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Résumé

Ce présent travail s’inscrit dans le cadre de la modélisation multi-échelles de la plasticité cristalline des
superalliages monocristallins à base nickel. Dans ce contexte, une transition d’informations recueillies à
l’échelle mésoscopique justifiant physiquement un modèle micromécanique est mise en évidence.
Un couplage entre une simulation par dynamique des dislocations et la méthode des éléments finis,
le Modèle Discret-Continu (MDC) est utilisé afin de reproduire les interactions entre dislocations et
précipités. Une première application a pour objet de décrire des effets d’échelle induits par une variation
de la largeur du couloir de matrice sur les propriétés mécaniques. La relation entre les microstruc-
tures simulées de dislocations, la contrainte d’écoulement et la déformation plastique est appréhendée.
Une seconde étude traite l’influence de l’orientation du chargement sur le comportement mécanique
du superalliage. Les interactions entre les systèmes primaires et déviés sont discutées et leur rôle ma-
jeur dans la localisation de la déformation plastique dans les couloirs de matrice est démontré. Par
ailleurs, l’écrantage des interactions élastiques à longues portées associées aux réseaux de dislocations
d’interface explique l’origine du faible taux d’écrouissage observé pour des essais orientés 〈111〉 à hautes
températures.
Fortes des interprétations faites à l’échelle des dislocations, deux modélisations de nature très différentes
sont développées. Une première évoque dans sa formulation une loi de durcissement dictée par une
densité de dislocations géométriquement nécessaires. La formation et l’évolution des microstructures de
dislocations sont étudiées : la comparaison avec les résultats obtenus avec le MDC montre les faiblesses
de cette approche continue. On justifie ainsi le développement d’un second modèle micromécanique par
homogénéisation, pour lequel la réponse globale du matériau est déterminée en considérant les rôles de
la microstructure et des interactions mécaniques entre constituants. Dans ce modèle, les mécanismes
locaux sont décrits de manière physique et les lois d’écrouissage sont écrites en termes de densités de
dislocations mobiles. Il a été identifié à 850 et 950◦C, et validé avec succès sur le superalliage CMSX-4
monocristallin.

Abstract

The present work deals with crystal plasticity of single crystal nickel-base superalloys. In this context, a
scale transition of transferring information from mesoscale towards a physically justified micromechan-
ical model is shown.
A numerical coupling between dislocation dynamic simulations and the finite element method, the so-
called Discrete-Continuous Model (DCM) is used in order to take into account the mutual interactions
between dislocations and precipitates. In a first application, the dependence of the mechanical properties
on the channel width is investigated. The relationship between simulated microstructures of dislocation,
flow stress and plastic strain is then analysed. A second set of calculations addresses the anisotropic
mechanical response of single crystal superalloys. Analyses of dislocation interactions show the crucial
role of one active slip system and its collinear system in the strain localisation in the form of slip bands.
Furthermore, screening of long-range elastic interactions associated to the interfacial dislocation network
explain the origin of the low hardening rate observed in 〈111〉-oriented specimens at high temperatures.
From these interpretations at the dislocation scale, two different modeling approaches are developed.
On the one hand, one model uses the geometrically necessary dislocations in a hardening law. Both
the formation and the evolution of the dislocation microstructures are analysed: comparison with results
obtained by the DCM shows some short comings of this continuous approach. Then, a second microme-
chanical model based on a homogenisation procedure is justified. Its global response is determined by
the microstructure and the mechanical interactions between its subdomains. In this micromechanical
model, the local mechanisms are physically described and the constitutive laws are written in terms of
mobile dislocation densities. It has been identified at 850 and 950◦C, and successfully validated on the
single crystal superalloy CMSX-4.
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discuter de mes travaux.
I thank Professors Jeff De Hosson and Gunther Eggeler for accepting to report my doctoral thesis. Their
attendances in the jury were a great honor for me.
Je remercie fortement Claude Fressengeas d’avoir accepté de rapporter sur ce travail, et d’avoir pris le
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Il est maintenant temps de me consacrer à mes deux encadrants proches, Arjen Roos et Benoit Devincre.
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Introduction

Les turboréacteurs sont des systèmes de propulsion essentiellement utilisés dans l’aviation. Il s’agit des
plus anciens systèmes de moteurs à réaction. L’inventeur français Maxime Guillaume dépose en mai
1921 un brevet concernant son principe ”Propulsion par réaction sur l’air”. Il sera ensuite développé
indépendamment par deux ingénieurs dans les années 1930: par Sir Frank Whittle en Grande-Bretagne
et Haus von Ohain en Allemagne. Ce dernier fait voler le premier turboréacteur, le HeS3, sur le Heinkel
He 178 en Août 1939 (figure 1 a).

(a) (b)

Figure 1 - (a) Premier vol d’un avion à turboréacteur en Août 1939, le Heinkel He 178. (b) Cinquante ans
plus tard, le Dassault Rafale, dont le premier vol a été effectué en Juillet 1986, est équipé du turboréacteur
M88-2 construit par la Snecma.

Au début du XXIe siècle le rapport coût/efficacité du réacteur le rend particulièrement attractif pour les
avions de transport du haut subsonique (0,7 < Mach < 1). C’est pour celà qu’il est utilisé sur les avions
civils des familles Airbus A3xx, ou Boeing B7xx. Par ailleurs, parce qu’il est le seul capable de couvrir
les domaines allant du subsonique au supersonique (Mach > 1), les turboréacteurs équipent aujourd’hui
les avions de combat comme le Dassault Rafale (figure 1 b). L’industrie du turboréacteur est un secteur
majeur de l’aéronautique et s’avère donc être un facteur important dans le développement économique,
de la technologie de pointe et de la recherche appliquée.

Problématique industrielle et motivation académique

Les turboréacteurs d’aujourd’hui sont des machines d’une extrême complexité regroupant un grand nom-
bre de sous-systèmes. La fabrication et l’exploitation des turboréacteurs nécessitent des connaissances
techniques parmi les plus pointues dans les domaines tels que la mécanique des fluides, la thermo-
dynamique, l’automatique, l’acoustique ou encore la science des matériaux. A bord d’un avion, civil
ou militaire, le turboréacteur n’est pas seulement un organe propulsif. Il fournit aussi toute l’énergie
disponible à bord sous forme électrique, hydraulique et pneumatique et alimente le système de pressuri-
sation et de conditionnement d’air. Le groupe moteur est ainsi souvent appelé ”générateur de puissance”
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ou ”powerplant”. Si le rendement et la fiabilité de ces moteurs se sont considérablement améliorés depuis
leurs débuts, leur coût est très important et représente en général pour un avion civil le tiers du coût total
de l’appareil.
Un turboréacteur comporte un ou plusieurs étages de compresseur, une chambre de combustion et une
turbine (figure 2). De grandes quantités d’air sont aspirées par le compresseur qui va graduellement
augmenter sa pression. L’air comprimé est ensuite envoyé dans une chambre à combustion. Là, il est
mélangé à du kérosène de manière à constituer un mélange explosif, et est brûlé. Ce mélange, après
combustion, produit une grande quantité de gaz chauds violemment éjectés vers la tuyère. Ces gaz en-
traı̂nent simultanément une turbine qui récupère une partie de l’énergie cinétique des gaz et la convertit
en énergie mécanique afin d’entraı̂ner le fonctionnement de la soufflante et du compresseur. La turbine
haute pression, dont les ailettes sont soumises au flux des gaz de combustion les plus chauds, est la pièce
la plus compliquée sur les plans de l’aérodynamique et de la tenue des matériaux.

Figure 2 - Turboréacteur J85-GE-17A de General Electric illustrant son principe de fonctionnement.

En raison de nombreux facteurs tels que la température élevée des gaz brûlés, les forts gradients ther-
miques présents, la corrosion à chaud, la fatigue vibratoire, ainsi que les contraintes induites par la
géométrie complexe, les aubes de turbines sont les pièces qui subissent les sollicitations les plus endom-
mageantes. Par ailleurs, ce sont les aubes qui conditionnent le rendement du réacteur. Il semble donc
naturel qu’une préoccupation des motoristes porte sur l’amélioration du rendement des turbomachines,
c’est-à-dire l’obtention d’une température de sortie des gaz brûlés la plus élevée possible. La recherche
de cette température optimale a donc conduit très rapidement au problème technologique qu’est la tenue
des composants à haute température. C’est ainsi que des solutions visant à améliorer la durée de vie des
aubes de turbine se sont dessinées. Le développement de nouveaux alliages constitue un axe de recherche
principal et d’importants progrès ont été réalisés sur les matériaux constituant les aubes.
Alors qu’apparaissent les premiers turboréacteurs dans les années 1930, les superalliages existaient déjà.
C’est en France qu’ont été mis au point pour la première fois en 1929 les aciers au chrome-nickel ad-
ditionnés de titane, qui sont à la base des superalliages. Cette découverte est liée à deux noms Pierre
Chevenard et Xavier Wache. Par la suite le fer a été substitué par le cobalt puis par le nickel avec no-
tamment l’INCONEL destiné à la forge, ce qui lui conférait de meilleures propriétés mécaniques. Les
recherches sur de nouvelles compositions chimiques d’alliages et de nouveaux modes d’élaboration sont
très importantes dans les années 1950 et 1960. La chimie des superalliages à base nickel, principalement
destinés aujourd’hui aux aubes monocristallines de turbine à gaz, a évolué de manière significative depuis
le développement des alliages de première génération dérivés des matériaux à grains colonnaires. Les
grains étant des sites privilégiés pour l’amorçage de fissures, les aubes monocristallines ont été mises
au point, par croissance cristalline à partir d’un germe sélectionné. L’utilisation du monocristal et la
performance d’ensemble des seconde et troisième générations d’alliages caractérisée par l’addition de
quantités croissantes de rhénium, ont permis d’augmenter notablement la température d’entrée du gaz
dans la turbine.
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Avec le développement accru des superalliages monocristallins à base nickel, les industries aéronautiques
ont mené (et mènent), en étroite relation avec de nombreux laboratoires de recherche, des études afin
d’approfondir les connaissances dans les domaines reliant la composition, la microstructure et le com-
portement en service des aubes monocristallines. La maı̂trise et, a fortiori, la prédiction et l’optimisation
des processus de conception des matériaux et des structures passent par la prise en compte de phénomènes
et mécanismes intervenant à différentes échelles, en espace comme en temps. Depuis l’échelle atomis-
tique et parmi toute la gamme d’échelles possibles, il est essentiel de déterminer la (ou les) échelle(s)
pertinente(s), c’est-à-dire celle(s) où agissent les mécanismes déterminants et dominants pour l’analyse
et la compréhension des propriétés macroscopiques observées. Comprendre, modéliser et simuler cha-
cune des échelles ainsi que leurs interactions constituent l’un des enjeux majeurs des approches dites
multi-échelles.

L’approche multi-échelles

La mise en oeuvre de telles approches requiert des investigations couplées de nature expérimentale,
théorique et numérique. De part leur (micro)structures, les superalliages s’intègrent parfaitement dans
cette logique. Ces matériaux, à vocation industrielle, sont l’illustration parfaite de l’apport de l’analyse
multi-échelles à la compréhension du comportement mécanique. Du point de vue de la compréhension
des phénomènes, la démarche multi-échelles permet de tisser le lien entre le comportement des consti-
tuants élémentaires et le comportement macroscopique. Sur les aspects expérimentaux, l’enjeu reste la
détermination de l’échelle pertinente qui ouvre la voie à l’analyse des mécanismes réellement respons-
ables des effets aux plus grandes échelles.
Se pose ainsi le problème de la définition des échelles qui est implicitement contenu dans la dénomination
”multi-échelles”. Qu’est-ce que l’échelle microscopique ? Qu’est-ce que l’échelle macroscopique ? Ex-
iste t-il une échelle intermédiaire mésoscopique ? Ceci reflète bien la préoccupation liée au problème
du choix des échelles, autrement dit: jusqu’à quel système physique est-il nécessaire de descendre pour
rendre compte des propriétés mécaniques d’un matériau ? La réponse à cette dernière question sera fon-
damentalement différente selon l’interlocuteur et évoluera d’une école à l’autre. Le physicien du solide
répondra que la dislocation individuelle est représentative de l’échelle microscopique et que l’échelle
macroscopique peut être représenté par le monocristal. Pour le mécanicien, l’échelle microscopique est
assurée par la matrice, tandis que l’échelle macroscopique peut correspondre à la structure. En somme,
comme le remarque Zaoui [ZAO01]: ”l’enjeu est alors que le macro du physicien ne soit plus trop éloigné
du micro du mécanicien”. Cette définition montre que l’accord sous-jacent des échelles entre les deux
protagonistes est d’autant plus délicat qu’elle dépend du matériau étudié, et se doit naturellement d’être
fondée sur des résultats expérimentaux (figure 3 a).
Les échelles caractéristiques dans ce mémoire sont définies de la manière suivante:

∗ L’échelle microscopique: cette échelle permet de mettre en évidence la propriété individuelle des
dislocations. La microscopie électronique en transmission est aujourd’hui l’outil le mieux adapté
pour ce travail (∼ 1 nm).

∗ L’échelle mésoscopique: cette échelle correspond au comportement collectif de l’ensemble des
dislocations où la notion de densité de dislocations commence à avoir un sens. Elle peut ainsi
mettre en évidence l’interaction des dislocations avec la microstructure (∼ 1 µm).

∗ L’échelle macroscopique: cette échelle est propre au travail de l’ingénieur et au calcul de structures
qui vise la conception et le dimensionnement de pièces comme les aubes de turbines (∼ 1 mm−m).

Ainsi du point de vue de la modélisation (figure 3 b), l’effort se décline selon ces mêmes trois échelles
plébiscités par l’expérience:
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(a)

(b)

Figure 3 - Approche multi-échelles de la plasticité des superalliages monocristallins: de la dislocation
individuelle à l’aube de turbine d’un point de vue (a) de l’expérience et (b) de la modélisation.

∗ L’échelle microscopique de la dislocation: l’objectif est de comprendre l’origine microscopique
des phénomènes observés à l’échelle macroscopique. Pour cela, les simulations de dynamique des
dislocations s’avèrent être un outil d’une grande importance.

∗ L’échelle mésoscopique de la microstructure: l’objectif à cette échelle est de faire le lien entre le
macro du physicien et le micro du mécanicien. Cette échelle est dont capitale et résume parfaite-
ment la formule de Zaoui. Selon les problèmes posés, il faut combiner, de façon séquentielle ou
couplée, différentes techniques de simulations, discrètes et/ou continues telles que des simulations
massives de dynamique des dislocations ou des modèles continus de plasticité à longueur interne.

∗ L’échelle macroscopique de la structure: l’objectif est de rendre accessible la simulation numérique
des structures. Il s’agit alors de développer un modèle macroscopique et d’en identifier ses
paramètres de manière à reproduire et à prévoir le comportement complexe et la tenue de la struc-
ture étudiée.
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La combinaison expérience/modélisation est nécessaire dans la volonté de mieux comprendre et prendre
en compte la microstructure des matériaux, permettant ainsi d’accroı̂tre le caractère prédictif des modèles
macroscopiques actuels. En conclusion, la stratégie développée dans ce mémoire permet à la fois de
mettre en évidence les mécanismes physiques élémentaires dominants aux échelles les plus fines, et ainsi,
de nourrir les modélisations du comportement du superalliage monocristallin aux échelles supérieures.

Plan du manuscrit

Ce mémoire est composé de trois chapitres:

Le chapitre 1 présente à la fois le matériau étudié, et plus particulièrement les mécanismes de déformation
à hautes températures du superalliage monocristallin à base nickel, ainsi que l’approche multi-
échelles de la plasticité dominée par le mouvement collectifs des dislocations dans les couloirs de
matrice. Ce chapitre met en évidence qu’améliorer la compréhension et la modélisation du com-
portement mécanique des superalliages monocristallins requiert davantage l’examen des relations
entre les différentes échelles qu’un affinement de la connaissance à chaque échelle séparément.
Finalement, deux questions dédiées à la plasticité des superalliages monocristallins à 850◦C de-
meurant aujourd’hui ouvertes sont posées: l’une concerne les effets de taille des couloirs de ma-
trice et l’autre de l’influence de l’orientation du chargement sur le comportement mécanique du
superalliage.

Le chapitre 2 est consacré à la description de l’outil numérique à la base des études présentées dans ce mémoire.
Ce chapitre traite la plasticité discrète fondée sur un couplage entre les simulations de dynamique
des dislocations et la méthode des éléments finis. L’adaptation qui a été nécessaire pour le traite-
ment de la plasticité en présence d’interfaces est précisée, et les résultats des problèmes posés
au précédent chapitre sont présentés. Pour chacun des problèmes, les microstructures de disloca-
tions obtenues sont analysées dans un premier temps et comparées si possible avec les résultats
expérimentaux existants. Les mécanismes microscopiques qui sont à l’origine de leur formation
sont également détaillés. Dans un second temps, les caractéristiques mécaniques macroscopiques
qui résultent du comportement de la microstructure de dislocations sont mises en évidence.

Le chapitre 3 concerne deux modélisations continues de nature différentes. Une première partie évoque un
modèle à longueur interne dont une loi de durcissement est dictée par une densité de disloca-
tions géométriquement nécessaires. Ce modèle est alors qualifié d’intermédiaire dans la mesure
où il permet d’établir des bases physiques dans le développement d’un modèle cristallin à l’échelle
supérieure. Ainsi une seconde partie met à profit l’étude des microstructures de dislocation menée
aux échelles les plus fines pour améliorer un modèle micromécanique d’écrouissage cinématique,
validé sur une large gamme de type et d’orientation de chargement. Ce modèle est fondé sur
une procédure d’homogénéisation, pour lequel la réponse globale du matériau est déterminée en
considérant les rôles de la microstructure et des interactions mécaniques entre constituants. Ce
chapitre a pour objectif de montrer les nouvelles avancées sur la formulation des lois de plas-
ticité cristalline obtenue par échange d’informations pertinentes à travers la transition d’échelles
précédemment définie.

Ce mémoire est rédigé en anglais car il résulte d’une étroite collaboration entre le Laboratoire d’Etudes
des Microstructures (CNRS−ONERA), le Département Matériaux et Structures Métalliques (ONERA)
et le Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin) pour le chapitre 3.
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8 State of the art

Introduction

Le premier chapitre intitulé ”Etat de l’Art” repose sur trois parties. La première partie 1.1 est dédiée
à la présentation du matériau étudié durant le travail de thèse, le superalliage monocristallin à base
nickel. Un superalliage ou alliage haute performance est un alliage métallique présentant une excel-
lente résistance mécanique et une bonne résistance au fluage à haute température (typiquement 0,7 à
0,8 fois sa température de fusion en K), ainsi qu’une bonne résistance à la corrosion et à l’oxydation.
Le développement des superalliages a été très intense dans les années 1950 et 1960 lorsque Versnyder
[VER60] a montré l’intérêt de leur utilisation pour les aubes de turbine haute pression. Un nouvel essor
technologique est franchi avec l’avènement des premiers monocristaux en 1970 [VER70], et ce n’est qu’à
partir de 1980 qu’apparaissent les superalliages monocristallins dont la composition est spécifiquement
étudiée pour sa forme monocristalline.
La seconde partie 1.2 porte sur une étude bibliographique des actuelles modélisations de la plasticité
cristalline traversant différentes échelles de résolution: de la dynamique des dislocations à la mécanique
des milieux continus. Elle traite ainsi de la plasticité multi-échelles: à différentes échelles de résolution,
diverses approches permettent de modéliser la plasticité d’un matériau. Chaque modèle tend à devenir de
plus en plus performant, et il est aujourd’hui pensable de ”remonter” les échelles d’espace et de temps de
manière continue en réalisant par exemple des simulations atomiques ou par dynamique des dislocations,
afin d’asseoir un modèle à l’échelle supérieure.
Enfin, une troisième et dernière partie est tournée vers une présentation non exhaustive de problèmes
aujourd’hui ouverts sur la modélisation du comportement des superalliages monocristallins. Deux de ces
problèmes illustrent les effets de taille et de l’orientation du chargement sur le comportement mécanique
de ces alliages. En effet, dans le cadre d’une étude sur les superalliages, un objectif visé par la mécanique
des matériaux hétérogènes doit être de prévoir le comportement du superalliage à partir de la seule con-
naissance du comportement de chacune des phases, et de la morphologie des constituants. Par ailleurs,
une modélisation appliquée sur une pièce de géométrie complexe comme l’aube de turbine doit être
capable de rendre compte de l’anisotropie du comportement.

1.1 Single crystal nickel-based superalloys

1.1.1 Introduction

Over the later part of the twentieth century, the performance of the superalloys was improved drasti-
cally by a concerted period of alloy and process development. Figure (4) provides a perspective for
turbine blading, which has occurred since the first superalloys began to appear in the 1940s. Cast rather
than wrought materials are currently preferred since a better creep performance is then obtained. The
introduction of improved casting methods, and later the introduction of processing by directional so-
lidification, enabled significant improvements. This was due to the columnar microstructures that were
produced in which the transverse grain boundaries were eliminated. Once this development occurred,
it was quite natural to remove the grain boundaries completely, so that monocrystalline (single crystal)
superalloys were produced. This allowed, in turn, the removal of grain-boundary strengthening elements
such as boron (B) and carbon (C) which had traditionally been added. The fatigue life is then improved
[STR80].
Nowadays, single crystal superalloys are being used in increasing quantities in the gas turbine engine.
The improvements have been made in a period of approximately 15 years between 1980 and 1995, pri-
marily as a consequence of a better appreciation of the physical factors which confer high-temperature
strength to these materials. Table (1.1) lists the compositions of common nickel-based superalloys,
including those used in single crystal form. As many as 9 different alloying additions are added. The so-
called first generation single crystal superalloys, such as AM1, Rene N4 or SRR99, contain appreciable
quantities of the hardening elements aluminum (Al), titanium (Ti), and tantalum (Ta). Second-generation
alloys, such as PWA 1484, Rene N5 or CMSX-4, is characterised by a 3 wt% concentration of rhenium
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Figure 4 - Evolution of the high-temperature performance of superalloys over a 70 year period since
their emergence in the 1940s [REE06].

(Re), which is increased to about 6 wt% for the third-generation alloys such as CMSX-10 or Rene N6.
In addition, the modern alloys are characterised by significantly lower concentrations of chromium (Cr)
and higher concentrations of Al and Re. Concentrations of Ti and molybdenum (Mo) are at very modest
levels. The period since 2000 has seen the emergence of the fourth-generation single crystal superalloys,
such as MC-NG, which are characterised by additions of ruthenium (Ru).

1.1.2 Microstructure and defects

1.1.2.1 The γ phase

Although nickel alone is not endowed with a distinctly high modulus of elasticity or low diffusivity,
the γ NiAl matrix is favoured by most gas turbine designers for the most severe temperature and time
excursions. It is remarkable that some of these alloys can be used at 0.9 TM (with TM the melting point)
and for times up to 100,000 h at somewhat lower temperatures. The basic reasons for this endurance
must be attributed to the high tolerance of nickel for alloying without phase instability, and the tendency,
at high temperatures, to form Al2O3-rich phases with exceptional resistance to oxidation.
The γ phase exhibits the face-centered cubic (fcc) structure, and in nearly all cases it forms a continuous
matrix phase in which the other phases reside. It contains significant concentrations of elements such as
Co, Cr, Mo, Ru, and Re.
The fcc structure consists of close-packed planes, stacked with periodicity equal to three. The perfect
lattice can be denoted ABCABCABCABC . . ., where each A, B or C represents a close-packed layer.
The lattice vector is a√

2
, with a is the length of the side of the unit cell.

From a crystallographic point of view, the slip system in a fcc metal such as Ni is a
2 〈11̄0〉{111}. Hence

the Burgers vector is a√
2
. However, this statement does not properly respect the micromechanics of

deformation. Glide of an a
2 〈11̄0〉{111} dislocation occurs by the passage of two partial dislocations,

which, although in close proximity to each other, are separated by a distance which depends on the
force of their elastic repulsion and the energy of the planar stacking fault so produced. This implies
that the a

2 〈11̄0〉{111} dislocations are dissociated. Electron microscopy confirms that the reaction is
accompanied by the creation of an Intrinsic Stacking Fault (ISF) in the (11̄1) plane according to the
following form

a

2
〈110〉{1̄11} −→ a

6
〈211〉{1̄11}+ ISF +

a

6
〈121̄〉{1̄11} (1.1)

where each dislocation on the right-hand side of the equation is a Shockley partial [DEC84].
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Alloy Cr Co W Mo Re Al Ti Ta Hf Ru Density
AM1 7.8 6.5 5.7 2 - 5.2 1.1 7.9 - - 8.6

CMSX-2 8 4.6 7.9 0.6 - 5.6 1 6 - - 8.6
Rene N4 9 8 6 2 - 3.7 4.2 4 - - 8.56
SRR99 8 5 10 - - 5.5 2.2 3 - - 8.56
AM3 8 5.5 5.7 2 - 6 2 3.5 - - 8.25

PWA1484 5 10 6 2 3 5.6 - 8.7 0.1 - 8.95
Rene N5 7 8 5 2 3 6.2 - 7 0.2 - 8.7
CMSX-4 6.5 9 6 0.6 3 5.6 1 6.5 0.1 - 8.7
CMSX-10 2 3 5 0.4 6 5.7 0.2 8 0.03 - 9.05
Rene N6 4.2 12.5 5.4 1.4 5.4 5.75 - 7.2 0.15 - 8.97
MC-NG 4 - 5 1 4 6 0.5 5 0.1 0.1 8.75

Table 1.1: The compositions (in weight%) of some common single crystal nickel-based superalloys
[MSM]. The alloys from AM1 to AM3 belong to the first-generation alloys. Re-containing alloys are
labelled second generation (such as the PWA1484, Rene N5, and CMSX-4 alloys). The CMSX-10 and
Rene N6 alloys belong to the third generation, and MC-NG to the fourth. A review of the evolution
of the chemistry of these classes of alloys, focusing on the advantages and drawbacks, can be found in
[CAR99]. The Ni content balances the whole composition. Density is expressed in g/cm3.

1.1.2.2 The γ′ phase

The γ′ Ni3Al phase displays the primitive cubic, L12, crystal structure, with Al atoms at the cube corners
and Ni atoms at the centres of the faces (see figure 5). Remarkably, the strength of γ′ increases as
temperature increases, reaching a maximum at around 800◦C [SIM72]. This phase contributes not only
through its intrinsic strength, but also because in the γ/γ′ alloys it forces Orowan bypassing, as will be
explained further on.

Figure 5 - L12 unit cell. Arrangement of Ni and Al atoms in the ordered Ni3Al phase.

An early question was about the precise geometry of a dislocation gliding through an ordered lattice.
Marcinkowski et al. [MAR61] first observed in the Transmission Electron Microscope (TEM) that dis-
locations in L12 ordered Cu3Au contained two components, or superpartials, which were held together
by a strip of AntiPhase Boundary (APB). They obtained the direct evidence for a hypothesis proposed
by Köhler and Seitz, that dislocations in superlattice structures would propagate more readily if they
existed in groups coupled by an APB. In other words, they predicted that the ordered structure of most
intermetallics would require a superdislocation, i.e. a pair of dislocations separated by a strip of material
with the ordering of the atoms exactly out-of-plane with respect to the normal structure, the APB.
Experimentally, it is now established that the a〈101̄〉 superdislocations are dissociated into two a

2 〈101̄〉
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ordinary dislocations bordering the APB on {111} planes according to the following reaction:

a〈101̄〉 −→ a

2
〈101̄〉+ APB +

a

2
〈101̄〉 (1.2)

Moreover, the a
2 〈101̄〉 dislocations split further into two superlattice Shockley partials a

6 〈112〉, just as for
a dislocation in the γ phase (see relation 1.1), according to

a

2
〈101̄〉 −→ a

6
〈21̄1̄〉+ SISF +

a

6
〈112̄〉 (1.3)

where the Superlattice Intrinsic Stacking Fault (SISF) contains a fault in the stacking sequence but main-
tains the condition among the nearest neighbouring atoms [DEC04].
However, in practice, the dissociations are usually even more complicated than those given in relations
(1.2) and (1.3). This is because the superdislocations dissociate on both {111} and {010}, which distinct
segments of it lying on each of the two planes. For instance, it is possible for the APB, or segments
of it, to cross-slip to a cube plane {010}. This configuration is expected to be sessile, since the cube
plane is not a glide plane for γ′. This configuration is termed a Kear-Wilsdorf (KW) lock, after those
who discovered it in L12 crystal structures [KEA62]. The behaviour of the KW lock is central to the
understanding of the anomalous yield effect displayed by L12 compounds and Ni3Al in particular. This
point is considered in greater detail in section 1.1.3.

1.1.2.3 The γ + γ′ alloys

The microstructures of the two-phase superalloys of interest contain γ′ precipitates which are cuboı̈dal
in form (see figure 6 a). Analysis of these structures using TEM confirms that a distinct cube-cube
orientation relation exists between the γ′ precipitates and γ matrix in which they reside, according to

{100}γ // {100}γ′

〈010〉γ // 〈010〉γ′ (1.4)

which is referred to as the cube-cube orientation relationship.

(a) (b)

Figure 6 - Morphology of the cuboı̈dal γ′ phase in the superalloy after a complete heat treatment in (a)
3- and (b) 2- dimensional view [XIN09].
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The γ/γ′ interfaces have the 〈100〉 directions as normal plane. Provided that the lattice misfit δ, defined
as

δ = 2×

[
aγ′ − aγ

aγ′ + aγ

]
(1.5)

between the aγ and aγ′ lattice parameters of the respective disordered γ and ordered γ′ phases, is not
too large, the γ/γ′ interface remains coherent and the interfacial energy remains low. The γ′ precipitates
align along the elastically soft 〈100〉 direction (see figure 6 b).
The microstructures of the superalloys are found to depend critically on the coherency of the γ/γ′ in-
terface. Ricks et al. [RIC83] have studied the development of γ′ precipitates in a number of different
nickel-based superalloys during heat treatment, identifying correlations between the morphology, size
and sign of the γ/γ′ misfit. It was shown that the morphological development occurs in the sequence
spheres7→cubes 7→arrays of cubes. No substantial difference in this respect was found between positive
and negative misfitting alloys. Interestingly, both the size at which the γ′ particles depart from the spher-
ical morphology and the severity of the heat treatment required to form the cuboı̈dal arrays were found to
be sensitive to the lattice misfit. The results suggest that when the magnitude of the misfit δ is small, this
minimises the interfacial energy so that γ′ coarsening is restricted. As a consequence, the γ′ particles
must grow to a larger size before the cuboı̈dal form is found [BRU02].
In practice, δ roughly ranges between −0.5% and 0.5%, depending on the temperature and on the mean
chemical composition. The chemistry of the successive generations of alloys evolved in order to increase
the amount of γ′ precipitates, which has reached 70% in the latest generation, and consequently the
strengthening effects.

1.1.3 Strengthening effects

1.1.3.1 Overview of precipitation hardening

The mechanical properties of single crystal nickel-based superalloys strongly depend on the microstruc-
ture, which, in turn, is controlled by the chemical composition and the processing conditions. This is
particularly the case for the yield stress, which is a sensitive function of the distribution of the γ′ phase.
The strength of the nickel-base superalloys is a function of four distinct mechanisms, including:

∗ Solid-solution strengthening.

∗ Misfit strengthening.

∗ Orowan strengthening.

∗ Order strengthening.

The strength of commercial superalloys arises from the combination of these hardening contributions.
These strengthening mechanisms are considered to be independent and additive [POL92].

1.1.3.2 Solid-solution strengthening

Solid-solution strengthening is generally distinguishable from precipitation-strengthening by the rela-
tively low content of precipitate-forming elements such as aluminum, titanium, or niobium. Solid-
solution strengthening is caused partly by lattice distortion, and therefore increases with atomic size
difference, up to a maximum of about 10%. Atomic clustering [FLE63] or short range order can also
strengthen the matrix [PET99]. For the specific case of a nickel-based superalloy, the chemical force act-
ing on dislocations has been investigated and calculated by post mortem and in-situ TEM [SAA04]. At
room-temperature it was estimated that the shear stress to move the dislocation corresponds to a friction
stress of the order of 100 MPa.
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1.1.3.3 Misfit strengthening

As mentioned in section 1.1.2, a difference in the distribution of the alloying elements between the two
phases results in slight difference in their lattice parameters, which is often expressed by the coherency
(mismatch) parameter δ given by relation (1.5). A consequence of a non-zero δ are coherency stresses,
which are present even when the externally applied load is zero. For instance, in a CMSX-4 single crystal
superalloy it has been reported that δ = −2.3 10−3 at room temperature [GLA94]. Assuming that the
γ/γ′ interfaces remain into elastic coherence, it follows that the precipitates are constrained in a state of
hydrostatic tension.
In order to estimate the coherency stress field, several Finite Element (FE) analyses can be found in
the literature, using isotropic [GLA89] or anisotropic [POL92] elasticity, or anisotropic viscoplasticity
[NOU95]. All these studies show qualitatively that in the case of a negative lattice parameter, the precip-
itate is in tension and the matrix channels in compression.
Hence, the residual internal stress field exerts a (back-) force on dislocations during tensile testing. Nem-
bach and Neite [NEM85] have extensively reviewed the experimental evidence bearing on lattice misfit
effects on the strength of superalloys. It was concluded that there is no convincing experimental proof
that misfit affects the flow stress of γ′-hardened alloys and that lattice misfits of the magnitude found in
commercial alloys do not make a significant contribution to strength.

1.1.3.4 Orowan strengthening

The origin of strengthening mechanisms is complex since the matrix/precipitate interfaces, the size and
spacing of the precipitates play an important role. For example, comparing the creep behaviour at 1000◦C
of γ phase, γ′ phase, and a mixture of the two phases, Nathal et al. [NAT89] found for the two-phase
alloy a decrease in creep rate of about a factor of 1000 relative to γ′ alone.
Creep tests of nickel-base superalloy single crystals were coupled with stereo TEM by Pollock and Ar-
gon [POL92]. For their alloys with a γ′ volume fraction ∼ 67 % and precipitate size ∼ 0.5 µm, they
found that for creep at 850◦C the γ′ was essentially dislocation-free and undeformable. As a result,
dislocations are forced to move through the narrow channels between precipitates, ultimately forming
complex network and thereby constituting the principal cause for the high creep resistance. The disloca-
tion structure developed during early stages of primary creep at 850◦C and 552 MPa is shown in figure
(7 a). No dislocations appear within those precipitates that extend through the foil thickness. The visible
dislocations occur in matrix channels that are contained within the foil: in vertical channels (lower part
of the figure) and in horizontal channels (upper part of the figure).
Gliding dislocation can bow between precipitates and bypass them, leaving dislocation segments at in-
terfaces. This mechanism has been emphasised by Carry and Strudel [CAR77], and the effect of this
process on the yield stress can be described by the Orowan bowing model [ORO48]. The increment
in flow stress due to bowing is given by consideration of the radius of curvature R to which a flexible
dislocation line can be bent by an applied stress τOrowan. Considering that the value of R is half the
precipitate spacing d, τOrowan is also defined by

τOrowan ≈
√

2
3

µb

d
(1.6)

with µ the shear modulus, b the magnitude of the Burgers vector, and
√

3
2 d the width of the channels in

a {111} octahedral plane. Dislocation loops leave behind segments pressed against the interfaces which
may have a pure screw or ±60◦ mixed character, depending on the channel direction.
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(a) (b)

Figure 7 - (a) Dislocation structures developed during primary creep at 850◦C of a single crystal super-
alloy, CMSX-3 [POL92]. Dislocations appear in the matrix channels and bow out between the γ′ precip-
itates. (b) Conventional transmission electron microscopy micrographs showing the (bowing-assisted)
cutting process of ordered γ′ precipitates by pairs of dislocations in AM1 at 950◦C [POU89].

1.1.3.5 Order strengthening

A a
2 〈11̄0〉{111} dislocation travelling in a γ channel cannot enter the γ′ phase without the formation

of an APB, and therefore the dislocations must travel through the γ′ structure in pairs, with a second
a
2 〈11̄0〉{111} dislocation removing the APB introduced by the first (see reaction 1.2). This is supported
by evidence from TEM [POU89] (see figure 7 b). The associated APB energy γAPB represents a barrier
which must be overcome if precipitate cutting is to occur. Although detailed calculations are required
for an estimate, the precipitate-cutting stress is expected to be of the order γAPB

b .
Even though APB energy determinations have been the object of several studies or reviews [NAB97],
according to which the main influences on APB energy are the chemical composition and temperature,
their influence is not well established. The APB energy of the pure Ni3Al compound was estimated
to be around 170 mJ.m−2 [DIM91]. The addition of 1 at% Ta increases this energy to 250 mJ.m−2

[BAL91], which reduces considerably the probability of formation of superdislocations capable to shear
a γ′ precipitate. The cutting stress associated to γAPB = 250 mJ.m−2 is then approximately 1000 MPa.
For the case of strongly coupled dislocations, i.e. when the precipitates are large and the volume fraction
is high, this cutting regime is considered in detail in section 2.4.2, where it will be studied by dislocation
dynamics simulations.

1.1.3.6 Temperature dependence of strengthening

The nickel alloys exhibit a remarkable characteristic: the yield stress does not decrease strongly with in-
creasing temperature, as is the case for most other alloy systems. In fact, for many superalloys the yield
stress increases with increasing temperature, typically up to temperatures of about 800◦C [BEA69]. Fig-
ure (8 a) shows some typical data for a number of single crystal alloys, tested along the 〈001〉 orientation.
The peak stress of beyond 1000 MPa is about 50 times greater than the flow stress of pure Ni. This con-
firms that considerable metallurgical strengthening effects are at play. For temperatures beyond 800◦C
(until about 1200◦C), the yield stress decreases quickly.
In a first attempt to rationalise this behaviour, Davies and Stoloff [DAV65] studied the yield properties
of Ni-Al binary alloys between -200 and 800◦C. The TEM images indicated that the micromechanism of
deformation was Orowan looping at 850◦C, but precipitate cutting was observed for material subjected
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Figure 8 - Variation of the yield stress with temperature of (a) a number of single crystal superalloys with
temperature [REE06], and (b) NiAlCr alloys containing various volume fractions of γ′ phase [BEA69].

to the 700◦C treatment. This is an evidence that the constant yield stress displayed by the Ni-14%Al
alloy heat treated at 700◦C is due to deformation of the γ′ phase.
Further work reported by Piearcey et al. [PIE67] sheds light on the role of γ′ in the deformation of
superalloys. The MarM200 alloy, which contains a γ′ volume fraction f ≈ 0.60, was tested in single
crystal form and revealed a similar curve to those of the more modern single crystals given in figure (8
a). Also tested was single crystal cube-oriented Ni3Al, alloyed such that its composition matched that
found in MarM200. The results confirm that at and beyond the peak stress, the behaviour of the alloy is
determined by the strength of the γ′ phase. Furthermore, from ambient temperature up to the temperature
associated with the peak stress, the γ′ imparts an increasing fraction of the strength as the temperature
increases. Similar experiments were carried out by Beardmore et al. [BEA69]. The temperature depen-
dence of the yield stress was determined for a number of alloys with varying amounts of γ′ precipitates
(see figure 8 b). Once again, the yield stress of the alloy consisting of 100% γ′ displayed a strong positive
dependence on the temperature, up to about 800◦C (see red curve in figure 8 b). Above the temperature
corresponding to the peak stress, the yield stress of a two-phase γ + γ′ alloys obeys a rule of mixtures,
i.e. it corresponds to the weighted average of the values for the γ and γ′ phases. This contrasts strongly
with the behaviour at low temperatures, where the two-phase alloys are very much stronger than the rule
of mixtures would predict.
The anomalous yielding effect is discussed in detail in section 2.4.2. Upon deformation, the anisotropy of
the APB energy and further contribution from the elastic anisotropy combine to promote the cross-slip of
segments of the γ′ superdislocations from the {111} slip plane to the cross-slip plane {001}. The cross-
slipped segments are sessile so they resist further deformation. As mentioned above, these are known as
KW locks. The hardening is increasingly prevalent as the temperature rises, due to a component of the
cross-slipping process which is thermally activated.
Beyond the peak stress, which occurs typically around 800−850◦C, slip-line trace analysis on deformed
single crystals has shown that the slip mode changes to a

2 〈11̄0〉{001}, i.e. the so-called cube slip domi-
nates [STA75].

1.2 Multiscale plasticity

1.2.1 Introduction

The mathematical concept of dislocations in elastic continua was first studied by Volterra [VOL07]. Each
dislocation is seen as a cut, followed by a relative displacement and then a reattachment of the material of
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the two sides of the cut. In materials science, the concept of dislocations was independently introduced
by Orowan, Polany and Taylor [TAY34] in 1934, who used dislocations to explain plastic deformation
of single crystals. The existence of dislocations was first confirmed directly by Hirsch et al. [HIR60] by
TEM images around 1950. Figure (9) illustrates a early of the history of dislocations since 1907 and the
definition of Volterra’s dislocation to the first direct observation of dislocations.

Figure 9 - The early of the history of dislocation theory. 1907: Definition of Volterra’s dislocation (or
isolated defect) by the mathematician V. Volterra; 1934: Discovery of the concept of crystal disloca-
tion introduced by Orowan, Polany and Taylor; 1956: First published observations of dislocations by
transmission electron microscopy.

In crystalline materials, dislocation glide in slip planes gives rise to plastic deformation. A dislocation is
thus an elementary carrier of crystal plasticity. Therefore, modelling the plasticity of crystalline materi-
als involves the understanding of dislocation properties, which are closely related to the atomic structure
of their dislocation cores and their long-range elastic fields. Many models have been developed to un-
derstand the plasticity of metals. Since the features of plasticity vary in size and time, the models also
vary widely in length and time scales, as depicted in figure (10).
In this thesis most attention is given to discrete simulations and continuum mechanics, with a special
emphasis on Dislocation Dynamics (DD) (see section 2.1), and homogenisation techniques (see section

Figure 10 - Typical volume size and time covered by three models devoted to crystal plasticity [FIV04].
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3.2). Each model has its own characteristic length and time scale.
Figure (10) shows such ranges of length and time scales for each method. As the performance of each
numerical method is improved, the volume and the physical time which can be simulated increases (top
and right domain limits of each method in figure 10). Recently the length and time scales of the different
methods have begun to overlap. Ideally, continuum mechanics should use a set of constitutive equations
that accurately take into account the processes that take place at length scale at which DD simulations are
carried out. This gives a great impetus to exchange information between the different models in order to
build up a unified description of crystal plasticity, which would ideally be able to predict the behaviour
of a material from the fundamental properties of the atoms or dislocations.
In this thesis, the transition from the microscopic mechanisms to a macroscopic material model passes
through the following length scales1

∗ The microscale corresponds to the scale of the crystal lattice, where considering of single disloca-
tions is reasonable (∼ 1 nm).

∗ The mesoscale denotes a scale where the continuous description of dislocations and their densities
starts to make sense2 (∼ 1 µm).

∗ The macroscale represents the mm-level or above, but will also be used in the context of the
continuum mechanics description of samples which are even smaller3 (∼ 1 mm−m).

1.2.2 The concept of dislocations

1.2.2.1 The Burgers vector

A dislocation is geometrically characterised by its so-called Burgers vector, which is defined by means of
a Burgers circuit around the dislocation. According to the definition given by Frank [FRA51], a Burgers
circuit is any closed atom-to-atom path in the real crystal. Taking the same path in a dislocation-free
lattice, the circuit does not close if the crystal contains a dislocation. The vector required to close the
circuit in the perfect crystal is called the Burgers vector. The Burgers circuit is taken in the sense of a
right-hand rule looking in the direction of the dislocation line (e.g. within the 2-dimensional cut through
the dislocation line in figure 11, the dislocation line points paper-inward on the right-hand side ⊥ and
paper-outward on the left-hand side >). If dislocations with the same line sense but opposite Burgers
vector are brought together they annihilate and restore a perfect lattice. The Burgers vector b and its
length b = |b| in the fcc single crystal is given by b = 1

2〈110〉 and b = a√
2
, where a is the lattice

parameter.

Figure 11 - Glide of an infinitely long straight edge dislocation ⊥ under an applied shear stress τ
[HIR82].

1This classification is the same as given in the Introduction.
2See sections 2, 2.4, and 3.1 for examples of two kinds of models (through a discrete and a continuous approaches) at this

mesoscale.
3See section 3.2 for a representative model at the macroscale.



18 State of the art

1.2.2.2 Edge, screw and mixed dislocations

Dislocations develop during crystallisation from the melt and with ongoing plastic deformation. Gener-
ally they form a 3-dimensional dislocation network of edge, screw and mixed dislocation segments. Edge
dislocations are characterised by the fact that the Burgers vector b is perpendicular to their line direction
l⊥ (figure 12 a). These two directions define a unique slip plane (shaded area in figure 12). In turn, screw
dislocations are characterised by the fact that the Burgers vector b is parallel to their line direction l�
(figure 12 b). Thus b and l� do not define a unique slip plane and consequently screw dislocations are
not bounded to a specific slip plane. The mixed dislocation M is a mixing of pure edge and pure screw
dislocations (figure 12 c).

(a) (b) (c)

Figure 12 - Geometry of (a) pure edge, (b) pure screw and (c) at M, mixed dislocation segments. The
dislocation line represents the boundary between slipped and unslipped crystal parts. A dislocation loop
contains all 3 kinds of dislocation segments.

1.2.2.3 Dislocation glide

In a real crystal, a dislocation represents permanent deviations of atoms from the original position in the
crystal lattice. These deviations are the result of an elementary plastic shear which takes place through
consecutive displacement of neighbouring atoms and not through shearing off a complete atom layers.
When the dislocation reaches the crystal boundary, a slip step of one Burgers vector length b is produced.
This is visualised for a 2-dimensional cut through a cubic lattice in figure (11).

1.2.2.4 Dislocation-controlled yield

The slip plane is normally the plane with the highest density of atoms and the direction of slip is the
direction in the slip plane in which the atoms are most closely spaced. Thus, in fcc metals slip often
occurs on {111} planes in 〈110〉 directions. A slip plane and a slip direction in the plane constitute a
slip system. Fcc crystals have four {111} planes with three 〈110〉 directions in each, and therefore have
twelve {111}〈110〉 slip systems. The slip systems of a fcc crystal can be classified, following the Schmid
and Boas notation [SCH35], by the normal slip plane ng and the slip direction mg of the slip system g
(see table 13 a). Assuming the small-strain framework, both quantities are constant in space and time.
The main source of plastic deformation is the expansion of dislocation loops, where a characteristic shear
stress is required for slip. Consider the crystal in figure (13 b) which is being deformed in tension by
an applied force F along the axis of the cylindrical crystal. On the cross-sectional area is A the tensile
stress component parallel to F is σ = F

A . The force has a component F cosλg in the slip direction mg,
where λg is the angle between F and the slip direction. This force acts over the slip surface which has an
area A

cosφg , where φg is the angle between F and the normal ng to the slip. Thus, the dislocation motion
on the glide planes is driven by the Resolved Shear Stress4 (RSS) τ g acting on system g, i.e. on the slip

4The symbol τ will be used to denote the resolved shear stress in this way throughout this thesis.
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No. S-B ng mg

1 A2 (1̄11) [01̄1]
2 A3 ↑ [101]
3 A6 ↑ [110]
4 B2 (1̄1̄1̄) [01̄1]
5 B4 ↑ [1̄01]
6 B5 ↑ [1̄10]
7 C1 (111̄) [011]
8 C3 ↑ [101]
9 C5 ↑ [1̄10]
10 D1 (11̄1) [011]
11 D4 ↑ [1̄01]
12 D6 ↑ [110]

(a) (b) (c)

Figure 13 - (a) The 12 slip systems of a fcc crystals and their Schmid-Boas notation (S-B). (b) Re-
solved shear stress in an uniaxial tension test [JIL50]. (c) Standard stereographic projection showing the
respective slip systems most favourably oriented in a tension test.

plane ng in the slip direction mg, given by

τ g = mg.σ.ng =
F

A
cosφg cosλg (1.7)

If F̂ is the tensile force required to start slip, plastic yield is defined with the slip resistance τ̂ g:

τ g = τ̂ g (1.8)

The specific form of equation (1.8) at the initial yield point τ̂ g
0 is usually referred to as Schmid’s law

and analogously the RSS τ g to as Schmid stress. However, the τ̂ g change significantly, especially for
fcc crystals, with ongoing plastic deformation leading generally to a hardening response (see section
1.2.4.2).
According to equations (1.7) and (1.8), slip will start on the slip system(s) with the highest Schmid
factor(s), i.e. Sg = cosφgcosλg 6 0.5. If, during a tension test, the stereographic projection of the
tensile axis lies within one of the designated stereographic triangles in figure (13 c), the indicated slip
system will be activated first since the RSS will have the highest value there. In the most complicated
case, the [001] orientation, 4 slip planes with 2 slip directions in each are equally favoured. For bulk fcc
crystals, this results in multislip and consequently in a strong interaction between the dislocations on the
various systems leading to high work hardening rates.

1.2.3 Plasticity in dislocated crystals

1.2.3.1 The theory of elasticity with eigenstrains

”Eigenstrain”5 is a generic name given to strains that would arise from thermal expansion, phase trans-
formation, initial strains or plastic strain, if they would be unconstrained by a surrounding medium. The
eigenstrain concept offers an approach for solving elasticity problems for a continuum with internal het-
erogeneities such as dislocations. A singularity in the displacement field along the dislocation line may
be represented by an eigenstrain (i.e. a plastic strain) εp

ij which causes internal stresses in solids.
Here the field equations for elasticity theory are recalled with particular reference to solving eigenstrain

5Sometimes also called ”stress-free strain”.
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problems. These problems consist of finding displacement ui, strain εij , and stress σij at an arbitrary
point x (xi) caused by the distribution of eigenstrains. For infinitesimal deformations the total strain εij

is regarded as the sum of elastic εe
ij and plastic strain εp

ij :

εij = εe
ij + εp

ij (1.9)

The total strain must be compatible, i.e.

εij =
1
2

(ui,j + uj,i) (1.10)

where the displacement gradient ui,j = ∂ui
∂xj

, and the elastic strain is related to stress σij by Hooke’s law

σij = Cijklε
e
kl = Cijkl

(
εkl − εp

kl

)
(1.11)

with Cijkl the fourth-order tensor of elasticity, and repeated indices are summed implicitly.

1.2.3.2 Lattice dislocation density tensor

According to Kröner [KRO58], the displacement ui,j (e.g. total distortion βji) is assumed to consist of
elastic distortion βe

ji and plastic distortion βp
ji:

ui,j = βji = βe
ji + βp

ji (1.12)

The elastic strain εe
ij , and the eigenstrain εp

ij defined in equation (1.9) are given by

εe
ij =

1
2
(
βe

ij + βe
ji

)
(1.13)

εp
ij =

1
2
(
βp

ij + βp
ji

)
(1.14)

In the case of dislocations, because the plastic distortion βp
ji is caused by the slip bi (component i of b)

of plane S normal to the vector n (with components nj), the plastic distortion is defined by [MUR87]

βp
ji (x) = −binjδ (S− x) (1.15)

where δ (S− x) is one-dimensional Dirac delta function in the normal direction of S, being unbounded
when x is on S and zero otherwise.
Note that Volterra considered two types of defects: one is translational and the other one is rotational
[VOL07]. The translational defect is the dislocation defined above and the rotational defect is called
disclination6.
Using properties of Green’s functions and equation (1.12) the dislocation density tensor αsi is introduced

αsi = −εsajβ
p
ji,a (1.16)

where εsaj is the (Levi-Civita) permutation tensor7. The tensor αsi is called Nye’s dislocation density
tensor [NYE53], and equation (1.16) states that the dislocation density can be represented in terms of the
plastic distortion βp

ji expressed by equation (1.15).
The pure straight edge dislocation in figure (12 a), where the plastic strain εp

21 is caused by the relative

6Disclinations have not been taken into account in this thesis.
7By definition, εsaj = es. (ea × ej).
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b (b1, b2, b3) = (b1, 0, 0) on the half plane (x2 = 0, x1 < 0) in the x1-direction, is prescribed by

εp
21 (x) =

1
2
b1δ(x2)H(−x1) (1.17)

where H(x1) is the Heaviside step function

H (x1) =
{

1 if x1 > 0
0 if x1 < 0

(1.18)

and δ(x2) is Dirac’s delta function8. Other components of εp
ij (x) are zero. An isolated dislocation line

is a special case when the dislocation density tensor takes form of Dirac’s delta function, and the same
edge dislocation line is expressed (through the equation 1.16) by

βp
21 = b1δ(x2)H(−x1) (1.19)

α31 = b1δ(x1)δ(x2) (1.20)

The expression of the dislocation density tensor αsi is expressed here for an individual single dislocation.
It can also be written for the case of continuously distributed dislocations where βp

ji and αsi are spatial
functions. This point will be discussed in section 3.1.2.3.
It can be worth noting that the transition from the real microscopic mechanisms of deformation to a
macroscopic material model for plastic behaviour generally poses a problem. A quantification of dis-
location density through equation (1.16) becomes overwhelming given the densities involved in plastic
deformation processes, with ρ ≈ 1016 m−2. That is why most models that are currently used to describe
the plastic behaviour are phenomenological and averaged by nature.
For application to bulk materials, for instance metal forming processes, several phenomenological con-
tinuum models have been successful for many years. Other examples include the modelling of complex
material behaviours such as creep [MAC01] [PRE09] or shape memory effects [HEL03]. The next sec-
tion introduces two different types of these models.

1.2.4 Classical modelling of plasticity

1.2.4.1 Continuum framework for plastic strain due to dislocation glide

The constitutive equation of the material is an essential ingredient of any structural calculation. It pro-
vides the indispensable relation between the strains and the stresses, which is a linear relation in the case
of elastic analyses and much more complex nonlinear relation in inelastic analyses, involving time and
additional internal variables.
In this section, only the conventional continuum approach is considered, i.e. that the Representative Vol-
ume Element (RVE) of material is considered as subject to a uniform macroscopic stress. This continuum
assumption is equivalent to neglecting the local heterogeneity of the stresses and strains within the RVE,
working with averaged quantities, as the effects of the heterogeneities act only indirectly through a cer-
tain number of internal variables. Moreover, the local state assumption of continuum thermomechanics
considers that the state of a material point is independent of that of the neighbouring material point.
Therefore the stress or strain gradients do not enter into the constitutive equations.
The general context of modelling the inelastic behaviour in rate-independent plasticity or in viscoplas-
ticity is supposed to be known, as being sufficiently standard. The interested reader should refer to more
complete specialised works [LEM85] [FRA91] [KHA95] [KRA96].
The relationship between the rate of plastic distortion β̇p and dislocation glide involves an averaging
procedure over a material volume in which a large number of dislocations are moving as shown by Rice
[RIC70]. In the case of pure glide in crystals, the rate of plastic deformation ε̇p and plastic distortion β̇p

8By definition, δ(x2) = +∞ if x = 0 and δ(x2) = 0 otherwise.
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can be written in the form:

ε̇p =
1
2

∑
g

(ng ⊗mg + mg ⊗ ng) γ̇g (1.21)

β̇p =
∑

g

(ng ⊗mg) γ̇g (1.22)

where γ̇g = ∂γg

∂t is the rate of plastic slip on the slip plane g, ⊗ represents the dyadic product of two
vectors9, and 1

2 (ng ⊗mg + mg ⊗ ng) is known as the symmetric Schmid tensor.
The plastic flow rate is related directly to dislocation velocity, which can be visualised by considering a
section of material of height h as shown in figure (11). According to the simple visualisation of a pure
edge dislocation in figure (11), when the dislocation reaches the crystal boundary, its glide produces a
shear strain γ given by

γ =
b

h
(1.23)

When the dislocation line of length l moves a distance dx in a direction normal to the line direction, it
sweeps an area ldx and produces a shear strain

dγ =
b l

V
dx (1.24)

The value l can be replaced by the quantity (n l), where n is the number of mobile dislocation in the
volume of the crystal V . Expression (1.24) can then be rewritten as

dγ =
b n l

V
dx̄ (1.25)

where x̄ is the average propagation distance. By differentiation with respect to time, the shear strain rate
γ̇ is then obtained by the Orowan relation

γ̇ = bρmv̄ (1.26)

with ρm = n l
V the mobile dislocation density, and v̄ = ˙̄x the average dislocation velocity.

1.2.4.2 Dislocation density-based models

The classical continuum slip theory of crystals is based on physical concepts. The plastic flow arises
from the movement of dislocations on crystallographic planes [TEO70] [TEO75] [ASA83]. The pres-
ence of dislocations is not modelled in an explicit manner, but their combined action enters the model
phenomenologically through the constitutive equations that govern the evolution of crystallographic slip
and the slip resistance.
The present dislocation density-based approach for modelling the viscoplastic bahavior of crystalline
materials, which goes back to Kocks and Mecking [KOC75] [KOC76], has proved capable of providing
a description of the mechanical response of metallic materials to unidirectional loading, and beyond that,
to ensure a very good predictive capability of the constitutive equations [KUB08].
In this section, a crystal plasticity model for which the dislocation densities on the different slip systems
are the internal variables is presented. Three equations (i.e. equations 1.29, 1.31, and 1.33) are needed
to relate the stress to the plastic strain, where each relation is derived from physical considerations of
dislocation motion.

9By definition, (a⊗ b)ij = aibj .
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Plastic slip rate

Assuming that lattice friction is low and that the dislocation motion is governed by the interactions with
obstacles (as usually admitted for fcc crystals), these dislocation interactions can be classified into two
categories: interaction with (i) obstacles with long-range stresses τ̂ like for example other dislocations,
and (ii) obstacles inducing a short-range stress field, written as τ∗, like impurities. Note that τ̂ does not
depend on temperature whereas τ∗ is thermally activated [TEO75].
When considering only isotropic hardening, the athermal stress τ̂ fluctuates around zero with a large
average wavelength. When a dislocation meets a short-range obstacle a few atomic distances away, it
needs an additional stress τ∗ to pass it. For each slip system g, the RSS needed for the dislocation motion
is then τ g = τ̂ g + τ∗ g.
When the average time for the movement of a dislocation between obstacles is negligible in comparison
to the waiting time in front of the obstacle, the following expression for the dislocation velocity v can be
written as [TEO75]

v = bvDexp
(

∆G0

kT

)
2sinh

(
τ∗∆V ∗

kT

)
(1.27)

where vD is the Debye frequency, ∆G0 and ∆V ∗ are the activation energy and activation volume, re-
spectively.
Averaging the velocities separately for each slip system g is achieved using the Orowan equation (1.26):

γ̇g = bρg
mv̄g (1.28)

which is considered to be key link between discrete dislocation mechanics and the continuum slip theory
of crystal plasticity.
When τ∗ is moderate (less than 70% of its value at 0 K [TEO75]), the sinh in equation (1.27) is replaced
by its negative exponential part. Replacing τ∗ g by τ̂ g−τ g, the first order approximation in terms of τ∗ g

τ̂g

finally gives [RAU93]

γ̇g = ρg
mb2vDexp

(
−∆G0

kT

)(
τ g

τ̂ g

) τ̂g∆V ∗
kT

= γ̇g
0

(
|τ g|
τ̂ g

) 1
m

sign (τ g) (1.29)

Equation (1.29) is the flow law written in the classic form of a power relationship between strain rate and
normalised stress10 [HUT76] [PIE82]. Here γ̇0 and m are material parameters representing a reference
plastic strain rate and the rate sensitivity exponent, respectively. They have been established from an av-
erage performed over all the mobile dislocations within a given slip system so that the three macroscopic
variables τ∗ g, ∆G0, and ∆V ∗ are physically justified.
The dislocation motion on the glide planes is driven by the respective RSS given by equation (1.7), since
the internal variable τ̂ g can be regarded as the slip resistance on system g.

Work hardening

Any obstacle which hinders consecutive dislocation movement will block further plastic deformation
unless the RSS is increased. This process, by which the strength of the metal increases as it deforms, is
referred to as work hardening. The following considerations will be restricted to dislocation hardening,
where the obstacles which impede the motion of a dislocation are provided by other dislocations piercing
the active slip plane, the forest dislocations.
The earliest work hardening theory based on the idea that the strengthening results from mutual disloca-
tion interactions was introduced in the form of the Taylor relation [TAY34]. The Taylor relation implies

10Here, equation (1.29) does not mention the notion of kinematic hardening or back-stress/long-range internal stresses
induced by polarised dislocation density distributions.
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A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6
A2 a0 a1 a1 a3 a4 a4 a2 a4 a5 a2 a5 a4

A3 a0 a1 a4 a2 a5 a4 a3 a4 a5 a2 a4

A6 a0 a4 a5 a2 a5 a4 a2 a4 a4 a3

B2 a0 a1 a1 a2 a5 a4 a2 a4 a5

B4 a0 a1 a5 a2 a4 a4 a3 a4

B5 a0 a4 a4 a3 a5 a4 a2

C1 a0 a1 a1 a3 a4 a4

C3 a0 a1 a4 a2 a5

C5 symmetric a0 a4 a5 a2

D1 a0 a1 a1

D4 a0 a1

D6 a0

Table 1.2: Latent hardening in single crystals: specification of the interaction matrix agr in terms of the
self interaction coefficient a0 and the strength coefficients a1 7→ a5 for fcc crystals with Schmid type
behaviour.

that the resolved flow stress τ̂ is proportional to the square root of a dislocation density ρ, which is
assimilated to either the total density or the density of forest dislocations:

τ̂ = αµb
√

ρ (1.30)

In equation (1.30), α = 0.35± 0.15 in fcc metals [GIL93a] [MAD02]. To account for the anisotropy of
interactions between slip systems, equation (1.30) is commonly expanded in the form [FRA80]

τ̂ g = µb

√∑
r

agrρr (1.31)

where τ̂ g is now the critical stress for the activation of slip system g, and is determined by dislocation
densities in all slip systems r including g itself. This means that the scalar constant α is now replaced
by a matrix of coefficients agr such that

√
agr represents the interaction strength between the two slip

systems g and r.
In a fcc crystal, the interaction matrix agr has 12 × 12 = 144 coefficients (see table 1.2). The number
of distinct coefficients is divided by two due the diagonal symmetry of the matrix (i.e. agr = arg) and
the occurrence of four 〈111〉 axes with ternary symmetry further divides it by twelve. Hence, there are
six independent coefficients, which are associated with six types of interactions. There are two non-
contact interactions for dislocations gliding in parallel slip planes with the same or different Burgers
vectors, the self-interaction (a0) and the coplanar interaction (a1). Three other coefficients account for
forest interactions between non-coplanar slip systems, resulting in the formation of junctions or locks,
namely the Hirth lock (a2), glissile junction (a4), and the Lomer-Cottrell lock (a5). The last interaction,
the collinear interaction (a3), produces annihilations. It occurs between dislocations gliding in two slip
planes that are cross-slip planes with respect to each other.
The values of interaction coefficients were recently determined using DD simulations for fcc [DEV06]
and bcc crystals [MAD05] [QUE09b]. They incorporate the strengthening effect of both long- and short-
range interactions between dislocations. Such coefficients are density-dependent and for instance in a
fcc crystal at a reference dislocation density of 1012 m−2:

a2 = 0.06 < a4 ≈ a0 = a1 = a5 = 0.12 < a3 = 0.62 (1.32)
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One may notice that four interaction strengths exhibit similar values, those for self, coplanar, glissile and
Lomer interactions, while the Hirth type of interaction is slightly weaker and the collinear interaction
substantially stronger.

Storage and recovery

For determining strain hardening, the key quantity is the rate at which the critical stress evolves with
strain or, equivalently, the rate at which dislocations accumulate under strain. For this purpose, it is
useful to define a dislocation mean free path L, which is the average distance traveled by a dislocation
segment of length l immobilised by interaction with the microstructure. When the line moves a distance
dx in a direction normal to the line direction, it produces a shear strain dγ = bl

V dx (see equation 1.24).
The stored density has then statistically increased by dρ = l

LV dx, and the incremental storage rate is
then given by dρ

dγ = 1
bL . This definition is only valid in differential form, because the dislocation line

increases its line length (dislocation multiplication). Thus following the works of Kocks and Mecking
[KOC76], and Teodosiu et al. [TEO93], the net stored rate in each slip system g results from dislocation
storage and recovery and is written as

ρ̇g =
1
b

(
1
Lg

− ycρ
g

)
|γ̇g| = 1

b


√∑

r agrρr

K︸ ︷︷ ︸
Storage

− ycρ
g︸︷︷︸

Recovery

 |γ̇g| (1.33)

The last term at the right-hand side of equation (1.33), where yc is proportional to the critical annihilation
distance for screw dislocations, describes the effect of a mechanism called dynamic recovery [ESS79].
The mean free path Lg depends on dislocation interactions, stress, and specimen orientation [KUB09].
In summary, for each slip system g, the storage-recovery framework includes two major dislocation
density-based equations: (i) a Taylor-like equation that relates the critical RSS on a slip system to the
stored densities in all slip systems (see equation 1.31), and (ii) an equation for the net storage rate of
dislocations per slip system (see equation 1.33), which is the sum of a positive storage rate governed by
a dislocation mean free path and a negative term accounting for dynamic recovery. The set of equations
is closed by a flow rule (see equation 1.29), which accounts for the strain rate sensitivity of the material.
Note that these constitutive equations are only valid for monotonic loading since they do not account for
any kinematic hardening. Several authors [HAR98] [DEP04] use the same framework with additional
kinematic hardening variables to obtain a Bauschinger effect. These variables on each system are more
or less phenomenological. For instance, Harder [HAR98] used a classical formulation of kinematic hard-
ening proposed initially by Méric and Cailletaud [MER92].
This classical storage-recovery framework incorporating an additional internal length through the dis-
location density tensor in equation (1.33) will be used to predict the mechanical properties of γ/γ′

superalloys in section 3.1.

1.2.4.3 Viscoplastic constitutive theories

This section deals with phenomenological viscoplastic theories. The formalism used is that of the ther-
modynamics of irreversible processes, guided by the phenomenological constitutive laws with isotropic
and kinematic hardening for small strains.
The main equations are given by the formulation of εp in a viscoplastic form and the yield function f
expressed for isothermal conditions as

ε̇p =
∂Ω
∂σ

(1.34)

f = ‖σ − X‖H − k −R 6 0 (1.35)
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Here Ω represents the viscoplastic potential and the parameter k is the initial size of yield surface. More-
over, strain hardening is described by the combination of isotropic hardening and kinematic hardening.
The increase of the size of the yield surface R is referred to isotropic hardening, and the back-stress X
is the thermodynamic force associated to kinematic hardening. Figure (14) illustrates, in the deviatoric
stress plane and in the particular case of uniaxial tension-compression, the transformation of the elastic
domain and yield surface by the two particular cases of pure linear isotropic hardening (figure 14 a) and
pure linear kinematic hardening (figure 14 b).

(a) (b)

Figure 14 - (a) Isotropic hardening in the deviatoric plane, and the associated stress-strain response. (b)
Linear kinematic hardening in the deviatoric plane, and the associated stress-strain response.

In what follows the associated framework is assumed and the normality law (1.34) expresses the con-
sequence of the maximum dissipation principle. For rate-independent plasticity, the use of an elastic
domain is needed, i.e. f 6 0, as given by equation (1.35). The yield surface f = 0 is defined with Hill’s
criterion, using a fourth rank tensor ¯̄H with a quadratic norm, defined as

‖σ‖H =
√

σ : ¯̄H : σ (1.36)

where the symbol ”:” designates a double contraction. In case of a viscoplastic behaviour (or rate depen-
dency), this is generalised by using a viscoplastic potential Ω(f). A form often used for the viscoplastic
potential Ω is

Ω =
V

n + 1

〈
f

V

〉n+1

(1.37)

with V and n two parameters characterizing the viscous state of material, and depending on the tem-
perature. The relation between the viscous stress and the viscoplastic strain rate norm defined by
ṗ = ‖ε̇p‖H−1 with p the length of the plastic strain path then becomes

ṗ =
〈

f

V

〉n

(1.38)

The Mac Cauley brackets11 〈 〉 are used to ensure that when f < 0, i.e. inside the elastic domain, ṗ
cancels out continuously. This expression (1.38) corresponds to Norton’s law where the exponent n and
the parameter of drag stress V depends on the material, on the strain rate domain considered, and on the
temperature. Usually 3 6 n 6 30.
When the expression for the norm of the strain rate (1.38) is considered, by replacing f with equation

11By definition, 〈x〉 = x if x > 0 and 〈x〉 = 0 otherwise.
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(1.35), it is found:

ṗ =
〈
‖σ − X‖H − k −R

V

〉n

(1.39)

Isotropic hardening describes generally the expansion of the yield surface with respect to the cumulative
plastic flow, for instance by a law of type:

Ṙ(p) = b (Q−R) ṗ (1.40)

with b and Q two coefficients depending on the material and on the temperature. The integration of
(1.40) for uniaxial loading leads to R (p) = Q

(
1− exp−bp

)
.

The simplest model of kinematic hardening is Prager’s linear kinematic hardening [PRA49] in which the
evolution of the kinematic variable X (called back-stress) is collinear with the evolution of the plastic
strain. A better description is given by Armstong et al. [ARM66] introducing a recall term, called
dynamic recovery:

Ẋ = Cε̇p −DXṗ (1.41)

where C and D are two material parameters.
Both expressions (1.40) and (1.41) can also be written at the level of each slip system g. The non-
linear evolution rule for isotropic hardening involves an interaction matrix12 hgr which represents self-
hardening (diagonal terms) and latent hardening (non diagonal terms):

Rg = Rg
0 + Qg

∑
r

hgr
(
1− exp−qpr)

(1.42)

where Rg
0 denotes the initial value of Rg and q is an isotropic hardening parameter. In addition, the scalar

non-linear kinematic hardening rule is given by

Ẋg = Cγ̇g −DXg|γ̇g| (1.43)

The model is completely defined by the knowledge of plastic deformation defined by equation (1.21):

γ̇g =
〈
|τ g −Xg| −Rg

V

〉n

sign (τ s −Xg) (1.44)

Finally, the parameters to be determined for a given material and a given temperature are V and n for
the viscosity, R0, Q, q and the interaction matrix hgr for the isotropic hardening, and C and D for the
kinematic hardening. Application to superalloys can be found in [CAI87] [HAN91] [MER92] [MAR06].

Both models introduced in sections 1.2.4.2 and 1.2.4.3 have been successfully applied to the describe
complex deformation curves in copper [TAB97] [DEV08] or stress-strain behaviour during cyclic load-
ing in superalloys [CAI87] [HAN91]. Currently, one challenge is to link and justify the parameters of
the phenomenological model with physical quantities of the dislocation density-based model. Some of
the links between these models, based on an initial work of Chaboche, is illustrated in Appendix A.
It must be noted that initiation and progression of slip may be influenced by many factors such as crystal
orientation, grain size, or precipitates. Dislocation structures and other dislocation distributions prior to
mechanical deformation affect the response significantly and exhibit size effects. Unfortunately, due to
their length scale-independent framework, the above models cannot capture these effects. In order to
reproduce size effects, current approaches of crystal plasticity need to include a so-called characteristic
length. Two approaches exist: the first group corresponds to discrete theories, which are capable of re-

12This matrix is playing an analogous role to the matrix interaction defined in table (1.2).
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producing the deformation mechanisms introduced in section 1.1.2. In contrast, for the second group,
i.e. the continuum approaches, where these mechanisms are the main statements of the modelling.

1.2.5 Small-scale crystal plasticity

1.2.5.1 Discrete theories of plasticity

The term ”discrete theories” is used here as a generic term for all the models describing individual
dislocations or even atoms and their mutual interactions.

Atomistic simulations

Atomistic simulations can provide an understanding of the elementary dislocation properties and dislo-
cation core structures. Currently, atomistic simulations are restricted to about 108 atoms, depending on
the numerical approximations chosen for the atomic interactions. The biggest problem is the constraint
that the time step for the integration of the equation of motion is ∆t v 10−15 s, thus requiring 106 time
steps for the simulation of 1 ns. Hence, plastic deformation problems cannot be directly addressed with
such a numerical approach. Nevertheless, they are critically needed in many material problems where
dislocation core properties are poorly known.

Discrete dislocation dynamics

Based on the elastic theory of dislocations, numerical DD methods have been developed first in 2D. The
orientation of the reference plane used in 2D simulations is either (i) parallel or (ii) perpendicular to the
dislocation lines. In case (i), the plane of the simulations is parallel to the glide plane of dislocation
lines, thus neither cross-slip nor climb of dislocations are allowed. Initially this configuration has been
applied to study line tension problems and the shape of a dislocation under stress [BRO64] [FOR67] (see
figure 15 a and b). In case (ii), dislocations are perpendicular to the simulation plane, that is, dislocations
are infinitely long, straight and parallel with the same character. This geometry allows simulating the
multiplication, annihilation, cross-slip and climb of dislocations. It is, however, difficult to include the
effect explicitly. This kind of simulations has been mostly used to simulate spontaneous microstructure
formation [LEP87].
To incorporate line tension, junction formation and multiplication or nucleation mechanisms in 2D DD
simulations, Gómez-Garcı́a et al. [GOM00] and later Benzerga et al. [BEN04], proposed an extension to
the constitutive rules of Van der Giessen and Needleman [VAN95]. This so-called 2.5DD model intends
to capture 3D effects in a 2D framework [GOM06]. This model is still largely under development and
applied to several studies [LEF06] [GUR08].
The first simulation in 3D is proposed by Kubin and Canova [KUB90a] [CAN91]. Since then, the pro-
posed method has been further developed and applied to investigate the collective motion of dislocations
under various conditions. The motivation of a 3D DD has been to include the tridimensional nature of
the dislocation behaviour (interactions, cross-slip, junction formation. . . ). Due to the development of
simulation methods and the increased computing power, these simulation methods have strengthened
their positions in the field of crystal plasticity. The study of strain hardening and pattern formation in
this framework was pioneered by Kubin et al. [KUB90]. More recent examples are the Bauschinger
effect in dispersion-strengthened materials [SHI06] [QUE09a] (see figure 15 c), or the effect of grain
size of ultrafine-grained polycrystals [DeS10]. Typical simulations are based on roughly 104 dislocation
segments.
In the last decade, the 3D DD simulations have been coupled with the FE method in order to compute
boundary value problems [FIV99] [LEM01]. Such hybrid models will be introduced in section 2.
In view of the computational complexity of DD simulations, repeated attempts have been made to ar-
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(a) (b) (c)

Figure 15 - 2D simulations of dislocations moving through a random array of point obstacles: effects of
(a) weak and (b) hard obstacles’ strength [FOR67]. (c) 3D simulations of dislocations moving through a
random array of impenetrable spherical particles with periodic boundary conditions. Snapshot of a thin
foil region of 1.5 µm in the [321] direction [QUE09a].

rive at some kind of coarse-grained description of dislocation dynamics in an average sense. This is the
subject of the next section.

1.2.5.2 Continuum theories with internal length

The length scales mentioned previously are physically defined in the sense that they have been introduced
by nature (grain size, dislocation spacing . . .). On the continuum level, conventional theories of plasticity
do not contain any intrinsic length, which means that predictions of the mechanical stress-strain response
of specimens whose dimensions only differ by a constant factor would coincide. This is however not con-
sistent with experimental results observed for specimens with dimensions at the micron scale, such as for
the nano-indenter load of ductile metals [LIM99], the shear test of a polycrystal [FLE94], or the precip-
itate size effects on the mechanical behaviour for γ/γ′ superalloys [DUH87]. Hence, modelling plastic
deformation at small-scale requires the introduction of a length scale within the continuum models.

Generalised continua

Generalised continua, also called continua with microstructure, are characterised by having more degrees
of freedom than the classical continuum. These additional degrees of freedom can be employed to
describe the microstructure of a material. The most familiar among the generalised continua are the
micromorphic medium of Mindlin and Eringen [MIN64] [ERI64] and the Cosserat medium, developed
by the Cosserat brothers almost 100 years ago [COS09]. The latter extends the classical continuum by
additional rotational degrees of freedom Φk. The Cosserat microrotation Rij relates the current state of
a triad of orthonormal directors attached to each material point to the initial one:

Rij = δij − εijkΦk (1.45)

where δij is Kronecker’s symbol13. The deformation measures of the Cosserat theory are the relative
deformation tensor εij and the torsion-curvature tensor κij :

εij = ui,j + εijkΦk (1.46)

κij = Φi,j (1.47)

13δij = 1 if i = j, and zero otherwise.
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The resolution of a boundary value problem requires constitutive relations which include the deformation
and torsion-curvature tensors. Recently it has been revisited by several authors to model special mate-
rial classes, for example liquid crystals, granular media, cellular solids or dislocated crystals [FOR01]
[FLO04].
Cosserat media account for the influence of the dislocation density tensor defined by αij = κij−κmmδij

for the hardening behaviour of metals, which provides an efficient way to model size effects in crystals
[FOR00] [FOR03]. Unfortunately, a quantitative correspondence between the values of the characteristic
lengths in generalised continuum models and the actual material state is difficult to establish [FOR03].
A review of generalised continuum crystal plasticity models can be found in [FOR06].

Strain-gradient models

The geometrically necessary dislocations, which will be introduced in detail in section 3.1.2.2, are the
result of gradients of the plastic shear [NYE53] through the following expression14:

αsi = −εsajβ
p
ji,a = −εsaj

∑
g

γg
,an

g
jm

g
i (1.48)

One possible way to bring size effects into the constitutive laws is therefore to postulate that the hardening
depends on both plastic strain and plastic strain-gradient. These models are designed to account for
the size effects arising from gradients of plastic strain. This is the foundation of the so-called strain-
gradient or second gradient models [MIN68]. Various models exist and they differ strongly in origin and
mathematical structure. The material length scale that enters these models determines the impact made
by geometrically necessary dislocations: the smaller the length scale, the more important the strain-
gradient effects become [AIF87] [ACH00] [GUR00].
A strain gradient theory based on classical plasticity theories was formulated and generalised by Aifantis
[AIF87] [AIF99]. The derivation of this model is not directly related to the dislocation density tensor
or to the concept of geometrically necessary dislocations, but is rather based on a model of reaction-
diffusion type for the dislocation evolution. The form of the strain gradient plasticity theory involves
only one extra coefficient incorporating the effect of the Laplacian of the effective shear strain into the
constitutive expression for the flow stress.
Most of the current theories rely on the fundamental work of Fleck et al. [FLE01] who developed a
strain-gradient-based constitutive law including the plastic strain gradient. This approach can also be
categorised in the group of generalised continua [FOR06].
Strain-gradient models can for instance successfully describe size effects, the finite width of shear bands
and also crack-tip plasticity. An open problem of these models is the choice of internal length scales and
of higher order boundary conditions, which currently lack physical justification. Rather, those quantities
are used as fitting parameters to achieve a good representation of experimental results.

Mesoscale Field Dislocation Mechanics

Acharya [ACH01] proposed a field dislocation model for the elastic-plastic response of mesoscopic
single crystals based on the continuum mechanics of continuously distributed dislocations. The model,
which has been further developed and generalised for finite deformations [ACH04], incorporates the
elastic theory of dislocations through the fundamental transport law of excess dislocation density αsi and
internal stress explicitely:

α̇si = −εsaj β̇
p
ji,a (1.49)

14This expression of the dislocation density tensor αsi is similar to equation (1.16), but written for the case of a continuous
distribution of dislocation. Here, αsi is not a dirac-delta function but a spatial gradient of plastic deformation.
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Dislocations are not described as lines or inherently considered by some evolution law for plastic slip,
but rather, the dislocation density is defined as field variable constitutively specified by equation:

β̇p
ij = εjklαik × Vl + Lp

ij (1.50)

In the latter equation, the field Vl stands for the average velocity of dislocations and Lp
ij is the distortion

rate usually used in conventional crystal plasticity (defined for instance by equation 1.22). The relation
(1.50) is interpreted as a tensorial Orowan relation.
A system of partial differential equations is therefore established which characterises the mechanical
balance between the elastic stress field related to the presence of dislocations and the stress field due to
the boundary conditions imposed on the considered body.
The mathematical structure of this kind of models allows for a FE implementation of the model, which
has been realised recently [ROY05] [VAR07]. The stress field driving the nucleation and motion of dislo-
cations derives in the first place from the tractions and displacements imposed on the sample boundaries.
The objective assigned to field dislocation theories is to account for the emergence of inhomogeneous
dislocation distributions at some mesoscopic (intermediate) length scale, as well as their consequences
on the mechanical response. Field dislocation theories have successfully been applied to investigate the
effects of sample size (e.g. torsion of single crystals of ice [TAU07a]) or the intermittency of plasticity
in single crystals [TAU07b] [FRE09].

Statistical theories

Inspired by the statistical approach to DD originally developed by Kröner [KRO58], a number of statis-
tically based descriptions of dislocation fields have been proposed recently. Within such approaches the
RSS τ is replaced by τ − τb, where τb is a back-stress that is related to the gradient of the geometrically
necessary dislocation density. As a simple extension of equation (1.29), a gradient-enhanced model is
rewritten in single slip form as15

γ̇ = γ̇0

(
|τ − τb|

τ̂

) 1
m

sign (τ − τb) (1.51)

Equation (1.51) is very simple and may be useful for understanding fundamental effects of the introduc-
tion of scale dependency into conventional theories.
Using averaging procedures adopted from the statistical mechanics of interacting many-particle systems,
Groma et al. [GRO97] [GRO03] developed a statistical continuum description of the collective be-
haviour of discrete straight parallel edge dislocations. The dislocations are restricted to their slip planes,
and pierce perpendicularly to the simulation plane. Since their trace is only a point, they can be treated
as point-like particles by applying the concepts of statistical mechanics. Starting from the equation of
motion for a single dislocation, the continuum model is derived by means of statistical averaging, and
is finally given in terms of dislocation correlation functions. This approach represents a continuous
counterpart to the two-dimensional discrete DD simulations. In addition, it involves a set of coupled
transport equations for the total dislocation density ρ and for the geometrically necessary dislocation
density ρGND. The back-stress τGroma

b is then given by equation (1.52) with a drag coefficient D:

τGroma
b =

µbD

2π(1− ν)ρ
∇ρGND (1.52)

The evaluation of the constant D was motivated by application of statistical averaging techniques to
discrete DD simulations. A future task is to generalise the model to multiple slip arrangements, and the

15Models based on the difference τ − τb have been used by Groma et al [GRO03], Kratochvı́l et al. [KRA07], Zaiser and
Hochrainer [ZAI06] and Sedlác̀ek [SED03]. However, the relation for γ̇ adopted in these studies are different from each other,
and are also different from equation (1.51).
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first steps in this direction were already presented by Kratochvı́l et al. [KRA07].
Recently, Zaiser et al. [ZAI06] [HOC06] considered a back-stress, in a similar form, for the general
case of curved dislocations described in the configuration space of positions x and possible dislocation
orientations θ. The gradient is evaluated in the direction ν perpendicular to the dislocation line, denoted
∇ν , and the expression for the back-stress is:

τZaiser
b =

µbD

ρ

∫
∇νρ(x, θ)dθ (1.53)

Based on a rigorous mathematical framework, the continuum dislocation-based model of Sedlác̀ek [SED03]
introduced the line tension of dislocations and defined the back-stress as

τSedlacek
b =

µbD

2π(1− ν)ρ
∇νρ (1.54)

The latter back-stress corresponds to equation (1.52), provided the current dislocation density ρ is chosen
as the geometrically dislocation density ρGND. Up to now, it has been mostly applied to problems that
can be formulated in one dimension.
These models aim at being both closer to physics than other phenomenological models. However, apply-
ing statistical methods turns out to be far more challenging for systems of curved dislocations.
El-Azab [AZA00] presented one of the first concepts for the description of general curved dislocations
based on the methods of statistical mechanics. For each slip system a statistical measure is introduced,
namely a distribution function φ in the phase space consisting of the actual location of the each dislo-
cation segment, its velocity, and its orientation. However, the problems that go along with the fact that
one has to consider connected dislocation lines rather than a system of unconnected dislocation segments
have not been yet addressed, so that his approach did not yield results of practical interest so far.

1.2.6 Homogenisation methods based on mean-field approaches

All above theories, whether discrete (section 1.2.5.1) or continuous (section 1.2.5.2), are usually solved
by using the FE method. For instance, atomistic [WAG03] or dislocation dynamics [LEM01] simula-
tions are coupled with continuum mechanics in form of a FE code to provide boundary condition on the
discrete simulations. In addition, continuum theories based on the Cosserat/Gradient-strain/Mesoscale
Field Dislocation frameworks have been implemented in FE codes for two- or three-dimensional me-
chanical problems of a periodic cell [FOR00] [ROY05] [SCH07] [GUR07]. FE analysis of such theories
is now a routine exercise that can be easily handled at the level of the RVE. However, in the context
of structural analysis, the same approaches are not really feasable because of their computational cost,
even though some numerical multiscale methods with two-level recursive FE, such as FE2 have been
applied in some particular situations [FEY00]. This is the reason why homogenisation methods based on
mean-field approaches have been developed to be suitable for structural analysis.
Homogenisation methods have been available for a long time for non-linear materials. There are many
different methods and tools that can be used to deliver the macroscopic constitutive response of hetero-
geneous materials from a local description of the microstructural behaviour. Here a framework called
Transformation Field Analysis (TFA) is presented. Initially proposed by Dvorak [DVO92], TFA is based
on the idea of a purely elastic redistribution of the macroscopic stress and strain, and the use of uniform
local eigenstrains (i.e. plastic strains here). It can be used either with a low number of subdomains (sub-
volumes or subcells), typically one subdomain per actual phase, then recovering the context of Eshelby-
type of approaches, or with a large number of subdomains, corresponding to some simplifications (or
averagings) of the FE method.
Let us consider a representative volume V of a heterogeneous material, sufficiently large compared to
the size of the inhomogeneities. V may be subdivided into several subdomains, such that each consists
of a monophase material. The local constitutive relation in each subdomain K is written in the following
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form:

σ(x) = CK :
(
ε(x)− εp

K

)
(1.55)

The plastic strain εp
K is uniform over the subdomain K, but other eigenstrains can obviously be added,

and CK is the elastic stiffness of the phase K (also assumed to be uniform in each subdomain). The
macroscopic stress Σ and the macroscopic strain E are defined as the volume average of the local stress
and strain fields:

Σ = 〈σ〉V =
1
V

∫
V

σ (x) dV (1.56)

E = 〈ε〉V =
1
V

∫
V

ε (x) dV (1.57)

and the averages for each subdomain K of volume VK are:

σK ≡ 〈σ〉VK
=

1
VK

∫
VK

σ (x) dV (1.58)

εK ≡ 〈ε〉VK
=

1
VK

∫
VK

ε (x) dV (1.59)

For non-zero eigenstrains, in which uniform eigenstrains are assumed, the relation between the local
quantities and the overall stress, and strains are expressed as

〈σ〉VK
= BK : Σ−

∑
J

FKJ : CK : εp
K (1.60)

〈ε〉VK
= AK : E +

∑
J

DKJ : εp
K (1.61)

where AK and BK are the elastic strain localisation tensor, and the stress concentration tensor respec-
tively and, DKJ and FKJ are called transformation influence tensors.
The local and the overall eigenstress and eigenstrain fields are connected by the Mandel-Levin formula
[MAN65]. For instance, the overall plastic strain is given by

Ep = 〈BT : εp〉 =
1
V

∫
V

BT (x) : εp(x) =
∑
K

fK BT
K : εp

K (1.62)

where fK = VK
V is the volume fraction of the subdomain K. Consistently, the overall constitutive

equation is written as

Σ = C : (E− Ep) (1.63)

with the overall stiffness:

C =
1
V

∫
V

C(x) : A(x) dV =
∑
K

fK CK : AK (1.64)

In the TFA procedure, the tensors AK , BK , DKJ and FKJ depend on the local and overall elastic moduli
and on the shape and volume fraction of the phases. In the case of a periodic microstructure, the TFA
corresponds to the periodic homogenisation, provided that each phase is subdivided into a large number
of subcells.
The framework of periodic homogenisation will be applied to the representative γ/γ′ unit cell where AK

and BK will be simplified (see section 3.2).
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1.3 Open questions for modelling the γ/γ′ superalloys

1.3.1 Motivation

Two open questions16 concerning the modelling of plasticity in γ/γ′ single crystal superalloys are dis-
cussed here:

∗ There is a considerable body of experimental evidence that shows that the mechanical response is
size dependent at length scales of the order of microns and smaller. The models introduced in the
previous sections may therefore be able to predict the size effects in superalloys.

∗ Continuum modelling of the orientation dependence of the plastic deformation in γ/γ′ superalloys
assumes the activation of six {100}〈110〉 cube slip systems. Nevertheless, even though observed
macroscopically, they are not experimentally justified on the microscopic level. This question is
linked to the strain-hardening anisotropy in the mechanical behaviour of superalloys.

1.3.2 Size effect

The size of many technical components is becoming smaller and smaller. This is continuously reviving
the research on the strength of materials at a small scale and on associated models. The description of
very small components is closely related to the description of materials with microstructure which have
attracted a wealth of interest in recent years, because their mechanical properties drastically differ from
the bulk materials [PRO04]. A well-known example is probably the case for fine grained fcc polycrystals
with a grain size dgrain between 50 nm and a few µm. Experiments on copper polycrystal show that the
grain size dependence of the yield stress τHall−Petch

y follows (at the macroscale) a Hall-Petch law:

τHall−Petch
y = σ0 +

k√
dgrain

(1.65)

where σ0 and k are considered as two material constants [HAL51]. In the relation (1.65), the strength of
the polycrystal τHall−Petch

y increases with decreasing grain size dgrain. The Hall-Petch grain size effect
is generated by the compatibility stresses between grains, and may be generalised for size-dependent
plasticity in many geometrically confined systems such as γ/γ′ superalloys.
Size effects in the γ/γ′ superalloys are observed, since the distances between precipitates at the µm-scale
play a crucial role. According to the Orowan relation (1.6) the stress level τOrowan required to bow out a
dislocation is related to the width of the channel. Such an effect is clearly observed in figure (8), which
shows measures made by Beardmore et al. [SHA84] on the steady-state flow stress at different volume
fractions of γ′ phase for NiAlCr alloys.
Modelling such properties can be accounted for phenomenologically at the macroscale if the models
include a characteristic material length scale. For instance, the dislocation density-based model of section
1.2.4.2 has been enriched by Busso et al. [BUS00] to account for the additional strengthening mechanism
associated with the strain gradients due to the presence of dispersed precipitates. At the same time, Forest
et al. [FOR00] proposed to enrich the classical framework of section 1.2.4.3 by incorporating internal
variables associated to Cosserat plasticity.
Section 1.2.5 has given an overview of the most common modelling approaches accounting for size
effects in the plasticity on the µm-scale, where explanations for these effects have to be requested on the
dislocation level. Further on, in section 2.4.3, DD-based simulations will be carried out to investigate
size effects in γ/γ′ superalloys. In addition, in section 3.1.3, simulations through a slip-gradient based
plasticity model using the concept of geometrically necessary dislocations densities will be presented.

16Of course without being exhaustive. . .
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1.3.3 Orientation dependence

Even though the growth direction of single crystals blades is always along 〈001〉, a complete analysis
of the orientation dependence of mechanical properties is needed because (i) the alignment of crystal-
lographic and specimen orientation is never perfect (deviations up to 10◦ can be accepted) and (ii) the
blades have to endure complex stress states. Hence, another open question concerns the orientation de-
pendence of the mechanical properties observed in single crystal superalloys [MIN86] [SAS98].
Macroscopic slip steps corresponding to cube planes were observed at the surface of [111] crystals de-
formed at 650◦C and 750◦C [BET99]. That is why, in addition to the twelve octahedral slip systems, six
cube slip systems are potentially activated for modelling the orientation-dependence of the mechanical
response in superalloys.
Nevertheless, simply including cube slip has important consequences for the models: it is needed to
correctly simulate the experimentally observed response of the material when it is loaded in the {111}
direction, for which the yield stress is much lower than for the {001} orientation. However, as shown in
figure (16), including or not the cube slip play a considerable role on the yield surface of the Schmid’s
law (see equation 1.7). Figure (16 a) illustrates the theoretical Schmid factor, i.e. Sg = cosφgcosλg for
octahedral slip systems only as function of orientation, with a maximum value in grey (Sg = 0.41) near
the 〈001〉 orientations and a minimum value in black (Sg = 0.28) near 〈111〉. Figure (16 b) shows the
theoretical Schmid factor surface for octahedral and cubic slip systems as function of orientation, with a
maximum value in grey (Sg = 0.48) near 〈111〉.
However, there is much debate whether cube slip physically really occurs in the matrix phase of the ma-
terial. At the microscopic level, the sequential cross-slip of screw dislocations on two sets of octahedral
systems, resulting in zig-zag slip on a macroscopic effective cube plane, has been observed extensively
in the matrix phase of several superalloys [SAS97] [SAS98] [BET99]. The debates concerning the orien-
tation dependence for γ/γ′ superalloys might be discussed through discrete models of crystal plasticity.
This is the subject of section 2.4.4, where DD-based simulations have been performed to understand the
physical mechanisms responsible for the orientation dependence at the dislocation-scale.

(a) (b)

Figure 16 - Theoretical yield surface of the microscopic criterion (i.e. the Schmid law) where the Schmid
factors are plotted as function of orientation for (a) octahedral slip only and, (b) octahedral and cubic slip.
Maximum values are given in light grey and minimum values in black.
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Résumé

Avec le développement accru des superalliages monocristallins à base nickel, les industries aéronautiques
ont mené (et mènent) des études, en étroite relation avec de nombreux laboratoires de recherche, afin
d’approfondir les connaissances dans les domaines reliant la composition à la microstructure et au com-
portement en service des aubes monocristallines. En premier lieu, la chimie des superalliages à base
de nickel a évolué de manière significative depuis le développement des alliages à grains colonnaires
[CAR99]. Par ailleurs, la structure biphasée que possède ce monocristal lui confère des différences de
comportement notables en comparaison avec des matériaux comme le cuivre ou le nickel pur. A ces de-
scriptions quantifiées de la microstructure des superalliages monocristallins s’est édifiée en parallèle une
interprétation très affinée des mécanismes de déformation sur la base d’observations microscopiques:
modes des mécanismes de déformation des dislocations en fonction de la température, énergies mises en
jeu lors de la déformation etc. . . Par exemple, ces travaux ont permis d’enrichir les modèles antérieurs de
durcissement gouvernant les propriétés mécaniques de Ni3Al proposés par Kear dans les années 1960.
Du point de vue de la modélisation et de la simulation, l’avènement des puissants moyens de calcul a
stimulé le développement d’outils de simulation sophistiqués dédiés à la prédiction du comportement
mécanique des matériaux. Les simulations 3D de dynamique des dislocations en sont une illustration.
Dictée par la théorie élastique des dislocations, ces simulations discrètes ont par exemple permis de
vérifier l’effet Hall-Petch lié à la taille du grain dans le polycristal. En parallèle, aux échelles supérieures,
le plus souvent dictées par la mécanique des milieux continus, les lois de comportement laissent peu à
peu place à des relations déduites des mécanismes physiques à l’origine de la déformation plastique. Par
ailleurs, afin de reproduire des effets de taille couramment observés en métallurgie physique, l’approche
classique des milieux continus s’est étendue/généralisée/enrichie en incorporant dans la modélisation
une longueur caractéristique du matériau. En somme, la prédiction du comportement mécanique des
matériaux hétérogènes à partir de leur microstructure constitue aujourd’hui un problème complexe qui
nécessite des investigations à la fois physiques (approches discrètes) et mécaniques (approches contin-
ues).
A cet effet, un modèle hybride entre un code de dynamique des dislocations et d’éléments finis a été
développé à l’ONERA sous l’appellation de Modèle Discret-Continu. Les récents développements de ce
modèle ont permis dans le cadre de cette thèse d’étudier le comportement du monocristal et de le confron-
ter à deux problèmes aujourd’hui ouverts, à savoir les effets de taille et de l’anisotropie de l’orientation
du chargement. Ces deux problèmes sont d’une importance capitale en terme de modélisation.
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Introduction

Le second chapitre intitulé ”Le Modèle Discret-Continu” (MDC) se découpe en quatre parties. La
première partie 2.1 présente les fondements des simulations de dynamique des dislocations, et en par-
ticulier l’effort constant mené pour décrire de façon toujours plus fidèle les propriétés élémentaires des
dislocations. Ces simulations ont pour principale vocation d’assurer le passage des propriétés individu-
elles des dislocations au comportement collectif et de comprendre l’influence de ces microstructures sur
le comportement mécanique macroscopique. De ce point de vue, le passage à une description tridi-
mensionnelle de la dynamique des dislocations au début des années 1990 constitue probablement le
plus grand progrès. Cependant, il est aujourd’hui reconnu que ces simulations dites conventionnelles
présentent des limitations. Cette partie les évoque et c’est dans l’optique de les corriger que le MDC a
été développé à partir 1999 à l’ONERA à travers maintenant trois thèses, celle de Lemarchand [LEM99],
de Groh [GRO03a], et cette présente thèse.
Une seconde partie 2.2 présente le MDC ainsi que ses récents développements. Ce modèle exprime
l’idée originale qu’ont eu ces dernières années plusieurs laboratoires, à savoir de coupler les simulations
par dynamique des dislocations avec une méthode classique des éléments finis. La première, physique,
connaı̂t des faiblesses dans son traitement des conditions aux limites. La seconde, mécanique, souffre
quant à elle de justifications physiques dans les lois de comportement qu’elle intègre. La simulation
hybride ainsi réalisée combine les avantages des approches discrètes (description physique de la plas-
ticité) et continue (traitement des conditions aux limites). Cette méthodologie située au carrefour entre
les approches du physicien métallurgiste et celle du mécanicien a été améliorée et est détaillée dans cette
partie.
Une troisième partie 2.3 est dédiée à la validation du nouveau code MDC avec ses améliorations à travers
plusieurs configurations modèles de dislocations pour lesquelles une solution de la théorie élastique des
dislocations existe. Plusieurs calculs ont permis de valider cette nouvelle version du MDC. Par exemple,
des calculs ont montré l’aptitude du modèle à reproduire avec une grande précision le champ de con-
trainte interne d’une boucle dipolaire, le calcul de la contrainte d’activation d’une source de Frank-Read
(calcul quasi-stastique), ou les interactions à courtes distances des dislocations par la formation d’une
jonction (calcul de contact).
La quatrième et dernière partie 2.4 illustre deux applications du MDC consacrées à la plasticité des
superalliages monocristallins. Dans un premier temps, le mécanisme de déformation produit par cisaille-
ment des précipités γ′ de dislocations appariées a été implémenté. Après une étude d’influence sur le
calcul de la contrainte d’écoulement de paramètres physico-chimiques (contrainte de friction, énergie
d’antiphase) ou microstructuraux (largeur des couloirs de matrice, fraction volumique), le MDC a été
utilisé pour simuler les effets de la largeur des couloirs de matrice et de l’orientation du chargement sur
le comportement mécanique. Cette partie montre la force du MDC lorsqu’il est appliqué à des problèmes
traitant la plasticité confinée.
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2.1 Principles of 3D dislocation dynamics simulations

2.1.1 Introduction

The idea of simulating the dynamics and interactions of dislocation lines in an elastic continuum in
order to study the plasticity of crystals is now 40 years old. In the early times, simulation methods have
been applied to simple situations, for instance the motion of a single dislocation line through a random
distribution of point obstacles representing either forest dislocations or small precipitates (see figures 15
a and b). In the last 10 years, a substantial improvement of the range and realism of such simulations has
been made possible by the increase in computing power. Thus, today, one can compute the collective
properties of large numbers of dislocations (e.g. several hundreds of lines) in sufficiently large model
crystals, with typical linear dimension of about 15 µm. This allows direct comparisons between real and
”in silico” experiments. The concept of 3D DD simulations was initiated by Kubin and Canova in the
early 1990s [KUB90a] [CAN91]. These simulations are now reasonably mature, and are currently the
most advanced 3D technique for the modelling of collective dislocation behaviour [KUB92] [VER98]
[ZBI98] [SCH99] [GHO99].

2.1.2 Discretisation of the dislocation lines in fcc crystals

The original code microMégas (mM) [MicroMégas] is a simple model in which dislocation lines of a
fcc single crystal are subdivided into sets of discrete dislocation segments embedded in a continuum. In
DD simulations both space and time are discretised. The discretisation of time is performed just like in
conventional molecular dynamics simulations, whereas the discretisation of space is an original feature
of the code.
Within the elastic continuum, a crystallographic lattice is defined with the same symmetry elements as the
crystal of interest but with larger lattice parameters, in the nanometer range for mesoscopic simulations.
The dislocation lines are then decomposed into chains of successive segments lying on this lattice. As
a consequence, the dislocation segments can only have a finite number of characters and line directions.
For example, a curved dislocation line can be represented as a connected set of discrete dislocation
segments of pure edge and pure screw type. This is why the initial version of the mM code is called the
”edge-screw” model.
Recently, a new topological line model was introduced by adding mixed line directions (e.g. ±60◦

characters in the fcc crystal symmetry) [MAD01]. This model, the so-called ”pure-mixed” model (see
figure 17 a), aims at a more accurate description of a curved dislocation line with a minimum number of
segments [DEV01].

(a) (b)

Figure 17 - Successive snapshots of (a) a lattice-based simulation (”pure-mixed” model, mM code) of a
dislocation-dislocation interaction [MicroMégas], and (b) a nodal simulation of a dislocation-precipitate
interaction [Douin].
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”Nodal” models (see figure 17 b) may seem to be more attractive [GHO00] [WEY01]. However, such
nodal model are much more complex in dealing with topological aspects of segments, because it involves
more degrees of freedom in segment types as compared to the edge-(mixed)-screw model.
The line model used in the following work is the pure-mixed model. The time integration of the dis-
location dynamics in mM proceeds in three main steps. Firstly, the forces acting on all segments are
evaluated within linear elasticity theory. Then, the velocity of segments is determined, and the position
of each segment is then updated, taking into account obstacles and contact reactions on the way.

2.1.3 Computation of dislocation driving force

The velocity of each segment is governed by the effective RSS τeff acting on the segment. This stress
includes four contributions:

∗ The applied stress σapp.

∗ The internal stress field σint due to all other dislocation segments.

∗ The lattice friction τF , assumed to be homogeneous in dislocation glide planes.

∗ The line tension Γ, which tends to straighten dislocation lines.

The contributions of atomistic-level interactions, such as dragging forces by solute atoms or jogs, are not
treated explicitly but can be included by modifying the effective stress or the equation of motion (see
section 2.4.2).

Applied stresses

External stresses are applied in two ways, depending on the boundary conditions involved. In the first
case (conventional DD simulations), the simulation volume represents a small element in a large crystal,
and the external stress field is assumed to be uniform throughout the simulation volume. The external
stress tensor is then directly applied to each segment in the volume and the magnitude of its components
are updated at each step of the simulation.
In the second case (hybrid simulations), the simulation volume potentially includes heterogeneous stress
fields (for instance, a volume with internal interfaces or free surfaces). This point will be discussed in
section 2.2.

Internal stresses

To compute the internal stress at the centre of a segment, the expression of the stress field of a single
finite straight segment is required. This problem has been addressed by Li [LI64]. According to Li, the
stress field of an angular dislocation, consisting of two semi-infinite dislocations joined together at one
point, is the sum of the stress fields of each dislocation arm, i.e. each semi-infinite dislocation. Although
the stress field of each semi-infinite dislocation does not obey the equations of equilibrium, the sum of
both does. Hence, the stress field σij at a point r(x, y, z) due to a dislocation segment AB lying on the
z axis running from zB to zA with Burgers vector b(bx, by, bz) is obtained by

σij(r) = σij(r− rA)− σij(r− rB) (2.1)
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Moreover, if a semi-infinite dislocation lies on the positive z axis running from the origin, O, the stress
field produced at a point r(x, y, z) has the following components [LI64]:

σxx(r) =
−bxy − byx

r(r − z)
− x2(bxy − byx)(2r − z)

r3(r − z)2

σyy(r) =
bxy + byx

r(r − z)
− y2(bxy − byx)(2r − z)

r3(r − z)2

σzz(r) =
z(bxy − byx)

r3
− 2ν(bxy − byx)

r(r − z)
(2.2)

σyz(r) =
y(bxy − byx)

r3
− νbx

r
+

(1− ν)bzx

r(r − z)

σzx(r) =
x(bxy − byx)

r3
− νby

r
+

(1− ν)bzy

r(r − z)

σxy(r) =
bxx− byy

r(r − z)
− xy(bxy − byx)(2r − z)

r3(r − z)2

In equations (2.2), the stress components are given in units of µ
4π(1−ν) with µ and ν the shear modulus

and the Poisson ratio, respectively. The stress field of a dislocation segment AB is then obtained by
substituting r− rA and r− rB respectively into equations (2.2), and using equation (2.1).
On the other hand, the compact formulae of de Wit [DEW67] are given with respect to an arbitrary
Cartesian coordinate system. Devincre [DEV95] derived a final from where the stress field associated
with a straight segment between two points A and B is calculated by

σAB
ij (r) =

µ

πY2

[
[bYt]ij −

1
1− ν

[btY]ij −
(b, Y, t)
2(1− ν)

(δij + titj + φij)
]B

A

(2.3)

where

φij =
2

Y 2

(
ρiYj + ρjYi +

L

R
YiYj

)
L = R.t
ρ = R− Lt (2.4)

Y = R + Rt

[bYt]ij =
1
2

[
(b⊗ Y)i tj + (b× Y)j ti

]
with (b, Y, t) the scalar triple product, δij the Kronecker symbol, t the unit vector along the line direction
of the segment, and R the vector from the point A or B of the segment to the point r.
According to equations (2.2) and (2.4), figure (18) shows the computation of the stress fields in a normal
plan cutting the centre of an edge (figure 18 a) and a screw segment (figure 18 b) of length 0.5 µm.

Lattice friction

The lattice friction refers to the critical RSS required to start a dislocation glide in a perfect crystal. This
arises as a direct consequence of the periodic structure of the crystal lattice and acts as a friction to dis-
location motion. In the DD simulations, which do not treat atomistic effects explicitly, the lattice friction
is phenomenologically taken into account as a back stress τF opposing the motion of each segment (see
equation 2.9) [MON06].
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(a) (b)

Figure 18 - Computation of the stresses σij of a dislocation segment on the plane normal to the line
direction. The stress profiles show a minimum value in black (-20 MPa for all components on the main
diagonal of σij and -5 MPa for the off-diagonal terms) and a maximum value in white (20 MPa for all
components on the main diagonal of σij and 5 MPa for the off-diagonal terms) for (a) an edge and (b) a
screw dislocation segment.

Line tension

In DD simulations, as a result of the line discretisation with straight segments, the continuous curvature
of dislocations is locally replaced by straight line sections, and so a force correction (i.e. the line tension)
is needed to account for the exact elastic energy of the continuous curved line. The line tension T (θ)
creates a force Γ = T (θ)

bR along the centre of a dislocation arc with a radius of curvature R. T (θ) is given
by the energy E(θ) of the dislocation arc with θ the angle between the Burgers vector and the dislocation
line direction:

T (θ) = E(θ) +
d2E(θ)

dθ2
(2.5)

The simplest form of the line tension would be obtained by assuming that edge, screw and mixed seg-
ments would have the same energy per unit length, i.e. E = αµb2 with α a numerical constant. The line
tension of an arc of dislocation then becomes Γ = αµb

R from equation (2.5).
However, the energy of a dislocation is dependent on the character: for instance, a screw dislocation has
lower energy than an edge dislocation. To include this variation of the energy with character of the seg-
ment i, different analytical equations exist. In this thesis, the line tension equation suggested by Foreman
[FOR67] is used:

Γi(θi) =
µbi

4π(1− ν)Ri
(1− 2ν + 3νcos2θi)

[
ln
(

Li

2bi
− νcos(2θi)

)]
(2.6)

where Ri is the radius of a circle defined by three adjoining centre points of segments (segments i− 1, i
and i + 1 in figure 19). Li is the length of the segment i and θi is the angle between the Burgers vector
bi and the dislocation line vector ti at the midpoint of the segment i.
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Figure 19 - Geometry of the line tension calculation.

Effective stresses

After the applied stresses σapp and the internal σint are computed, the effective stress applied on each
dislocation is evaluated at the midpoint of each of its segments. This induces a force per unit length given
by the Peach-Köhler (PK) equation:

FPK, i = τPK, i |bi| =
[
(σint + σapp) .bi

]
× ti =

 N∑
j=1,j 6=i

σj
int + σapp

 .bi

× ti (2.7)

where N is the total number of segments, and σj
int the stress tensor due to a remote segment j. In DD

simulations, most of the CPU time is devoted to evaluating equation (2.7) because this implies O(N2)
computations of the internal stress tensors, and the number of segments N generally increases with
time. Thus, many efforts have been carried out in optimising the calculation of the internal stresses.
For instance, these optimisations can be improved by using parallel calculations which are now a com-
mon option in most DD codes [SHI06], and a fast multipole decomposition leading to O(N ) operations
[WAN04].
The effective stress τ i

eff is then computed by summing τPK, i and the line tension of segment i as

τ i
eff = τPK, i + Γi (2.8)

2.1.4 Dislocation motion

Dislocation mobility depends on the applied shear stress and temperature. It varies with the crystal
purity and the dislocation type. There are a number of relations between glide velocity and the effective
stress, including power law forms and expressions with an activation term in an exponential function to
represent the temperature-dependency [KOC75]. Here, a simple power law form v ∝ (τeff )m is used to
compute the dislocation velocity. A linear form of the equation, m = 1, is commonly adopted where the
magnitude of the velocity vi = ‖vi‖ of a segment i is given by

vi =


0 if τF > τ i

eff[
τ i
eff − τF sign (τ i

eff )
]
bi

B
if τF < τ i

eff

(2.9)

with the constant lattice friction stress τF , the phonon drag coefficient B, and the effective stress τ i
eff on

the segment i defined by equation (2.8).
Using the velocity of a segment defined by the equation (2.9), the next position of the segment xi (tn + ∆tn)
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is obtained by neglecting inertial effects:

xi (tn + ∆tn) = xi (tn) + vi∆tn (2.10)

where xi (tn) is the position at time tn and ∆tn = tn+1 − tn is the time increment.

2.1.5 Plastic strain due to dislocation glide

The plastic strain in a simulated volume is determined by summing up the slipped area of each slip
system g. The slip increment ∆γg is computed as1

∆γg =
|b|∆Ag

V
(2.11)

with V a reference volume, which is the total simulation cell in conventional DD simulations, and ∆Ag

the area swept by all mobile dislocations of the slip system g during a time increment ∆tn. ∆Ag is then
defined as

∆Ag =
N∑

i=1

Livi∆tn (2.12)

where the summation is done over all the segments of the system g and Livi∆tn is the area of glide of
a segment i with length Li and velocity vi. The components of the plastic strain tensor are given by
equation (1.21), i.e.

∆εp
ij =

12∑
g=1

1
2

(
ng

i b
g
j + ng

jb
g
i

)
∆γg (2.13)

with ng
i and bg

i the component i of the slip plane normal and of the Burgers vector of the slip system g,
respectively.

2.1.6 Dislocation-dislocation reactions

During dislocation glide, a segment can encounter and react with other segments and obstacles. An
important task of the simulation is then to search any possible reaction with other segments and obstacles
within the virtual glide area of the gliding segment, which is defined by the length of the segment Li and
the free flight distance vi∆tn. The type of reaction is determined by local rules accounting for different
possible reactions between dislocation lines. The dislocation-dislocation reactions are categorised as
either coplanar reactions in which two segments glide on the same plane, or non-coplanar reactions in
which two dislocation segments glide on different planes.
For the coplanar cases, those reactions of two segments with the same Burgers but opposite line direction
end up with the annihilation reaction. In that case the two line sections in contact are deleted and the
links of the remaining segments are rebuilt. In case of the same sign, no additional special rule is required
because the interaction is elastically repulsive.
As introduced in table (1.2) where junctions formed between slip systems were tabulated by ai, five
contact reactions between two segments of Burgers vectors b1 and b2 are considered here:

1. The interaction between two coplanar segments (a1) for which b1 6= b2.

2. The Hirth lock (a2) between two segments gliding on non-coplanar planes for which b1 ⊥ b2.

1Compare equation (2.11) with (1.24).



2.1 Principles of 3D dislocation dynamics simulations 47

3. The collinear interaction (a3) of a segment with a segment on its cross-slip system for which
b1 = b2.

4. The glissile junction (a4) for which b1 + b2 is glissile on either planes.

5. The Lomer-Cottrell lock (a5) for which b1 + b2 is sessile on either planes.

In DD simulations the simple energy criterion defined by Frank’s rules is not required. Instead, the
dislocation dynamics is explicitly solved, and junction formation is a dynamical process controlled by
junction zipping and unzipping. This more general approach is critically needed in 3D calculations,
as illustrated by the comparison between the predictions of molecular dynamics and DD simulations
[BUL98].

2.1.7 Cross-slip of screw segments

The cross-slip of a screw segment is initiated in a stochastic manner, accounting for its thermally activated
character. A cross-slip probability P i over each time step ∆tn is computed using the equation

P i = β
liscrew

l0

∆tn
∆t0

exp
(

V cs |τPK, i| − τ III

kBT

)
(2.14)

where β is a normalisation coefficient, liscrew is the length of the particular screw segment i, l0 = 1 µm,
∆t0 = 10−9 s, V cs is the cross-slip activation volume, τPK, i is the RSS in the cross-slipped system of
the segment i and τ III is a threshold stress. Details on the modelling of cross-slip process in the mM
code can be found in [DeS07].

2.1.8 Boundary conditions

In order to compare simulations to experiments, it is desirable to build a simulation volume representative
of a small element taken out from a large crystal, possibly including internal interfaces due to grains or
precipitates. For this reason two kinds of boundary conditions are used in DD simulations, and this
section is dealing with Periodic Boundary Conditions (PBC) and internal interfaces.

Periodic boundary conditions

For the so-called massive simulations (i.e. with high dislocation density), PBC are needed in order to
ensure that dislocation fluxes are balanced at the boundaries of the simulation cell to avoid undesirable
size effects due to finite dimensions and artificial dislocation losses. Madec et al. [MAD04] have reported
that portions of dislocation loops self-annihilate with replicas having emerged after a certain number of
boundary crossings. This self-annihilation (of which an example is shown in figure 20) reduces the
mean free path of dislocations and consequently affects the density of mobile dislocations, their storage
rates and, hence, both microstructure arrangements and strain hardening properties. The artefact of self-
annihilation can be controlled by using an orthorhombic simulation volume [MAD03] [MAD04].

Internal interfaces

In polycrystals, grain boundaries act as obstacles to dislocation motion, leading to dislocation pile-ups or
absorption of these dislocations by the grain boundary. In DD simulations, simple geometrical barriers
to dislocation motion blocking all segments under a critical stress at the internal interfaces are one way to
account for their presence. When applied to dislocation-precipitate interactions, this can be considered
as a first-order approximation in the sense that elastic interactions between dislocations and interfaces
are not taken into account.
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Figure 20 - Direct self-annihilation of a Frank-Read source in a cubic crystal with periodic boundary
conditions.

2.1.9 Limitations

The fact that the boundary conditions of real crystals may be complex, especially when internal interfaces
are to be accounted for, is one limitation of conventional DD simulations. In the following, several of
these limitations are listed, and effort is needed to overcome them.

Uniform applied stress

It is generally assumed that the loading conditions create uniform stresses inside the computational cell.
Strong approximations have to be adopted to account for the conditions of mechanical equilibrium at
boundaries. The simplest possible approximation is (for instance, for the case of free surfaces) the
”image force” approximation, based on a modification of the dislocation energy, when a dislocation line
intersects a boundary [DEV96].

Internal state of stress

A second level of approximation consists of solving the boundary value problem in a purely elastic
manner and then running the DD simulation with the assumption that this solution is not modified much
by the presence of dislocations. Such an approach might apply reasonably well when the plastic strain is
a small fraction of the total strain [CHI02].

Long-range stress

Long-range interactions are governed by the stress generated by the dislocations themselves, which is
obtained by solving the elastic boundary value problem of the domain containing the dislocations. Nu-
merically efficient formulations for the stress fields of straight dislocation segments are only available for
the case of an isotropic and infinite medium. As a consequence, the boundary conditions used in most
published works are not exact, and the long-range nature of the dislocation stress field is not rigorously
taken into account [DEN08].

More rigorous boundary conditions need to be implemented to treat more general cases, such as a crystal
with free surfaces, a crystal containing particles of a second phase or a polycrystal containing grain
boundaries. To tackle these difficulties, several methods have been proposed.
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2.2 A solution for boundary value problems in DD simulations

2.2.1 Introduction

Over the years, different methods have been developed to calculate the state of mechanical equilibrium
in a dislocated finite body. These methods are based on the superposition principle, the eigenstrain
formalism, or recently the XFEM approach.

The superposition principle

One class of DD methods is based on the superposition of analytic solutions for the mechanical fields
generated by a dislocation in an infinite medium and an elastic solution of a modified boundary condition
problem in the finite body without dislocations. Van der Giessen and Needleman [VAN95] modified this
approach in order to take into account elastic inclusions (not presented here).
For the determination of these fields, the basic idea is to exploit the known singular solutions in an infinite
continuum, and to use superposition to correct for boundary conditions, as illustrated in figure (21). The
displacement, strain and stress fields are decomposed as

ui = ũi + ûi

εij = ε̃ij + ε̂ij (2.15)

σij = σ̃ij + σ̂ij

The ( ˜ ) fields are the superposition of the singular fields of the individual dislocations in their current
configuration, but in an infinite continuum. Writing σ̃k

ij for the stress associated to dislocation k, the
stress field due to all dislocations is obtained as σ̃ij =

∑
k σ̃k

ij . The actual boundary conditions, in terms
of prescribed displacements u0

i or tractions T 0
i = σijnj , are imposed through the ( ˆ ) fields, in such

a way that the sum of the ( ˜ ) and the ( ˆ ) fields in equations (2.15) gives the solution satisfying all
boundary conditions. In addition, the ( ˆ ) fields, often called image fields, may be solved using a FE
method [VAN95] [FIV99].
The basic objective is to enable an accurate description of the dislocation-dislocation interaction. An
issue addressed by Weygand et al. [WEY01] is that the classical linear elastic solution of dislocation
fields is singular along the dislocation lines, which poses a numerical difficulty on the boundary in a FE

Figure 21 - The superposition principle. The problem is decomposed into the problem of interacting
dislocations in the infinite continuum ( ˜ fields) and the complementary problem for the finite body
without dislocations (ˆor image fields).



50 The Discrete-Continuous Model

problem. Tang et al. [TAN06] presented a boundary value problem formulation for the image field, in
which the singular part of the traction of the image field is treated analytically while the rest of the image
field is computed by applying a non-singular correction using the FE method.

The eigenstrain formalism

Another method, which considers a dislocation loop as a thin plate-like inclusion causing eigenstress in
an elastic medium, has been first used in DD simulations by Lemarchand et al. [LEM99a] [LEM99b]
[LEM00] [LEM01] and subsequently by Groh et al. [GRO03a] [GRO03b] [GRO04]. This hybrid
DD−EF model is based on a coupling between a FE code where the usual constitutive law is replaced
by a mesoscopic DD simulation. It aims at computing equilibrium conditions both inside the volume
and at its external or internal interfaces. The plastic strain increments calculated by DD simulations are
imposed at the Integration Points (IP) of each plastic domain of the FE model through a regularisation
procedure [LEM01] [DEV03]. This procedure stands at the core of the connection between the two
codes, because the regularisation of the elementary shears induced by the motion of individual disloca-
tions constitutes the basic information transmitted from the DD simulation to the FE simulation. This
hybrid model, called the Discrete-Continuous Model (DCM) is explained in detail in section 2.2.2.
Comparable solutions using an eigenstrain description of the dislocation are used in other simulation
techniques. In the phase field method, the eigenstrain formalism of plastic deformation has already been
used in the modelling of phase transformations [ROD01] [WAN01] [ROD03].
Other methods are the level set method in which the dislocation lines are represented in 3D by the inter-
section of two level set functions [XIA03]. Both models (i.e. phase field and the level set methods) are
resolved with fast Fourier transforms, though in principle they can be solved with standard FE.

The XFEM approach

Recently a new FE method has been developed for the modelling of dislocations [BEL07] [GRA07]
[GRA08]. The method falls in the class of eXtended FE Methods (XFEM), where the local features of
the solution are added to the standard FE approximations. It is straight-forward to apply it to problems
with internal boundaries and material interfaces. In this method, the dislocation is modeled by a line or
surface of discontinuity, and the PK force is directly computed from the FE stress field, with a higher
degree of accuracy when compared to classical FE solutions. Nevertheless, a current limitation of this
method seems to lie in the interactions between dislocations at short distances.

In the present thesis, the eigenstrain formalism has been used for DD simulations via the DCM. This
hybrid model has already been used to study plastic relaxation in heteroepitaxial thin films [GRO03b],
plastic deformation in metal matrix composites [GRO04], and compression tests in a micro-pillar of
copper [LIU09]. The method will now be enriched for plastic deformation in the γ/γ′ superalloys, as
will be shown later on in section 2.4.

2.2.2 Eigenstrain formalism of the boundary value problem

In the eigenstrain approach, material defects are modeled using equivalent incompatible stress-free strain
distributions called the eigenstrains [MUR87]. Applied to dislocations, the idea stems from the fact that
dislocation loops can be described as a set of thin plate-like coherent inclusions, as first pointed out by
Nabarro [NAB51]. The eigenstrain tensor ε00

ij has the form of a dyadic product of the components i of
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Figure 22 - A dislocation loop of radius R represented by a thin coherent inclusion with the stress-free
strain given by equation (2.16). n is the normal to the habit plane of the inclusion, coinciding with the
slip plane normal, b is the Burgers vector of the dislocation loop, and h is the thickness of the inclusion.
For a crystal dislocation, the distance h is equal to the interplanar distance.

Burgers vector b and the components j of the unit vector n normal to the slip plane:

ε00
ij =

binj

h
(2.16)

where the proportionality coefficient h is the interplanar distance, corresponding to the height of the
eigenstrain plate. Figure (22) schematically shows a plate-like coherent inclusion Φ representing a dis-
location loop of radius R. The habit plane is parallel to the slip plane. Any dislocation loop can be
modeled as a platelet inclusion, bordered by the dislocation loop with a stress-free strain expressed by
equation (2.16). This is formally equivalent to replacing one dislocation by a continuum distribution
of parallel infinitesimal dislocations. Outside the sheared volume, such distributions well reproduce the
elastic fields of real dislocations [KHA83] [KRO94].
In DD simulations, the general eigenstrain problem in a dislocated finite crystal is stated as follows: find
the displacement, the elastic strain and the stress fields compatible with an arbitrary eigenstrain distri-
bution. Under the external traction and displacement boundary conditions, T and U respectively, the
boundaries of the eigenstrains, i.e. the dislocation lines, move to minimise the total energy.
Consider, as in figure (23), a polycrystalline volume Ω which may contain several phases Ωk such that
Ω =

⋃
Ωk. Here nΩ denotes the unit outward normal vector on the boundary of Ω.

Figure 23 - Statement of the mechanical problem of a dislocated polycrystal. A description of all quan-
tities can be found in the text. At mechanical equilibrium, all fields must satisfy equation (2.17).

In this example, each phase Ωk represents a different case with respect to the eigenstrain distribution:

∗ A dislocation-free phase Ω1.

∗ A dislocated phase Ω2 where each dislocation i is represented by a coherent platelet inclusion
Φi. Within Φi (of constant thickness h as in figure 22) an eigenstrain field exists. Outside the
inclusions Φi and at their boundaries ∂Φi, the eigenstrain is by definition equal to zero. This is
illustrated for instance by the dislocation loop Φ1.
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Cross-slip (see Φ2) requires precautions for the associated procedure of the localisation of the
eigenstrain in the FE mesh. Moreover, the phase Ω2 may contain dislocation loops Φ3 which reach
an external free surface.

∗ Phase Ω3 contains another source of eigenstrain such as the precipitate Ω4. In some cases, Ω4 is
considered as an elastic inclusion with the dislocation loop Φ4 blocked at the internal interface
∂Φ4. In other cases, Ω4 might also be plastically deformed. In that case, the interface is penetrable
and the dislocation loop Φ5 enters and glides from the phase Ω3 into Ω4.

The domain Ω can be subjected to tractions T prescribed at the boundary Sf , and displacements U at the
boundary Su. Locally, the boundaries may also include a plastic displacement uP induced by dislocations
that moved out the volume Ωk in an earlier deformation stage. In addition, when a volume Ωk is sheared
by several dislocations j, the associated eigenstrain is denoted by εp =

∑
j εp

j .
In the limit of infinitesimal deformations considered in the present work, the total strain εij is regarded
as the sum of elastic strain εe

ij and eigenstrain εp
ij (see equation 1.9). The equilibrium state of the total

volume is described by the mechanical fields that must satisfy equations (2.17) in every region of the
simulated continuum Ω \

⋃
Φi:

εij =
1
2
(
ui,j + uj,i

)
σij = Cijkl εe

ij = Cijkl

(
εij − εp

ij

)
σij,j = 0 (2.17)

σijnΩ j = Ti at Sf

ui = Ui at Su

The first equation of (2.17) gives the strain-displacement relationship. The elastic strain is related to stress
σij by Hooke’s law, expressed by the second equation. The third equation of (2.17) gives the equations of
stress equilibrium completed by specification of the boundary conditions for external tractions Ti and/or
displacements Ui on the boundary of Ω.
Equations (2.17) are resolved by the FE code with the eigenstrain εp

ij computed by the DD code. The
latter results directly from the movement of dislocations, driven by the stress equilibrated by the FE code.
The numerical coupling between both codes is described in the following sections.

2.2.3 Computational methodology

The DD code accounts for the dislocation dynamics. It also computes the plastic strain generated by dis-
location glide and the associated stress increment, just as any other classical constitutive law. Following
the computational scheme presented in the previous section, the plastic strain is attributed to a coherent
platelet of volume Φi.
The FE code computes the displacement and stress fields, solution of the boundary value problem, using
the plastic eigenstrain distribution given by the DD simulation. For those domains that remain elastic,
for instance Ω1 in figure (23), the FE code can proceed without DD inputs. For multiphase structures,
the local rules for the dislocation dynamics is different for each phase Ωk. For instance different velocity
laws are used in Ω3 and Ω4 in figure (23).
The coupling procedure involves two important steps. First, the stresses calculated at the IP of the FE
mesh are interpolated to those positions on the segments where the PK force is computed. Next, the dis-
placement jumps produced by the resulting motion of the segments are transformed into eigenstrains and
transferred to the FE mesh. The first operation is an interpolation procedure essential to the calculation
of the PK force, whereas the second one is a regularisation procedure (see figure 24).
Numerically, the FE part of the DCM works in a conventional manner except that, at the simulation step
tn, the increments of total deformation ∆εij(tn) are simultaneously predicted for all the IP instead of
sequentially. Similarly, at the end of the time increment, the increment of plastic strain ∆εp

ij(tn) and
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Figure 24 - The coupling between DD and FE consists on (i) an interpolation (FE 7−→DD defines the
stress on dislocation lines) and (ii) a regularisation (DD7−→FE defines the plastic strain field in the solid)
procedures.

the reactions σij(tn+1) are obtained simultaneously from the DD code. In the DCM scheme the stress
state has to be defined at all IP of the FE mesh at the beginning of each time step, because σij(tn) serves
as input for solving the DD part of the model and all dislocation segments move at the same time. The
stresses at the IP of the FE mesh must be interpolated to the segment points where the PK force is defined
in DD simulations. This is discussed in section 2.2.6. Once the forces on all the dislocation segments are
known, a time step is performed by the DD code, which generates an increment of the plastic strain field
∆εp

ij(tn). From ∆εp
ij(tn) generated during the time increment ∆tn, the stresses at step tn+1 = tn + ∆tn

are defined at the IP of the FE mesh:

σij(tn+1) = σij(tn) + ∆σij(tn) , and (2.18)

∆σij(tn) = Cijkl

[
∆εij(tn)︸ ︷︷ ︸

imposed by FE

− ∆εp
ij(tn)︸ ︷︷ ︸

imposed by DD

]
(2.19)

Note that it is also possible to divide the time increment ∆tn imposed by the FE code into K smaller
ones of duration δtn for the DD code according to δtn = ∆tn

K . In that case, the total strain increment
∆εij(tn) is written as ∆εij(tn) = Kδεij(tn) and the stress is updated at the start of each DD increment
k (with k = 1 . . .K) according to

σij(tn + kδtn) = σij(tn + (k − 1)δtn) + δσk
ij(tn) , and (2.20)

δσk
ij(tn) = Cijkl

[
δεij(tn)− δεp

ij(tn + (k − 1)δtn)
]

(2.21)

The way this increment of the eigenstrain field is regularised and associated to the IP of the FE mesh
plays a key role in the DCM. This is discussed in the next section.

2.2.4 Regularisation of the slip

In the DCM scheme, the displacement jump associated to the dislocation loop propagates with the dis-
location line on a specific crystallographic plane direction. It is then distributed over a slab of thickness
h, as shown in figure (22). The small core region of a real dislocation is also included in the slab, and
thus excluded from the elastic continuum, because linear elasticity is not valid there anymore [VAN95].
Here, this corresponds to a tube of radius h

2 around the dislocation line. In other words, the displacement
jump associated to the Burgers vector is spread out over the region represented by the coherent inclusion
Φi of the dislocation i.
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(a) (b)

Figure 25 - (a) Area δA swept by an elementary segment of length δl, and (b) its corresponding homo-
geneous elementary shear strain δγ induced by the displacement δy within an elementary volume Vele.

In the following, the movement of a straight segment2 of length L over a distance vδt is split into smaller
constituents. As illustrated in figure (25 a) this corresponds to a small distance δy that a segment of
length δl can move in DD simulations. The total segment length L is thus written as L = nδl and the
distance vδt = mδy, with n and m integers. The length δl and the distance δy depend both on the
direction of the movement and on the orientation of the segment. The segment of length δl is called
elementary segment. Consider, as illustrated in figure (25 a) the elementary segment of length δl in the
coordinate system specified by the Cartesian frame < = (x, y, z,O). Moving a distance δy, it sweeps an
area δA = δl δy. Moreover, the movement of δl along δy generates an elementary shear δγ (i.e. elemen-
tary eigenstrain). The elementary eigenstrain δγ is calculated with respect to an elementary volume Vele

(see figure 25 b), which is a sphere of radius h
2 centered on the origin of the new elementary segment

position. This incremental shear strain δγ is obtained by (see equation 1.24):

δγ =
b δA

Vele
=

b δl δy

Vele
=

6b δA

π h3
(2.22)

The incremental shear strain δγ in equation (2.22) is then homogeneously distributed to the material
points in the elementary spherical volume Vele (see the grey area in figure 25 b). In a FE mesh the po-
sitions of the material points correspond to the position of each IP. This implies that h must be at least
of the order of the size of the element [LEM99] [LEM01]. This is because if the element size is much
larger than h, it becomes quite probable that Vele does not contain any IP. Note that for these values of h,
Vele automatically includes the core region as well.
Next, the objective is to distribute each elementary eigenstrain generated by the movement of segment i
to the FE mesh by using a sucession of elementary volumes Vele, which together represent the complete
inclusion Φ generated by the slip of a large segment. Formally, this numerical procedure is equivalent to
the regularisation procedure recently proposed by Cai et al. [CAI06].
The recent developments made in the DCM during this thesis in order to optimise this computationally
demanding procedure and to ensure a numerically efficient model are now presented. This is accom-
plished by adopting several approximations in the calculation of δγ in equation (2.22). For that, the
following geometrical entities, associated to a segment AB of length L (see figure 26 a), are introduced:

∗ The elementary volume Vele (with its boundary drawn with solid grey circle), initially located at
the origin A of the segment AB, after its displacement by δy.

∗ The domain D, whose boundary is drawn in dashed grey lines, which is the union of all volumes
occupied by Vele if it would move continuously from A to B along the segment.

2For sake of clarity in this section, only one segment is here considered, so that the index i of the segment has been removed,
i.e. Li = L and vi = v.
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(a) (b)

Figure 26 - Eigenstrain associated to a segment AB of a dislocation line (drawn in red). (a) View of an
Integration Point (IP) inside the sheared domain D. This domain corresponds to the volume occupied by
Vele if it would be moved from A to B along the complete segment AB. One volume χAB is associated
to each IP through an internal length λ as defined in the text. (b) The corresponding heterogeneous
distribution of eigenstrain within χAB where ∆γ is affected to the IP.

∗ The IP drawn with an open square, located by local cylindrical coordinates at
(

h
2 , θ

)
.

∗ The volume χAB associated to one IP, whose plastic shear ∆γ is incremented in steps of amplitude
δγ because of the contributions of several elementary volumes Vele along the segment AB.

Each IP within D receives elementary eigenstrains δγ from those elementary volumes Vele containing
it. The total eigenstrain obtained in this way is denoted by ∆γ. The number of elementary volumes
containing a particular IP (and thus the ∆γ that gets attributed to it) depends on its position within D.
As a result, the distribution of ∆γ at all IP within D is heterogeneous3. For instance, with respect to its
distance to the segment AB, the IP near the line get the maximum values of the plastic shear (shown in
black in figure 26 b) and the IP near the boundary of χAB get the minimum values (shown in light grey).
Now the plastic shear at all IP within D associated to the displacement δy of the segment AB is calcu-
lated. In order to evaluate it, an internal length λ is defined. This length is particular to each IP in D and
represents, when expressed in units of δl, the number of elementary volumes that contribute δγ to the IP
(see figure 26 a). It is equal to (hcos θ), and the associated incremental value of the plastic shear ∆γ of
the IP is then given by

∆γ =
b λ δy

Vele
=

b (hcos θ) δy

Vele
(2.23)

Computing this quantity for each IP inside D is an extensive calculation because it may contain many IP,
the more so for long segments. For this reason, a simplification of the evaluation of ∆γ is proposed. The
aim is to avoid calculating ∆γ for each IP in D, but to affect an average 〈∆γ〉 to each IP instead. As a
consequence, the approximation consists of replacing λ in equation (2.23) by an average distance 〈λ〉.
As illustrated by two extreme cases, λ varies between 0 and h. The two extreme IP locations correspond
to the case where one IP is on the segment AB of the dislocation line and the other at the boundary ofD.
If the IP is exactly located on the segment, the associated length λ is maximum and its value is h (figure
27 a, with θ = 0). The associated plastic shear is then maximum, i.e. ∆γ = ∆γmax. When the IP is on
the boundaries of D, λ is minimum and the value is zero

(
figure 27 b, with θ = π

2

)
. Hence 〈λ〉 is given

by the following integral calculation:

〈λ〉 =
2
h

∫ h
2

0
λ dz =

1
h

∫ π
2

0
h2 cos2θ dθ =

hπ

4
(2.24)

3For sake of clarity in figure (26 b), the heterogeneous distribution is only drawn within χAB but is similar for allD, except
near the extremities of the segment.
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(a) (b)

Figure 27 - Evaluation of ∆γ for two extreme cases. (a) The IP is located on the dislocation segment
AB, and (b) on the boundary of D.

with dz = h
2 cos θ dθ. According to equation (2.23), 〈∆γ〉 is related to 〈λ〉 by

〈∆γ〉 =
b〈λ〉δy
Vele

=
3
2

b δy

h2
(2.25)

The expression (2.25) is an average quantity of equation (2.23) which is calculated once for each segment,
and affected to all IP within D. In comparison with the procedure where ∆γ is calculated by the passing
of Vele for each IP within D, this regularisation procedure offers a considerable gain in terms of CPU
time.
However, the extremities of segment AB need a special treatment. As illustrated in figure (28 a), at each
instant a segment i (i.e. segment AB) is joined to two immobile segments i− 1 and i + 1, i.e. immobile
at least during the calculation of 〈∆γ〉. By definition, an immobile dislocation segment does not generate
plastic shear. Nevertheless, one can see in figure (28 a) that Vele at both extremities affect the immobile
segments i− 1 and i + 1. Thus, precautions must be taken in these regions where the approximation 〈λ〉
is not justified.
Consider V A

ele and V B
ele as Vele at points A and B, respectively. Both volumes are drawn in grey in figure

(28). The position of each point A and B is given in the frame < by their respective vectors cA and cB .
With ζ the unit line vector of the segment, cB = cA + Lζ. In addition, the position of the IP is given
in the frame < by cIP. For sake of clarity, consider only the treatment of V A

ele associated to the point
A. A compatible function is introduced, i.e. compatible in the sense that the plastic shear is continuous
between V A

ele andD\V A
ele. A first order approximation is to use an additional linear regularisation function

inside V A
ele. Equation (2.25) is then modulated by a linear function ΓA varying between 0 if IP is located

Figure 28 - The regularised and compatible function for one segment at its extremities.
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at cIP = cA − h
2ζ, and 1 if IP is located at cIP = cA + h

2ζ. The same treatment is applied for V B
ele with

ΓB , and the final formulation of equation (2.25) including the treatment of the extremities of a segment
is then defined by

〈∆γ〉 =
b〈λ〉δy
Vele

ΓA ΓB =
3
2

b δy

h2
ΓA ΓB (2.26)

where

ΓA =

{ 1
h

min
(
L,
[
cIP −

(
cA − h

2 ζ
)]

. ζ
)

if IP ∈ V A
ele

1 if not
(2.27)

and

ΓB =

{ 1
h

min
(
L,
[(

cB + h
2 ζ
)
− cIP

]
. ζ
)

if IP ∈ V B
ele

1 if not
(2.28)

The function min (L, x) is introduced in equations (2.27) and (2.28) for the particular case of segments
of length L < h

2 . The plastic distortion increment affected to the IP in D due to the movement along δy
of the segment then becomes

∆βp
ij = binj〈∆γ〉 (2.29)

and the corresponding increment of plastic strain ∆εp
ij is given by the symmetric part of ∆βp

ij as

∆εp
ij =

1
2

(
∆βp

ij + ∆βp
ji

)
(2.30)

Each mobile segment in the computational cell is treated in this manner. This treatment is then repeated
for the remaining displacements (m − 1)δy of the segment. Generally, m can be set very small, so
that no optimisation need to be carried out there. The regularisation procedure defined here works well
in handling crystals of any types of symmetry, as will be shown in sections 2.3 and 2.4. Nevertheless,
equation (2.26) must be modified to account for interfaces and surfaces, as will be discussed in the next
section.

2.2.5 Dislocation eigenstrain in the vicinity of interfaces and surfaces

In section 2.2.4, dislocations were considered inside a homogeneous material phase. This is now ex-
tended to dislocations in heterogeneous materials with interfaces and free surfaces (for instance Φ4 and
Φ5 in figure 23) or external free surfaces (Φ3 in figure 23). Two different cases must be considered, as
shown in figure (29 a and b).
In the case of a penetrable interface, dislocations can cross the interface separating two phases Ω1 and
Ω2. In our case, where no residual Burgers vector is left at the interfaces, the eigenstrain must pass con-
tinuously from phase Ω1 to Ω2 (see figure 29 a). A penetration condition has to be fulfiled in the DD code
according to a local constitutive rule which fixes the physical properties of the interface, but otherwise
no special treatment is required and the regularisation procedure defined in section 2.2.4 applies here as
well. The geometry of the interface must be defined in a coherent way in the DD and FE codes. Note
that due to the spherical shape of Vele (drawn in the grey dotted circle in figure 29 a) the plastic shear
remains homogeneous during the glide of the dislocation. In comparison with a rectangular elementary
volume, as used in earlier versions of the DCM [LEM99] [LEM01], the spherical volume does not create
artefacts such as overlap of plastic shear or voids, specially at the interface Ω1/ Ω2. Furthermore, these
artefacts appear when the slip plane changes orientation, for instance when passing an interface between
two grains, or in cross-slip.
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(a) (b)

Figure 29 - Eigenstrain problem in the DCM in the vicinity of phase boundaries. (a) Interaction be-
tween dislocations and penetrable interfaces where b1, n1 and b2, n2 denote the Burgers vectors and the
normal slip planes of Ω1 and Ω2, respectively. (b) Interaction between dislocations and free surfaces or
impenetrable internal surfaces.

The cases of free surfaces and non-penetrable interfaces require a modified calculation of the eigenstrain.
As illustrated in figure (29 b), the eigenstrain must be cut off at the interface, because no plastic defor-
mation exists in Ω2 on the other side of the interface. For both cases, the same treatment is performed,
in which the interface is thought of as a mirror. When an IP within Ω2 (the marked square in figure 29 b)
would be attributed an incremental plastic strain from the regularisation procedure, this plastic strain is
instead associated to its mirror image with respect to the interface (open square). The localisation of the
plate-like inclusion and its corresponding eigenstrain are conserved inside the crystal without affecting
any plastic strain to Ω2 and the eigenstrain remains homogeneous in Ω1. This mirror correction can be
accounted for numerically in an efficient manner by tabulating all IP within Ω1 at a distance h

2 from the
interface and multiplying by two their corresponding eigenstrains.
To conclude this section, the numerical method described above provides a solution for crystals of finite
dimensions. The DCM scheme allows to treat interface problems naturally without introducing compu-
tational costs to account for dislocation interactions with internal and external free surfaces (for instance
micro-crack problems), and dislocation interactions with rigid particles (for instance γ/γ′ problems, see
section 2.4).

2.2.6 Calculation of the stress field

Once equation (2.30) is calculated at every IP of the FE mesh, the stress fields can be obtained as part
of the global solution of the mechanical problem expressed by equations (2.17). From the increment
of the plastic strain field ∆εp

ij(tn) obtained by equation (2.30) at the previous DD step, the incremental
stress field ∆σIP

ij (tn) is calculated at every IP using the explicit scheme of equation (2.19). This stress
is then interpolated to the point of the dislocation segment where the PK force must be calculated. This
interpolation procedure is split into three sub-steps.
The first step is an extrapolation of σIP

ij to the nodes of the FE mesh (see figure 30 a). Each node n of the
mesh receives contributions from the elements to which it is attached. The value of σIP

ij at a given IP, at
position x and at corresponding parametric coordinates Ψe inside the element e, is expressed in terms of
the M interpolation functions Nm(Ψe) for the M nodes attached to the element, and the M (unknown)
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nodal values σNm
ij according to

σIP
ij =

M∑
m=1

Nm(Ψe)σNm
ij (2.31)

Here m corresponds to the local numerotation of the nodes attached to the element. By inversing the
equation (2.31), the unknown nodal values can readily be determined from the solution of the inverse
problem. Thus, for each phase Ωk the stresses defined at the IP are transformed into nodal stresses by
using the inverse shape functions of the element.

(a) (b)

Figure 30 - Extrapolation and interpolation (see figure 24) in the DCM scheme where a dislocation
segment (black segment) of a dislocation line (dotted line), sweeps an area (grey area) located in an
element of the FE mesh. (a) Extrapolation of the stresses calculated at the IP σIP

ij to the value σNn
ij at

node n. (b) Interpolation of the average stress value σ̄Nn
ij calculated at the node n to the midpoint xD of

the dislocation segment.

In a second step, an additional calculation on nodal stress values common to its attached elements, must
be exercised. This is because the shape function used in the first step interpolation does not impose
continuity of the stress field between elements, i.e. the values σNn

ij calculated separately for each ele-
ment to which the node belongs are not necessarily the same. The existence of such a discontinuity in
conventional FE simulation cannot be accepted in the DCM. The DD simulation requires a continuous
description of the stress field in the solid to integrate a continuous motion of dislocations. Hence, to avoid
numerical discontinuities at the boundaries between elements, the second step consists of a calculation
of the average stress value σ̄Nn

ij at each node n.
The third step consists of interpolating the stress σ̄Nn

ij in the usual manner to the points xD where the PK
force on each dislocation segment is calculated. The stress σij(xD) is then calculated by

σij(xD) =
M∑

m=1

Nm(Ψe)σ̄Nm
ij (2.32)

The quality of this interpolation is directly related to the shape functions of the elements used in the FE
simulation. For this reason, the DCM scheme uses quadratic FE elements of 20 nodes and 27 integration
points.
However, it was shown by Groh et al. [GRO04] that for massive simulations involving many disloca-
tions, this procedure is numerically insufficient. The element size is often larger than the mean distance
between dislocations, and the shape function used to interpolate the stress then becomes inadequate to
capture the variations of the stress between interacting dislocations. This is the major limitation of the
model: in some cases with many dislocations, it is not possible to account for the short-distance reactions
between dislocations (see for instance [GRO03b]).
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A simple solution was proposed to overcome this limitation. In the DD code, the analytical self-stress
field σlocal

ij , given by equations (2.3) and (2.4), is superimposed to the stress prediction yielded by the
FE code (equation 2.32) when dislocation segments are at close range. This procedure only includes
segments located in a volume limited to the regularised core region of radius h

2 around the dislocation
line. This correction is essential if one wishes to realistically model dislocation interactions and reactions
at short distances (see for instance section 2.3.3). This part of the DCM calculation is easy to implement
but it significantly increases the computational burden.
To summarise this section, two contributions to the stress field are considered in the DCM calculations:
(i) the long-distance contribution is computed numerically by a FE method supported by the theory of
eigenstrains. In addition, (ii) the analytical expressions for the elastic field of the segments are used
within the regularised eigenstrain volume to take into account the short-distance interactions.

2.2.7 Numerical procedures

The two codes, microMégas and ZéBuLoN, are coupled into a unified system as summarised in figure
(31) to form the Discrete-Continuous Model.

Figure 31 - Summary of the Discrete-Continuous Model.

Both codes run independently, but wait for some input provided by the other one at certain steps of
the computations (see Appendix B for information on the acquisition and the basic handling of the
hybrid code). They are strongly coupled by a quasi-Newton algorithm, i.e. convergence is verified at
every coupled time increment, and the tangent matrix is approximated by the local tensor of elasticity.
In principle, the DCM deals with all possible boundaries, interfaces and dislocations in heterogeneous
materials, which has the following features: (i) at time tn, all fields σ, ε, εp and u are supposed to
be known to fulfil equation (2.17). Then, the displacements u(tn+1) in the crystal under some boundary
conditions is predicted by the FE code. Then ∆ε(tn+1), calculated from the prediction u(tn+1), is passed
to the DD code. There (ii), the stress is determined with equations (2.18) and (2.19), from which the PK
forces for all segments can be calculated to drive the dislocation dynamics. By solving equation (2.10)
and taking into account all possible dislocation reactions and obstacles, the new positions xi(tn+1) of
all dislocation segments i are known. Finally (iii) the plastic shear increments (i.e. the eigenstrains)
∆γi are distributed to the IP and the plastic strain increment ∆εp(tn) during ∆tn can be expressed. The
localised plastic quantities are used to calculate the reaction σ(tn+1) which is then passed back to the FE
code, along with ∆εp(tn). If this stress verifies the mechanical equilibrium, the next increment ∆tn+1

is started, if not, a new Newton-Raphson iteration is started. In practice, due to the fact that the coupled
time step is very small (e.g. 10−10 − 10−12 s for the present simulations), convergence is reached after
only one coupled iteration.
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2.3 Simple test cases and validation of the DCM

2.3.1 Initial dislocation configurations and boundary conditions

As mentioned above, all dislocations in the DCM are considered as plate-like inclusions causing eigen-
strains. This implies that the initial state of dislocation in the simulated volume must consist of closed
dislocation loops. Dipolar loops, i.e. four connected edge segments with the same Burgers vector, are
placed at random positions in each phase, and left to expand. On subsequent loading, the dislocation
lines emitted from the dipolar loops can act as dislocation sources. Figure (32 a) shows a square dipolar
dislocation loop, defined as four {001} edge segments in a (001) slip plane, located in the middle of a
parallelepipedic volume of dimension L3 = 0.48 × 0.50 × 0.52 µm3. In this example, a simple cubic
crystal lattice is considered for reason of simplicity. The FE mesh consists of 16 × 16 × 16 quadratic
elements to which PBC are applied. All segments are initially 0.25 µm long, and the solid is elastically
isotropic with µ = 51 GPa, and ν = 0.37. Figure (32 a) shows the displacement uP caused by the
dipolar loop (the greyscale goes from white for +‖uP ‖ to black for −‖uP ‖).

(a) (b)

Figure 32 - (a) Initial dipolar dislocation loop in a (001) slip plane at the centre of the simulated volume,
discretised by 16×16×16 quadratic brick elements. The Burgers vector of the loop is b = b z = b [001].
Illustration in greyscale of the displacement (the scale goes from white +‖uP ‖ to black −‖uP ‖) due
to the presence of the dislocation segments. (b) Eigenstrain associated to the dislocation loop at the
integration points in the finite element mesh. The regularisation of the eigenstrain discussed in section
2.2.4 delivers a uniform plastic shear field inside the loop.

The initial dipolar loop is created with a Volterra-like process: two edge segments of the same initial
length and with the same Burgers vector but opposite line direction are placed at the same initial posi-
tion. Instead of annihilating, one of the segments is held at its original position, whereas the other is
moved a previously specified distance along its slip direction. The displacement jump created in this
manner is distributed to the IP of the FE mesh as an eigenstrain by the process described previously.
Figure (32 b) shows the eigenstrain εp

21 associated to the plate-like inclusion simulated via this process.
To validate the interpolation procedure of equation (2.32), a stress component calculated with the DCM
is compared to the exact analytical solution (see figure 33 a) for the elastic stress field of the same dislo-
cation configuration. This comparison is performed for the stress component σ31 of two edge dislocation
segments of the dipolar loop. Figure (32) shows σ31 in a cross-section of normal [100] centered on the
dipolar loop inside a periodic volume. The results obtained with the interpolation procedure defined
above are plotted in figure (33 b). Figure (33 c) shows the relative error η between the analytical and
numerical calculation of σ31. As illustrated in figure (33 c), at distances larger than h (the eigenstrain
regularisation dimension), η < 4%. This shows the accuracy of the interpolation procedure described in
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(a) (b) (c)

Figure 33 - Validation of the calculation of the stress field due to the dipolar loop shown in figure (32
a). (a) Stress component σ31 given by the theoretical solution and (b) the corresponding component
computed by the DCM. The magnitude of the stress is represented at the same scale. (c) Relative error
η between both stress components: it shows the areas (marked by thick squares) where the interpolation
procedure fails to yield the correct value. It corresponds to the size of the volume of the regularisation
procedure, here approximatively the size of one element of the finite element mesh.

section 2.2.6. The component σ31 obtained by the DCM fully agrees with the complex solution given by
the elastic theory of dislocations. Nevertheless, in conformity with the discussion of the regularisation
procedure in section 2.2.6, the elastic singularity at the dislocation line is smeared out by the regulari-
sation procedure. Thus, at distances smaller than h, the interpolation procedure fails to yield the correct
stress value, and η is of the order of 60%. This result justifies the short-distance stress field correction
discussed in section 2.2.6. Its benefits at short distances will be illustrated in section 2.3.3.

2.3.2 Frank-Read source

The second test case is the Frank-Read (FR) source mechanism. This simple mechanism illustrates a
way of introducing dislocation sources in the simulations and validates the stress calculation by carrying
out a classical model calculation of the critical stress required to activate the FR source.
One way of creating a FR source in the DCM is to use a dipolar loop, such as the one described in the
previous section (see figure 32), and artificially immobilise three of the four segments. Under loading the
remaining mobile segment will act as a FR source. The critical shear stress for bowing out a dislocation

Figure 34 - The critical shape of an edge Frank-Read source as obtained by the DCM. The eigenstrain
slab εp

31 of thinkness h used in the DCM computation is illustrated (in red): n is the glide plane normal
and b is the Burgers vector. Due to the presence of the eigenstrain, it shows the displacement jump of
value b. Triangular visible facets at some surfaces do not represent the finite element mesh, but are due
to the visualisation software Paraview.
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segment or operating a FR source is a classical benchtest of conventional DD simulations [SCH96]
[GOM99]. Here the critical stress of a FR source of initial length 0.1 µm is calculated with the DCM.
The DCM yields τFR = 116 MPa, whereas the classical DD simulation yields τFR = 113 MPa. The
benchtest shows the accuracy of the hybrid method, and the agreement between both simulations is a
confirmation that the DCM correctly reproduces the stress field of dislocations.
Figure (35) shows snapshots of the FR source operating in a cubic plane in a periodic cell. The snapshots
were taken at increasing time steps. An uniform eigenstrain εp

21 is present inside the dislocation loop.
At each passage of a novel dislocation, the magnitude of the displacement caused by the eigenstrain
increases by one Burgers vector. This test shows the capability of the DCM to describe the uniform
eigenstrain distribution due to each moving dislocation.

Figure 35 - 3D simulation of Frank-Read source under periodic boundary conditions on a cubic plane:
successive snapshots of the cross sections of the operating slip plane (in which the source segment bows
out) show the evolution of the Frank-Read source. At each passage of a dislocation (represented in
greyscale) the shear displacement caused by each dislocation is increased by b. The displacements are
magnified by a factor of 100 for better visualisation.
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2.3.3 Dislocation reactions

This section shows the importance of the contribution of the additional stress σlocal
ij to the DCM, as ex-

plained in section 2.2.6. The aim is to show that the DCM can treat junction formation with accuracy. A
simulation of Lomer junction zipping is carried out. This benchtest is important because short-distance
interactions control many properties of plastic flow such as dislocation patterning and work hardening in
fcc crystals.
Figure (36 a) presents the simulation of two attracting segments with Burgers vectors [1̄10] and [101̄]
respectively, on intersecting octahedral slip planes. Three simulations have been performed with PBC,
using the standard DD simulation (figure 36 b), the DCM with the short-distance correction σlocal

ij (figure
36 c), and the DCM without this local correction (figure 36 d). The results of these simulations are shown
at two instants t1 and teq, with teq > t1. The latter corresponds to the equilibrium (reference) state of
the junction in each simulation. This figure shows that the two attractive segments approach each other
rapidly and that at contact they form a junction segment of type [011̄]. On the one hand, figure (36 d)
shows that no junction has been formed during the simulation. This is due to the local stress field given
by the FE code, which is not in agreement with dislocation theory close to the dislocation line. On the
other hand, as illustrated in figure (36 b and c) the zipping length of the junction for both standard DD
and DCM with the local correction are similar.
In summary, when the short-distance stress field correction discussed in section 2.2.6 is taken into ac-
count, the contact interactions between dislocations are well reproduced. Tests have been carried out to
verify that this is the case for dislocation-dislocation interaction, junction formation, dipole formation,
as well as coplanar dislocation annihilation and cross-slip induced annihilations.

(a) (b) (c) (d)

Figure 36 - (a) Geometry involved in the dislocation-dislocation interaction in simulation of a junction
of two attracting dislocation segments. The results of simulations are shown at two instants, t1 and teq
(teq > t1) for (b) the standard DD simulation, (c) the DCM with the short-distance correction, and (d)
without this local correction.

2.4 DCM studies of plastic deformation in γ/γ′ superalloys

2.4.1 Motivation

This section presents DCM simulations of various (micro)plasticity phenomena in γ/γ′ superalloys.
First, the mechanism of γ′ precipitate cutting by superdislocations, described in section 1.1.3.5, has been
implemented. This is needed to calculate the flow stress of nickel-based γ/γ′ superalloys containing up
to 73 vol.-% of precipitates by DD simulations of a dislocation pair gliding on {111} planes, for temper-
atures up to 850◦C. It is calculated for different composition-related parameters (friction stress and APB
energy), as well as for different microstructural parameters (channel width, precipitate volume fraction
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and the geometry of the intersection of the {111} glide plane with the precipitate). The aim is to set the
simulation parameters in order to reproduce the mechanical behaviour of an industrial superalloy with
high precipitate volume fraction in massive calculations, and to predict the dependence of the Critical
RSS (CRSS) as a function of temperature.
Then, two massive simulations have been carried out at high temperature. The channel width depen-
dence of the flow stress and of the stored dislocation density are investigated at 850◦C. The size effect is
interpreted at meso- and macroscale to highlight precipitate strengthening and the Orowan mechanism.
Finally, the anisotropic mechanical response is analysed with the DCM. At 850◦C, two tensile loading
cases are simulated: one with the [001] axis oriented along the tensile direction, and another with the
[111] axis. The resulting stress-strain curves, stress distributions, interfacial dislocation structures and
basic dislocation reactions underlying the mechanical response are analysed, and the simulated results
are compared with experimental data from the literature.
Even though the sensitive effects of temperature and strain rate on mechanical properties of superalloys
are well-known in the literature, a thermally activated mobility law of dislocations has not been used in
the DCM. Several reasons explain the choice. First, a physically realistic relation between dislocation
velocity and applied stress is difficult to establish due to the lack of knowledge of the thermally activated
mechanisms controlling by dislocation glide, cross-slip or climb in superalloys. Molecular dynamics
may give guidelines to define and adjust such a relationship, but such simulations have not been per-
formed yet. Secondly, the thesis has not been focused on the simulation of the mechanical behaviour
of a crystal nickel-based superalloy over a wide strain rate and temperature, but the interest here is the
dislocation-precipitate interactions at only one temperature (for instance, the stress distributions or inter-
facial dislocation structures within the γ/γ′ microstructure). All the above simulations have been carried
out at 850◦C, where precipitates are assumed to be elastically deformed. That is why a simple linear
dislocation mobility law is used (see equation 2.9), and the strain rates applied for simulations are larger
than the rates performed in laboratory tests.

2.4.2 Dislocations − γ′ precipitates interactions

2.4.2.1 Motivation

The interaction between dislocations and precipitates is a classical case where the determination of plastic
flow cannot always be evaluated by simple superposition rules. This problem appears to be critical when
investigating hardening in γ/γ′ superalloys. Recently, Mohles et al. [MOH99] [MOH01] [MOH04] have
performed numerous two-dimensional DD simulations in which one or a few dislocations glide in a plane
intersected by many coherent precipitates, but at a low volume fraction. Rao et al. [RAO04] [RAO06]
have carried out DD simulations on γ/γ′ superalloys with up to 40 vol.-% of coherent precipitates. In the
later work, special attention was paid to the low-temperature yield stress in the cutting regime of small
precipitates. In order to extend the work of Rao et al. [RAO04], DD investigations are carried out here
for predicting the CRSS in the range of high volume fractions, between 40% and 70%. Their purpose
is twofold. In the first place, ingredients for future massive DCM simulations of γ/γ′ superalloys are
set up and evaluated. Moreover, valuable design guidelines for the development of superalloys and for
determining the influence of the microstructural parameters on the mechanical properties can be obtained
by these simple computer experiments.

2.4.2.2 Strengthening mechanisms

The strength of the γ phase

Plastic yield in superalloys is controlled by the motion of dislocations in the γ matrix channels and their
interactions with γ′ precipitates and other dislocations. In precipitation-hardened alloys, dislocation-
precipitate interactions include Orowan looping (see figure 7 a) and precipitate cutting (see figure 7 b).
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In nickel-based superalloys with high precipitate volume fraction, both mechanisms are observed under
different deformations or microstructural conditions. From the classical review paper of Pollock and
Argon [POL92], the initial microstructure contains dislocations in the matrix, whereas the precipitates
are free of dislocations. Upon mechanical loading, dislocations first move through the channels, thereby
pressing segments of dislocations against the γ/γ′ interfaces.
In the channels, dislocation motion is hindered by the interactions with solute atoms. As mentioned in
section 1.1.3.2, the corresponding chemical force has been calculated and estimated by the corresponding
friction stress at 107 MPa. In the DD simulations here, this solid-solution friction stress is taken into
account through a stress τSS opposing the dislocation motion, and this is considered as the elementary
mechanism controlling the CRSS of the γ phase.

The strength of the γ′ phase

The cutting of coherent intermetallic γ′ precipitates is controlled by glide of 〈110〉 superdislocations
(see section 1.1.3.5). Such superdislocations are pairs of 1

2〈110〉 dislocations (a leading dislocation D1
and a trailing dislocation D2) with a Burgers vector of magnitude b = 0.25 nm. Dislocations D1 and
D2 delimit an APB several nanometers wide [NAB97]. As mentioned in section (1.1.3.5), when the
leading 1

2〈110〉 dislocation glides through the γ′ phase, it destroys the L12 order in the glide plane, thus
creating an APB [POP84]. The subsequent trailing dislocation moving on the same glide plane restores
the initial L12 structure according to reaction (1.2). The APB of energy density γAPB created behind the
first dislocation D1 exerts a drag stress τAPB = −γAPB

b on it. This is sufficiently strong to stop it from
penetrating any further into the coherent precipitate. The opposite is true for a second trailing dislocation
D2, with τAPB = +γAPB

b , i.e. it can enter into the precipitate at lower applied stress.

2.4.2.3 Computer simulations

The L12 alloys exhibit an anomalous temperature dependence on the flow stress (see figure 8 b). Takeuchi
and Kuramoto [TAK71] [TAK73] first proposed that such a yield stress anomaly, observed experimen-
tally for Ni3Ga, could result from cross-slip from octahedral {111} glide planes onto the cubic {010}
planes of screw character dislocations, the KW locking [KEA62] [THO70]. Subsequently, their model
was revised by Paidar et al. [PAI84] for Ni3Al. Currently, a variety of microstructural models is available
for the positive temperature dependence of the flow stress anomaly in L12 alloys [NAB97]. KW locking
is often assumed to take place in the superalloy precipitates, even though this is still the subject of some
debates. Recently, Demura et al. [DEM07] revisited this problem and proposed a simple formulation
accounting for the dynamics of dislocation multiplication and immobilisation by KW locks. In the latter
process, the entire segment cross-slips in one thermal activation event, and thus the activation enthalpy
for the KW locking event is a function of the screw segment length. This model provides a simple way to
reproduce the positive temperature dependence of the flow stress and is therefore adopted in the present
work.

Demura et al. model of the yield stress anomaly in Ni3Al

Following previous studies of Hirsh [HIR92] and Vessyière et al. (see the review [VEY98]), in the
recent model proposed by Demura et al., the yield stress is assumed to be governed by the expansion
of the superkink lying between the long KW locks. Figure (37) is a schematic illustration of superkink
motion in the model [DEM07]. The superkink AB expands as shown by the arrows 1 7−→ 3, and the
screw segment is locked by the KW mechanism at the position 4, where two superkinks AC and DE are
produced. If the newly produced superkinks can expand, plastic deformation can continue. Based on the
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Figure 37 - Superkink expansion and KW locking [DEM07].

analogy of the FR dislocation source, the stress necessary for superkink expansion is given by

τ =
2E

hb
(2.33)

where h is the height of the superkink, and E the line energy of dislocation per unit length. Here E is
approximated by E = 1

2µb2. By substituting E into the equation (2.33), the mean height of the superkink
is approximated by

h =
µb

τ
(2.34)

From equation (2.34), a superkink with a height larger than h can expand under a given stress τ . In figure
(37) the height h of the superkink AC is equal to the travel distance of the screw segment until the KW
locking occurs. That is, h is given by the product of the velocity of the screw segment vscrew and an
interval between the KW locking events

h =
vscrew

f
(2.35)

where f is the KW locking frequency per unit time, equal to the inverse of the interval between the KW
locking events. In addition, vscrew is here assumed to be similar to the expression (2.9)

vscrew =
τb

B
(2.36)

with B a drag constant. From equations (2.35) and (2.36), the height of the superkink AC is obtained as
follows

h =
b

fB
τ (2.37)

The height of the superkink AC should be larger than the height given by the expansion condition for
continuous plastic deformation, which gives a critical condition in the Demura et al. model. That is, the
critical stress for continuous plastic deformation, τKW and the critical height hc of superkink during the
deformation are obtained from equations (2.34) and (2.37) as follows

τKW =
√

µBf (2.38)

and by substituting equation (2.38) into (2.34), hc is obtained as

hc =
√

µ

Bf
b (2.39)
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Constant parameter Symbol Value Unit
Magnitude of Burgers vector b 2.5 ×10−10 m

Shear modulus µ 51 GPa
Boltzmann constant k 8.67 eV.K−1

Debye frequency fD 1×1013 s−1

Fitting parameter Symbol Value Unit
Damping constant B 1×10−4 Pa.s

Driving force for KW locking ED 127 mJ.m−2

Energy barrier for KW locking H 0.32 ev

Table 2.1: Constants and fitting parameters used in the Demura et al. model.

In addition, the KW locking frequency f is given by

f = f0exp
(
−∆H0

kT

)
(2.40)

where f0 is a reference frequency, k the Boltzmann constant, T the temperature and ∆H0 the activation
enthalpy. The latter activation enthalpy is given by

∆H0 = H − b2ED (2.41)

where H is the energy barrier for cube cross-slip which corresponds to the Peierls potential for the cube-
slip system. ED is a driving force for cube-slip per unit area, which is a critical parameter for the yield
stress anomaly [YOO86]. f0 depends on the thermally activated process, e.g. the length of the dislocation
ls which is thermally activated, and is given by

f0 =
b

ls
fD (2.42)

with fD a Debye frequency factor. As shown in figure (37), the screw segment length ls depends on the
curvature of the expansion dislocation arc. Demura et al. express the screw segment length as a function
of the critical stress τKW as follows

ls =
2b

3

√
6µ

τKW
− 1 (2.43)

Moreover, by substituting equations (2.40) and (2.42) into equation (2.38), the temperature dependence
of the critical yield stress τKW is given by (see for details [DEV97] [DEV99] [DEM07])

τKW =
√

µBfD
b

ls
exp

(
−∆H0

2kT

)
(2.44)

The equation (2.44) clearly shows the positive temperature dependence of the yield stress. The free
parameters B, ED and H of equations (2.41) and (2.44) have been identified using experiment measure-
ments of the RSS of Ni3Al4. All constants and fitting parameters are summarised in table (2.1). The
model gives the superkink height for sustainable plastic deformation hc by equation (2.39). Figure (38)
shows the temperature dependence of hc calculated from the obtained parameters in table (2.1) accord-
ing to equations (2.39) and (2.40). The superkink height decreases from 0.28 µm at 297 K to 0.03 µm
at 1120 K with increasing temperature because the KW locking frequency increases with temperature.

4Unpublished data: internal research report.
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Figure 38 - Calculated and experimental CRSS versus temperature. In addition, superkink height calcu-
lated from the fitting parameters listed in table (2.1) according to equations (2.39) and (2.40).

Such superkink heights are consistent with TEM studies [JUM94].
According to equation (2.44), the CRSS can be evaluated as a function of temperature (see figure 38)
using the parameters listed in table (2.1). Note that the calculated values are in fairly good agreement
with the experimental values below the peak temperature.

Dislocation dynamics simulations

The local simulation rules employed in the simulation to account for the formation and destruction of
KW locks are duplicated from previous work on Ni3Al plasticity by Devincre et al. [DEV97] [DEV99].
Only the expression (2.44) for the KW unlocking stress τKW has been changed in order to be consistent
with the Demura et al. model.
The movement of each dislocation segment is controlled through an effective shear stress τeff which
originates from several different contributions:

∗ An applied resolved applied stress τapp accounting for the mechanical loading.

∗ A solid-solution friction stress τSS (γ phase only).

∗ A KW unlocking stress τKW (γ′ phase only).

∗ A configuration stress τAPB accounting for APB creation or recovery (γ′ phase only).

∗ An internal stress τint accounting for the elastic dislocation-dislocation interactions.

∗ A line tension term Γ imposed by the discretisation of the line curvature.

For each dislocation segment, its free glide velocity v during one simulation step is determined by equa-
tion (2.9), i.e.

v =

 0 if τF > τeff[
τeff − τF sign (τeff )

]
b

B
if τF < τeff

(2.45)

where B is set to 1.10−4 Pa.s and τF is a constant friction stress defined by τF = τSS in the γ phase,
and τF = τKW in the γ′ phase. The effective stress given by equation (2.8) is thus rewritten as

τeff = τapp + τint + τAPB + Γ (2.46)
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w (µm) l (µm) w + l (µm) f (%) CRSS (MPa)
0.065 0.580 0.645 73 326
0.065 0.330 0.395 58 266
0.065 0.200 0.265 42 211
0.115 1.050 1.165 73 282
0.115 0.580 0.695 58 225
0.115 0.350 0.465 42 173
0.170 1.550 1.720 73 219
0.170 0.850 1.020 58 167
0.170 0.510 0.680 42 121

Table 2.2: Geometrical characteristics as defined in figure (39) for the different simulated volumes, and
the resulting CRSS for γAPB = 320 mJ.m−2 and τSS = 107 MPa.

Figure 39 - Drawing of the cubic simulation cell with one γ′ precipitate (dark grey) and two replicas
illustrating the symmetries imposed by periodic boundary conditions: w is the width of the γ channels,
l is the cube edge length of precipitates, and w + l is the edge length of the simulated cell. The two
types of (111) slip planes considered in section 2.4.2.4 are shown, respectively an equilateral triangular
intersecting plane (1), and a hexagonal intersecting plane (2). A pair of dislocations is also show on plane
(1). As shown in the inset, neighbouring triangular intersections alternatively point up or down.

where Γ is the line tension term [FOR67] given by equation (2.6). Note that τSS = 0 inside the precipi-
tate and τKW = τAPB = 0 in the matrix channels.
The periodic simulated volume is shown in figure (39). It contains one γ′ cubic precipitate of edge length
l surrounded by thin γ channels of width w. The edge length of the simulated volume equals w + l and
the volume fraction of precipitate is denoted f . The different geometries of the simulated volumes used
in this study are listed in table (2.2). In addition, the following simplifying hypotheses are adopted in
both phases: the elasticity is isotropic with shear modulus µ = 51 GPa and Poisson ratio ν = 0.37.
Also, only simple glide is considered without cross-slip or climb. All simulations were carried out at
room temperature, except those presented in section 2.4.2.4 where the temperature dependence of the
flow stress is specifically investigated. All simulations have been performed in a quasi-static regime in
which dislocations are pushed slowly against the γ′ precipitate. Dislocation lines are discretised into
segments with a maximum discretisation length of w

5 .
Lastly, the DD simulations use PBC to mimic the behaviour of a bulk material sample. Such conditions
satisfy mechanical equilibrium and provide useful solutions to the problem of dislocation flux balance
and line continuity at the boundaries of the simulated volume [DEV01]. In figure (39), it can be observed
that with such boundary conditions, gliding dislocations can shear the precipitate microstructure either in
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planes containing a regular periodic pattern of two equilateral triangular sections (which are alternatively
pointing up and down as shown in the inset of figure 39) or in planes containing a regular periodic pattern
of hexagonal sections.
A novel localisation procedure was introduced in the simulations to determine which dislocation seg-
ments are candidates for entering pairwise into the precipitate, and whether they are a leading or of a
trailing dislocation of superdislocation. This is determined by a test on the internal stress τint at the
location of segments entering into the precipitate. With only the sign and the amplitude of τint, one can
differentiate the cases of leading and trailing dislocations. Details on this procedure, implemented in the
DD code, is provided in Appendix C.

2.4.2.4 Simulation results of the flow stress temperature dependence

In this section, for reason of simplicity, γ′ precipitates are supposed to be perfectly cubic and the γ/γ′ in-
terface is considered as perfectly coherent. The only glide system considered is 〈110〉{111}. Hence, the
intersections between a precipitate and the glide plane of dislocations are triangles or irregular hexagons.
At the start of a simulation, one pair of dislocations of either screw or mixed character is placed on a
glide plane of one channel. Dislocations of mixed type are oriented at an angle of 60◦ with respect to b.
Due to the PBC, these dislocations are infinitely long and cut an infinite periodic array of precipitates.
For each temperature and for each γ′ volume fraction, it was first established that a single dislocation
of screw or mixed character could not shear the precipitate array. A single dislocation can only move
around the precipitates, through the channels. In this process, the dislocation line is strongly bowed out
in the matrix channels, causing a very high Orowan critical stress, which is inversely proportional to the
channel width.
Snapshots of a simulation of a 60◦ dislocation pair cutting through the precipitates are shown in figure
(40). In figure (40), the stress-strain curve shows a stress drop, which is characteristic of a bowing-
assisted cutting process. Such a process can be decomposed into four stages. In stage (1), the pair of
dislocations D1 and D2 glide into the channels. D1 is pushed by D2 and enters the precipitate at its
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Figure 40 - The four stages of the bowing-assisted cutting process of precipitates. These stages are
identified on the simulated stress-plastic strain curve and with the help of snapshots taken from the
simulations. In stage (1), plastic deformation only occurs in the matrix channels. In stage (2), the su-
perdislocation starts entering the precipitate. During stage (3), the superdislocation shears the precipitate
but sections of the lines remain in the initial channels. Stage (4) corresponds to complete shearing of
both channel and precipitate with a fully formed superdislocation in the latter.
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corners but is then stopped by the process of APB formation. Without trailing dislocation, D1 can only
enter the precipitate at corners as a result of the strong locally imposed line tension. In stage (2), assisted
by the short-range mutual interaction between D1 and D2, the RSS reaches a critical value where the
superdislocation is formed and starts entering the precipitates. Sections of D1 start to be strongly bowed-
out in the matrix channels. From this point on, the progression of the superdislocation in the precipitate
is mostly controlled by τKW . In stage (3), the superdislocation progressively enters the precipitate, but
some sections of D2 are still anchored at the interface. Finally, in stage (4), the bowing of D1 and D2
into the matrix channel drags the superdislocation along, thereby cutting through the whole precipitate.
In this process, strengthening depends on two kinds of parameters. Some parameters are related to the
material composition (the APB energy γAPB and the solid-solution friction stress τSS), the other param-
eters are related to the material microstructure (the channel width w and the precipitate volume fraction
f ). In the following sections, the influence of each of these parameters is determined by means of many
DD simulations.

Influence of the APB energy

Figure (41) shows the CRSS needed by the 60◦ dislocation pair to overcome the precipitates as a function
of γAPB, the APB energy, for a constant channel width w = 65 nm and for three different precipitate
volume fractions f = 0.42, 0.58 and 0.73. Based on literature data, the APB energy is assumed to lie
between 100 and 350 mJ.m−2 [SAA04].
In all simulations, the dislocations overcome the precipitate by bowing-assisted cutting in a strongly
coupled regime. For each tested APB energy (γAPB = 100, 170, 230 and 320 mJ.m−2), precipitates
were cut by the formation of a superdislocation and its subsequent dragging by the dislocations bowing
out in the matrix channels. Figure (41) shows a roughly square root dependence on the APB energy for
all three volume fractions. This result is in good agreement with the predictions of Reppich [REP93]. In
the strongly coupled regime, the stress required to cut precipitates increases with the square root of APB
energy (as in the present case), whereas in the weakly coupled regime, i.e. when precipitates are cut with
one dislocation, the dependence of the cutting stress on APB energy is linear. The present results are also
in agreement with Rao et al. [RAO04] in the case of their largest precipitate size (see [RAO04] figure 2
and the 400 nm precipitate edge length).
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Figure 41 - Simulated (symbols) CRSS for a 60◦ 1
2〈110〉 dislocation pair as a function of APB energy

in a superalloy with channel width w = 65 nm and with three different volume fractions of precipitates
(f = 0.42, 0.58, 0.73). The lines fit a square root dependence on APB energy.
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Influence of the width of the γ channels

Figure (42) gives the critical stress required to shear the precipitates as a function of the channel width
w = 65, 115 or 170 nm, for a pair of 60◦ dislocations, a volume fraction f = 0.73 and γAPB = 100, 170,
230 and 320 mJ.m−2. Here, the size of the simulated (111) octahedral plane depends on the width w of
the channel, with larger simulation cells for larger channel widths. As before, bowing-assisted cutting
of the precipitates is observed in all simulations. From figure (42) it can be observed that the CRSS is
sensitive to the channel width over the whole range of APB energies. The CRSS required to shear the
precipitate is always monotonically decreasing with increasing channel width. Thus, for precipitation
hardening in high γ′ volume fraction superalloys, a size effect appears in the process of bowing-assisted
cutting, but in the simulations this effect is found to be related linearly rather than inversely proportional
to w, as theoretically predicted [REP93] [NEM00].
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Figure 42 - Effect of the width w of the γ channel on the CRSS to move a 60◦ 1
2〈110〉 dislocation pair

through a γ/γ′ superalloy at different APB energies, and fixed volume fraction f = 0.73. The lines
represent a fit of a linear size dependence.

Influence of the volume fraction of the γ′ precipitate

Figure (43) gives the critical stress required to overcome precipitates as a function of the volume fraction
f , for a pair of 60◦ dislocations. The channel width w was kept constant at 65 nm. As before, the APB
energy is increased from 100 to 320 mJ.m−2 and the volume fraction f of the precipitates was varied
from 0.42 to 0.73. Figure (43) shows that the CRSS increases strongly with increasing volume fraction
f when the mean precipitate spacing w is kept constant.
In all simulated cases it is observed that the precipitates are cut in the strongly correlated regime. A
superdislocation is first formed at the corners of the precipitates and is pulled by the connected pair
of dislocations bowing out in the matrix channels. Hence, a higher volume fraction of precipitates at
constant channel width is equivalent to increasing the mechanical work to be done by the pulling dislo-
cations in the channels. As illustrated in figure (43), the CRSS increases linearly with f . This is because
a constant length of dislocation in the channels pulls an increasing length of superdislocation in the pre-
cipitates. Again, the present result is in good agreement with the calculations of Rao et al. [RAO04]
at smaller volume fractions of the precipitate, i.e. both lines in figure (43) have the same slope. The
difference in vertical offset is thought to be caused by the different treatment of the coherency strain: in
the present work this is not taken into account, whereas Rao et al. [RAO04] carried out their simulations
with a 0.3% coherency strain.
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Figure 43 - Effect of the precipitate volume fraction f on the CRSS for different APB energies. In
these computations the matrix channel width w = 65 nm and the cutting dislocations form a 60◦ 1

2〈110〉
dislocation pair. For comparison, the results of Rao et al. [RAO04] are also shown. Their simulations
were carried out at lower volume fractions and with a 0.3% coherency strain. Linear fits are plotted as a
visual guide.

Influence of the geometry of the planes cutting the γ′ precipitates

Octahedral slip planes can intersect cuboı̈dal precipitates in two different ways. As illustrated in fig-
ure (39), the intersections are either equilateral triangles or irregular hexagons. Figure (44) compares
the critical stress required to cut a cubic precipitate as a function of the channel width w and for the
two different types of intersections. Here the volume fraction f = 0.73 and the APB energy γAPB =
320 mJ.m−2. For a direct comparison between the two types of intersections, the glide plane in the γ
channels is chosen in such a way that the initial segment length in contact with the precipitates is the
same in all the simulations.
Figure (44) shows that in the bowing-assisted cutting regime, the mixed-character dislocation pair re-
quires a higher CRSS for cutting the precipitate than the screw dislocations. This non-intuitive result has
already been discussed by Mohles [MOH04] and is explained as follows. The superdislocations needed
to cut precipitates are the most easily formed with a pair of screw dislocations: as a result of elastic
interactions at a given stress amplitude, the spacing between two repulsive dislocations pushed against
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Figure 44 - CRSS as a function of channel width w for a 1
2〈110〉 screw dislocation pair (open symbols)

and a 60◦ mixed dislocation pair (full symbols). In the mixed dislocation case two different precipitate-
glide plane intersections are tested. The triangles and squares denote respectively the triangular and
irregular hexagonal intersections. The precipitate volume fraction f = 0.73.
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an obstacle attains a minimum for screw dislocations. This explains why for screw dislocations, the for-
mation of superdislocations inside precipitates occurs at a lower applied stress.
For all cases, the CRSS decreases linearly with the channel width w. In addition, it is shown in figure
(44) that the CRSS obtained with triangular intersections are significantly lower than the correspond-
ing ones calculated with the irregular hexagonal intersections. This difference is simply explained with
geometrical arguments. In the hexagonal case, the angle between channels around each corner of the
precipitates is 120◦, whereas in the triangular case it is 60◦. In the latter case, the dislocation pressed
against the edges of a precipitate adopts a strong local curvature which intensifies the line tension and
elastic self-interactions. The hexagonal and triangular intersections are the two limiting cases which can
be calculated with a fixed length of dislocation pressed against a precipitate. The error bars plotted in
figure (46) account for this geometrical dispersion.

Influence of the solid-solution friction stress in the γ matrix

In the simulations described so far, the friction stress in the γ matrix τSS was 107 MPa [SAA04], ac-
counting for the solid-solution hardening there. Figure (45) shows the influence of this mechanism on the
CRSS of the γ/γ′ superalloy, for a channel width w = 65 nm, a volume fraction f = 0.73, and and APB
energy γAPB = 320 mJ.m−2. The increment of the CRSS is found to be approximately the same as the
increment of the friction stress: the CRSS increases linearly with increasing frictional stress. Hence, a
reduction of dislocation mobility in the channels directly affects the mechanical response. This indicates
that solid-solution hardening of the matrix is a potent strengthener of γ/γ′ superalloys. In the following
section, more attention will be paid to the role of τSS and its consequences on the overall mechanical
response.
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Figure 45 - Effect of solid-solution friction in the γ matrix on the CRSS required to move a 60◦ 1
2〈110〉

dislocation pair at different channel widths w. The lines represent a linear fit of its dependence on the
lattice friction.

Temperature dependence of the CRSS

The aim of this subsection is to set the simulation parameters in order to reproduce the mechanical
behaviour of an industrial superalloy with high precipitate volume fraction, and to predict the dependence
of the CRSS as a function of temperature. In the following a temperature dependence of elastic constants
is taken which is based on experimental measurements5. According to Parthasarathy et al. [PAR04], the
γAPB depends on temperature approximately as γAPB = 320exp

(
−T−297

2000

)
where γAPB = 320 mJ.m−2

at 297 K [NAB97]. Moreover, a temperature dependence of τSS was also taken into account. This

5Unpublished data: internal research report.
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Figure 46 - Simulations of the CRSS for a γ/γ′ superalloy as function of temperature (filled black
squares) and comparison with experiments [CAR87] (filled grey squares). For comparison the CRSS
for Ni3Al (open triangles for experiments [MIU98] and filled triangles for the Demura et al. model
[DEM07]) and Ni solid-solution [CLE96] are reproduced. For these simulations f = 0.73 , w = 65 nm,
and γAPB as explained in the text.

dependence is fitted from the experimental data summarised by Clement et al. [CLE96]. As reproduced
in figure (46), τSS decreases with increasing temperature from about 100 MPa at room temperature to
60 MPa at 1000 K.
In figure (46), the simulated CRSS of a γ/γ′ superalloy with a precipitate volume fraction f = 0.73 and
a channel width w = 65 nm is plotted. The simulation results are shown for temperatures up to 1000 K
together with the corresponding CRSS of the two constituent phases. The error bars on the simulation
results account for the statistical dispersion observed during the calculations. This dispersion is entirely
associated to the geometry of the intersection between the glide plane and the precipitate and to the
character of the dislocations pairs, as discussed in ”Influence of the geometry of the planes cutting the γ′

precipitates”.
In good agreement with experiments, it is found that the CRSS of the simulated γ/γ′ superalloy depends
only weakly on temperature up to the maximum tested temperature. As expected, the CRSS reproduced
at low temperature is much higher than the corresponding CRSS for each constitutive phase. Moreover,
the simulation results are in good quantitative agreement with the response of the industrial single crystal
nickel-based superalloy CMSX-2 with f ≈ 0.70 [CAR87].

2.4.2.5 Discussion and concluding remarks

DD simulations have been carried out in order to study the plastic deformation of γ/γ′ superalloys with
a high volume fraction of γ′ precipitates. These simulations account for the most important mechanisms
controlling dislocation glide in the two constitutive phases. From a large number of simulations for
volume fractions between 0.42 and 0.73, it is observed that:

∗ At γ′ volume fraction f = 0.73 and channel width w = 65 nm, the CRSS of γ/γ′ superalloy shows
a square-root dependence on the APB energy of the γ′ phase.

∗ At γ′ volume fraction f = 0.73, the CRSS increases linearly with decreasing channel width w, in
the range from 65 to 170 nm.

∗ At channel width w = 65 nm, the CRSS increases rapidly with increasing volume fraction of the
precipitates. This is consistent with previous simulations carried out at lower volume fractions
[RAO04].
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∗ A dislocation pair on a glide plane cutting a precipitate with an irregular hexagonal shape requires
a 20% higher RSS to shear the precipitate than on the alternative triangular intersection, for the
same segment length in contact with the precipitate initially.

∗ Dislocations initially having a 60◦ character require a 25% higher RSS for penetrating into a
cuboı̈dal precipitate than dislocations with an initial screw orientation.

∗ Increasing the friction stress τSS associated to solid-solution elements in the matrix affects directly
the CRSS because it decreases the mobility of the dislocations which are bowing out into the
channels and which are pulling the superdislocations through the precipitates.

In all the simulated conditions, it can be observed that a pair of dislocations, possibly emitted from the
same source, can progress through the microstructure by shearing the precipitates. A strong gliding
correlation between pairs of dislocations is observed in the channels. This correlation facilitates the for-
mation of superdislocations and the subsequent process of precipitate cutting. The latter phenomenon is
assisted by the dislocations bowing out in the channels. As a result of this mechanism, the CRSS mea-
sured in the simulations are strongly dependent on the density of solute elements in the γ phase and on
the width of the channels. Moreover, the simulated CRSS is found to be weakly dependent on the value
of the APB energy in the γ′ phase (when considering realistic values larger than 100 mJ.m−2). The lat-
ter parameter is nevertheless an essential quantity because it controls the formation of superdislocations
when entering precipitates. Incidentally, and in agreement with previous studies carried out at lower pre-
cipitate volume fractions, it can be observed that the CRSS required for cutting the precipitates depends
on the dislocation character: it is lowest for a pair of screw dislocations because such a dislocation can
enter precipitates more easily than other orientations.
In this thesis, the general problem of one pair of infinite dislocations cutting through a periodic mi-
crostructure of precipitates is considered as a critical benchmark test. Such calculations are needed to
validate the simulation and to provide a first estimation of the temperature dependence of the CRSS of
superalloys with volume fractions larger than 50%. More complex computations are of course needed
to account for strain hardening and the orientation dependence of the CRSS on the tensile axis, as ob-
served experimentally. This problem will be discussed in the two following sections accounting for more
realistic 3D dislocation microstructures. These multislip simulations will be performed to investigate in
detail the mechanisms explaining the formation of dislocation pairs, the dislocation-dislocation forest
hardening in the channels and the storage of dislocations at γ/γ′ interfaces. The latter feature, as well as
the temperature dependence of the misfit stresses in the microstructure of superalloys cannot be simply
captured by classical DD simulations. This is why for these applications the DCM introduced in section
2 is used, and applied for a first set of calculations, to investigate the effect of channel width on the
mechanical behaviour.

2.4.3 Size effects

2.4.3.1 Motivation

A substantial increase of the macroscopic flow stress of the single crystal can be achieved by decreasing
the precipitate size while keeping the volume fraction constant [DUH87]. Duhl measured experimentally
the change of the 〈001〉 steady-state flow stress at different precipitate sizes for PWA1480 at 760◦C, a
representative SC alloy.
These precipitate size effects cannot be predicted by classical continuum theories. The failure of conven-
tional continuum theory is caused by the lack of a characteristic length-scale dependence. As introduced
in section 1.2.5.2, several more sophisticated theories have been developed which, in various ways,
include a length-scale dependence [AIF84] [ACH00] [GUR00]. Some of these theories attempt to in-
corporate an internal length through the concept of geometrically necessary dislocations introduced by
Nye [NYE53]. For instance, non-local continuum plasticity theories such as [FOR00] [SED00] or strain-
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gradient based plasticity using the evolution of geometrically necessary dislocations densities have al-
ready been applied to the simulation of the flow behaviour of single crystal superalloys [BUS00] [MEI01]
[CHO05] [TIN08].
DD simulation appears to be the most appropriate tool to address such microstructural issues and the ori-
gin of the size effect. For instance, DD simulations were carried out on a composite material subjected to
simple shear by [CLE97] [CLE98] or on a constrained strip [SHU01]. Both DD simulation studies have
been carried out with 2D simulation. In this case, the main feature controlling plastic properties is the
formation of dislocation pile-ups. For the single crystal γ/γ′ superalloys, such pile-ups are not observed
experimentally and this underlines that the size effects reproduced by 2D simulations are not applicable
to this case, and this is why one needs fully 3D simulations here.
In this section, the effect of the channel width (with a constant volume fraction of precipitates) on the
tensile plastic deformation of γ/γ′ superalloys is investigated using the DCM. Emphasis is put on the
elementary mechanisms governing the yield stress in multislip conditions.
The simulation volumes are subject to tensile stress at fixed applied strain rate. The results indicates that,
at the micron scale, polarised (or geometrically necessary) dislocations located at the γ/γ′ interfaces
play an important role in setting the flow stress.

2.4.3.2 Problem formulation

The discrete-continuous model

The simulated volume contains only one cuboı̈dal precipitate surrounded by six channels, and is dis-
cretised by 16 × 16 × 16 = 4096 quadratic FE and 56361 degrees of freedom, and PBC are applied.
Calculations were performed on three different unit cells scaled up with the same mesh discretisation.
Two cases are shown in figure (53). In all simulations, the precipitate volume fraction was maintained
constant at 0.61, yielding a ratio r between the channel width w and precipitate size l of r = w

l = 0.16,
while varying the channel width w = 0.08, 0.16, and 0.24 µm. In order to avoid PBC artifacts due to
self-annihilation of dislocation loops [MAD04], the ideal periodic arrangement of cubic precipitates is
modified by considering precipitates with orthorhombic dimensions (0.48x× 0.50x× 0.52x µm3, with
x a scaling parameter to assess the effect of precipitate size, x = 1, 2, and 3) for the three morphologies.
Isotropic elasticity is assumed everywhere with shear modulus µ = 51 GPa and Poisson ratio ν = 0.37.
In the DD code, the lattice parameter a = 0.36 nm is assumed identical in both phases. This implies a
Burgers vector of length b ≈ 0.25 nm.
As discussed in section 2.4.2, shearing of the precipitates has been incorporated into the DCM and it
correctly reproduces the anomalous temperature dependence [WES67] of the bowing-assisted cutting
process (see figure 46). In the γ′ phase the main parameter controlling the dynamics of precipitate shear-
ing is the configuration stress τAPB, which accounts for an APB creation or recovery through the APB
energy γAPB. In all simulations of this section, γAPB = 350 mJ.m−2 [NAB97] and at 850◦C the precip-
itates are bypassed by the Orowan mechanism, i.e. the precipitates are only deformed elastically. This
is consistent with experimental observations at small plastic deformations [CAR77] [FRE87] [POL92],
where the dislocation loops move through the channels, bowing out between the precipitates when a
critical shear stress, the Orowan threshold stress τOrowan ≈ µb

w , is reached. Moreover, in the γ phase,
relation (2.45) is applied for the velocity of the dislocation segments.

Initial dislocation configurations

Initial conditions in DCM simulations should be as close as possible to the experimental conditions in
terms of dislocation density, dislocation source distribution and dislocation entanglement. As explained
in section 2.3.1 the initial configuration in a DCM simulation is generated with a Volterra shearing pro-
cedure [DEV03]. This procedure is needed to set up an eigenstrain distribution [MUR87] in the FE mesh
that is mechanically compatible with the initial dislocation microstructure.
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(a) (b)

Figure 47 - (a) An initial dislocation configuration after relaxation, as explained in the text. The per-
sistence of coherency stress is illustrated by the von Mises stress σmises at the surface of a diagonal
cut through the channels. This can be compared to the large network of dislocations found at the γ/γ′

interfaces in (b), after 0.2% plastic strain for tensile loading along the [001] axis.

For reason of simplicity and in order to avoid significant annihilation of dislocations in the first steps
of the simulations, the initial dislocation distribution consists only of dipolar loops, i.e. four connected
edge segments with the same Burgers vector (see figure 32). In this manner, dislocation segments act as
Frank-Read sources and build up an interconnected dislocation network free of pending lines (see figure
34). A total dislocation density is homogeneously assigned to the 12 octahedral slip systems in the form
of 24 dipolar loops. Cube slip systems are excluded on purpose.
Consider the microstructure with cubic precipitates with dimensions 0.48× 0.50× 0.52 µm3, i.e. x = 1
(figure 47). For this microstructure, the initial length of the edge segments is 0.12 µm, longer than the
channel width w = 0.08 µm. This precaution is needed in order to prevent artifacts due to a source
activation stress operating within the channel which may be superior to the Orowan threshold stress.
Considering a smaller initial dislocation source length than the channel width would generate an unre-
alistic macroscopic mechanical behaviour with an initial overstress of several hundred MPa. According
to section 2.3.2, the dislocation segments bow out and multiply at a simulated critical RSS of 116 MPa,
which is lower than the theoretical Orowan stress of 163 MPa for this channel width. In order to assure
the condition that each initial segment has a length of 0.12 µm, the starting dipolar loops cannot lie ex-
clusively in the channel: parts of the loops are located in the channel and other parts in the precipitate.
The latter segments create an APB, so they are energetically unfavorable and the dislocation distribution
must be relaxed before applying mechanical loading.
An additional strengthening mechanism is due to the lattice mismatch between the two phases (see sec-
tion 1.1.3.3). The difference in lattice parameter between the γ and the γ′ phases creates a coherency
stress field, which is not well-known experimentally at high temperatures [POL92] [ROY95]. In the
DCM simulations, it can be computed by means of a preliminary thermo-elastic FE calculation, by ar-
tificially heating the γ/γ′ microstructure from an initial state without misfit at room temperature. This
requires two thermal expansion coefficients, aγ and aγ′ , respectively associated to the γ matrix and γ′

precipitate, and the appropriate heating interval ∆T . The misfit strain δ is then given by (aγ′ − aγ)∆T ,
here equal to−3% at 850◦C. Figure (47 a) shows the von Mises equivalent stress σMises of the coherency
stress field in the matrix, before any mechanical loading. The matrix is in tension and the equivalent stress
attains a minimum in the middle of the channels, and a maximum along the interfaces. In the precipitate,
the misfit generates an uniform von Mises stress of about 30 MPa.
During the initial relaxation, the APB energy and the coherency stress drive the dislocations towards the
interfaces. At this stage, the DD simulation time step is 5× 10−11 s and the FE time step is ten times as
long. The dislocation configuration is supposed to be relaxed when there are no more dislocations inside
the precipitate. Complete relaxation takes about 3000 DD steps. After the process, the total dislocation
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Parameter Symbol Value Unit
Magnitude of Burgers vector b 2.5 ×10−10 m

Shear modulus µ 51 GPa
Poisson ratio ν 0.37 -

Damping constant B 1×10−4 Pa.s
Lattice friction τF 107 MPa

APB energy γAPB 350 mJ.m−2

Initial dislocation density ρ0 6.2× 1013 m−2

Misfit strain δ −3 %
Imposed strain rate γ̇ 20 s−1

Table 2.3: Parameters used in the DCM simulations.

density on the 12 octahedral slip systems is 6.2× 1013 m−2. As shown in figure (47 a), the dislocations
have moved to the interfaces where they locally reduce the coherency stress.
It was observed that the relaxed configuration is modified even when a very small load is applied dur-
ing the relaxation. For that reason, the configurations subsequently used for mechanical loading were
obtained by already imposing a tiny fraction (≈ 10−7) of the mechanical loading that will be applied
later on. This simple trick helps to eliminate possible transitory plastic deformation at the beginning of
the simulation of the tensile test. It was verified that this modification does not change the mechanical
response beyond this initial transitory stage.
Finally, not all initial configurations need the same time to eliminate their dislocation segments from
the precipitate and to form the dislocation network at the interfaces. Those initial configurations which
happen to have only a small fraction of segments inside the precipitate probably would need less time
to relax than other initial configurations with almost all segments there. Therefore, in order to minimise
the relaxation time, the dipolar loops are positioned in such a way that the fraction of their segments
inside the precipitate is as low as possible. If the main concern of the present work would have been the
relaxation process itself, this procedure would of course not be justified, but here the interest is the dislo-
cation dynamics and the dislocation-precipitate interactions during the subsequent mechanical loading.
Figure (47 a) shows a relaxed dislocation network and the remaining coherency stress field just before
mechanical loading. By comparison, figure (47 b) shows the dense interfacial network after 0.2% plastic
strain in the [001] case.

Loading conditions

During the simulations, the relaxed dislocation configurations for the three microstructures are subjected
to a pure tensile loading along the [001] crystallographic axis. In order to run calculations within a
reasonable time, a high resolved strain rate of γ̇ = 20 s −1 is imposed. Note that the convention is
adopted throughout this section that all macroscopic stresses or strains are resolved on the slip system(s)
with the highest Schmid factor(s), unless specifically indicated otherwise. This strain rate is larger than
the macroscopic strain rates applied in laboratory tests, but reducing it would not affect the conclusions
of this work. Processes controlled by diffusion such as dislocation climb are not taken into account. The
remaining simulation parameters are the same as during the plastic relaxation. However, contrarily to
the relaxation phase, no dislocation glides in the precipitates. At high temperatures plastic deformation
takes place only through dislocation glide in the channels, and the interfaces are effectively impenetrable
[CAR77] [POL92]. Therefore, only a small fraction of the simulated volume is deformed plastically and
a significant strain incompatibility is expected. To summarise, all parameters are listed in table (2.3).
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Scaling factor x Channel width w (µm) τOrowan (MPa) τf,0.1% (MPa) τf,0.2% (MPa) θ/µ

1 0.08 164 243 320 0.149
2 0.16 83 155 212 0.142
3 0.24 55 108 152 0.134

Table 2.4: Characteristics of the hardening response of the three morphologies of a γ/γ′ single crystal
superalloy. The symbols τOrowan, τf,0.1%, τf,0.2% and θ refer to the Orowan yield stress at 0.01% plastic
strain, the flow stresses at 0.1% and 0.2% plastic strain and the rate of hardening, respectively.

2.4.3.3 Simulation results

Mechanical responses

Figure (48) shows the simulated stress-strain curves for the three specimens. Two different stages can be
distinguished. A first stage corresponds to a transient regime from zero to 0.01% plastic strain, during
which plastic deformation mainly results from the motion of the dislocations initially present inside the
channels toward the γ/γ′ interfaces. A second stage corresponds to the irreversible plastic deformation
from 0.01% plastic strain to the end of simulations. During this second stage, the strain hardening
rate is constant and plastic deformation arises from dislocations by-passing impenetrable precipitates.
Irrespective of the strain value, the flow stress increases significantly with decreasing channel width.
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Figure 48 - Effect of morphologies on the simulated stress-strain curves. The solid straight lines rep-
resent linear fits, and the dotted vertical line indicates the boundary between the first and second stages
(see text).

Flow stress and work-hardening

To quantify the size effect, the values of the 0.01% yield stress (called Orowan stress here) τOrowan, the
values of the flow stresses at 0.1% and 0.2% plastic strain, τf,0.1% and τf,0.2% respectively, and the rate
of hardening θ are reported in table (2.4). The precise definition of the parameters listed in the table is
given in figure (49 a). The instantaneous work-hardening rate is defined as θ = ∆τ

∆γ , where τ and γ refer
to the shear strain and the flow stress, resolved on the most active octahedral slip system. The flow stress
τf increases with decreasing specimen size. To quantitatively assess this size effect, the flow stress is
plotted in figure (49 b) at 0.01%, 0.1% and 0.2% plastic strain as a function of 1

w . This plot shows that
the simulation results correspond to a 1

w scaling law. In particular, the value of the 0.01% yield strength
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Figure 49 - (a) Sketch of a typical simulated stress-strain response of a single crystal superalloy showing
the definition of the strength and hardening quantities listed in table (2.4). (b) Plastic flow stress τf ,
versus the inverse of the width w of the γ channel. The value of the scaling 1.02 µb, 1.19 µb and 1.32 µb
correspond to 0.01%, 0.1% and 0.2% plastic strain, respectively. The straight lines represent a linear
fit of the dependence on the inverse of the width w. The work hardening rate increases steadily with
decreasing specimen width w of the γ channel (values are listed in table 2.4).

corresponds quantitatively to the critical macroscopic Orowan stress expressed here as

τOrowan = 1.02
µb

w
(2.47)

In addition, figure (49 b) depicts the values of the flow stress τf at 0.1% and 0.2% plastic strain, as a
function of 1

w . The Orowan-like law, inversely proportional to w, fits well to the data in figure (49 b) at
all plastic strain levels and the flow stress may be given as

τf = k
µb

w
(2.48)

with k constant and positive. The values of k are given in figure (49 b) and identified to be k = 1.19
at 0.1% plastic strain, and k = 1.32 at 0.2% plastic strain. Equation (2.48) means that the flow stress is
strongly dependent on the channel width w.
The effect of specimen size on hardening is quantified in table (2.4) by the values of θ/µ. The work-
hardening rate θ increases with decreasing specimen size. These values can be related to dislocation
storage at the γ/γ′ interfaces, i.e. the size dependence of θ is related to the dislocation density deposited
at the γ/γ′ interfaces. The dislocation density is now analysed.

Dislocation densities

Figure (50) shows the evolution of the dislocation density ρ with plastic strain. At the same γ′ volume
fraction, the dislocation density increases linearly with strain, and faster for smaller channel widths.
Figure (51 a) illustrates the dislocation density rate ∂ρ

∂γ as a function of plastic strain. The rate is constant
during the second stage, and the figure (51 b) illustrates the saturated density rate as a function of 1

b w .
According to figure (51 b), a relation which correlates the saturated dislocation density rate with the
inverse of the channel width w is given by

dρ

dγ
= 2.17

1
bw

(2.49)
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Figure 50 - Evolution of dislocation density with plastic strain corresponding the stress-strain responses
of figure (48) for all specimen sizes.
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Figure 51 - (a) Rate of the total dislocation density with plastic strain for the three simulated specimens.
Horizontal lines represent the constant rate during the second stage. (b) Saturation rate of the dislocation
density evolution as a function of 1

b w . The line represents a linear fit.

The relation (2.49) can be viewed as expressing a macroscopic storage rate, which, as expected from
a classical storage-recovery model (see section 1.2.4.2), is governed by a dislocation mean free path
[EMB71] [KOC76] [KOC03]. This means that the dislocation mean free path is mainly controlled by the
microstructure of the material, and not by the spacing between forest dislocations. It will be shown in the
following sections that there is a noticeable decrease in the junction production rate after some straining
(see figure 56 b). Even if all junctions would contribute to forest hardening, the size-dependence of the
flow stress does not correlate to the spacing between forest dislocations. This is why the plastic behaviour
(given by equation 2.49) is highly dependent on the channel width, which represents for dislocations their
average obstacle distance.

Distribution of dislocation density

The question addressed now is that of what relationship there is, if any, between flow stress and local
dislocation density. In order to quantify the local dislocation density variation, averages of density were
calculated over strips of thickness h = 8 nm, running parallel to the interfaces.
Two densities are considered: the total dislocation density, and the polarised (positive and negative)
dislocation density obtained by the Nye tensor [NYE53]. The Nye tensor α gives the closure mismatch
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Figure 52 - (a) Total dislocation density distributions across the channel width for the selected specimen
w = 0.08 µm at 0.1% and 0.2% plastic strain. (b) Averaged polarised dislocation density αeq calculated
by equation (2.50). Both densities are calculated over strips of equal thickness h = 8 nm within the
channels.

of a linear path traced on a three dimensional surface S enclosing a volume V containing an arbitrary
dislocation microstructure. In the discrete sense, this tensor is computed by adding up the contributions
of every dislocation segment6 according to

αij =
1
V

N∑
1

lkbk
i t

k
j (2.50)

where N is the total number of segments in the volume V , lk is the length, bk is the Burgers vector
associated with the segment k, and tk is the unit vector aligned with the segment of the segment k. Only
a local polarised dislocation density produces a net, non-vanishing Nye’s tensor.
As shown in figure (52 a), the total dislocation density is higher at the interfaces than within the channel,
and the density of these stored dislocations continues to increase with ongoing deformation. In addition,
no pile-ups against precipitate interfaces are observed, contradicting DD simulations carried out in 2D.
The averaged polarised dislocation density profiles defined by αeq = sign(α11)

√
αijαij and obtained

at a 0.1% and 0.2% plastic strain for the microstructure with a channel width w = 0.08 µm are shown
in figure (52 b). It shows that the dislocation densities located at the two interfaces are polarised. The
presence of these polarised (positive or negative) interfacial dislocations affect strongly the local flow
stress when imposing a [001] tensile loading, as will be shown in section 2.4.4. It is assumed that the
polarised dislocations induce internal stresses opposite to the applied stress and therefore reduce the
mobility of dislocation in the channels.

2.4.3.4 Discussion

Critical threshold

As discussed in the previous section, when the threshold of the Orowan critical shear stress is reached,
the dislocation are sufficiently curved to glide in a narrow channel. The channel width for γ/γ′ super-
alloys plays a important role in the critical threshold which in the simulated results is assumed to be at
0.01% plastic strain. The microplastic phase (i.e. from zero to 0.01%) corresponds to the displacement
of preexisting dislocations towards the interfaces. For larger channel width w, the dislocations can glide

6See section 3.1.2.3 (for instance, equation 3.8).
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a longer distance before being blocked by interfaces. The critical threshold corresponds to the theoretical
Orowan stress where dislocations begin to bow out between the precipitates and glide within a channel.
This stress is dependent of the channel width according to 1.02 µb

w (see equation 2.47), where the critical
stress increases with the decreasing channel width. The theoretical value of this stress is also verified
through collective effects and multi-slip conditions in 3D DD simulations.
When the critical Orowan stress is reached, a dislocation loop expands on a glide plane within the chan-
nel and deposits dislocation segments at the interfaces. These segments have a screw or ±60◦ mixed
character, and give rise to a polarised dislocation density at the interfaces (see figure 52 b). Their accu-
mulation between the soft precipitate and hard matrix give rise to internal stresses, and therefore con-
tribute strongly to the high work-hardening for 〈001〉-oriented specimens in γ/γ′ superalloys. This point
will be discussed in section 3.1.4.

Interfacial dislocation

The dislocation density increases almost linearly with plastic strain, and at the same γ′ volume fraction
the rate of increase is larger for smaller channel widths (see figure 50). Moreover, the dislocation density
rate ∂ρ

∂γ increases with decreasing channel width. Strengthening is due to an increase in stress in the
channel when the specimen size is reduced. This increase is associated with the emergence of a dislo-
cation density which is polarised at the interfaces. A network of interfacial dislocations is formed and
these dislocations are necessary at the γ/γ′ interfaces to accommodate the strain strain gradient between
both phases (see figure 53), with no pile-up formation.
Figure (53 b) shows the dense interfacial network after 0.2% plastic strain for two specimens. In case
of a singular surface, i.e. if the distortion is discontinuous across a surface with normal vector n̂, the
dislocation density αhi has a surface density given by

αhi = −εhljJβ
p
jiKn̂l (2.51)

where Jβp
jiK is the jump of the plastic distortion across the interfaces [MUR63] [MUR87] [FED99]

[FED02]. This will be analysed in full detail in section 3.1.

(a) (b)

Figure 53 - Illustration of two simulated volumes with associated channel width and precipitate size
assuming the same precipitate volume fraction of 0.61. (a) Initial dislocation configuration before the
mechanical loading. (b) Dislocation microstructures at 0.2% plastic strain. Note that dislocations are
strongly located at γ/γ′ interfaces.
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Work hardening

In physical theories of crystal plasticity, the dislocation density is commonly used as the structural param-
eter for macroscopic descriptions of plastic flow, with the flow stress governed by Taylor-like hardening
(see section 1.2.4.2). Hence, the flow stress is defined by equation (1.30) as

τ = αµb
√

ρ (2.52)

where α is a constant7 in the range 0.3−0.5 when the athermal component of τ is retained [GIL93b].
Figure (54) shows the evolution of τ with strain for the three specimens, with the flow stress given in units
of µb

√
ρ to explore the validity of equation (2.52). This plot clearly shows that the increase in dislocation

density with decreasing specimen size (see figure 50) does not explain the corresponding increase of the
flow stress (see figure 48). At fixed specimen size, there is no deformation regime where the bulk scaling
law (2.52) holds with values of the pre-factor α within the range 0.3−0.5. Indeed, a deviation from this
behaviour is observed for all specimens because the pre-factor α is much higher, within a range 1.3−1.8
(see figure 54). The behaviour in figure (48) indicates that at the microscale the dislocation density does
not suffice to set the flow stress, and the latter point breaks down the classical storage-recovery theory in
equation (2.52).
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Figure 54 - Macroscopic flow stress τ , in units of µb
√

ρ versus plastic strain. The specimen realisations
correspond to those in figures (48) and (50) for the stress-strain and density-strain curves, respectively.

In addition, equation (2.49) for the storage rate confirms this point. It predicts a storage rate as function
of the channel width, not the inverse of

√
ρ as predicted by the classical storage-recovery model for

dislocation-dislocation interactions (equation 2.52). This shows that the mean free path of dislocation
is proportional to the microstructural length w of the material, associated to the dislocation-precipitate
interactions, and is not correlated to the forest interaction through the 1√

ρ storage term expressed in
equation (1.33).

2.4.3.5 Concluding remarks

In this section, simulations have been carried out containing an intrinsic length scale, which is the length
of the Burgers vector. By means of the DCM framework, plastic flow is directly simulated by dynamics
and interactions of dislocations. Moreover the simulations provide a physically justified manner for
including dislocation nucleation from dislocation sources, dislocation glide, dislocation annihilation and
dislocation interactions with the γ′ precipitates. This section focused on investigating the effect of the
channel width on the macroscopic flow stress at 850◦C, while maintaining a constant precipitate volume

7Not related to Nye’s tensor.
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fraction. By assuming that the precipitate interface is impenetrable for dislocations at that temperature,
the main role of interfaces in the dependence of the flow stress on the channel width is investigated, and
the results are summarised in the following:

∗ The size effect is significant for both the flow stress and the work-hardening rate. In particular,
the initial reversible plastic regime is controlled by the Orowan critical stress, below which dislo-
cations cannot curve and glide within channels. The stress is strongly dependent on the channel
width w, and the size effect is inversely proportional to w (equation 2.47).

∗ Because in superalloys w can be very small, the mean free path of glide distance of dislocation
is proportional to the microstructural length w, and not 1√

ρ as predicted by the classical storage-
recovery model for dislocation-dislocation interactions (equation 2.49). The spatial distribution of
polarised dislocations around the γ′ precipitates affect the flow stress by creating an internal stress
field, which is not taken into account in the classical work-hardening framework.

∗ No pile-ups were observed in the simulations, so the mean free path was not reduced by disloca-
tions gliding within the channels. The dislocations are located at the interfaces, and the interfacial
dislocation density increases by glide of mobile dislocations within the channel which deposit
immobile segments at the interfaces.

These calculations demonstrate that Taylor-like hardening is insufficient for modelling of superalloys,
because it does not take into account the internal stress induced by a polarised dislocation density distri-
bution. This finding raises fundamental questions regarding the formulation of extended plasticity the-
ories for modelling work hardening included the long-range internal stress generated by these polarised
dislocation density. Many such theories are based on the understanding that plastic flow processes are
inherently size-independent in the absence of strain gradients at the scale of the elementary volume. The
scale-dependence of strength and hardening beyond yielding poses a challenge to modelling of plasticity
at the micro-scale (see section 1.3.2).

2.4.4 Orientation dependence of plastic deformation

2.4.4.1 Motivation

Another problem concerning the anisotropic mechanical response is now investigated with the DCM.
In uniaxial tension or compression tests, the yield strength depends strongly on loading direction [SHA83]
[MIN86] [HAN91] [SAS97] [SAS98] [SIE99] [BET99] [WAN09]. As shown in the previous calcu-
lations at 850◦C and at low tensile stress, plasticity is mainly concentrated within the channels on
1
2〈110〉{111} planes [CAR77] [POL92]: the precipitates are not plastically deformed, because of the
anomalous yield behaviour of the Ni3Al phase. Also, in the 〈001〉 loading cases (i.e. for crystals with
one of the 〈001〉 axes oriented along the loading direction), the 0.2% yield stress and the strain hardening
are considerably higher than for other orientations. Understanding such plastic behaviour is essential
because the crystallographic alignment during blade solidification can deviate from the strongest 〈001〉
orientation, and blades can be subjected locally to complex stress states.
The question has been raised whether cube slip occurs in crystals oriented away from the 〈001〉 directions
[SAS97] [SAS98] [BET99]. In the 〈111〉 loading cases, i.e. for crystals oriented with one of the 〈111〉
axes along the loading direction, {100} slip traces have been observed within the channels. Activation
of cube slip systems has important consequences for the models of the orientation-dependence of the
mechanical response [CAI87] [NOU95] [OST00] [FED02] [LEV06] [PRE08]. Adopting cube slip is a
convenient scheme to account for the softer plastic response of non-〈001〉 oriented specimens. Micro-
scopically, dislocations would then glide on the cubic planes in the matrix channels. The boundaries of
those channels are parallel to the glide planes, so they cannot block these dislocations which could then
glide freely over large distances.
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However, at higher magnifications no dislocations were found to glide on cube planes [SHA83] [MIN86]
[WAN09]. Recent TEM analyses [VOL94] [BET99] [WAN09] showed that the {100} traces previously
observed with optical microscopy consist of repeated slip occurring on different {111} planes within
the γ channels, appearing visually as zig-zag configurations. According to Bettge and Österle [BET99]
[SAS97] [SAS98], this is a result of successive cross-slip between the {111} slip planes. The cubic slip
systems in the crystallographic viscoplastic models dedicated to single crystal superalloys can then be
thought of as phenomenologically representing the ”pseudo-cubic” slip traces caused by the zig-zag slip
on octahedral planes.
This section seeks to clarify some of these issues by using the DCM. Uniaxial tensile tests of a sin-
gle crystal nickel-based superalloy are simulated at 850◦C, for a [001] and for a [111] loading case.
Calculations are compared with experimental results from the literature. The simulated dislocation mi-
crostructures and the internal stress distributions are analysed in detail, providing original information
on the mechanisms controlling plastic deformation in these tests. The simulations are shown to deliver a
qualitative and quantitative description of plastic strain localisation, consistent with experimental obser-
vations.

2.4.4.2 Problem formulation

As in the problem formulation of the size effects presented in section 2.4.3, the simulated volume is
periodic and contains only one γ′ cuboı̈dal precipitate surrounded by six γ channels with a volume dis-
cretised by 4096 quadratic FE and 56361 degrees of freedom. PBC are applied and the dimensions of
the periodic arrangement of the cubic precipitates are 0.48 × 0.50 × 0.52 µm3. The channel width is
w = 0.08 µm, which corresponds to a precipitate volume fraction, f = 0.61. Figure (55 a) shows the
simulated volume and some of its periodic replicas. For better visibility of the dislocation lines, not all
of the precipitates are shown.
Isotropic elasticity is again assumed with shear modulus µ = 51 GPa and Poisson ratio ν = 0.37 at
850◦C, and the magnitude of the Burgers vector is b = 0.25 nm. The APB energy γAPB is equal to
350 mJ.m−2, the viscous drag constant B = 1.0 × 10−4 Pa.s, and the lattice friction τF = 107 MPa.
Moreover, δ was fixed at −3%, and the initial dislocation density is 6.2 × 1013 m−2, assigned to the 12

(a) (b)

Figure 55 - (a) The simulated γ/γ′ microstructure and some of its periodic replicas. The three possible
types of dislocation character (screw and±60◦ character) arrested by {100} precipitate/matrix interfaces
during the Orowan bypassing process are illustrated in (b): the vertical black arrow shows the screw
segment deposited at the horizontal interface, whereas the two diagonally oriented arrows shows the
±60◦ character segments deposited at the vertical interfaces.
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octahedral slip systems (see figure 47 b). Cube slip systems are excluded on purpose.
As mentioned in section 2.1.2, in microMegas the dislocation lines are discretised into segments of screw,
edge and two mixed characters (±60◦ character in the 〈110〉 directions). This discretisation is numeri-
cally very efficient for the specific case of the γ/γ′ superalloy, because dislocation-dislocation junctions
between octahedral slip planes and dislocation segments arrested by the {100} precipitate/matrix inter-
faces are all along 〈110〉 directions. This last point is illustrated in figure (55). Figure (55 a) shows a dis-
location (highlighted by a somewhat thicker line) gliding through the matrix channels on a 1

2〈110〉{1̄11}
plane. The dislocation leaves behind dislocation segments pressed against the interfaces which have ei-
ther a screw character in the horizontal channel (indicated by the vertical black arrow in figure 55 b), or a
mixed character in the vertical channels, with a Burgers vector at ±60◦ with respect to the line direction
(indicated by the black arrows oriented diagonally in figure 55 b). During the simulations, the relaxed
dislocation configurations are subjected to a pure tensile loading in the [001] or [111] directions with
an imposed resolved strain rate of γ̇ = 20 s−1. Processes controlled by diffusion such as dislocation
climb are not taken into account. Furthermore, cross-slip is not considered initially, but in a second set of
computations an easy cross-slip process is taken into account for comparison with the pure glide results.

2.4.4.3 Simulation results

Macroscopic mechanical response

Figure (56 a) shows the simulated stress-strain curves for both [001] and [111] cases. The two curves
are in good agreement with experiments and are characteristic of plastic deformation of γ/γ′ superalloys
at high temperature [SAS98] [OST00] [WAN09]. Two distinct stages can be observed. During the first
transient stage, from zero to 0.015% plastic strain, the flow stress is identical for both cases. The dis-
locations initially present in the channels start moving towards the interfaces. Due to the small channel
width, the plastic deformation at 0.015% is mainly controlled by the line tension. The initial yield point
correlates well with the Orowan stress prediction τOrowan = 1.02µb

h = 166 MPa (see equation 2.47)
[BRO71]. The prefactor 1.02 accounts for the mean character of the dislocation lines involved.
During the second stage (from 0.015% onwards), the relative influences of forest interactions or disloca-
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Figure 56 - (a) Simulated stress-strain curves at 850◦C, in black for the [001] case and in grey for the
[111] case. The dotted lines represent linear fits, except the vertical one which indicates the boundary
between the first and second stages (see text). (b) Evolution of dislocation densities with plastic strain, in
black for the [001] case and in grey for the [111] case. Solid lines: total dislocation density ρtot averaged
over the whole simulated volume. Dotted lines: the ratio ρjunc

ρtot of junction density to total dislocation
density.
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tion storage at the interfaces can potentially increase. In accordance with experiments, the two loading
cases respond completely differently. The [001] case hardens linearly with slope θ = ∆τ

∆γ = 0.149µ
(see table 2.4). The [111] case first shows a stress drop of about 50 MPa without any strain hardening
afterwards. The form of this curve is typical: the experimental curves reported by Bettge and Österle
[OST00] also show a stress drop of the same magnitude after an upper yield point, followed by a low-
hardening domain. Moreover, the resolved flow stress calculated for both cases differ by approximately
130 MPa at 0.20% plastic strain. Again, this is in good agreement with experiments [SHA84] [OST99]
[OST00]: for instance Österle et al. [OST00] obtained a difference of 113 MPa at 750◦C and 129 MPa
at 850◦C for SC16 after 0.2% plastic strain at a strain rate of 10−3 s−1.
In both loading cases, dislocation segments accumulate at the interfaces. Each dislocation gliding
through a channel deposits long straight segments of opposite sign at the two opposite interfaces bound-
ing the channel. At low effective stress, the deposited segments re-arrange themselves on the interfaces in
order to minimise the elastic energy. This creates the characteristic networks which have been observed
many times in TEM studies [FEL89].
Figure (56 b) shows the evolution of the dislocation density ρtot with plastic strain. In conformity with
the previous observations on strain hardening, the net dislocation storage rate ∂ρ

∂γ is largest in the [001]
case. Inversely, the absence of hardening for the [111] case manifests itself as a much lower dislocation
storage. This results from plastic strain localisation, and this will be explained in later sections.
The difference between the two cases is not caused by forest hardening. This is demonstrated in the
same figure, where the ratio of junction density ρjunc (which is a signature of forest hardening [DEV06]
[KUB08], i.e. the average length per volume of the stored junction segment formed by a reaction be-
tween dislocations) to total dislocation density is plotted as a function of plastic strain. For both cases,
ρjunc is much smaller than in usual fcc metals, and both ratios are quantitatively the same. Also, the rate
of both ratios decreases after some straining. Even if all junctions would contribute to forest hardening,
they do not contribute much to the flow stress in both loading cases.

Interfacial dislocation microstructures

Deformation incompatibilities between two phases can be accommodated by geometrically necessary
dislocations accumulated at the interfaces [ASH70]. These interfacial dislocations induce a long-range
internal stress that contributes, with the applied stress and the coherency stress, to the total stress distri-

(a) (b)

Figure 57 - Dislocation networks formed at the γ/γ′ interfaces after deformation to 0.2% plastic strain.
Only dislocations within a distance of 0.015 µm from the interfaces are shown for (a) the [001] case, and
(b) the [111] case.
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bution in the microstructure. In the DCM simulations these contributions are calculated simultaneously,
and a relation between mechanical strengthening and the dislocations stored at the interfaces is expected.
Figure (57) shows the dislocations deposited at the interfaces. Only those dislocations close to the inter-
faces (i.e. at distances smaller than 0.015 µm) are shown. For the [001] case in figure (57 a), a dense
network of straight dislocations is rapidly formed at all surfaces of the precipitate. This network consists
of dislocations with four different Burgers vectors, homogeneously distributed between the three {100}
interfaces. In the channel direction parallel to the loading axis, the line character of the interfacial dis-
locations is exclusively of ±60◦ type. In the two channel directions normal to the loading axis it can
be either screw or ±60◦ type. This results from the direction of the Burgers vector of the activated slip
systems.
In the [111] case (figure 57 b), a completely different configuration is found. The dislocation network
is restricted to only one interface. It consists of long parallel screw segments, all with the same Burgers
vector ([110] in the figure). This configuration is one reason for the absence of hardening that was ob-
served previously. Dislocations multiply in one single crystallographic direction and are confined to the
channel containing this direction. The periodic arrangement of precipitates does not block the dislocation
motion, and so it does not cause strain hardening either.
In figure (57 b), positive dislocations gliding on A6 are indicated in black and negative dislocations glid-
ing on D6 in red. The relative equilibrium and the homogeneous distribution of red and black colors
at the interfaces indicate that the interfacial dislocations do not induce a long-range stress. This will be
discussed further in ”Strain hardening mechanism” in section 2.4.4.4.
The strong differences between these interfacial dislocation microstructures suggest a correlation with
the hardening anisotropy. In order to clarify exactly what mechanisms affect the strain hardening, a more
detailed analysis is presented in the next section.

Analysis of slip systems and deformation bands

Figure (58) shows the plastic shear on each of the twelve octahedral slip systems. In accordance with
the Schmid law, eight slip systems are found active in the [001] case (see figure 58 a). However, their
contributions to the total plastic deformation are not distributed evenly. Several simulations were run in
order to establish that this results from heterogeneities in the initial dislocation configuration. Activation
of all eight slip systems is coherent with strong hardening and the dense dislocation microstructure found
at the interfaces.
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Figure 58 - Plastic strain γi on individual slip systems i. (a) In the [001] case, eight slip systems are
activated more or less equally, in accordance with the Schmid law. (b) In the [111] case, only two slip
systems are activated whereas six slip systems have the same non-zero Schmid factor.
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(a) (b)

Figure 59 - Thin foils in the {111} direction are shown in order to illustrate the relation between slip
system activity and dislocation microstructure for (a) the [001] case and (b) the [111] case.

In the [111] case, six slip systems have identical non-zero Schmid factor. Surprisingly, only two slip
systems accommodate the imposed strain rate. For instance, in figure (58 b) the two active slip systems
are A6 and its collinear system D6. Similar duplex collinear slip is observed for four other initial dis-
location microstructures. In each simulation the total plastic strain is accommodated by only two slip
systems: one primary system (not necessarily the same for each initial microstructure) and its collinear
slip system. These two particular slip systems are correlated because they always have the same Burgers
vector. Duplex collinear slip has been referenced as the strongest existing forest interaction [MAD03]
[DEV05], so it should cause very high strengthening. However, the opposite is observed here. Clearly,
the manner in which duplex collinear slip influences the mechanical response needs to be clarified in this
particular case.
At high temperature, octahedral slip traces are very short because plastic deformation is confined to the
channels, and deformation bands are observed parallel to the 〈100〉 directions. The deformation bands
can be visualised by showing the dislocation lines stored in a thin slice of the channels. In figure (59)
deformation bands are shown in slices of 0.15 µm thickness, with [111] normal and at 0.20% plastic
strain, extracted from the periodic simulation cell. At low magnification, plastic deformation indeed ap-
pears as slip bands parallel to {100} cube planes. However, in the [001] case (figure 59 a) plastic strain
is distributed more or less evenly among the three 〈100〉 directions, whereas in the [111] case (figure 59
b) the plastic deformation is restricted to only one direction.
It might be argued that the localisation of the plastic deformation into one single channel in the [111] case
is caused by the lattice mismatch at the γ/γ′ interfaces. However, this would create the opposite effect.
This can be seen as follows. Without external loading, the mismatch creates a misfit stress which is the
same in each channel. Loading along a 〈111〉 direction would preserve this symmetry whereas loading
along a 〈001〉 direction would not. If there would be any localisation because of the misfit stress, it would
therefore be in the [001] case, and not in the [111] case. Moreover, simulations have been carried out
with two other coherency stresses (δ = −2% and −3.5%), and it was observed that the internal stresses
in the calculation affect neither the macroscopic nor the microscopic behaviour (it would have affected
the initial dislocation configuration if the relaxation phase would have been included, but that is not the
case here). Rather, such a localisation appears to be the result of an elementary dislocation reaction pro-
moting dislocation glide in a specific direction and confining the deformation into one specific channel.
The plastic strain remains localised throughout the whole loading path, so it must also be explained how
this dynamical property is related to the absence of strain hardening in the [111] case.
In summary, dislocation dynamics and dislocation storage strongly depend on the orientation of the chan-
nels relative to the tensile axis. In the [001] case, the activation of several octahedral slip systems leads to
the formation of deformation bands parallel to the {100} directions. Plastic deformation in those bands
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is homogeneously distributed. Alternatively, the deformation bands in the [111] case are systematically
parallel to one unique cubic direction. This direction appears to be randomly selected at the early stages
of deformation. The selection depends on which particular glide systems succeed first at depositing the
long screw segments at the interfaces, and this depends on the random fluctuations between one ini-
tial configuration and another. Subsequent plastic deformation is then accommodated completely there.
Additional work is needed to understand how such an instability is related to the duplex collinear slip ob-
served in the [111] case. The second part of this section aims to identify dislocation reactions controlling
this complex plastic behaviour.

2.4.4.4 Dislocation dynamics analysis

Pseudo-cubic slip

In one of the very few experimental studies addressing the occurrence of cube slip in γ/γ′ alloys, Bettge
and Österle [OST00] observed the appearance of slip bands by TEM. Single crystals oriented with the
[111]-direction near the tensile axis were deformed in uniaxial tension at 923 K and 1023 K. The defor-
mation bands appeared in two stages: at a low plastic strain of 0.20%, the first deformation bands were
all parallel to one single cubic direction. Then, at a larger plastic strain of 2.55%, deformation bands
were homogeneously distributed along all three {100} directions. No cubic dislocations were observed
at higher magnifications, in both stages. The deformation bands contained only 1

2 [011]{111} type dislo-

(a)

(b)

Figure 60 - Comparison between (a) experimentally-observed (after [OST00]) and (b) simulated dis-
location microstructure in a matrix channel for the [111] case, after 0.2% plastic strain. (a) left: TEM
bright-field image with foil normal (111) of a (100) slip band at 923 K. Right (enlarged view of the
rectangular area in the image on the left): zig-zag dislocation configurations, (b) simulated dislocation
microstructure at 850◦C with the same foil characteristics.
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cations of mixed 60◦ character, forming zig-zag configurations in the channels (figure 60 a). The angle
between zig and zag direction was approximately 60◦. Note that the results from the DCM simulations
correspond to these observations for the first stage (see figure 60 a), albeit at a somewhat higher temper-
ature.
According to Sass et al. [SAS97] [SAS98] and Bettge and Österle [OST00], repeated double cross-slip
events might explain the formation of the zig-zag configuration and the pseudo-cubic slip traces. Their
explanation is as follows: a 1

2 [011] screw segment gliding in a channel on a (11̄1) plane will eventually
be blocked by a (100) interface. As a result of some high local stress it cross-slips onto a (111̄) plane.
After crossing the channel on this new plane, the segment is blocked again by the interface at the other
side of the channel. There it cross-slips back onto a (11̄1) plane. If this double cross-slip process occurs
repeatedly, the initial screw segment generates two trailing zig-zag-shaped dislocations, tracing its path.
Subsequently, the two trailing dislocations glide in the [011] direction, thereby shearing the material with
a net cubic (”pseudo-cubic”) slip.
In order to test this mechanism, two distinct sets of DD simulations have been carried out. In the first
set, the cross-slip mechanism was suppressed artificially, whereas in the second set it was not. Unfortu-
nately, the way in which cross-slip actually occurs in γ/γ′ superalloys is not known. Therefore, another
constitutive rule for cross-slip had to be used, similar to the one used in pure fcc metals [KUB92].
In both sets of simulations, exactly the same zig-zag configurations were obtained as in figure (60 b).
Therefore, the formation of the zig-zag configuration is not necessarily associated to cross-slip, but rather
must be the outcome of contact reactions during dislocation glide. In the next section, it is demonstrated
that the simulated zig-zag configurations are the result of collinear annihilation between dislocations with
the same Burgers vector gliding in different slip planes [DEV07].

Elementary mechanisms

The [111] case is analysed first. Only two slip systems with the same Burgers vector accommodate the
imposed deformation. A simple analysis of dislocation-dislocation reactions shows that dislocations are
either elastically repulsive or strongly attractive and can annihilate at contact with the collinear reaction
[KUB03]. In single phase materials, this reaction can annihilate very long sections of dislocation line.
Therefore it has a significant impact on strain hardening and dislocation patterning [DEV07] [DEV08].
In the specific case treated here, the contribution of the collinear reaction appears to be very different as a
result of the confinement of the dislocation dynamics in the narrow channels. Consequently, the follow-
ing points need clarification: (i) how the zig-zag configurations are formed, (ii) how collinear reactions
cause the localisation of the plastic deformation into a single cubic direction and (iii) why the [111] and
the [001] cases are so different.
Figure (61) shows the expansion of two dislocation loops on two different slip planes, but with the same
Burgers vector. The snapshots are illustrations of the most frequently occurring collinear reaction during
massive simulations (i.e. simulations where loops are present on all slip systems and with realistic dis-
location densities). Because of line tension anisotropy, dislocation loops expand preferentially in those
channels in which their edge segments can move large distances (in the figure this corresponds to the
horizontal channel). Screw dislocation segments are deposited at the precipitate surfaces bounding these
channels. Other screw segments cross the vertical channels but do not bow out there much because they
are held back by the higher line tension in those directions. As illustrated in figure (61) at t4 and t5, if
the intersection of the two slip planes does not lie too far into the vertical channel, the screw line sections
of both dislocations are annihilated there. This leaves behind ”V”-shaped dislocation debris of 60◦ char-
acter against the two precipitate surfaces which bound the vertical channel. The accumulation of such
”V”-shaped debris during plastic deformation is the explanation of the zig-zag configurations observed
in the simulations (see figure 60).
As argued above, dislocations of a given Burgers vector preferentially glide in a specific channel because
of the line tension anisotropy. Consequently, within the plastically active channels there is a high prob-
ability of collinear interactions, and a large diversity of reactions is indeed observed there. Figure (62)
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Figure 61 - Successive snapshots t1 − t6 of the creation of ”V”-shaped debris, the elementary pieces of
the zig-zag dislocation configuration.

shows three representative examples.
Figure (62 a) shows the simplest one. Two attractive dislocations bow out on intersecting planes, but now
the planes intersect inside the active channel instead of outside, as in the previous case. The line of inter-
section is shown as the dotted line in figure (62 a3). The dislocations exchange line sections (”arms”) as
a result of a collinear reaction, and again two ”V”-shaped configurations are formed. This time however,
there are no vertical interfaces to block them, and they can glide across long distances after the reaction.
Figure (62 b) shows subsequent possible reactions between ”V” configurations (or even more complex
dislocation configurations). For each collinear reaction, an exchange of dislocation arms is observed and
the new dislocation configurations contain collinear super-jogs, forcing dislocation glide in the direction
of the Burgers vector. The latter direction is parallel to the channel interfaces, so the new dislocation
configuration is potentially mobile. Two cases can now be distinguished: (i) the super-jog glides in the
same direction as the primary line. For the same applied stress the total force acting on the dislocation
line then increases, because it is now longer than before. This facilitates cutting or bypassing obstacles,
so that its mobility increases [DEV07] (see figure 62 b). (ii) The super-jog glides in the opposite direction
as the primary line. Then it tends to increase its length, to bow out and sometimes act as a dislocation
source (see figure 62 c).
The larger the plastic deformation, the more collinear super-jogs accumulate along the dislocations. This
evolution justifies two important properties of the [111] case. First, the decoration with collinear super-
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Figure 62 - (a) The collinear reaction: two curved dislocations with the same Burgers vector are gliding
in a γ channel. After a collinear reaction, dislocation arms can only move in the same channel and in
the same direction (illustrated by the dotted line and the black arrow at a3). (b) Creation of a superjog
S: mobile arms can react with an immobile dislocation to create a superjog (shown by the white arrow
at b2). The latter moves in the same direction as the primary lines, thereby increasing the mobility of
the dislocation. (c) Creation of another superjog S: in this case it moves in the opposite direction as the
primary lines, thereby increasing its line length. The newly created dislocation line can then bow out and
even act as a dislocation source.

jogs enforces a localisation of dislocation motion in their initial channel because they can glide easily
only in the direction of the Burgers vector. Second, super-jogs increase the mobility of some disloca-
tions, because they increase the length of those mobile lines which can progress easily in-between the
interfaces.
The plastic localisation observed in the simulations is certainly exaggerated because of the ideal arrange-
ment of the periodic replicas of the precipitate. In reality, the precipitate arrangement is not perfectly
regular and because of that the easy glide simulated here, with a very long dislocation free path, will
eventually be blocked by some precipitate. At larger strains, additional slip systems must then be acti-
vated in the other channels.
Next, the [001] case is analysed. In this orientation it must be understood why the same elementary
dislocation reactions do not lead to the same plastic instabilities as in the [111] case. At the start of
the simulation of the [001] case, the first slip systems activated in a channel are depositing pure screw
segments at the γ/γ′ interfaces, as in the previous case. Hence, the argument of line tension anisotropy
promoting collinear duplex slip in specific channel directions also applies here. However, this time the
plastic strain does not localise into one single channel, and a very strong strain hardening is observed.
The origin of this strain hardening is explained in the next section.
In agreement with other simulations on single-phase fcc crystals [DEV07], the mobility of dislocation
lines decorated with collinear super-jogs is different between the two loading cases. As explained in
[DEV07], in the [001] case most collinear super-jogs decorating the dislocation lines are resistive. They
tend to move in the opposite direction as the main line and must be dragged along by the mobile disloca-
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tions, thus increasing the flow stress somewhat. They also increase the rate of dislocation multiplication,
because the long collinear super-jogs can act as dislocation sources. This contributes significantly to the
high strain hardening observed in the [001] case.

Strain hardening mechanism

In the previous section it was observed that the same dislocation reactions give very different plastic re-
sponses for the two loading directions. In the [111] case, dislocation mobility is high and there is no strain
hardening. This is why the localisation of plastic strain into one specific channel can hardly be stopped
once it has been initiated. In the [001] case, dislocation mobility is lower, the multiplication rate is high
and there is significant strain hardening. Given that forest hardening hardly contributes to the flow stress
(see ”Macroscopic mechanical response” in section 2.4.4.3), the internal stress in the simulated volume
is now analysed in order to identify the dislocation mechanisms that govern strain hardening.
A first hypothesis is that the strain hardening in the [001] case is an incidental effect of the larger number
of slip systems that can be activated. For testing this hypothesis, a model simulation containing only
dislocation loops on two collinear slip systems A6 and D6 is carried out for both loading cases. The
resulting stress-strain curves are very similar to the ones obtained with loops on all slip systems. In addi-
tion, the evolution of the total dislocation density in these simulations has the same tendency as in figure
(56 b). For the [001] case, interfacial dislocations are accumulated around all channels. For the [111]
case, only a few screw dislocations are stored at the interfaces of one channel. This demonstrates that the
observed strain hardening does not depend on the number of activated slip systems. Rather, it depends
on the manner in which the dislocations are stored at the interfaces. In the simulations, this orientation
dependence of the dislocation density distribution and the resulting hardening is obtained when at least
two collinear slip systems are activated. The importance of the simultaneous activation of collinear slip
systems is justified in what follows.
Next, returning to the massive simulations, the strain hardening of both orientations can be linked to
the internal stresses created by the dislocations stored at the interfaces. Figure (63) shows the internal
stress τ int (see section 2.1.3) in the simulated volume for both loading cases. This is calculated as the
self-stress field of all dislocations resolved on one (1̄11)[110] active octahedral slip system in an infinite
periodic microstructure. The images in figure (63) are the averages of ten cross-sections of normal [001],
taken at regular intervals along the entire edge of the simulated volume.
From figure (63 a), the strain hardening in the [001] case can be correlated to the high internal stress in
the channels. Analysis of the dislocation dynamics in the active slip planes shows that the PK force on
gliding dislocations is systematically reduced by the stress field of the dislocations accumulated at the

(a) (b)

Figure 63 - The internal stress τ int in the simulated γ/γ′ microstructure for (a) the [001] case and for
(b) the [111] case. The internal stress is calculated as explained in the text.
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interfaces. The origin of this polarised internal stress is that the sign and amplitude of the Schmid factors
on collinear slip systems are identical. As a consequence, the sign of the dislocations gliding in a crystal
direction and the sign of the dislocations accumulated at a given interface are identical. In addition, with
the elevated multiplication rate (see ”Elementary mechanisms”), the repulsive back stress associated to
interfacial dislocations rapidly prevails. This explains why the dislocation dynamics is rapidly distributed
among the three channels. At the precipitate surfaces dislocations of screw and ±60◦ character are then
found.
In the same manner, absence of strain hardening in the [111] case can be explained by two observations:
(i) the interfacial dislocation network is not polarised, and (ii) the dislocation density during deformation
remains low. The first point occurs because the Schmid factors on collinear slip systems are of opposite
sign. For a specific line direction of the long screw segments covering a specific interface, the sign of
the Burgers vector is not unique. As shown in figure (63 b) this generates only a low internal stress in
the microstructure which hardly contributes to the strain hardening. The second point is explained as
follows: as a result of the many collinear reactions taking place inside the channel, a dislocation segment
decorated with an odd number of collinear superjogs and which remains in the same channel is neces-
sarily connected to two interfacial dislocations with identical sign (see figure 64). For such segments,
the length of dislocation on different slip planes is unbalanced, so they can glide in the screw direction,
with a constant total length of interfacial dislocations. These two points explain how the channels can be
easily deformed plastically with hardly any increase in the dislocation density.
Lastly, it must be noted that the strain hardening is essentially kinematic in nature because it is mainly
controlled by the formation of a polarised interfacial dislocation network. The internal stress in the chan-
nels created during a [001] tensile test would increase dislocation mobility in a subsequent compression
test. More generally, one can conclude from the analysis of the simulated results that a strong kinematic
hardening is expected in single crystal superalloy samples deformed uniaxially in a direction close to one

Figure 64 - Dynamics of a dislocation line decorated with a collinear superjog, moving in the screw
direction. Glide of the line section in the γ channel (including the superjog S) produces plastic deforma-
tion, but without variation of the total dislocation length.
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of the 〈001〉 directions. Also, a smaller and more isotropic hardening is expected in uniaxial tests where
the Schmid factors on collinear slip systems have opposite signs, e.g. with the tensile axis close to the
〈111〉 or 〈101〉 crystal directions.

2.4.4.5 Concluding remarks

Many studies have modelled the mechanical response of single crystal γ/γ′ superalloy by using the
FE method. However, conventional continuum theory can predict neither the anisotropy nor the size
dependence. Rather, they have to be included a priori, for instance by explicitly introducing a length scale
into the constitutive descriptions, or by adding additional mechanisms to account for the anisotropy.
In this section, the objective of the DCM simulations was to reproduce the macroscopic response for
the [001] and [111] cases, and to analyse the resulting dislocation structures in order to understand the
differences. Precautions have been taken to obtain realistic initial dislocation microstructures, and the
dislocation analyses have been compared with experiments. The main results are summarised as follows:

∗ In accordance with experiment, the macroscopic stress-strain curve for [001] oriented specimens
exhibits a strong linear hardening, whereas the stress-strain curve for the [111] orientation shows
a stress drop after an upper yield point, followed by a low hardening stage. The difference has
been correlated with much less dislocation storage for the [111] case than for the [001] case. In
addition, at small strains forest hardening does not significantly influence the mechanical response
because it is rendered ineffective by the dislocation-precipitate interaction.

∗ DCM simulations have shown that all dislocations are ultimately stored at the γ/γ′ interfaces.
When the Orowan stress is reached, dislocation loops move through the channels, bowing out be-
tween the precipitates and depositing dislocation segments at the interfaces. For the [001] case,
these discrete segments have a screw character or a mixed 60◦ character, and the interfacial dis-
location network thus created is polarised (see figure 52 b). For the [111] case, only two active
octahedral glide systems deposit dislocation segments at the channel walls. These long parallel
screw segments all have the same Burgers vector. Due to the fact that the two active systems are
always collinear, the number of possible dislocation reactions is strongly reduced.

∗ Dislocation structures at the interfaces differ strongly between both orientations. In an optical
microscope, the dislocation structures appear as deformation bands parallel to the {100} cube
planes. In the [001] case, eight octahedral slip systems are activated and a dislocation network is
formed at all six surfaces of the precipitate. This appears as deformation bands along all three cubic
directions. In the [111] case, the dislocation network is formed only on two interfaces, because
the dislocation dynamics takes place only within one channel. In accordance with experiment,
the deformation band is located within one unique channel. This channel is deformed almost
exclusively by only two slip systems.

∗ As previously observed experimentally by Bettge and Österle [BET99], at the fine scale, zig-zag
dislocation configurations are observed. Such configurations are more easily observed in the [111]
orientation because the dislocation density is lower there, but they exist whatever the loading
axis. These zig-zag configurations are the product of collinear annihilation reactions between
dislocations in slip systems having the same Burgers vector. Two kinds of zig-zag configurations
are observed: (i) a series of immobile ”V” debris located at the interfaces, and (ii) very mobile
jerky dislocation lines decorated with collinear superjogs, confined within a channel. The latter
are responsible for the localisation of the plastic deformation and are the main mechanism for the
easy glide observed in the [111]-oriented specimens.

∗ During the localisation of the plastic deformation in the [111] orientation, long segments with the
same Burgers vector but opposite line vectors are deposited at the interfaces. These dislocation
configurations are not polarised at the interfaces and so do not create long-range internal stresses.
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In addition, the high mobility of superjogs within the deformed channel increases the possibility
of annihilation of these long interfacial segments, thus explaining the reduction of the dislocation
storage rate during deformation. Hence, the absence of hardening in the [111]-oriented specimens
is caused by the diminishing evolution of dislocation density and the absence of long-range internal
stress.

2.4.5 Guidelines for improving constitutive laws

Guidelines to improve the constitutive laws for γ/γ′ single crystal superalloys used in continuum mod-
elling can be deduced from the simulations in the sections 2.4.3.3 and 2.4.4.
On the one hand, it has been observed that the work hardening rate in these materials is higher than es-
timated from simple theoretical models based on forest hardening. In this context, Ashby [ASH70] has
introduced the term ”geometrically necessary dislocations” to account for the dislocations related to the
mesoscopic gradients of plastic deformation. Being deposited in the vicinity of inclusions in addition to
the usual ”statistically stored” ones, these dislocations are thought to increase the work hardening of the
composite materials. Brown and Clarke [BRO77] have suggested three contributions to the flow stress
τf in an analysis of the work hardening in composites: (i) the usual forest contribution τ forest (similar
to equation 2.52), (ii) the so-called ”source-shortening” term τ s−shortening, and (iii) the mean internal
stress τEshelby in the matrix which can be estimated using for instance by the Mori-Tanaka or Eshelby
approaches.
These phenomena are nontrivial in γ/γ′ superalloys, and for sake of simplicity, the strengthening contri-
butions are considered to be independent and additive. Thus τf may be written as

τf = τ forest + τ s−shortening + τEshelby + τOrowan (2.53)

with τOrowan the critical stress for the Orowan process illustrated in section 1.1.3.4.

∗ As explained above, forest hardening is not significant with respect to Orowan strengthening. The
latter corresponds to the threshold stress τOrowan inversely proportional to w. Forest hardening
can thus be neglected, i.e. τ forest ≈ 0.

∗ The source-shortening term has been explained as the effect of the Orowan loops left behind
around the precipitates. The local stresses due to the Orowan loops reduce the effective inclu-
sion spacing by causing the successive dislocations to stand off of the precipitates, thus increasing
the dislocation bow-out stress. This effect is well-known in the literature [BRO77] [MOR98] as
the source-shortening model. Nevertheless, due to the small microstructural dimensions and the
confined plasticity in the γ channels, dislocations are forced to bow out between the particles and
no pile-ups are formed in the simulations. This is why a source-shortening effect has not been
observed and it does therefore not contribute to the reduction of the dislocation mean free path, so
that in γ/γ′ case, τ s−shortening = 0.

∗ Even though in the 3D simulations no pile-ups have been found, a network of interfacial disloca-
tions pressed onto the impenetrable boundaries of γ′ precipitates has nevertheless been observed at
the simulated temperature of 850◦C (see figure 53 b). Whereas the critical threshold is controlled
by the spacing between precipitates, the work hardening seems to depend on the high volume frac-
tion of the precipitates: the larger the volume fraction, the higher the storage of dislocations. In a
first approximation, the critical threshold τOrowan is controlled by the Orowan mechanism, and the
work hardening by the accumulation of dislocations at interfaces which induce internal stresses
inside the microstructure (see figure 63 a). The polarised dislocation distribution at the interfaces
create long-range internal stresses. These interfacial dislocations are responsible for the hardening,
which is mainly controlled by the stress fields of dislocations stored at the interfaces. Macroscop-
ically, only the long-range internal stresses generated through the Nye tensor and represented by
the mean internal stress τEshelby may be taken into account.
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On the other hand, many crystal plasticity models use additional cubic slip systems in order to capture
the tensile anisotropy between the [001] and the [111] case phenomenologically. At a macroscopic scale
this assumption is justified by the presence of deformation bands along the cubic directions. However,
at lower length scales or (presumably) for more complex loading cases this is no longer valid. Moreover
such a simplification is not needed for large scale computations:

∗ In the [001] case, the storage of dislocations into a polarised interfacial network can be modeled by
considering the polar/excess/geometrically necessary dislocation density. Most of the dislocation
density is concentrated at the interfaces instead of into pile-ups. It can then be supposed to be
concentrated at a singular surface and be measured by the surface dislocation density tensor defined
by Nye [NYE53].

∗ The anisotropy of the strain hardening is essentially determined by the nature of the dislocation
network at the interfaces. For the [111] case, the interfacial dislocations are not geometrically
necessary, in contrast to the [001] case discussed above. In order to capture this difference, the
sign of the Burgers vector of each interfacial dislocation should be taken into account explicitly.
One way to do this is to split the usual 12 octahedral systems containing dislocations of both signs
into 24 systems containing dislocations of only one sign. Then, depending on the sign of the
Schmid factor, one specific interfacial dislocation may have (for instance) a positive sign of the
Burgers vector in the [001] case, whereas the same dislocation will have a negative sign in the
[111] case [KUB06]. The net effect is a different macroscopic response for the two cases.

The latter points have been taken into account in the enrichment of a dislocation-based micromechanical
model initially developed by Fedelich [FED02]. This will be presented in section 3.2.

Résumé

Le but des simulations 3D de DD est de fournir un outil de compréhension permettant d’aborder la
modélisation de la plasticité des cristaux de manière réaliste. Ces dernières années, la DD s’est avérée
précieuse dans l’étude des interactions élémentaires entre dislocations et du durcissement de la forêt
des métaux cfc sans paramètre ajustable. Néanmoins, la prédiction du comportement mécanique des
matériaux hétérogènes constitue aujourd’hui un problème complexe qui nécessite, afin de dépasser le
stade conceptuel du monocristal soumis à une contrainte uniforme, de pouvoir prendre en compte des
situations impliquant soit des sources de contraintes internes (présence de précipités), soit des charge-
ments complexes. En somme, il est important d’intégrer dans les simulations, les conditions aux limites
réalistes de matériaux complexes couramment testés en laboratoire.
Dans ce contexte, un couplage original de la simulation de DD avec un code d’EF a été initié par Lemarc-
hand [LEM99] [LEM01] et Groh [GRO03a] à l’Onera, sous l’appellation de Modèle Discret-Continu
(MDC). Notons qu’il existe depuis quelques années d’autres approches de simulation hybride, plus ou
moins proches de la solution du MDC [VAN95] [FIV99] [ROD01] [GRA07] [LIU09]. Chacune de ces
méthodes présentent des avantages et inconvénients en comparaison avec le MDC (écriture aux grandes
déformations, type de code DD sous-jacent, résolution des interactions à courte distance. . .). Le MDC
consiste principalement à substituer la loi de comportement classique du code EF par une simulation de
DD permettant de décrire les processus fondamentaux physiques de la déformation plastique. Dans le
schéma EF, les dislocations sont décrites à travers les eigenstrains induits par le mouvement des disloca-
tions régularisées dans un volume de ”coarse graining”.
Au-delà des aspects purement techniques, comme le portage des modules des deux codes (mM , Z-
SeT, ainsi que le wrapper Zpvm et le greffon zMDC, voir Annexe B) vers leurs dernières versions, les
développements récents effectués sur le MDC ont portés sur (i) la discrétisation des lignes de dislocation
qui intègre maintenant le récent modèle ”mixte” du code de DD, (ii) les conditions initiales du problème
mécanique à travers des boucles dipolaires de Volterra, (iii) la réécriture sous une forme optimisée de la
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procédure du calcul de la déformation plastique afin d’améliorer les performances en termes de temps
CPU (pour les même temps de calcul, les performances ont été améliorées d’un facteur 10 depuis la
précédente version utilisée dans la thèse de Groh), et enfin (iv) le caractère multi-domaines du MDC
pouvant désormais appréhender des problèmes avec plusieurs phases plastiques et/ou plastifiables.
Dans un premier temps, après validation du MDC, les règles fondamentales introduites dans le code afin
d’accéder aux mécanismes fondamentaux de la plasticité dans les superalliages monocristallins ont été
détaillées. Le mécanisme de cisaillement des précipités cuboı̈daux cohérents par superdislocations a été
implémenté. L’objectif est de comprendre l’influence de certains paramètres physico-chimiques et mor-
phologiques de chacune des phases sur les propriétés mécaniques du monocristal biphasé. Les résultats
montrent que dans les couloirs de matrice, le rayon de courbure de la dislocation dictée par la tension de
ligne contrôle principalement la contrainte critique de cisaillement. Une forte contrainte de friction de
réseau dans la matrice ou une forte énergie d’antiphase dans le précipité sont deux paramètres qui con-
tribuent à la diminution de la mobilité des dislocations. Cette étude a permis de reproduire la contrainte
critique de cisaillement dans une large gamme de températures de 25 à environ 850◦C.
Dans un deuxième temps, deux applications qui ont toutes deux trait au traitement des effets de taille et
de l’orientation de chargement ont été réalisées à 850◦C. Concernant l’effet de taille, le MDC a pu prédire
la contrainte d’Orowan macroscopique, contrainte couramment observée en métallurgie. Par ailleurs, le
MDC prévoit une limite d’élasticité à 0.2% de déformation plastique dépendante de la largeur du couloir.
Les mécanismes de microplasticité qui sont responsables de cet effet sont dictés par une forte accumu-
lation de dislocations aux interfaces, dont le taux de stockage de la densité de dislocation est fonction
de la largeur des couloirs de matrice. C’est pour cette raison que les modèles classiques de plasticité
de type stockage-restauration semblent insuffisants pour le biphasé lorsque le libre parcours moyen des
dislocations est lié à la présence des interfaces du précipité.
La seconde application porte sur les effets de l’anisotropie de l’orientation du chargement en trac-
tion monotone suivant 〈001〉 et 〈111〉 à hautes températures. Bien qu’aucune modélisation par DD
n’avait été effectuée auparavant, une abondante littérature expérimentale existait dans ce domaine. Les
résultats numériques rendent compte de nombreuses observations obtenues expérimentalement: des
similitudes entre les microstructures simulées de dislocation en zig-zag aux interfaces et observées au
microscope électronique en transmission ont été montrées. Cette comparaison a permis d’accorder du
crédit supplémentaire aux résultats simulés et à comprendre en détail les microstructures formées.
L’étude des densités de dislocation a permis de montrer que l’accumulation des dislocations aux inter-
faces est bien plus faible en 〈111〉, et que seuls deux systèmes actifs localisés dans un couloir du cristal
accommodent la quasi-totalité de la déformation plastique. L’étude des mécanismes responsables de la
formation de la localisation, faite d’enchevêtrements de supercrans mobiles dans le couloir et tapissant
les interfaces de dislocations non polarisées, a conduit à l’explication de cette anisotropie d’écrouissage.
Cette étude est capitale car une question sur la véritable activité des systèmes cubiques sur la matrice des
superalliages se pose. De ce fait, la mise en évidence de ce nouveau mécanisme et de ses conséquences
sur le comportement sera exploitée dans le prochain chapitre dans un but d’amélioration un modèle mi-
cromécanique de plasticité.
A ce stade, il est important de concevoir que l’utilisation du MDC ne doit pas seulement être perçu
comme un outil prédictif mais aussi comme jalon incontournable intégré dans un schéma multi-échelles.
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Introduction

Ce troisième chapitre intitulé ”Plasticité continue dans les superalliages γ/γ′ disloqués” est composé de
deux parties. La première partie 3.1 illustre un modèle de plasticité à longueur interne faisant appel à
la notion métallurgiste de densité de dislocations dites géométriquement nécessaires. Ces calculs sont
justifiés à une échelle intermédiaire caractérisée par des régions riches et pauvres de dislocations. Le cal-
cul de volume élémentaire représentatif qui décrit une distribution inhomogène de dislocations s’avère
d’une importance capitale dans l’optique d’établir des directives pour la construction d’un modèle ”plus
macroscopique”. En somme, la principale fonction de ce modèle est d’appréhender ”le macro du physi-
cien” pour mieux ajuster ”le micro du mécanicien” via une transition discrète-continue de la plasticité.
La seconde partie 3.2 présente un modèle micromécanique prenant en considération les résultats obtenus
aux échelles inférieures ainsi que le rôle de la microstructure du matériau hétérogène dont le com-
portement est de nature élastoviscoplastique. Ce modèle a initialement été développé par Fedelich
[FED99] [FED02] et amélioré dans le cadre d’une étroite collaboration avec le Bundesanstalt für Ma-
terialforschung und -prüfung (BAM) à Berlin durant ce travail de thèse. Les efforts réalisés ont porté
sur la justification physique du modèle continu à travers les résultats obtenus par le MDC, et plus par-
ticulièrement sur la question de l’activation des systèmes de glissement cubiques des dislocations sous
un chargement autre que 〈001〉. Il s’agit d’un exemple de transition (micro-macro) d’échelles où les
simulations discrètes ont permis d’asseoir un modèle continu aux échelles supérieures. Le comporte-
ment mécanique est déduit des mécanismes physiques à l’origine de la déformation plastique. A ce titre
le modèle est physiquement justifié, identifié et validé à 850 et 950◦C sur le CMSX-4 pour une large
gamme d’essais sous diverses vitesses de sollicitation et d’orientations.

3.1 An intermediate dislocation-density based model on the µm-
scale

3.1.1 Introduction

Numerical analysis of single crystal superalloys using classical FE method can be categorised into two
basic approaches.
The first approach uses a homogenised constitutive description for the γ and γ′ phases without a distinct
delineation of the γ/γ′ phases in the FE mesh. Each IP can be thought of as containing a RVE, which
is assumed to contain the microstructural details of the γ and γ′ phases in a homogenised constitutive
description [NOU95] [FLE96] [FED99] [MAC01] [FED02] [PRE09]. These constitutive descriptions
applied to engineering applications, such as those in actual component design. This approach is concep-
tually more global in representing the microstructure as a volume element. It will be used in section 3.2.
The second approach is to use a periodic unit cell representation of the microstructure, where the two
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phases are represented separately: a parallelepiped with the mechanical properties of the γ′ precipitate,
embedded inside another with those of the γ matrix. Several authors have modelled the mechanical be-
haviour of superalloys for an idealised microstructure using FEM [GLA89] [POL92] [NOU97] [KUT98]
[BUS00] [FOR00] [MEI01] [CHO05]. Numerical modelling of idealised alloy microstructures using FE
method can be used to examine the effects of precipitate-level morphology on the flow response of the
overall body. In this approach one can apply separate constitutive descriptions for the γ matrix and the γ′

precipitate, and investigate the local flow distributions and the macroscopic flow responses under various
γ/γ′ geometries.
This section 3.1 of the thesis deals with an intermediate model, proper to the second approach. As al-
ready stated in section 1.2.4, classical local plasticity theory, in which no length scale enters, disregards
the influence of the microscopic material structure on the macroscopic material behaviour. Although
local theories are able to interpret the material behaviour in a large number of applications, they be-
come inadequate to model phenomena such as the experimentally observed size-dependence of plastic
response of micro-sized solids. Indeed, experiments (or for instance the numerical DCM results, see fig-
ure 49) show that the real material behaviour exhibits significant size effects under certain circumstances.
Typical examples of such experiments are depicted in figure (65) [FLE94].
Each of these experiments results in a plastically inhomogeneous deformation and consequently plastic
strain gradients induced by one of the following underlying mechanisms:

∗ For complex loading cases, a homogeneous specimen can exert deformation inhomogeneities. In
the bending and torsion specimens (see figures 65 a and b) the plastic slip remains zero (γ = 0) on
the neutral or the central axis and increases (γ � 0) towards the compressive/tensile fibre or the
wire surface, respectively.

∗ The local boundary conditions may induce a locally inhomogeneous deformation. In the inden-

Figure 65 - Experiments inducing plastically inhomogeneous deformations and thus plastic strain gra-
dients [FLE94]. (a) Bending and (b) torsion test of a homogeneous specimen, (c) and (d) indentation
test and cracking of a specimen with a zone of concentrated plastic deformation, (e) shear test of a
heterogeneous composite and (f) of a polycrystal.
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tation test (see figure 65 c) and in the cracked specimen (see figure 65 d) a plastic zone with
maximum plastic slip (γ � 0) develops beneath the indenter or at the crack tip, respectively, while
the remaining part of the specimen exhibits only elastic deformations (γ = 0).

∗ The heterogeneity of the specimen results in an inhomogeneous deformation. In the shear test of a
heterogeneous composite (see figure 65 e) the stiff particles deform only elastically (γ = 0) while
the matrix material exhibits an inhomogeneous elastic-plastic deformation (γ � 0). In the shear
test of a polycrystal (see figure 65 f) neighbouring grains undergo different amounts of plastic slip
in varying directions resulting in a possible mismatch of slip at the grain boundaries.

In either of the three cases, the inhomogeneous deformations induce gradients of plastic slip between
plastically non-deforming zones (γ = 0) and plastic zones (γ � 0). These gradients require the stor-
age of dislocations for compatibility reasons. Thus, since these dislocations are necessary in order to
accommodate non-uniform strains, they are denoted as Geometrically Necessary Dislocation (GND) in
contrast to the redundant or Statistically Stored Dislocations (SSD) which accumulate during uniform
straining of the crystal [ASH70]. Thus, at the continuum level where the concern is with distributions of
large numbers of dislocations, one can adopt the following key distinction1. Dislocations are stored for
two reasons:

∗ SSD accumulate due to random trapping and subsequent dislocation multiplication with ongoing
plastic deformation, also in uniform deformations. The precise density of these dislocations is not
predictable through geometric arguments and thus must be described with constitutive equations.

∗ The storage of GND is a direct consequence of the inhomogeneity of the deformation state. The
arrangement of these dislocations is responsible for a remaining inhomogeneous plastic deforma-
tion upon load removal. Thus, the specific density of this dislocation population can be related to
the gradients of plastic slip or the corresponding lattice curvature through geometric arguments.
Accordingly, a homogeneous deformation does not induce any GND storage.

Here, a dislocation-density based constitutive model for fcc crystals is introduced and implemented into
a crystal plasticity FE framework. The approach tracks the dislocation evolution on each slip system
where the GND density is introduced in order to consider slip gradients on the µm-scale.
The extended model allows to reproduce the initial stages of the microplasticity and predict the me-
chanical behaviour at larger plastic deformation range where the discrete simulations are limited. It also
serves as a scale transition in the bottom-up approach from discrete simulations to continuum mechanics
in proposing the foundations for the development of a macroscopic constitutive model.

3.1.2 Representation of continuously distributed dislocation density

3.1.2.1 Kinematics

Mathematical relations for the description of crystal plasticity have been developed by Hill [HIL66]
in the small strain context and consecutively in the finite strain setting by Teodosiu [TEO70] or Rice
[RIC71].
A relative description for the motion of the material body is obtained by considering the nonlinear defor-
mation map ϕt : X 7−→ x = ϕt(X), with X a generic point in the reference configuration B and x(X)
its image in the deformed configuration S (see figure 66). The reference configuration B illustrates a
reference material element along with the lattice unit vectors n and m representing the original slip plane
normal and slip direction, respectively.
Generally the initial undeformed configuration B at time t = t0 is chosen as reference configuration as
this configuration of the material body is usually known. Only in the special case of a homogeneous

1Note that, if the concern is with a single discrete dislocation, there is no difference between SSD and GND.
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(a) (b)

Figure 66 - Geometric setting of multiplicative crystal plasticity. The total deformation gradient F is
split into a plastic part Fp representative of the dislocation movements and an elastic part Fe describing
elastic lattice distortions and rigid rotations. (a) For a homogeneous deformation state, the corresponding
intermediate configuration B̄ is compatible. (b) For the case of an inhomogeneous plastic deformation,
the corresponding intermediate configuration is characterised by incompatibilities.

deformation Fe and Fp are gradient fields. The key quantity in the description of finite strain kinematics
is the deformation gradient. It is defined by the Frechet-derivative of the nonlinear deformation map ϕt

with respect to the material coordinates X:

F(X) ≡ ∇Xϕt(X) (3.1)

The total deformation of a crystal consists of a plastic part, elastic lattice distortions and rigid body
rotations. The plastic part of the deformation results from the simultaneous motion of dislocations on the
active slip systems. The homogenisation of these combined dislocation movements induces a continuous
plastic shear deformation on the macroscopic length scale. Following Lee [LEE69], this suggests a
multiplicative decomposition of the total deformation gradient:

F = Fe.Fp (3.2)

into an elastic part Fe, which describes the elastic distortion and the rigid rotation of the lattice, and a
plastic part Fp representative of the combined dislocation movements. By definition, the lattice rotation is
fully included in Fe, so that the plastic part Fp corresponds to an intermediate configuration in which the
material is plastically deformed but the lattice is undeformed and unrotated. Along with the multiplicative
split, the fictitious intermediate configuration B̄ is introduced (see figure 66).

3.1.2.2 Lattice (in)compatibility

For a locally homogeneous deformation, a purely local description in terms of the elastic part Fe and
the plastic part Fp of the total deformation gradient is sufficient because the corresponding intermediate
configuration B̄ is compatible (see figure 66 a). If it comes to plastically inhomogeneous deformations
such as the examples considered in figure (65), a purely local description is insufficient because the
corresponding intermediate configuration B̄ would be incompatible while the total deformation state
remained compatible (see figure 66 b).
From a mathematical point of view, the result that the total distortion β must derive from a displacement
field (equation 1.12) can also be written as curl(β) = 0. In the continuum theory of dislocations, one
assumes the distortion to be compatible, i.e. curl(β) = 0, but this need not hold for its elastic and plastic
part when considered separately, i.e. in general curl(βe/p) 6= 0. So, curl(βe/p) can be interpreted as a
measure for the incompatibility of the deformation.
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From the physical viewpoint, an incompatible deformation is counteracted by the formation of GND. It is
up to these line defects to compensate the misfit between incompatibly deformed small volume elements:
the bigger the incompatibility of a deformation, the larger is the required number of dislocations in the
material. These two statements motivate the second definition for the dislocation density tensor α:

α
law= curl (βe) (3.3)

This latter equation, also known as the first order (in)compatibility, is a fundamental field equation of
the linear continuum theory of dislocations. It expresses that a continuum can be in a state of incom-
patible elastic distortion provided there exists a tensor field α which guarantees the compatibility of the
material distortion. In this sense, it becomes apparent that α describes the dislocation density in the
material. Moreover, according to the linear decomposition defined by equation (1.12), the first order
incompatibility law can be written as

α
def= −curl (βp) (3.4)

or, with components,

αhi = −εhljβ
p
ji,l (3.5)

Note that although the expression (3.5) holds for the case of continuously distributed dislocations, it is
the same expression as (1.16) obtained for a single dislocation loop.
Now, relations between incompatibilities and the concept GND density through the Nye tensor [NYE53]
are discussed.

3.1.2.3 Geometrically necessary dislocations

Crystallographic interpretation

In order to define the concept of the dislocation density tensor in the context of crystal plasticity, a direct
representation of the dislocation density tensor associated to crystallographic slip is now discussed.
Considering continuously distributed dislocations, Nye’s tensor α quantifies a special set of dislocations
whose geometric properties are not canceled out by other dislocations in the crystal. Consider the volume
element shown in figure (67 a), which is a section of a crystal containing two edge dislocations threading
through the volume. The most rigorous manner to describe the dislocation state in the volume would
be to characterise the lines by two Dirac delta distributions of strength b in space, written by equation
(1.19). However, such a quantification of dislocation density becomes overwhelming given the densities
involved in plastic deformation processes up to ρ ≈ 1016 m−2. Allowing such point densities to be-
come continuously distributed within a volume creates a more compact way of describing dislocations
in space. A result of this process is that the spatial correlation of the individual dislocation lines within
the volume is lost.
In the original formulation, Nye [NYE53] quantified the (macroscopic) net Burgers vector B of a contin-
uously distributed dislocation density piercing a unit area perpendicular to the unit normal n through

B = α n (3.6)

where the dislocation density tensor α follows for a given set of dislocations from

α = Nb⊗ r (3.7)

This supposes a continuous distribution of N dislocations of unit length with a Burgers vector b and a
corresponding common unit tangent vector r. Furthermore, if several sets of dislocations with different
values of N , b and r reside in the same unit volume, the total dislocation density tensor is obtained
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Figure 67 - Nye’s dislocation tensor α. (a) An edge dislocation dipole give no net contribution to Nye’s
tensor. (b) Example distribution of N⊥ edge and N� screw dislocations resulting in a nonvanishing α.
(c) Extension to a discrete dislocation structure.

by summations over these contributions. Consequently, Nye’s tensor quantifies only those dislocation
populations which do not cancel one another within the unit volume, i.e. the GND. In turn, the dislo-
cations which cancel each other if summed over the volume, like dislocation dipoles or self-terminating
dislocation loops, make up the SSD density. In contrast to the GND density, the latter does not give any
net contribution to Nye’s tensor. A simple example of such a dislocation distribution with an edge dislo-
cation dipole is visualised in figure (67 a) where the net Nye’s tensor of the element is zero because the
dislocation density, as drawn, consists of two dislocations with common line vector but opposite Burgers
vector. In terms of Nye’s tensor, an equivalent form would be to place the two dislocations on top of one
another, allowing them to annihilate, leaving behind no dislocation density in the element.
Through equation (3.7), any state of dislocations resulting from an inhomogeneous plastic deformation
can be constructed by combination of nine sets of dislocations of unit length with their line directions
and Burgers vectors arranged parallel and perpendicular to the coordinate axis. The three terms on the
main diagonal of αij represent pure screw dislocations and the six off-diagonal terms describe the six
possible types of pure edge dislocations. A visualisation for the simple case of one set of screw and one
set of edge dislocations within a unit volume is illustrated in figure (67 b).
In addition, as discussed by Arsenlis and Parks [ARS99], the extension to discrete dislocation arrange-
ments is straightforward and results in the expression

α =
1
V

∑
g

l̄g bg ⊗ t̄g (3.8)

where l̄g is the secant length of the g-th discrete dislocation segment and t̄g is the corresponding average
line direction vector. This expression, which closely resembles the definition of the tensor in equation
(3.7), is illustrated in figure (67 c). In the procedure by which Nye described the dislocation tensor, the
dislocations which constituted it were considered to be continuously distributed, and the tangent line
vectors were implicitly constant. In contrast to r in equation (3.7), t̄g in equation (3.9) is no longer a
unit vector but also contains the resulting path length of the dislocation segment threading the reference
volume element (see figure 67 c).
Only the direct connection of the start and end point of the dislocation segment in the volume element
(dashed lines in figure 67 c) results in a net contribution to Nye’s tensor, while the remaining segment
length has no geometric consequences and thus contributes only to the SSD density. Using the descrip-
tion of dislocation density as line length in a volume, the summation of geometric dislocation lengths l̄g

in a reference volume V can be replaced by a summation of geometric dislocation densities ρg
GND. Thus
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equation (3.8) can be rewritten as

α =
∑

g

ρg
GND bg ⊗ t̄g (3.9)

where ρg
GND = l̄g

V . The dislocation density described in equation (3.9) is not the total dislocation density
of any arbitrary dislocation line segment, but it is the portion of the total dislocation density due to
dislocation g which has geometric consequences. The remaining density of the total line, which has no
geometric consequence, must be considered statistical in character. The GND density constitutes a part
of the total density defined by

ρg =
1
V

∫
l
dsg = ρg

SSD + ρg
GND (3.10)

With this decomposition of total dislocation density, an arbitrary line threading through a reference vol-
ume element may be separated into that portion of the total density which has geometric effects ρg

GND,
and the portion ρg

SSD which does not.
In this formulation of Nye’s tensor, the size of the reference volume element over which the density is
averaged plays a crucial role. A volume element that is too large with respect to the geometric constraints
may miss the existence of important geometrically-derived dislocations in one portion of the element that,
when averaged with the other dislocations in the same element, create no net Nye’s tensor. Conversely,
a volume element which is too small may begin to reach length scales where dislocation density can no
longer be considered continuously distributed, so that discrete dislocation mechanics must be adopted.

Slip gradient induced dislocation storage

Any storage of GND/polar/excess density, i.e. arrays of dislocations with equal signs, leads to a lattice
curvature and is a direct consequence of the demand to maintain continuity in the presence of gradients
of plastic slip. To understand the crystallographic consequences of this assertion, consider the schematic
picture of a single crystal with one single slip system g as depicted in the figure (68 a). Here, ng denotes
the slip plane unit normal, mg is a unit vector in the slip direction and tg = mg × ng lies in the slip plane
and is perpendicular to mg.
Following conceptually the work of Arsenlis and Parks [ARS99], first imagine that the material is sep-
arated into three sections in figure (68 b). Each section is then deformed separately through crystallo-

Figure 68 - Storage of geometrically necessary edge dislocations: schematic process of plastically inho-
mogeneous deformation with a gradient of plastic slip in the direction mg [ARS99].
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graphic slip. A plastically inhomogeneous deformation is assumed such that the plastic slip increases
linearly in the slip direction mg. Consequently, in the left-most section the expansion of two dislocation
loops leads to a total slip step of two Burgers vector lengths, while the right-most section experiences
a total slip step of six Burgers vector lengths in figure (68 c). When the sections are now forced again
together in figure (68 d), the opposite slip steps cancel out but a portion of negative edge dislocations
remains at each section boundary in figure (68 e), leading to a lattice curvature.
Mathematically, the relationship between the plastic strain gradient on a slip system and the edge dislo-
cation density (subscript ⊥) takes the form [ARS99]

ρg
GND ⊥ = −1

b
∇Xγg.mg (3.11)

where ρg
GND ⊥ is the geometrically necessary positive edge dislocation density.

In analogy to the previous considerations, the storage of geometrically necessary screw dislocations
is established as the crystallographic consequences of a gradient of the plastic slip in the tg direction.
When the sections are forced back together, there are positive screw dislocations which do not annihilate,
remaining in the material and causing the lattice to warp. The interested reader can refer to [ARS99].
The relationship between the plastic slip gradient on a slip system and the screw dislocation density
(subscript �) takes the form

ρg
GND � =

1
b
∇Xγg.tg (3.12)

where ρg
GND � is the geometrically necessary positive screw dislocation density.

In addition, performing the curl operation inside the summation of the plastic distortion defined by
equation (1.22) gives

εpjkβ
p
ik,j =

∑
g

εpjkγ
g
,jm

g
i n

g
k =

∑
g

γg
,jm

g
i

(
mg

j t
g
p − tgjm

g
p

)
(3.13)

where the last step follows from the definition tg = mg × ng. Using equations (3.11) and (3.12), the
right-hand side of equation (3.13) can be replaced by dislocation densities

εpjkβ
p
ik,j = b

∑
g

[
− ρg

GND ⊥ mg
i tgp − ρg

GND � mg
i mg

p

]
(3.14)

Finally, using the definition (3.4), the incompatibility measure through the Nye’s dislocation density
tensor can finally be identified

αpk = −εpjkβ
p
ik,j = b

∑
g

[
ρg
GND ⊥ mg

i tgp + ρg
GND � mg

i mg
p

]
(3.15)

or

α = b
∑

g

[
ρg
GND ⊥ mg ⊗ tg + ρg

GND � mg ⊗mg
]

(3.16)

These developments show that gradients of plastic slip lead to the storage of dislocations. Thus a direct
relation between plastic slip gradients, incompatibilities and the storage of GND densities has been
obtained. Expressions similar to the right-hand side of the equation (3.16) were found by Fleck et al.
[FLE94], Ohashi [OHA97] [OHA04], Arsenlis and Parks [ARS99], Busso et al. [BUS00], or Cermelli
and Gurtin [CER01] in the small strain context.
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3.1.2.4 Numerical implementation of the slip gradient

Implementation and validation

According to the previous section, the spatial distribution of the plastic slip γg is required in order to
compute the slip gradients ∇Xγg and consequently the GND density ρGND(∇Xγg). There are two
main approaches to compute the slip gradient.
Firstly, a fully implicit treatment consists of introducing the plastic slip as additional nodal degree of
freedom besides the standard displacement degrees. Within the context of dislocation density-based
strain gradient crystal plasticity, Evers et al. [EVE04] proposed a formulation where the GND densities
are chosen as additional nodal degrees of freedom. Secondly, the problem can be treated by computing
the spatial distribution of the plastic slip computed by means of interpolation algorithms.
The first formulation of crystal plasticity is rather costly since it requires up to 12 additional nodal
degrees of freedom (corresponding to the 12 octahedral glide systems) in a full fcc crystal plasticity
model. These drawbacks of the formulation motivate the development of a more efficient approach
where the slip gradient computation is based on a smoothing procedure. The slip gradients and thus
GND densities are computed in a postprocessing step. This procedure is similar to the interpolation
procedure of the DCM described in section 2.2.6 (see figure 30).
First the values of γg

Nn
at the nodes Nn of the FE mesh are calculated from the solutions at the local IP

solutions for the plastic slip γg
IP by using the inverse of the shape functions NNn . This procedure yields

n different values of plastic slips in each node from the Nn adjacent elements. That is why the average of
these values γ̄g

Nn
is calculated. Subsequently the values of the slip gradients ∇Xγg are computed based

on the averaged nodal values γ̄g
Nn

and the FE shape functions NNn :

∇Xγg = ∇XNNn .γ̄g
Nn

(3.17)

Such an approach has already been adopted by several models of plasticity [DAI97] [BUS00] [MA06].
With the slip gradient at hand, the local material response can be determined for each IP.

Dislocation pile-up and GND

A simple illustration of (edge and screw) GND densities formed by the formation of a dislocation pile-
up against a γ′ precipitate into the DCM scheme is shown. The computation of the gradient operator is
applied for the plastic slip generated by the motion of discrete dislocations.
The aim of this calculation is triple: this simulation allows to (i) link both discrete (given by the DD
code) and continuous (given by the postprocessing step) evaluations of GND densities stored against the
interfaces, (ii) assure that the FE mesh can capture the gradient generated by a physically justified spatial
distribution of plastic strains given by a dislocation pile-up, and (iii) validate the appropriate average
volume where the polarised dislocation densities are calculated.
As illustrated in figure (69), the finite mesh of the simulated volume is discretised by 4096 quadratic
elements with dimensions 0.50 × 0.50 × 0.50 µm3 and PBC are applied. The γ′ precipitate is assumed
cuboı̈dal and is discretised with a 10×10×10 finite mesh. For reason of simplicity, a single cubic glide
system is activated in the DCM calculation and slip occurs in the y direction. As shown in figure (69 a)
the normal to the slip plane is along the z axis and the plane is located at the centre of the volume. The
Burgers vector b of the dislocations is codirectional with the slip direction.
At the beginning of the simulation, an infinitely long dislocation of edge character is placed in a γ channel
(see figure 69 a). Cross-slip or climb are not considered. In the DCM scheme, such an infinite disloca-
tion can be obtained by the expansion of a square dislocation loop where the origins and extremities of
two edge segments are superposed. In this process, the two edge segments are moved to the boundaries
and can also annihilate mutually. At the end, two infinite dislocations are obtained (see image t1 of the
snapshot of figure 69 a). For the present computation, only one of the two infinite dislocations is allowed
to glide. The inactive dislocation is not shown in the other snapshots. The shear modulus µ is equal to
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Figure 69 - (a) 3D and (b) 2D view of the dislocation pile-up simulated by the Discrete-Continuous
Model. (c) Visualisation of the geometrically necessary screw dislocations ρg

GND � lying along the y

direction computed by ∂γ
∂x , and (d) the edge dislocations ρg

GND ⊥ lying along the x direction computed
by the postprocessing step ∂γ

∂y . Here, a minimum slip step of two Burgers vector length are shown.

51 GPa, Poisson ratio ν to 0.37, Burgers vector to b = 0.25 nm, and the simulation is performed in a
quasi-static regime in which the dislocations are pushed slowly against the γ′ precipitate. As illustrated
in figure (69 a), because of the PBC, dislocations form a pile-up against the impenetrable γ/γ′ interfaces.
Figure (69 b) illustrates the distribution of density of geometrically necessary screw and edge dislocations
given by the calculation of the gradient of plastic slip at each IP of the FE mesh during the dislocation
pile-up. The associated gradient of slip computed in postprocessing is shown for a minimum slip step of
two Burgers vector lengths. The figure (69 b) shows that the dislocation pile-up accumulated against a
γ′ precipitate generates a gradient of plastic slip localised at the γ/γ′ interfaces. In particular, a gradient
of slip ∂γ

∂y gives rise to a density of geometrically necessary edge dislocations ρg
GND ⊥ lying along the

x direction. Likewise, a gradient of slip ∂γ
∂x gives rise to a density of screw dislocations ρg

GND � lying
along the y direction.
To compare these continuous computations of polarised dislocation densities with the discrete density
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Figure 70 - Comparison between the postprocessing calculation of GND density stored in a pile-up (red
line) and direct dislocation density measure obtained by the Discrete-Continuous Model (black line).

generated by the DCM, total dislocation densities averaged over the total simulation volume are calcu-
lated. Figure (70) shows the evolution of the dislocation density with plastic strain. In this particular
case where all dislocations at the interfaces are GND, the continuous calculation of GND density is in
good agreement with the density given by the discrete simulation, increasing linearly with strain for both
approaches. These results illustrate that the computation of the gradient of plastic slip calculated by the
postprocessing procedure is a good tool to evaluate the density of GND accumulated in a pile-up at the
γ/γ′ interfaces. In this way the pseudo slip-gradient constitutive model2 now is introduced.

3.1.3 GND into a dislocation mean free path model

3.1.3.1 Motivation

During the past ten years, the concept of GND and its incorporation into a phenomenological continuum
theory of plasticity have been actively developed. Depending on the particular theory, the measure of
the density of GND is incorporated into the expression for the flow strength [SHU01], the hardening
[OHA97] [GAO99] [ACH00] [MEI01], or the free energy [GUR00]. For instance, two approaches have
been used to establish mesoscale plasticity theories linking GND to continuum plasticity via the Taylor
model stated in section 1.2.4.2. The first is a higher-order theory which is based on the Cosserat-Koiter-
Mindlin-Fleck-Hutchinson framework [GAO99], and the second consists of introducing slip gradients in
the incremental stress-strain relation through the plastic work hardening [BUS00].
Figure (71) deals with the differences between both approaches in terms of boundary conditions and
illustrates them in the case of one channel of superalloys constrained between two rigid and impenetrable
γ/γ′ interfaces:

∗ Some strain gradient theories involve higher-order stresses such that the order of governing equa-
tions increases and additional boundary conditions are needed. The theories which both require
higher-order boundary conditions, are able to capture the boundary layers [AIF87] [GUR02]
[FOR03]. Figure (71 a) illustrates schematically the latter point, where without higher-order
boundary conditions at γ/γ′ interfaces, the associated deformation remains uniform within the
γ channel (in black in the left figure 71 a). As a consequence of the homogeneity of the deforma-
tion state, the GND are not induced (in black in the right figure 71 a). Consideration of additional
boundary conditions at the interfaces in terms of deformation and GND density are shown as blue
curves in figure (71 a).

2Here, the term ”pseudo” is used to draw a distinction with models where the gradient is computed as additional nodal
degree of freedom.
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∗ Others (lower-order) theories are based on the notion of lattice incompatibility, as measured by
Nye’s [NYE53] dislocation density tensor α, incorporated into the continuum plastic constitu-
tive laws only as an additional contribution to the hardening. One of the characteristics of the
above theory is that it preserves the classical structure of local single-crystal plasticity, and does
not involve higher-order stresses nor additional boundary conditions. However, it seems to be not
possible to predict certain type of nonuniform plastic flow such as the shear of an initially homo-
geneous layer3 [VAN03].
Nevertheless, two alternatives are allowed to tackle this requirement. On the one hand, it can be
assumed that there exists a subregion of thickness h across the γ/γ′ interfaces where the two in-
terfacial regions on either side of matrix or precipitate region behave in a transient regime, both
in terms of plastic deformation and in terms of GND density gradients (see figure 71 b). The
discontinuity of plastic slip distribution within the microstructure due to the presence of the γ′

precipitates is replaced by a smooth continuous function in a strip of thickness h located at γ/γ′

interfaces [PIP08]. On the other hand, such as in simulations with the DCM, initial dislocation
microstructures can be initially heterogeneously distributed into the γ channel. This assumption
may be taken into account by pre-deformation effects such as the lattice misfit effects. In this
way, the associated deformation is not homogeneously located within the matrix channel, and the
effects of the presence of a boundary can then been captured (see figure 71 c).

A pseudo slip-gradient plasticity model based on the work of Busso et al. [BUS00] [MEI01] and devel-
oped within this thesis is introduced in the next section. The development and improvement of such a
type of model is challenging and should be collectively tackled by the whole mechanics and materials
community. As a contribution to this long-term task, a comparison of the predictions of non-local plastic-
ity with the DCM results is carried out in order to provide an assessment of the strengths and weaknesses
of such continuous theories.

3.1.3.2 Incorporation of non-local effects in a constitutive framework

Fundamental equations

The kinematics adopted in this section is commonly used in the field of crystal plasticity, where the
geometrically linear framework given by the set of equations (1.9), (1.10), (1.11) and (1.21) is assumed.
For fcc metals, 12 octahedral systems can be characterised by the Miller indices {111}〈110〉, where each
system g is represented by the two time-independent orthonormal vectors mg and ng, the slip direction
and slip plane normal, respectively. Figure (13 a) shows the definition of the 12 slip systems used in the
present model. In addition, the plastic rate γ̇g is stated as the power law function according to the flow
rule [HUT76] [PIE82] defined by equation (1.29)

γ̇g = γ̇g
0

(
|τ g|
τ̂ g

) 1
m

sign (τ g) (3.18)

where γ̇g
0 and m are material parameters. The RSS τ g is given by equation (1.7) and the deformation

resistances τ̂ g measure the impeding of dislocation movement by the formation of dislocation-dislocation
interactions, i.e. both SSD and GND.

Dislocation interactions

In contrast to many classical crystal plasticity models, which relate the slip resistance to the history of
plastic shear on all slip systems in a phenomenological fashion, here, the movement of mobile disloca-
tions on slip system g is impeded by obstacles, the strength and density of which are determined by the

3The case of the layer may be assimilated for example to the case of the channel in superalloys.
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Figure 71 - Simple illustrations of shear profiles and initial distribution of dislocation density along the
dimensionless matrix channel width between precipitates (in dashed) for three kinds of model in order
to capture the GND densities. (a) Initially additional boundary conditions to the model applied to the
γ/γ′ interfaces captures the inhomogeneous plastic flow. (b) The piecewise plastic slip distribution is
replaced by a continuous plastic function within a strip of thinkness h at the γ/γ′ interfaces, or (c) the
initial microstructure of SSD density is initially heterogeneously distributed within the γ matrix channel.
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type and number of interactions that might occur between dislocations of coplanar or intersecting slip
systems. The present formulation is an extension of the model described in section 1.2.4.2.
The critical stress τ̂ g for the activation of slip system g as a function of the SSD and GND densities
stored (i.e. temporarily or permanently immobilised) in all slip systems is considered in the gradient-
based formulation. This critical stress is given by a generalised Taylor relation of the form4

τ̂ g = µb

√∑
s

agsρs
SSD + µb

√∑
s

cgsρs
GND (3.19)

In fcc crystals, the symmetric tensor ags and cgs contains each six independent dimensionless coeffi-
cients, which account for the average strength of pair interactions between slip systems that result from,
respectively, SSD and GND interactions. In addition, because of the poor knowledge of the interactions
between GND, equation (3.19) is simplified and for simplicity only their self hardening is considered.
Hence equation (3.19) is rewritten and the GND contribution in equation is weighted by a dimensionless
coefficient c (in the range 0.3−0.5 in a bulk fcc [GIL93b]) as

τ̂ g = µb

√∑
s

agsρs
SSD + cµb

√
ρg
GND (3.20)

The first term of equation (3.20) then represents the classical dislocation-dislocation interaction and the
second term represents the dislocation-precipitate interaction.
In section 2.4.4, it was demonstrated that the strength of each interaction may be strongly different, so
here the strength τ̂ g is chosen as the sum of the contributions of both individual strengthening mech-

anisms [ASH70], in spite of a quadratic sum of type τ̂ g = cµb
√

ρg
SSD + ρg

GND used for instance by
Ohashi [OHA97] [OHA04] in a similar model.

SSD and GND density evolutions

As already pointed out in the section 1.2.4.2, the evolution equation of SSD in each system g is written
following the works of Kocks and Mecking [KOC76], and Teodosiu et al. [TEO93]

ρ̇g
SSD =

1
b

(
1
Lg

− ycρ
g
SSD

)
|γ̇g| (3.21)

with ρg
SSD(t = 0) = ρg

SSD, 0. Only annihilation between SSD is considered. It is assumed that the main
free path Lg is proportional to the inverse of the Taylor stress, through

Lg =
Kµb

τ̂ g
(3.22)

where K is the constant dislocation mean free path parameter [TAB97].
In order to obtain a closed set of constitutive relations, the geometrically necessary (edge and screw)
dislocation densities remain to be determined. The latter quantities are geometrically coupled to the
gradients of the plastic slip (see section 3.1.2.3) and are computed (equations 3.11 and 3.12) as

ρg
GND = ρg

GND, 0 +
∣∣∣∣1b∇Xγg.mg

∣∣∣∣︸ ︷︷ ︸
|ρg

GND ⊥|

+
∣∣∣∣1b∇Xγg.tg

∣∣∣∣︸ ︷︷ ︸
|ρg

GND �|

(3.23)

4The first term of equation (3.20) resembles equation (1.31), except that it is rewritten in terms of ρs
SSD and ρs

GND instead
of the total density ρs.
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The above crystallographic formulation through equations (3.18), (3.20), (3.21), and (3.23) has been
implemented into the FE code ZéBuLoN [FOE97]. Non-local effects associated to the deformation
gradients at each IP are incorporated through the postprocessing procedure illustrated in section 3.1.2.4.

3.1.3.3 Application to a γ/γ′ unit cell

Simulations have been performed using the same microstructure and FE mesh of γ/γ′ superalloys used
for the DCM simulations in sections 2.4.3 and 2.4.4 (see figure 72). The width of the channel w =
0.16 µm, and the simulated volume is about l3 = 0.50 × 0.50 × 0.50 µm3 discretised by 4096 three-
dimensional quadratic FE (thus 56361 degrees of freedom). Symmetric PBC are considered and the
simulated volume contains only one γ′ precipitate (in blue in figure 72) surrounded by γ channels (in red
in figure 72) with a volume fraction of precipitates f = 0.61.
The tensile behaviour in direction [001] is investigated using Ė33 = 10−3 s−1 on the γ/γ′ unit cell. Only
octahedral slip systems are considered. Moreover, as in all DCM calculations, the same elastic properties
are used in each phase, i.e. isotropic elasticity is assumed with shear modulus µ = 51 GPa and Poisson
ratio ν = 0.37. The γ phase is described by the slip-gradient dependent crystallographic formulation
specified in the previous section, and the precipitates are assumed to remain elastic. The cutting process
of precipitates will be considered later on.

Symbol Value Unit
Channel width w 0.08 µm
Precipitate size l 0.42 µm
Volume fraction f 0.61 -

Figure 72 - Finite element mesh of the unit-cell model: l = 0.42 µm and w = 0.08 µm for a volume
fraction f = 0.61.

Calibration of the adjustable parameters

The flow rule parameters (see equation 3.18), γ̇0, m, τ0, are taken from Kocks et al. [KOC75], where the
pre-exponential term γ̇0 typically equals 10−3 s−1, and the exponent m equals 0.01. For the hardening
law (see equations 3.20 and 3.21), the relevant parameters are the annihilation distance yC and the con-
stant mean free path of dislocation K. Here yC = 10−3µm and K = 15 are used. In fcc crystals, values
of the symmetric tensor components ags are given by relation (1.32). The initial SSD density, ρg

SSD, 0

is distributed heterogeneously within the γ channels in order to account for the misfit dislocations at
t = 0 located at the γ/γ′ interfaces. The profile of the initial distribution of ρg

SSD, 0 is assumed linear
within the channel with a maximum value of density located at the interfaces and a minimum value at
the middle of channel, as illustrated in figure (71 c). The averaged initial total dislocation density spec-
ified is 6 × 1013 m−2, equivalently distributed at each slip system, similarly to the initial density used
in the DCM calculations. The shape of the profile of the initial SSD distribution within the γ channel is
assumed to be negligible at the macroscopic level, since only the GND density contributes effectively to
the hardening. It is assumed that initially the GND densities are zero. Finally, the key parameter of the
present formulation is the parameter c in equation (3.20). This is why special attention has been paid to
identify c with the help of the DCM results. In accordance with the DCM results of sections 2.4.3.3 and
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Parameter Symbol Value Unit Used in equation
Reference plastic strain rate γ̇0 0.001 s−1 3.18

Rate sensitivity exponent m 0.01 - 3.18
Magnitude of Burgers vector b 2.5 ×10−10 m 3.20

Shear modulus µ 51 GPa 3.20
Interaction coefficient a0 0.12 - 3.20

↑ a1 0.12 - 3.20
↑ a2 0.06 - 3.20
↑ a3 0.62 - 3.20
↑ a4 0.11 - 3.20
↑ a5 0.12 - 3.20

Initial SSD density per system ρg
SSD, 0 ≈ 6.0× 1013 m−2 3.21

Critical annihilation length yC 10−3 µm 3.21
Mean free path parameter K 15 - 3.22

Initial GND density per system ρg
GND, 0 0.0 m−2 3.23

Strength parameter for GND c̄ 0.63 - 3.24

Table 3.1: Constitutive parameters for the γ channels around the elastic γ′ precipitate.

2.4.4, if it is assumed that the storage of GND density is mainly responsible for the strong hardening rate

observed in γ/γ′ superalloys, then the hardening law (3.20) may be reduced to τ̂ g = cµb
√

ρg
GND.

It has been illustrated in section 2.4.3.4 that macroscopically, the Taylor-like hardening equation is poorly
justified in γ/γ′ superalloy, because the corresponding Taylor coefficient of equation (3.20) equals 1.75
(see figure 54), which is much higher than the range of predicted values 0.3−0.5 for forest interactions

in bulk fcc [GIL93b]. Nevertheless, the development of this scaling law, i.e. τ̂ g = 1.75µb
√

ρg
GND

has a macroscopic aspect, because the corresponding GND density in this expression vanishes at the
macroscale. That is why this law cannot be explicitly used in this form at the mesoscale and needs to be
rewritten. The new form of the slip system strength τ̂ g of equation (3.20) can also be written as

τ̂ g = µb

√∑
s

agsρs
SSD + c̄µb

√
ρg
GND (3.24)

where c̄ is an adjustable non-dimensional parameter which determines the magnitude of the contribution
of ρGND at the mesoscale. The key feature of the DCM analyses carried out in section 2.4.3.3 was used
to adjust the mesoscopic coefficient c̄ to correctly account for the strengthening GND of the new scal-
ing law applicable at the µm-scale and larger strains than in the DCM. In comparison with stress-strain
curves given by the DCM simulations the parameter c̄ has been identified to 0.63 (< 1.75). This com-
parison is illustrated in figure (75).
A summary of the material constants and model parameters at 850◦C, is shown in table (3.1). Further-
more, the time increment is relatively small: ∆t = 0.02 s.

Simulation results

The predictive capabilities of the pseudo slip-gradient model on the simulated [001] tensile responses are
discussed now. Figure (73) shows the macroscopic stress plotted against the macroscopic strain for the
simulated microstructure. Since the plastic slip remains zero throughout the elastic range, no gradient
effects appears in the description of the material behaviour. An arrow indicates the point at the onset of
plastic slip where the channel becomes plastic.
In addition, figure (73) shows the three evolutions of densities ρGND (in full blue line), ρSSD (marked
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Figure 73 - Macroscopic stress-strain curve (in black), and dislocation density evolutions with strain (in
blue), e.g. total dislocation density ρ, geometrically necessary dislocation density ρGND, and statistically
stored dislocation density ρSSD.

with ×) and total dislocation density ρ = ρGND + ρSSD (marked with +). As illustrated in figure (73),
increase of SSD density is much lower that the increase of GND density. Thus, the total dislocation
density is mostly controlled by the evolution of GND and a considerable strengthening effect is then
induced by their presence within the channels.
The plastic slip in the microstructure is concentrated in ”bands” at their interfaces. Thus, according to
the previous observations, a strongly heterogeneous distribution of GND is expected. The visualisation
of the local GND density distributed in the channel at ε = 0.2% and 1.0% is shown in figure (74). It can
also be seen that the deformation is heterogeneous, i.e. the GND are localised near the interfaces. It can
be observed that during the plastic deformation, the GND spread out through the channel. Hence, the
presence of GND around the particles is indeed equivalent to having a precipitate with an apparent size
larger than the actual one. Nevertheless, no such source-shortening was found in the DCM simulations
(see section 2.4.3.3). As a consequence of the absence of dislocation pile-ups within the microstructure,
the effective width of the channel does not change during straining. In other words the strip associated
to the localisation of polarised dislocation density remains at the same thickness during the deformation.
For this reason, a confrontation of local dislocation densities within the channel between the pseudo
slip-gradient model and the DCM predictions is now investigated.

(a) (b)

Figure 74 - Distribution of the GND density in the microstructure at (a) ε = 0.2% and (b) ε = 1.0%.
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Comparison with DCM results

In DD simulations, transport of dislocation densities is fully resolved by the motion of individual dis-
locations. As a rule of thumb, using present day computing facilities, DD codes can handle a tenfold
increase of the dislocation density. Hence, the DCM simulations are still limited to a plastic strain
achieved amounting here to about 0.25%, and the chances to tackle large-scale engineering problems in
the future with discrete approaches are slim. Figure (75) illustrates the interest to develop a non-local
model through a transition between discrete and continuum approaches of plasticity. It allows predicting
the mechanical behaviour at a larger plastic deformation range that the DD simulations are limited.
Figure (75) shows the case where the continuum model extends the stress-strain and total dislocation den-
sity evolution curves predicted by the DCM. In the insets of this figure the comparison of both (macro-
scopic) simulated stress-strain curves (figure 75 a, which served to identify the parameter c̄), and the
corresponding evolution of dislocation densities (figure 75 b) are shown. Therefore, because the overall
flow stress is associated to an increase in dislocation density, the question that will be addressed now is
what relationship might exist between the local discrete dislocation density and the continuous density in
both models. In particular, of interest is the way in which the dislocations are spatially distributed within
the channel, and their evolution during plastic deformation.
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Figure 75 - Confrontation between the discrete simulations versus the pseudo slip-gradient model of (a)
the stress-strain responses and (b) the global evolution of dislocation densities with plastic strain.

Figure (76) compares the distribution of total dislocation density within the channel for both approaches.
Even if dislocation storage is mostly located at the interfaces in both calculations, detailed profiles within
the channels show strong differences between the DCM results and the pseudo slip-gradient model.
Profiles of the total dislocation density distributions within the channels are calculated over ten strips
of equal thickness normal to the interfaces, at 0.1%, and 0.2% macroscopic plastic strain. Two main
qualitative and quantitative differences can be noted:

∗ Whatever the plastic strain levels, the distribution of dislocation density with the pseudo slip-
gradient crystallographic model is much smoother than the results from the DCM simulation: the
profiles differ extremely because in the discrete distribution all dislocation segments are located at
the interfaces.

∗ With increasing deformation in the pseudo slip-gradient model, the dislocation density increases
as well towards the middle of the γ channel. This point is not consistent with the DCM results,
where the strip associated to the storage of dislocations remains unchanged at the interfaces.
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Figure 76 - Confrontation between the (a) discrete (from the DCM simulations) and (b) continuous (from
the pseudo slip-gradient model) distributions of the local dislocation density along the dimensionless
width of the channel.

Precipitate cutting and large strain simulations

As shown in figure (75 b), while the evolution of GND density increases linearly during the plastic
deformation, there is no reason that slip resistance would stop increasing. Nevertheless, the form of
the tensile curves in the 〈001〉 orientation for superalloys at high temperature are characterised by the
existence of a stress plateau at high strain (see for instance the curves in figures 91).
A first possible solution to account for such phenomena is to consider that the internal variable ρGND can
reach a saturation value ρsat

GND. A second solution is to take explicitly into account the plastic behaviour
of the precipitates. This is why in the following, the γ′ phase is regarded as shearable above a CRSS.
At high strain, when the stress is larger than this critical value, the γ′ precipitates can be sheared by
superdislocations (see section 2.4.2). Hence, precipitate cutting is assumed to be the physical process
controlling the saturation observed in the experimental curves. In order to achieve this goal, the classical
formulation in viscoplasticity described in section 1.2.4.3 is used. It can be resumed by the following set
of equations, closed by the flow rules and hardening laws:

γ̇g =
(
|τ g −Xg| −Rg

V

)n

sign (τ g) (3.25)

Rg = Rg
0 + Qg

∑
r

hrg
(
1− exp−kpg

)
(3.26)

Xg = Cαg (3.27)

Here Rg
0 describes the CRSS at which the precipitate can be plastically sheared. Moreover, ṗg = |γ̇g|,

and the evolution of the kinematic hardening variable (equation 3.27) is given by α̇g = γ̇g − Dṗgαg.
For simplicity, only self hardening is considered, i.e. hij = δij [ESP96]. All the material parameters are
given in the table (3.2).
The form of the tensile curves (77) in the 〈001〉 orientation considering the shearing of γ′ precipitate
is characteristic for superalloys at high temperature, and it exhibits three domains. The domains corre-
spond roughly to the elastic regime (marked by ”1” in figure 77), the strong hardening due to the plastic
deformation within the γ matrix channel (”2”), and the shearing of γ′ precipitate (”3”). It must be noted
that this study, where the precipitates are regarded as shearable for a high CRSS, gives a guideline for
the micromechanical model (see section 3.2) in which this precipitate cutting process is assumed to be
the reason for the stress plateau observed in the experimental curves.
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Parameter Symbol Value Unit Used in equation

Viscosity V 1100 MPa.s
1
n 3.25

↑ n 5 - 3.25
Critical stress R0 220 MPa 3.25

Isotropic hardening hij δij - 3.26
↑ Q 0 MPa 3.26
↑ k 0 - 3.26

Kinematic hardening C 1000000 MPa 3.27
↑ D 1000000 - 3.27

Table 3.2: Constitutive parameters for γ′ elasto-viscoplastic precipitates.
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Figure 77 - Simulated stress-strain curves without (full line) and with (symbols) taking into account the
cutting of γ′ precipitates in simulations on the µm-scale.

3.1.3.4 Towards a simplified dislocation mean free path model

To conclude this section, a simplified framework of the previous gradient-based plasticity model is in-
troduced. This solution was suggested by the work of Lefèbvre et al. [LEF06] who recently developed a
simple storage-recovery formulation accounting for the Hall-Petch size effect in ultra-fine grained metals.
This model, called Simplified Storage Model (SSM) here, proposes an intuitive but physically justified
solution to the gradient operator for the case of γ/γ′ superalloys.
In previous sections, it has been shown that gradients of plastic slip are strongly connected to the stor-
age of GND due to the plastically heterogeneous microstructure. Mathematically, the magnitude of the
plastic slip gradient at an IP inside the channel may be approximated by an internal length λ. The slip
gradients ∇Xγg

IP 2 at an IP can also be written as

∇Xγg
IP 2 =

γg
IP 2 − γg

IP 1

λ
l (3.28)

Here γg
IP 1 and γg

IP 2 represent two values of the plastic slip γg located at two IP in the microstructure,
IP 1 and IP 2 respectively, and l is the unit vector between both IP. For compatibility reasons, the
difference γg

IP 2 − γg
IP 1 requires the presence of GND where the corresponding density (equation 3.23)

is defined by

ρg
GND = ρg

GND, 0 +
1

b λ

[ ∣∣(γg
IP 2 − γg

IP 1

)
l.mg

∣∣+ ∣∣(γg
IP 2 − γg

IP 1

)
l.tg
∣∣ ] (3.29)
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(a) (b)

Figure 78 - (a) Illustration of the local length λ, i.e. the minimum normal distance between γg
IP 2 and the

nearest precipitate interfaces. (b) Visualisation of computational variable λ associated to each integration
point within the γ matrix phase.

Now a question may arise on the physical justification of λ at mesoscale?
Physically, it has been discussed through equation (2.49) that at the macroscale the evolution of the
dislocation density could be identified as dρ

dγ = 2.17
b w . In this form, the characteristic length λ associated

to ρGND is related to the distance w between precipitates. At the mesoscale, this relation cannot been
applied because the strain γ in equation (2.49) is a macroscopic quantity. However, it has been shown
that the contribution of the forest hardening to the strengthening is insignificant. In other words, at
the mesoscale the mean free path of one dislocation in a channel is strongly related to its distance to
the interface. Thus, the internal length λ is assumed to be the shortest distance between IP 2 and the
γ/γ′ interfaces where IP 1 is located (see figure 78 a). Let us consider the case where γ′ precipitates
behave elastically. Then γg

IP 1 = 0, and equation (3.29) is then reduced to ρg
GND = 1

b λ

[ ∣∣γg
IP 2 l.mg

∣∣ +∣∣γg
IP 2 l.tg

∣∣ ], with ρg
GND, 0 = 0.

The present model needs to know the values of λ at each IP before the mechanical loading. Thus, a
pre-computation is performed in order to obtain these values, which are then stored as a parameter field.
These computed lengths, i.e. the minimum distance between each IP and the nearest precipitate interface,
are shown in figure (78 b). Such quantities, tabulated once (at the beginning of the computation) are later
explicitly used in the constitutive laws. This point corresponds to the main difference with the pseudo
slip-gradient model: whereas the latter model ”computes its evolutive internal length” at the ends of each
time increment of simulation, the SSM ”knows a priori its fixed internal length”.
A comparison between the pseudo slip-gradient model and the simplified model is shown in figure (79) in
terms of stress-strain curves and the evolutions of GND density. Figure (79) shows that the stress-strain
curve and the evolution of dislocation density are similar for both models. SSM is a very good efficient
numerical solution when the precipitates behave elastically because it requires about 80% less CPU time
than the non-local model for the determination of GND density in a 3D calculation. Indeed, it is the
calculation of the gradient operator which is the most expensive in the pseudo slip-gradient model.

3.1.3.5 Concluding remarks

A pseudo slip-gradient crystallographic formulation, which relies on internal state variables explicitly
linked to effective obstacle spacings to introduce non-local effects, has been proposed on the µm-scale
and numerically implemented into the FE method. The core idea has been to incorporate the concept
of GND into the constitutive laws via the Taylor hardening relation for specific slip systems. In ad-
dition to the SSD density, the GND density is introduced in order to consider slip gradients and thus
render the model potentially size sensitive. These size effects (not illustrated here) have been introduced
phenomenologically through the reduction of the dislocation mean free path in the presence of GND
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Figure 79 - Comparison between the pseudo slip-gradient plasticity model and the simplified storage
model for the (a) simulated stress-strain curves and (b) evolution of dislocation densities with strain.

incorporated into the evolution of the slip resistance.
The aim of the pseudo slip-gradient model was to (i) incorporate (in a continuous sense) the micromech-
anisms of deformation simulated with the DCM, (ii) simulate larger strain deformations than can be
achieved by the DCM, (iii) estimate the parameters responsible for the overall composite response, (iv)
compare the predictions of one specific microstructure at meso- and macro-scale with the discrete results,
and (v) give guidelines for the development of a macroscopic constitutive model.
Notably, it has been shown that predictions of the effects of the generation/accumulation of GND are
related to the slip gradients which develop during deformation. These dislocations generated as a result
of the initial slip gradients far exceeded the density of SSD, thus enabling the stored GND to dictate the
flow stress and the work-hardening rate of the single crystal γ/γ′ superalloy from the onset of deforma-
tion.
However, comparison with DCM predictions raises some differences and weaknesses

∗ Through the pseudo slip-gradient model, the GND density around the precipitate tends to reduce
the mean channel width. This point is physically associated to a source-shortening-type mecha-
nism which is in contradiction with the DCM predictions. Indeed, no pile-ups have been observed
in the discrete simulations, and all mobile dislocation loops in the channels deposit dislocation
segments at the interfaces. Consequently, the qualitative and quantitative profiles of distributed
dislocation density during straining within matrix channel are not in good agreement with the
DCM predictions. This insufficiency might be explained (i) physically, by the inappropriate defor-
mation mechanism described by the reduction of the mean free path of dislocation (i.e. the pile-up
formation), and (ii) numerically, by a mesh dependence of the gradient computation. However,
Meissonnier et al. [MEI01] found that the level of mesh refinement shown in figure (72) gives an
acceptable converged solution, so that a mesh sensitive study has not been explored in this thesis.
The aim of the present work was to compare discrete and continuous models with the same FE
mesh.

∗ To tackle the problem of the source-shortening-type mechanism inherent to the pseudo slip-gradient
model, the gradient operation of the plastic strain computed in the neighbourhood of each IP has
been approximated by a physically justified internal length. The internal length is the minimum
distance between the IP and the interfaces. Its justification resides in the fact that the dislocation
mean free path in the channel (i.e. the local line tension) is mainly controlled by its distance to the
interfaces. The main difference of the calculation of ∇Xγg and ∆γg

λ in the hardening relation lies
in the fact that λ is fixed during the simulation, whereas the gradient operator computes the internal



128 Continuum plasticity in dislocated γ/γ′ superalloys

length which evolves during straining. In terms of CPU time, the simplification of ∇Xγg by ∆γg

λ
is strongly more efficient than the computation of the slip gradient given by the postprocessing
step.

∗ The comparison between discrete and continuous models demonstrates that (isotropic) Taylor-
like hardening breaks down at both macro- and meso-scale. This can be explained by the lack
of internal stress induced by the GND density within the microstructure. One of the important
consequences of this is that the theory is not capable of predicting a Bauschinger effect. Moreover,
according to the results of section 2.4.4 that show that the anisotropic mechanical response of
single crystal superalloys is related to the internal stress created by interfacial dislocations, the
present model could not take into account this hardening feature. At this µm-scale, a recent model
developed by Acharya et al. [ACH01] [ACH04] [FRE09] allows to take into account a kinematic
type of hardening since the dislocation storage at interfaces contributes to the polarised stress.

Finally, in the pseudo slip-gradient model, the shearing of γ′ precipitates has been taken into account for
describing consistently the macroscopic behaviour observed experimentally at large strains. It highlights
that the cutting of precipitates allows to reproduce the shape of the stress-strain curve characteristic for
superalloys at high temperatures, and to capture the steady state stress level. It exhibits three domains
that correspond to the elastic regime, the plastic deformation of the channels, and the precipitate cutting.

3.1.4 Meso-Macro scale transition

In a multiscale approach, developments at the µm-scale are of interest in terms of improving continuum
macroscale models. The correct development of specific theoretical formulations requires care, particu-
larly with regard to the choice of independent variables in the constitutive theory. The way in which the
details of the finer scaled physical features are incorporated into the macroscopic theory is essential: the
finer structure can be homogenised providing a continuum model of an effective homogeneous material,
and individual physical features can be explicitly modeled.
Here, the key assumptions deduced from small-scale simulations to benefit a continuum macroscale
model are the following: (i) the stored dislocation density may be defined by the surface dislocation
density tensor [BUL56], (ii) the material hardening is controlled by the internal stresses associated to
the stored dislocation, and (iii) the local plastic strains may be also approximated by piecewise constant
fields. These three points are now discussed.

3.1.4.1 Stored dislocation assumption

It has been discussed in section 2.4.5 that when the plastic distortions are not uniform, geometrically
necessary dislocations must restore the compatibility of the overall deformations. The dislocation density
tensor defined by equation (3.5) describes the GND density to accommodate a smooth distribution of
plastic deformations [NYE53]. However, if the plastic distortions are discontinuous across a singular
surface S (here the γ/γ′ interfaces) with normal vector n̂, the corresponding dislocation density tensor
has a surface density given by [BUL56]:

αhi = −εhljJβ
p
jiKn̂l (3.30)

where Jβp
jiK is the jump of the plastic distortion across the interface. Physically, these dislocations sur-

round the γ′ precipitates and therefore can be regarded as Orowan loops. Their approximate distributions
in the microstructure are illustrated by the thick solid lines in figure (80 a). For comparison, the figure
also shows a schematic dislocation density profile obtained by an usual slip-gradient model (dotted lines
in figure 80 a).
Considering such surface dislocation distributions also allows to represent the dislocation density pro-
file given by the DCM simulations, where most of the dislocation density is concentrated at the interface
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Figure 80 - Scheme of the (a) geometrically necessary dislocation densities, and (b) distribution of plastic
strains in the γ/γ′ microstructure. The series of thick straight solid lines are the piecewise uniform
approximations of the dislocation density and of the corresponding plastic shear. The dashed curved
lines represent the continuous plastic distribution that is expected with a slip-gradient model.

instead of into pile-ups. Consequently, as mentioned in section 2.4.5, the ”source-shortening-type” mech-
anism (which is not physically justified in the present applications) inherent to the slip-gradient model is
avoided.

3.1.4.2 Material hardening assumption

It has been shown in section 2.4.4 that forest hardening can be neglected. In addition, the limitation
of the Taylor-like relation of section 2.4.4.3 highlights the assumption that important long-range inter-
nal stresses may be generated by the interfacial dislocations. The latter contribution must therefore be
accounted for by the hardening description in the constitutive framework.

3.1.4.3 Mean field assumption

As a consequence, the real deformation distribution can be simplified by assuming uniform plastic slip
caused by the Orowan loops inside the γ phase. This is illustrated in figure (80 b), where the thick solid
horizontal line represents the piecewise uniform approximation of plastic slip since the expected distri-
bution of plastic slip given by an usual gradient-based model is represented in the dotted lines.

Finally, the objective addressed in the next section concerns the incorporation of the three assumptions
into a micromechanical framework suitable for analysis of engineering problems. To achieve this goal,
the micromechanical model developed by Fedelich [FED99] [FED02] is adopted and extended.
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3.2 Towards a physically justified micromechanical model

3.2.1 Introduction and motivation

The aim of the present work is to incorporate the insights on the ”pseudo-cubic” slip discussed in sec-
tion 2.4.4 into the M3RSX (Multiple Mechanisms Multiple Regions Single Crystal) model. This model
proposed by Fedelich [FED99] [FED02] relies on a simplified description of the plastic strains dis-
tribution in the microstructure. The plastic strain are taken piecewise homogeneous in appropriately
defined subdomains (see section 3.1.4.3). This assumption enables an efficient calculation of the local
stress distribution by Fourier series and allows reducing the number of variables necessary to describe
the deformation state of the microstructure. By combining the stress analysis results with the relevant
dislocation mechanisms, a constitutive law with a large but still finite number of internal variables is for-
mulated, which may be applied for structural analysis. Thereby, the model has been improved as some
deficiencies of the initial version are removed and some assumptions receive a firm physical support.

3.2.2 Experimental observations of the deformation mechanisms

The deformation mechanisms of the γ/γ′ alloys have been extensively studied in the past and involve a
number of elementary processes. Here, the observations discussed in detail in section 1.1.3 are briefly
summarised:

∗ Dislocation glide in γ channels: dislocations traveling through the channels are bowing out be-
tween the precipitates [POL92]. New dislocations are created at the crossings between channels
(dislocation multiplication), and during plastic deformation, the trailing dislocation segments are
deposited at the interfaces (dislocation storage).

∗ Cutting of precipitates proceed either by matrix dislocation pairs or partial dislocations, leading to
complex stacking faults inside the γ′ phase. Dislocation segments can be annihilated if reaction
partners are present at the other side of the precipitate (dislocation recovery).

∗ Climbing of dislocation segments along the interfaces with partial or complete recovery of the
dislocation density.

While these mechanisms in fcc crystals mostly take place on octahedral slip systems, the so-called
pseudo-cubic slip systems occurs in near [111]-oriented specimens (see section 2.4.4.4). These struc-
tures have been interpreted as resulting from alternating cross-slip on two octahedral planes between the
opposite γ/γ′ interfaces of the screw segments trailed by mobile dislocation loops [VOL94] [BET99].
The objective of the M3RSX model is to capture these deformation mechanisms in its constitutive de-
scription. The next section presents the model.

3.2.3 Presentation of the M3RSX model

3.2.3.1 Continuum modelling of the deformation mechanisms

Figure (81) shows the three deformation processes listed in the previous section. In particular, figure (81
”1”) shows how a a

2 [011̄] (111) dislocation loop enters a channel and deposits two ±60◦ or screw dislo-
cation segments at γ/γ′ interfaces. Figure (81 ”2”) shows the bowing-assisted cutting of the precipitates
resulting from the coupled movement of two a

2 〈110〉 dislocations forming a superdislocation in a (111)
octahedral plane. Lastly, a deformation mechanism observed at much lower flow stress is illustrated in
figure (81 ”3”). In this process the a

2 〈110〉 dislocations can pass the precipitates by individual (and un-
paired) climbing along the interfaces.
Finally, the pseudo-cubic slip has been interpreted in section 2.4.4. In summary, cubic slip does not
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Figure 81 - Three main deformation mechanisms taken into account in the M3RSX model: ”1” glide in
the γ channel; ”2” cutting of coherent γ′ precipitates by dislocation pairs, and ”3” recovery climb along
the γ/γ′ interfaces.

appear at the microscopic scale and at small deformation it is not physically justified deformation mech-
anism. Hence, the goal is to remove the cubic slip systems from the M3RSX, while still accounting
for the orientation dependence of the strength at high temperature. To achieve this goal, the guidelines
indicated by the DCM are the following

∗ The [001] oriented specimen exhibits a strong hardening rate, but the strength of [111] orientation
is significantly reduced.

∗ Interfacial dislocation structures are strongly different for both orientations. For the [001] orien-
tation, eight octahedral slip systems are activated and a dislocation network is formed at the six
interfaces of the γ′ precipitate. These discrete segments deposited at the interfaces may have a
screw character or a mixed ±60◦ character, as illustrated in the figure (82 a). For the [111] orien-
tation, the DCM simulations performed in section 2.4.4 show that only two conjugated octahedral
systems (per channel) are activated and together accommodate quasi totally the plastic deforma-
tion. Simulations did not include the cubic slip mechanism nor cross-slip events, but nevertheless
zig-zag dislocation arrangements are formed, similar to those observed by Bettge and Österle
[BET99] (see figures 60). Both activated slip systems depose long interfacial dislocation segments
with exclusively screw character and with the same Burgers vector, but with opposite line vectors.
It has been shown, for the combination of these depositing segments in terms of polarisation (see
figure 82 c) that their long-range stresses compensate at a sufficient distance.

∗ Jerky dislocation lines decorated with collinear superjogs and confined within one channel are
formed in near [111]-oriented specimens. The high mobility of these collinear superjogs is re-
sponsible for the localisation of the plastic deformation in a particular channel.

The M3RSX model assumes a periodic microstructure and the analyses are focused on a periodic cell.
Figure (83 a) shows one-eighth of the periodic cell with an edge length of 2L and a cubic precipitate of
2c edge length.
Kinematics in the microstructure is controlled by the dislocation glide within the channels. A DCM
simulation suggests that the expansion of a dislocation loop may be characterised by the glide of a
mobile segment (overdrawn in red in figure 83 b) depositing immobile long segments at the interfaces
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(a) (b) (c)

Figure 82 - View of the dislocation networks formed at the γ/γ′ interfaces after deformation to 0.2%
plastic strain in one channel (see figure 57) for (a) the [001] case, (b) the [111] case, and (c) the illustration
of (b) in term of polarised, e.g. positive and negative, dislocations.

(drawn in black). This is why the mobile dislocation density expressed in the classical Orowan relation
(equation 1.26) is related here to the kinetics of straight segments of length equal to the channel width.
The next sections will introduce the kinetic equations associated to the deformation mechanisms.

3.2.3.2 Kinematics

The linear framework already applied for the DCM and the pseudo slip-gradient model, is assumed here
(see equations 1.9, 1.10, 1.11 and 1.21). Because it has been shown that the polarity of the segments
deposited at the interfaces plays a key role on the strength of 〈111〉 specimens, the present model consid-
ers a number of 24 octahedral slip systems in order to distinguish the (positive ou negative) sign of the
interfacial segments (see figure 82 c). The slip systems g and their opposites ḡ are again defined in table
(3.3). In particular, the plastic flow rate (equation 1.21) and the plastic distortion rate (equation 1.22)

(a) (b)

Figure 83 - (a) One-eighth of the periodic cell with associated dimensions, containing a γ′ precipitate of
2c edge length, surrounded by narrow γ channels. (b) A DCM simulation illustrates that kinematics is
mainly controlled by the glide of the mobile straight segment within the channel (red mobile segment)
which deposits dislocation segments at the γ/γ′ interfaces (black immobile segments).
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No. Notation ng mg No. Notation ng mg

1 A2 (1̄11) [01̄1] 13 A2 (1̄11) [011̄]
2 A3 ↑ [101] 14 A3 ↑ [1̄01̄]
3 A6 ↑ [110] 15 A6 ↑ [1̄1̄0]
4 B2 (1̄1̄1̄) [01̄1] 16 B2 (1̄1̄1̄) [011̄]
5 B4 ↑ [1̄01] 17 B4 ↑ [101̄]
6 B5 ↑ [1̄10] 18 B5 ↑ [11̄0]
7 C1 (111̄) [011] 19 C1 (111̄) [01̄1̄]
8 C3 ↑ [101] 20 C3 ↑ [1̄01̄]
9 C5 ↑ [1̄10] 21 C5 ↑ [11̄0]
10 D1 (11̄1) [011] 22 D1 (11̄1) [01̄1̄]
11 D4 ↑ [1̄01] 23 D4 ↑ [101̄]
12 D6 ↑ [110] 24 D6 ↑ [1̄1̄0]

Table 3.3: Slip systems of fcc crystals applied to the case of the single crystal superalloy.

denoted ε̇p and β̇p, respectively, are also written in the form

ε̇p =
1
2

24∑
g=1

(ng ⊗mg + mg ⊗ ng) γ̇g (3.31)

β̇p =
1
2

24∑
g=1

(ng ⊗mg) γ̇g (3.32)

except that g now runs from 1 to 24 instead of from 1 to 12. Using equation (3.32), the surface (geomet-
rically necessary) dislocation density given by equation (3.30) is decomposed into the contributions of
the slip systems

α =
24∑

g=1

ξg ⊗ bg λg (3.33)

with

λg =
1

‖bg‖
sin (n̂, ng) JγgK (3.34)

where JγgK is the jump of the shear across the surface with normal vector n̂, and ξg = n̂×ng

‖n̂×ng‖ is the
dislocation line vector for the slip system g in the singular surface. The quantity λg represents the scalar
surface dislocation density associated to the slip system g drawn in black in figure (83 b). This dislocation
density may induce a long-range internal stress that has to be superposed to the applied stress and the
misfit stress to obtain the total stress in the microstructure. The long-range internal stress is calculated in
the next section.

3.2.4 Calculation of the microscopic stresses

3.2.4.1 Principle of the calculation

The local variables will be calculated by using the same assumption of a periodic microstructure as
already used in sections 2 and 3.1. In addition, homogeneous elastic properties are assumed for the γ
and the γ′ phases. The macroscopic stress Σ and the macroscopic strain E of the homogenised medium
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can be obtained by using a volume average of the local fields (i.e. the microscopic stress σ(x), and strain
ε(x)) and are written in the form (see equations 1.56):

Σ = 〈σ〉V =
1
V

∫
V

σ (x) dV (3.35)

E = 〈ε〉V =
1
V

∫
V

ε (x) dV (3.36)

where x is the local position vector in the computational cell. The compatibility conditions for the
microscopic total strain are expressed by ε = 1

2

(
∇u +∇uT

)
, where u is the microscopic displacement

vector. The elastic strain is related to the stress σ by Hooke’s law (see equation 1.11).
The microscopic stress, total and plastic strain fields are assumed to be locally periodic. The fluctuations
of the local fields are denoted with a tilde, e.g. ũ (x), σ̃ (x), ε̃ (x), and ε̃p (x). The periodicity conditions
and the relationship between macroscopic and microscopic stress and strain fields are [MAU92]

u (x) = E.x + ũ (x) (3.37)

ε̃ (x) = ε
(
ũ (x)

)
=

1
2
(
∇ũ (x) +∇ũT (x)

)
(3.38)

σ (x) = Σ + σ̃ (x) (3.39)

ε (x) = E + ε̃ (x) (3.40)

εp (x) = Ep + ε̃p (x) (3.41)

with σ.n+ = −σ.n− as boundary conditions on the opposite faces of the periodic cell. From equations
(3.39)−(3.41) and (3.35)−(3.36), it follows that 〈σ̃〉V = 0, 〈ε̃〉V = 0, and 〈ε̃p〉V = 0.
FE solutions of the governing field equations (3.37)−(3.41) for repeating unit cell representative of ma-
terials with periodic microstructures produce accurate estimates of the local field variables, albeit at a
substantial computational cost5. The construction of inelastic macroscopic constitutive equations for
arbitrary loading based on such analyses is not straightforward, making it difficult to embed FE based
models into more general structural analysis procedures. This has given rise to the development of
approximate models which employ simplifying assumptions on the form of plastic strains within the
individual phases (see section 3.1.4.3). This is the subject of the two following sections.

3.2.4.2 Piece-wise uniform homogeneous plastic strains

A number of approximate analyses of a periodic cell, which employ subdomain discretisation of the unit
cell to mimic the material’s microstructure, has been developed to deal with the inelastic response of
periodic multiphase materials. The Generalized Method of Cells [PAL92], employs a first-order repre-
sentation of the displacement field in each subdomain of the repeating unit cell, producing piece-wise
uniform strain and stress fields throughout the cell. The method is a generalisation of the original Method
of Cells developed by Aboudi [ABO82] which is based on a limited domain discretisation. The predic-
tive capability of the generalised method in various applications has been summarised in [ABO04].
In order to obtain a manageable constitutive law, a particular form of piece-wise homogeneous plastic
strain fields applied to γ/γ′ superalloys is considered [FED99] [FED02]. Obviously, the regions in which
the plastic deformation are taken homogeneous must be defined by taking into the account the nature of
all the deformation mechanisms illustrated in section 3.2.2. Thus, piece-wise uniform plastic strains are
assumed at the microscopic level. Formally, this is written as

εp (x) =
∑
K

εp
K =K (x) (3.42)

5The DCM calculations are a very good examples.
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where =K is the indicator function of some subdomain VK ⊂ V

=K (x) =
{

1 for x ∈ VK

0 for x 6∈ VK
(3.43)

Taking the averages over each subdomain, equation (3.42) gives εp =
∑

K εp
K . Note that the regions VK

may overlap.

3.2.4.3 Choice of the decomposition of the periodic cell

The question now arises, in which manner the periodic cell, and in particular the matrix channels should
be decomposed. The choice of the decomposition is crucial because it affects the estimate of the internal
stresses. For piece-wise homogeneous plastic strains, the tensor of the geometrically necessary dislo-
cations αhi vanishes inside the homogeneously plastically strained regions and it has a surface density
given by αhi = −εhlj

[
βp

I ji − βp
J ji

]
n̂l on the boundary between the domains VI and VJ , according to

equation (3.33). These dislocations are responsible for the internal stresses.
First, it is natural to distinguish between the precipitates and the matrix because their resistance to glide
is different and the interfaces are likely to represent an obstacle to dislocation glide. The existence of
geometrically necessary dislocations at the γ/γ′ interface accommodating the plastic strain gradient be-
tween both phases has been discussed already, and its physical counterpart, the dislocation networks at
the phase boundaries have been observed many times.
Secondly, the superposition of the external and the misfit stresses leads to different plastic responses in
the three channel types and thus results in different dislocation structures at the three interface types.
Hence, it is also natural to divide the matrix into three different channel types.
The choice for the shape of the decomposition of the matrix into three channels is not straightforward.
Figure (84) shows two natural solutions of decomposition of the one-eighth unit-cell (see figure 84 a) and
of the matrix. In figure (84 b) the channels have wedge-shaped ends and do not overlap. In the following,
this decomposition will be referred to as WSE for brevity. In the alternative decomposition shown in (84
c) the channels are parallelepiped-shaped and will be referred to as P in the following for brevity.
As decomposition of the matrix into subdomains leads to dislocations walls within the matrix in addition
to those existing at the interface between the matrix and the precipitates, a decision must be taken about
the more physically justified way to decompose the γ phase. Once again, DD simulations are a precious
tool to elucidate this issue and use is made of the DCM results to identify the best representation. For
instance (i) figure (85) shows a glide sequence of an individual dislocation at a crossing between two
channels. Due to the anisotropy of the line tension and/or lower local stresses in the vertical channel,
the loop is immobilised at the entrance of the vertical channel, roughly parallel to the γ/γ′ interfaces. In
addition, to give credit to the latter dislocation configuration, (ii) figure (86) shows the same effect for a

(a) (b) (c)

Figure 84 - (a) View of one-eighth symmetry unit-cell model. (b) Its decomposition 1 in non-overlapping
subdomains in the matrix (WSE), and (c) decomposition 2 in overlapping subdomains (P).
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Figure 85 - Glide sequence of an individual dislocation within a horizontal γ channel at a crossing
between two channels: due to the anisotropy of the line tension and/or the lower RSS in the vertical
channel, the potentially mobile segment does not overcome the Orowan threshold stress and immobilises
at the channel entrance, roughly parallel to the γ/γ′ interfaces.

large number of dislocations illustrated in section 2.4.4.3 for the [001] case.
Clearly, both results (i) and (ii) support the P decomposition defined in figure (84 c). The internal dis-
location walls of the channels separate regions in which plastic straining has a different intensity. In
contrast, the oblique dislocation walls of the decomposition 1 illustrated in figure (84 b) do not corre-
spond to any dislocation configuration reproduced by the DCM.
In addition, it has been noted by Fedelich [FED02] that the P decomposition behaves too stiffly with
respect to experimental data. However, this conclusion was reached under the premise that no disloca-
tion sources exist in the channels. In that case, dislocation multiplication is only possible if all channels
are plastically strained, including channels in which dislocation glide is less favorable. The assumed
presence of dislocation sources leads to a completely different situation, so that the plastic flow restricted
to a single channel type becomes kinematically possible. This point will be discussed in detail in the
following.
In summary, the following subdomains are defined to describe the distribution of the local plastic strains:

∗ V1, V2, and V3 are the overlapping parallelepiped regions as shown in figure (84 c) (i.e. the P
decomposition is adopted).

∗ V4 is the γ′ precipitate.

The volume fraction of each region VK is denoted by fK where
∑4

K=1 fK > 1 because the regions
overlap. The macroscopic plastic strain defined by Ep = 〈εp〉V is then6

Ep = 〈εp〉V =
1
V

∫
V

εp (x) dV =
1
V

∑
K

∫
V

εp
K (x) dV =

1
V

∑
K

VKεp
K (3.44)

=
4∑

K=1

fKεp
K (3.45)

Moreover, by convention, the plastic strain in the region V4 is taken to also include the homogeneous
distribution of misfit eigenstrain, i.e. εp

4 = εp
4 + εmisfit

4 , where εmisfit
4 = δuI with I the second rank unit

tensor, and δu = 2aγ′−aγ

aγ′+aγ the unconstrained misfit.
According to equation (3.45), Ep is obtained by the evaluation of εp

K for each subdomain VK . The plastic

6For the same elastic constants in all phases.
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(a) (b)

Figure 86 - Dislocation immobilisation at channel entrances observed in a massive 3D DCM calculation
(see section 2.4.4). (a) Overall dislocation structure around four precipitates after 0.2% plastic strain
for the [001] case. (b-up) Thin foil of 0.25 µm thickness cut perpendicularly to the [001]-directions,
at a crossing between two channels and through the centre of precipitates. (b-down) Idealisation of the
dislocation structure in (b-up) used in the M3RSX model.

deformation εp
K due to each mechanism is driven by the RSS τ̂gK defined by the effective local stresses

σ̂K , i.e. τ̂gK = mg.σ̂K .ng. The local stress are derived from the stored energy in the microstructure, as
will be shown in the next section.

3.2.4.4 Estimate of the effective local stresses

Stored elastic energy

The elastic energy stored in the periodic cell is defined by

W =
1
2

∫
V

εe : C : εedV (3.46)

The periodicity conditions may be applied to the elastic strain εe such as equations (3.37)−(3.41) and
(3.35)−(3.36), so that εe = 〈εe〉 + ε̃e, where ε̃e is the fluctuation part of the εe defined by ε̃e = εe −
(E− 〈εp〉). By substituting into equation (3.46), the stored elastic energy can be split into a macroscopic
part W1 and a fluctuation part W2:

W =
1
2

∫
V

(
〈εe〉+ ε̃e

)
: C :

(
〈εe〉+ ε̃e

)
dV =

1
2

∫
V
〈εe〉 : C : 〈εe〉dV +

1
2

∫
V

ε̃e : C : ε̃edV

=
1
2

∫
V

(
E− 〈εp〉

)
: C :

(
E− 〈εp〉

)
dV +

1
2

∫
V

ε̃e : C : ε̃edV

≡ W1 + W2 (3.47)

The elastic energy W is written as the sum of two different origins: global deformation of the volume
W1, and incompatibilities between each phase W2. Even though the term of global elastic energy is
well defined, the fluctuation part is still written in terms of local quantities. Thanks to a simplified
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micromechanical analysis, W2 is approximated using a Fourier series analysis with the assumption of
piece-wise uniform strain fields in the three kinds of channels and in the precipitate.

Calculation by Fourier series

The assumption of piece-wise uniform strain fields illustrated in section 3.2.4.2 has also been employed
by Dvorak [DVO92] in the context of a procedure called the TFA (see section 1.2.6) or indeed in many
other mean-field approaches. This approach has recently been generalised by Chaboche et al. [CHA01]
and demonstrated to capture the local stress and (inelastic) strain fields with good accuracy in comparison
to FE simulations. Alternative methods based on Fourier series approximations of the stress and strain
fields in the repeating unit cell have been developed by Walker et al. [WAL94], Fotiu and Nemat-Nasser
[FOT96] for periodic composites, and by Fedelich [FED99] [FED02] for periodic two-phase alloys.
Within the approximation of periodicity, the fluctuating quantities ũ (x) and ε̃p (x) are guaranteed by
Fourier series expansions in the periodic cell following the standard procedure (see for instance [MUR87]):

ũi (x) =
∑
pα 6=0

ūi (pα) eiξ(pα).x =
∑
ξ 6=0

ūi (ξ) eiξ.x (3.48)

ε̃p
ij (x) =

∑
pα 6=0

ε̄p
ij (pα) eiξ(pα).x =

∑
ξ 6=0

ε̄p
ij (ξ) eiξ.x (3.49)

where i =
√
−1, ξα (pα) = πpα

Lα
is the wave vector, and pα positive or negative integers with Lα the

dimensions of the cell (α = 1, 2, 3 in 3D)7. The Fourier coefficients ε̄p of the expansion of ε̃p
ij (x) are

obtained by

ε̄p
ij (ξ) =

1
V

∫
V

εp
ij (x) e−iξ.x dV (3.50)

By solving the equilibrium equations together with equations (3.41) and (3.48), the coefficients of the
displacement fluctuation fields ūi (ξ) as function of the plastic strain distribution are

σ̃ij,j = 0 ⇒ Cijkl ε̃kl,j = 0
⇒ Cijkl ũk,lj = Cijkl ε̃p

kl,j

⇒ Cijkl ūk (ξ) ξlξj = −iCijkl ε̄p
klξj ∀ξ 6= 0

⇒ ūi (ξ) = −iVij (ξ) Cjlmn ε̄p
mnξl (3.51)

with

Vij (ξ) = Kji (ξ) , or V (ξ) = K (ξ)−1 (3.52)

Kji (ξ) = Cjkilξlξk (3.53)

Note that V and K are symmetric second order tensors and that V satisfies also V (−ξ) = V (ξ).
The density of the stored elastic energy can be defined by

$ =
1
V

W =
1
V

(W1 + W2) = $macro
1 + $micro

2 (3.54)

7The interested reader should refer to more complete specialised texts such as chapter 8 of [RUD76].
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where (see Appendix D.1 for the expression obtained for W2 = 1
V $micro

2 after some algebra)

$micro
2 =

1
2

∑
qα 6=0

ωcdpq(qα)ε̄p
cd(qα)ε̄p

pq(−qα) , with (3.55)

ωcdpq(qα) = Ccdpq − Ccdklξl(qα)Vkm(qα)ξn(qα)Cmnpq (3.56)

or

$micro
2 =

1
2

∑
ξ 6=0

ε̄p(ξ) : ω(ξ) : ε̄p(−ξ) , with (3.57)

ω(ξ) = C− C :
(
ξ ⊗ V(ξ)⊗ ξ

)
: C =

[
I− C :

(
ξ ⊗ V(ξ)⊗ ξ

)]
: C (3.58)

According to equations (3.47) and (3.54), the average density $ of the stored elastic energy is also
expressed as function of the plastic strain distribution, and is written as

$ =
1
2
(
E− 〈ε̄p〉

)
: C :

(
E− 〈ε̄p〉

)
+

1
2

∑
ξ 6=0

ε̄p(ξ) : ω(ξ) : ε̄p(−ξ) (3.59)

Moreover, introducing the assumed piece-wise uniform plastic strain distribution given by equations
(3.42) and (3.43) into the expression (3.50) of Fourier coefficients ε̄p(ξ), one obtains:

ε̄p(ξ) =
1
V

∫
V

εp (x) e−iξ.x dV =
1
V

4∑
K=1

∫
V

εp
K e−iξ.x dV =

4∑
K=1

IK(ξ)εp
K (3.60)

with IK(ξ) =
1
V

∫
VK

e−iξ.xdV .

By combining equation (3.60) and the expression of the elastic energy in the periodic cell (3.59), the
latter can also be evaluated as function of the tensorial internal variables εp

K

$ =
1
2

(
E−

4∑
K=1

fKεp
K

)
: C :

(
E−

4∑
K=1

fKεp
K

)
+

1
2

∑
ξ 6=0

∑
K,L

IK(ξ)IL(−ξ)εp
K : ω(ξ) : εp

L

$ =
1
2

(
E−

4∑
K=1

fKεp
K

)
: C :

(
E−

4∑
K=1

fKεp
K

)
+

1
2

∑
K,L

εp
K : ΩKL : εp

L (3.61)

where the 4 × 4 = 16 fourth order tensors ΩKL depend on the geometry and on the elastic constants.
These structural tensors are given by

ΩKL =
∑
ξ 6=0

IK(ξ)IL(−ξ)ω(ξ) =
[∑

ξ 6=0

IK(ξ)IL(−ξ)
[
I− C :

(
ξ ⊗ V(ξ)⊗ ξ

)]]
: C (3.62)

Since Ep =
∑4

K=1 fKεp
K , the first term of the right-hand side of equation (3.61) is the macroscopic part

of the stored energy and the second term the microscopic part associated to incompatibility of deforma-
tion between the subdomains. Note the symmetry ΩKL = ΩLK since ω(−ξ) = ω(ξ). From equation
(3.58) follow the additional symmetries (ΩKL)ijkl = (ΩKL)klij = (ΩKL)jikl.
The material is described by the internal variables εp

K , and the associated thermodynamic forces are
obtained by minimising the energy related to the internal variables, as will be shown below.
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Effective local stresses and driving forces

In the theory of irreversible processes [MAU92], the driving force associated to any transformation de-
scribed by a variation of the internal variable εp

J is the derivative of the free energy with respect to
this variable. The thermodynamic forces AJ associated to the internal variables εp

J , J = 1, 2, 3, 4 then
become8:

AJ = − ∂$

∂fJεp
J

= C :

(
E−

4∑
K=1

fKεp
K

)
− 1

fJ

4∑
K=1

ΩJK : εp
K (3.63)

According to equation (3.39) the stress field is written as σ (x) = Σ + σ̃ (x) with a fluctuation field:

σ̃pq (x) = Cpqik

(
ũi,k − ε̃p

ik

)
(3.64)

Substituting equations (3.49), (D.3), and (D.4) into equation (3.64), it becomes

σ̃pq (x) = Cpqik

∑
pα 6=0

[
Cjlmnε̄p

mn(pα)ξl(pα)ξk(pα)Vij(pα)− ε̄p
ik(pα)

]
eiξ(pα).x (3.65)

σ̃pq (x) =
∑
pα 6=0

[
Cjlmnξl(pα)ξk(pα)Vij(pα)Cpqik − Cpqmn

]
︸ ︷︷ ︸

−ωpqmn(pα)

ε̄p
mn(pα) eiξ(pα).x (3.66)

and so the local stresses (i.e. equation 3.39) are given as function of the plastic strain distribution by

σ (x) = Σ−
∑
ξ 6=0

ω(ξ) : ε̄p (ξ) eiξ.x (3.67)

The second term of equation (3.67) gives the deformation-induced back-stresses, and the first term de-
notes the macroscopic stress.
From equation (3.67) the average local stresses in each subdomain VJ can be calculated

〈σ〉VJ
= Σ− 1

VJ

∑
ξ 6=0

ω(ξ) : ε̄p(ξ)
∫

VJ

eiξ.xdV (3.68)

= Σ− 1
VJ

∑
ξ 6=0

∑
K

IK(ξ)ω(ξ) : εp
K

∫
VJ

eiξ.xdV (3.69)

= Σ− 1
fJ

∑
ξ 6=0

∑
K

IK(ξ)IJ(−ξ) : ω(ξ) : εp
K (3.70)

and are finally given by

〈σ〉VJ
= Σ− 1

fJ

4∑
K=1

ΩJK : εp
K = AJ (3.71)

The thermodynamic forces (3.63) and the average values (3.71) which are identical can thus be regarded
as the driving forces or effective stresses σ̂J = 〈σ〉VJ

for the corresponding mechanisms necessary in the
evaluation of the mobility of dislocations. Accordingly, the back-stresses XJ = 1

fJ

∑4
K=1 ΩJK : εp

K

are defined here explicitly in the M3RSX model, where the ΩJK are calculated only once before the
simulations.

8The interested reader should refer to more complete specialised works [LEM85].
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To summarise, the effective stress tensors σ̂J (J = 1, 2, 3, 4) are

σ̂J = 〈σ〉VJ
= AJ = Σ− 1

fJ

4∑
K=1

ΩJK : εp
K (3.72)

= Σ−
4∑

K=1

[
1
fJ

∑
ξ 6=0

IK(ξ)IL(−ξ)
[
I− C :

(
ξ ⊗ V(ξ)⊗ ξ

)]]
︸ ︷︷ ︸

FKJ from equation 1.60

: C : εp
K (3.73)

and the RSS τ̂gJ driving each deformation mechanism are then obtained by projection on octahedral slip
systems g, i.e. τ̂gJ = mg.σ̂J .ng. Note that equation (3.73) has the same form as equation (1.60) from
the TFA procedure with BK = I. The latter equality is justified here because each subdomain has the
same elastic tensor.

3.2.5 Dislocation-based constitutive model

3.2.5.1 Plastic deformation in the channels

The threshold stress

The description of slip in the channels is based on the assumption that the dislocations only move when
the energy released by their motion is higher than the energy of a dislocation newly deposited at the
interfaces. This assumption leads to the existence of a threshold stress, which is inversely proportional
to the thickness w of the channel (see equation 1.6) [BRO71]. If the acting shear stress is higher than the
threshold stress, the dislocations move with a velocity increasing with the overstress. This point has been
discussed in section 2.4.3.4. The threshold stress for dislocation motion in the channels plays a crucial
role in the constitutive framework.
Thus, dislocation loops of the slip system g can glide in the γ channels, bowing out between the precip-
itates, if the work performed by the RSS τ̂gK in channel type K exceeds the corresponding increase of
line energy of the dislocation. Note that in the following, all variables pertaining to a slip system and a
channel type are referenced by the subscripts g and K, for instance the local RSS τ̂gK . For an extension
δs of the length of the deposited segments for slip system g in the channel K of width d = 2L− 2c, the
latter condition reads:

2 TgK δs ≤ τ̂gK b w δs (3.74)

where w = d
√

3
2 is the channel width in an octahedral plane, and TgK is the line energy of the trailing

segment. The trailed segments lie along the intersection of the {111} glide planes and the {100} inter-
faces, i.e. along the 〈110〉 directions. Their energy depends on the orientation of their line with respect
to that of the Burgers vector and the crystal axes. Only two cases can occur (see figure 55):

∗ The trailing segments are pure screws.

∗ The trailing segments are of mixed type, with a 60◦ angle between line and Burgers vector.

For a square loop of width w, the line energy has the form [HIR82]:

TgK =
1
2

α KgK b2 (3.75)

where α = 1
2π ln

(
w
r0

)
, and r0 is representative of the size of the dislocation core, i.e. 0.5b ≤ r0 ≤ b.

For the range of these values and w = 60 nm (a representative value of the channel width), the estimate
0.86 ≤ α ≤ 1 is obtained. However, due to its paramount importance in controlling flow in the channels
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and the large uncertainties related to this simple estimate, α will be treated, in the following, as an
adjustable parameter in a physical range of values.
The factor KgK has been estimated by Foreman [FOR55] for both cases of interest

KgK = Ks =

√
1
2
(
c44 (c11 − c12)

)
for the screw segments (3.76)

KgK =
1
4

(Kx + 2Ky + Ks) for the mixed segments (3.77)

where

c
′
11 =

1
2

(c11 + c12 + 2c44)

Kx =
(
c̄
′
11 + c

′
11

)√√√√ c
′
66

(
c̄
′
11 − c

′
11

)
c
′
22

(
c̄
′
11 + c

′
12 + 2c

′
66

) c
′
22 = c11

with c
′
66 = c44 (3.78)

Ky =

√
c
′
22

c
′
11

Kx c
′
12 = c12

c̄
′
11 =

√
c
′
11c

′
22

From equations (3.74) and (3.75), it follows that glide occurs in the channel K if the local RSS overcomes
the corresponding Orowan critical shear stress given by

τOrowan
gK = α

KgK b

w
(3.79)

The line tension (3.75) applied to the M3RSX model is a simplification of the one used by the DCM (see
equation 2.6) with the assumption that each dislocation is regarded as a rectangular loop

Dislocation mobility and plastic strain due to dislocation glide

If the acting shear stress is higher than the threshold stress τOrowan
gK defined in equation (3.79), the mobile

dislocation segments move with a velocity increasing with the overstress τ̂gK − τOrowan
gK . Dislocation

glide is thermally activated. While numerous forms have been proposed in the literature [KOC75], a
simple law for the velocity vglide

gK of a mobile dislocation segment of the system g in the channel K,
which accounts for thermal activation9 and which vanishes at the Orowan stress, is [KRA75]

vglide
gK = vglide

0 sinh


(
τ̂gK − τOrowan

gK

)
V glide

kB T

 (3.80)

where V glide is an activation volume, vglide
0 a temperature-dependent constant reference dislocation ve-

locity, and kB and T denote respectively Boltzmann’s constant and the absolute temperature.
The average shear rate in the channel K produced by NgK mobile segments of the slip system g is
deduced by the Orowan equation (1.28):

ρg
m =

∑
K

ρgK
m =

w NgK

Vchannel
(3.81)

9This is different from the one used in the DCM, because there v corresponds to the free-flight velocity, whereas here the
waiting time before obstacles is taken into account as well.
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Thus, the shear rate is defined by

γ̇glide
gK =

1
Vchannel

w NgK︸ ︷︷ ︸
ρgK

m from equation 1.28

b vglide
gK (3.82)

where Vchannel = 8 (L− c) L2 is the volume of the channel, which is taken as parallelepiped with di-
mensions 2(L− c)× 2L× 2L (see figure 83 a).
When dislocation segment densities are chosen as internal variables, their evolution laws generally con-
tain multiplication/production terms (characterised by ”+” in the following equations) and immobilisa-
tion terms (”−”). This is the subject of the next section.

Dislocation multiplication/production

Under load the dislocations start to multiply. In the early stages and at high temperature (above 850◦C),
the number of moving segments in the channels increases as the dislocation loops propagate in new
channels where they continue to glide. This is the key multiplication mechanism considered by Fedelich
[FED02]. In accordance, the production frequency of new segments in two channels I 6= J due to
moving dislocation loops in the channel K, K 6= I , K 6= J is taken into account through

Ṅ+ channel
gI = Ṅ+ channel

gJ =
NgK vglide

gK√
2L

(3.83)

with
√

2L is the average distance between two channels in a {111} plane.
However, if the local stresses are not high enough to deform all channel types, this multiplication mech-
anism does not operate. Within this assumption, sustained plastic flow is not possible for low stresses
and the previous work of Fedelich [FED02] shows that this resulted in very low values of the fitted α
parameter of equation (3.79), of magnitude 0.3. This is why, in addition to dislocation multiplication
as a result of existing dislocation expansion, dislocation sources are supposed to exist in each channel,
similar to ideal Frank-read sources. The production frequency f+ FR

gK of new loops in the channel K is
given by

f+ FR
gK =

vglide
gK

Lproduction
(3.84)

where Lproduction is the distance glided by a dislocation emitted from the source before emission of a
new dislocation loops. Lproduction will be regarded as an adjustable parameter related to the frequency
of generation of new mobile segments in each channel K.
Hence, the increase of the mobile segments Ṅ+ FR

gK of length w freshly emitted by the Frank-Read
sources in channel K is assumed to be function of the plastic shear strain rate [ESS79], and is written as

Ṅ+ FR
gK = f+ FR

gK NgK =
vglide
gK

Lproduction
NgK (3.85)

The assumption that dislocation sources exist in the channels may be justified by figure (62 c). It has
been shown that the collinear super-jogs which decorate the dislocation lines could act as dislocation
sources within a γ channel. Leading to the self production term, Lproduction is an essential difference
with respect to the former model version [FED02]. Indeed, this assumption addresses some deficiencies
of the first version, as will become clearer in the next sections.
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Dislocation immobilisation

Dislocation loops traveling through the channels can interact with other loops gliding either on parallel
slip planes or on intersecting planes. The latter interactions are not taken into account here. It has been
observed in section 2.4.4.3 that the junction production rate decreases after some straining (see figure
56 b). In other words, the dislocation-dislocation interaction is assumed to be negligible with respect
to the dislocation-precipitate interaction where the internal stress created by interfacial dislocations is
dominant.
Nevertheless, dislocation-dislocation interaction can be phenomenologically taken into account by means
of dipolar reactions. The present model considers that all mobile segments in the channels have an edge
character, so the possibility of dislocation-dislocation interactions are reduced and only the immobili-
sation of the mobile dislocations by the formation of dislocation dipoles is taken into account (figure
87). Reactions between two dislocation loops gliding in opposite sense on adjacent parallel planes, lead-
ing to dipole formation, are assumed to take place if the distance h between these planes is smaller
than a critical distance hc (figure 87 c). An immobile dipole will be formed if the driving shear stress
τ̂gK − τOrowan

gK is counterbalanced by the maximum attraction force between two dislocations, i.e. if the
distance between their glide planes is smaller than hc = b c44

4π(τ̂gK−τOrowan
gK ) .

(a) (b) (c)

Figure 87 - (a) Illustration of two mobile dislocations within a channel K gliding on parallel slip planes.
(b) These mobile dislocations do not interact of the distance h is higher than a critical value hc (see text
for an estimation of hc), whereas (c) if the distance h is lower than hc, the dislocations are immobilised
by forming a dipole.

An estimation of the corresponding immobilisation rate has been derived in [FED02]:

Ṅ− immobilisation
gK = 2

vglide
gK hc w N 2

gK

Vchannel
(3.86)

Mobile dislocation evolution

The evolution equation for the density of mobile segments resulting from addition of equations (3.83),
(3.85), and (3.86) is given by

ṄgK =
1√
2L

∑
I 6=K

vglide
gI NgI︸ ︷︷ ︸P

Ṅ+ channel
gI

+
vglide
gK

Lproduction
NgK︸ ︷︷ ︸

Ṅ+ FR
gK

− 2
vglide
gK hc w N 2

gK

Vchannel︸ ︷︷ ︸
Ṅ− immobilisation

gK

(3.87)
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The first term of the right-hand side of the equation represents the multiplication of mobile segments due
to the propagation of dislocation loops in the other channels at their crossing. The second term is the
production of mobile segments emitted by dislocation sources in the channel K. An important role is
played by this term in the modelling of the strength of 〈111〉 specimens, and specially in the localisation
of plastic slip in particular channels, leading to apparent slip bands on cubic planes. Finally, the third term
corresponding to the dislocation-dislocation interactions in the equation is, for all orientations, always
smaller than the two other contributions.

Dislocation storage at interfaces

The dislocation segments trailing those traveling through the channels are pressed against the interfaces
by the local RSS. Their numbers for the system g at the interface between the channel K and the pre-
cipitate can be characterised by the scalar variable λgK , which gives the segment density in the phase
boundary, measured perpendicularly, to their common line vector. The increase of the segment density
resulting from the glide mechanism described in the previous sections can be calculated from equations
(3.34) and (3.82):

λ̇+ storage
gK =

√
2
3

1
Vchannel

w NgK vglide
gK (3.88)

Note that 1
λgK

is the average distance between two segments of the slip system g at the interface.

3.2.5.2 Cutting of γ′ precipitates

The precipitates can be sheared by matrix dislocation pairs with overall Burgers vector a〈11̄0〉 (see figure
7 b). In this case, the second dislocation is necessary to remove the APB left in the ordered γ′ structure
by the first dislocation (see section 2.4.2). The level of activity of each system mainly depends on the
temperature and the stress.
Cutting of γ′ particles is usually accomplished by dislocation segments moving through the γ channels
that enter the γ′ particle and pass through its whole cross-section to reach the opposite γ/γ′ interfaces.
Either dislocations of the opposite sign are present at the opposite side, in which case an annihilation
reaction with the cutting dislocation is likely, or the cutting dislocation will cross the next channel and
further shear the next precipitate. In the last case, the dislocation line length is not expected to change
significantly on average. Hence, the threshold stress for cutting stems from the energy necessary to create
an APB in the ordered γ′ phase.
In the temperature range considered here, the glide resistance of the isolated γ′ phase is much higher than
that of the γ phase (see figures 8 b) [ANT94]. Accordingly, the cutting frequency f cutting

g is assumed to
be controlled by the average velocity of the dislocation segments in the precipitates via

f cutting
g =

vcutting
g

lγ′
(3.89)

where lγ′ is the average size of the precipitates in octahedral planes. An estimation for this length is
lγ′ =

√
〈Sγ′〉 where 〈Sγ′〉 = 4 c2√

3
is the average area of particles cut by a randomly located {111}

plane. For the average velocity of dislocation segments in the γ′ phase, a relationship similar to equation
(3.80) is assumed

vcutting
g = vcutting

0 sinh

[
〈|τ̂ cutting

g | − τAPB
g 〉V cutting

kB T

]
sign

(
τ̂ cutting
gK

)
(3.90)
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where τ̂ cutting
g is the average RSS in the precipitate, vcutting

0 is a constant, and τAPB is related to a APB-
like energy EAPB by τAPB = EAPB

b combined with the activation volume denoted V cutting. As shown
in [FED02], the resulting plastic shear rate has the form

γ̇cutting
gK =

1
V

√
3
2

b
vcutting
g

lγ′︸ ︷︷ ︸
fcutting

g

(λg1 + λg2 + λg3) (3.91)

where V = 8L3 is the volume of the computational cell.

3.2.5.3 Climb at the γ/γ′ interfaces

The dislocation segments deposited at the γ/γ′ interfaces can be annihilated by climbing along the
interfaces and eventually by reactions with segments of opposite sign. Here again several scenarios can
be considered

∗ As proposed by Svoboda and Lukas [SVO97], closed loops surrounding a precipitate can climb
around the interface and annihilate at the apex of the precipitate.

∗ Long dislocation segments travel around the precipitates by combination of climb and glide until
they meet a reaction partner. This deformation-recovery mechanism and its variants10 (local climb,
general climb, cooperative climb) has already been examined for particle strengthened alloys with
low or medium content of the particle phase [McL85]. Mukherji and Wahi [MUK96] extended the
analysis to the context of superalloys with large volume fraction of the precipitate phase.

Figure 88 - Two-dimensional representation of the assumed climbing recovery. The inset shows the
corresponding three-dimensional process.

The occurrence of the first mechanism requires that all channel types are plastically strained for the
formation of closed loops. However, with realistic values of the Orowan stress, dislocation glide in all

10The interested reader should refer to [MUK96] for definitions of various moodes of the climb process.
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channel types is impossible for sufficiently low creep stresses. For instance, equation (3.79) with α = 1,
the elastic constants of CMSX-4 at 950◦C and a channel width of 67 nm, yields τOrowan = 248 MPa
for 60◦ segments, or a corresponding uniaxial theoretical tensile strength of about 620 MPa, without
accounting for the effect of the misfit stresses. Indeed, this threshold is even higher in the vertical chan-
nels due to negative superposition of the misfit stresses. However, creep is already possible at 950◦C
for stresses around 100 MPa. As a matter of fact, under low external uniaxial tensile stresses dislocation
glide is possible in the channels perpendicular to the load axis due to the positive superposition of the
misfit and the external stresses in these channels.
For sustained plastic flow, recovery climb must be possible even when only one channel type is plas-
tically deformed. Climbing of long dislocation segments originated from slip in a single channel type
(second mechanism) is thus considered. The segments move around the particle by a combination of
climbing and gliding until they reach annihilation partners. For simplicity, the two dimensional form
of the mechanism is demonstrated in figure (88). To overcome the precipitates, the dislocations have to
increase their length (see the inset in figure 88). The climb resistance dl

dx , which is defined as the increase
in line length dl per glide step dx, strongly depends on the operating climb variant (local climb, general
climb, cooperative climb) and is thus difficult to estimate a priori. In view of the uncertainty related to
the determination of the climb resistance, the threshold resulting from the line increase dl

dx is neglected
here.
Next, the plastic strain resulting from the climb process must be estimated. At any time, parts of the
dislocation will move upward or downward relative to the initial slip plane. Averaging over time and a
large number of segments, it appears reasonable to assume that the out of plane (pure climb) contribu-
tions to the overall deformation compensate. This assumption considerably simplifies the estimation of
the change of the internal stresses. The resulting stress state is the same as if the dislocation had sheared
the precipitates in its initial plane until it reaches an annihilation partner (see the black circle in figure
88).
The preceding assumptions can be formalised as follows. Let vclimb

gI be the average out of plane com-
ponent of the climb velocity of a segment initially deposited at interface I . The out of plane climb path
is proportional to the height Hγ′ of a precipitate along the {111} direction, with Hγ′ = 2

√
3c. The

annihilation frequency must be proportional to f climb
gI =

4vclimb
gI

Hγ′
, where

Hγ′
4 corresponds to the average

initial distance of a segment to the apex of a precipitate. The annihilation rate of segments is then

λ̇− climb
gI = −λgI f climb

gI = −4λgI

vclimb
gI

Hγ′
= − 2√

3
λgI

vclimb
gI

c
(3.92)

From equations (3.34) and (3.92), the jump of the shear rate between both sides of the interface I can be
deduced

Jγ̇climb
gI K = 4bλgI

vclimb
gI

sin (n̂, ng) Hγ′
(3.93)

The corresponding plastic strains are
(
∀ I, J, K ∈ {1, 2, 3}, J 6= K, I 6= K, I 6= J

)
ε̇p

I = 0 (3.94)

ε̇p
J = ε̇p

K = ε̇p
4 = (ng ⊗mg) Jγ̇climb

gI K (3.95)

and according to equation (3.61) the elastic energy is reduced by

$̇ = −

∑
J 6=I

fJ σ̂J

 : 〈mg ⊗ ng〉 Jγ̇climb
gI K (3.96)
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from which the thermodynamic driving force of the mechanism follows

τ̂ climb
gI =

∑
J 6=I

fJ σ̂J

 : 〈mg ⊗ ng〉 (3.97)

The previous quantity is the spatial average of the RSS τ̂g in the sheared phases (the two other channels
and the precipitate). Finally, a simple linear relationship for the average climb velocity is assumed:

vclimb
gI = D τ̂ climb

gI (3.98)

3.2.6 Summary of the constitutive equations

Here the set of equations constituting the M3RSX model in terms of shear rate, mobile dislocation evo-
lution and segment mobilities for each deformation mechanism, is summarised. The evolution of the
internal variables, εp

K , ρ̇gK and λ̇gK depends on eight parameters listed in table (3.5). The structural ten-
sors ΩKL depend on the elastic constants and the microstructure geometry. They relate the (microscopic)
effective stress σ̂J for any channels J to the macroscopic stress Σ.

Macroscopic and microscopic quantities

Σ = C : (E− Ep) Ep =
4∑

K=1

fKεp
K

σ̂J = Σ− 1
fJ

4∑
K=1

ΩJK : εp
K εp =

4∑
K=1

εp
K

Evolution equation for λgK

λ̇gK = λ̇+ storage
gK + λ̇− climb

gK

Glide in the γ channels
[

K ∈ {1, 2, 3}
]

ε̇p
K =

1
2

24∑
g=1

(ng ⊗mg + mg ⊗ ng) γ̇glide
gK

γ̇glide
gK =

1
Vchannel

w b NgK vglide
gK

ṄgK =
1√
2L

∑
I 6=K

vglide
gI NgI +

vglide
gK

Lproduction
NgK − 2

vglide
gK hc w N 2

gK

Vchannel

λ̇+ storage
gK =

√
2
3

1
Vchannel

w NgK vglide
gK
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vglide
gK = vglide

0 sinh


(
τ̂gK − τOrowan

gK

)
V glide

kB T



τ̂gK = mg.σ̂K .ng

τOrowan
gK = α

KgK b

w

Cutting of the γ′ precipitates
[

K = 4
]

ε̇p
4 =

1
2

24∑
g=1

(ng ⊗mg + mg ⊗ ng) γ̇cutting
g4 + ε̇misfit

4

γ̇cutting
g4 =

1
8L3

√
3
2

b
vcutting
g

lγ′
(λg1 + λg2 + λg3)

vcutting
g = vcutting

0 sinh

[
〈|τ̂ cutting

g | − τAPB
g 〉V cutting

kB T

]
sign

(
τ̂ cutting
gK

)

τ̂ cutting
gK = mg.σ̂4.ng

τAPB
g =

EAPB

b

Climb along the γ/γ′ interfaces
[

(I, J, K) ∈ {1, 2, 3}, J 6= K, I 6= K, I 6= J
]

ε̇p
J = ε̇p

K = ε̇p
4 = (ng ⊗mg) Jγ̇climb

gI K ε̇p
I = 0

λ̇− climb
gI = −λgI f climb

gI = −4λgI

vclimb
gI

Hγ′
= − 2√

3
λgI

vclimb
gI

c

Jγ̇climb
gI K = 4bλgI

vclimb
gI

sin (n̂, ng) Hγ′

vclimb
gI = D τ̂ climb

gI

τ̂ climb
gI =

∑
J 6=I

fJ σ̂J

 : 〈mg ⊗ ng〉
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Symbol CMSX-4 at 850◦C CMSX-4 at 950◦C Unit Reference
b 0.25 0.25 nm

C11 181823 174400 MPa [FED02b]
C12 114952 112000 MPa [FED02b]
C44 101446 97000 MPa [FED02b]
2c 573 562 nm [LIN07]
2L 631 631 nm [LIN07]
δu -0.00215 -0.00225 nm [GLA94]
N0 0.01 0.01 -

Table 3.4: Input material parameters for the simulations.

3.2.7 Application to the alloy CMSX-4

3.2.7.1 Experimental details

The present model was designed for single crystal superalloys in the high temperature range, essential
for industrial applications in turbine components. In a collaborative work with the Bundesanstalt für
Materialforschung und -prüfung (BAM), all tests reported here were performed on the alloy CMSX-4 at
850◦C and 950◦C, and for various specimen orientations11. The deviations of the specimen axes from
the 〈001〉 crystallographic direction did not exceed 11.3◦ for the 〈001〉 oriented specimens.
Creep tests have been simulated at only 850◦C, since at 950◦C rafting readily occurs, a phenomenon that
is not represented in the M3RSX model yet.

3.2.7.2 Input parameters

The model has been implemented as a constitutive law in the FE code ZéBuLoN. The code performs a
Runge-Kutta integration scheme with automatic time stepping based on an estimate of the integration
error.
Direct extensive Scanning Electron Microscope and TEM measurements of the size of the precipitates
2c and the channel width w have been recently performed in [LIN07]. The authors obtained w = 58 nm
at Room Temperature (RT) and an average 2c = 573 nm. Assuming ideal cubic precipitates and peri-
odicity, 2L = 631 nm and the corresponding volume fraction of the γ′ phase at RT, fγ′ = 0.75. These
values agree well with the recent measurements by Roebuck et al. [ROE07], fγ′(RT) = 0.75 and by
Serin [SER02], w(RT) = 51 nm.
The volume fraction of the γ′ phase decreases steeply with the temperature above 850◦C. The interpo-
lating function proposed by Roebuck et al. [ROE07] yields fγ′(T = 950◦C) = 0.71. Assuming that the
size of the periodic cell remains constant (no coarsening for either short term loadings at 950◦C nor at
850◦C), the data of corresponding size of the γ′ precipitate 2c(T = 950◦C) = 562 nm and the width of
the channel w(T = 950◦C) = 67 nm are obtained.
Measurements of the unconstrained misfit were performed by Glatzel at RT, δu(RT) = −1.30 10−3 and
at 1000◦C, δu(T = 1000◦C) = −2.25 10−3 [GLA94]. Interpolating linearly between these two values,
δu(T = 850◦C) = −2.15 10−3 and δu(T = 950◦C) = −2.25 10−3 will be used in simulations. The
elastic constants have been calculated by the resonance method [FED02b].
The table (3.4) summarises the input material parameters used for the simulations.

11Experimental results of the CMSX-4 by Alstom (Baden) and by the Institute for Materials Technology, Darmstadt Uni-
versity of Technology are gratefully acknowledged. The present model may be applied to similar nickel-base alloys with high
volume fraction such as AM1.
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Symbol CMSX-4 at 850◦C CMSX-4 at 950◦C Unit Used in equation
α 0.62 0.91 - 3.79

vglide
0 3.75×10−3 6.45 nm.s−1 3.80

V glide 56.64 40.17 b3 3.80
Lproduction 3.47 2.23 µm 3.87

vcutting
0 1.95×10−2 5.13×10−1 nm.s−1 3.90

V cutting 32.56 33.43 b3 3.90
EAPB 0.024 0.016 J.m−2 3.90

D 2.51×10−8 1.58×10−5 nm.s−1.Pa−1 3.98

Table 3.5: Fitted parameters for the alloy CMSX-4 at 850◦C and 950◦C.

3.2.7.3 Calibration of adjustable parameters

Table (3.5) lists the fitted parameters of the current model. The parameters have been determined by
calibrating the macroscopic response of the constitutive model with tests results from 〈001〉 and 〈111〉
oriented specimens for both temperatures (850◦C and 950◦C). The experimental tests are listed in ta-
ble (3.6). The minimisation of the objective function has been performed with the simplex algorithm
[COR01]. Note that the M3RSX model has only 8 adjustable parameters for each temperature and
that no cube glide systems are considered in the simulations. Most previous models [CAI87] [MER92]
[NOU95] [FED02] [LEV06] [PRE08] include cubic glide systems as independent deformation mecha-
nisms, which increases the number of adjustable parameters by a factor 2. The two simulated tests of
near-[011] specimens have only been used for validation. The detailed comparisons between the model
predictions and the experimental data are shown in the next section.
The pre-factor α is lower at 850◦C than at 950◦C. One reason of this discrepancy is due to creep tests
at 850◦C which were not available for 950◦C. Creep tests have not been simulated at 950◦C, because
rafting occurs readily at this temperature [EPI08]. Indeed, creep is already possible at relatively low
stresses with respect to the Orowan stress (see equation 3.79). As a matter of fact, creep is likely to
occur well below this theoretical threshold stress due to the large scatter of the channel widths as well
as the existence of large residual dendritic stresses [EPI05]. These effects, which probably control the
magnitude of low stress creep, are not represented in the model. The value of 0.9 at 950◦C is close to
the value of 0.85 obtained by Busso et al. [BUS00] and that of 1.02 obtained by DCM calculations in
section 2.4.3.3, as well as the theoretical bounds derived in section 2.4.3.4.
The respective activation volumes of the gliding and shearing processes are close for both temperatures.
As expected for a thermally activated processes, the values of vglide

0 and D increase with temperature.
The values obtained for the glide distance Lproduction between two dislocations emitted from a Frank-
Read source are close at both temperatures (≈ 3 µm). Lproduction has been considered as a fitted parame-
ter because a reliable identification of the glide distance would require a considerable experimental effort.
However, DCM analyses12 of the possibly of super-jogs to act as a dislocation source would be useful
to physically determine Lproduction. Here this parameter is the essential key for modelling correctly the
mechanical behaviour in [111]-oriented specimens, because it imposes the value of the stress-plateau of
the curves illustrated in figure (92). This point will be discussed in the next section.
The combination of the fitted value of EAPB and V cutting determines the CRSS at which γ′ precipitates
are sheared. This critical stress has the same order of magnitude as values reported for superalloys in the
literature (see section 3.1.3.3). This is also discussed in the next section (figure 89).

12This work is in progress.
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3.2.7.4 Simulation results

Several representative simulation results with the corresponding experimental values are presented.
The form of the tensile curves 〈001〉 orientation is characteristic for superalloys at high temperature. As
shown in figures (90 a) and (91), they exhibit three stages that correspond to the elastic regime (1), the
channel gliding process (2) and precipitate shearing (3). Stage (2) can be easily recognised since the
deposition of dislocation segments in the precipitate interfaces is accompanied by a high level of strain
hardening. The magnitude of this hardening increases with the volume fraction of the γ′ phase. This
has been observed in the comparison with the SC16 and the SRR99 alloys [FED02], with respective γ′

content of 40% and 60%, respectively. The magnitude of hardening depends on the ΩIJ tensors, which
contain the information about the geometry of the microstructure. The stage (3) is a roughly horizontal
plateau. This steady-state stress level is essentially controlled by the APB energy EAPB and the acti-
vation volume V cutting. The combination of both determines a CRSS at which γ′ precipitates are cut.
Let consider the test # 1 (of which the simulated stress-strain curve is shown in figure 91 a) and a corre-
sponding activated glide system during the simulation (for instance, g = A6 = (1̄11) [01̄1]). Figure (89)

illustrates the RSS, τ̂A6 4, acting on system A6 and the equivalent plastic strain εeq
4 =

√
2
3εp

ijε
p
ij in the

precipitate as function of total strain. It shows (vertical dotted line) a stress plateau at 1.6% strain, which
corresponds to a saturation/limitation of the storage of dislocations at the precipitate interfaces. Indeed,
at this 1.6% strain state, precipitates are plastically deformed while the εeq

4 in γ′ increases linearly (see
figure 89). In addition, the onset of plastic strain within precipitates corresponds to a CRSS (thick hori-
zontal line) equal to the 560 MPa. The latter stress corresponds to the classical precipitate-cutting stress
expected to be of the order γAPB

b . An estimate γAPB = 560 × 106 × 0.25 × 10−9 = 140 mJ.m−2 is in
good agreement with experimental values reported for superalloys in the literature (see section 2.4.2).
As schematically shown in figure (90 b), the second stage is missing in specimens strained along the
〈111〉 direction. The elastic regime is followed by a low hardening phase (2), often including a stress
drop after an upper yield point (see, e.g. the test results reported by Bettge and Österle [BET99], or the
DCM results in section 2.4.4). The absence of hardening will be discussed in the next section. Figures
(92) show that the simulated results reproduce qualitatively and quantitatively well the tensile curves of
the 〈111〉 orientation.
The comparison of simulated results and experimental data for cyclic tests is investigated for stabilised
hysteresis loops for various orientations (near [001], [011], and [111]-oriented specimens). The experi-
mental as well as the simulated hysteresis curves stabilise quickly after one or two cycles because cyclic
hardening is negligible. In figures (93 − 97) the presented results display the influence of strain rate,
strain amplitude and orientation. Note that in contrast to the previous work [FED02], no reverse glide in
the channels upon load reversal has been accounted for.
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Figure 89 - Evolution of the resolved shear stress on a primary system g = A6 and the equivalent plastic
strain in the precipitate (K = 4) during the test # 1.
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Strain controlled multiple relaxation tests performed at 850◦C for [001]- with cyclic (tensile and
compressive) relaxations and [111]-oriented specimens (only tensile relaxation) have been simulated,
where the constant strain rate loading at 3.10−5 s−1 was interrupted by 10h relaxation segments. The
resulting stress relaxations are shown in figures (98 − 102).
Finally, creep tests for different applied stress and orientations have been simulated at 850◦C. Simulated
creep curves are shown in figures (103) as a function of time, and for sake of comparison, as a function
of log(time). Note that the current model is designed to describe the first and second creep stage and not
tertiary creep.

Tensile tests
Test # Temperature (◦C) Crystal orientation Strain rate (s−1) Real orientation

1 850 〈001〉 10−2
[
0.0, 5.3, 34.0

]
2 850 〈001〉 10−3

[
0.0, 6.4, 16.5

]
3 850 〈001〉 10−4

[
0.0, 6.5, 37.6

]
4 850 〈111〉 10−4

[
0.0, 53.2, 42.3

]
5 950 〈001〉 10−2

[
0.0, 6.5, 31.2

]
6 950 〈001〉 10−3

[
0.0, 6.4, 16.5

]
7 950 〈001〉 10−4

[
0.0, 7.5, 18.5

]
8 950 〈111〉 10−3

[
0.0, 53.5, 42.6

]
9 950 〈111〉 10−4

[
0.0, 53.2, 42.3

]
Cyclic tests

Test # Temperature (◦C) Crystal orientation Strain rate (s−1) Real orientation
10 850 〈001〉 10−3

[
0.0, 6.0, 1.9

]
11 850 〈011〉 10−3

[
0.0, 44.2, 4.2

]
12 850 〈111〉 3.10−5

[
0.0, 50.4, 41.8

]
13 850 〈111〉 10−3

[
0.0, 52.2, 43.0

]
14 950 〈001〉 10−4

[
0.0, 10.5,−12.9

]
15 950 〈001〉 10−4

[
0.0, 8.3,−2.3

]
16 950 〈001〉 3.10−5

[
0.0, 7.0,−16.0

]
17 950 〈001〉 10−3

[
0.0, 6.7,−23.0

]
18 950 〈111〉 10−3

[
0.0, 44.6,−41.9

]
19 950 〈111〉 10−3

[
0.0, 50.6,−42.9

]
20 950 〈111〉 3.10−5

[
0.0, 47.0,−40.4

]
Relaxation tests

Test # Temperature (◦C) Crystal orientation Strain rate (s−1) Real orientation
21 850 〈001〉 3.10−5

[
0.0, 7.5, 21.2

]
22 850 〈111〉 3.10−5

[
0.0, 50.5, 37.2

]
23 950 〈001〉 3.10−5

[
0.0, 7.5, 17.7

]
24 950 〈001〉 10−3

[
0.0, 4.1, 0.0

]
25 950 〈011〉 10−3

[
0.0, 0.8,−42.5

]
Creep tests

Test # Temperature (◦C) Crystal orientation Stress (MPa) Real orientation
26 850 〈001〉 580

[
0.0, 3.8, 12.8

]
27 850 〈001〉 520

[
0.0, 0.4, 5.1

]
28 850 〈001〉 470

[
0.0, 7.1, 25.1

]
29 850 〈001〉 450

[
0.0, 10.7, 5.4

]
30 850 〈001〉 401

[
0.0, 8.2, 2.8

]
31 850 〈111〉 450

[
0.0, 53.2, 43.0

]
32 850 〈111〉 400

[
0.0, 47.7, 43.8

]
Table 3.6: List of experimental tests and characterisations.
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Tensile tests
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Figure 90 - Sketch of the typical stress-strain responses of a single crystal superalloy at high tempera-
ture, (a) near 〈001〉-oriented specimens showing three stages: the elastic regime (1), the channel gliding
process (2), and precipitate shearing (3), and (b) near 〈111〉-oriented specimens showing two stages: the
elastic regime (1), and a low hardening phase (2).
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Figure 91 - Monotonic stress-strain responses: comparison of experimental data (symbols) and simula-
tions (solid lines) near [001] orientations at (a) 850◦C (tests # 1, # 2, and # 3), and at (b) 950◦C (tests #
5, # 6, and # 7).
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Figure 92 - Monotonic stress-strain responses: comparison of experimental data (symbols) and simula-
tions (solid lines) near [111] orientations at (a) 850◦C (test # 4), and at (b) 950◦C (tests # 8, and # 9).
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Cyclic tests
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Figure 93 - Stress-strain responses of the stabilised hysteresis loop: comparison of experimental data
(symbols) and simulations (solid lines) at 850◦C near (a) [001]- (test # 10), and (b) [011]-oriented spec-
imens (test # 11).
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Figure 94 - Stress-strain responses of the stabilised hysteresis loop: comparison of experimental data
(symbols) and simulations (solid lines) at 850◦C for two near [111]-oriented specimens: (a) test # 12,
and (b) test # 13.
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Figure 95 - Stress-strain responses of the stabilised hysteresis loop: comparison of experimental data
(symbols) and simulations (solid lines) at 950◦C for two near [001]-oriented specimens: (a) test # 14,
and (b) test # 15.
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Figure 96 - Stress-strain responses of the stabilised hysteresis loop: comparison of experimental data
(symbols) and simulations (solid lines) at 950◦C for two near [001]-oriented specimens: (a) test # 16,
and (b) test # 17.
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Figure 97 - Stress-strain responses of the stabilised hysteresis loop: comparison of experimental data
(symbols) and simulations (solid lines) at 950◦C for three near [111]-oriented specimens: (a) test # 18,
(b) test # 19, and (c) test # 20.
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Stress relaxation tests
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Figure 98 - Relaxation behaviour as a function of strain and time: comparison of experimental data (grey
lines) and simulations (black lines) at 850◦C for a (a) near [001]-oriented specimen (test # 21), and (b)
is the enlarged area of (a).

0.000 0.005 0.010 0.015 0.020
0

200

400

600

800

1000

 

 

S
tr

es
s 

[M
P

a]

Strain

0 50000 100000
300

600

900
 

 

S
tr

es
s 

[M
P

a]

Time [s]

Figure 99 - Relaxation behaviour as a function of strain and time: comparison of experimental data (grey
lines) and simulations (black lines) at 850◦C for a near [111]-oriented specimen (test # 22).
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Figure 100 - Relaxation behaviour as a function of strain and time: comparison of experimental data
(grey lines) and simulations (black lines) at 950◦C for a near [001]-oriented specimen (test # 23).
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Figure 101 - Relaxation behaviour as a function of strain and time: comparison of experimental data
(grey lines) and simulations (black lines) at 950◦C for a near [001]-oriented specimen (test # 24).
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Figure 102 - Relaxation behaviour as a function of strain and time: comparison of experimental data
(grey lines) and simulations (black lines) at 950◦C for a near [011]-oriented specimen (test # 25).
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Creep tests

0 2000000 4000000
0.00

0.01

0.02

# 32

# 30

# 31

# 29
# 28

# 27

# 26

 

 
S

tr
ai

n

Time [s]

(a)

10000 100000 1000000 1E7
0.00

0.01

0.02

 

 

S
tr

ai
n

log Time [s]

(b)

Figure 103 - Creep strain behaviour for different stress levels at 850◦C: comparison of the experimental
data (solid lines) and the simulations (symbols) near [001]- (full symbols: tests # 26 − # 30) and [111]-
oriented specimens (filled symbols: test # 31 and # 32) as function of (a) time and (b) log(time).

3.2.8 Discussion

3.2.8.1 Influence of the distribution of (geometrically necessary) dislocations

The choice of the decomposition of the matrix into 3 channels has been discussed in section 3.2.4.3 (see
figure 84) and its implications are now presented. The Appendix D.2 gives the components of the influ-
ence tensors ΩKL for both decomposition types. The difference is roughly an order of magnitude in the
leading components. The consequences of these differences on the 〈111〉 tensile behaviour are observed
in figure (104). In these simulations (simulated test # 4), only the channel decomposition differs while
the remaining model parameters are identical. Clearly, the WSE decomposition (grey curve in figure
104) overestimates the strain hardening while the P decomposition (black curve in figure 104) exhibits
no hardening, in qualitative agreement with the experiments and the results from the DCM simualtions.
The absence of hardening of the black curve in figure (104) is due to two equally activated slip sys-
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Figure 104 - Influence of the matrix decomposition on the tensile behaviour of 〈111〉-oriented speci-
mens: the grey line represents the behaviour of the WSE decomposition and the black line that of the P
decomposition (see figure 84 for a geometrical illustration of these decompositions).



160 Continuum plasticity in dislocated γ/γ′ superalloys

tems, such that the superposition of the internal stresses of their interfacial dislocations vanishes, as will
be shown later. This phenomenon is consistent with the DCM results discussed in section 2.4.4.4. In
contrast, the WSE decomposition is accompanied by the accumulation of geometrically necessary dis-
locations at the channel inner-boundaries, which have no physical counterpart. The long-range internal
stresses generated by these dislocation densities do not vanish for the same slip system combination. As
a result, strain hardening is overestimated. It must be noted that the previous version of the model had to
resort to cubic slip to remedy this excess of hardening.
Therefore, both the DCM results and the improved estimation of the internal stresses presented here
question the significance of cubic slip as an effective deformation mechanism.

3.2.8.2 Evidence of the mechanism of pseudo-cubic slip

In this section, the key effects responsible for the absence of hardening in 〈111〉 tensile specimens (in
particular, the test # 4) are summarised. At the start of the simulation, the number of dislocation segments
of mixed and screw character are the same and the density λ at the γ/γ′ interfaces equal zero. The stress
state at that moment is given by the superposition of the applied stress and the coherency stress which is
determined by the misfit parameter δ. At any time t > 0 the stress state is given by the applied stress,
misfit parameter and the long-range stresses due to densities on the γ/γ′ interfaces.

Selection of slip systems in 〈111〉 specimens

According to classical crystal plasticity, the six slip systems A6, D6, A3, C3, C1 and D1 (see table 3.3),
are equally and maximally stressed in a homogeneous crystals under uniaxial tension along the 〈111〉, as
in test # 4. Due to the superposition of the misfit, the external stresses and the dependence of the Orowan
threshold on the orientation of the trailed dislocation segments, this model does not apply to superalloys.
To facilitate the discussion, the effective RSS, i.e. τ̂gK , the Orowan stresses τOrowan, and the driving
forces τ̂gK − τOrowan are presented in table (3.7) for the six candidate slip systems in the three channel
types during tensile test # 4, at a stress level Σ = 780 MPa before yielding.
Inspection of table (3.7) shows that in each channel only two systems will be activated at the onset of
yielding (blue values in the table). These systems are those with the lowest Orowan threshold, i.e. for
which screw segments are deposited at the interfaces. Finally, note that the two selected systems are
conjugate with the same Burgers vector but opposite line vectors. These results are in accordance with
the DCM analysis on the origin of the pseudo-cubic slip at the dislocation scale, as discussed in section
2.4.4.3.

Strain hardening in 〈111〉 specimens

Considering for instance the case of channel K = 2, table (3.7) shows that the first activated slip systems
are A3 and C3 (because of their corresponding lowest Orowan threshold) which consequently induce
equal stresses in channel K = 2. Thus γglide

A3, 2 = γglide
C3, 2 = γglide

2 , and the resulting plastic rate (equation
3.31) is written in the form:

ε̇p
2 =

1
2

[ (
nA3 ⊗mA3 + mA3 ⊗ nA3

)
γ̇glide

A3, 2 +
(
nC3 ⊗mC3 + mC3 ⊗ nC3

)
γ̇glide

C3, 2

]
(3.99)

ε̇p
2 =

1
2

[ (
nA3 ⊗mA3 + mA3 ⊗ nA3

)
+
(
nC3 ⊗mC3 + mC3 ⊗ nC3

) ]
γ̇glide

2 (3.100)

The latter quantity is proportional to what would be produced by a cubic system on the plane e2 = (01̄0)
in the direction m = [101̄], i.e. ε̇p

2 ∝ (e2 ⊗m + m⊗ e2).
As demonstrated in the Appendix (D.3), the internal stresses generated by the plastic strain in equation
(3.99) in a parallelepiped channel with faces normal to (e2 ⊗m) vanish, i.e. ΩJ2 : (e2 ⊗m + m⊗ e2) =



3.2 Towards a physically justified micromechanical model 161

Slip system g A6 : (1̄11) 〈110〉 D6 : (11̄1) 〈110〉
Channel type K 1 2 3 1 2 3
Trailed segment M M S M M S
τOrowan (MPa) 180. 180. 122. 180. 180. 122.

τ̂gK (MPa) 149. 230. 228. 241. 107. 228.
τ̂gK − τOrowan (MPa) -31. 50. 106. 61. -73. 106.

Slip system g A3 : (1̄11) 〈101〉 C3 : (111̄) 〈101〉
Channel type K 1 2 3 1 2 3
Trailed segment M S M M S M
τOrowan (MPa) 180. 122. 180. 180. 122. 180.

τ̂gK (MPa) 139. 227. 229. 248. 227. 101.
τ̂gK − τOrowan (MPa) -41. 105. 49. 68. 105. -79.

Slip system g C1 : (111̄) 〈011〉 D1 : (11̄1) 〈011〉
Channel type K 1 2 3 1 2 3
Trailed segment S M M S M M
τOrowan (MPa) 122. 180. 180. 122. 180. 180.

τ̂gK (MPa) 224. 218. 91. 219. 95. 218.
τ̂gK − τOrowan (MPa) 102. 38. -89. 97. -85. 38.

Table 3.7: Driving force for dislocation glide for the six candidate slip systems g in the three channel
types K during a monotonic tensile test of a [111]-oriented specimen.

0 for any J . Consequently, the corresponding contribution to the strain hardening rate (see equation 3.71)

ẊJ =
1
fJ

ΩJ2 : ε̇p
2 = 0 (3.101)

also vanishes. Expression (3.101) means that the relative contributions to kinematical hardening associ-
ated to the combination of A3 and C3 in K = 2 compensate. Consequently, the strength (i.e. the esti-
mation of kinematical hardening rate through expression 3.101) of 〈111〉 specimens remains extremely
low, while it remains high for 〈001〉 specimens with ẊJ 6= 0.

Dislocation sources

At the microscopic scale, the role played by the dislocation sources in each channel, is an essential condi-
tion for the absence of work hardening in 〈111〉 specimens at the macroscopic scale. This can indefinitely
sustain plastic flow in accordance with equation (3.85). Without these sources, the dislocation multipli-
cation mechanism expressed by equation (3.83) requires, when operating alone, the other channels to be
plastically deformed, which in turn would give rise to dislocation induced internal stresses and thus work
hardening.
For the 〈111〉 orientation, dislocation sources allow removing the cubic slip systems from the model, and
plastic slip tends to localise in a channel by two octahedral slip systems (e.g. one primary system and its
collinear slip system), leading to apparent slip bands on cubic planes.
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3.2.9 Application to the engineering problems

3.2.9.1 Validation on standard dog-bone specimen at 850◦C

The first structural calculation is the tensile dog-bone test. Figure (105 a) presents the mesh geometry
including 1696 prismatic FE. The dimensions of the dog-bone gauge section are confined to 60 mm
(long), 21.5 (wide) and 0.15 (thick). Uniaxial tensile deformation with a 〈001〉-orientation is performed
on the specimen at an imposed strain rate of Ė33 = 10−3 s−1, for the single crystal superalloy CMSX-4
at 850◦C. The corresponding material parameters are those of table (3.5).
Figure (105 b) and (105 c) shows the deformation E33 and the stress Σ33, respectively. The predicted
stress-strain response may be analysed by either the response given at one IP inside the homogeneous
zone or by the averaged quantities of the gauge section. The comparison between both calculations is
given in figure (106). It shows that the stress-strain curves are identical, and also illustrates the capability
of the M3RSX model in reproducing the behaviour in experiment-like conditions obtained in laboratory.

(a) (b) (c)

Figure 105 - (a) Finite element mesh of the specimen (1696 prismatic finite elements). (b) Strain con-
tours E33 and (c) stress state Σ33 computed in tensile loading, along the specimen axis.

3.2.9.2 Torsion of single crystal tubes at 950◦C

This example investigates the macroscopic behaviour of a single crystal superalloys under torsion load-
ing. From an experimental point of view, after torsion tests performed on thin-walled specimen oriented
along 〈001〉 on the CMSX-4 single crystal superalloy at 950◦C, cube slip traces were observed in four
zones along the circumference, near the 〈110〉 secondary orientations [POL90] [NOU96] [BON06]. This
was a first experimental indication of a strain heterogeneity, alternating ”soft zones” (type 〈110〉 sec-
ondary orientations) and ”hard zones” (type 〈100〉 secondary orientations).
In FE analysis their presence is usually due to the cube slip systems which are activated in the soft zones.
This case illustrates the important structural effects of the activation of cube slip systems for the consti-
tutive laws. The aim of this example is to reproduce this strain heterogeneity with the M3RSX model
without the physically unjustified cube slip systems.
As shown in figure (107 a) a 3D mesh with 4032 nodes and with 2×2×2 integration points for each ele-
ment is used for modelling the specimen. The lower end of the mesh is clamped, and the torsion loading
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Figure 106 - Comparison of macroscopic stress-strain response at one integration point and the FE
prediction averaged on the gauge section.

is applied at the other end.
Figure (107 b) shows the equivalent plastic strain Ep

eq at the maximum of the cycle at the surface of the
specimen. In accordance with experimental investigations [POL90] [NOU96], the localisation of plastic
deformation is well reproduced and very pronounced, since the minimum value in the central section is
2.1× 10−5, and the maximum value 0.9× 10−1. The M3RSX model allows to reproduce this strain het-
erogeneity at 950◦C, even through no cubic slip systems are activated. In addition, the stress distribution
is illustrated in figure (107 c) by means of equivalent stress Σeq. The zone involving the maximum stress
is located in the 〈100〉 secondary orientations while the 〈110〉 zone exhibits a minimum stress, according
to experimental data.

(a) (b) (c)

Figure 107 - (a) Finite element mesh of the specimen. (b) Equivalent plastic strain Ep
eq and (c) equivalent

stress state Σeq computed in pure torsion loading, along the specimen axis.
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Résumé

Les possibilités de la simulation numérique par EF pour évaluer des champs de déplacement ou de con-
traintes à différentes échelles sont nombreuses: le cas du volume élémentaire représentatif dans lequel le
maillage par éléments finis prend explicitement en compte la microstructure, ou le cas d’une éprouvette
monocristalline pour laquelle l’échelle macroscopique constitue le niveau pertinent pour décrire les
mécanismes de déformation, en sont deux exemples classiques.
Le premier modèle développé dans cette partie se justifie par un arrangement hétérogène de dislocations
à l’échelle de la microstructure mettant en évidence aux interfaces du précipité, des régions riches et
pauvres en dislocations. Il a pour principal objectif de prédire les phénomènes physiques simulés par le
MDC et ainsi, établir un éventuel lien entre les théories discrètes et continues de la plasticité. Au niveau
continu, ce lien est fondé sur une prise en compte des densités de dislocation (statistique et géométrique).
Concernant le superalliage monocristallin, le gradient de déformation plastique permet de localiser ces
densités de dislocations géométriquement nécessaires (ou GND) aux interfaces. La contribution de la
variable interne essentielle associée aux GND est incorporée dans l’écrouissage isotrope. Même fruste,
cette nouvelle loi fait intervenir un paramètre clé facilement identifiable auprès des réponses macro-
scopiques acquises par le MDC et permet alors idéalement de prédire le comportement mécanique aux
plus grandes déformations que celles obtenues par les simulations discrètes. Néanmoins, l’accord qual-
itatif et quantitatif du modèle avec les résultats du MDC sur le profil de densité de dislocation dans les
couloirs reste très insuffisant. Plusieurs arguments peuvent être avancés. Un premier, d’ordre numérique,
est la densité de maillage utilisée pour les calculs avec le modèle continu qui peut être trop grossière.
Un second, physique, réside sur la faiblesse inhérente à ”l’opérateur mathématique gradient” à traiter un
problème tel que l’interaction dislocation-précipité dans les superalliages. En effet, contrairement au cas
du polycristal où les dislocations sont accumulées aux joints de grains sous la forme d’empilements de
dislocations, le MDC, appliqué au superalliage monocristallin, montre que l’écrouissage est intimement
contrôlé par un tapissage de longs segments de dislocation aux interfaces. Ces segments s’accumulent
lorsqu’une dislocation se déplace dans les couloirs de matrice et ce, sans former d’empilement de dis-
locations qui impliquerait une réduction du libre parcours des dislocations dans les couloirs de matrice.
Dans ce sens, une approche micromécanique complémentaire développée dans un second volet s’est
avérée être un tremplin naturel en vue de calcul de structures.
Ce second modèle, initialement développé par Fedelich, a été mise en oeuvre dans le cadre d’une col-
laboration menée avec le Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin). La méthode
considérée est de type micromécanique pour laquelle la réponse globale du matériau est obtenue en
appliquant une technique d’homogénéisation aux réponses des constituants élémentaires. La structure
hétérogène élastoviscoplastique de chacune des phases ainsi que leurs morphologies sont explicitement
mises en évidence dans le modèle. Un des objectifs de la thèse a donc été de justifier physiquement le
nouveau modèle appelé M3RSX. Cette justification est intimement basée sur une prise en considération
des résultats issus du MDC concernant l’analyse effectuée sur les microstructures de dislocation formées
et de leurs conséquences sur le comportement en traction suivant l’orientation 〈111〉. En effet, à travers
l’identification des mécanismes de déformation et la formulation à l’écrouissage anisotrope prenant en
compte la déformation plastique (uniforme) dans chaque couloir, l’expression de la contrainte locale a
été déterminée en fonction de la polarisation des dislocations accumulées pendant la déformation. Les
modifications apportées au modèle initial ont principalement porté sur deux points précédemment traités
à l’échelle du MDC: (i) il met en évidence la localisation de la déformation plastique dans un couloir
de matrice, dont (ii) les deux systèmes octaédriques actifs n’engendrent peu de contraintes internes.
Le point (ii) est intrinsèquement à relier aux formes des sous-domaines considérés dans l’approche
micromécanique. Justifiés par les simulations du MDC, les formes parallélépipédiques de ces sous-
domaines constituent le point fort permettant de rendre compte de l’adoucissement observé en 〈111〉. Le
modèle a ainsi été identifié à hautes températures pour le superalliage CMSX-4 sans la prise en compte de
systèmes cubiques. Testé sur une large gamme d’essais sous diverses sollicitations, le modèle a ensuite
été appliqué au calcul d’une éprouvette en torsion. Les résultats obtenus sont conforment à l’expérience.







Conclusion et perspectives

Une étude multi-échelles du comportement mécanique des superalliages monocristallins est présentée.
Celle-ci met en jeu des simulations discrètes de la plasticité avec la méthode de la Dynamique des Dislo-
cations (DD) et des modèles de la plasticité cristalline issues de la mécanique des milieux continus. Une
caractéristique commune de ces modèles utilisés est de pouvoir prendre en considération une distribution
de dislocations spatialement hétérogène dans le matériau. Les principaux objectifs de la thèse porte sur
l’étude de (i) la formation des microstructures de dislocation dans les couloirs de matrice du superalliage,
(ii) la nature des interactions dislocation−precipité, et (iii) l’influence des dislocations déposées aux in-
terfaces sur les propriétés mécanique du matériau. La démarche adoptée s’appuie sur deux transitions
d’échelles: une transition ”discrète − continue” et ”micro − macro”. La première établit un lien entre
les simulations de DD et des modèles continus à longueur interne. La seconde remonte aux échelles
supérieures les informations pertinentes mises en évidence aux échelles fines. Dans ce contexte, les
travaux rapportés dans ce mémoire montrent qu’il est possible d’alimenter et de justifier physiquement
les fondements d’un modèle micromécanique à partir d’informations recueillies aux échelles des dislo-
cations.
Les différents modèles mis en jeu dans cette étude ont fait l’objet d’une discussion dont les points essen-
tiels sont maintenant résumés.

Le Modèle Discret-Continu (MDC) présente une simulation combinant à la fois une approche physique
et mécanique de la plasticité. En effet, il permet de simuler l’évolution microstructurale de dislocation
par une simulation de DD tout en satisfaisant aux équations d’équilibre en volume et en surface résolues
par la méthode des Eléments Finis (EF). L’idée originale de cette simulation hybride est de substituer
la loi de comportement conventionnelle d’un calcul EF par une simulation tridimensionnelle de DD qui
repose principalement sur la théorie élastique des dislocations. En raison de la longue portée du champ
de contrainte des dislocations, la simulation discrète (DD) joue donc le rôle d’une loi de comporte-
ment non-locale. Initié en 1999 dans le cadre de la thèse de Lemarchand, le MDC n’a cessé d’évoluer
dans l’optique de décrire de façon toujours plus fidèle les propriétés élémentaires des dislocations, et la
déformation plastique sous-jacente.
Dans un premier temps, l’optimisation de certaines procédures du MDC réalisée durant la thèse ont per-
mis d’obtenir un gain considérable en terme de description de la déformation plastique et de temps de
calcul. Encore inaccessibles il y a trois ans, les simulations réalisées font intervenir un grand nombre de
segments de dislocation en considérant, lorsqu’il est nécessaire, le mécanisme de glissement dévié. Par
ailleurs, la prise en compte des segments de caractères mixtes dans le nouveau code de DD (microMégas)
améliore la description des interactions élastiques, et offre un gain CPU conséquent. Cette amélioration
est d’autant plus importante que les segments déposés aux interfaces du précipité γ′ sont principalement
de caractère mixte ±60◦. Enfin, les derniers développements réalisés sur le MDC offre la possibilité
de simuler des matériaux constitués de plusieurs domaines plastiques. Par exemple, le mécanisme du
cisaillement de précipités cohérents γ′ par une paire de dislocations, observé expérimentalement, a été
simulé et étudié.
Ce premier travail a permis d’analyser l’influence des paramètres physico-chimiques et microstructuraux
mis en jeu dans chacune des deux phases constituant un superalliage. Cette étude a mis en évidence
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plusieurs caractéristiques: (i) l’énergie d’antiphase et la contrainte de friction dans les couloirs de ma-
trice sont deux paramètres durcissants importants qui conditionnent la mobilité des dislocations dans la
matrice, (ii) la fraction volumique et la largeur des couloirs contrôlent la courbure de la dislocation, et
par conséquent le travail mécanique nécessaire à une superdislocation pour cisailler un précipité.
D’un point de vue méthodologique du MDC, l’une perspective majeure serait d’être capable de simuler
la totalité des mécanismes physiques élémentaires mis en jeu lors la déformation plastique des superal-
liages à hautes températures. Parmi ces mécanismes, la production et la diffusion de défauts ponctuels
semblent être importantes pour modéliser le fluage. La montée des dislocations est donc certainement
un mécanisme important qu’il serait opportun de pouvoir intégrer au MDC. Cet objectif atteint, une
étude de différent mode de chargement permettrait de mettre en évidence le mécanisme dominant entre
le glissement (déplacement conservatif) et la montée (non conservatif) des dislocations. Une étude de la
dépendance en température de la mobilité des dislocations serait également possible.

Deux applications du MDC sont ensuite présentées dans le mémoire de thèse. La première a pour
objet d’étudier des effets de taille induits par une variation de la largeur du couloir de matrice γ sur les
propriétés mécaniques. Une seconde étude traite de l’influence de l’orientation du chargement sur le
comportement mécanique du superalliage. Les microstructures de dislocations générées numériquement
sont systématiquement analysées, et sont souvent comparées à des observations expérimentales tirées de
la littérature.
Les simulations en traction monotone suivant l’orientation 〈001〉 pour les différentes morphologies (à
hautes températures) mettent en évidence que:

∗ Macroscopiquement, l’effet de taille à la limite d’élasticité vérifie la loi d’Orowan et varie comme
l’inverse de la largeur des couloirs.

∗ Les dislocations sont totalement stockées aux interfaces γ/γ′ des précipités et leur densité croı̂t
linéairement avec la déformation plastique. L’identification d’une loi de stockage des dislocations
montre que le libre parcours moyen des dislocations est intimement lié à la largeur des couloirs.

∗ Le réseau complexe formé de segments de dislocation accumulées aux interfaces est polarisé et se
forme en l’absence d’empilement de dislocations dans les couloirs de matrice.

∗ La loi classique de type stockage/restauration, principalement écrite pour représenter les interac-
tions de contact entre dislocations, semble ne pas être adaptée à la modélisation du comportement
collectif des dislocations dans un superalliage. En effet, dans ce matériau, l’écoulement plastique
associé au glissement des dislocations est contrôlé par les fortes contraintes internes générées par
les dislocations déposées aux interfaces.

Dans la seconde application, la comparaison de l’évolution des microstructures de dislocations en fonc-
tion de l’orientation du chargement monotone, 〈001〉 vs. 〈111〉, met en évidence un mécanisme de
déformation jusqu’alors inconnu. Celui-ci est caractérisé par la formation de microstructures de disloca-
tion très particulière, qui est en bon accord avec les observations expérimentales. Il ressort de cette étude
une meilleure compréhension du comportement des dislocations responsables du glissement cubique
observé à l’échelle macroscopique:

∗ La densités de dislocation évoluent différemment pour les deux orientations de chargement et
des microstructures caractéristiques peuvent être identifiées dans les deux cas. L’analyse de leur
différences explique le faible taux de stockage de dislocations obtenu en chargement monotone
suivant 〈111〉.

∗ L’activation de deux systèmes octaédriques singuliers (un système primaire et son dévié) lors du
chargement 〈111〉 accommode la quasi-totalité de la déformation plastique. Cette instabilité plas-
tique implique une violation de la loi de Schmid qui stipule théoriquement l’activation symétrique
de six systèmes octaédriques.
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∗ Les interactions entre systèmes primaire et dévié jouent un rôle majeur dans la localisation de
la déformation plastique dans une direction de couloir de matrice. Des supercrans, produit de
réaction entre systèmes colinéaires, se forme sur les dislocations. C’est l’accumulation de ces
supercrans force les dislocations à glisser dans une direction parallèle à leur vecteur de Burgers, et
ainsi, confine la plasticité aux faibles déformations dans un glissement ”pseudo-cubique”.

∗ Les multiples réactions colinéaires entre dislocations déposées aux interfaces forment des mi-
crostructures de dislocation en zig-zag comparables à celles observées par Bettge and Österle.

∗ La localisation de la déformation plastique en traction 〈111〉 se manifeste par l’accumulation aux
interfaces de longs segments de caractère vis. Contrairement au réseau de dislocations formé en
traction 〈001〉, cette microstructure n’est pas polarisée et n’induit pas d’écrouissage plastique.

Ces résultats sont d’une importance capitale dans l’écriture d’un modèle micromécanique. Il peut être
souligné que la continuité logique de ces analyses serait l’étude des mécanismes élémentaires inter-
venant en sollicitation cyclique. Dans un premier temps, la simulation d’un cycle d’hystérésis perme-
ttrait d’identifier les mécanismes physiques contrôlant l’effet Bauschinger. Les résultats ainsi obtenus
définiraient dans un deuxième temps les bases d’une modélisation de l’écrouissage cinématique pour les
superalliages.

Un modèle intermédiaire à longueur interne a été implémenté dans le code EF ZéBuLoN afin de
modéliser de manière continue les dislocations stockées aux interfaces simulées avec le MDC. Dans un
schéma multi-échelles, ce modèle intermédiaire permet de faire le lien direct entre la nature discrète
d’une population de dislocations et sa représentation dans le cadre d’une modélisation continue à une
échelle caractéristique du matériau. Le modèle de plasticité cristalline de Teodosiu a été ici utilisé en
introduisant une variable interne additionnelle associée à la notion de dislocations géométriquement
nécessaires (ou GND). Ces GND affectent le libre parcours moyen des dislocations mobiles et induisent
ainsi un durcissement plastique supplémentaire. L’objectif est de prédire le comportement mécanique
en ajustant les paramètres du modèle continu aux réponses macroscopiques simulées par le MDC. Les
principales conclusions à retenir de cette partie sont:

∗ Le calibrage d’un paramètre clé du modèle continu permet de restituer le comportement mécanique
simulé par le MDC. L’évolution de la densité de dislocation reproduit par le modèle de plasticité
cristalline est globalement en accord avec les résultats des simulations discrètes.

∗ Une limitation majeure de ce modèle réside cependant dans son inaptitude à reproduire des quan-
tités locales telles que la densité de dislocation stockée aux interfaces. La principale explication
repose sur le calcul du gradient de la déformation plastique qui implique l’existence d’empilement
de dislocation contre les interfaces. Or, ce type de distribution spatiale des dislocations n’est pas
conforme avec les résultats obtenus avec le MDC.

∗ La loi d’écrouissage isotrope identifiée semble être mal adaptée à la plasticité des superalliages.
L’introduction des GND dans le libre parcours des dislocations n’est pas représentatif des études
menées par le MDC qui montrent que le libre parcours moyen des dislocations est contrôlé par
la largeur (fixe) des couloirs. Par ailleurs, les dislocations déposées aux interfaces génèrent en
traction suivant 〈001〉 de fortes contraintes internes qui sont mal représentées dans ce modèle
continu. Cette incohérence est corrigée dans un second modèle micromécanique.

Afin de rendre compte du champ de contrainte interne associé à la présence des dislocations qui accom-
modent les gradients de distorsion plastique dans le cristal, un terme d’origine cinématique pourrait être
ajouté dans la loi de comportement de ce modèle intermédiaire. Une identification complémentaire avec
les résultats du MDC et une comparaison des niveaux de contraintes internes dans les couloirs des deux
modèles serait envisageable. Dans ce sens, il faut noter que les coefficients de la matrice d’interaction
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des dislocations intervenant dans le présent modèle prennent en compte, sans en discerner les effets re-
spectifs, l’écrouissage isotrope et cinématique. L’identification des contributions relatives à chacun des
deux mécanismes d’écrouissage pourrait être réalisé avec les simulations d’essais en chargement cy-
clique mentionnés précédemment.

Une approche micromécanique par homogénéisation, basée sur une résolution de champs par séries
de Fourier est finalement développée. Cette dernière montre la faisabilité d’un transfert d’informations
pertinente de l’échelle des dislocations aux échelles supérieures. Fortes des analyses effectuées sur
l’anisotropie du chargement, cette dernière partie de la thèse s’est centrée sur la question ouverte de
l’intégration des systèmes cubiques dans les lois de comportement, principalement activés en traction
suivant 〈111〉. L’objectif est de développer une modélisation réaliste capable de restituer l’ensemble
des mécanismes de déformation identifiés aux échelles fines, mais pour une application de l’ingénieur
utilisable dans des codes de calcul EF. Le modèle retenu, initialement développé par Fedelich, intégrait
les systèmes cubiques. Il a été réécrit en ne considérant que les systèmes octaédriques. Les mécanismes
locaux de déformation appréhendés de manière physique sont ici modélisés dans une phase individu-
elle. L’interaction mécanique entre chaque phase joue alors un rôle essentiel dans la détermination de
la réponse globale du matériau. Ce modèle à variables internes est fondé sur l’existence d’une popu-
lation de dislocation stockée aux interfaces du précipité induite par l’accommodation plastique dans la
microstructure. Ces structures hétérogènes de dislocations génèrent des contraintes internes à longues
distances qui sont calculées pour restituer le comportement macroscopique du superalliage. Structurelle-
ment, le modèle contient quatre sous-domaines: trois couloirs et un précipité. Les propriétés de chacune
des phases et les propriétés macroscopiques sont liées par un tenseur d’influence Ω calculé explicitement
en amont de la simulation. Ce tenseur est fonction du découpage de la microstructure en sous-domaines
et des propriétés élastiques du matériau. Les résultats des simulations mettent en évidence plusieurs
caractéristiques, ainsi que des cohérences avec les simulations discrètes:

∗ Seuls huit paramètres permettent de mettre en évidence trois mécanismes de déformation (le glisse-
ment des dislocations dans les couloirs, le cisaillement des précipités et la montée des dislocations
aux interfaces) et de décrire le comportement global. Les systèmes octaédriques suffisent à repro-
duire l’anisotropie d’écrouissage observée en traction monotone suivant 〈001〉 et 〈111〉.

∗ La définition de 24 systèmes octaédriques conduit à une sélection des deux systèmes singuliers
primaires et déviés comme le montre le MDC. Par ailleurs, le critère de plasticité lié à la tension de
ligne des dislocations potentiellement vis ou mixtes permet de reproduire fidèlement la localisation
plastique observée à l’échelle des simulations discrètes.

∗ Le découpage des sous-domaines du modèle micromécanique est identifié sur un calcul MDC: la
forme parallélépipédique est ainsi adoptée et permet de reproduire correctement le comportement
macroscopique observé suivant 〈111〉.

∗ Les paramètres du modèle ont tous un sens physiques et leurs valeurs sont calibrées dans des
domaines d’identification réalistes. Le ”pseudo-glissement cubique” est justifié par une absence
de contraintes internes associée à l’activation de deux systèmes octaédriques dans un couloir qui
déposent des segments de vecteur de Burgers de signes opposés.

∗ Les paramètres ajustables ont été identifiés pour un alliage CMSX-4 à 850 et 950◦C et les résultats
montrent un bon accord entre expérience et simulation.

Une application immédiate, outre l’identification du modèle sur des superalliages de même génération
comme l’AM1, serait la comparaison des champs de contraintes locaux avec les champs simulés par le
MDC, et de confronter l’évolution des densités de dislocations stockées aux interfaces. Par ailleurs, il
est bien connu qu’en fonctionnement la microstructure cuboı̈dale des précipités évolue. Une mise en
radeau des précipités qui conduit à une détérioration importante des propriétés mécaniques est alors ob-
servée. Parce que le modèle micromécanique prend explicitement en considération la microstructure, une
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amélioration possible du modèle micromécanique consisterait à prendre en compte cette évolution de la
microstructure à travers le tenseur d’influence Ω. Une modification simple du modèle micromécanique
consisterait à substituer Ω par une fonction polynomiale P(Ω), fonction de l’évolution de la microstruc-
ture.

Finalement, le présent travail de thèse montre à la fois l’intérêt scientifique et les avantages d’une
modélisation multi-échelles. L’interface, et plus précisement, l’organisation des dislocations sur les inter-
faces, a été le phénomène essentiel à appréhender aux diverses échelles d’investigation. La méthodologie
développée met en évidence aux échelles fines des propriétés originales des dislocations, et montre les
difficultés liées à une description continue de la matière. Malgré ces difficultés, il est montré que pour
certaines informations pertinentes, des transitions ”du discret au continu” et ”du micro au macro” sont
possibles dans le but d’améliorer la prédiction du durcissement des superalliages monocristallins.
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Links between models

In this Appendix, connections between two crystal plasticity theories presented in section 1.2.4 are dis-
cussed. The tangent interaction matrices Kgr for both models are the link between the strain rate γ̇r on
slip plane r to the rate of the critical stress ˙̂τ g on the slip plane g

˙̂τ g =
∑

r

Kgr|γ̇r| (A.1)

On the one hand, the dislocation density-based model (section 1.2.4.2) is considered through the set of
three constitutive equations defined by equations (1.29), (1.31), and (1.33). They can be rewritten in a
classical form by calculating the derivative of equation (1.31) with respect to time and substituting ρ̇g

given by equation (1.33). This gives the tangent interaction matrix Kgr
? for the dislocation density-based

model [TAB01]

Kgr
? =

µ

2
agr√∑
i a

giρi


√∑

j arjρj

K
− yCρr

 (A.2)

On the other hand, the set of equations for the phenomenological approach (see section 1.2.4.3) without
considering the associated kinematic hardening of equation (1.41), i.e. Xg = 0 is given by

γ̇g =
(
|τ g| −Rg

V

)n

sign (τ g) (A.3)

Rg = Rg
0 + Qg

∑
r

hgr
(
1− exp−qpr)

(A.4)

In the phenomenological model, the dislocation density ρr can be introduced as a state variable in the
expression of Rg (i.e. equation A.4). Thus ρr plays the role of the cumulated plastic strain pr and Rg the
role of the slip resistance τ̂ g. The relation (1.31) may also be rewritten

Rg = µb

√∑
r

agrρr (A.5)

Thus, a step by step identification with expression (A.4) gives(
Rg

µb

)2

=
(

1
µb

)2
(

Zg −Qg
∑

r

hgrexp−qpr

)2

(A.6)

with Zg = Rg
0 + Qg

∑
r hgr. Note that Zg may be regarded as a saturation stress for pr → ∞ (or

ρr →∞). Supposing that the matrix hgr is inversible, the exponential term can be extracted as function
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of the difference Zg −Rg

exp−qpr
=
∑

l

[(
hlr
)−1 Z l −Rl

Ql

]
(A.7)

In addition, differentiating Rg defined by equation (A.4) becomes

Ṙg = qQg
[∑

r

hgrexp−qpr
]
|γ̇r| =

∑
r

Kgr
?? |γ̇r| (A.8)

with ṗr = |γ̇r|. Thus, the tangent interaction matrix Kgr
?? is expressed in the form

Kgr
?? = qQghgrexp−qpr

= qQghgr
∑

l

[(
hlr
)−1 Z l −Rl

Ql

]
(A.9)

Substituting equation (A.5) into equation (A.9), the tangent interaction matrix gives

Kgr
?? = qhgr

mgr − bµ
∑

l

[(
Qg

Ql

)(
hlr
)−1

√∑
k

alkρk

] (A.10)

where mgr =
∑

l

(
hlr
)−1

Z l Q
g

Ql
(in MPa).

Comparing the phenomenological model of section 1.2.4.3 of the dislocation density-based model of
section 1.2.4.2 through their corresponding tangent interaction matrix, Kgr

? (equation A.2) and Kgr
??

(equation A.10), respectively, given by

Kgr
? =

µ

2
agr

 1
K

√∑
j arjρj∑
i a

giρi
− yC

ρr√∑
i a

giρi

 (A.11)

Kgr
?? = qµhgr

mgr

µ
− b

∑
l

[(
Qg

Ql

)(
hlr
)−1

√∑
k

alkρk

] (A.12)

Three main differences are observed

∗ The term factors hgr and agr are playing an analogous role, e.g. two dimensionless interaction
matrices, but they are nevertheless defined with different means.

∗ The constant interaction matrix hgr in the hardening term of the equation (A.12) plays the role

of the ratio

√∑
j arjρj∑
i a

giρi
which is variable in the equation (A.11) of the dislocation density-based

model.

∗ The quantity
∑

l

(
Qg

Ql

)(
hlr
)−1√∑

k alkρk in equation (A.12) is homogeneous to
√

ρ in a scalar

formulation of the net stored density. This quantity is located in the dislocation recovery term of the

equation (A.12) instead of the quantity
ρr√∑
i a

giρi
in equation (A.11), which is also homogenuous

to
√

ρ.

Moreover, considering the simplistic case1 where the components of diagonal interaction matrices agr

and hgr are equal to 1, and 0 otherwise, i.e. agr = hgr = (hgr)−1 = δgr, i.e. δgr = 1 if g = r, and zero
1This case is qualified of unrealistic because it implies that latent hardening is neglected. This assumption is only made to

compare the mathematical structure of both models.
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otherwise, both matrices Kgr
? and Kgr

?? are reduced to

Kgr
? =

µ

2
δgr

(
1
K
− 2yC

√
ρr

)
(A.13)

Kgr
?? =

µ

2
δgr

(
2qZr

µ
− 2bq

√
ρr

)
(A.14)

For the particular case where only the isotropic hardening is considered and no latent hardening is
adopted, the above identification shows that equations (A.13) and (A.14) are similar: for instance q = yC

b

and K = µ b

2yC(Rg
0+Qg) . In this way, there is no reason that the mechanical predictions for both model are

different.
Nevertheless, the above step by step identification does not include the kinematic hardening. This sim-
plication is based on the fact that the kinematic hardening is most often choosen in a dislocation density-
based framework in a phenomelogical form such as the equation (1.43).
A standard formulation of kinematic hardening in a dislocation density-based model is still subject of
debate.
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Technical notes on the DCM

B.1 Algorithme

Pour la mise en place de l’algorithme illustré par la figure 31, et son exécution, les codes existants
de Dynamique des Dislocations (DD) et d’Eléments Finis (EF) sont adaptés afin de pouvoir échanger
des données. Par ailleurs, les modifications des deux codes ne doivent pas en aucun cas altérer leur
fonctionnement dans le cadre de calculs non-couplés. Les deux codes protagonistes, à savoir Z-SeT
[ZéBuLoN] pour la partie EF et mM [MicroMégas] pour la partie DD, sont écrits dans deux langages
de programmation différents, à savoir C/C++ pour Z-SeT et Fortran 95 pour mM. C’est pour celà qu’un
code monolithique n’a pas été initialement envisagé.
La solution retenue est un modèle de type maı̂tre-esclave entre Z-SeT en mM, animé par la librairie
pvm (Parallel Virtual Machine) [Pvm]. La principale fonction de Z-SeT est la résolution du problème
mécanique global et son intégration en temps. La loi de comportement du problème étant la loi non-
locale substituée par une simulation de DD, Z-SeT s’occupe également du lancement de l’exécutable
de mM. Il existe donc trois entitées différentes: le code EF (Z-SeT), le code DD (mM) et une entité
intermédaire qui gère les communications entre ces deux précédents codes (pvm).
Pour Z-SeT, tout le code lié au MDC s’intégre dans un plugin zMDC. Les fichiers source du plugin
dépendent des objets C++ du code principal: dès la compilation, les chemins vers des fichiers ∗.h
contenant les déclarations des objets en question sont connus. A travers cette dépendance, les fichiers
source du plugin sont indépendamment maintenus du projet principal. Un autre plugin Zpvm, livré avec
la version parallèle de Z-SeT, gère l’interfaçage entre Z-SeT et pvm dont le plugin zMDC dépend de
Zpvm.
Pour mM, tout le code lié au MDC est intégré dans le projet principal qui devient actif lors la compilation.
Les modifications ne perturbent donc pas le fonctionnement des autres sections du code. Le code se
trouve dans des fichiers supplémentaires ou dans des fichiers existants, défini entre #ifdef MDC et
#endif afin de le rendre ”invisible” lors d’une compilation de DD conventionnelle.

B.2 Fichiers d’entrée et paramètres de simulations

Pvm

En ce qui concerne pvm, la machine virtuelle doit être proprement configurée avant de lancer le cal-
cul MDC. Proprement configurée signifie ici que la machine virtuelle inclut la machine sur laquelle
l’exécutable de mM est exécuté sur localhost. Notons que lors de la compilation des librairies pvm,
autant les libpvm.∗ et libfpvm.∗ sont nécessaires.
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Z-SeT

Tout d’abord, pour pouvoir lancer un calcul MDC, la variable d’environnement ZEBU PATH doit pointer
vers le répertoire où se trouve libzMDC.so. Le calcul est alors lancé dans un répertoire appelé
$MDC ROOT/Project. Ensuite, un calcul peut être lancé par la commande Zrun -s MPI pvm3
-dd nom du calcul.inp. L’argument -s MPI pvm3 active l’interface (ici l’interface est pvm3)
qui s’occupe du transfert des données entre les différents exécutables, et l’argument -dd active la partie
propre à la simulation DD. Notons qu’il est possible de suivre simultanément le déroulement du calcul
mM en temps réel si l’argument -s Parallel.Pvm.Flags 4 avant -dd est rajouté. Ceci permet
de lancer l’exécutable de mM dans une fenêtre de débogueur de type gdb (ou un autre débogueur).
Le fichier nom du calcul.inp contient toute la mise en données du calcul propre à Z-SeT. Ce fichier
est un fichier d’entrée avec une partie spécifiquement dédiée au MDC. Le calcul MDC est effectué sur
un maillage EF qui doit impérativement être dimensionné en unité de a, à savoir le paramètre de maille
du réseau de simulation DD.
Dans ce fichier, se trouve tout d’abord un bloc compris entre ****dislocation et ****return dans lequel
la partie ”exécution” du couplage est gérée. On trouve les commandes suivantes

**********dislocation
**********dislocation host nom de machine
**********dislocation binary chemin de executable
**********return

où nom de machine est le nom de la machine sur laquelle l’exécutable de mM est lancé. Cette machine
doit être la même que celle définie dans la machine virtuelle pvm. Par ailleurs, chemin de executable
contient le chemin pointant vers l’exécutable de mM.

La seconde partie de la mise en données concerne le couplage et correspond à la mise en données clas-
sique d’un calcul EF ZéBuLoN, compris entre ****calcul et ****return. Dans ce dernier bloc, deux
mots clé sont spéficiques au MDC. Tout d’abord, il faut spécifier que le maillage (ou une partie du mail-
lage) contient des éléments de types dislocation, selon les conditions aux frontières souhaitées par
l’utilisateur: conditions aux limites périodiques ou pas. Le second point correspond à la spécificité de
la résolution globale de l’algorithme: un mot clé propre au MDC est caractéristisé afin de prendre en
compte la non-localité des interactions entre les dislocations aux échelles considérées

**********resolution newtondislo

Celui-ci est substitué au classique ***resolution newton. Il est d’ailleurs impératif d’informer Z-SeT
des ordres de grandeurs du temps, de déplacement et de la déformations tant ceux-ci sont plus petits. Ces
fonctionalités sont faites via la commande ****dimension.

La troisième partie concerne la mise en données du comportement du matériau à travers

**********behavior dislocation behavior
**********elasticity isotropic
**********young valeur du module young
**********poisson valeur du ratio poisson
**********return

Dans cet exemple, l’élasticité est isotrope, mais il est tout à fait possible d’utiliser l’élasticité anisotrope



B.3 Quantités échangées 179

(ce qui distingue le MDC de la méthode de superposition existante en élasticité anisotrope). Lors d’un
tel calcul, le modèle anisotrope de la tension de ligne dans mM doit être activée. Cette loi est associée à
un (ou plusieurs) groupe(s) d’élément(s) appelé elset dans Z-SeT dont les noms spéficiques des elsets
commencent par dislocation.

mM

L’exécutable de mM dans sa version MDC, appelé mdc, est piloté par plusieurs fichiers d’entrée. Pour
tout calcul mM, les fichiers d’entrée et de sortie se trouvent dans des endroits précis relatifs à l’endroit
où se trouvent l’exécutable.
Si cet endroit est défini par $MDC ROOT/bin, un répertoire $MDC ROOT/in contient les fichiers d’entrée
de mdc et un autre répertoire $MDC ROOT/out sauvegarde les résultats simulés.
Pour un calcul conventionnel de DD, un premier fichier d’entrée $MDC ROOT/in/input.dd contient
une liste de trois spécificités contenant les paramètres matériau, le pilotage du calcul, et la configuration
initiale des segments de dislocations. Pour le MDC, une quatrième ligne a été ajoutée afin de mettre en
evidence les paramètres liés au couplage. Cette rigoureuse séparation est un des principaux changements
dans la version Mixte par rapport au précédent modèle Coin-Vis. Cette quatrième ligne correspond aux
informations suivantes

1. La clé clef gelule (booléen T ou F) qui (dés)active la prise en compte des gélules dans le
traitement des interactions à courtes distances.

2. Le demi-rayon h
2 de régularisation epaidemi (un entier, en unités de a).

3. Les dimensions nbx, nby et nbz (entiers en nombre d’éléments) du volume maillé.

B.3 Quantités échangées

Cette section décrit les quantités échangées entre les deux codes via pvm. Ces quantités sont regroupées
dans différents blocs qui sont spécifiquement numérotées. Pour chaque bloc, l’endroit dans lequel se
trouve le code correspondant est communiqué à la fois pour le module zMDC de Z-SeT et pour la version
MDC de mM. La plupart des communications se terminent par un échange d’une clé de synchronisation.
Dans un premier instant, Z-SeT lance l’exécutable de mM via pvm et attend le retour du tid de mM
(tid est un identifiant de mM pour pvm, donc un entier, nécessaire à la connaissance du destinataire
d’une chaı̂ne de caractère). L’exécutable de Z-SeT possède également son propre tid, qui est ensuite
envoyé à mM contenant le répertoire dans lequel Z-SeT calcule (à savoir $MDC ROOT/Project). A
travers cette information, mM peut alors effectuer un chdir vers $MDC ROOT/out. Ce premier bloc
de communication se termine avec l’envoi d’un entier $MAGIC DISLO de mM à Z-SeT:

Z-SeT No. 0 : PROBLEM STATIC MECHANICAL DISLOCATION::open mM

dans zMDC/Static dislocation.c

mM No. 0 : 15main.F90

Magic key : MAGIC DISLO

Ensuite, Z-SeT envoie le nom du problem (une chaı̂ne de caractères) à mM, dont ce dernier confirme
sa bonne réception par l’envoi de la clé 111.

Z-SeT No. 1 : PROBLEM STATIC MECHANICAL DISLOCATION::load

dans zMDC/Static dislocation.c

mM No. 1 : subroutine nom du problem dans 20gammaplas.f90

Magic key : 111
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Le transfert du maillage des domaines ayant une loi de type dislocation behavior de Z-SeT à
mM est nécessaire. Tout d’abord sont envoyés le nombre d’éléments dans ces domaines (un entier), le
nombre de noeuds par élément nombre noeuds ref, le nombre de noeuds dans le maillage, et le
nombre de domaines de type dislocation behavior. mM confirme la bonne récéption par l’envoi
de la clé 222:

Z-SeT No. 2 : PROBLEM STATIC MECHANICAL DISLOCATION::send mesh info

dans zMDC/Static dislocation.c

mM No. 2 : subroutine transformation maillage dans 20gammaplas

Magic key : 222

Ensuite Z-SeT entre dans une boucle sur les éléments de type dislocation behavior, et pour
chaque élément sont envoyés dans l’ordre

1. L’ordre de chaque noeud de l’élément (nombre noeuds ref).

2. Dans une boucle sur les noeuds, les coordonées de chaque noeud en unités de a.

3. Le nombre de points de Gauss de l’élément nombre gauss.

4. Dans une boucle sur les points de Gauss de l’élément, les coordonées de chaque point de Gauss.

Après cette boucle sur les éléments, mM confirme la bonne réception par un second envoi de la clé 222,
et le tenseur d’élasticité associé à chaque domaine de type dislocation behavior est transféré à
mM (mM confirmera sa bonne réception par l’envoi d’une clé 333):

Z-SeT No. 3 : MCEDSI::matrix of elasticity for dislocation

dans zMDC/Mcesd std dislocation.c

mM No. 3 : subroutine matrice elasticity gauss dans 20gammaplas

Magic key : 333

Z-SeT envoie une clé clef rede (un entier i) à mM, indiquant s’il s’agit d’un redémarrage d’un
précédent calcul (i = 1) ou s’il s’agit d’un nouveau calcul (i = 0). mM confirme réception par
l’envoi de la clé 444. Il s’agit là du dernier échange avant le début du calcul à proprement dit, c’est à
dire avant de rentrer dans la boucle d’intégration du temps t:

Z-SeT No. 4 : PROBLEM STATIC MECHANICAL DISLOCATION::load

dans zMDC/Static dislocation.c

mM No. 4 : subroutine redemarrage dans 20gammaplas.f90

Magic key : 444

Ensuite est donné à mM l’incrément du tenseur de déformation totale pour un point de Gauss. Les
composantes du tenseur sont envoyés dans l’ordre standard de Z-SeT (11, 22, 33, 12, 23, 31). Cette
routine est appelée depuis une boucle sur les tous points de Gauss de tous les éléments des elsets avec un
comportement associé de type dislocation behavior. Contrairement à une loi de comportement
usuelle, tous les incréments sont envoyés ensemble, sans attendre le résultat de l’intégration:

Z-SeT No. 5 : DISLOCATION BEHAVIOR::get strain dislocation

dans zMDC/Dislocation behavior.c

mM No. 5 : subroutine increment deformation iteration

dans 20gammaplas.f90

Magic key : 555
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Le résultat de l’intégration de la loi de comportement est alors envoyé à Z-SeT. Ceux sont l’incrément
du tenseur de la déformation plastique et le tenseur de contrainte qui sont envoyés pour chaque point de
Gauss. Ce dernier tenseur est nécessaire afin de décrire les interactions à courtes distances des disloca-
tions. C’est donc entre la communication No 5 et 6 que la DD évolue:

Z-SeT No. 6 : INTEGRATION RESULT* DISLOCATION BEHAVIOR::integrate

dans zMDC/Dislocation behavior.c

mM No. 6 : subroutine resultats calcul dans 20gammaplas.f90

Magic key : 666

Z-SeT envoie son incrément de temps delta zeb à mM, et mM répond par l’envoie d’une clé de
synchronisation 777:

Z-SeT No. 7 : PROBLEM STATIC MECHANICAL DISLOCATION::make increment

dans zMDC/Static dislocation.c

mM No. 7 : subroutine increment de temps dans 20gammaplas.f90

Magic key : 777

Une partie communique le résultat de la boucle de Newton-Raphson à mM.
Un entier nouvel increment est envoyé par Z-SeT défini par ”-1” → Convergence OUI: incrément
suivant, ”0” → Convergence NON: itération suivante, ou ”1” → Convergence NON: nombre maximum
d’itérations atteint et le calcul s’arrête.
mM renvoie la clé 888 pour confirmer la bonne réception de nouvel increment:

Z-SeT No. 8 : MECHANICAL QUASI NEWTON::convergence loop

dans zMDC/Algorithm mqn dislocation.c

mM No. 8 : subroutine poursite calcul dans 20gammaplas.f90

Magic key : 888

Enfin Z-SeT envoie la décision de la suite du calcul via un entier continue calcul défini par ”0” →
Calcul terminé, ou ”1” → Calcul non terminé: nouvel incrément de temps.
mM renvoie la clé 999 pour confirmer la bonne réception de continue calcul:

Z-SeT No. 9 : PROBLEM STATIC MECHANICAL DISLOCATION::make increment

dans zMDC/Static dislocation.c

mM No. 9 : subroutine fin calcul dans 20gammaplas.f90

Magic key : 999
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x C
Leading and trailing dislocations during the cutting

process into the DD code

One of the developments made during this thesis, in the mM code, is the modelling of cutting process of
ordered γ′ precipitates by pairs of dislocations (see figures 108 and C). The key parts of such modelling
are presented in the following. One must differentiate three stages, which are (i) the localisation of
segments with respect to precipitate interfaces, (ii) the identification of the leading and trailing dislocation
of a superdislocation, and (iii) the definition of the mobilities of each dislocation inside the precipitates.

Figure 108 - Illustration of the cutting process of γ′ precipitates by a superdislocation.
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(i) Test of localisation of one segment (in the subroutine 11topolo.f90)

do i = 1, nsegm

! Identification of the initial plastic phase
if
(
(InclExcl) .and. (seg(i)%norme / = izero)

)
then

Oi(:) = seg(i)%O(:)
Ei(:) = seg(i)%O(:)+ seg(i)%norme ∗ Bveclin(:,seg(i)%veclin)
Segcub(1,nbplanDom) = .false.

! Repeated test of segment position with respect to the interface boundary planes
do jj = 1,nbplanDom

inormT(:) = Plan(jj)%miller(:)
normT(:) = real(inormT(:),DP)
InterSO(:) = InterP

(
inormT(:),Plan(jj)%pos,Oi(:),inormT(:)

)
InterSE(:) = InterP

(
inormT(:),Plan(jj)%pos,Ei(:),inormT(:)

)
! Normal projection vector
Vect1O(:) = real (Oi(:),DP)− InterSO(:)
Vect1E(:) = real (Ei(:),DP)− InterSE(:)
if
(
(DOTproduct(Vect1O,normT) > zero) .or. &

if (DOTproduct(Vect1E,normT) > zero)
)

then
if Segcub(jj) = .true.

endif
enddo
! Final test of inclusion of one segment into precipitates
if (all(Segcub) .eqv. InclExcl) seg(i)%Nphase = iun

endif
enddo

(a) seg(i)% Nphase = 0 (b) seg(i)% Nphase = 1
TAUeff < TAUkw

(c) seg(i)% Nphase = 1
TAUeff > TAUkw

abs(TAUint(i)) > sigAPB
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Figure 84 - Schematic of the procedure in the DD simulations to simulate the formation of superdisloca-
tions. (a) Step 1: one dislocation moves toward the precipitate interface. (b) Step 2: the first dislocation is
arrested at the interface because the effective stress is smaller than the Kear-Wilsdorf stress and a second
dislocation arrives in the same glide plane. (c) Step 3: internal interaction between the two dislocations
is large enough to form a superdislocation made of a leading and a trailing dislocation bounding an APB
defect.

(ii) Identification of the leading and trailing dislocations and dispatch of the APB stress (in
the subroutine 09elasti.f90)

do i = 1, nsegm

if (i == seg(i)%voiso .and. i == seg(i)%voise) CYCLE

if LoiSeg(i) == izero then
if ! Choice of the mobility law according to the segment position
if LoiSeg(i) = numeroLOI(VLi)
endif
if
(
VLcs(i) <= izero .and. seg(i)%wait

)
< itrois

signe = sign (un,TAUapp(i))
SigneTAUapp (SYSseg(i)%VEClin) = signe

TAUtot = TAUtl(i) + TAUapp(i) + TAUint(i)
conditionAPB = seg(i)%Nphase

if (conditionAPB) then
! If the segment into the γ′ is the trailing one: the APB stress helps mobility
if
(
(abs(TAUint(i)) > sigAPB) .and. &

(TAUapp(i) ∗ TAUint(i) < 0)
)

then
TAUint(i) = TAUint(i) + 2 ∗ signe ∗ TAUapb(i)

endif
! The default solution is an isolated segment entering the precipitate
TAUint(i) = TAUint(i)− signe ∗ TAUapb(i)

endif
TAUtot = TAUtl(i) + TAUapp(i) + TAUint(i)

endif
enddo

(iii) Mobility criteria into the precipitates (in the subroutine 12contact.f90)

do i = 1, nsegm

! Into the precipitates, the effective stress on one segment must be
! larger than the Kear-Wilsdorf stress to move
if
(
(seg(i)%Nphase / = izero) .and. (TAUeff < TAUkw)

)
then

if ABSdep = izero

endif
enddo
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x D
On the unit cell for micromechanical analyses

D.1 Formulation of the stored elastic energy

Here some algebra are given in order to obtain the fluctuation part of the elastic energy W2, and then the
analytic expression for the local stress.
Inserting the values of the Fourier coefficients (3.51) in equation (3.48)

ũi (x) =
∑
pα 6=0

−iCjlmn ε̄p
mn (pα) ξl (pα) Vij (pα) eiξ(pα).x (D.1)

ũi,k (x) =
∑
pα 6=0

Cjlmn ε̄p
mn (pα) ξl (pα) ξk (pα) Vij (pα) eiξ(pα).x (D.2)

ũi,k (x) =
∑
pα 6=0

ūik (pα) eiξ(pα).x (D.3)

with

ūik (pα) = Cjlmnε̄p
mn (pα) ξl (pα) ξk (pα) Vij (pα) (D.4)

After these mathematical considerations, let us introduce equation (3.51) into the fluctuation part of the
elastic energy defined by equation (3.48)

W2 =
1
2
Cijkl

∫
V

ε̃e
ij : ε̃e

kldV =
1
2
Cijkl

∫
V

ũi,j : ε̃pl
kldV (D.5)

According to equations (3.49) and (D.3)

W2 =
1
2
Cijkl

∑
qα 6=0
mα 6=0

[
ūij (qα)− ε̄p

ij (qα)
] [

ūkl (mα)− ε̄p
kl (mα)

]

×
∫

V
ei

π(q1+m1)x1
L1 ei

π(q2+m2)x2
L2 ei

π(q3+m3)x3
L3 dV (D.6)

W2 =
8L1L2L3

2
Cijkl

∑
qα 6=0

[
ūij(qα)− ε̄p

ij(qα)
] [

ūkl(−qα)− ε̄p
kl(−qα)

]
(D.7)

W2 =
8L1L2L3

2
Cijkl

∑
ξ 6=0

[
ūij (ξ)− ε̄p

ij (ξ)
] [

ūkl (ξ)− ε̄p
kl (ξ)

]
(D.8)
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W2 =
8L1L2L3

2
Cijkl

∑
ξ 6=0

[
Cabcdε̄

p
cd(ξ)ξbξjVia(ξ)− ε̄p

ij(ξ)
]

×
[
Cmnpq ε̄

p
pq(−ξ)ξnξlVkm(−ξ)− ε̄p

kl(−ξ)
]

(D.9)

W2 =
8L1L2L3

2
Cijkl

∑
ξ 6=0

[
CabcdξbξjVia (ξ)− δicδjd

]
×
[
CmnpqξnξlVkm (−ξ)− δkmδlq

]
ε̄p
cd (ξ) ε̄p

pq (−ξ)) (D.10)

In addition, because V (−ξ) = V (ξ)

W2 =
8L1L2L3

2
Cijkl

∑
ξ 6=0

[
CabcdξbξjVia (ξ)− δicδjd

] [
CmnpqξnξlVkm(ξ)− δkmδlq

]
× ε̄p

cd (ξ) ε̄p
pq (−ξ) (D.11)

W2 =
8L1L2L3

2

∑
ξ 6=0

ωcdpq(ξ)ε̄p
cd (ξ) ε̄p

pq (−ξ) (D.12)

with

ωcdpq = Cijkl

[
CabcdξbξjVia(ξ)− δicδjd

] [
CmnpqξnξlVkm(ξ)− δkmδlq

]
(D.13)

Thus

ωcdpq = CcdabξbVai(ξ)ξjCijklξlVkm(ξ)ξnCmnpq − CcdabξbVai(ξ)ξjCjiklδicδlq

− δicδjdCijklξlVkm(ξ)ξnCmnpq + δicδjdCijklδkpδlq (D.14)

ωcdpq = CcdabξbVai(ξ)Kik(ξ)Vkm(ξ)ξnCmnpq

− CcdabξbVai(ξ)ξjCjipq − CcdklξlVkm(ξ)ξnCmnpq + Ccdpq

ωcdpq = CcdabξbVam(ξ)ξnCmnpq − CcdabξbVai(ξ)ξjCjipq − CcdklξlVkm(ξ)ξnCmnpq + Ccdpq

ωcdpq = Ccdpq − CcdklξlVkm(ξ)ξnCmnpq (D.15)

D.2 Component of the ΩIJ tensors at 850◦ C (in MPa)

The influence tensors associated to the WSE decomposition are denoted by ΩWSE
IJ and those associated

to the P decomposition are denoted by ΩP
IJ

D.2.1 Tensors ΩWSE
IJ associated to the WSE decomposition

ΩWSE
11 =


414.89 197.30 197.30 0. 0. 0.

8404.21 3237.40 0. 0. 0.
8404.21 0. 0. 0.

7595.68 0. 0.
297.72 0.

297.72


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ΩWSE
12 =


−403.42 5.83 −163.16 0. 0. 0.

−403.42 −163.16 0. 0. 0.
−827.91 0. 0. 0.

−388.43 0. 0.
−388.43 0.

14.99



ΩWSE
13 =


−403.42 −163.16 5.83 0. 0. 0.

−827.91 −163.16 0. 0. 0.
−403.42 0. 0. 0.

−388.41 0. 0.
14.99 0.

−388.43



ΩWSE
14 =


391.95 −39.97 −39.97 0. 0. 0.

−7172.86 −2911.07 0. 0. 0.
−7172.86 0. 0. 0.

−6818.82 0. 0.
105.71 0.

105.71



ΩWSE
22 =


8404.21 197.30 3237.40 0. 0. 0.

414.89 197.30 0. 0. 0.
8404.21 0. 0. 0.

267.72 0. 0.
7595.68 0.

267.72



ΩWSE
23 =


−827.91 −163.16 −163.16 0. 0. 0.

−403.42 5.83 0. 0. 0.
−403.42 0. 0. 0.

14.99 0. 0.
−388.43 0.

−388.43



ΩWSE
24 =


−7172.86 −39.97 −2911.07 0. 0. 0.

391.95 −39.97 0. 0. 0.
−7172.96 0. 0. 0.

105.71 0. 0.
−6818.82 0.

105.71



ΩWSE
33 =


8404.21 3237.40 197.30 0. 0. 0.

8404.21 197.30 0. 0. 0.
414.89 0. 0. 0.

267.72 0. 0.
267.72 0.

7595.68



ΩWSE
34 =


−7172.86 −2911.07 −39.97 0. 0. 0.

−7172.86 −39.97 0. 0. 0.
391.95 0. 0. 0.

105.71 0. 0.
105.71 0.

−6818.82


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ΩWSE
44 =


13953.80 2991.02 0. 0. 0. 0.

0. 0. 0. 0. 0.
0. 0. 0. 0.

0. 0. 0.
0. 0.

6607.38



D.2.2 Tensors ΩP
IJ associated to the P decomposition

ΩP
12 = ΩP

13 = ΩP
23 = 0

ΩP
11 =


0. 0. 0. 0. 0. 0.

9364.39 3627.18 0. 0. 0.
9364.39 0. 0. 0.

8703.58 0. 0.
0. 0.

0.



ΩP
14 =


0. 0. 0. 0. 0. 0.

−7652.60 −2964.14 0. 0. 0.
−7652.60 0. 0. 0.

−7112.59 0. 0.
0. 0.

0.



ΩP
22 =


9364.39 0. 3627.18 0. 0. 0.

0. 0 0. 0. 0.
9364.39 0. 0. 0.

0 0. 0.
8703.58 0.

0.



ΩP
24 =


−7652.60 0. −2964.14 0. 0. 0.

0. 0. 0. 0. 0.
−7652.60 0. 0. 0.

0. 0. 0.
−7112.59 0.

0.



ΩP
33 =


9364.39 3627.18 0 0. 0. 0.

9364.39 0 0. 0. 0.
0 0. 0. 0.

0. 0. 0.
0. 0.

8703.58



ΩP
34 =


−7652.60 −2964.14 0. 0. 0. 0.

−7652.60 0. 0. 0. 0.
0. 0. 0. 0.

0. 0. 0.
0. 0.

−7112.59


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ΩP
44 =


13953.80 2991.02 0. 0. 0. 0.

0. 0. 0. 0. 0.
0. 0. 0. 0.

0. 0. 0.
0. 0.

6607.38



D.3 Proof of the statement (3.99)

In order to prove that ΩJ 2 : (e2 ⊗m) = 0, first let consider the integral

I2(ξ) =
1
V

∫
V2

eiξ(pα).x (D.16)

The integration domain V2 consists of two parallel plates (see figure 109). For any positive or negative
integers (p1, p2, p3) 6= (0, 0, 0), it is established that

I2(p1, p2, p3) =
1

8L3

∫ L

−L
e
−iπp1x1

L dx1 ×
[ ∫ −c

−L
e
−iπp2x2

L dx2 +
∫ L

c
e
−iπp2x2

L dx2

]
=×

∫ L

−L
e
−iπp3x3

L dx3

=

 0 if p1 6= 0 or p3 6= 0

− 1
p2π

sin
(p2πc

L

)
if p1 = p3 = 0 (D.17)

Hence, the sum (3.62) reduces to

Figure 109 - View of the domain V2.

ΩJ 2 = 2
∑
p2>0

IJ(0, p2, 0)IK=2(0, p2, 0)ω(0, p2, 0) (D.18)

The second rank tensor K(0, p2, 0) defined in equation (3.53) has the components Kik(0, p2, 0) =
Ci2k2

π2p2
2

L2 since ξi(0, p2, 0) = δi2
πp2

L and its inverse is Vik = C−1
i2k2

L2

π2ξ2
. The components of the fourth

rank tensor ω(0, p2, 0) defined in equation (3.58 ) become

ωcdpq(0, p2, 0) = Ccdpq − Ccdklξl(0, p2, 0)Vkm(0, p2, 0)ξn(0, p2, 0)Cmnpq

= Ccdpq − Ccdk2C
−1
k2m2Cm2pq (D.19)
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For the product ω(0, p2, 0) : (e2 ⊗m), it follows

ωcdpq(0, p2, 0) (e2 ⊗m)pq = ωcdpq(0, p2, 0)δ2pmq

= ωcd2q(0, p2, 0)mq

=
(
Ccdpq − Ccdk2C

−1
k2m2Cm2pq

)
δ2pmq

=
(
Ccd2q − Ccdk2C

−1
k2m2Cm22q

)
mq

= (Ccd2q − Ccdk2δkq) mq

= 0 (D.20)
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dependence of the critical resolved shear stress of nickel-base superalloy single crystals. Acta
Materialia, 48, 689-700, 1999.
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eds., 1990.

[POL92] T.M. Pollock, A.R. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals.
Acta Metallurgica et Materialia, 40, 1-30, 1992.

[POP84] D.P. Pope, S.S. Ezz, Mechanical properties of Ni3Al and nikel-base alloys with high volume
fraction of γ′. International metals reviews, 29, 136-167, 1984.

[POU89] P. Poubanne, Etude et modélisation du comportement mécanique d’un superalliage
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[5] A. Vattré, B. Devincre, A. Roos, Frédéric Feyel, Channel width strengthening in single-
crystal superalloys: a Discrete-Continuous Model simulation. Accepted in European Journal
of Computational Mechanics.




	Introduction
	State of the art
	Single crystal nickel-based superalloys
	Introduction
	Microstructure and defects
	The  phase
	The ' phase
	The + ' alloys

	Strengthening effects
	Overview of precipitation hardening
	Solid-solution strengthening
	Misfit strengthening
	Orowan strengthening
	Order strengthening
	Temperature dependence of strengthening


	Multiscale plasticity
	Introduction
	The concept of dislocations
	The Burgers vector
	Edge, screw and mixed dislocations
	Dislocation glide
	Dislocation-controlled yield

	Plasticity in dislocated crystals
	The theory of elasticity with eigenstrains
	Lattice dislocation density tensor

	Classical modelling of plasticity
	Continuum framework for plastic strain due to dislocation glide
	Dislocation density-based models
	Viscoplastic constitutive theories

	Small-scale crystal plasticity
	Discrete theories of plasticity
	Continuum theories with internal length

	Homogenisation methods based on mean-field approaches

	Open questions for modelling the / ' superalloys
	Motivation
	Size effect
	Orientation dependence


	The Discrete-Continuous Model
	Principles of 3D dislocation dynamics simulations
	Introduction
	Discretisation of the dislocation lines in fcc crystals
	Computation of dislocation driving force
	Dislocation motion
	Plastic strain due to dislocation glide
	Dislocation-dislocation reactions
	Cross-slip of screw segments
	Boundary conditions
	Limitations

	A solution for boundary value problems in DD simulations
	Introduction
	Eigenstrain formalism of the boundary value problem
	Computational methodology
	Regularisation of the slip
	Dislocation eigenstrain in the vicinity of interfaces and surfaces
	Calculation of the stress field
	Numerical procedures

	Simple test cases and validation of the DCM
	Initial dislocation configurations and boundary conditions
	Frank-Read source
	Dislocation reactions

	DCM studies of plastic deformation in / ' superalloys
	Motivation
	Dislocations - ' precipitates interactions
	Motivation
	Strengthening mechanisms
	Computer simulations
	Simulation results of the flow stress temperature dependence
	Discussion and concluding remarks

	Size effects
	Motivation
	Problem formulation
	Simulation results
	Discussion
	Concluding remarks

	Orientation dependence of plastic deformation
	Motivation
	Problem formulation
	Simulation results
	Dislocation dynamics analysis
	Concluding remarks

	Guidelines for improving constitutive laws


	Continuum plasticity in dislocated / ' superalloys
	An intermediate dislocation-density based model on the m-scale
	Introduction
	Representation of continuously distributed dislocation density
	Kinematics
	Lattice (in)compatibility
	Geometrically necessary dislocations
	Numerical implementation of the slip gradient

	GND into a dislocation mean free path model
	Motivation
	Incorporation of non-local effects in a constitutive framework
	Application to a / ' unit cell
	Towards a simplified dislocation mean free path model
	Concluding remarks

	Meso-Macro scale transition
	Stored dislocation assumption
	Material hardening assumption
	Mean field assumption


	Towards a physically justified micromechanical model
	Introduction and motivation
	Experimental observations of the deformation mechanisms
	Presentation of the M3RSX model
	Continuum modelling of the deformation mechanisms
	Kinematics

	Calculation of the microscopic stresses
	Principle of the calculation
	Piece-wise uniform homogeneous plastic strains
	Choice of the decomposition of the periodic cell
	Estimate of the effective local stresses

	Dislocation-based constitutive model
	Plastic deformation in the channels
	Cutting of ' precipitates
	Climb at the / ' interfaces

	Summary of the constitutive equations
	Application to the alloy CMSX-4
	Experimental details
	Input parameters
	Calibration of adjustable parameters
	Simulation results

	Discussion
	Influence of the distribution of (geometrically necessary) dislocations
	Evidence of the mechanism of pseudo-cubic slip

	Application to the engineering problems
	Validation on standard dog-bone specimen at 850C
	Torsion of single crystal tubes at 950C



	Conclusion et perspectives
	Links between models
	Technical notes on the DCM
	Algorithme
	Fichiers d'entrée et paramètres de simulations
	Quantités échangées

	Leading and trailing dislocations during the cutting process into the DD code
	On the unit cell for micromechanical analyses
	Formulation of the stored elastic energy
	Component of the IJ tensors at 850 C (in MPa)
	Tensors IJWSE associated to the WSE decomposition
	Tensors IJP associated to the P decomposition

	Proof of the statement (3.99)

	Bibliography
	Publications

