Planetlab [74] machines and we populate a SL region empty of any
objects with our controlled avatars. In this way, objects do not to interfere with avatar
mobility patterns. Our automated avatars reproduce real avatar behaviors using a
mobility trace collected in the SL Japan Resort region (cf. Chapter 3). We reproduce
the behavior of 207 different avatars during one hour; Figure 5.4 shows the evolution
over time of the avatar population we reproduce in SL.

P2P vs C/S

As defined in Section 3.7.1, we compute inconsistency and the inconsistency dura-
tion in order to compare the QoE perceived by SL users respectively in a C/S and
P2P Second Life.
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Figure 5.4: Evolution over time of the no. of connected avatars during our experiment.

Inconsistency We start by looking at the probability to have inconsistencies in the
avatar AoIs. We evaluate the inconsistency for each avatar AoI every 200 ms and
anytime a modification of the AoI occurs. Figure 5.5 shows the Cumulative Distri-
bution Function (CDF) of the inconsistency values computed on both C/S and P2P
Second Life. Since we plot the inconsistency values in logarithmic scale (x-axis in
Figure 5.5), the two curves are truncated respectively for inconsistency values equal
to 0.02 for P2P and 0.05 for C/S, i.e., the smallest non-zero values measured during
our experiments.

Figure 5.5: CDF of the inconsistency.

Figure 5.5 shows that P2P achieves higher consistency than C/S. Avatars have a
perfect view of their AoIs, i.e., inconsistency equals 0, in about 55% of the cases
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Figure 5.6: CDF of the fraction of time an avatar AoI is inconsistent.

compared to 40% of the cases in C/S. The distance between the two curves is roughly
constant for inconsistency values smaller than 0.2, indicating that P2P produces a
gain of correctness in the user experience of about 20%. For inconsistency values
larger than 0.3-0.4 the two curves nearly overlap. These high inconsistency values
happen in presence of churn (i.e., login/logout operations) and avatar groups. While
the SL server suffers these events due to an increase on its load (cf. Chapter 3),
the P2P overlay suffers due to the difficulty in maintaining a consistent Delaunay
triangulation [9].

We now want to understand how frequently inconsistency events affect an avatar
during its SL journey. Figure 5.6 plots the CDF of the ratio between the sum of the
durations of an avatar inconsistency periods and the total time the avatar stays in a
region. We observe again that C/S suffers more from avatar inconsistency than P2P.
In C/S, about 35% of the avatars do not see any inconsistency event, whereas this
number nearly doubles in P2P. Interestingly, inconsistency in P2P never lasts more
than 60% of the time an avatar spends in a region, whereas in C/S, 10% of the avatars
have an inconsistent view of their neighbor avatars during about 80%-90% of their
SL journey. The reason behind this phenomenon is that the SL server spends a lot
of time to correctly accomplish avatar login/logout as we will investigate in Section
5.3.2. Subsequently, avatars with very short session times have an inconsistent AoI
most of the time.

Inconsistency Duration We now analyze the inconsistency duration in P2P and
C/S in order to understand which architecture solves avatar inconsistencies faster
(Figure 5.7). As for the inconsistency results, P2P clearly outperforms the current
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C/S design. About 90% of the time, inconsistency in P2P lasts less than 1 second,
i.e., P2P is about 5 times faster than C/S. This result is very promising if we consider
that acceptable values of interactivity in on-line games vary between 300 ms and 1
sec [22]. Conversely, Figure 5.7 unveils unacceptable inconsistency duration values
under the current C/S architecture, e.g., 40% of the inconsistencies last for more than
2 seconds.

Figure 5.7 shows another interesting result. SL avatars can experience a very long
inconsistency duration both under a P2P and a C/S architecture, e.g., about 10 sec-
onds in P2P and 20 seconds in C/S. Similarly to what we observed in Figure 5.6,
churn (i.e., login/logout operations) is the main cause of these high values of incon-
sistency duration.

Finally, despite the fact that the Delaunay Network allows a direct communication
among SL avatars Figure 5.7 shows that only 20% of the inconsistencies in P2P last
less than 150 ms, i.e., a value comparable to common network latencies over the
Internet [113]. Since avatars tend to form groups in SL (cf. Chapter 3) the dissemina-
tion of avatar state updates require multiple hops in the Delaunay Network to reach
all the interested avatars. This operation generates additional latencies that increase
the inconsistency duration.

Figure 5.7: CDF of inconsistency duration.

5.4 Dynamic Clustering

The experimental evaluation of the Delaunay Network unveils that the QoE per-
ceived by NVE users is reduced in presence of large avatar groups. In fact, the com-
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bination of high avatar density with avatar dynamism generate continuous network
rewirings that make the Delaunay triangulation mostly incorrect.

In this Section, we design and evaluate a clustering algorithm for the Delaunay Net-
work that addresses the problem of avatar groups in NVEs. The clustering algorithm
we design has the following properties: (1) eliminates un-necessary network mainte-
nance operations, (2) increases the responsiveness of avatar interactions in the NVE,
and (3) efficiently exploits end-user resources. In the reminder of this Section, we
first formalize the problem we want to solve, then we design and evaluate the clus-
tering.

5.4.1 Problem Formalization

We assume a finite population of N peers that never leave the network, i.e., there is
no churn. Table 5.1 summarizes the parameters we use in the analysis along with a
brief explanation.

Parameter Definition
Tijk triangle defined by nodes i, j, and k
Cijk circumcircle of triangle Tijk

rijk radius of circle Cijk

Cm maintenance cost
d1 average distance between a node and its 1-

hop neighbors
d2 average distance between a node 1-hop

neighbors and its 2-hop neighbors
N number of users
N1 number of 1-hop neighbors
Rb rate of keep-alive messages
Rf rate of flip operations
v speed of node X
Lmin minimum allowed path before flip
Lmax maximum allowed path before flip
k number of packets per flip operation

Table 5.1: Table of parameters.

The maintenance of the Delaunay Network is a task distributed among its peers. The
maintenance cost consists of two different components. First, each peer monitors its
one-hop neighbors via keep-alive messages at a fixed rate Rb in order to obtain their
positions. Second, when the Delaunay Network needs to be rewired peers exchange
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control messages in order to set links active or inactive, i.e., perform a flip operation.
Accordingly, Equation 5.1 gives a simple expression for the maintenance cost.

Cm = N1 · Rb + k · Rf (5.1)

The first term in 5.1 (N1 · Rb) is the rate of keep-alive messages a peer exchanges
with its one-hop neighbors. At steady state, it has been shown that N1 = 6 for
an inner node of a two dimensional Delaunay triangulation [16], i.e., a node not
located on the convex hull of the triangulation. The second term in 5.1 (k · Rf ) is the
rate at which messages are exchanged during the reconstruction of the triangulation.
The parameter k indicates the number of messages required per flip operation and
depends on the way the distributed computation of the Delaunay triangulation is
performed. Rf is the rate at which flip operations are performed, and depends on
avatar density and velocity.

We call Lmin and Lmax respectively the minimum and maximum path on which a
node of the DelaunayNetwork canmovewithout triggering any flip operations (e.g.,
the gray area in Figure 5.2). In order to derive a closed expression for Lmin and Lmax

and consequently Rf , we need to make some assumptions on the geometric shape of
the Delaunay triangulation. For this purpose, we introduce parameters d1 and d2:

• d1: average distance between a node and its one-hop neighbors.

• d2: average distance between one-hop neighbors of a node X and the two-
hop neighbors that are vertices of a triangle whose circumcircle intersects the
convex hull defined by one-hop neighbors of node X .

Figure 5.8 shows the Delaunay triangulation generated by the introduction of d1 and
d2. The convex hull defined by the 6 neighbors of node X is a regular hexagon with
side length equal to d1. All triangles constructed with the two-hop neighbors are
isosceles triangles; the two equal sides have length equal to d2, the remaining side
is equal to d1. All vertices of the hexagon are points on the same circle with radius
equal to the side of the hexagon, i.e., for construction rabc = d1. The free area of
movement for node X is the gray zone in Figure 5.8. The maximum path on which
node X is allowed to move is bounded by the radius of Cabc, i.e., Lmax = d1.
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Figure 5.8: Delauany triangulation generated by introducing d1 and d2.

The simplifications introduced allow us to give a closed formula for Lmin(d1, d2)

(Equation 5.2). To derive it, we consider the distance between node X and the circu-
lar segment intercepted by chord BC.

Lmin(d1, d2) = d1 ·
(

√
3

2
− d1

2 · (4d22 − d12)

)

(5.2)

The results above tell us that the minimum path on which a node X can move in a
Delaunay triangulation without triggering a flip operation is smaller than d1. Each
time a flip operation is due, we reconstruct the geometric structure of Figure 5.8 by
computing the new values of d1 and d2. Assuming as hypothesis that d1 and d2

do not vary too much in the surroundings of node X during a short time T , we
can say that Lmin(d1, d2) ≈ Lmin(d1, d2). Then, in order to derive an expression of
Rf we compute the time before a flip operation occurs considering node X moving
at a constant speed v in the direction of Lmin(d1, d2). Finally, Equation 5.3 gives a
formulation of Cm.

Cm = 6 · Rb + k · v

Lmin(d1, d2)
(5.3)
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The take-home result of this Section is that the maintenance cost as well as the flip
rate in a Delaunay Network depend on avatar speed and density. This formalizes
the problem highlighted by the experimental evaluation of a Delaunay-based Second
Life (Section 5.3.2).

5.4.2 Design

In this Section, we first introduce the rationale of our design and then describe the
details of our clustering algorithm for Delaunay-based NVEs. Finally, we perform
trace-driven simulations to evaluate our design.

Design Rationale

The main goal of our clustering algorithm for Delaunay-based NVEs is to improve
the responsiveness of avatar interactions in presence of large avatar groups. Our de-
sign is based on the following observation. When a set of avatars get together to
form a group, the dissemination of avatar state updates based on the AoI filtering is
not efficient. In fact, an avatar that takes part of a group generally needs to distribute
its state updates to all avatars within the group, thus several hops over the Delaunay
Network are required. This has two main consequences: (1) the maintenance of the
Delaunay Network may be not required within a group of avatars , and (2) addi-
tional resources may be needed within a cluster to achieve a faster dissemination of
avatar state updates, i.e., improve NVE responsiveness.

Our solution is based on a clustering algorithm that identifies avatar groups with-
out requiring global knowledge. Each peer simply monitors its own maintenance
cost in order to derive information about avatar groups. Once a group of avatars
is identified, we “relax” the Delaunay Network in order to reduce the maintenance
cost and improve the dissemination strategy of avatar state updates. Interestingly,
identifying avatar groups implicitly highlights where additional network resources
may be needed.

Clustering

We consider the P2P-NVE at steady state with N peers organized in a Delaunay
Network. A distributed computation of the Delaunay triangulation is used [69]. We
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Compute_Cm();1

if Cm ≥ Bt then2

foreach peer i in N1 do3

propose_clustering();4

end5

select_cluster-head();6

end7

Algorithm 2: Cluster initialization

introduce the parameter Bt, the target volume of maintenance traffic per peer within
the Delaunay Network.

Each peer monitors its maintenance cost Cm. If peer A notices Cm ≥ Bt, this suggests
that the local density is high and a group of avatars is possibly being created. Peer
A reacts by proposing its neighbors the creation of a cluster. The neighbors of peer A

check their value of Cm and decide whether to take part in the clustering process or
not. In case they decide to take part to the cluster, they spread the clustering request
to their neighbors by piggybacking it on heartbeat messages.

The peer that first initiates the cluster creation selects the responsible peer for the
cluster (Algorithm 2); we refer to this node as the cluster-head (CH). Peers who agree
on the creation of a cluster contact the CH.We do not focus on the CH selection, since
it is irrelevant for the behavior of the clustering. Note that the CH could be a control
server that manages the NVE (e.g., for billing or login verification) as well as an
off-loaded peer.

The CH collects all pending requests for clustering. For each cluster c, it computes
the area Sc occupied by the cluster and its center (Xc, Yc). Then, the CH informs all
involved peers of the cluster creation (Algorithm 3).

collect_clustering_requests();1

foreach cluster c detected do2

compute Sc, Xc, Yc;3

foreach peer i in Nc do4

send(Sc, Xc, Yc);5

end6

end7

inform_extra-cluster_nodes();8

monitor_the_cluster();9

Algorithm 3: Cluster definition
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Figure 5.9: Example of clustering in a Delaunay Network.

External nodes refer to the cluster considering it as a virtual node at coordinates Xc,
Yc. The CHmonitors this virtual node as if it was a normal node in the triangulation,
i.e., using heartbeat messages and flip operations (Algorithm 3). In this way the
connection between the cluster and the rest of the NVE is maintained. Figure 5.9
shows an example of clustering in a Delaunay Network.

An extra-cluster node joins a cluster c when its avatar AoI intersects the area Sc. In
fact, as nodes within a cluster are allowed to move within Sc, there is a non-zero
probability that they intercept the AoI of extra-cluster nodes. Similarly, an intra-
cluster node leaves c when its AoI does not intersect any more Sc. In this way, we
ensure visibility among avatars going in and out of a cluster.

The size of the cluster Sc is computed at the creation of the cluster and is not mod-
ified when avatars join and leave. This means that the probability of the cluster to
become empty decreases with avatar departures from the cluster. This design choice
is driven by the notion we gathered in Second Life that group of avatars tend to meet
at some fixed virtual places (cf. Chapter 3). When a cluster is empty, the CH removes
it from the Delaunay triangulation. It results as a disconnection event of a node in
the Delaunay triangulation.

We call Nc the population of a cluster and ρc = Nc

Sc
the density within a cluster c.

Members of a cluster “expand” their coordinates, i.e., we define S
′

c = E ∗ Sc with
E > 1. The expansion is unique for every cluster member so that the angular rela-
tionship among nodes remains the same, i.e., the intra-cluster Delaunay links are not
modified. The cluster density becomes ρ′

c = ρc

E
. Cluster creation works in a hierar-

chical way, i.e., clusters can be created within clusters if the expansion results not to
be enough or if Nc grows too much.

The expansion of the avatar coordinates within a cluster increases the distance
among nodes. Moreover, the Delaunay triangulation generated does not reflect any-
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more the actual positions of avatars in the NVE. Therefore, the dissemination of ava-
tar state updates based on AoI filtering is not more meaningful. However, when the
density of avatars is high this dissemination strategy is inefficient. We now discuss
how we manage the dissemination of avatar state updates within a cluster.

A simple approach consists of allowing each avatar to broadcast its avatar state up-
dates among the members of a cluster. This approach increases the upload band-
width consumed by peers within a cluster but implicitly solves the problem of slow
NVE responsiveness measured within avatar groups (Section 5.3.2). In fact, long
delays are traded for higher upload bandwidth. In order to keep low the upload
bandwidth of peers within a cluster, the solution we propose is to take advantage of
under-utilized peers in the Delaunay Network.

Specifically, peers within a cluster disseminate their avatar state updates to their De-
launay one-hop neighbors, and to the CH. The CH acts as a relay node and updates
all peers whose avatars fall within the AoI of the avatar that originates the update.
The additional bandwidth required by a CH for this task is provided by the peers
that are responsible for the nodes located on the convex hull of the cluster (e.g., peers
A,B and C in Figure 5.9), if they do not already manage a cluster. Since these peers
manage avatars that are not part of a group, they may have spare upload resources.
This approach is suboptimal since many other under-utilized peers may be available
in the Delaunay Network. However, finding these resources require the usage of
complex distributed resource selection strategies [39]. Conversely, the solution de-
scribed is very simple as the CHs already know the peers on the convex hull of the
cluster.

5.4.3 Evaluation

We evaluate the Delaunay clustering through a Matlab simulator. The simulator
builds and maintains the Delaunay triangulation among avatars and manages the
clustering. In the simulator, each flip operation counts as one packet sent to the N1

neighbors of the involved nodes. The packet size is set to 100 bytes. We does not
count heartbeat messages, since they represent an additional cost for all peers. We
consider one level of clustering only. Avatars move realistically according to avatar
traces we collect with our Second Life crawler (cf. Chapter 3) in the Public Help
Island region for 30 minutes. The traces contain patterns of movement for 89 unique
avatars.
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Maintenance Cost

We start by analyzing the effect of the clustering on the maintenance cost Cm of a
Delaunay Network. Figure 5.10 plots the median value of Cm computed over 30

minutes for each of the 89 peers in the Delaunay Network respectively before (Fig-
ure 5.10(a)) and after clustering (Figure 5.10(b)). Figure 5.10 do not show the over-
head introduced by the clustering as in the current implementation a centralized
unit is responsible of the clustering management. We distinguish between two cat-
egories of peers, passive and active. Passive/active peers have an average velocity
smaller/higher than 1 unit/sec. We indicate active peers with a light color and pas-
sive peers with a dark one.

Figure 5.10(a) shows that Cm is low for the majority of the peers. These are the pas-
sive peers that account for the largest portion of avatars in Second Life (cf. Chapter
3). Conversely, active peers exhibit a very largemaintenance cost, up to 6 times larger
than the majority of the peers. Avatar dynamism is not the only cause of high Cm: for
example peers 23, 64 and 67 experience a considerable value of Cm even though they
are passive peers. In this case, churn is the cause of their considerable maintenance
cost. A churn event counts as an insertion/deletion of a node in the triangulation, so
it affects the maintenance cost Cm of the specific peer.

According to what we observe in Figure 5.10(a), we set the clustering threshold Bt at
18 kbps, i.e., we target to cut the very high maintenance cost that affects about 10%

of the peers, and we re-run the simulation applying our clustering algorithm (Figure
5.10(b)). As expected, the clustering is effective in keeping the maintenance cost of
the Delaunay Network under the desired threshold. Moreover, the maintenance cost
of several passive peers is further reduced.

Responsiveness

We now analyze the advantages of the clustering for the propagation of the avatar
state updates. We compute the propagation hops, i.e., the number of overlay hops
required to correctly distribute the avatar state updates. Intuitively, keeping low the
number of propagation hops improves the NVE responsiveness. Figure 5.14 plots
the CDF of the number of propagation hops computed over the Delaunay Network
before and after clustering. We set AoIr = 35 units and Bt = 18 kbps. As expected,
the clustering does not impact the dissemination of avatar state updates that are
accomplished in a single hop, i.e., about 40% of avatar state updates. In fact, the
dissemination of avatar state updates to one-hop Delaunay neighbor is the same
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(a) Delaunay Network

(b) Clustering in a Delaunay Network

Figure 5.10: Maintenance cost Cm ; Public Help Island (SL) ; N = 89 ; T = 30 mins.

within or outwards a cluster. Conversely, the clustering efficiently reduces about
20% of the propagation hops that are larger than 3 hops in the original Delaunay
Network to only 2 propagation hops. Clearly, this is the effect of the CHs acting
as relay peers. Finally, the clustering halves the maximum number of propagation
hops, i.e., from 6 in the classic Delaunay Network to only 3.
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Figure 5.11: CDF of propagation hops ; Bt = 18 kbps; AoIr = 35 units.

Overhead

The clustering improves NVE responsiveness in presence of avatar groups (Figure
5.11) by exploiting the resources of peers located on the convex hull of the clusters.
We now analyze the overhead that this operation introduces. We compute for each
peer its propagation-sets, i.e., the set of peers a peer sends or forwards the avatar
state updates. This is a subset of the peer-set, i.e., the set of peers a peer is connected
to as indicated by the overlay rules. Note that in case of a two-dimensional Delaunay
Network most of the peer-sets are composed by 6 peers [16].

Figure 5.12 plots the evolution over time of several percentiles of the propagation-
sets sizes distribution computed every 5 minutes in the Delaunay Network. We start
by focusing on the first time slot, i.e., T = 5 min. During this time period, no cluster
is created. Figure 5.12 shows that about 50% of the propagation-sets are composed by
4-6 peers. About 25% of the propagation-sets are smaller than 4, indicating some free
available resources. Finally, the maximum value of a propagation-set size reaches 10

peers. This happens when the Delaunay Network needs to be rewired in presence
of churn and avatar movements. In this scenario, a peer-set can be temporarily ex-
panded making larger propagation-sets possible as well.

We now focus on the second time bean, i.e., T = 10 mins. At this time, two clusters
are created. Figure 5.12 shows a neat increase in the peer-set sizes for about 20% of
the peers. These are the peers that reside on the convex hull of a cluster, and that
provide the additional resources to improve NVE responsiveness within the cluster
(Figure 5.14). Figure 5.12 also shows that the highest percentiles of the distribution
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Figure 5.12: Several percentiles of the distribution of the propagation-set sizes over time ;
AoIr = 35 units ; Bt = 18 kbps.

are reduced: this happens because the creation of the clusters remove some net-
work rewiring operations (Figure 5.10(b)). These results show the effectiveness of
the clustering in obtaining a much uniform usage of user resources in the Delaunay
Network. Similar results are observable at T = 25 mins when another cluster is
created.

5.5 Social Delaunay Network

From a technical prospective, a distributed avatar management is an appealing solu-
tion for NVEs. However, NVE providers are generally scared by the security threats
of a distributed approach. In fact, a malicious user might exploit the direct con-
nections with NVE users to cheat [116], send bogus data or even steal private user
information.

In this Section, we design and evaluate a Social Delaunay Network. This is an
extension to the classic Delaunay Network that enforces security by leveraging the
network of confidence avatars implicitly construct by interacting in a virtual world.

5.5.1 Design

Avatars in NVEs construct a network of friendships upon their behaviors, i.e., the
time they spend being close. Specifically, we can construct a social graph G where
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each edge <i,j> between avatars i and j has two associated weights wi,j and wj,i.
These weights represent the percentage of avatar i’s session times it spends being
close to j in the NVE and vice-versa (cf. Chapter 3).

We build the peer-sets of each NVE user upon the friendship network. Specifically,
the peer-set of a user i is the set of active users that share an edge with i in G whose
both weights wi,j and wj,i are larger than a threshold W , with 0 < W ≤ 1. Therefore,
if i is part of j’s peer-set, j is part of i’s peer-set as well, and so a two-way commu-
nication between peer i and j is possible. Requiring both weights to be larger than
W implies that both peer i and j need to “agree” in the importance of their social
connection to be directly connected.

The Social Delaunay Network is constructed by augmenting and reducing the orig-
inal Delaunay Network with the information contained in the peer-sets. When two
peers A and B enter their respective AoIs, they share a directDelaunay link as in the
conventional Delaunay Network if they are contained within their respective peer-
sets. In fact, this suggests that A and B are virtual friends and they trust each other.
Conversely, when peers A and B are not contained in their respective peer-sets, e.g.,
the first time they meet, two scenarios are possible. (1) It exists a path that connects
nodes A and B in the social graph G entirely composed of edges < i, j > that have
both weights wi,j and wj,i greater than W . In this case, peer A and B share an in-
direct Delaunay link composed by several hops in the P2P overlay. The rationale is
that reciprocal friends of A and B are used to build a trusted communication link
between A and B. Then, if A and B become friends, the indirect link is automat-
ically transformed into a direct link. (2) The path that connects nodes A and B in
the social graph G does not exist. In this case, the Delaunay link between A and B

is relayed. Then, a trusted authority such as a control server is needed to build the
communication link between A and B.

5.5.2 Evaluation

We simulate the Social Delaunay Network (SDN) over Matlab. The simulator takes
as an input avatar traces and builds the SDN over time.2 Then, it simulates how the
traffic related to the avatar state updates is shared between P2P, i.e., the SDN, and
C/S. In the simulations, we vary W , the minimum level of acquaintance required
among two peers to be connected. We also variate AoIr, the radius of the avatar

2For comparison, the simulator also builds the classic Delaunay Network.
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visibility area. We use the 10 days traces of avatar behaviors collected in the Japan
Resort region (cf. Chapter 3).

We start by quantifying the volume of traffic managed by the SDN network, i.e.,
traffic carried by direct and indirect Delaunay links, versus the traffic managed by
the SL server, i.e., traffic carried by relayed Delaunay links. Figure 5.13 plots the
Complementary Cumulative Distribution Function (CCDF) of the ratio of P2P traffic
and the total traffic as a function ofW . Unless otherwise noted, we setAoIr = 5 units,
i.e., the avatar AoI radius equals the avatar interaction range R. Figure 5.13 shows
that increasing the level of acquaintance W required by two peers to form a P2P link
more server help is required. Intuitively, this happens because the SDN becomes less
connected asW increases. However, whenW = 3% (i.e., two avatars are contained in
their respective peer-sets if they interact at least 10 minutes each 8 hours) we observe
that 80% of the avatars manage about 75% of their avatar traffic. Figure 5.13 shows
also that increasing AoIr from 5 to 35 units (i.e., the default value in SL) the traffic
managed by the server increases by about 30%. However, still 50% of the avatars
manage about 70% of their avatar traffic via the SDN.

Figure 5.13: Ratio of P2P traffic and total traffic ; W = [0, 1, 3, 10]% ; AoIr = [5; 35] units.

We now analyze the performance of the SDN in terms of propagation hops and peer-set

sizes. Figure 5.14 plots the CDF of the number of propagation hops computed over
the SDN and the Delaunay Network. We set W = 3% and AoIr = 35 units in order
to evaluate a realistic scenario. Surprisingly, Figure 5.14 shows that the number of
propagation hops is smaller in the SDN than in the Delaunay Network, e.g., 65% of
the avatar state updates are delivered in a single hop, while this number is only 40%

in the Delaunay Network. Similarly, while 10% of the avatar state updates require
more than 5 hops to be propagated, the maximum number of propagation hops is



118 CHAPTER 5. DISTRIBUTED AVATARMANAGEMENT

5 in the SDN. The explanation to this phenomenon is twofold. First, the diameter
of the SL social network obtained by filtering all edges with a weight smaller than
W = 3% is small, so large propagation hops are impossible. Second, the additional
overlay links introduced in the SDN allow a direct communication among friends
as soon as they enter their avatar AoIs independently of their Delaunay distance.
These results suggest that the additional overlay links introduced in the SDN are
also useful to improve NVE responsiveness.

Figure 5.14: CDF of propagation hops ; W = 3% ; AoIr = 35 units.

Figure 5.15 plots the CDF of the peers-set sizes measured in the SDN and in the
Delaunay Network. As expected for the Delaunay Network, 80% of the times the
peer-set sizes are smaller or equal than 6, a well-known result for peers that do not
reside on the convex hull of a two dimensional Delaunay Network [16]. Peer-set
sizes larger than 6 in the Delaunay Network are a consequence of network rewirings
due to churn and avatar movements. We now focus on the SDN. Figure 5.15 shows
that the size of the peer-sets in the SDN is reduced compared to the Delaunay Net-
work, e.g., 90% of the peer-sets have size smaller or equal than 3. This confirms that
in the SDN we are removing more overlay links than we are adding. Interestingly,
about 50% of the peer-sets size equal zero. These peer-sets are associated to SL users
that do not have strong social relationships. As a consequence, their avatar traffic is
relayed by the server (Figure 5.13).
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Figure 5.15: CDF of peer-set sizes ;W = 3% ; AoIr = 35 units.

5.6 Conclusions

This Chapter presented: (1) an experimental evaluation of a Delaunay-based ava-
tar management for Networked Virtual Environments (NVEs), (2) a clustering algo-
rithm to handle large avatar groups within a Delaunay-based NVE, and (3) a secured
extension to the Delaunay Network that leverages the social component of NVEs.

In order to perform an experimental evaluation of the Delaunay Network, we de-
sign a Second Life (SL) client that leverages the Delaunay Network to manage inter-
actions among avatars. We use our client to evaluate P2P versus C/S Second Life.
We execute several instances of our client over multiple Planetlab machines and we
populate a SL region with our controlled avatars. Avatar mobility traces extracted
from SL are used to emulate real avatar behaviors. We show that a distributed avatar
management for SL makes the avatar experience more correct and interactive. How-
ever, we also unveil that user QoE in a Delaunay-based NVE is reduced in presence
of churn, fast avatar movements and avatar groups.

Based on these observation, we design and evaluate a dynamic clustering strategy
for the Delaunay Network. The key idea of the clustering is to relax the Delaunay
Network in presence of avatar groups, i.e., clusters, in order to improve the dis-
semination of avatar state updates within a cluster. We show by simulations that the
clustering eliminate un-necessarymaintenance operations of the DelaunayNetwork,
while improving the responsiveness of avatar interactions in the NVE.

Finally, we design and evaluate the Social Delaunay Network, i.e., a relaxed Delau-
nay Network obtained by taking into account the information contained in the NVE
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social graph. The rationale beyond the Social Delaunay Network is to enforce secu-
rity in a P2P-based NVE by leveraging the network of confidence users implicitly
construct with their virtual behavior. Avatars that do not share any mutual social
connection communicate using a control server as a trusted relayed link. Our pre-
liminary results show a clear trade-off between the traffic relayed by the server and
the minimum level of acquaintance required to authorize a connection between two
peers. Interestingly, we show that the usage of a Social Delaunay Network slightly
improves the responsiveness of avatar interactions in the NVE compared to the clas-
sic Delaunay Network.



CHAPTER6
Conclusions

In this Chapter, we first review the work presented in the thesis. Then, we discuss
some topics that we could not treat or that could be treated in more detail.

6.1 Summary

A Networked Virtual Environment (NVE) is a synthetic world composed of objects
where human-controlled avatars can interact. NVEs were introduced in the 80s for
military simulators. Afterwards, they were successfully applied to on-line games,
among which Quake and World of Warcraft have been the most popular. In early
2003, Second Life (SL) was launched. SL is a social virtual world where avatars can
meet, play, trade and even contribute to the development of the NVE. SL rapidly
became the most popular NVE, reaching more than 16 million registered users in
September 2009. SL differs from previous NVEs in the amount of user-generated
content: while in on-line games the virtual world is mostly predefined and static, in
SL the virtual world continuously grows and changes through the creation of user-
generated objects.

Commercial NVEs leverage a Client/Server architecture where multiple servers
maintain the state of the virtual world and distribute it to the users. This architec-
ture is very expensive as large amount of servers need to be deployed, operated and
maintained. Moreover, scalability is an issue. These drawbacks motivate alternative
designs such as Peer-to-Peer (P2P). This thesis investigates the analysis, design and
deployment of a P2P architecture for user-generated virtual worlds where avatars can
have fast-paced interactions. Ideally, a P2P virtual world can scale with the number
of its users as each user dedicates some of its resources (storage, CPU, bandwidth)
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to the management of the virtual world. Moreover, P2P can dramatically cut server
and network cost for the virtual world provider.

Due to the lack of publicly available data about NVEs such as avatar movement
patterns or object distribution, we perform an extensive analysis of SL. We deploy
a crawler and a player application and monitor objects, avatars, user Quality of Ex-
perience (QoE) and servers performance in the public part of SL over one month.
Interestingly, we show that avatars interact similarly to humans in real life, gather-
ing in small groups and visiting the same locations. From a systems perspective, we
observe that the SL architecture suffers from a scalability problem and provides poor
user QoE.

Based on our observations of SL, we study experimentally how a P2P-based Second
Life would perform. We design and build a communication infrastructure that dis-
tributes the management of virtual objects among end-users. Then, we integrate this
distributed object management on the top of KAD, the P2P network that supports
millions of eMule users. We use avatar and object traces extracted from SL in order
to perform a realistic emulation of P2P Second Life over the Internet. We show that
P2P SL is mostly consistent, persistent and scalable. However, the rendering of the
virtual world can be slow in case of a large number of users and objects.

In order to reduce the time avatars spend to find virtual objects located in their
surroundings, we introduce Walkad, a Distributed Hash Table (DHT) designed to
manage user-generated objects in P2P-based NVEs. Walkad leverages the Kademlia
DHT and an indexing algorithm based on a reverse binary trie. We evaluate Walkad
via network emulation, and SL object traces. Our results show that Walkad guar-
antees a fast discovery of the virtual world, while load balancing the virtual land
responsibilities among peers.

Finally, we investigate the feasibility of a distributed avatar management using the
Delaunay triangulation, a well-known strategy for avatar management in P2P-based
NVEs. To start with, we evaluate the performance of the Delaunay triangulation via
realistic experiments performed in SL using a modified client we developed. Our
results show that P2P greatly outperforms the current C/S design of SL. However,
we also show that a Delaunay-based avatar management suffers the presence of av-
atar groups, which in turn degradates user QoE. In order to address this issue, we
design a distributed clustering algorithm that structures the Delaunay triangulation
hierarchically when avatar density grows. We show by simulation that the clus-
tering achieves an efficient utilization of peer resources that allows to improve the
responsiveness of avatar interactions in the NVE.
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Towards the end of the thesis, we discuss to which extent the social component of
NVEs can be useful in order to enforce security through trust. The key idea is that, as
in real life, friends are willing to store information for us andwe generally trust them.
As a proof of concept, we design the Social Delaunay Network, a P2P network for
NVEs based on the Delaunay triangulation and on the information extracted from
the social graph that avatars construct through their virtual behaviors.

6.2 Outlook

The conclusion of the thesis is that the design of a P2P architecture for NVEs is possi-
ble and can guarantee better performance than C/S at a much lower cost. However,
there are still some topics that we could not treat or that could be treated in more
detail. We discuss some of them in the reminder of this Section.

Enhanced Object Management for Second Life Currently, SL leverages a central-
ized object management. The objects created on a region are stored on the server
responsible of the region. When an avatar enters a region, the associated client
downloads from the server the description of the objects located in its avatar sur-
roundings. The client stores recently visited objects in a cache in order to make them
available for future visits and thus save network traffic [58].

Our analysis of SL unveils that avatars tend to form a social network (Section 3.6).
This means that there is a high chance that every time an avatar connects to SL it
interacts with its friends, i.e., a set of avatars it has repeatedly encountered before.
This suggests that the caching system can be enhanced by taking into account av-
atar social behaviors. The idea is to build a distributed cache using the information
provided by the social network, i.e., that some avatars meet frequently in the virtual
world. Avatars could first attempt to download data from the caches of their trusted
friends, and only resort to contacting the server when no friends are available. We
expect this approach to greatly reduce the server network traffic, while improving
the rendering latency at the clients.

A more challenging enhancement to the SL object management consists of building
a completely distributed object management. Specifically, we could integrate a Walkad
module with our P2P-SL client and allow SL users to manage the storage and re-
trieval of virtual objects over Walkad. The benefits of this approach are multiple. (1)
Obtain a proof of concept of the benefits Walkad provides to object management in
NVEs. (2) EvaluateWalkadwith real experiments and compare its performance with
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the centralized approach of SL. (3) Study how P2P and C/S may interact together to
form an hybrid architecture for NVEs.

Further Usages of Walkad Walkad is an architecture designed to address range

queries over a P2P-based NVE. However, range queries arise in a number of fields:

• Location-aware computing [40] Many applications aim at exploiting the infor-
mation located in the user surroundings to improve application performance
and user experience. This operation is essentially a range query based on geo-
graphic coordinates.

• Databases [44] Peer-to-peer databases need to support SQL-type relational
queries in a distributed fashion. Range queries are a key component of SQL.

• Distributed computing [56] Many large-scale computing infrastructures com-
prise heterogeneous hardware and software resources. This raises the need
for scalable resource selection services, i.e., range queries to locate resources
within certain ranges in a decentralized manner.

Intuitively, Walkad is an interesting design also for location-aware applications due
to the similarities they share with NVEs. Conversely, the benefits of usingWalkad in
the context of databases are not straightforward. In fact, while predicting the query
patterns for NVEs and location-aware applications is quite easy, this is much harder
in the context of databases. An interesting avenue of future work consists of building
a more general indexing scheme Walkad-like that allows to efficiently handle range
queries independently by the application that generates them.

The real need of a Delaunay Network An intriguing research topic is understand-
ing to which extent the maintenance of the Delaunay Network is necessary to handle
avatar interactions. The final goal is to design a P2P overlay less structured than the
DelaunayNetwork (i.e., lowermaintenance cost) that guarantees an efficient dissem-
ination of avatar state updates. A possible design consists of dividing the peer-set of
a NVE user into two logical sets: the interest set and the maintenance set. The interest
set contains the peers responsible of the avatars a user is communicating with. The
interest-set may be built using the classic Area-of-Interest filtering or using interest-
filtering as discussed in [13]. The maintenance set includes the peers a NVE user
needs to communicate with in order to ensure a correct discovery of new neighbor
avatars. The construction and maintenance of the maintenance set is a challenging
research problem.



6.3. WHAT IS MISSING? 125

6.3 What is Missing?

While we tried to address as many issues as possible related to the design of a P2P
NVE, there are still some open issues that we do not solve in this thesis.

Security Security is a fundamental aspect in every system, especially when large
scale computer networks are involved. This means that building a secure distributed
NVE is a task that requires (probably) another PhD thesis. That said, security lies
out of the scope of this work. However, we believe that the social component of
NVEs is an interesting feature that can be used in order to enforce security through
trust. The key idea is that, as in real life, friends are willing to store information
for us and we generally trust them. Chapter 5 partially explores this idea when
applied to distributed avatar management. However, this is only a preliminary work
and several other aspects may need to be analyzed. As discussed above, a similar
approach could also be adopted for the distributed object management.

Integration of the two overlays In the thesis, we reduce the design of a P2P NVE
into two distinctive problems: avatar and object management. For each task, we
design and evaluate a P2P overlay. While running the two overlays together is a
trivial problem, the integration of the two overlays is an interesting research problem
that we had not time too look at.

Latency Equalization Responsiveness is a very important requirement for NVEs.
In order to achieve responsiveness, we focus on the design of P2P overlays that min-
imize the overlay-distance among peers. A further optimization consists of taking
into account the geographical location of peers in the peer selection strategy. How-
ever, in addition to end-to-end latency bounds, NVE applications require that the
perceived delay difference among multiple users is minimized. This means that la-
tency should be equalized among NVE participants.

Application We evaluate our P2P architecture for NVEs using trace-driven simula-
tions and emulations, and real experiments conducted over the Internet. Moreover,
we modify a Second Life client and integrate it with a portion of our P2P architec-
ture. We do not design and deploy any application for NVEs (e.g., an on-line game)
and integrate it with our P2P architecture. Indeed, our P2P design can be further
improved through a better understanding of the application requirements. Never-



126 CHAPTER 6. CONCLUSIONS

theless, porting an on-line game to work with our P2P architecture is of interest to
conduct experiments that involve real-users.
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ANNEXEA
List of Abbreviations

Table A.1 describes various abbreviations and acronyms used throughout the thesis.
The page where each abbreviation is defined or first used is also given. Nonstan-
dard acronyms used in the thesis to abbreviate the names of certain variables and
structures are not in this list.

Abbreviation Meaning Page
AoI Area of Interest 13
C/S Client/Server 5
CCDF Complementary Cumulative Distribution Function 27
CDF Cumulative Distribution Function 30
CH Cluster Head 109
DHT Distributed Hash Table 9
FPS First Person Shooter 2
MOG Multi-player Online Game 2
NVE Networked Virtual Environment 2
P2P Peer-to-Peer 6
POI Point-of-Interest 36
QoE Quality of Experience 19
RPG Role Playing Game 2
SDN Social Delaunay Network 116
SL Second Life 2

SVW Social Virtual World 2

TAB. A.1: List of Abbreviations
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ANNEXEB
Synthèse en français

B.1 A la Decouverte de Second Life

Au cours des ces dernières années, nous avons observé une croissance rapide des
mondes virtuels sociaux. Ce sont des Environnements Virtuels en Réseau (NVEs) où
les utilisateurs peuvent se rencontrer, jouer, vendre, acheter et même contribuer au
développement duNVE. Second Life (SL), lancé en 2003 par Linden Lab, est devenu le
monde virtuel social le plus populaire, enregistrant jusqu’a 14 millions d’utilisateurs
en Juin 2008.

SL est composé d’un terrain virtuel, divisé en régions de tailles fixes, où les utilisa-
teurs interagissent par leurs représentants numériques appelés avatars. La principale
caractéristique innovatrice de SL est le contenu crée par l’utilisateur : les avatars
peuvent participer au développement de l’environnement virtuel en créant des ob-
jets tels que des voitures, des murs, des arbres et des bâtiments. En outre, SL a créé
une économie épanouie en attirant plusieurs sociétés qui ont investi des millions de
dollars afin de construire leurs propres produits virtuels et de la publicité.

Étant donné le manque d’informations sur SL, nous avons décidé de mener une
grande étude des caractéristiques de SL. Pour ce faire, nous concevons et dévelop-
pons un crawler et un player. Ce sont des applications tierces pour SL qui exploitent
les capacités standards des avatars pour : (1) obtenir des informations sur le monde
virtuel, par exemple, les comportements des avatars et les performances du serveur,
et (2) étudier la Qualité d’Expérience (QoE) de l’utilisateur. L’analyse des traces re-
cueillies nous permet de faire des observations sur les caractéristiques de SL.
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FIG. B.1: Architecture du crawler.

B.1.1 Méthodologie

Crawler L’idée principale derrière notre crawler est d’exploiter les capacités stan-
dards des avatars pour obtenir des informations sur le monde virtuel. Notre crawler
est composé de plusieurs subcrawlers, chacun étant spécialisé dans une tâche de
surveillance différente (Figure B.1).

Chaque subcrawler est une version modifiée du client SL mis en oeuvre en utilisant
les bibliothèques libsecondlife, un projet (logiciel libre) qui vise à comprendre le pro-
tocole utilisé par SL. Un subcrawler doit être associé à un avatar inscrit sur le site SL
afin de pouvoir se connecter au monde virtuel. Nous utilisons plusieurs instances de
chaque subcrawler (associés à différentes identités des avatars) afin de paralléliser
l’exploration. Nous décrivons, dans ce qui suit, le rôle de chaque subcrawler :

• Le Region subcrawler surveille SL afin de maintenir à jour une liste de ses ré-
gions. Cette information est dynamiquementmise à jour puisque des nouvelles
régions peuvent être ajoutées au monde virtuel de SL.

• L’Object subcrawler suit l’évolution des objets dans toutes les régions publiques.

• Le Statistics subcrawler recueille les statistiques tenues par les serveurs des ré-
gions publiques.

• Le Map subcrawler surveille la position des avatars comme indiqué sur la carte
SL.

• L’Avatar subcrawler obtient l’identité et la position des avatars qui se trouvent à
l’interieur des régions publiques.
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FIG. B.2: Architecture du player.

Player Nous reproduisons les comportements des avatars dans SL via des clients
contrôlés afin d’évaluer la QoE de l’utilisateur. Nous utilisons libsecondlife afin de
mettre en oeuvre un player qui automatise le comportement d’un avatar tout en ré-
coltant des traces liées à la QoE perçu par son utilisateur.

Le player effectue la connexion d’un avatar à une région cible et déplace l’avatar
dans cette région selon un modèle de mobilité. La figure B.2 montre l’architecture du
player.

B.1.2 Analyse de Second Life

La Table B.1 résume chaque configuration des subcrawlers, la longueur des traces
récoltées, et la fréquence du crawl.

subcrawler Instances IP@s Régions Fréquences Jours
Region 3 1 - 1/24 hrs 28
Object 5 1 - 1/24 hrs 28

Statistics 60 1 12,765 1/90 min 6
Map 40 1 17,526 1/15 min 3

TAB. B.1: Synthèse du crawling de Second Life.

La Table B.2 résume le nombre total des régions découvertes par le Region sub-
crawler, ainsi que le nombre officiel rapporté par le site SL.

Nous constatons que le Region subcrawler découvre un nombre de régions plus
grand que celui des chiffres officiels. Ces régions supplémentaires ne sont pas
joignables et ont été découvertes à proximité de celles qui sont actives. Par con-
séquent, elles sont probablement une partie de SL réservé à l’avenir, et donc ne
comptent pas dans les statistiques officielles.
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Mars 29 Avril 18 Avril 25

Régions Publiques (RS) 12,765 13,220 13,261
Régions (RS) 17,280 17,526 17,573
Régions (SLW) 13,693 N/A 14,150

TAB. B.2:Nombre de régions dans SL (SR = Region subcrawler, SLW=site internet de Second
Life).

La Figure B.3 montre l’évolution dans le temps du nombre d’utilisateurs en ligne,
tels qu’ils ont été mesurés par le Map subcrawler et déclarés par le Login Server (ces
données sont obtenues en contrôlant le Login Server). Les deux courbes présentent
le même cycle quotidien. Cependant, le Login Server rapporte de 10,000 a 20,000
plus d’utilisateurs que le Map subcrawler. En outre, pendant une panne majeure,
vendredi, à 14h00, le Login Server a signalé une baisse de 10,000 avatars, alors que
notre Map subcrawler a observé une diminution de 20,000 avatars. Ceci signifie que
les valeurs fournies par le Login Server peuvent être erronées, et probablement cal-
culées sur une moyenne sur une longue période.

FIG. B.3: Population active au cours du temps [Map subcrawler ; SL Login Server ; Temps
universel coordonné - 5].

Nous analysons maintenant l’évolution du nombre d’objets dans le temps. Pour
chaque région, nous calculons la différence entre le nombre d’objets qu’elle contient
le jour j, et son nombre d’objets initiaux observés le premier jour de la surveillance
(29 Mars, 2008). La Figure B.4 montre quelques centiles significativs de la distribu-
tion des différences mesurées pour toutes les régions (l’écart entre les jours 6 et 9
est dû à une panne de SL). Nous observons que 50% des régions (entre les 25ème et
75ème centiles) sont presque statiques, montrant une faible variation entre ±50 ob-
jets après 28 jours. Les 10ème et 90ème centiles restent entre ±250 objets, montrant
un taux modeste de variation d’objets dans la plupart des régions. La valeur médi-
ane est proche de zéro, et les centiles sont presque symétriques, indiquant un taux
de création d’objets similaires au taux de destruction.
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FIG. B.4: Centiles de la distribution de la variation de nombre d’objets par région ; [Object
subcrawler].

B.1.3 Qualité d’Expérience des Utilisateurs

Nous exécutons le player sur plusieurs machines PlanetLab situées dans le monde
entier afin de simuler des conditions réalistes du réseau. Nous obtenons des traces
de la mobilité des avatars en surveillant la région Japan Resort, une région très pop-
ulaire de SL. Nous gérons nos expériences sur trois régions moins populaires, c’est-
à-dire généralement vides d’avatars, et qui représentent une diversité dans la com-
position en objets observés dans SL. Nous sélectionnons respectivement une région
à faible densité (6 objets), une région à densité moyenne (130 objets) et une région à
haute densité (541 objets) , selon le nombre d’objets qu’ils contiennent. Au cours des
expériences, nous avons aussi vérifié en permanence qu’aucun utilisateur externe ne
se connecte à la région et n’interfère à nos mesures.

Nous évaluons l’incohérence de l’Air d’Intérêt (AoI) de chaque avatar tous les
200 ms ou à chaque modification de l’AoI. La Figure B.5 montre les Complementary
Distribution Functions (CDFs) du rapport entre la somme des durées des périodes
d’incohérence pour un avatar, et le temps total durant lequel l’avatar reste connecté
à une région. On constate que dans une région à haute densité, les avatars ont un
AoI plus incohérent que dans les deux autres régions. La Figure B.5 montre que les
avatars avec un AoI totalement incohérent sont tout aussi probables dans les trois ré-
gions, ex., environ 8% des avatars ont un AoI incohérent pendant environ 80%−90%

de leur voyage dans SL. La raison de ce phénomène est qu’un serveur SL passe beau-
coup de temps à accomplir correctement la connexion d’un avatar. Par la suite, les
avatars dont les temps de session sont très courts ont un AoI incohérent la plupart
du temps.
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FIG. B.5: CDFs de la fraction du temps que l’AoI d’un avatar est incohérent.

Nous analysons maintenant la durée d’incohérence mesurée dans les trois régions
afin de comprendre à quelle vitesse les serveurs SL réagissent aux incohérences des
avatars. La Figure B.6 montre les CDFs de la durée d’incohérence mesurées dans les
trois régions. Nous remarquons que les avatars ont des AoIs incohérents pour plus
d’une seconde en 40%-50% des cas. En plus, 5% à 10% de ces incohérences durent
plus de 5 secondes. Ces valeurs d’incohérence de très longue durée sont intolérables
pour les utilisateurs si on considère que les valeurs acceptables de latence dans les
mondes virtuels varient entre 300 ms et 1 sec, dévoilant que les serveurs SL assurent
une faible interactivité à leur avatars. La Figure B.6 montre également que la durée
d’incohérence mesurée dans les trois régions peut atteindre une valeur maximale
d’environ 20 secondes. Ces valeurs extrêmement élevées sont mesurées en présence
de churn, c.à.d. connexion/déconnexion des avatars.

FIG. B.6: CDFs de la durée d’incohérence.
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Enfin, nous analysons à quelle vitesse les avatars récupèrent les objets situés dans
leur AoIs, c.à.d. la latence de découverte. La Figure B.7 montre les CDFs de la la-
tence de découvert mesurée dans les trois régions. Sans surprise, plus la densité du
contenu dans une région est élevée, plus il faut de temps à un avatar pour recon-
struire le monde virtuel dans son AoI. Le temps de latence médian de découverte
passe d’environ 4 secondes dans la région à faible et moyenne densité à environ 30

secondes dans la région à haute densité. Dans nos expériences, nous vérifions que la
connexion des utilisateurs ne soit pas un goulot d’étranglement. Par conséquent, ce
résultat indique que ces très longues latences de découverte mesurées dans la région
de haute densité sont dues au fait que le serveur limite le taux de son trafic sor-
tant. Toutefois, la Figure B.7 montre également que les courbes des régions à basse et
moyenne densité ont aussi des valeurs de latence importantes ex., supérieures à 20

secondes.

FIG. B.7: CDFs de la latence de découverte.

B.2 Gestion Distribuée des Objets

Les NVEs commerciales comme Second Life sont mis en oeuvre en utilisant une ar-
chitecture Client/Serveur (C/S). Un serveur stocke une copie de tous les objets qui
résident sur les terres virtuelles pendant que les clients exécutent des applications
qui permettent à ces utilisateurs d’explorer le monde virtuel par leurs avatars. Pour
cela, les clients envoient des range queries vers le serveur, c’est à dire, des demandes
pour les objets dont les coordonnées spatiales sont situées dans un secteur donné.
Dans la pratique, les avatars identifient l’ensemble des objets (par exemple, des ar-
bres ou des voitures) situés dans leur environs en envoyant au serveur une range
query avec range égale à la zone de visibilité de l’avatar, c.à.d. son AoI.
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Les ranges queries dans les mondes virtuels peuvent être divisés en locales et non-
locales. Une requête locale consiste en une demande d’objets situé dans les envi-
rons d’un avatar. Par exemple, les avatars génèrent des requêtes locales quand ils
marchent, courent ou volent, afin de mettre constamment à jour leur AoIs. Une re-
quête non-locale est une demande d’objets situés loins de l’avatar. Par exemple, les
avatars génèrent des requêtes non-locales lorsqu’ils couvrent tout à coup une grande
distance via l’opération de téléportation. Les requêtes locales doivent recevoir une
réponse rapide pour assurer une bonne expérience de l’utilisateur. Inversement, un
retard supérieur pour répondre à des requêtes non-locales peut être tolérable.

Les requêtes locales et non-locales dans les mondes virtuels sont faciles à gérer avec
une architecture C/S. Cependant, cette architecture a une faible scalabilité et un coût
très élevé. Les Distributed Hash Tables (DHTs) sont des alternatives à bon marché
et très scalables. Les DHTs sont des architectures Pair-à-Pair (P2P) utilisées pour
stocker et récupérer du contenu. Toutefois, les DHTs actuelles ne permettent pas de
gérer des range queries.

Dans cette thèse, nous concevons un simple mécanisme pour la gestion des objects
d’un NVE et nous utilisons ce mécanisme pour conduire des experimentation par
Internet. Nous ne discutons pas ces experimentations. Successivement, nous con-
cevons et évaluons Walkad, une architecture P2P pour la gestion des range queries
dans les mondes virtuels. Nous concevons Walkad comme une extension de Kadem-

lia, un DHT très populaire adoptée avec succès par eMule. Walkad organise le key-
space Kademlia dans un reverse bynarie trie, c’est à dire, une structure à arbre où les
noeuds de chaque niveau de l’arbre sont étiquetés en utilisant le code de Gray.

Nous évaluons Walkad via l’émulation du réseau, et en utilisant dès traces d’objets
obtenus dans Second Life. Des traces synthétiques sont utilisées pour simuler les
mouvements des avatars afin d’étudier différents types de range queries. Nos ré-
sultats montrent que Walkad est une conception P2P très efficace pour les mondes
virtuels. En fait, Walkad garantit à ses utilisateurs une découverte rapide du monde
virtuel, tout en redistribuant la charge équitablement entre les pairs.

B.2.1 Description

On appelle cellule une partie du monde virtuel, et cell-ID une clé Kademlia associée
à une cellule. Nous disons qu’à l’origine, le monde virtuel était composé d’une seule
cellule. Ensuite, le monde virtuel est récursivement divisé en plusieurs cellules dés
que le nombre d’objets devient supérieur à un seuil Dmax. Nous disons que deux cel-
lules sont voisines si : (1) elles ont un côté en commun, ou (2) elles sont symétriques
selon l’axe précédemment utilisé dans les opérations de fractionnement. De même,
nous disons que les identifiants des deux cellules sont voisins quand ils ont une dis-
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FIG. B.8: Monde virtuel avec une seule dimension indexée par Walkad.

tance d’Hamming égal à un, c’est-à-dire, quand ils ne diffèrent que par un seul bit.
Par définition, un cell-ID avec l bits significatifs a l cell-IDs voisins. Pour illustrer cela,
nous considérons un exemple d’un monde virtuel avec une seule dimension (Figure
B.8). Nous désignons la i-ème cellule/cell-ID généré par L divisions respectivement
C l

i et kl
i.

La partie supérieure de la Figure B.8 montre l’organisation initiale dumonde virtuel.
A ce stade, il y a une seule cellule, C0

0 , qui couvre le monde virtuel tout entier. La
partie centrale de la Figure B.8 montre la configuration du monde virtuel après la
première division, où deux nouvelles cellules ont été creéés, C1

1 et C1
2 . Ces deux cel-

lules sont adjacentes et donc voisines. Le partie inférieure de la Figure B.8 montre le
résultat d’un nouveau fractionnement de cellules. Considérons la cellule C2

3 . Ses cel-
lules voisines sont : la cellule C2

4 , qui est adjacente, et la cellule C2
6 , qui est symétrique

de C2
3 conformément à la longue ligne pointillée.

Walkad organise les cell-IDs dans un reverse binary trie pour associer à des cellules
voisines des cell-IDs voisins. Dans un reverse binary trie, les noeuds de chaque
niveau de l’arbre sont étiquetés avec le Gray Code, un système de numérotation
binaire où deux valeurs successives ont une distance de Hamming égal à 1.

Nous expliquons maintenant comment nous organisons les cell-IDs dans un reverse
binary trie en considérant l’exemple de la Figure B.8. La cell C0

0 est attribué à cell-
ID k0

0 = 0∗. Lorsque C0
0 est divisée, nous générons les nouvelles cell-IDs en prenant

k0
0 = 0∗, et en définissant le bit le moins significatif égal respectivement à 0 et 1.

Nous avons donc obtenu deux nouvelles cell-IDs k1
1 = 0∗ et k1

2 = 1∗, qui ont une
distance d’Hamming égale à 1. L’intuition est que pour construire un reverse binary
trie dans certains cas nous devons inverser les bits ajoutés. La Figure B.8 montre
que fractionner la cellule C1

2 demande de mettre le bit le moins significatif à 0 pour
k2

6 = 10∗ et à 1 pour k2
5 = 11∗ afin de garantir que les cellules C2

3 et C2
6 , qui sont

voisins, soient associées à des cell-IDs qui sont voisins aussi.
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L’algorithme d’indexation que nous avons décrit organise les cell-IDs dans le key-
space comme un arbre. Par conséquent, un arbre déséquilibré génère une charge
déséquilibrée entre les pairs. Afin de rétablir l’uniformité dans la distribution des
cell-IDs, nous divisons le monde en régions (comme dans Second Life), et nous asso-
cions à chaque région, un region-ID. Puis, nous effectuons une opération XOR entre
le cell-IDs et le région-ID. De cette manière, la distance d’Hamming entre les cell-IDs
de la même région ne change pas. Cependant l’équilibrage de charge est atteint entre
les cell-IDs des différentes régions.

Walkad and Kademlia

Nous appelons coordonnateur un pair responsable pour une cellule. Les coordinateurs
pour une cellule C l

i indexée par le cell-ID kl
i sont les XOR plus proches pairs définis

par Kademlia. Pour chaque (cell/cell- ID) pair il existe R coordonnateurs. Un pair
Kademlia garde pour chaque 0 ≤ i < 160 bits de ses identifiant un k-bucket, c.à.d.
une liste de pairs avec une distance 2i ≤ d < 2(i+1) à partir de lui même. Les entrées
de neme k-bucket ont le neme bit différent avec l’identifiant de pair. Par conséquent,
un coordinateur pour une cell-ID kl

i garde dans l k-bucket différents les informations
de routage vers les coordonnateurs des l cell-IDs voisins.

Lorsqu’une cellule est divisée, ses coordinateurs sélectionnent les coordonnateurs
des nouvelles sous-cellules via une recherche Kademlia. Ensuite, ils transfèrent à ces
coordinateurs une liste des (cellules/cell-IDs) pairs existants, et l’ensemble des ob-
jets situés dans la nouvelle cellule. Un pair sélectionné pour être un coordinateur
pour un cell-ID kl

i effectue une recherche Kademlia pour chaque cellule voisine exis-
tant entre les l cell-IDs avec une distance d’Hamming égale à 1 à partir de kl

i. Cette
opération remplit le k-buckets du coordonnateur avec les information de routage
vers les coordinateurs voisins.

Une range query présenté par un pair P est résolu comme suit. P envoie la requête
à l’un des coordonnateurs de la cellule où son propre avatar est situé. Le coordon-
nateur répond à la requête ou à une partie de cette requête d’après les informations
dont il dispose sur les cellules voisines. Ensuite, il renvoie à P les informations qu’il
connaît, c’est à dire les informations de routage vers les coordonnateurs pour les cel-
lules qui interceptent la portée de la requête. Dans le cas où un coordinateur n’a pas
une vue complète de l’entière portée d’une requête, il transmet la requête aux coor-
donnateurs qui gèrent les cellules les plus proches de cette portée. Cette procédure
se fait par itération jusqu’à ce que la portée soit complètement couverte. Enfin, P

contacte les coordonnateurs responsables de la portée de la requête pour récupérer
les objets situés dans cette partie du monde virtuel.
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B.2.2 Evaluation Experimentale

Nous évaluons Walkad sur un cluster local en utilisant Modelnet et une topologie
Internet synthétique générée par Inet. Nous utilisons une configuration classique
Kademlia avec k-buckets de taille k = 20, et R = 10. Nous générons un monde
virtuel réaliste en utilisant des traces d’objets obtenus à l’intérieur de cinq régions
Second Life très populaires.

Nous avons d’abord évalué la latence, c’est à dire le temps nécessaire pour répondre
aux range queries, en fonction de la taille du réseau N et du type de range query.
Pour générer des range queries différentes, nous simulons des avatars qui marchent,
courent, volent et se téléportent, selon le modèle RandomWaypoint. Dans toutes ces
expériences, nous avons fixé Dmax à 10. La Figure B.9 montre que les range queries
générées par un avatar qui marche, court ou vole sont toutes résolves en environ 100
à 130 ms en moyenne. En effet, tous ces mouvements génèrent des range queries lo-
cales. Inversement, les requêtes non-locales générées par un avatar en téléportation
nécessite environ le double du temps, par exemple, jusqu’à 200 ms dans le pire des
cas. La Figure B.9 montre également que l’ensemble de la latence augmente légère-
ment avec la taille du réseau N . En fait, le nombre de sauts de routage dépend de la
taille du monde virtuel plutôt que de la taille du réseau. Toutefois, lorsque le réseau
est très petit, des pairs deviennent coordinateurs de plusieurs cellules, ce qui réduit
le nombre effectif de sauts de routage ainsi que la latence.

FIG. B.9: Dmax = 10 ; N = [16 − 1024] ; Avatar=[Walk;Run;Fly;Teleport].

Nous analysons maintenant l’équilibrage de la charge, c-à-d., comment les cell-IDs
sont distribueés entre les pairs (Figure B.10). Nous observons que dans la Figure B.9
la charge est répartie équitablement entre pairs quand le réseau grandit. Par exem-
ple, lorsque N ≥ 256, la différence dans la fraction de cell-IDs pour 90% des pairs est
plus petite que 1%. Seulement 10% des pairs sont responsables d’une plus vaste frac-
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FIG. B.10: Centiles de la distribution de la fraction des cell-IDs par pair ; cinq régions Second
Life ; Dmax = 10 ; N = [16 − 1024].

tion de cell-IDs. Cela est dû au fait que nous examinons un monde virtuel restreint
composé seulement de cinq régions. Dans un monde virtuel composé de 100 régions
nous avons mesuré que seulement 1% des pairs stockent une plus grande portion du
monde virtuel.

B.3 Gestion Distribuée des Avatars

La caractéristique essentielle des NVEs est la possibilité pour ses utilisateurs de com-
muniquer. La communication entre avatars est basée sur le geste, le chat ou même
la voix. Afin d’assurer des intèractions agréable aux utilisateurs, l’architecture d’un
NVE doit s’assurer que des informations correctes sont propagées parmi les avatars
en temps réel. Cette tâche est appelée gestion des avatars.

Dans cette thèse, nous réalisons un effort majeur pour évaluer, comprendre et
améliorer la gestion des avatars dans les NVEs en utilisant les ressources des utilisa-
teurs. L’idée clé est que les pairs partagent une connexion dans le réseau P2P lorsque
leurs avatars intéragissent dans le NVE. Cette tâche est accomplie en exploitant les
coordonnées des avatars dans le monde virtuel afin de conduire la stratégie de sélec-
tion des pairs. Actuellement, l’approche du réseau Delaunay est le plus populaire ap-
proche de ce genre.

Au départ, nous évaluons expérimentalement la QoE qu’une gestion des avatars
basée sur Delaunay fournit aux utilisateurs. Nous intégrons un module de Delau-
nay dans un client SL et effectuons des expérimentations en utilisant des machines
PlanetLab comme hôtes et les régions SL comme aire de jeux. Nous utilisons des
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traces obtenu dans SL pour simuler les mouvements réels des avatars. Nous mon-
trons qu’une gestion distribuée des avatars pour SL garantit à ses utilisateurs une
majeur réactivité ainsi qu’une expérience plus correcte par rapport à une approche
centralisée.

Successivement, nous concevons et évaluons plusieurs optimisations pour des NVES
fondées sur Delaunay : (1) un algorithme de clustering qui améliore la réactivité de
l’NVE en présence de grands groupes d’avatars, et (2) le réseau Delaunay social, un
réseau P2P pourNVEs qui enforce la sécurité des pairs en utlisant les relations d’ami-
tié qui existent entre les avatars.

Dans ce qui suit, nous décrivons l’évaluation expérimentale du réseau Delaunay in-
tegré dans le client Second Life. Nous ne discutons pas les extensions Delaunay con-
cus.

B.3.1 Le Réseau Delaunay

Le réseau Delaunay est un réseau “overlay” dont la topologie est définie par une tri-
angulation de Delaunay. Dans ce qui suit, nous donnons une définition formelle de
la triangulation de Delaunay :

Definition 2 La triangulation de Delaunay d’un ensemble de points N dans ℜ2 est une tri-

angulation des pointsDT (N) tel qu’aucun point p ne réside à l’intérieur du cercle circonscrit

d’aucun triangle en DT (N).

Les coordonnées des avatars dans le monde virtuel sont utilisées pour générer la
triangulation de Delaunay, et par conséquent construir un réseau Delaunay entre
les utilisateurs de l’NVE. De cette façon, les interactions entre avatars basés sur une
métrique de proximité correspondent à des connexions Internet entre leurs utilisa-
teurs finaux. La Figure B.11 montre un exemple d’une triangulation de Delaunay
construit entre les avatars d’un monde virtuel.

Un noeud interne d’une triangulation deDelaunay à deux dimensions avec une pop-
ulation suffisamment grande, c.à.d. un noeud qui ne se trouve pas sur l’ “enveloppe
convexe”1 de la triangulation, a un nombre moyen de voisins tel que six. Cela signifie
que chaque pair dans le réseau Delaunay correspondant est connecté à un nombre
fini de pairs indépendamment de la population de l’NVE.

Un avatar qui participe au réseau Delaunay surveille continuellement ses voisins
afin de maintenir une triangulation correcte avec le temps. À mesure que les avatars

1L’enveloppe convexe d’un ensemble de points X dans un espace vectoriel V ∈ ℜk est l’ensemble
e minimum convexe contenant X .



152 ANNEXE B. SYNTHÈSE EN FRANÇAIS

FIG. B.11: Triangulation de Delaunay entre les avatars d’un monde virtuel.

bougent, les liens Delaunay sont ajoutés et supprimés pour maintenir une triangula-
tion valide et cohérente.

B.3.2 Le Client P2P-SL

Nous utilisons la bibliothèque libsecondlife pour déployer un client P2P-SL. Le client
P2P-SL inclut les caractéristiques fondamentales du client SL officiell, ex., les opera-
tions de connexion/déconnexion et les mouvements des avatars, sans les operations
qui causent une utilisation intensive du processeur, ex., le rendu en trois dimensions
du monde virtuel.

Le client P2P-SL n’a pas besoin d’être contrôlé par l’homme. Par exemple, les traces
des avatars contenant leur mouvements ainsi que leur durée de session peuvent
être utilisées pour automatiser les opérations du client. L’aspect innovateur du client
P2P-SL est la possibilité de communiquer directement avec d’autres clients P2P-SL
sans la nécessité d’un serveur central.

Afin de permettre une communication directe entre les utilisateurs de SL, le client
P2P-SL comprend un module qui implémente le protocol Delaunay. Nous dévelop-
pons le module réseau Delaunay en utilisant HyperCast2, un ensemble de biblio-
thèques Java qui permettent à un programmeur de concevoir facilement des appli-
cations distribuées exploitant différents types de réseau P2P, ex., le réseau Delaunay
et Pastry. HyperCast maintient une table de voisinage qui contient des informations de

2http ://www.hypercast.org
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FIG. B.12: Le client P2P-SL.

routage vers les voisins dans l’overlay, ex., les adresses IP des voisins de Delaunay.
La maintenance du réseau P2P est assurée par des messages de heartbeat que chaque
pair envoie aux pairs existant dans sa table de voisinage.

Nous construisons une gestion distribuée des avatar pour SL au dessus du réseau
Delaunay mis en place chez les clients P2P-SL. Pour cela, nous interceptons les mises
à jour de l’état de l’avatar générées par le client et nous les dupliquons dans le réseau
Delaunay. La diffusion des mises à jour de l’état d’un avatar est effectuée sur le
réseau Delaunay exploitant une communication UDP. La motivation de ce choix est
que notre client P2P-SL n’a pas besoin de garanties sur la livraison des paquets. La
Figure B.12 montre une description graphique du client P2P-SL.

B.3.3 Evaluation

Nous comparons une architecture P2P et C/S pour Second Life en se concentrant
sur la QoE perçue par des utilisateurs de SL automatisés. On lance le client P2P-SL
sur plusieurs machines PlanetLab et nous alimentons avec nos avatars contrôlés une
région SL vide d’objets. De cette façon, les objets n’interfèrent pas avec le modèle
de mobilité des avatars. Nos avatars automatisés reproduisent une mobilité réelle
en utilisant une trace recueillie dans la region SL appelée Japan Resort. Nous repro-
duisons le comportement de 207 avatars différents au cours d’une heure.

Nous calculons l’l’incohérence et la durée d’incohérence afin de comparer la QoE
perçue par les utilisateurs SL respectivement dans une architecture C/S et P2P.
Nous commençons par examiner la probabilité d’avoir des incohérences dans les
AoIs des avatars. Nous évaluons l’incohérence de l’AoI pour chaque avatar tous les
200 ms ou à chaque modification de l’AoI. La Figure B.13 montre la CDF des valeurs
d’incohérence mesurées sur les C/S et P2P Second Life. Comme nous avons tracé
les valeurs d’incohérence dans l’échelle logarithmique (axe des abscisses de la Fig-
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FIG. B.13: CDF de l’incohérence.

FIG. B.14: CDF de la durée de l’incohérence.

ure B.13), les deux courbes sont tronquées respectivement pour des valeurs d’inco-
hérence égales à 0,02 pour l’architecture P2P et 0,05 pour l’architecture C/S, c.à.d. les
plus petites valeurs non-nulles mesurées au cours de nos expériences.

La Figure B.13 montre que l’architecture P2P est toujours plus cohérente que celle du
C/S. Les avatars ont une vue parfaite de leur AoIs, c.à.d. une incohérence égale à 0,
dans environ 55% des cas, comparativement à 40% des cas en C/S. La distance entre
les deux courbes est presque constante pour des valeurs d’incohérence inférieures
à 0,2, indiquant que l’architecture P2P produit un gain dans l’expérience de l’u-
tilisateur d’environ 20%. Pour des valeurs d’incohérence superieures à 0,3-0,4 les
deux courbes deviennent très proches. Ces valeurs élevées d’incohérence arrivent
en présence de churn (opérations de connexion/deconnexion) et des agglomérats



d’avatars. Pendant que le serveur SL souffre de ces événements en raison d’une aug-
mentation de sa charge, le réseau P2P souffre des difficultés à maintenir une trian-
gulation Delaunay consistante.

Nous analysons maintenant la durée de l’incohérence dans le P2P et C/S Second Life
afin de comprendre quelle architecture réagit plus rapidement aux incohérence des
avatars (Figure B.14). Comme pour les résultats d’incohérence, P2P surpasse nette-
ment l’actuelle architecture C/S de SL. Environ 90% du temps l’incohérence dans
le P2P est résolu en moins d’une seconde, soit environ 5 fois plus rapidement que
dans le C/S. Ce résultat est très prometteur si on considère que les valeurs tolérables
d’interactivité dans les jeux en ligne varient entre 300 ms et 1 sec. Inversement, la
Figure B.14 dévoile des valeurs inacceptables de durée d’incohérence dans l’actuelle
architecture C/S de SL, ex., 40% des incohérences durent plus de 2 secondes.
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