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encadrement de si grande qualité,
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Abstract

In this thesis, we define a static analysis by abstract interpretation of memory manipulations.
It is based on a new numerical abstract domain, which is able to infer program invariants
involving the operators min and max. This domain relies on tropical polyhedra, which are the
analogues of convex polyhedra in tropical algebra. Tropical algebra refers to the set R∪{−∞}
endowed with max as addition and + as multiplication.

This abstract domain is provided with sound abstract primitives, which allow to automat-
ically compute over-approximations of semantics of programs by means of tropical polyhedra.
Thanks to them, we develop and implement a sound static analysis inferring min- and max-
invariants over the program variables, the length of the strings, and the size of the arrays in
memory.

In order to improve the scalability of the abstract domain, we also study the algorithmics
of tropical polyhedra. In particular, a tropical polyhedron can be represented in two different
ways, either internally, in terms of extreme points and rays, or externally, in terms of tropically
affine inequalities. Passing from the external description of a polyhedron to its internal
description, or inversely, is a fundamental computational issue, comparable to the well-known
vertex/facet enumeration or convex hull problems in the classical algebra. It is also a crucial
operation in our numerical abstract domain.

For this reason, we develop two original algorithms allowing to pass from an external
description of tropical polyhedra to an internal description, and vice versa. They are based
on a tropical analogue of the double description method introduced by Motzkin et al.. We
show that they outperform the other existing methods, both in theory and in practice. The
cornerstone of these algorithms is a new combinatorial characterization of extreme elements
in tropical polyhedra defined by means of inequalities: we have proved that the extremality
of an element amounts to the existence of a strongly connected component reachable from
any node in a directed hypergraph. We also show that the latter property can be checked in
almost linear time in the size of the hypergraph.

Moreover, in order to have a better understanding of the intrinsic complexity of tropical
polyhedra, we study the problem of determining the maximal number of extreme points in
a tropical polyhedron. In the classical case, this problem is addressed by McMullen upper
bound theorem. We prove that the maximal number of extreme points in the tropical case is



bounded by a similar result. We introduce a class of tropical polyhedra appearing as natural
candidates to be maximizing instances. We establish lower and upper bounds on their number
of extreme points, and show that the McMullen type bound is asymptotically tight when the
dimension tends to infinity and the number of inequalities defining the polyhedra is fixed.

Finally, we experiment our tropical polyhedra based static analyzer on programs ma-
nipulating strings and arrays. These experimentations show that the analyzer successfully
determines precise properties on memory manipulations, and that it scales up to highly dis-
junctive invariants which could not be computed by the existing methods.

The implementation of all the algorithms and abstract domains on tropical polyhedra
developed in this work is available in the Tropical Polyhedra Library TPLib [All09].
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CHAPTER 1

Introduction

1.1 Context of this work

The context of this thesis is software analysis. This area has known an important development
over the last decades. Indeed, software is nowadays omnipresent in highly critical systems,
such as nuclear installation supervision, flight control in airplanes (fly-by-wire), medical imag-
ing, driving assistance in cars, etc. If a program does not behave as expected, which we usually
call a bug, the consequences can be disastrous. For instance, a bug in software control of the
radiation therapy machine Therac-25 caused in the late eighties at least six massive radiation
overdoses, three of which were lethal. Other well-known examples are the explosion of the
first flight of the rocket Ariane 5 [LLF+96], or the accident due to the failure of the Patriot
missile at Dhahran in Saudi Arabia [Off92]. Bugs can also introduce software vulnerabilities
which can be exploited by outside attacks. An important class of such bugs is formed by
buffer overflows. They are caused by programmation errors in the manipulation of computer
memory. A typical example of a buffer overflow is when a program accesses to the (n + 1)-th
element of an array of size n. Buffer overflows may cause software crashes in the best case
(usually known as segmentation faults), or in the worst case, allow attackers to remotely take
the control of the machine, and executing arbitrary codes. One of the first computer viruses,
the Morris worm, infected in 1988 around 10% of the machines connected to Internet, by
exploiting a buffer overflow [ER89]. Nowadays, buffer overflows still belong to the top 25
most dangerous programming errors referenced by the SANS Institute [SAN07]. For a recent
account on vulnerabilities due to buffer overflows, see [CWE].
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Year Operating system Lines of code (in million)

1993 Windows NT 3.1 6

1994 Windows NT 3.5 10

1996 Windows NT 4.0 16

2000 Windows 2000 29

2001 Windows XP 40

2005 Windows Vista Beta 2 50

Figure 1.1: Evolution of the size of the code of Microsoft Windows [Mar05]

On top of being unavoidable, software is today incredibly more complex. Whatever the
application field, the size of program codes tends to grow significantly. The evolution of the
size of Microsoft operating systems, given in Figure 1.1, is representative of this trend. As a
more illustrative example, a Boeing 777 aircraft and a recent car embed respectively 4 and
35 million lines of code [RJP96, JRGJF06]. Now, the bigger a code is, the more bugs it may
contain. McConnell estimates in [McC04] that industrial programs usually contain from 15
to 50 bugs for every 1000 lines of code.

Software analysis, or program analysis, aims at automatically determining properties on
the behavior of programs. Examples of such properties are “the implementation of the cosinus
function returns values between −1 and +1”, or “the program does not perform any access
out of the bounds of arrays”. Two main classes of program analyses can be distinguished:

❼ dynamic analysis, which consists in observing how a program behaves by executing it
on sample inputs,

❼ and static analysis, which, in contrast, is performed on a static representation of the
program, such as its source code, without executing it.

Most of program analysis tools are not sound, in sense that they do not take into account
all the possible behaviors of a given program. For instance, Ganssle estimates in [Gan05]
that software tests, which belong to the class of dynamic analyses, only cover 50% of the
behaviors.1 Static analysis techniques may also be not sound. For instance, some tools,
such as [Fla], only verify syntactically the absence of some particular functions known as
“dangerous” (like the function strcpy in C).

Naturally, program analysis has to be sound to really ensure the absence of bugs in
programs. Sound static analyses mainly rely on one of the three following approaches:

❼ model checking [CES86, EMCGP99], which consists, given a program and a property
to be verified, in examining every state of the program which can arise during the
execution, in order to determine whether the property is satisfied. However, this requires
the number of possible states to be finite. In practice, this condition holds, since the
amount of memory in a machine is finite. However, the number of states may be very
large: for instance, without further assumptions, a program which manipulates d integer
variables can take 232d different states on a 32-bit machine. As a consequence, model
checking is rather adapted to the analysis of small programs, or of high-level models,

1Nevertheless, code covering tools may be used to increase this rate. They allow for instance every part of
the code to be executed at least once during a set of tests. But it still does not guaranteed the exhaustivity of
the analysis.
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such as communication protocols, hardware designs, etc.2 Examples of model checking
based tools are BLAST [Bla], NuSMV [NuS], PVS [PVS], and Spin [Spi].

❼ theorem proving, which consists in translating a program and the property to be verified
into formula in a given logic (see for instance [Fil03, Why]). Then, proof assistants, such
as Coq [Coq] or Isabelle [Isa], can be used in order to prove the formula. The major
drawback of this method is that it is not entirely automatic.

❼ abstract interpretation [CC77], which allows to automatically compute an over-approxi-
mation of the whole set of behaviors of a program. This over-approximation represents
itself properties which are valid for any execution of the program. It can be used to
verify for instance that the analyzed program does not contain any bug. However, if
this over-approximation is not precise enough, a bug can be detected by the analysis
while the program does not contain any. This is what we call a false alarm, or equiv-
alently a false positive. Examples of static analysis tools based on abstract interpreta-
tion are Astrée [CCF+05, Ast], CGS [VB04], Fluctuat [GP06], Penjili [AGH06, Pen],
Polyspace [Pol], and TVLA [SRW98, TVL].3

Each of the three methods has particular inconveniences. However, the “perfect” static anal-
ysis tool, which automatically and exactly determines whether a program satisfies a given
property, does not exist. This is a consequence of Rice’s theorem [Ric56], which states that
any non-trivial property on a Turing-complete language is not decidable.

1.2 Analyzing memory manipulations by abstract interpretation

The initial motivation of this work is to define a sound static analysis of a certain class
of memory manipulations, using abstract interpretation. In this section, we give a further
insight into the principles of abstract interpretation and memory manipulations, in order to
understand why the existing techniques of analysis are not fully satisfactory.

1.2.1 Main principles of abstract interpretation

The method of abstract interpretation determines properties on the set of all possible be-
haviors of programs. The set of the behaviors of a program is formalized as a mathematical
object, which is called its semantics. For instance, we can use a collecting semantics, which
captures, for each control point ℓ of the program, the whole set of machine states which can
arise at the point ℓ during any of the executions. Ideally, examining this semantics would
allow to prove properties on the program. However, because of Rice’s theorem, the seman-
tics is not computable in the general case. That is why abstract interpretation proposes to
determine an over-approximation, which, in contrast, is computable. For each control point
of the program, this over-approximation provides program invariants, i.e. properties which
hold for any possible execution of the program. They can be used to check that the program
has indeed the expected behavior, and that it does not cause any error.

2Note however that some methods such as [CGL94] have been introduced to reduce the number of states
by means of abstractions, up to losing the exactness of the analysis. Moreover, some compact representations
such as binary decision diagrams [Ake78] can be used to improve the performance of the approach.

3Note that in a more general setting, abstract intepretation also allows to compute under-approximations.
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ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

Figure 1.2: Principle of abstract interpretation

Figure 1.2 gives an illustration. For each control point of the program, the set of the
collected machine states is represented in blue. The complexity of the blue shapes is in-
tented to underline that the collecting semantics is not computable. In comparison, its
over-approximation, represented by simpler shapes depicted in green, is computable. The
set of erroneous machine states is represented in red. When it does not intersect the over-
approximation, then it is guaranted that there is no error in the program. This happens for
instance at control points ℓ1, ℓ2, and ℓ5. Otherwise, the analysis raises an alarm, and two
cases can be distinguished:

❼ either the concrete semantics also meets the set of erroneous states, like at control point
ℓ4, so that the alarm is indeed true.

❼ or the alarm is raised because the abstraction is not precise enough (like at control point
ℓ3), in which case it is false.

The over-approximation of the semantics, also called abstract semantics, is determined
thanks to an abstract domain. The role of the abstract domain is twofold: (i) it characterizes
the nature of the over-approximation which is performed, i.e. intuitively, its level of preci-
sion, (ii) and it is equipped with a set of functions, the abstract primitives, which allow to
compute the abstract semantics. Abstract domains are consequently a key ingredient in the
methodology of abstract interpretation. The following section discusses the existing abstract
domains which have been designed to analyze memory manipulations.

1.2.2 Abstractions for memory manipulations

In the existing literature, we can distinguish two kinds of abstractions for memory manipu-
lations:

❼ some abstractions consider the memory as a graph defined by the relations induced
by pointers. For instance, a doubly-linked list of three elements will be represented as
follows:
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Such analyses are called shape analyses or points-to analyses. They are adapted to
the analysis of manipulations of symbolic data structures, such as lists, trees, graphs,
see among other the work of Steensgaard [Ste96], Reps et al. [SRW98], or Berdine et
al. [BCC+07a]. They allow for instance to check the absence of NULL-pointer derefer-
encing.

❼ some others reduce the analysis of memory manipulations to the abstraction of a nu-
merical problem. For instance, in the context of the verification of the absence of buffer
overflows, the memory of the machine is seen in a low-level way, as a large sequence
of disjoint blocks of consecutive bytes, see Figure 1.3 for an illustration. Each block
forms a contiguous memory area, which stores the variables of the program, the data
contained in arrays or character strings, etc. Note that blocks may be separated by
parts of the memory which are not allocated to the program (represented by dots in
Figure 1.3). As mentioned in Section 1.1, a buffer overflow is an error occurring when
the program tries to access to a part of the memory which is not allocated (compare
the good and bad memory accesses in Figure 1.3, respectively represented by green and
red arrows). Now, an access in a block of memory of size sz is valid if and only if it is
performed at a position i within the bounds of this block, which can be expressed as
the numerical inequality 0 ≤ i < sz . Thus, checking the absence of buffer overflows can
be seen as a numerical problem. This approach has been used in the work of Simon et
al. [SK02], Dor et al. [DRS03], Venet et al. [VB04], Jung et al. [JKSY05], Miné [Min06],
Allamigeon et al. [AGH06, AH08], etc.

Figure 1.3: Representation of memory as a sequence of blocks

Similarly, the analysis of the manipulations of symbolic data structures, such as lists,
trees, can also be reduced to a problem of numerical nature. This approach, introduced
by Deutsch [Deu92, Deu94] and studied later by Venet [Ven02, Ven04], is referred to as
non-uniform pointer analysis. In that case, the accesses in these structures are modelled
as paths decorated by numerical information. Intuitively, an access to the i-th element
of a list of length n is represented by a path in the list decorated by the integer i, and
it is safe if and only if the condition i ≤ n holds.

The analyses of the second class are parameterized by a numerical abstract domain. The latter
is used to compute sound invariants which hold between the numerical data, such as the size
of the memory blocks, the indexes at which the memory is accessed, the integer variables,
etc. Consequently, the precision of the whole analysis directly depends on the precision of
the underlying numerical abstract domain.

Many different numerical abstract domains have been defined in the literature. Each
of them is able to infer a particular class of properties over a given set v1, . . . ,vd of vari-
ables. Among the most famous ones, (i) the interval abstract domain [CC77] infers in-
variants of the form a ≤ vi ≤ b, a, b ∈ R ∪ {−∞,+∞} for every variable vi, (ii) the
abstract domain of zones [Min01a] expresses properties of the form vi − vj ≤ c, (iii) the
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domain of octagons [Min01b] provides invariants of the form ±vi ± vj ≤ c, (iv) the Karr
domain [Kar76, MOS04] infers affine equality invariants

∑
i αivi = β, (v) and the domain of

closed convex polyhedra [CH78] provides affine inequality properties
∑

i αivi ≥ β. The vast
majority of numerical abstract domains express conjunctions of (sub)affine relationships over
the variables. Geometrically, if each variable vi is associated to the i-th axis of Rd, these
properties all represent convex sets.

However, precisely analyzing memory manipulations often requires to express disjunctive
invariants, i.e. disjunctions of constraints over the vi. As an illustration, an important
feature in programming languages like C is the ability to manipulate character strings. A
string corresponds to a sequence of characters stored in an array. The null character, which
is encoded by the value 0 in ASCII code, plays the role of the delimiter of the end of strings.
The array elements stored after this terminal character are meaningless w.r.t. the string. The
length of a string is defined as the position of the first null character in the array.

Strings can be manipulated with usual memory manipulation functions, such as the func-
tion memcpy, which copies exactly the n first characters of the string src into the string dst.
This can be written as the following pseudo-code:

1: int i := 0;

2: while i <= n-1 do

3: dst[i] := src[i];

4: i := i+1;

5: done;

In memory manipulation analysis, precise invariants over the length of the strings are needed
to show the absence of buffer overflows.4 Let us denote by lensrc and lendst the length of
the strings stored in src and dst respectively. No analysis equipped with a conjunctive
numerical abstract domain is able to determine a precise invariant about the resulting length
of the string lendst. For instance, using the domain of convex polyhedra, which infers affine
inequalities, we only get lendst ≥ 0.5 Indeed, two cases have to be distinguished:

(i) either n is strictly greater than lensrc, in which case the null terminal character of src
is copied into dst at the same index, thus lendst = lensrc.

For instance, if src and dst are two arrays of size 10, the former containing the string
“example” and the latter being initialized by arbitrary values (represented by the symbol
?), a call to memcpy with n = 9 yields the following memory state:

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 ? ?

src

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 ? ?

dst

The characters which have been copied into dst are highlighted in blue. After this
operation, the length of dst is equal to lensrc = 7, as expected.

(ii) or n is smaller than the source length lensrc, so that only non-null characters are copied
into dst, hence lendst ≥ n. Using the previous example, but with n = 5, we get:

4In particular, [SK02, DRS03, AGH06] are devoted to string analysis.
5Note the domain of convex polyhedra is known as one of the most precise conjunctive abstract domains.
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lensrc

lendst

n

Figure 1.4: Representation of the invariant of the memory manipulating function memcpy

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 ? ?

src

’e’ ’x’ ’a’ ’m’ ’p’ ? ? ? ? ?

dst

lendst?

Since the five first characters of dst are non-null, and the last ones are arbitrary, the
strongest property which holds is indeed lendst ≥ 5.

The representation of the corresponding invariant in R3 is given in Figure 1.4. The case (i) is
represented in blue, and the case (ii) in red. The whole set is clearly not convex, as opposed
to invariants inferred by existing numerical abstract domains.6

A few techniques already exist to compute disjunctive numerical invariants. For instance,
disjunction completion [CC79] (see also the related work [GR98, BHZ06]) consists in directly
expressing such invariants using a (logical) disjunction of classical abstractions. However, the
number of disjunctions may grow arbitrarily when computing the invariants, so that it is not
practicable as such. Thus, heuristics have to be used to reduce the number of disjunctions, but
this irremediably leads to a loss of precision.7 Similarly, trace partitioning [MR05b, RM07]
is a form of disjunctive analysis, in which machine states arising from distinct paths in the
execution of the program are abstracted separately. Such a technique does not help in our
context, since the nature of the disjunction of cases (i) and (ii) is purely semantic: it depends
on the value of the parameter n, and not on the execution of particular paths in the program.

6Further motivating examples of programs involving such non-convex invariants will be provided in Chap-
ter 7.

7On top of that, it is particularly difficult to find heuristics appropriate to a large class of programs and
invariants. Thus, in practice, the loss of precision is often uncontrolled.
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As a consequence, we cannot precisely analyze such memory manipulations unless we
define a new numerical abstract domain which is intrinsically able to express disjunctions.
Observe that the disjunctive invariant of the memcpy function can be expressed as the following
simple identity:

min(lensrc, n) = min(lendst, n),

or, passing to the opposite,

max(−lensrc,−n) = max(−lendst,−n). (1.1)

Indeed, relationships involving the min and/or max operators allow to express a certain
amount of disjunctions.

Invariant (1.1) can also be seen as a linear relationship between −lensrc, −lendst, and −n,
but with the laws of the max-plus semiring. The latter is defined as the set R∪{−∞} equipped
with the operations max and + as addition and multiplication. Following the footsteps of
Cousot and Halbwachs who defined thirty years ago the domain of convex polyhedra, this led
us to introduce a new domain based on tropical polyhedra.

1.3 An overview of tropical polyhedra

Tropical polyhedra are the analogues of convex polyhedra in tropical algebra. The max-plus
semiring (also called max-plus algebra) is one of the possible instantiations of tropical algebra.
Tropical polyhedra are defined as the intersection of finitely many tropical halfspaces, which
are sets of elements x = (xi) satisfying an inequality of the form

max(a0, max
i

(ai + xi)) ≤ max(b0,max
i

(bi + xi)).

Similarly, the notion of convex sets and cones have analogues.

Tropical or max-plus convex sets have been studied for various motivations, often in-
dependently by several people, and under different names. It first appeared in a work of
Zimmermann [Zim77], establishing a separation result, motivated by discrete optimization
problems. Cuninghame-Green studied max-plus convex cones as max-plus analogues of lin-
ear spaces [CG79]. Later, under the name of idempotent spaces, they were considered by
Litvinov, Maslov, and Shpiz for an algebraic approach of idempotent functional analysis.
Cohen, Gaubert, and Quadrat [CGQ01, CGQ04] also studied them under the name of semi-
modules, for a geometric approach of discrete event systems [CGQ99], further developed
in [Kat07, DLGKL09]. In [NS07], it was considered by Singer in the context of abstract
convex analysis [Sin97]. Briec, Horvath, and Rubinov studied max-plus convexity under the
name of B-convexity [BH04, BHR05]. Develin and Sturmfels gave in [DS04] another approach
of tropical convexity, pointing out important connections with tropical geometry [RGST05].
They developed a different combinatorial point of view, thinking of tropical polyhedra as
polyhedral complexes in the usual sense. Following this line, Joswig proposed a study of
tropical halfspaces [Jos05], and Develin and Yu gave some conjectures related to the notion
of faces of tropical polytopes [DY07].

Several important mathematical results on tropical convex sets have already been estab-
lished, such as tropical analogues of classical theorems, including those of Minkowski [GK07,
BSS07], Helly, Radon, or Carathéodory [GM08], or Hahn-Banach [Zim77, CGQS05, DS04].
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In constrast, algorithmic aspects of tropical polyhedra have not yet been thoroughly ex-
plored. In particular, a tropical polyhedron can be represented in two different ways, either
internally, in terms of extreme points and rays, or externally, in terms of affine inequalities.
Passing from the external description of a polyhedron to its internal description, or inversely, is
a fundamental computational issue, comparable to the well-known vertex/facet enumeration
or convex hull problems in the classical case.

Butkovič and Hegedus [BH84] gave an algorithm to compute a generating set of a trop-
ical polyhedral cone described by linear inequalities. Gaubert gave a similar one and de-
rived the equivalence between the internal and external representations [Gau92, Ch. III] (see
also [GP97]). Both algorithms rely on a successive elimination of inequalities, but have
the inconvenience of squaring at each step the number of candidate generators. Then, an
elimination technique must be incorporated to eliminate the redundant candidates. A first
implementation of these ideas was included in the maxplus toolbox of Scilab [CGMQ].

In [Jos08], Joswig defined a method which is able to compute pseudo-vertices (which
correspond to the vertices of the associated polyhedral complex in the sense of [DS04]) of a
tropical polytope generated by a given set of points. It then allows to compute a representation
by tropical halfspaces. While such algorithms are of interest from a combinatorial point of
view, there are in general too many pseudo-vertices in tropical polyhedra, so that they cannot
form an efficient representation in our context.8

1.4 Contributions

In this section, we present the contributions of this work, following the chronological order in
which they have been developed.

We have first defined a new numerical abstract domain allowing to infer min- and max-
invariants. It relies on tropical polyhedra, and is able to express disjunctive program invari-
ants, such as those encountered in static analysis of memory manipulations. We have defined
sound abstract primitives to automatically compute over-approximations of semantics of pro-
grams by means of tropical polyhedra. In particular, this abstract domain is more precise than
the numerical abstract domain of zones, and is able to precisely interact with the abstract
domain of octagons. Thanks to this abstract domain, we have developed and implemented a
sound static analyzer inferring numerical invariants over the program variables, the length of
the strings, and the size of the arrays in memory.

Developing a new abstraction is not only a challenge in semantics (in the sense that the
abstractions have to be sound and as precise as possible), but also in algorithmics. Indeed, the
scalability of the whole abstract domain directly depends on the complexity of the abstract
primitives of the numerical domain. This has led us to develop more efficient algorithms on
tropical polyhedra, focusing on the conversion of external representations to internal ones,
and inversely, which is a crucial operation in our numerical abstract domain.

First, we have developed an original algorithm allowing to compute a minimal represen-
tation by vertices and rays of tropical polyhedra defined by tropical affine inequalities. It is
based on a tropical analogue of the double description method introduced by Motzkin et al.
in [MRTT53]. The cornerstone of this algorithm is a new combinatorial characterization of
extreme elements in tropical polyhedra defined by means of inequalities: we have proved that

8Any extreme point is a pseudo-vertex, while the converse is not true. In practice, many pseudo-vertices
are redundant in the tropical sense.
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the extremality of an element amounts to the existence of a strongly connected component
reachable from any node in a directed hypergraph. This algorithm has a much better com-
plexity than the other methods discussed in the previous section. In practice, we have shown
on several benchmarks that it outperforms the existing implementations, allowing to solve
instances which were previously by far inaccessible.

We have also defined a dual algorithm, able to determine a set of inequalities from a
description by generating set of a tropical polyhedra. Given a tropical polyhedron P, this
algorithm returns the extreme elements of its polar, which is intuitively the set formed by
the inequalities satisfied by P. From the extremality criterion of the dual case, we have
established that the extreme elements of the polar can be characterized very simply by means
of the generating set of P given as input.

Moreover, in order to have a better understanding of the intrinsic complexity of tropical
polyhedra, we have studied the problem of determining the maximal number of extreme points
in a tropical polyhedron. In the classical case, this problem is addressed by McMullen upper
bound theorem [McM70]. We have found that the maximal number of extreme points in the
tropical case is bounded by a similar result. We have introduced a class of tropical polyhedra
appearing as natural candidates to be maximizing instances. We have established lower and
upper bounds on their number of extreme points, and shown that the McMullen type bound
is asymptotically tight when the dimension tends to infinity and the number of inequalities
defining the polyhedra is fixed.

Having an efficient algorithm to evaluate the extremality criterion based on directed hy-
pergraphs (see ➜4) has also appeared to be essential. This has raised the following problem
of independent interest: determining in a directed hypergraph all the maximal strongly con-
nected components. Directed hypergraphs are generalizations of directed graphs, in which
the tail and the head of edges are sets of nodes. Here, maximality has to be understood as
maximality for the partial order induced by the reachability relation. In directed graphs, lin-
ear algorithms like Tarjan’s [Tar72] are able to compute all strongly connected components,
including maximal ones. However, they do not generalize to directed hypergraphs. The only
existing method for the latter was suboptimal, and consisted in determining for each node
the set of reachable nodes. For this reason, we have introduced a novel algorithm on directed
hypergraphs. It directly computes the maximal strongly connected components. We have
proved that its complexity is quasi-linear.

Following these algorithmic breakthroughs, we have experimented our tropical polyhedra
based static analyzer on programs manipulating strings and arrays. It successfully determines
precise properties on memory manipulations, and scales up to highly disjunctive invariants
which could not be computed by the existing methods.

Note that the implementation of all the algorithms and abstract domains on tropical
polyhedra developed in this work, is available in the Tropical Polyhedra Library TPLib [All09].
This library is written in approximatively 5 000 lines of code in Objective Caml, and is
distributed under the GNU Lesser General Public License.

1.5 Organization of the manuscript

The manuscript is divided into two parts.

Part I is devoted to the combinatorial and algorithmic study of tropical polyhedra:

❼ In Chapter 2, we introduce the basic notions related to convexity in tropical algebra.
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❼ In Chapter 3, we establish the combinatorial characterization of extremality in tropical
polyhedra defined by means of inequalities, previously discussed.

❼ Chapter 4 studies the evaluation of this criterion, with the development of the quasi-
linear algorithm on directed hypergraphs.

❼ Finally, in Chapter 5, we define our two main algorithms converting one kind of repre-
sentation of tropical polyhedra to the other. It is completed by the study of the maximal
number of extreme elements in tropical polyhedra.

Note that Chapter 4 can be read independently of the others.
In part II, we discuss the application to static analysis by abstract interpretation:

❼ Chapter 6 introduces the theory of abstract interpretation, and the static analysis on
memory manipulations.

❼ In Chapter 7, we define the numerical abstract domain based on tropical polyhedra,
and present the experiments with the resulting static analyzer.

Chapter 6 follows the lines of the articles [AH07, AH08]. Most of the content of Chap-
ter 7 has been published in [AGG08]. Many results of Part I can also be found in the
preprint [AGG09b], and in the articles [AGG10, AGK10].

Appendix A includes an independent work, albeit related to the analysis of memory ma-
nipulations, developed during the first year of this thesis, and published in the article [All08].
It presents an abstract domain able to infer numerical invariants over consecutive array ele-
ments. Note that this work has not received further developments since two years.9 However,
in a future work, this contribution could be generalized in order to use the abstract domain
of tropical polyhedra, which would allow to increase its precision.

1.6 A few words on notations

A list of symbols is provided in Appendix C. Note that the order relations are denoted by
symbols composed with the equality symbol =, such as ≤, �, or ⊑. The only exception to
this convention is the set inclusion relation, which is denoted by ⊂, and not by ⊆.

9In particular, the article is included here as such, and the section devoted to relative work has not been
updated.



22 Chapter 1. Introduction



Part I
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CHAPTER 2

Introduction to tropical convexity

In this chapter, we study the analogue of convexity in tropical algebra. In Section 2.1, we
discuss general notions relative to tropical algebra. Section 2.2 introduces the main concepts
of tropical convexity, such as tropical convex sets, tropical cones, extremality in convex sets,
etc. Finally, Section 2.3 is focused on the study of the particular class of convex sets formed
by tropical polyhedra and polyhedral cones. Section 2.4 is a summary of the results which
will be essential in the rest of the manuscript.

2.1 Preliminaries on tropical algebra

Tropical algebra usually refers to the min-plus semiring, which is the set R ∪ {+∞} where
the addition of two elements x and y is defined as min(x, y), and the multiplication as the
classical addition x + y. However, in this manuscript, we will use the instantiation by the

max-plus semiring, i.e. the set Rmax
def
= R∪{−∞} endowed with the additive law ⊕ defined

as x ⊕ y
def
= max(x, y), and the multiplicative law ⊗ defined as x ⊗ y

def
= x + y. Observe

that this formulation is totally equivalent since the max-plus and min-plus semirings are in
one-to-one correspondence by the function x 7→ −x (with the convention that −∞ is mapped
to +∞).

Other instantiations of tropical algebra could also be used (see [Pin98] for a survey on
tropical semirings). For instance, we could consider the semiring R+ of positive reals, equipped
with max and× as additive and multiplicative laws. Besides, the max-plus semiring of integers
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(Z ∪ {−∞},⊕,⊗) is of particular interest for applications to computer science. Indeed, it
can be implemented with multi-precision integers, and does not raise the critical question
of the representation of reals by floating-point numbers (see [Mon08]). Similarly, booleans
{ 0, 1 } form a semiring, equipped with the disjunction as addition, and the conjunction as
multiplication.

Semirings are defined similarly to rings, but their elements do not necessarily have an
inverse with respect to the additive law:

Definition 2.1. A set S equipped with the binary operations ⊕ and ⊗ is a semiring if the
following requirements are satisfied:

❼ (S,⊕) is a commutative monoid equipped with a zero element ✵,

❼ (S,⊗) is a monoid provided with a unit element ✶,

❼ the multiplication is distributive over the addition, i.e. for all x, y, z ∈ S,

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) and (y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x),

❼ and ✵ is an absorbing element for the multiplication, i.e. for all x ∈ S, x⊗✵ = ✵⊗x = ✵.

The semiring S is said to be idempotent when it is idempotent for the addition, i.e. for every
x ∈ S, x⊕ x = x. It is said to be commutative when the multiplication is commutative.

The max-plus semiring is an example of commutative and idempotent semiring. Its zero

and unit elements are respectively defined by ✵
def
= −∞ and ✶

def
= 0.

An order � can be associated to every idempotent and commutative semiring, defined by
x � y if and only if y = x ⊕ y. For the max-plus semiring, it coincides with the usual order
≤ (extended by −∞ ≤ x for all x ∈ Rmax).

The max-plus semiring is usually called max-plus algebra because every non-zero element
has an inverse w.r.t. the multiplication. The inverse of x 6= ✵ is denoted by x−1, and is
defined as the classical opposite −x of x.

Note that for the sake of simplicity, the multiplication x⊗ y of two elements x and y will
be often denoted by xy. To avoid confusion, the use of classical addition and multiplication
instead of the tropical laws will be explicitly mentioned.

2.2 Preliminaries on tropical convexity

In this section, we introduce the basic notions relative to the analogues of convex sets in
tropical algebra. In Sections 2.2.2 and 2.2.3, we define convex sets and convex cones in the
tropical sense. In Section 2.2.4, we study the notion of extremality in convex sets, and see that
convex sets are generated by their extreme elements. Section 2.2.5 provides a characterization
of such generating representations which are minimal. Finally, Section 2.2.6 is devoted to the
tropical homogenization technique, which allows to represent closed convex sets by tropical
cones, up to adding a dimension to the space.

2.2.1 Notations

The set Rd
max denotes the d-th fold of Rmax. Its elements will be denoted by bold symbols, for

instance x = (x1, . . . ,xd). The ith entry of the element x will be denoted by xi. The elements
✵✵✵ and ✶✶✶ will refer to the vectors whose coordinates are all equal to ✵ and ✶ respectively.
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Figure 2.1: The six kinds of tropical segments in R2
max

The elements of Rd
max can be thought as points of an affine space, or as vectors. The

addition and multiplication can be naturally extended to Rd
max. Given two elements x, y ∈

Rd
max, x ⊕ y is the element with entries xi ⊕ yi. Similarly, the multiplication of a vector

x ∈ Rd
max by a scalar λ ∈ Rmax is denoted by λx, and is the element with entries λxi.

Finally, the tropical addition is extended to the Minkowski sum of two sets S, S′ ⊂ Rd
max,

denoted by S ⊕ S′, and defined as {x⊕ x′ | (x,x′) ∈ S × S′ }.

2.2.2 Tropical convex sets

Definition 2.2. A set C ⊂ Rd
max is said to be a tropical convex set if for all u,v ∈ C and

λ, µ ∈ Rmax such that λ⊕ µ = ✶,
λu⊕ µv ∈ C.

Tropically convex sets are defined as the tropical analogues of convex sets. However,
observe that the condition that λ, µ are nonnegative is omitted. Indeed, in the tropical
setting, all the scalars are “nonnegative”, because ✵ = −∞ ≤ λ holds for all λ ∈ Rmax.

The set of the combinations λu⊕µv for λ⊕µ = ✶ represents the tropical segment joining
the two elements u and v. The ends u and v of the segment are obtained respectively with
the parameters λ = ✶ and µ = ✵, and λ = ✵ and µ = ✶.

Example 2.1. Figure 2.1 depicts the six kinds of tropical segments in dimension d = 2. These
are concatenations of at most two ordinary segments of slope 0, 1 or ∞.

Note that in the general case d ≥ 2, tropical segments can also be expressed as concate-
nations of at most d ordinary segments, see [DS04, Proposition 3].

An example of tropical convex set in R2
max is depicted in Figure 2.2 (the border is included).

It can be easily verified that it contains all tropical segments of any of its two points. From
these examples, it can be observed that tropical convex sets are not convex in the classical
sense.
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Figure 2.2: A tropical convex set in R2
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Figure 2.3: A tropical cone in R2
max

The notion of tropical convex hull is defined similarly:

Definition 2.3. Given a subset S ⊂ Rd
max, the tropical convex hull co(S) of S is defined as

the set of the tropically convex combinations α1x1 ⊕ . . .⊕ αpxp where p ≥ 1, x1, . . . ,xp ∈ S,
α1, . . . , αp ∈ Rmax, and α1 ⊕ . . .⊕ αp = ✶.

2.2.3 Tropical cones

Definition 2.4. A non-empty subset C ⊂ Rd
max is said to be a tropical convex cone if λu⊕µv ∈

C for all u,v ∈ C and λ, µ ∈ Rmax.
For a subset S ⊂ Rd

max, the tropical cone generated by S, denoted by cone(S), is the
set of the tropical linear combinations α1x1 ⊕ . . . ⊕ αpxp where p ≥ 1, x1, . . . ,xp ∈ S and
α1, . . . , αp ∈ Rmax.

In the sequel, tropical convex cones will be simply referred to as tropical cones. An
example of tropical cone in R2

max is given in Figure 2.3. Observe that the two parallel lines
bounding the cone intersect at the (tropical) null point (✵,✵). Another example of tropical
cones are rays, defined as follows:

Definition 2.5. A ray of Rd
max is a set of the form {λx | λ ∈ Rmax }, for a given non-null

element x ∈ Rd
max, and is then denoted by 〈x〉.

A non-null element y ∈ Rd
max is said to be a representative of the ray 〈x〉 if it satisfies

〈y〉 = 〈x〉.

We will assume that Rd
max is equipped with the usual topology, defined by the metric

(x,y) 7→ max1≤i≤d |e
xi − eyi |. The closure operation is denoted by cl(·). Note that if C is a

tropical convex set (resp. a tropical cone), cl(C) is also a tropical convex set (resp. a tropical
cone) by continuity of the tropical addition and the multiplication by a scalar.
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Definition 2.6. Let C ⊂ Rd
max be a closed convex set. The recession cone rec(C) is defined

as the set

{v | x⊕ λv ∈ C for all λ ∈ Rmax },

where x is an arbitrary element of C.

We refer to the work of Gaubert and Katz [GK07] in which it is shown that the recession
cone does not depend on the choice of the element x when C is closed. Naturally, as soon as
C is a cone, it coincides with its recession cone.

Example 2.2. The recession cone of the convex set given in Figure 2.2 is depicted in Figure 2.3.

Remark 2.3. In the tropical setting, all lines are reduced to rays. Recall that in the classical
setting, rays and lines are respectively sets of the form {λu | λ ∈ R+ } and {λu | λ ∈ R }
(for a given element u ∈ R). It is immediate that the tropical analogues of the two previous
definitions are identical, since any scalar of Rmax is positive.

It follows that the lineality space of a convex cone C, defined in the classical setting as
{u ∈ Rd | x + λu ∈ C for all λ ∈ R } (where x is an arbitrary element of C), does not have
any analogue in the tropical setting. In other words, all tropical convex cones are pointed,
intuitively because Rd

max is not symmetric with respect to its origin ✵✵✵.

2.2.4 Extreme elements

Like classical convex sets, tropical convex sets admit extreme elements. They are defined as
follows:

Definition 2.7. Given a convex set C ⊂ Rd
max, an element x ∈ C is said to be an extreme

point of C if for all u,v ∈ C and λ, µ ∈ Rmax such that λ⊕ µ = ✶,

x = λu⊕ µv =⇒ x = u or x = v. (2.1)

Definition 2.8. Given a cone C ⊂ Rd
max, a non-null element x ∈ C is said to be an extreme

generator of C if for all u,v ∈ C,

x = u⊕ v =⇒ x = u or x = v.

A ray 〈x〉 is said to be extreme if x is an extreme generator of C.

Note that each representative of an extreme ray is an extreme generator, so that the
definition of an extreme ray does not depend on the choice of the representative.

Remark 2.4. In tropical cones, extreme points are not of interest. Indeed, it can be shown
that their unique extreme point is the element ✵✵✵. Consequently, for a tropical cone, the term
extreme element will always refer to an extreme generator, and not to an extreme point.

Example 2.5. The extreme points of the convex set C given in Figure 2.2 are depicted in blue,

and consists of the open arc
{(

x,−1+
√

4− (x + 2)2
)
| −2 < x < 0

}
, and the points (−2, 3),

(−3, 1), and (0,−2).

The extreme rays of its recession cone, which are represented by green arrows in Figure 2.3,
are the rays 〈(0, 0)〉 and 〈(0, 3)〉.
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The sets of extreme points (respectively generators) of a convex set (resp. cone) C will be
denoted by extp(C) (resp. extg(C)).

In [GK07], a “Minkowski-Carathéodory”-type theorem was established for closed convex
sets in the tropical setting. It states that a closed convex set of Rd

max is entirely generated by
the combinations of at most (d + 1) extreme points and extreme generators of the recession
cone:

Theorem 2.1 ([GK07, Theorem 3.3]). Let C ⊂ Rd
max be a closed convex set. Then any

element x of C can be expressed as the sum of the convex combination of n extreme points
p1, . . . ,pn of C, and p extreme generators g1, . . . , gp of rec(C), with n + p ≤ d + 1:

x =
n⊕

i=1

λip
i ⊕

p⊕

j=1

gj , where
n⊕

i=1

λi = ✶.

In particular,
C = co (extp(C)) ⊕ cone (extg (rec(C))) .

A similar statement holds for closed cones:

Theorem 2.2 ([GK07, Theorem 3.1]). Let C ⊂ Rd
max be a closed cone. Then any element of

C can be expressed as the sum of d extreme generators of C. Consequently,

C = cone (extg(C)) .

In Chapter 3, we will provide a direct proof of both results.

2.2.5 Minimal generating representations

As previously established, extreme elements form generating representations of closed convex
sets and cones. This section deals with such representations which are minimal.

Definition 2.9. Let C ⊂ Rd
max be a closed cone. A generating set of C is a set G ⊂ Rd

max

such that C = cone(G).
A generating set of C is said to be minimal if it is a minimal element for the inclusion

among the generating sets of C.

We introduce the norm ‖·‖ over Rd
max defined by ‖x‖

def
= max1≤i≤d exi . An element

x ∈ Rd
max is said to be scaled if it satisfies ‖x‖ = 1. By extension, a set G ⊂ Rd

max is said to
be scaled if each of its elements is scaled. Let σ be the function from Rd

max \ {✵✵✵} to itself,
which maps each x to the scaled element ‖x‖−1

x.
The following theorem gives a characterization of the minimal generating sets of tropical

cones, stating that they are unique up to scaling their elements.

Theorem 2.3. Let C ⊂ Rd
max be a closed cone. The minimal generating sets G of C are

precisely the sets consisting of exactly one representative of each extreme ray of C.
In particular, σ(extg(C)) is the unique scaled minimal generating set of C.

Proof. Let us first prove the second part of the statement. Let G = σ(extg(C)) be the set
formed by the scaled extreme generators of C, and consider H a scaled generating set. For
each g ∈ G, there exist λ1, . . . , λp ∈ Rmax and h1, . . . ,hp ∈ H such that g =

⊕p
i=1 λihi.
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Using the extremality of g, there exists i such that g = λihi, and since g and hi are both
scaled, they are necessarily equal. This shows that G ⊂ H, and it follows that G is indeed
the unique minimal generating set of C.

For the first part of the statement, first consider a minimal generating set H ′ of C. Then
σ(H) is a scaled minimal generating set of C, so that σ(H) = G. This proves that H contains
exactly one representative of each extreme ray.

Conversely, let us show that if G′ is formed by exactly one representative of each extreme
ray, it is minimal. Let H ′ ⊂ G′ such that C = cone(H ′). Then σ(H ′) ⊂ σ(G′) = G, hence
σ(H ′) = G. It follows that H ′ = G′.

Similarly, minimal generating representations of closed convex sets can be defined:

Definition 2.10. Let C ⊂ Rd
max be a closed convex set. A generating representation of C is

a pair (P,R), where P,R ⊂ Rd
max verifying:

C = co(P )⊕ cone(R).

It is said to be minimal if for all generating representations (Q, S) of C:

Q ⊂ P and S ⊂ R =⇒ (Q, S) = (P,R).

A generating representation (P,R) is said to be scaled if R is a scaled set. Like cones,
convex sets admits a unique scaled minimal generating representation:

Theorem 2.4. Let C ⊂ Rd
max be a closed convex set. The minimal generating representations

of C are precisely the couple (extp(C), R) where R consists of exactly one representative of
each extreme ray of rec(C).

In particular, (extp(C), σ(extg(rec(C)))) is the unique scaled minimal generating represen-
tation of C.

Proof. Like in the proof Theorem 2.3, let us begin with the second part of the statement. Let
(P,R) = (extp(C), σ(extg(rec(C)))). Using Theorem 2.3, any scaled generating representation
(Q, S) of C satisfies R ⊂ S. Besides, let p ∈ P . As p belongs to C, it can be written under
the form:

p =

n⊕

i=1

αiqi ⊕
m⊕

j=1

βjsj (qi ∈ Q, sj ∈ S, αi, βj ∈ Rmax, and

n⊕

i=1

αi = ✶)

=
⊕

1≤i≤n
1≤j≤m

αi(qi ⊕ βjsj)

so that p = qi ⊕ βjsj for a given (i, j), as p is an extreme point. Suppose that there exists
p 6= qi. Then writting p = qi ⊕ (−1)(qi ⊕ (βj + 1)sj) contradicts the extremality of qi as
qi ⊕ (βj + 1)sj ∈ P and 0⊕ (−1) = ✶. Therefore p ∈ Q, which proves P ⊂ Q.

After that, the first part of the theorem is straightforward.
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2.2.6 Tropical homogenization

In this section, we present a technique to represent closed tropical convex sets by tropical
cones, which consists in adding a dimension to the latter to represent the affine component
of the former. In the classical setting, this method is known as homogenization (see for
instance [Zie98]). In the tropical setting, it has been first introduced in [GK07].

The tropical homogenization relies on the following property:

Proposition 2.1. Let C ⊂ Rd
max be a closed tropical convex set. Then the set Ĉ ⊂ Rd+1

max

defined by

Ĉ
def
= cl ({ (αx, α) | x ∈ C, α ∈ Rmax }) (2.2)

is a closed tropical cone. Besides, the following relations hold:

C =
{

x | (x,✶) ∈ Ĉ
}
, (2.3)

rec(C) =
{

x | (x,✵) ∈ Ĉ
}
. (2.4)

Proof. First, let us show that D
def
= { (αx, α) | x ∈ C, α ∈ Rmax } is a tropical cone. Consider

u = (αx, α),v = (βy, β) ∈ D and λ, µ ∈ Rmax. Clearly, when α, β, λ or µ is equal to ✵,

it is obvious that λu ⊕ µv belongs to D. Otherwise, κ
def
= (αλ) ⊕ (βµ) is strictly greater

than ✵. If κ−1 def
= (−κ) is its tropical inverse w.r.t the max-plus multiplicative law, then

(αλκ−1) ⊕ (βµκ−1) = ✶, so that (αλκ−1)x ⊕ (βµκ−1)y is an element of C. It follows that
λu⊕ µv = (κ((αλκ−1)x⊕ (βµκ−1)y), κ) belongs to D.

Hence, Ĉ is also a tropical cone as the closure of D.

The relation C ⊂ {x | (x,✶) ∈ Ĉ } is trivial. Conversely, consider (x,✶) ∈ Ĉ, and let
(αnxn, αn) be a sequence converging to (x,✶), with xn ∈ C and αn ∈ Rmax for each n. Then
limn→+∞ αn = ✶, and so that x = limn→+∞ xn. As C is closed, the element x belongs to C.
This shows (2.3).

Now, consider v ∈ rec(C). If x ∈ C, then x ⊕ (nv) ∈ C for all n ∈ N. The sequence
(n−1(x⊕(nv)), n−1) of elements of Ĉ obviously converges to the element (v,✵) when n→ +∞,
which shows that the latter belongs to Ĉ. Conversely, consider (v,✵) ∈ Ĉ, and x ∈ C and
λ ∈ Rmax. We want to show that x⊕ λv belongs to C. If λ = ✵, this is obvious. Otherwise,
consider a sequence (αnxn, αn) such that xn ∈ C, αn ∈ Rmax, and which converges to (u,✵).
Naturally, limn→+∞ αn = ✵, so that without loss of generality, it can be supposed that
αn ≤ λ−1 for each n. It follows that ✶ ⊕ αnλ = ✶, hence x ⊕ λ(αnxn) belongs to C for each
n. As C is closed, taking the limit when n→ +∞ yields x⊕ λu ∈ C. This proves (2.4).

Now, a one-to-one correspondence between extreme elements of closed convex sets and
extreme elements of their homogenized cones can be established:

Proposition 2.2. Let C ⊂ Rd
max be a closed tropical convex set. Then the following relations

hold:

extp(C) =
{

x | (x,✶) ∈ extg(Ĉ)
}
, (2.5)

extg(rec(C)) =
{

x | (x,✵) ∈ extg(Ĉ)
}
. (2.6)
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Proof. The proof of (2.6) is almost immediate. Let us show (2.5).
Suppose that x is an extreme point of C. By (2.3), (x,✶) belongs to Ĉ. Let us consider

u = (y, λ),v = (z, µ) ∈ Ĉ such that (x,✶) = u⊕ v. As x = y ⊕ z and x is extreme, suppose
for instance that x = y. If λ = ✶, then (x,✶) = u. Otherwise, λ < ✶ and µ = ✶ (since
λ⊕ µ = ✶). Two cases can be distinguished:

(i) either λ > ✵, in which case (y, λ) ∈ Ĉ implies (λ−1y,✶) ∈ Ĉ (as Ĉ is a cone), and
using (2.3), λ−1x = λ−1y ∈ C,

(ii) or λ = ✵, so that x = y ∈ rec(C) by (2.4). It follows that x⊕ κx ∈ C for all κ. As soon
as κ > ✶, κxi ≥ xi for all i, so that κx ∈ C.

In both cases, we have found α > ✶ such that αx ∈ C. Besides x = α−1(αx)⊕ z since for all
i, xi ≥ zi. Using the fact that x is extreme and α−1 ⊕ ✶ = ✶, it implies x = αx or x = z. In
the former case, x has to be equal to ✵✵✵, which leads to x = z, just as in the latter case. In
both situations, we have (x,✶) = v, which shows the extremality of (x,✶).

Conversely, suppose that (x,✶) is extreme in Ĉ. Then x ∈ C using (2.3). Consider y,z ∈ C
and λ, µ ∈ Rmax such that x = λy⊕µz and λ⊕µ = ✶. Then (λy, λ), (µy, µ) are both elements
of Ĉ, and their sum is equal to (x,✶). Hence, for instance, (x,✶) = (λy, λ), which shows that
x = y. Hence, x is an extreme point of C.

Using Theorems 2.3 and 2.4, Proposition 2.2 can be refined considering minimal generating
representations of convex sets and their homogenized cones:

Corollary 2.3. Let C ⊂ Rd
max be a closed convex set. Then (P,R) is a minimal generating

representation of C if and only if (P × {✶ }) ∪ (R× { ✵ }) is a minimal generating set of Ĉ.

Proof. If (P,R) is a minimal generating representation of C, then by Theorem 2.4, P =
extp(C), and R contains exactly one representative of each extreme ray of rec(C). Hence,
using Proposition 2.2, the elements of the form (p,✶) and (r,✵), where p ∈ P and r ∈ R,
are all extreme generators of Ĉ. Besides, they are clearly representatives of pairwise distinct
extreme rays of extg(Ĉ). Reciprocally, considering an extreme ray 〈(g, α)〉 of extg(Ĉ),

(i) either α = ✵, in which case g is extreme in rec(C), so that 〈g〉 is represented by one of
the elements of r ∈ R. Hence 〈(g, α)〉 is represented by the extreme element (r,✵) ∈
R× { ✵ },

(ii) or α > ✵, so that α−1g belongs to P . It follows that 〈(g, α)〉 is represented by the
extreme generator (α−1g,✶) ∈ P × { ✶ }.

According to Theorem 2.3, this proves that (P × { ✶ }) ∪ (R× { ✵ }) is a minimal generating
set of Ĉ.

Conversely, using Proposition 2.2, each element of P (resp. R) is an extreme point of C
(resp. generator of rec(C)). Besides, the elements of R represent pairwise distinct extreme
rays of rec(C). On top of that, for any point p′ ∈ extp(C), (p′,✶) is an extreme generator of Ĉ,
so that there exists (λ, p) ∈ Rmax×P such that (p′,✶) = λ(p,✶), thus λ = ✶ and p′ = p. This
shows that P = extp(C). Similarly, considering an extreme ray 〈r′〉 of rec(C), 〈(r′,✵)〉 is an
extreme ray of rec(C), and is necessarily represented by an element of (P ×{✶ })∪ (R×{✵ })
which is of the form (r,✵), so that r ∈ R. It follows that r belongs to the ray 〈r′〉. As a
result, (P,R) forms a minimal generating representation of C.
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2.3 Tropical polyhedra and polyhedral cones

This section deals with tropical polyhedra and polyhedral cones, which are the analogues of
the classic convex polyhedra and polyhedral convex cones. They are defined as the intersection
of tropical halfspaces, as discussed in Section 2.3.1. Section 2.3.2 then establishes a tropical
analogue of the Minkowski-Weyl theorem, stating that tropical polyhedra and polyhedral
cones can be equivalently represented by means of a finite generating representation. Finally,
Section 2.3.3 restates the homogenization technique introduced in Section 2.2.6 in the context
of tropical polyhedra.

2.3.1 Definition

We first introduce the notion of tropical halfspaces:

Definition 2.11. A tropical halfspace is a set consisting of the elements x = (xi) ∈ Rd
max

verifying an inequality constraint of the form:

⊕

1≤i≤d

ai xi ≤
⊕

1≤i≤d

bi xi, (2.7)

where a = (ai), b = (bi) ∈ R1×d
max.

Definition 2.12. A tropical affine halfspace is a set consisting of the elements x = (xi) ∈
Rd

max verifying an inequality constraint of the form:

( ⊕

1≤i≤d

ai xi

)
⊕ c ≤

( ⊕

1≤i≤d

bi xi

)
⊕ d, (2.8)

where a = (ai), b = (bi) ∈ R1×d
max, and c, d ∈ Rmax.

The constraints given in (2.7) and (2.8) are respectively two-sided linear and affine in-
equalities with the laws of the semiring Rmax. Unlike their classical analogues, they cannot
be reduced to one-sided inequalities (since the additive law has no inverse).

However, some simplications can be performed. In (2.7), it can be supposed that for all
i, either ai = ✵ or bi = ✵, or equivalently ai ⊗ bi = ✵. Indeed, if H ⊂ Rd

max is a tropical
halfspace defined by the inequality given in (2.7), then it also coincides with the set of x = (xi)
satisfying the inequality

⊕
i a

′
i xi ≤

⊕
i b

′
i xi, where:

a′
i =

{
ai if ai > bi,

✵ if ai ≤ bi,
b′i =

{
bi if ai ≤ bi,

✵ if ai > bi.

In that case, a′ and b′ will be said to be orthogonal.1

Similarly, in (2.8), the vectors
(
a c

)
and

(
b d

)
of Rd+1

max can be supposed to be orthog-
onal, and c⊕ d = ✶ as soon as c and d are not both equal to ✶ (up to multiplying the whole
inequality by (c⊕ d)−1).

Under these assumptions, the apex of the halfspace is defined as the element c ∈ R∪{+∞}

such that ci
def
= (ai ⊕ bi)

−1 (with the convention (−∞)−1 = +∞).

1This term is due to the fact that the tropical “scalar product”
L

i a′
ib

′
i of a′ and b′ is equal to ✵.
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Example 2.6. For d = 2, consider the affine halfspace defined by the inequality:

(3x1)⊕ (−2x2)⊕ 5 ≤ (−1x1)⊕ (3x2)⊕ 8

It can be first reduced to an inequality in which the two members are orthogonal:

3x1 ≤ (3x2)⊕ 8.

Then, multiplying by 8−1 yields:

−5x1 ≤ (−5x2)⊕ 0.

Its apex is therefore the element (5, 5).

Figure 2.4 gives an illustration the twelve families of affine halfspaces in R2
max, excluding

∅ and the whole set R2
max. They are represented in green or red (the border depicted in black

is included). For each, the apex is also depicted when its coordinates are finite. The six last
halfspaces can be considered as degenerate instances of the six first ones.

Definition 2.13. A tropical polyhedral cone of Rd
max is defined as the intersection of finitely

many tropical halfspaces of Rd
max.

A tropical polyhedron of Rd
max is defined as the intersection of finitely many tropical affine

halfspaces of Rd
max.

Equivalently, tropical polyhedra and polyhedral cones can be expressed as the set of
the solutions of systems of inequality constraints. First, let us extend the additive and
multiplicative laws of Rmax to matrices:

A⊕B
def
= (aij ⊕ bij) for A = (aij), B = (bij) ∈ Rp×d

max,

C D
def
=
( p⊕

k=1

cikdkj

)
for C = (cij) ∈ Rn×p

max, D = (dij) ∈ Rp×d
max.

In particular, if A = (aij) ∈ R
p×d
max and x ∈ Rd

max, Ax is the vector of R
p
max whose i-th entry is

given
⊕d

j=1 aijxj . Besides, we can partially order the elements of Rd
max using the entrywise

extension of ≤, i.e. x ≤ y if and only if xi ≤ yi for all i. With these notations, a subset of
Rd

max is a tropical polyhedron if and only if it is of the form

{x ∈ Rd
max | Ax⊕ c ≤ Bx⊕ d },

where A, B ∈ R
p×d
max, c, d ∈ R

p
max, and p ≥ 0. Each row of the system is an affine inequality,

and corresponds to an affine halfspace. Similarly, a polyhedral cone can be defined as the set
of the solutions of a system Ax ≤ Bx, with A, B ∈ R

p×d
max (p ≥ 0).

The following proposition provides a description of the recession cone of tropical polyhedra
from their halfspaces:

Proposition 2.4. Let P = {x ∈ Rd
max | Ax⊕c ≤ Bx⊕d } be a non-empty tropical polyhedron

(A, B ∈ R
p×d
max, c,d ∈ R

p
max). Then the following relation holds:

rec(P) = {y ∈ Rd
max | Ay ≤ By }.
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0 ≤ y − β

0 ≥ y − β
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0 ≤ x− α0 ≥ x− α

x

y

x− α ≥ y − β

x− α ≤ y − β

Figure 2.4: The twelve families of non-trivial affine halfspaces in R2
max
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Proof. Consider x ∈ P, and let y ∈ rec(P). Consider i ∈ {1, . . . , p}. By definition, for all
λ ∈ Rmax,

Aix⊕ ci ⊕ λ(Aiy) ≤ Bix⊕ di ⊕ λ(Biy)

where Ai and Bi are respectively the i-th row of A and B. If Aiy = ✵, then obviously
Aiy ≤ Biy. Otherwise, for large values of λ, we have λ(Aiy) > Bix⊕ di, which implies that
Aiy ≤ Biy (as in particular, λ > ✵).

Conversely, suppose that Aiy ≤ Biy for each i. Then for all λ ∈ Rmax, λ(Aiy) ≤
Bi(x⊕ di)⊕ λ(Biy), and clearly Aix⊕ ci ≤ (x⊕ di)⊕ λ(Biy) (using x ∈ P). It follows that
x⊕ λy ∈ P.

Remark 2.7. By analogy with the classical case, tropical polytopes can be defined as tropical
polyhedra bounded in Rd

max. It can be easily shown that they are precisely characterized by
a recession cone reduced to the singleton {✵✵✵}.

Observe that our definition of tropical polytopes is more general that Develin and Sturm-
fels’ one [DS04], in which tropical polytopes are required to be bounded sets of Rd (equiva-
lently, none of their points have a coordinate equal to ✵).

Also note that Joswig provides in [Jos05] a slightly different definition of tropical (affine)
halfspaces. It relies on tropical affine hyperplanes. A tropical affine hyperplane is associated
to an element c ∈ Rd+1, and is defined as the set of elements x ∈ Rd such that the maximum

c1x1 ⊕ . . .⊕ cdxd ⊕ cd+1 = max(c1 + x1, . . . , cd + xd, cd+1)

is attained at least twice. Up to multiplying c by a scalar, it can be supposed that cd+1 = ✶.
Then c can be assimilated to the element (c1, . . . , cd) of Rd. A tropical hyperplane and its
associated element in R2

max are depicted in Figure 2.5 in black.

x

y

(c1, c2)

Figure 2.5: A tropical hyperplane

A tropical hyperplane splits the space Rd into (d + 1) connected components, named
open sectors (see blue, red, and green areas in Figure 2.5). Their closure are called closed
sectors. Tropical affine halfspaces are then defined as the union of at least one and at most d
closed sectors of a given tropical hyperplane. It can be shown that they are in fact tropical
affine halfspaces in the sense of Definition 2.12. Their apex is precisely the point (c1, . . . , cd)
(supposing that cd+1 = ✶).
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2.3.2 Minkowski-Weyl theorem

A tropical analogue of the Minkowski-Weyl theorem has been established in several works
(see for instance [GK06, DS04]), stating that tropical polyhedra and polyhedral cones are
exactly finitely generated convex sets and cones respectively:

Theorem 2.5. The tropical polyhedra of Rd
max are precisely the sets of the form co(P ) ⊕

cone(R) where P and R are finite subsets of Rd
max.

Theorem 2.6. The tropical polyhedral cones of Rd
max are precisely the sets of the form cone(G)

where G is a finite subset of Rd
max.

A constructive proof will be provided in Chapter 5. As finitely generated sets, polyhedra
and tropical cones can be shown to be closed:

Lemma 2.5. Tropical polyhedra and polyhedral cones are closed sets.

Proof. We only give the details of the proof for cones, as the case of polyhedra is very similar.
Let C ⊂ Rd

max be a tropical polyhedral cone, and let G = (gi)1≤i≤p be a generating
set. Without loss of generality, it can be assumed that gi 6= ✵✵✵ for each i. Consider a
sequence (xn)n ∈ C

N which converges to an element x ∈ Rd
max. Then for each n, there

exists λn
1 , . . . , λn

p ∈ Rmax such that xn =
⊕p

i=1 λn
i gi. For all i ∈ {1, . . . , p}, let j such that

gi
j 6= ✵. The sequence λn

i is bounded, since λn
i ≤ (gi

j)
−1xn

j and (xn
j )n is also bounded (as

it is converging to xj). It follows from Bolzano-Weierstrass theorem that, up to extracting
a subsequence, the sequence (λn

i )n is also converging towards a limit λi ∈ Rmax. Hence,
x =

⊕p
i=1 λig

i, which proves that x belongs to C.

A consequence of Theorems 2.1 and 2.2 is that the minimal generating representations of
tropical polyhedra and polyhedral cones are all finite, and have the same size:

Proposition 2.6. Any minimal generating set G ⊂ Rd
max of a polyhedral cone C is finite, and

its cardinality is equal to the number of extreme rays of C.
Similarly, for any minimal representation (P,R) of a tropical polyhedron P, the sets P

and R are both finite. Their cardinality is equal to the number of extreme points in P and of
extreme rays in rec(P) respectively.

Proof. Trivial from Lemma 2.5, and Theorems 2.3 and 2.4.

Remark 2.8. Note however that the size of the minimal generating representations of polyhe-
dra (resp. cones) can be arbitrarily large as soon as d ≥ 2 (resp. d ≥ 3). For instance, in Rd

max,
consider a tropical analogue of the cyclic polytope (see for instance [Zie98] for a definition of
cyclic polytopes in the classical case), given a choice of n distinct elements ✵ < t1 < . . . < tn
of Rd

max, and defined by:

Γd(t1, . . . , tn)
def
= co(p(t1), . . . ,p(tn)),

where p(t)
def
= (t, t2, . . . , td).2 It can be proved that the n points defining Γd(t1, . . . , tn) are all

extreme, so that the size of any minimal representation of the polytope is exactly n.
Figure 2.6 depicts the cyclic polytope of R2

max given by n = 6 and ti = i− 1 for all i.

2The notation xi corresponds to the tropical exponentiation, i.e. xi = i × x.
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Figure 2.6: A tropical cyclic polytope in R2
max

2.3.3 Homogenization of tropical polyhedra

We can now express homogenization for tropical polyhedra. In what follows, the concatenation
of two matrices M ∈ R

n×p
max and N ∈ R

n×q
max is denoted by

(
M N

)
.

Proposition 2.7. Let H = {x ∈ Rd
max | ax ⊕ c ≤ bx ⊕ d } be a non-empty affine halfspace

(a, b ∈ Rd
max, c, d ∈ Rmax). Then Ĥ is a tropical halfspace, and is given by:

Ĥ =
{

z ∈ Rd+1
max |

(
a c

)
z ≤

(
b d

)
z
}
.

Proposition 2.8. Let P = {x ∈ Rd
max | Ax⊕c ≤ Bx⊕d } be a non-empty tropical polyhedron

(A, B ∈ R
p×d
max, c,d ∈ Rd

max). Then P̂ is a polyhedral cone, and the following equality holds:

P̂ =
{

z ∈ Rd+1
max |

(
A c

)
z ≤

(
B d

)
z
}
.

Proof. By Lemma 2.5, P is closed, so that by applying Proposition 2.1, we get:

P̂ = { (αx, α) | x ∈ C, α ∈ Rmax } ∪ { (y,✵) | y ∈ rec(P) }.

Then using Proposition 2.4, we clearly have
(
A c

)
z ≤

(
B d

)
z for all z ∈ P̂.

Conversely, suppose that
(
A c

)
z ≤

(
B d

)
z. If z = (y,✵), then Ay ≤ By, so that

y ∈ rec(P) (applying Proposition 2.4 to P which is not empty) and z ∈ P̂ (Proposition 2.1).

Otherwise, z = (x, α) with α > ✵, so that x′ def
= α−1x satisfies Ax′ ⊕ c ≤ Bx′ ⊕ d. It follows

by (2.2) that z = (αx′, α) belongs to P̂.
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Figure 2.7: A tropical polyhedron in R2
max (left), and an equivalent representation by a cone

in R3
max (right)

The following proposition formalizes the inverse correspondence between a certain class
of polyhedral cones and tropical polyhedra:

Proposition 2.9. Let C ⊂ Rd+1
max such that { z ∈ C | zd+1 = ✶ } is not empty. Then there

exists a unique tropical polyhedron P such that P̂ = C.

Proof. Let P be defined as {x ∈ Rd
max | (x,✶) ∈ C }.

Suppose that C = { z ∈ Rd+1
max | Cz ≤ Dz }, with C, D ∈ R

p×d+1
max . Let A, B ∈ R

p×d
max and

c,d ∈ R
p
max be defined as

(
A c

)
= C and

(
B d

)
= D. Then we have:

P = {x ∈ Rd
max | Ax⊕ c ≤ Bx⊕ d }.

Besides, since P is not empty, Proposition 2.8 implies that P̂ = C.

The uniqueness of P comes from Proposition 2.1, which ensures that any tropical polyhe-
dron Q which satisfies Q̂ = C also satisfies Q = {x ∈ Rd

max | (x,✶) ∈ C } = P.

Remark 2.9. Observe that for any tropical cone C 6= {✵✵✵} such that for all z ∈ C, zd+1 = ✵,
there is no tropical polyhedron P verifying P̂ = C.

In particular, when C = { z ∈ Rd+1
max |

(
A c

)
z ≤

(
B d

)
z }, and for any z ∈ C, zd+1 = ✵,

then the tropical polyhedron P given by P = {x ∈ Rd
max | Ax⊕ c ≤ Bx⊕ d } is necessarily

empty. In that case, it homogenized cone is reduced to {✵✵✵}.

The results relative to homogenization in the context of tropical polyhedra is recapitulated
in the following corollary:

Corollary 2.10. There is a one-to-one correspondence between non-empty tropical polyhedra
of Rd

max and tropical polyhedral cones of Rd+1
max whose intersection with the set { z ∈ Rd+1

max |
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zd+1 = ✶ } is not empty:

P 7−→ P̂,

{x ∈ Rd
max | (x,✶) ∈ C } ←−[ C.

Their unique scaled minimal generating representations and their associated systems of in-
equalities are related in the following way:

(P,R) 7−→ ι(P,R)
def
= (σ(P × { ✶ }) ∪ (R× { ✵ }),

ι−1(G)
def
=

(
{α−1p | (p, α) ∈ G, α 6= ✵ },

{ r | (r,✵) ∈ G }

)
←− [ G,

{x ∈ Rd
max | Ax⊕ c ≤ Bx⊕ d } 7−→←− [

{
z ∈ Rd+1

max |
(
A c

)
z ≤

(
B d

)
z
}
.

Proof. Let us begin by showing that the first map is indeed a one-to-one correspondence.
Clearly, any cone C = P̂ where P is a non-empty polyhedron is such that C ∩ {z | zd+1 =
✵ }. Conversely, thanks to Proposition 2.9, any cone which satisfies this property admits a
polyhedron P such that P̂ = C. It is necessarily unique and non-empty, since according to
Proposition 2.1, it satisfies P = {x ∈ Rd

max | (x,✶) ∈ C }.
Now, consider the unique minimal and scaled generating representation (P,R) of P. Using

Corollary 2.3, we know that (P × {✶ })∪ (R× {✵ }) is a minimal generating set of P̂. Every
element of the form (r,✵) is scaled as soon as r is itself scaled, so that ι(P,R) is indeed the
unique minimal and scaled generating set of P̂.

Reciprocally, let G be the unique scaled and minimal generating set of P̂. Let H be the
set formed by the elements g ∈ G such that gd+1 = ✵, and by the g−1

d+1g for every g ∈ G
such that gd+1 6= ✵. The set H contains precisely one representative of each extreme ray of
P̂, so that it is also a minimal generating set of P̂ (Theorem 2.3). Then using Corollary 2.3,
the couple (P,R) which satisfies H = (P × {✶ }) ∪ (R × {✵ }) is also a minimal generating
representation of P. Since every element (r,✵) ∈ G are scaled, each r ∈ R is also scaled, so
that (P,R) is a scaled representation.

The correspondence between systems of inequalities is a direct consequence of Proposi-
tion 2.8.

Example 2.10. In Chapters 3 and 5, we will illustrate our results on the tropical polyhedron
P defined by the system (2.9), or equivalently on its homogenized cone C defined by the
system (2.10):3






0 ≤ x + 2

x ≤ max(y, 0)

x ≤ 2

0 ≤ max(x, y − 1)

(2.9)






z ≤ x + 2

x ≤ max(y, z)

x ≤ z + 2

z ≤ max(x, y − 1)

(2.10)

The polyhedron P is depicted in solid gray (the black border is included) in the left hand side
of Figure 2.7. It is generated by the extreme points v1 = (−2, 1), v2 = (2, 2), and v3 = (0,✵),
and by the extreme ray 〈r0〉 where r0 = (✵, 0).

3When dealing with examples in R2
max or in R3

max, we shall consider vectors the entries of which are denoted
by x, y, z rather than x1, x2, x3.
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The right side of Figure 2.7 is a representation of the polyhedral cone C in barycentric
coordinates: each element (x, y, z) is represented as a barycenter with weights (ex, ey, ez) of
the three vertices of the outermost triangle. Then two representatives of a same ray are
represented by the same point. The tropical cone C is generated by the extreme elements
g0 = (✵, 0,✵), g1 = (−2, 1, 0), g2 = (2, 2, 0), and g3 = (0,✵, 0).

2.4 Conclusion of the chapter

This chapter introduces the basics of tropical convexity. We highlight the results of the chapter
which will be fundamental in the rest of the manuscript, and introduce some additional
terminology.

Firstly, tropical polyhedra and polyhedral cones admit two possible representations (The-
orems 2.5 and 2.6):

❼ by means of a system of affine/linear inequalities (or equivalently as the intersection of
finitely many (affine) halfspaces). We will also use the term external representation.

❼ by means of a finite generating representation, which we will also call internal represen-
tation.

Secondly, minimal generating representations of polyhedra and polyhedral cones are pre-
cisely provided by their extreme elements (Theorems 2.4 and 2.3). For each, there exists a
unique scaled minimal generating representation, which can be seen as a canonical represen-
tation.

Finally, using homogenization, tropical polyhedra of Rd
max can be equivalently represented

by means of polyhedral cones of Rd+1
max. In particular, their minimal generating representations

are related by a one-to-one correspondence denoted by ι (Corollary 2.10). For this reason,
the vast majority of the results of Chapters 3 and 5 will be established for tropical cones.



CHAPTER 3

Combinatorial characterization of
extremality from the description of

polyhedra by halfspaces

In this chapter, we develop a combinatorial criterion to characterize the extremality in tropical
polyhedral cones. The novelty is that this criterion relies on the description of polyhedra by
means of halfspaces.

As far as we know, this is the first time that such a criterion is established in the trop-
ical setting. This idea came from the existence of similar ways to characterize extremality
in classical polyhedral cones. Indeed, Motzkin’s double description method [MRTT53] and
Chernikova’s algorithm [Che68], which both compute generating sets of classical cones defined
by inequalities, rely on an elimination technique of non-extreme rays based on some consid-
erations on the descriptions by halfspaces given as input. Their elimination criterion uses the
notion of saturated inequalities: in a classical cone C ⊂ Rd defined by a system Ax ≥ 0, an
inequality ax ≥ 0 of the system is said to be saturated by an element g of the cone if ag = 0.
Then, the extremality of g ∈ C can be characterized by one of the two equivalent criteria:1

❼ the rank of the matrix formed by the inequalities saturated by g is equal to d− 1,

❼ the set of the inequalities saturated by g is maximal (among the other elements of the
cone, or equivalently, among the other elements of a generating set).

1Note that we assume here that the cone is pointed.
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We refer to the survey of Fukuda and Prodon [FP96] and the note of Le Verge [LV92] for
further details.

Unfortunately, these criteria do not have direct tropical analogues. The characterization
of extremality established in this chapter relies on the saturated inequalities, but further
properties on these inequalities are required.

In Section 3.1, we first introduce equivalent ways to express extremality in tropical cones.
In particular, it will be shown that the extremality of an element can be characterized from
its neighborhood in the cone. Section 3.2 will develop the notion of tangent cone, and how
it can be used to establish a first extremality criterion. In Section 3.3, we will rewrite this
criterion in terms of directed hypergraphs, finally leading to our combinatorial criterion.

Note that we do not detail the corresponding criterion in tropical polyhedra, which can
be easily derived thanks to the homogenization technique discussed in Chapter 2.

3.1 Preliminaries on extremality

In this section, we establish some general properties related to extremality. They not only
hold for polyhedral cones, but also for tropical cones.

The first one is crucial for the rest of chapter. It states that extremality can be expressed
as a minimality property. It is in fact a variation on the proof of Theorem 3.1 of [GK07]
and on Theorem 14 of [BSS07]. In particular, it allows to associate a combinatorial type to
extreme elements of tropical cones.

The minimality property is defined as follows:

Definition 3.1. Let S ⊂ Rd
max and g ∈ Rd

max.
Then g is said to be minimal of type t in S (1 ≤ t ≤ d) if it is a minimal element of the

set {x ∈ S | xt = gt }, i.e. g ∈ S and for each x ∈ S,

(x ≤ g and xt = gt ) =⇒ x = g.

Proposition-Definition 3.1. Let C ⊂ Rd
max be a tropical cone, and g ∈ Rd

max. The element
g is extreme in C if and only if there exists 1 ≤ t ≤ d such that g is minimal of type t in C.

In that case, g is said to be extreme of type t.

Proof. If there exists 1 ≤ t ≤ d such that g is minimal in {x ∈ C | xt = gt }, then let
x1,x2 ∈ C such that g = x1 ⊕ x2. In that case, for each i ∈ { 1, 2 }, xi ≤ g, and there is an i
such that xi

t = gt, so that xi = g.
Conversely, assume that for every index t, g is not minimal in the set {x ∈ C | xt = gt },

so that we can find a vector xt such that xt ≤ g, xt
t = gt, and xt 6= g. As a result,

g = x1 ⊕ . . .⊕ xd. Since no xt is equal to g, this shows that g cannot be extreme.

Example 3.1. In Figure 3.1, the light blue area represents the set of the elements (x, y, z) of
R3

max such that (x, y, z) ≤ g2 implies x < g2
x. It clearly contains the whole cone except g2,

which shows that the latter element is extreme of type x.2

Proposition 3.1 implies the following technical lemma, which will be quite useful in some
proofs:

2For the sake of simplicity, we identify the type to the corresponding coordinate of the vector, saying for
instance that the vector is extreme “of type y”, instead of “type 2”.
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x y
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g2

Figure 3.1: Extremality of the element g2
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z

u = (2, 3, 0)

(−1, 2, 1)

(2, 2, 0)

(1,✵, 1)

(✵, 3,✵)

Figure 3.2: Illustration of the proof of
Theorem 2.2

Lemma 3.2. If g 6= ✵✵✵ is extreme of type t in a cone C ⊂ Rd
max, then gt 6= ✵.

Proof. Suppose that gt = ✵✵✵, and let g′ = (−1)g. Then g′ ∈ C, g′ ≤ g, and g′ 6= g since g 6= ✵✵✵.
This is a contradiction with the extremality of type t of g.

For d ≥ 1, the set of the integers { 1, . . . , d } is denoted by [d]. For every x = (xi) ∈ Rd
max,

the support of the vector x is defined as the set of the indexes of its non-null coordinates:

supp(x)
def
= { i ∈ [d] | xi 6= ✵ }.

The following proposition states that the extremality of an element in a tropical cone can be
established only by considering the vectors of the cone which have a smaller support:

Proposition 3.3. Let C ⊂ Rd
max be a tropical cone, and g an element of C. Then the two

following statements are equivalent:

(i) g is extreme of type t in C,

(ii) g is extreme of type t in {x ∈ C | supp(x) ⊂ supp(g) }.

Proof. Let D
def
= {x ∈ C | supp(x) ⊂ supp(g) }. It is straightforward that D is a tropical cone.

Supposing g extreme of type t in C, g is obviously extreme of type t in D, since g ∈ D
and D ⊂ C.

Conversely, suppose g extreme of type t in the cone D. By Lemma 3.2, t belongs to
supp(g). Consider x ∈ C such that x ≤ g and xt = gt. Then necessarily supp(x) ⊂ supp(g),
which proves that x = g. Thus g is extreme ot type t in C.

In a tropical cone, we claim that the minimality of type t of an element holds if only if it
holds in a neighborhood of this element. This is a consequence of the tropical convexity of
the cone. This allows to reduce the extremality of an element to a local property:

Proposition 3.4. Given a tropical cone C ⊂ Rd
max, g is extreme of type t if and only if there

exists a neighborhood N of g such that g is minimal of type t in the set C ∩N .
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Proof. If such a neighborhood N exists, let us consider x ∈ C such that x ≤ g and xt = gt.
Suppose that x is distinct from g. Then any element of the form y = x⊕αg with α < 0 also
satisfies y ≤ g, yt = gt, and y 6= g. Now, for α enough close to g, y belongs to N , which
contradicts the extremality of g.

The converse is straightforward.

Back to Carathéodory theorem. In this paragraph, we make a digression in order to show
how to prove the tropical analogue of Carathéodory theorem for closed cones and convex sets
using the characterization of extreme elements provided by Proposition 3.1.

Proof of Theorem 2.2. Consider u ∈ C, and for all k ∈ [d], let Ck
def
= {x ∈ C | x ≤ u and xk =

uk }. As a closed and bounded set, Ck is compact, and since it is non-empty, it admits a
minimal element gk ∈ C. Each gk is extreme of type k, as any y ∈ C satisfying y ≤ gk and
yk = gk

k belongs to Ck, so that y = gk by minimality of gk. Besides, u =
⊕d

i=1 gk, which
proves that u can be expressed as the sum of d extreme generators.

Example 3.2. Figure 3.2 provides an illustration of the proof of Theorem 2.2 when C is the
cone defined in Example 2.10 and u = (2, 3, 1). The sets Cx, Cy, and Cz are the parts of
C overlapping the areas in light red, blue, and green respectively. The minimal elements of
these sets (depicted in the same color) are extreme elements of the cone C.

The generalization to closed convex sets follows by homogenization.

Proof of Theorem 2.1. If x ∈ C, then (x,✶) is an element of Ĉ, hence, according to The-
orem 2.2, there exists (d + 1) extreme elements (g1, α1), . . . , (gd+1, αd+1) of Ĉ such that
x =

⊕d+1
i=1 gi. Up to writting x under the form

⊕d+1
i=1 λigi for some scalar λi ∈ Rmax, it

can be supposed that either αi = ✵ or αi = ✶.

Assume, without loss of generality, that α1 = . . . = αp = ✶ and αp+1 = . . . = αd+1 = ✵.
Then

⊕p
i=1 λi = ✶, and using Proposition 2.2, gi ∈ extp(C) if 1 ≤ i ≤ p, while gi ∈ extg(rec(C))

if p + 1 ≤ i ≤ d + 1. Defining q = d + 1 − p, it follows that x can be written as the sum of
the convex combinations of the p extreme points g1, . . . , gp of C, and the q extreme elements
gd−q+2, . . . , gd+1 of rec(C).

3.2 Characterizing extremality using the tangent cone

In the previous section, we have seen that extremality can be determined locally (Proposi-
tion 3.4). In Section 3.2.1, we use this property to establish a reduction from the extremality
of a vector g in a polyhedral cone C, to the extremality of an associated element in the tangent
cone to C at the element g (Theorem 3.1). This tangent cone is indeed a polyhedral cone
which provides a local description of C in the neighborhood of g (Proposition 3.6).

On top of that, the tangent cone is very particular, because it is defined by inequalities
whose coefficients are all equal to ✵ and ✶. In Section 3.2.2, we will see that such cones are in
fact the tropical analogues of the 0/1-polytopes (Proposition 3.8), in the sense that they are
generated by elements of { ✵,✶ }d. We establish a simple combinatorial criterion of extremality
for this class of cones (Proposition 3.10), and derive the corresponding characterization in the
general case (Theorem 3.2).
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3.2.1 Tangent cone

When an inequality ax ≤ bx satisfies ag = bg, it is said to be saturated on g. The tangent
cone of a cone C at an element g is essentially defined by the inequalities of the system defining
C which are saturated on g, on top of the implicit saturated inequalities xl = ✵ induced by
the support of g:

Definition 3.2. Let C = {x ∈ Rd
max | Ax ≤ Bx }, and g ∈ C. The tangent cone to C at

the element g is the tropical polyhedral cone T (g, C) defined by the following intersection of
halfspaces:

T (g, C) =
⋂

1≤k≤p
Akg=Bkg>✵

{
u ∈ Rd

max

∣∣ ⊕

i∈arg max(Akg)

ui ≤
⊕

j∈arg max(Bkg)

uj

}
∩
⋂

l 6∈supp(g)

{u ∈ Rd
max | ul = ✵ },

where for any c = (ci) ∈ R1×d
max, arg max(cg) is defined as the argument of the maximum

max1≤i≤d(ci + gi).

The fact that the tangent cone is a local representation of the initial cone comes from a
differentiation property of tropical linear forms, which are functions of the form x 7→ cx for
some row vector c ∈ R1×d

max:

Lemma 3.5 (Differenciation of tropical linear forms). Let c = (ci) ∈ R1×d
max be a tropical

linear form, and x = (xi) ∈ Rd
max such that cx > ✵. Then there exists a neighborhood D(c)

of x such that for all y = (yi) ∈ D(c),

cy = cx +
⊕

i∈arg max(cx)

(yi − xi),

with the convention −∞+∞ = −∞.

Proof. For all i ∈ arg max(cx), ci + xi > cj + xj as soon as j 6∈ arg max(cx). Then let
N be a neighborhood such that ci + yi > cj + yj for any element y ∈ N and any pair
(i, j) ∈ arg max(cx)× ([d] \ arg max(cx)). It follows that for all y ∈ N ,

cy = max
1≤i≤d

(ci + yi)

= max
i∈arg max(cx)

(ci + yi)

= max
i∈arg max(cx)

(ci + xi + yi − xi) (as cx > ✵ ensures xi > ✵ for all i ∈ arg max(cx))

= max
i∈arg max(cx)

(cx + yi − xi)

= cx + max
i∈arg max(cx)

(yi − xi).

Proposition 3.6. Let C = {x ∈ Rd
max | Ax ≤ Bx }. Then there exists a neighborhood N of

g such that for all x ∈ N , x belongs to {y ∈ C | supp(y) ⊂ supp(g) } if and only if x is an
element of g + T (g, C).

Proof. Consider a neighborhood N of g defined by the elements x such that:

(i) Akx < Bkx for all k such that Akg < Bkg,
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(ii) x ∈ D(Ak) ∩D(Bk) for every k satisfying Akg = Bkg > ✵.

Let x ∈ N .

First suppose that x ∈ C and supp(x) ⊂ supp(g). Let us consider u = (ui) defined by
ui = xi− gi for all i. Then supp(u) ⊂ supp(x), hence for all l 6∈ supp(g), ul = ✵. Besides, for
every k such that Akg = Bkg > ✵, the inequality Akx ≤ Bkx implies:

Akg +
⊕

i∈arg max(Akg)

ui ≤ Bkg +
⊕

j∈arg max(Bkg)

uj by definition of N and Lemma 3.5

so that by eliminating Akg and Bkg,
⊕

i∈arg max(Akg)

ui ≤
⊕

j∈arg max(Bkg)

uj .

Finally, xi = gi + ui clearly holds when i ∈ supp(g). If i 6∈ supp(g), then gi + ui = ✵ = xi

since supp(x) ⊂ supp(g). This proves that x = g + u.

Conversely, given u ∈ T (g, C) such that x = g + u, we have supp(u) ⊂ supp(g) by
definition of T (g, C) so that supp(x) is also included into supp(g). Besides, for all i ∈ supp(gi),
ui = xi − gi, while if i 6∈ supp(gi), ui = ✵ = xi − gi with the convention −∞ +∞ = −∞.
Clearly, for all k such that Akg < Bkg, we also have Akx < Bkx by definition of N . Now if
Akg = Bkg > ✵, then

⊕

i∈arg max(Akg)

ui ≤
⊕

j∈arg max(Bkg)

ui

hence

Akg +
⊕

i∈arg max(Akg)

(xi − gi) ≤ Bkg +
⊕

j∈arg max(Bkg)

(xj − gj)

and by Lemma 3.5, we obtain Akx ≤ Bkx. Finally, if Akg = Bkg = ✵, let I = { i | aki > ✵ }
and J = { i | bki > ✵ }. Necessarily, I∪J and supp(g) have an empty intersection. Since x has
a smaller support than g, we conclude that (I∪J)∩supp(x) = ∅, so that Akx = Bkx = ✵.

Given I ⊂ [d], we denote by εI the element of Rd
max whose i-th coordinate is equal to ✶

if i ∈ I, and ✵ otherwise. We are going to show that the tangent cone T (g, C) contains the
element εsupp(g):

Lemma 3.7. Let C ⊂ Rd
max be a polyhedral cone, and g ∈ C. Then εsupp(g) belongs to T (g, C).

Proof. Let us first show that εsupp(g) indeed belongs to T (g, C). By Proposition 3.6, g belongs
to g + T (g, C), so that there exists u ∈ T (g, C) such that g = g + u. Clearly, for any i ∈
supp(g), ui = ✶. Besides, supp(u) ⊂ supp(g) by definition of T (g, C), so that u = εsupp(g).

We can now prove that the extremality of an element g in a cone C can be reduced to the
extremality of εsupp(g) of the tangent cone at g:

Theorem 3.1. Let C ⊂ Rd
max be a tropical polyhedral cone. Then g is extreme in C if and

only if εsupp(g) is extreme in T (g, C).
In that case, both elements have the same type(s) of extremality in the sense of Proposi-

tion 3.1.
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Proof. According to Proposition 3.3, g is extreme of type t in C if and only if it is extreme of
type t in {x ∈ C | supp(x) ⊂ supp(g) }.

Let N be a neighborhood such that Proposition 3.6 holds. Using Proposition 3.4, if follows
that g is extreme of type t in C if and only if it is extreme of type t in g + T (g, C).

First observe that g ∈ g + T (g, C) is equivalent to εsupp(g) ∈ T (g, C) by Lemma 3.7.
Suppose that εsupp(g) is extreme of type t in T (g, C). Let x ∈ g +T (g, C) such that x ≤ g

and xt = gt. Let u ∈ T (g, C) verifying x = g + u. Clearly, supp(u) ⊂ supp(g) by definition
of T (g, C), and for all i ∈ supp(g), ui ≤ ✶, which implies u ≤ εsupp(g). Besides, t ∈ supp(g)
by Lemma 3.2, so that ut = ✶. It follows that u = εsupp(g), hence x = g. This shows that g

is extreme of type t in g + T (g, C).
Conversely, suppose that g is extreme of type t in g + T (g, C). Let u ∈ T (g, C) verifying

u ≤ εsupp(g) and ut = (εsupp(g))t = ✶ (by Lemma 3.2). Let x = g + u. Clearly x ≤ g and
xt = gt, so that x = g. Since supp(u) ⊂ supp(g), we have u = εsupp(g). It follows that εsupp(g)

is extreme of type t in T (g, C).

Example 3.3. Continuing Example 2.10, let us illustrate Theorem 3.1 on the element g2 =
(2, 2, 0). In (3.1), the inequalities of the system given in (2.10) which are saturated by g2 are
colored in red, and the terms which belong to the arguments of the members of saturated
inequalities are underlined. It directly provides a system of inequalities defining the cone
T (g2, C), in (3.2).






z ≤ x + 2

x ≤ max(y, z)

x ≤ z + 2

z ≤ max(x, y − 1)

(3.1)

{
x ≤ y

x ≤ z
(3.2)

Figure 3.3 illustrates that the cones C and g2 + T (g2, C) locally coincide in a neighborhood
of g2. Figure 3.4 provides an illustration of the extremality of type x of ✶✶✶ = εsupp(g2) in
the cone T (g2, C): the light green area, which depicts the set of elements (x, y, z) such that
(x, y, z) ≤ ✶✶✶ implies x < ✶, contains the whole cone except ✶✶✶.

3.2.2 The { ✵, ✶ }-cones and their extreme elements

The tangent cone T (g, C) belongs to a particular class of polyhedral cones, which we call
{ ✵,✶ }-cones, because they are defined by system of inequalities with coefficients in { ✵,✶ }:

Definition 3.3. Let C ⊂ Rd
max. The set C is said to be a { ✵,✶ }-cone if it can be expressed

as the set of the solutions of Ax ≤ Bx with A, B ∈ {✵,✶ }d×p (p ≥ 0).

An interesting property of such cones is that they are the tropical analogues of 0/1-
polytopes. A 0/1-polytope is defined as the convex hull of points of the regular cube { 0, 1 }d

(see [Zie00] for a survey). Here, we show that {✵,✶ }-cones are indeed generated by elements
of { ✵,✶ }d. Observe that this property is specific to the tropical case, since in the classical
case, there is no reason that a 0/1-polytope be defined by a system of 0/1-inequalities.

Proposition 3.8. Let C ⊂ Rd
max. Then C is a { ✵,✶ }-cone if and only if it is of the form

cone(G), with G ⊂ {✵,✶ }d.
In particular, every scaled extreme elements of a { ✵,✶ }-cone belongs to { ✵,✶ }d.
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Figure 3.3: The set g +T (g2, C) (in light
blue)
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Figure 3.4: Extremality of ✶✶✶ in the cone
T (g2, C)

Proof. Let us first prove the “only if” part. Let A, B ∈ {✵,✶ }d×p such that C = {x ∈ Rd
max |

Ax ≤ Bx }. We are going to show that any scaled extreme element of C belongs to { ✵,✶ }d.

Consider a scaled extreme element g = (gi) of type t in C. Let I = { i | gi ≤ gt } and
J = { j | gi > gt }. Let α > 0 such that gj ≥ gt + α for all j ∈ J . Observe that given
c ∈ {✵,✶ }1×d, if cg > ✵, then it is equal to one of the gk, so that arg(cg) is contained either
into I or into J . In the former case, cg ≤ gt, while in the latter case, cg > gt + α. Let
x = (xi) be defined by xi = gi for all i ∈ I, and xj = gj − α. Since supp(x) = supp(g),
cx > ✵ if and only if cg > ✵, and in that case, the following relation holds:

cx =

{
cg if arg(cg) ⊂ I, or

cg − α otherwise, i.e. arg(cg) ⊂ J.
(3.3)

We claim that for all k, Akx ≤ Bkx. First suppose that Akg > ✵. Since Akg ≤ Bkg,
exactly one of three conditions is satisfied: (i) arg(Akg), arg(Bkg) ⊂ J , (ii) arg(Akg) ⊂
I and arg(Bkg) ⊂ J , in which case we even have Akg + α ≤ α + gt ≤ Bkg, (iii) or
arg(Akg), arg(Bkg) ⊂ I. Applying the formula given in 3.3 to the tropical forms Ak and
Bk in that three cases allows to show that Akx ≤ Bkx holds. Now, if Akg = ✵, then Akx = ✵

as mentionned above, so that Akx ≤ Bkx is trivially satisfied.

Consequently, the set J has to be empty, otherwise the element x ∈ C contradicts the
minimality of type t of g. This means that for all i ∈ [d], gi ≤ gt, and since g is scaled, then
gt = ✶. Now suppose that there exists i ∈ [d] such that ✵ < gi < ✶. The element y = 2 × g

obviously belong to C, and satisfies yt = ✶, y ≤ g, and yi < gi, which is impossible under our
assumptions. As a result, for all i ∈ [d], either gi = ✵ or gi = ✶, which completes the proof.

Proving the “if” part requires some considerations on the polar of a tropical cone, which
will be developed in Chapter 5. Indeed, Corollary 5.11 proves that a cone of the form cone(G)
with G ⊂ {✵,✶ }d is given by inequalities ax ≤ bx, such that, according to Proposition 5.10,

each
t(

a b
)

is a scaled extreme element of a { ✵,✶ }-cone of (Rd
max)

2. The coefficients of the
system given in (5.6) are all in { ✵,✶ }, since G ⊂ {✵,✶ }d. Therefore, using the “only if”
part, we have a, b ∈ {✵,✶ }d, which shows that cone(G) is a { ✵,✶ }-cone.
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Remark 3.4. Proposition 3.8 implies that the number of extreme rays in a { ✵,✶ }-cone of
Rd

max is bounded by 2d − 1. The general case will be discussed in Section 5.3.

The following technical lemma is a rewritting of Lemma 3.2 in the context of { ✵,✶ }-cones,
in the light of Proposition 3.8:

Lemma 3.9. Let C ⊂ Rd
max be a { ✵,✶ }-cone. If g ∈ Rd

max is a scaled extreme element of
type t in C, then gt = ✶.

Proposition 3.8 leads to a first combinatorial characterization of extreme elements in
{ ✵,✶ }-cones. It states that the extremality in such cones is entirely determined by elements
in { ✵,✶ }d:

Proposition 3.10. Let C ⊂ Rd
max be a { ✵,✶ }-cone, and g ∈ C. Then the three following

statements are equivalent:

(i) g is a scaled extreme element of C of type t.

(ii) for all scaled extreme element h of C, h ≤ g =⇒ ht = ✵ or h = g.

(iii) for all element x ∈ C ∩ {✵,✶ }d, x ≤ g =⇒ xt = ✵ or x = g.

Proof. (i) =⇒ (iii) Lemma 3.9 implies that gt = ✶. Therefore, considering an element x ∈
C ∩ {✵,✶ }d such that x ≤ g and x 6= g, xt is necessarily equal to ✵, otherwise it would
contradict the minimality of type t of g.

(iii) =⇒ (ii) It is straighforward from Proposition 3.8.

(ii) =⇒ (i) Consider x ∈ C such that x ≤ g and xt = gt. If G = (gi)1≤i≤n is the set formed
by scaled extreme elements of C, then by Theorem 2.3, there exists λ1, . . . , λn ∈ Rmax

such that x =
⊕n

i=1 λig
i. In particular, there exists 1 ≤ i ≤ n such that xt = λig

i
t.

Since xt = gt = ✶ (using Lemma 3.9), gi
t 6= ✵, thus gi

t = ✶ by Proposition 3.8. Therefore,
λi = ✶, so that gi ≤ x ≤ g. It follows that gi = g, which proves x = g.

Instantiating Proposition 3.10 with tangent cones provides a combinatorial characteriza-
tion of the extremality in polyhedral cones in the general case:

Theorem 3.2. Let C ⊂ Rd
max be a tropical polyhedral cone. Then g is extreme of type t in C

if and only if εsupp(g) is the unique element T (g, C) ∩ {✵,✶ }d whose t-th coordinate is equal
to ✶.

Proof. It is a straightforward consequence of Theorem 3.1, Proposition 3.10, and the fact that
all elements x ∈ T (g, C) ∩ {✵,✶ }d satisfies x ≤ εsupp(g).

Example 3.5. Continuing Example 3.3, the three elements of T (g2, C)∩{✵,✶ }d distinct from
✶✶✶ are represented by blue squares in Figure 3.4. They all have ✵ as first coordinate, which
confirms that g2 is extreme of type x.

Corollary 3.11. Let C ⊂ Rd
max be a tropical polyhedral cone, and g ∈ C. Then g is extreme

of type t in C if and only if for every l ∈ supp(g), the following property holds:

∀x ∈ T (g, C) ∩ {✵,✶ }d, xl = ✵ =⇒ xt = ✵. (3.4)
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Figure 3.5: A directed hypergraph

Proof. Suppose that g is extreme of type t. By Theorem 3.2, εsupp(g) is the unique element

of T (g, C) ∩ {✵,✶ }d whose t-th coordinate is ✶. Let l ∈ supp(g), and x ∈ T (g, C) ∩ {✵,✶ }d

such that xl = ✵. Then x 6= εsupp(g), so that xt = ✵.

Conversely, since g ∈ C, then εsupp(g) ∈ T (g, C) by Lemma 3.7. Besides, consider x ∈

T (g, C) ∩ {✵,✶ }d such that xt = ✶. Then supp(x) ⊂ supp(g), and for all l ∈ supp(g), xl = ✶

by (3.4). Thus x = εsupp(g). This proves that εsupp(g) is the unique element of T (g, C)∩{✵,✶ }d

whose t-th coordinate is ✶, which implies that g is extreme of type t by Theorem 3.2.

3.3 Characterizing extremality using directed hypergraphs

We are now going to show how the combinatorial extremality criterion based on the {✵,✶ }-
elements of the tangent cone can be expressed using directed hypergraphs.

Directed hypergraphs and related notions are introduced in Section 3.3.1. Directed hy-
pergraphs are a generalization of directed graphs, just as hypergraphs for graphs.

In Section 3.3.2, we introduce the notion of tangent directed hypergraph, which is an
equivalent encoding of the tangent cone as a hypergraph. Corollary 3.11 is then rewritten in
terms of the reachability relation of the tangent hypergraph. Theorem 3.3 proves that the
extremality reduces to the existence of a particular strongly connected component playing
the role of a sink.

3.3.1 Preliminaries on directed hypergraphs

A directed hypergraph is given by a set of nodes and of hyperedges. Hyperedges are extensions
of digraph edges: a hyperedge is defined as an arc from a set of nodes to another one.

Definition 3.4. A directed hypergraph is a pair (N, E) such that all element e ∈ E is of
the form (T, H) with T, H ⊂ N . The elements of N and E are respectively its vertices and
hyperedges.

Given a hyperedge e = (T, H) ∈ E, the sets T and H represent the tail and the head of e
respectively, and are also denoted by T (e) and H(e).
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Example 3.6. Figure 3.5 depicts an example of hypergraph whose nodes are u, v, w, x, y, z,
and of hyperedges e1 = ({u}, {v}), e2 = ({v}, {w}), e3 = ({w}, {u}), e4 = ({v, w}, {x, y}),
and e5 = ({w, y}, {t}).3

The notion of reachability can be extended from directed graphs to directed hypergraphs.
It is defined recursively: when all the nodes of the tail of a hyperedge e are reachable from a
node u, then every node of the head of e is also reachable from u:

Definition 3.5. Let H = (N, E) be a directed hypergraph, and u, v ∈ N . Then v is said to
be reachable from u in H, which will be denoted by u H v, if

❼ u = v,

❼ or there exists a hyperedge e such that v ∈ H(e) and all the elements of T (e) are
reachable from u.

This definition naturally induces a notion of hyperpaths:

Definition 3.6. Let H = (N, E) be a directed hypergraph, and u, v ∈ N . A hyperpath from
u to v in H is a sequence of p hyperedges e1, . . . , ep ∈ E satisfying one of the two following
conditions:

❼ p = 0 and u = v,

❼ or p ≥ 1 and

T (ei) ⊂ {u } ∪H(e1) ∪ · · · ∪H(ei−1) for all 1 ≤ i ≤ p

{ v } ⊂ H(ep).

The hyperpath is said to be minimal if none of its subsequences is a hyperpath from u to v.

Of course, v is reachable from u if and only if there is a hyperpath from u to v.

Example 3.7. Consider the hypergraph depicted in Figure 3.5.

Applying the recursive definition of reachability from u discovers the node v, then w,
which leads to the two nodes x and y through the hyperedge e4, and finally t through e5.

It can be checked that t is reachable from u through the hyperpath e1, e2, e4, e5.

3.3.2 Tangent directed hypergraph

The definition of the tangent directed hypergraph derives from the system of inequalities
defining the tangent cone (see (3.2)). Its nodes correspond to the coordinates l such that
gl > ✵, and its hyperedges are induced by the saturated inequalities and their associated
arg max:

Definition 3.7. Let C = {x ∈ Rd
max | Ax ≤ Bx } be a tropical polyhedral cone (A =

(aij), B = (bij) ∈ R
p×d
max), and let g ∈ C. The tangent directed hypergraph at g, denoted by

H(g, C), is defined by:

N = supp(g),

E = { (arg max(Bkg), arg max(Akg)) | k ∈ [p] and Akg = Bkg > ✵ } .

3When a hyperedge leaves several nodes, it is decorated with a black solid disk portion.
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Note that for all k such that Akg = Bkg > ✵, arg max(Akg) and arg max(Bkg) are
necessarily included into supp(g), so that the hypergraph H(g, C) is well defined.

The extremality criterion provided by Corollary 3.11 suggests to evaluate, given an element
of T (g, C)∩{✵,✶ }d, the effect of setting its l-th coordinate to the other coordinates. Suppose
that it has been discovered that ul = ✵ implies uj1 = . . . = ujn = ✵. Then for any hyperedge
e of H(g, C) such that T (e) ⊂ { l, j1, . . . , jn }, u satisfies:

max
i∈H(e)

ui ≤ max
j∈T (e)

uj = ✵,

so that ui = ✵ for all i ∈ H(e). Thus, the propagation of the value ✵ from the l-th coordinate
to other coordinates mimicks the inductive definition of the reachability relation from the
node l in H(g, C):

Proposition 3.12. Let C ⊂ Rd
max be a tropical polyhedral cone, and g ∈ C. Then for all

l ∈ supp(g), the property given by (3.4) holds if and only if t is reachable from l in the
tangent hypergraph H(g, C).

Proof. Let l ∈ supp(g), and suppose that t is reachable from l in H(g, C). Suppose that
u ∈ T (g, C) ∩ {✵,✶ }d such that ul = ✵. Let us show by induction on the definition of the
reachability in H(g, C) that ut = ✵:

❼ if t = l, then obviously ut = ✵.

❼ otherwise, there exists a hyperedge e such that t ∈ H(e) and for all j ∈ T (e), j is
reachable from l. By induction hypothesis, uj = ✵. Let Aku ≤ Bku be the inequality
associated to e. Then arg max(Akg) = H(e) and arg max(Bkg) = T (e). Since u satisfies⊕

i∈arg max(Akg) ui ≤
⊕

j∈arg max(Bkg) uj , we have maxi∈H(e) ui ≤ maxj∈T (e) uj = ✵.
Hence ut = ✵, so that (3.4) holds.

Conversely, suppose t is not reachable from l. Let us define u = (ui) by ui = ✵ if
i is reachable from l or i 6∈ supp(g), and ✶ otherwise. Let 1 ≤ k ≤ p such that Akg =
Bkg > ✵, and e the associated hyperedge in H(g, C). Remember that arg max(Akg) = H(e)
and arg max(Bkg) = T (e). If for all j ∈ T (e), j is reachable from l, then all elements
i ∈ H(e) are also reachable from l, so that

⊕
i∈arg max(Akg) ui =

⊕
j∈arg max(Bkg) uj = ✵.

Otherwise, there exists j ∈ T (e) which is not reachable from l, so that
⊕

j∈arg max(Bkg) uj = ✶.
Since

⊕
i∈arg max(Akg) ui is always less than or equal to ✶, the inequality

⊕
i∈arg max(Akg) ui ≤⊕

j∈arg max(Bkg) ui holds. It follows that T (g, C) ∩ { ✵,✶ }d admits an element u such that
ul = ✵ and ut = ✶.

Thanks to Proposition 3.12, we can now prove that the extremality criterion of Corol-
lary 3.11 holds if and only if the node t is reachable from any other node l in the tangent
hypergraph. Such a node is called a sink. This sink property also holds for any other node
t′ belonging to the same strongly connected component of H(g, C). In directed hypergraphs,
strongly connected components are defined as follows:

Definition 3.8. Let H be a directed hypergraph. A strongly connected component (Scc for
short) of a hypergraph H is an equivalence class of the relation ≡H, defined by u ≡H v if
u H v and v  H u.
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Like the Sccs of directed graphs, the Sccs of hypergraphs form a partition of the set
of nodes. The reachability relation in a hypergraph induces a partial order over the Sccs,
defined as follows:

Proposition-Definition 3.13. Let H be a directed hypergraph. Let �H be the relation over
the Sccs of H by C1 �H C2 if C1 and C2 admit a representative u and v respectively such
that u H v.

Then �H is a partial order on the set of the Sccs of H.

Then we claim that a node of a hypergraph is a sink if and only if the Scc which contains
it is the greatest Scc for the order �H. This implies:

Theorem 3.3. Let C ⊂ Rd
max be a polyhedral cone, and g ∈ C. Then g is extreme if and

only if the set of the Sccs of the hypergraph H(g, C), partially ordered by �H(g,C), admits a
greatest element.

In that case, the greatest Scc precisely contains all the elements t such that g is extreme
of type t.

Proof. From Proposition 3.12 and Corollary 3.11, g is extreme of type t if and only if t is
reachable from any node l of the hypergraph H(g, C). This holds if and only if t belongs to
a Scc C such that D �H(g,C C for any Scc D.

Example 3.8. Consider the tangent directed hypergraph H(g2, C) associated to the element
g2 of the cone introduced in Example 2.10. Remember that this element is extreme of type
x. Following the system of equations defining the tangent cone (see 3.2), the hypergraph is:

x y z

Obviously, the node x forms the greatest Scc of the hypergraph.

3.4 Conclusion of the chapter

We have obtained a combinatorial characterization of extremality in polyhedral cones. It is
based on the existence of a greatest Scc in a directed hypergraph derived from the description
by halfspaces.

After all, our combinatorial criterion seems more complex than its classical analogues
presented in the introduction of this chapter. Nevertheless, as discussed in Chapter 4, it can
be evaluated by a very efficient algorithm. Therefore, we will see in Chapter 5 that, thanks
to our criterion, the characterization of extremality is algorithmically easier in the tropical
world than in the classical world.



56 Chapter 3. Combinatorial characterization of extremality from halfspaces



CHAPTER 4

Determining the maximal strongly
connected components in directed

hypergraphs

In this chapter, we develop an efficient algorithm which, given a directed hypergraph H,
computes the Sccs which are maximal for the partial order �H introduced in Chapter 3.
Its complexity is quasi-linear in the size of the hypergraph. It will allow to evaluate the
combinatorial criterion provided by Theorem 3.3, since the set of the Sccs of H admits a
greatest element if and only if there is a unique maximal element.

Directed hypergraphs have a very large number of applications. Among others, they are
used to solve problems related to satisfiability in propositional logic (see for instance [AI91,
AFFG97, GGPR98, Pre03]), network routing [Pre00], functional dependencies in database
theory [Ull82], Petri nets [Yen92], AND-OR graphs in artificial intelligence [Nil71], fixpoint
computations in model checking [LS98], chemical reaction networks [Özt08], transportation
networks (see for instance [NP89, NPG98]), etc. Consequently, many algorithmic aspects of
directed hypergraphs have been studied, including reachability, but above all, optimization
related problems, such as maximum flows, minimum cardinality cuts, minimum weighted
hyperpaths, etc. We refer to the surveys of Ausiello et al. [AFF01] and of Gallo et al. [GLPN93]
for further details.

Surpringly, the problem of determining the Sccs has never been addressed before (as far
as we know), while it is an elementary question. Besides, it is well understood in the case of
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directed graphs: (i) the first known solution is due to Tarjan [Tar72], (ii) later, Aho, Hopcroft,
and Ullman attributed to Kosaraju a second method [AHU83], (iii) and finally, Cheriyan and
Mehlhorn [CM96], and independently Gabow [Gab00], discovered a third algorithm. Although
directed hypergraphs are generalization of directed graphs, none of these methods allow to
compute the Sccs in directed hypergraphs. The main reason is that there is an important
gap between the notion of reachability in directed hypergraphs and in directed graphs.

The chapter is organized as follows. In Section 4.1, we present an algorithm determining
the set of nodes reachable from a given node in a directed hypergraph, firstly introduced
in [GLPN93]. We show how it can be used to compute (maximal) Sccs, and explain why
this approach is not optimal. That is why, in Section 4.2, we develop an original method
whose aim is to compute maximal Sccs. Its complexity is almost linear in the size of the
hypergraph. As a conclusion, Section 4.3 informally explains why computing all the Sccs
appears to be a harder problem. Finally, Section 4.4 provides the complexity and correctness
proof of our algorithm.

4.1 Reachability in directed hypergraphs

The algorithm ReachableFrom that we describe here has been proposed by Gallo et al.
in [GLPN93]. Its complexity in time and space is proved to be linear in the size of H, which
is denoted by size(H), and defined as:

size(H) = |N |+
∑

(T,H)∈E

(|T |+ |H|), where H = (N, E).

The algorithm is presented in Figure 4.1. Let us briefly discuss its principle.
A call to ReachableFrom(u, H) determines the sets of the nodes which are reachable

from u in the hypergraph H. The result is stored in the variable ρ. Starting from ρ = ∅, it is
computed by successive iterations of the main loop (Lines 5 to 15). Each time a new node v is
added to ρ (Line 6), the hyperedges e = (T, H) newly satisfying T ⊂ ρ are examined in order
to collect all the nodes w of their head H, which are clearly now reachable from the node u
in H.

However, a particular data structure is used in order that the time complexity be linear.
First, each node v is assumed to be linked to the list Ev of the hyperedges e = (T, H) such
that v ∈ T .1 Thus, when the node v is added to ρ, the hyperedges newly satisfying T ⊂ ρ
are necessarily elements of the list Ev. Besides, instead of performing the expensive test of
the inclusion of T into ρ, a counter ce representing the number of remaining nodes in the set
T \ ρ is decremented. This counter is initially set to the cardinality of T , and when it reaches
the value 0 (Line 9), it means that the hyperedge satisfies the inclusion T ⊂ ρ. In that case,
each node w appearing in H is reachable from u, so that it is pushed on a stack S in order to
be treater later (Lines 10 to 12). In this way, the stack S temporarily stores some nodes which
are known to be reachable from u, but which are not yet in the set ρ. Note that each node v
is tagged with a boolean visitedv which is true when v is stored in the stack S or in the set
ρ. This avoids to push a node on the stack more than once. The algorithm stops when there
is no new node to visit anymore, i.e. when S is empty.

Proposition 4.1. Let H be a directed hypergraph, and u a node of H. Then the time com-
plexity of the function ReachableFrom(u, H) is O(size(H)).

1The construction of these lists can be clearly performed in linear time by traversing all the hyperedges.
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1: function ReachableFrom(u, H = (N, E))
2: for all w ∈ N do visitedw := false

3: for all e = (T, H) ∈ E do ce := |T |
4: visitedu := true, S := [u], ρ := ∅
5: while S is not empty do

6: pop v from S, append v to ρ

7: for all e = (T, H) ∈ Ev do

8: decrement ce

9: if ce = 0 then

10: for all w ∈ H such that visitedw = false do

11: push w on S, visitedw := true

12: done

13: end

14: done

15: done

16: return ρ

17: end

Figure 4.1: Linear algorithm computing the sets of nodes reachable from u

Proof. The initialization steps (Lines 2 to 4) clearly have a linear time complexity.

Each node v is treated at most once by the main loop, and the time complexity of the
corresponding iteration is O(1) + O(|Ev|) if the instructions between Lines 9 and 13 are not
considered. These latter are executed at most once per hyperedge e in the whole execution
of the algorithm and their time complexity is O(|H(e)|) for each. The whole time complexity
of the main loop is therefore:

∑

v∈N

(O(1) + O(|Ev|)) +
∑

e∈E

O(|H(e)|) = O(|N |) +
∑

e∈E

O(|T (e)|) + O(|H(e)|),

so that it is linear in the size of the hypergraph H.

Gallo’s algorithm can be used to determine the reachability graph of H = (N, E), which is
the directed graph G formed by the nodes of N and the set E′ = { (u, v) | u H v } of directed
edges.2 It can be indeed computed by evaluating ReachableFrom(u, H) on each node
u ∈ N . Following Proposition 4.1, the time complexity of this operation is O(|N | × size(H)).

The (maximal) Sccs of H coincide with the (maximal) Sccs of its reachability graph.
The Sccs of the latest can be computed in linear time in the size of G (i.e. O(|N | + |E′|)),
using for instance Tarjan’s algorithm [Tar72]. Maximal ones can also be obtained with the
same complexity, using a variant of Tarjan’s method, which will be described in Section 4.2.2.
Therefore, the total time complexity to determine (maximal) Sccs is O(|N |× size(H)+ |N |+
|E′|) = O(|N | × size(H)) (since |E′| is of order of |N |2).

Nevertheless, this approach is not optimal. Firstly, the algorithm ReachableFrom(u,
H) is not recursive. In particular, if ReachableFrom(v, H) has been already computed, and
that u H v, there is no way to exploit the result of ReachableFrom(v, H) in the execution
of ReachableFrom(u, H). This implies that many redundant operations are performed
when the whole reachability graph of H is determined. Secondly, discovering maximal Sccs
in directed graphs is known to be solved in linear time. In constrast, if the current approach
is executed on a directed graph G = (N, E) (or more exactly, on the corresponding directed

2Recall that a directed graph is a couple (N, E′), where E′ ⊂ N × N . Its size is defined as |N | + |E|.
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hypergraph (N, { ({u}, {v}) | (u, v) ∈ E })), the time complexity is O(|N | · size(G)), which is
suboptimal. These two reasons have motivated us to make further investigations in order to
find a more efficient solution.

4.2 Computing maximal strongly connected components

In this section, we describe an algorithm which determines the maximal Sccs for the order
� in directed hypergraphs. In particular, it returns the number of such Sccs.3

Its principle is discussed in Section 4.2.1. We provide a first and suboptimal sketch of the
algorithm. The key idea is that maximal Sccs in a directed hypergraph can be computed by
an alternative sequence of operations of two kinds: (i) merging some nodes in the directed
hypergraph, (ii) discovering the maximal Sccs in an underlying directed graph. For this
reason, we define in Section 4.2.2 a variation of Tarjan’s algorithm which determines the
maximal Sccs of a directed graph in linear time.

Finally, in Section 4.2.3, we build an optimized version of the sketch of the algorithm of
Section 4.2.1, which executes in quasi-linear time. It relies on a particular instrumentation of
hyperedges, which is quite technical. That is why we recommend that the reader make use
of the execution trace given in Section 4.2.4.

4.2.1 Principle of the algorithm for directed hypergraphs

4.2.1.a Underlying directed graph. First observe that a directed graph G(H) = (N, E′) can
be associated to any directed hypergraph H = (N, E), by defining E′ = { (t, h) | ({t}, H) ∈
E and h ∈ H }. The directed graph G(H) is generated by the simple hyperedges of H, i.e.
the elements e ∈ E such that |T (e)| = 1. In Proposition 4.3, we first point out a remarkable
special case in which the maximal Sccs of H and G(H) coincide.

Lemma 4.2. Let H be a directed hypergraph. Each Scc C of H is of the form ∪iC
′
i where

the C ′
i are the Sccs of G(H) such that C ∩ C ′

i 6= ∅.

Proof. Consider u ∈ C. Then there exists a Scc C ′ of G(H) such that u ∈ C (since the Sccs
of G(H) form a partition of the set N), and obviously C ∩ C ′ 6= ∅.

Conversely, suppose that C ′ is a Scc of G(H) such that C ∩ C ′ 6= ∅. Let u ∈ C ∩ C ′.
Then for any v ∈ C ′, u G(H) v  G(H) u, so that u H v  H u, hence v ∈ C.

Proposition 4.3. Let H be a directed hypergraph such that each maximal Scc of G(H) is
reduced to a singleton. Then H and G(H) have the same maximal Sccs.

Proof. First suppose that {u } is a maximal Scc of G(H). Suppose that there exists v 6= u
such that u H v. Consider a hyperpath e1, . . . , ep from u to v in H. Then there must be a
hyperedge ei such that T (ei) = {u } and H(ei) 6= {u } (otherwise, the hyperpath is a cycle
and v = u). Let w ∈ H(ei) \ {u }. Then (u, w) is an edge of G(H). Since {u } is a maximal
Scc of G(H), this enforces w = u, which is a contradiction. Hence {u } is a maximal Scc of
H.

Conversely, consider a maximal Scc C of H. Let u ∈ C, and let D be the Scc of G(H)
containing u. Consider D′ a maximal Scc of G(H) such that D �G(H) D′, and let C ′ be a

3This will allow to easily evaluate whether there exists a greatest component, as motivated by the extremal-
ity criterion of Chapter 3.
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Figure 4.2: A node merging step (the index of the visited nodes is given beside)

Scc of H such that D′ ∩ C ′ 6= ∅. By Lemma 4.2, we have D′ ⊂ C ′. It follows that C �H C ′,
hence C = C ′ by maximality of C. Thus, D′ ⊂ C, and since D′ is a singleton, it also forms a
Scc of H using the first part of the proof. This shows D′ = C (since the Sccs of H form a
partition of the set of nodes), so that C is a maximal Scc of G(H).

Naturally, this statement does not hold in the general case.

4.2.1.b Merging nodes in a directed hypergraph. If f is a function from N to an ar-
bitrary set, we denote by f(H) the directed hypergraph of nodes f(N) and of hyperedges
{ (f(T (e)), f(H(e))) | e ∈ E }. The following proposition ensures that, in a directed hyper-
graph, merging two nodes of a same Scc does not alter the reachability relation:

Proposition 4.4. Let H = (N, E) be a directed hypergraph, and let x, y ∈ N such that
x ≡H y. Consider the function f mapping any node distinct from x and y to itself, and both
x and y to a same node z (with z 6∈ N \{x, y}). Then u H v if and only if f(u) f(H) f(v).

The proof is given in Appendix B. Thus, the image of the reachability graph of H by f
is equal to the reachability graph of f(H). In particular, the maximal Sccs of H and f(H)
are in one-to-one correspondence. These properties can be straightforwardly extended to the
operation of merging several nodes of a same Scc simultaneously.

4.2.1.c Sketch of a first algorithm. Using Proposition 4.3 and 4.4, we now sketch a method
which computes the maximal Sccs in a directed hypergraph H:

Starting from the directed hypergraph Hcur image of H by the map u 7→ {u },

(i) compute the maximal Sccs of the directed graph G(Hcur ).

(ii) if one of them, say C, is not reduced to a singleton, replace Hcur by f(Hcur ),
where f merges all the elements U of C into the node

⋃
U∈C U . Then go

back to Step (i).

(iii) otherwise, return the number of maximal Sccs of the directed graph
G(Hcur ).

Each time the node merging step (Step (ii)) is executed, new edges may appear in the
directed graph G(Hcur ). This case is illustrated in Figure 4.2. In both sides, the edges of
G(Hcur ) are depicted in solid, and the non-simple hyperedges of Hcur in dotted line. The
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1: function GMaxSccCount(G = (N, E))
2: n := 0, nb := 0, S := [ ], Finished := ∅
3: for all e ∈ E do re := undef , ce := 0
4: for all u ∈ N do

5: index [u] := undef , low [u] := undef

6: done

7: for all u ∈ N do

8: if index [u] = undef then GVisit(u)
9: done

10: return nb

11: end

12: function GVisit(u)
13: index [u] := n, low [u] := n, n := n + 1
14: ismax [u] := true

15: push u on the stack S

16: for all (u, w) ∈ E do

17: if index [w] = undef then GVisit(w)
18: if w ∈ Finished then

19: ismax [u] := false

20: else

21: low [u] := min(low [u], low [w])
22: ismax [u] := ismax [u] && ismax [w]
23: end

24: done

25: if low [u] = index [u] then

26: if ismax [u] = true then nb := nb + 1
27: repeat

28: pop v from S, add v to Finished

29: until index [v] = index [u]
30: end

31: end

Figure 4.3: Computing the maximal Sccs in directed graphs

nodes of Hcur contain subsets of N , but enclosing braces are omitted. Applying Step (i)
from node u (left side) discovers a maximal Scc formed by u, v, and w in the directed graph
G(Hcur ). At Step (ii) (right side), the nodes are merged, and the hyperedge e4 is transformed
into two graph edges leaving the new node.

The termination of this method is ensured by the fact that the number of nodes in Hcur

is strictly decreased each time Step (ii) is applied. When the method is terminated, maximal
Sccs of Hcur are all reduced to single nodes, which contain subsets of N . Propositions 4.3
and 4.4 prove that these subsets are precisely the maximal Sccs of H. Besides, the method
returns the exact number of maximal Sccs in H.

However, in order for this approach to be optimal, the algorithm should avoid computing
a same maximal Scc several times. For this reason, we are going to inline the node merging
step in an algorithm which computes the maximal Sccs in directed graphs.

4.2.2 Computing maximal strongly connected components in directed graphs

The maximal Sccs in a directed graph (or digraph for short) can be determined in linear time
by an instrumentation of Tarjan’s algorithm. This approach is developed in the algorithm
GMaxSccCount given in Figure 4.3.

Here is the main principle of the algorithm. As in the classical algorithm, the array index
tracks the order in which the nodes are visited: index [u] = i if the node u is the i-th one to
be visited. The value low [u] is used to determine the minimal index of the nodes which are
reachable from u in the digraph (see Line 21). A Scc C is discovered as soon as a node u
satisfies low [u] = index [u] (Line 25). Then C consists of all the nodes stored in the stack S
above u. The node u is the node of the Scc which has been visited first, and is called its root.

The main difference between our algorithm and Tarjan’s original one is that the nodes v
are provided with a boolean ismax [v] allowing to track the maximality of the Scc. A Scc is
maximal if and only if its root u satisfies ismax [u] = true. In particular, the boolean ismax [v]
is set to false as soon as it is connected to a node w located in a distinct Scc (Line 19) or
satisfying ismax [w] = false (Line 22). The counter nb determines the number of maximal
Sccs which have been discovered (see Line 26).

For the sake of brevity, we have removed the operations allowing to return the Sccs.
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1: function HMaxSccCount(H = (N, E))
2: n := 0, nb := 0, S := [ ], Finished := ∅
3: for all e ∈ E do re := undef , ce := 0
4: for all u ∈ N do

5: index [u] := undef , low [u] := undef

6: Fu := [ ], Makeset(u)
7: done

8: for all u ∈ N do

9: if index [u] = undef then HVisit(u)
10: done

11: return nb

12: end

13: function HVisit(u)
14: local U := Find(u), local F := [ ]
15: index [U ] := n, low [U ] := n, n := n + 1
16: ismax [U ] := true, push U on the stack S
17: for all e ∈ Eu do

18: if |T (e)| = 1 then push e on F
19: else

20: if re = undef then re := u
21: local Re := Find(re)
22: if Re appears in S then

23: ce := ce + 1
24: if ce = |T (e)| then

25: push e on the stack FRe

26: end

27: end

28: end

29: done

30: while F is not empty do

31: pop e from F
32: for all w ∈ H(e) do

33: local W := Find(w)
34: if index [W ] = undef then HVisit(w)
35: if W ∈ Finished then

36: ismax [U ] := false

37: else

38: low [U ] := min(low [U ], low [W ])
39: ismax [U ] := ismax [U ] && ismax [W ]
40: end

41: done

42: done

43: if low [U ] = index [U ] then

44: if ismax [U ] = true then ⊲ a maximal Scc is discovered
45: local i := index [U ]
46: pop each e from FU and push it on F
47: pop V from S
48: while index [V ] > i do

49: pop each e from FV and push it on F
50: U := Merge(U, V )
51: pop V from S
52: done

53: index [U ] := i, push U on S
54: if F is not empty then go to Line 30
55: nb := nb + 1
56: end

57: repeat

58: pop V from S, add V to Finished

59: until index [V ] = index [U ]
60: end

61: end

auxiliary data
update step

Step (ii)

Step (i)

Figure 4.4: Computing the maximal Sccs in directed hypergraphs

Instead, when a node is discovered to be in a Scc, it is placed in the set Finished (Line 28).
Nevertheless, Sccs can still be recovered after the execution of GMaxSccCount using the
arrays low and ismax : the maximal Sccs are precisely the sets of the form {u ∈ N | low [u] =
i and ismax [u] = true } for a given i.

4.2.3 Optimized algorithm

We now present the optimized algorithm for directed hypergraphs, following the sketch given
in Section 4.2.1. As mentioned before, it consists in incorporating the node merging step
directly into the instrumented version of Tarjan’s method defined in Section 4.2.2.

First observe that the nodes of the hypergraph Hcur always form a partition of the initial
set N of nodes. Instead of referring to them as subsets of N , we use a union-find structure,
which consists in three functions Find, Merge, and MakeSet (see e.g. [CSRL01, Chap. 21]):

❼ a call to Find(u) returns, for each original node u ∈ N , the unique node of Hcur

containing u.

❼ two nodes U and V of Hcur can be merged by a call to Merge(U, V ), which returns
the new node.

❼ the “singleton” nodes {u } of the initial Hcur are created by the function MakeSet.

With this structure, each node of Hcur is represented by an element u ∈ N , and then corre-
sponds to the subset { v ∈ N | Find(v) = u }. Nevertheless, we avoid confusion by denoting
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the nodes of the hypergraph H by lower case letters, and the nodes of Hcur by capital ones.
By convention, if u ∈ N , Find(u) will correspond to the associated capital letter U . Note that
when an element u ∈ N has never been merged with another one, it satisfies Find(u) = u.

The resulting algorithm on directed hypergraphs is given in Figure 4.4. We present the
main ideas used in the correctness proof, highlighting the differences with the algorithm on
digraphs.

Albeit the hypergraph Hcur is not explicitly manipulated, it can always be inferred as the
image of H by the function Find. The visiting function HVisit(u) computes the maximal
Sccs reachable from the node Find(u) in the digraph G(Hcur ), using the same method as in
GVisit (see the part corresponding to Step (i), from Lines 30 to 42). However, as soon as a
maximal Scc is discovered, the node merging step (Step (ii)) is executed.

4.2.3.a Node merging step. This step is performed from Lines 45 to 54, when it is discovered
that the node U = Find(u) is the root of a maximal Scc in the digraph G(Hcur ). All nodes
V which have been collected in that Scc are merged to U (Line 50). Let Hnew be the resulting
hypergraph.

At Line 54, the stack F is supposed to contain the new edges of G(Hnew ) leaving the newly
“big” node U (this point will be explained in the next paragraph). If it is empty, {U} is a
maximal Scc of G(Hnew ), hence also of Hnew (Proposition 4.3). Thus nb is incremented.
Otherwise, we go back to the beginning of Step (i) to discover maximal Sccs from the new
node U in the digraph G(Hnew ).

4.2.3.b Discovering the new graph edges. In this paragraph, we explain informally how
the new graph edges arising after a node merging step (like in Figure 4.2) are efficiently
discovered, i.e. without examining all the non-simple hyperedges. The formal proof of this
technique is provided in Section 4.4.

During the execution of HVisit(u), the local stack F is used to collect the hyperedges
which represent edges leaving the node Find(u) in the digraph G(Hcur ). Initially, when
HVisit(u) is called, the node Find(u) is still equal to u. Then, the loop from Lines 17 to 29

iterates over the set Eu of the hyperedges e ∈ E such that u ∈ T (e). At the end of the loop,
it can be verified that F is indeed filled with all the simple hyperedges leaving u = Find(u)
in Hcur , as expected.

Now the main difficulty is to collect in F the edges which are added to the digraph G(Hcur )
after a node merging step. To overcome this problem, each non-simple hyperedge e ∈ E is
provided with two auxiliary data:

❼ a node re, called the root of the hyperedge e, and which is the first node x of the tail
T (e) to be visited by a call to HVisit,

❼ and a counter ce ≥ 0, which determines the number of nodes x ∈ T (e) which have
been visited, and such that Find(x) is reachable from Find(re) in the current digraph
G(Hcur ).

These auxiliary data are maintained in the auxiliary data update step, from Lines 20 to 27.
Initially, the root re of any hyperedge e is set to the special value undef . The first time a
node u such that e ∈ Eu is visited, it is assigned to u (see Line 20). Besides, at the call to
HVisit(u), the counter ce of each non-simple hyperedge e ∈ Eu is incremented, but only when
Re = Find(re) belongs to the stack S (see Line 23). This is indeed a necessary and sufficient



4.2. Computing maximal strongly connected components 65

condition to the fact that Find(u) is reachable from Find(re) in the digraph G(Hcur ) (see
Invariant 4.6 in Section 4.4).

It follows from these invariants that, when the counter ce reaches the threshold value
|T (e)|, all the nodes X = Find(x) (for x ∈ T (e)) are reachable from Re in the digraph
G(Hcur ). Now suppose that, later, it is discovered that Re belongs to a maximal Scc of
G(Hcur ). Then all the nodes X must stand in the same Scc. (Indeed, if C is a maximal
Scc and t ∈ C, then z is reachable from t if and only if z ∈ C.) Therefore, when the node
merging step is applied on this Scc, the nodes X are merged into a single node U . Hence,
the hyperedge e necessarily generates new simple edges leaving U in the new version of the
digraph G(Hcur ).

Now let us verify that in this situation, e is correctly placed into F by our algorithm: as
soon as ce reaches the threshold |T (e)|, e is placed into a temporary stack FRe associated to
the node Re (Line 25). It is then emptied into F at Lines 46 or 49 during the node merging
step.

Example 4.1. For example, in the left side of Figure 4.2, the execution of the loop from
Lines 17 to 29 during the call to HVisit(v) sets the root of the hyperedge e4 to the node v,
and ce4

to 1. Then, during HVisit(w), ce4
is incremented to 2 = |T (e4)|. The hyperedge e4

is therefore pushed on the stack Fv (because Re4
= Find(re4

) = Find(v) = v). Once it is
discovered that u, v, and w form a maximal Scc of G(Hcur ), e4 is collected into F . It then
allows to visit the nodes x and y from the new node (rightmost hypergraph). A fully detailed
execution trace is provided in Section 4.2.4 below.

4.2.3.c Correctness and complexity. Using disjoint-set forests with union by rank and path
compression as union-find structure (see [CSRL01, Chapter 21]), a sequence of p operations
MakeSet, Find, or Merge can be performed in time O(p × α(|N |)), where α is the very
slowly growing inverse of the map x 7→ A(x, x), and where A is the Ackermann function.
Then the following statement holds:

Theorem 4.1. Let H = (N, E) be a directed hypergraph. Then HMaxSccCount(H) returns
the number of maximal Sccs in H in time O(size(H)× α(|N |)). Besides, the maximal Sccs
are formed by the sets { v ∈ N | Find(v) = U and ismax [U ] = true }.

For any practical value of x, α(x) ≤ 4. That is why the complexity of HMaxSccCount

is said to be almost linear in size(H).

4.2.4 Example of a complete execution trace

We give the main steps of the execution of the algorithm MaxSccCount on the directed
hypergraph depicted in Figure 3.5:
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Nodes are depicted by solid circles if their index is defined, and by dashed circles otherwise.
Once a node is placed into Finished , it is depicted in gray. Similarly, a hyperedge which
has never been placed into a local stack F is represented by dotted lines. Once it is pushed
into F , it becomes solid, and when it is popped from F , it is colored in gray (note that for
the sake of readability, gray hyperedges mapped to cycles after a node merging step will be
removed). The stack F which is mentioned always corresponds to the stack local to the last
non-terminated call of the function Visit.

Initially, Find(z) = z for all z ∈ {u, v, w, x, y, t }. We suppose that HVisit(u) is called
first. After the execution of the block from Lines 14 to 29, the current state is:

u

U = u
index [u] = 0

low [u] = 0
ismax [u] = true

v

w

x

y

t

S = [u]
n = 1
F = [e1]
nb = 0

Following the hyperedge e1, HVisit(v) is called during the execution of the block from Lines 30

to 42 of HVisit(u). After Line 29 in HVisit(v), the root of the hyperedge e4 is set to v, and
the counter ce4

is incremented to 1 since v ∈ S. The state is:

u
index [u] = 0

low [u] = 0
ismax [u] = true

v

index [v] = 1
low [v] = 1

ismax [v] = true

w

x

y

t

re4
= v

ce4
= 1 S = [v;u]

n = 2
F = [e2]
nb = 0

Similarly, the function HVisit(w) is called during the execution of the loop from Lines 30

to 42 in HVisit(v). After Line 29 in HVisit(w), the root of the hyperedge e5 is set to w, and
the counter ce5

is incremented to 1 since w ∈ S. Besides, ce4
is incremented to 2 = |T (e4)|

since Find(re4
) = Find(v) = v ∈ S, so that e4 is pushed on the stack Fv. The state is:
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u
index [u] = 0

low [u] = 0
ismax [u] = true

v

index [v] = 1
low [v] = 1

ismax [v] = true

w

index [w] = 2
low [w] = 2

ismax [w] = true

x

y

t

re4
= v

ce4
= 2

re5
= w

ce5
= 1

S = [w; v;u]
n = 3
F = [e3]

Fv = [e4]
nb = 0

The execution of the loop from Lines 30 to 42 of HVisit(w) discovers that index [u] is defined
but u 6∈ Finished , so that low [w] is set to min(low [w], low [u]) = 0 and ismax [w] to ismax [w]&&
ismax [u] = true. At the end of the loop, the state is therefore:

u
index [u] = 0

low [u] = 0
ismax [u] = true

v

index [v] = 1
low [v] = 1

ismax [v] = true

w

index [w] = 2
low [w] = 0

ismax [w] = true

x

y

t

re4
= v

ce4
= 2

re5
= w

ce5
= 1

S = [w; v;u]
n = 3
F = [ ]

Fv = [e4]
nb = 0

Since low [w] 6= index [w], the block from Lines 43 to 61 is not executed, and HVisit(w)
terminates. Back to the loop from Lines 30 to 42 in HVisit(v), low [v] is assigned to the value
min(low [v], low [w]) = 0, and ismax [v] to ismax [v] && ismax [w] = true:

u
index [u] = 0

low [u] = 0
ismax [u] = true

v

index [v] = 1
low [v] = 0

ismax [v] = true

w

index [w] = 2
low [w] = 0

ismax [w] = true

x

y

t

re4
= v

ce4
= 2

re5
= w

ce5
= 1

S = [w; v;u]
n = 3
F = [ ]

Fv = [e4]
nb = 0

Since low [v] 6= index [v], the block from Lines 43 to 61 is not executed, and HVisit(v) ter-
minates. Back to the loop from Lines 30 to 42 in HVisit(u), low [u] is assigned to the value
min(low [u], low [v]) = 0, and ismax [u] to ismax [u] && ismax [v] = true. Therefore, at Line 43,
the conditions low [u] = index [u] and ismax [u] = true hold, so that a node merging step is
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executed. At that point, the stack F is empty. After that, i is set to index [u] = 0 (Line 45),
and Fu = [ ] is emptied to F (Line 46), so that F is still empty. Then w is popped from S, and
since index [w] = 2 > i = 0, the loop from Lines 48 to 52 is iterated. Then the stack Fw = [ ]
is emptied in F . At Line 50, Merge(u, w) is called. The result is denoted by U (in practice,
either U = u or U = w). The state is:

v

index [v] = 1
low [v] = 0

ismax [v] = true

U

index [U ] = 0 or 2
low [U ] = 0

ismax [U ] = true

x

y

t

re4
= v

ce4
= 2

re5
= w

ce5
= 1

S = [v;u]
n = 3

Fv = [e4]
i = 0

F = [ ]
U = Find(u) = Find(w)
nb = 0

Then v is popped from S, and since index [v] = 1 > i = 0, the loop Lines 48 to 52 is iterated
again. Then the stack Fu = [e4] is emptied in F . At Line 50, Merge(U, v) is called. The
result is set to U (in practice, U is one of the nodes u, v, w). The state is:

U

index [U ] = 0, 1, or 2
low [U ] = 0

ismax [U ] = true

x

y

t

re5
= w

ce5
= 1

S = [u]
n = 3

Fv = [ ]
i = 0

F = [e4]
U = Find(u) = Find(v)

= Find(w)
nb = 0

After that, u is popped from S, and as index [u] = 0 = i, the loop is terminated. At Line 53,
index [U ] is set to i, and U is pushed on S. Since F 6= ∅, we go back to Line 30, in the state:

U

index [U ] = 0
low [U ] = 0

ismax [U ] = true

x

y

t

re5
= w

ce5
= 1

S = [U ]
n = 3
F = [e4]
U = Find(u) = Find(v)

= Find(w)
nb = 0

Then e4 is popped from F , and the loop from 32 to 41 iterates over H(e4) = {x, y }. Suppose
that x is treated first. Then Visit(x) is called. During its execution, at Line 29, the state is:
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U

index [U ] = 0
low [U ] = 0

ismax [U ] = true

x

index [x] = 3
low [x] = 3

ismax [x] = true

y

t

re5
= w

ce5
= 1

S = [x;U ]
n = 4
F = [ ]
U = Find(u) = Find(v)

= Find(w)
nb = 0

Since F is empty, the loop from Lines 30 to 42 is not executed. At Line 43, low [x] = index [x]
and ismax [x] = true, so that a trivial node merging step is performed, only on x, since it is
the top element of S. At Line 53, it can be verified that S = [x;U ], index [x] = 3 and F = [ ].
Therefore, the goto statement at Line 54 is not executed, and nb is incremented at Line 55. It
follows that the loop from Lines 57 to 59 is executed, and after that, the state is:

U

index [U ] = 0
low [U ] = 0

ismax [U ] = true

x

index [x] = 3
low [x] = 3

ismax [x] = true

y

t

re5
= w

ce5
= 1

S = [U ]
n = 4
F = [ ]
U = Find(u) = Find(v)

= Find(w)
nb = 1

Finished = {x }

After the termination of HVisit(x), since x ∈ Finished , ismax [U ] is set to false. After
that, HVisit(y) is called, and at Line 29, it can be checked that ce5

has been incremented to
2 = |T (e5)| because Re5

= Find(re5
) = Find(w) = U and U ∈ S. Therefore, e5 is pushed to

FU , and the state is:

U

index [U ] = 0
low [U ] = 0

ismax [U ] = false

x

index [x] = 3
low [x] = 3

ismax [x] = true

y
index [y] = 4

low [y] = 4
ismax [y] = true

t

re5
= w

ce5
= 2

S = [y;U ]
n = 5
F = [ ]

FU = [e5]
U = Find(u) = Find(v)

= Find(w)
nb = 1

Finished = {x }

As for the node x, HVisit(y) terminates by incrementing nb, popping y from S and adding
it to Finished . Back to the execution of HVisit(U), at Line 43, the state is:
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U

index [U ] = 0
low [U ] = 0

ismax [U ] = false

x

index [x] = 3
low [x] = 3

ismax [x] = true

y
index [y] = 4

low [y] = 4
ismax [y] = true

t

re5
= w

ce5
= 2

S = [U ]
n = 5
F = [ ]

FU = [e5]
U = Find(u) = Find(v)

= Find(w)
nb = 2

Finished = { y, x }

While low [U ] = index [U ], ismax [U ] is equal to false, so that no node merging loop is per-
formed on U . Therefore, e5 is not popped from FU and nb is not incremented. Nevertheless,
the loop from Lines 57 to 59 is executed, and after that, HVisit(u) is terminated in the state:

U

index [U ] = 0
low [U ] = 0

ismax [U ] = false

x

index [x] = 3
low [x] = 3

ismax [x] = true

y
index [y] = 4

low [y] = 4
ismax [y] = true

t

re5
= w

ce5
= 2

S = [ ]
n = 5
F = [ ]

FU = [e5]
U = Find(u) = Find(v)

= Find(w)
nb = 2

Finished = {U, y, x }

Finally, HVisit(t) is called from HMaxSccCount at Line 9. It can be verified that a trivial
node merging loop is performed on t only, and that nb is incremented. After that, t is placed
into Finished . Therefore, the final state of HMaxSccCount is:

U

index [U ] = 0
low [U ] = 0

ismax [U ] = false

x

index [x] = 3
low [x] = 3

ismax [x] = true

y
index [y] = 4

low [y] = 4
ismax [y] = true

t

index [t] = 5
low [t] = 5

ismax [t] = true

re5
= w

ce5
= 2

S = [ ]
n = 6

FU = [e5]
U = Find(u) = Find(v)

= Find(w)
nb = 3

Finished = { t, U, y, x }



4.3. Conclusion of the chapter 71

Consequently, there is 3 maximal Sccs in the hypergraph. As ismax [x] = ismax [y] =
ismax [t] = true and ismax [Find(z)] = false for z = u, v, w, they are given by the sets:

{ z | Find(z) = x } = {x },

{ z | Find(z) = y } = { y },

{ z | Find(z) = t } = { t }.

4.3 Conclusion of the chapter

In this chapter, we have developed a quasi-linear algorithm which is able to determine the
maximal Sccs in a directed hypergraph. It improves by almost a factor |N | the complexity
of the method relying on the reachability algorithm of Gallo et al. discussed in Section 4.1.
An implementation of this algorithm can be found in the library TPLib [All09].4

We consider that this algorithm is of independent interest. It may have some applications
outside the context of the combinatorics of tropical polyhedra. However, two interesting
questions remain open:

❼ can we improve the algorithm to reach a linear complexity? The fact that the complex-
ity of the algorithm is not strictly linear is due to the necessity to represent partitions
of the set of nodes, here with a union/find structures. The Scc algorithm of Gabow on
digraphs [Gab00] similarly manipulated partitions of the initial set of nodes (moreover,
it also involves a node merging step). And yet, its complexity is linear, because it repre-
sents the elements of the partition by intervals. Intuitively, an interval [n; p] encodes the
nodes whose index ranges between n and p. This representation can be used because the
elements of a same Scc necessarily have consecutive indexes. This property also holds
for maximal Sccs in directed hypergraphs. That is why it may be possible to adapt
Gabow’s idea to our approach, by interfacing the algorithm on directed hypergraphs on
its algorithm instead of Tarjan’s one. It could allow to reach a linear complexity.

❼ can our algorithm be generalized to determine all Sccs, without sacrificing the com-
plexity? First of all, the current algorithm MaxSccCount is not able to compute all
Sccs in directed hypergraphs. Consider the following example:

u

t

x

e

Our algorithm determines the unique maximal Scc, which is reduced to the node t.
However, the non-maximal Scc formed by u and x is not discovered. Indeed, the non-
simple hyperedge e, which allows to reach x from u, is never tranformed into a simple
edge, since u and t does not belong to a same Scc of the underlying digraph.

4The implementation is provided as an OCaml module named Hypergraph, which can be used independently
of the rest of the library.
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Nevertheless, if the algorithm starts from the node u, the root of the hyperedge e is
set to u, and its counter ce reaches the value 2 after the visit of t. Consequently, the
node e is pushed on the stack Fu. A first idea would be to pop this hyperedge from
Fu, even if u is not discovered to be in a maximal Scc. Here, this allows to access to
the node x from u. In general, this idea is correct: given a hyperedge e, if ce = |T (e)|,
then any node of H(e) is reachable from Find(re) (see the corresponding invariants in
Section 4.2.3).

Unfortunately, this approch misses some hyperedges. For instance, suppose now that
the algorithm starts from the node t. In that case, the root re is set to t, and since u
is not reachable from t, the counter ce will not be incremented to the value 2 during
the visit of the node u. This reveals that our mechanism relying on the auxiliary data
of non-simple hyperedges is not adapted to discover all Sccs. In particular, it suggests
that the root of a hyperedge should not be the first visited node of its tail, but rather
the smallest one in the topological order, if it exists. In our example, after the visit of
u, the root re would be indeed reassigned to u, and the hyperedge e could be used to
reach the node x. Consequently, the challenge would be to maintain this new invariant
on the root of the hyperedges, without increasing the time complexity.



4.4. Proving Theorem 4.1 73

1: function HMaxSccCount2(N, E)
2: n := 0, nb := 0, S := [ ], Finished := ∅
3: for all e ∈ E do collectede := false

4: for all u ∈ N do

5: index [u] := undef , low [u] := undef

6: Makeset(u)
7: done

8: for all u ∈ N do

9: if low [u] = undef then HVisit2(u)
10: done

11: return nb

12: end

13: function HVisit2(u)
14: local U := Find(u), local F := ∅
15: index [U ] := n, low [U ] := n, n := n + 1
16: ismax [U ] := true, push U on the stack S
17: local no merge := true

18: F := { e ∈ E | T (e) = {u } }
19: for all e ∈ F do collectede := true

20: while F is not empty do

21: pop e from F
22: for all w ∈ H(e) do

23: local W := Find(w)
24: if index [W ] = undef then HVisit2(w)
25: if W ∈ Finished then

26: ismax [U ] := false

27: else

28: low [U ] := min(low [U ], low [W ])
29: ismax [U ] := ismax [U ] && ismax [W ]
30: end

31: done

32: done

33: if low [U ] = index [U ] then

34: if ismax [U ] = true then

35: local i := index [U ]
36: pop V from S
37: while index [V ] > i do

38: no merge := false

39: U := Merge(U, V )
40: pop V from S
41: done

42: push U on S

43: F :=



e ∈ E
˛

˛

˛

collectede = false
and ∀x ∈ T (e),Find(x) = U

ff

44: for all e ∈ F do collectede := true

45: if no merge = false then

46: n := i, index [U ] := n, n := n + 1
47: no merge := true, go to Line 20
48: else

49: nb := nb + 1
50: end

51: end

52: repeat

53: pop V from S, add V to Finished

54: until index [V ] = index [U ]
55: end

56: end

Figure 4.5: First intermediary form of our almost linear algorithm on hypergraphs

4.4 Proving Theorem 4.1

Theorem 4.1 contains two statements, a first one relative to the correctness of HMaxScc-

Count (i.e. it precisely computes the maximal Sccs), and a second one to its time complex-
ity. The first part is proved in Section 4.4.1, the second one in Section 4.4.2.

4.4.1 Correctness of the algorithm

The correctness proof of the algorithm HMaxSccCount turns out to be harder than the
one of the classical Tarjan’s algorithm, due to the complexity of the invariants which arise in
the former algorithm. That is why we propose to show the correctness of two intermediary
algorithms, named HMaxSccCount2 (Figure 4.5) and HMaxSccCount3 (Figure 4.6),
and then to prove that they are equivalent to HMaxSccCount.

The main difference between the first intermediary form and HMaxSccCount is that it
does not use auxiliary data associated to the hyperedges to determine which ones are added
to the digraph G(Hcur ) after a node merging step. Instead, the stack F is directly filled with
the right hyperedges (Lines 18 and 43). Besides, a boolean no merge is used to determine
whether a node merging step has been executed. The notion of node merging step is refined:
it now refers to the execution of the instructions between Lines 35 and 44 in which the boolean
no merge is set to false.

For the sake of simplicity, we will suppose that sequences of assignment or stack manip-
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ulations are executed atomically. For instance, the sequences of instructions located in the
blocks from Lines 14 and 19, or from Lines 35 and 44, and at from Lines 52 to 54, are considered
as elementary instructions. Under this assumption, intermediate complex invariants do not
have to be considered.

We first begin with very simple invariants:

Invariant 4.1. Let U be a node of the current hypergraph Hcur . Then index [U ] is defined if
and only if index [u] is defined for all u ∈ N such that Find(u) = U .

Proof. It can be shown by induction on the number of node merging steps which has been
performed on U .

In the basis case, there is a unique element u ∈ N such that Find(u) = U . Besides,
U = u, so that the statement is trivial.

After a node merging step yielding the node U , we necessarily have index [U ] 6= undef .
Moreover, all the nodes V which has been merged into U satisfied index [V ] 6= undef because
they were stored in the stack S. Applying the induction hypothesis terminates the proof.

Invariant 4.2. Let u ∈ N . When index [u] is defined, then Find(u) belongs either to the
stack S, or to the set Finished (both cases cannot happen simultaneously).

Proof. Initially, Find(u) = u, and once index [u] is defined, Find(u) is pushed on S (Line 16).
Naturally, u 6∈ Finished , because otherwise, index [u] would have been defined before (see the
condition Line 54). After that, U = Find(u) can be popped from S at three possible locations:

❼ at Lines 36 or 40, in which case U is transformed into a node U ′ which is immedi-
ately pushed on the stack S at Line 42. Since after that, Find(u) = U ′, the property
Find(u) ∈ S still holds.

❼ at Line 53, in which case it is directly appended to the set Finished .

Invariant 4.3. The set Finished is always growing.

Proof. Once an element is added to Finished , it is never removed from it nor merged into
another node (the function Merge is always called on elements immediately popped from
the stack S).

Proposition 4.5. The function HMaxSccCount2(H) returns the number of maximal Scc

of H.
Besides, the maximal Sccs are formed by the sets { v ∈ N | Find(v) = U and ismax [U ] =

true }.

Proof. We prove the whole statement by induction on the number of node merging steps.

Basis Case. First, suppose that the hypergraph H is such that no nodes are merged during
the execution of HMaxSccCount2(H), i.e. the node merging loop (from Lines 37 to 41) is
never executed. Then the boolean no merge is always set to true, so that n is never redefined
to i+1 (Line 46), and there is no back edge to Line 20 in the control-flow graph. It follows that
removing all the lines between Lines 35 to 47 does not change the behavior of the algorithm.
Besides, since the function Merge is never called, Find(u) always coincides with u. Finally,
at Line 18, F is precisely assigned to the set of simple hyperedges leaving u in H, so that
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the loop from Lines 20 to 32 iterates on the successors of u in G(H). As a consequence, the
algorithm HMaxSccCount2(H) behaves exactly like HMaxSccCount(G(H)). Moreover,
under our assumption, the maximal Sccs of G(H) are all reduced to singletons (otherwise,
the loop from Lines 37 to 41 would be executed, and some nodes would be merged). Therefore,
by Proposition 4.3, the statement in Proposition 4.5 holds.

Inductive Case. Now suppose that the node merging loop is executed at least once, and that
its first execution happens during the execution of, say, HVisit2(x). Consider the state
of the algorithm at Line 35 just before the execution of the first occurrence of the node
merging step. Until that point, Find(v) is still equal to v for all node v ∈ N , so that the
execution of HMaxSccCount(H) coincides with the execution of HMaxSccCount(G(H)).
Consequently, if C is the set formed by the nodes y located above x in the stack S (including
x), C forms a maximal Scc of G(H). In particular, the elements of C are located in a same
Scc of the hypergraph H.

Consider the hypergraph H′ obtained by merging the elements of C in the hypergraph
(N, E \ { e | ∃y ∈ C s.t. T (e) = {y} }), and let X be the resulting node. For now, we may
add a hypergraph as last argument of the functions HVisit2, Find, . . . to distinguish their
execution in the context of the call to HMaxSccCount2(H) or HMaxSccCount2(H′).
We make the following observations:

❼ the node x is the first element of C to be visited during the execution of HMaxScc-

Count2(H). It follows that the execution of HMaxSccCount2(H) until the call to
HVisit2(x,H) coincides with the execution of HMaxSccCount2(H′) until the call to
HVisit2(X,H′).

❼ besides, during the execution of HVisit2(x,H), the execution of the loop from Lines 20

to 32 only has a local impact, i.e. on the ismax [y], index [y], or low [y] for y ∈ C, and
not on nb or any information relative to other nodes. Indeed, we claim that the set
of the nodes y on which HVisit2 is called during the execution of the loop is exactly
C \ {x }. First, for all y ∈ C \ {x }, HVisit2(y) has necessarily been executed after
Line 20 (otherwise, by Invariant 4.2, y would be either below x in the stack S, or in
Finished). Conversely, suppose that after Line 20, there is a call to HVisit2(t) with
t 6∈ C. By Invariant 4.2, t belongs to Finished , so that for one of the nodes w examined
in the loop, either w ∈ Finished or ismax [w] = false after the call to HVisit2(w).
Hence ismax [x] should be false, which contradicts our assumptions.

❼ finally, from the execution of Line 47 during the call to HVisit2(x,H), our algo-
rithm behaves exactly as HMaxSccCount2(H′) from the execution of Line 20 in
HVisit2(X,H′). Indeed, index [X] is equal to i, and the latter is equal to n − 1.
Similarly, for all y ∈ C, low [y] = i and ismax [y] = true. The node X being equal to
one of the y ∈ C, we also have low [X] = i and ismax [X] = true. Moreover, X is the
top element of S.

Furthermore, it can be verified that at Line 43, the set F contains exactly all the hy-
peredges of E which generate the simple hyperedges leaving X in H′: they are exactly
characterized by

Find(z,H) = X for all z ∈ T (e), and T (e) 6= { y } for all y ∈ C

⇐⇒ Find(z,H) = X for all z ∈ T (e), and collectede = false
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since at that Line 43, a hyperedge e satisfies collectede = true if and only if T (e) is
reduced to a singleton {t} such that index [t] is defined.

Finally, for all y ∈ C, Find(y,H) can be equivalently replaced by Find(X,H′).

As a consequence, HMaxSccCount2(H) and HMaxSccCount2(H′) return the same re-
sult. Besides, both functions perform the same union-find operations, except the first the
node merging step executed by HMaxSccCount2(H) on C.

Let f be the function which maps all nodes y ∈ C to X, and any other node to itself. We
claim that H′ and f(H) have the same reachability graph, i.e.  H′ and  f(H) are identical
relations. Indeed, the two hypergraphs only differ on the images of the hyperedges e ∈ E such
that T (e) = {y} for some y ∈ C. For such hyperedges, we have H(e) ⊂ C, because otherwise,
ismax [x] would have been set to false (i.e. the Scc C would not be maximal). It follows that
their are mapped to the cycle ({X}, {X}) by f , so that H′ and f(H) clearly have the same
reachability graph. In particular, they have the same maximal Sccs.

Finally, since the elements of C are in a same Scc of H, Proposition 4.4 shows that the
function f induces a one-to-one correspondence between the Sccs of H and the Sccs of f(H):

D 7−→ f(D)

(D′ \ {X }) ∪ C ←− [ D′ if X ∈ D′

D′ ←− [ D′ otherwise.

The action of the function f exactly corresponds to the node merging step performed on
C. Since by induction hypothesis, HMaxSccCount2(H′) determines the maximal Sccs in
f(H), it follows that Proposition 4.5 holds.

The second intermediary version of our algorithm, HMaxSccCount3, is based on the
first one, but it performs the same computations on the auxiliary data re and ce as in
HMaxSccCount. However, the latter are never used, because at Line 58, F is re-assigned
to the value provided in HMaxSccCount2. It follows that for now, the parts in gray can be
ignored. The following lemma states that HMaxSccCount2 and HMaxSccCount3 are
equivalent:

Proposition 4.6. Let H be a hypergraph. Then HMaxSccCount3(H) returns the number
of maximal Scc of H. Besides, the maximal Sccs are formed by the sets { v ∈ N | Find(v) =
U and ismax [U ] = true }.

Proof. When HVisit3(u) is executed, the local stack F is not directly assigned to the set
{ e ∈ E | T (e) = {u } } (see Line 18 in Figure 4.5), but built by several iterations on the set
Eu (Line 21). Since u ∈ T (e) and |T (e)| = 1 holds if and only if T (e) is reduced to {u },
HVisit3(u) initially fills F with the same hyperedges as HVisit2(u).

Besides, the condition no merge = false in HVisit2 (Line 45) is replaced by F 6= ∅
(Line 60). We claim that the condition F 6= ∅ can be safely used in HVisit2 as well. Indeed, in
HVisit2, F 6= ∅ implies no merge = false. Conversely, suppose that in HVisit2, no merge =
false and F = ∅, so that the algorithm goes back to Line 47 after having no merge to true. The
loop from Lines 20 to 32 is not executed since F = ∅, and it directly leads to a new execution
of Lines 33 to 45 with no merge = true. Therefore, going back to Line 47 was useless.

Finally, during the node merging step in HVisit3, n keeps its value, which is greater than
or equal to i + 1, but is not necessarily equal to i + 1 like in HVisit2 (just after Line 46).
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1: function HMaxSccCount3(N, E)
2: n := 0, nb := 0, S := [ ], Finished := ∅
3: for all e ∈ E do

4: re := undef , ce := 0
5: collectede := false

6: done

7: for all u ∈ N do

8: index [u] := undef , low [u] := undef

9: Makeset(u), Fu := [ ]
10: done

11: for all u ∈ N do

12: if index [u] = undef then HVisit3(u)
13: done

14: return nb

15: end

16: function HVisit3(u)
17: local U := Find(u), local F := [ ]
18: index [U ] := n, low [U ] := n, n := n + 1
19: ismax [U ] := true, push U on the stack S
20: for all e ∈ Eu do

21: if |T (e)| = 1 then push e on F
22: else

23: if re = undef then re := u
24: local Re := Find(re)
25: if Re appears in S then

26: ce := ce + 1
27: if ce = |T (e)| then

28: push e on the stack FRe

29: end

30: end

31: end

32: done

33: for all e ∈ F do collectede := true

34: while F is not empty do

35: pop e from F
36: for all w ∈ H(e) do

37: local W := Find(w)
38: if low [W ] = undef then HVisit(w)
39: if W ∈ Finished then

40: ismax [U ] := false

41: else

42: low [U ] := min(low [U ], low [W ])
43: ismax [U ] := ismax [U ] && ismax [W ]
44: end

45: done

46: done

47: if low [U ] = index [U ] then

48: if ismax [U ] = true then

49: local i := index [U ]
50: pop each e ∈ FU and push it on F
51: pop V from S
52: while index [V ] > i do

53: pop each e ∈ FV and push it on F
54: U := Merge(U, V )
55: pop V from S
56: done

57: index [U ] := i, push U on S

58: F :=



e ∈ E
˛

˛

˛

collectede = false
and ∀x ∈ T (e),Find(x) = U

ff

59: for all e ∈ F do collectede := true

60: if F 6= ∅ then go to Line 34
61: nb := nb + 1
62: end

63: repeat

64: pop V from S, add V to Finished

65: until index [V ] = index [U ]
66: end

67: end

Figure 4.6: Second intermediary form of our linear algorithm on hypergraphs

This is safe because the whole algorithm only need that n take increasing values, and not
necessarily consecutive ones.

We conclude by applying Proposition 4.5.

We make similar assumptions on the atomicity of the sequences of instructions. Note that
Invariant 4.1, 4.2, and 4.3 still holds in HVisit3.

Invariant 4.4. Let e ∈ E such that |T (e)| > 1. If for all x ∈ T (e), index [x] is defined, then
the root re is defined.

Proof. For all x ∈ T (e), HVisit3(x) has been called. The root re has necessarily been
defined at the first of these calls (remember that the block from Lines 17 to 33 is supposed to
be executed atomically).

Invariant 4.5. Consider a state cur of the algorithm in which U ∈ Finished. Then any node
reachable from U in G(Hcur ) is also in Finished.

Proof. The invariant clearly holds when U is placed in Finished . Using the atomicity assump-
tions, the call to HVisit3(u) is necessarily terminated. Let old be the state of the algorithm
at that point, and Hold and Finishedold the corresponding hypergraph and set of terminated
nodes at that state respectively. Since HVisit3(u) has performed a depth-first search from
the node U in G(Hold ), all the nodes reachable from U in Hold stand in Finishedold .
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We claim that the invariant is then preserved by the following node merging steps. The
graph edges which may be added by the latter leave nodes in S, and consequently not from
elements in Finished (by Invariant 4.2). It follows that the set of reachable nodes from
elements of Finishedold is not changed by future node merging steps. As a result, all the
nodes reachable from U in G(Hcur ) are elements of Finishedold . Since by Invariant 4.5,
Finishedold ⊂ Finished , this proves the whole invariant in the state cur .

Invariant 4.6. In the digraph G(Hcur ), at the call to HVisit3(u), u is reachable from a node
W such that index [W ] is defined if and only if W belongs to the stack S.

Proof. The “if” part can be shown by induction. When the function HVisit3(u) is called
from Line 12, the stack S is empty, so that this is obvious. Otherwise, it is called from Line 38

during the execution of HVisit3(x). Then X = Find(x) is reachable from any node in the
stack, since x was itself reachable from any node in the stack at the call to Find(X) (inductive
hypothesis) and that this reachability property is preserved by potential node merging steps
(Proposition 4.4). As u is obviously reachable from X, this shows the statement.

Conversely, suppose that index [W ] is defined, and W is not in the stack. According to
Invariant 4.2, W is necessarily an element of Finished . Hence u also belongs to Finished by
Invariant 4.5, which is a contradiction since this cannot hold at the call to HVisit(u).

Invariant 4.7. Let e ∈ E such that |T (e)| > 1. Consider a state cur of the algorithm
HMaxSccCount3 in which re is defined.

Then ce is equal to the number of elements x ∈ T (e) such that index [x] is defined and
Find(x) is reachable from Find(re) in G(Hcur ).

Proof. Since at Line 26, ce is incremented only if Re = Find(re) belongs to S, we already
know using Invariant 4.6 that ce is equal to the number of elements x ∈ T (e) such that, at
the call to HVisit3(x), x was reachable from Find(re).

Now, let x ∈ N , and consider a state cur of the algorithm in which re and index [x] are
both defined, and Find(re) appears in the stack S. Since index [x] is defined, HVisit3 has
been called on x, and let old be the state of the algorithm at that point. Let us denote by
Hold and Hcur the current hypergraphs at the states old and cur respectively. Like previously,
we may add a hypergraph as last argument of the function Find to distinguish its execution
in the states old and cur . We claim that Find(re,Hcur ) G(Hcur ) Find(x,Hcur ) if and only
if Find(re,Hold )  G(Hold ) x. The “if” part is due to the fact that reachability in G(Hold )
is not altered by the node merging steps (Proposition 4.4). Conversely, if x is not reachable
from Find(re,Hold ) in Hold , then Find(re,Hold ) is not in the call stack Sold (Invariant 4.6),
so that it is an element of Finishedold . But Finishedold ⊂ Finishedcur , which contradicts our
assumption since by Invariant 4.2, an element cannot be stored in Finishedcur and Scur at the
same time. It follows that if re is defined and Find(re) appears in the stack S, ce is equal to the
number of elements x ∈ T (e) such that index [x] is defined and Find(re) G(Hcur ) Find(x).

Let cur be the state of the algorithm when Find(re) is moved from S to Finished .
The invariant still holds. Besides, in the future states new , ce is not incremented be-
cause Find(re,Hcur ) ∈ Finishedcur ⊂ Finishednew (Invariant 4.3), so that Find(re,Hnew ) =
Find(re,Hcur ), and the latter cannot appear in the stack Snew (Invariant 4.2). Further-
more, any node reachable from Re = Find(re,Hnew ) in G(Hnew ) belongs to Finishednew

(Invariant 4.5). It even belongs to Finishedcur , as shown in the second part of the proof
of Invariant 4.5 (emphasized sentence). It follows that the number of reachable nodes from
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Find(re) has not changed between states cur and new . Therefore, the invariant on ce will be
preserved, which completes the proof.

Proposition 4.7. In HVisit3, the assignment at Line 58 does not change the value of F .

Proof. It can be shown by strong induction on the number p of times that this line has been
executed. Suppose that we are currently at Line 49, and let X1, . . . , Xq be the elements of
the stack located above the root U = X1 of the maximal Scc of G(Hcur ). Any edge e which
will transferred to F from Line 49 to Line 56 satisfies ce = |T (e)| > 1 and Find(re) = Xi

for some 1 ≤ i ≤ q (since at 49, F is initially empty). Invariant 4.7 implies that for all
elements x ∈ T (e), Find(x) is reachable from Xi in G(Hcur ), so that by maximality of the
Scc C = {X1, . . . , Xq }, Find(x) belongs to C, i.e. there exists j1 such that Find(x) = Xj .
It follows that at Line 56, Find(x) = U for all x ∈ T (e). Then, we claim that collectede = false
at Line 56. Indeed, e′ ∈ E satisfies collectede′ = true if and only

❼ either it has been copied to F at Line 21, in which case |T (e′)| = 1,

❼ or if it has been copied to F at the r-th execution of Line 58, with r < p. By induction
hypothesis, this means that e′ has been pushed on a stack FX and then popped from it
strictly before the r-th execution of Line 58.

Observe that a given hyperedge can be popped from a stack Fx at most once during the whole
execution of HMaxSccCount3. Here, e has been popped from FXi

after the p-th execution
of Line 58, and |T (e)| > 1. It follows that collectede = false.

Conversely, suppose for that, at Line 58, collectede = false, and all the x ∈ T (e) satisfies
Find(x) = U . Clearly, |T (e)| > 1 (otherwise, e would have been placed into F at Line 21 and
collectede would be equal to true). Few steps before, at Line 49, Find(x) is equal to one of
Xj , 1 ≤ j ≤ q. Since index [Xj ] is defined (Xj is an element of the stack S), by Invariant 4.1,
index [x] is also defined for all x ∈ T (e), hence, the root re is defined by Invariant 4.4. Besides,
Find(re) is equal to one of the Xj , say Xk (since re ∈ T (e)). As all the Find(x) are reachable
from Find(re) in G(Hcur ), then ce = |T (e)| using Invariant 4.7. It follows that e has been
pushed on the stack FRe , where Re = Find(re,Hold ) in an previous state old of the algorithm.
As collectede = false, e has not been popped from FRe , and consequently, the node Re of Hold

has not involved in a node merging step. Therefore, Re is still equal to Find(()re,Hcur ) = Xk.
It follows that at Line 49, e is stored in FXk

, and thus it is copied to F between Lines 49 and 56.
This completes the proof.

We now can prove the correctness of HMaxSccCount. By Proposition 4.7, Line 58 can
be safely removed in HVisit3. It follows that the booleans collectede are now useless, to
that Lines 5, 33, and 59 can be also removed. After that, we precisely obtain the algorithm
HMaxSccCount. Proposition 4.6 completes the proof.

4.4.2 Complexity proof

Then analysis of the time complexity HMaxSccCount depends on the kind of the instruc-
tions. We distinguish:

(i) the operations on the global stacks Fu and on the local stacks F ,

(ii) the call to the functions Find, Merge, and MakeSet,
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(iii) and the other operations, referred to as usual operations. By extension, their time
complexity will be referred to as usual complexity.

Also note that the function HVisit(u) is executed exactly once for each u ∈ N during the
execution of HMaxSccCount.

Operations on the stacks F and Fu. Each operation on the stack (pop or push) is in O(1). A
given hyperedge is pushed on a stack of the form Fu at most once during the whole execution
of HMaxSccCount. Once it is popped from it, it will never be pushed on a stack of the
form FV again. Similarly, a hyperedge is pushed on a local stack F at most once, and after
it is popped from it, it will never be pushed on any local stack F ′ in the following states.
Therefore, the total number of stack operations on the local and global stacks F and Fu is
bounded by 4|N |. It follows that the corresponding complexity is O(|N |).

As a consequence, the total number of iterations of the loop from Lines 32 to 41 which
occur during the whole execution of HMaxSccCount is bounded by

∑
e∈E |H(e)|.

Union-find operations. During the whole execution of HMaxSccCount, the function Find

is called:

❼ exactly |N | times at Line 14,

❼ at most
∑

u∈N |Eu| =
∑

e∈E |T (e)| times at Line 21 (since during the call to HVisit(u),
the loop from Lines 17 to 29 has exactly |Eu| iterations),

❼ at most
∑

e∈E |H(e)| at Line 33 (see above).

Hence it is called at most size(H) times.

The function Merge is always called to merge two distinct nodes. Let C1, . . . , Cp (p ≤
|N |) be the equivalence classes formed by the elements of N at the end of the execution of
HMaxSccCount. Then Merge has been called at most

∑p
i=1(|Ci|−1). Since

∑
i|Ci| = |N |,

Merge is executed at most |N | − 1 times.

Finally, MakeSet is called exactly |N | times. It follows that the total time complexity
of the operations MakeSet, Find and Merge is O(size(H)× α(|N |).

Usual operations. The analysis of the usual complexity is split into several parts:

❼ the usual complexity HMaxSccCount without the calls to the function HVisit is
clearly O(|N |+ |E|).

❼ during the execution of HVisit(u), the usual complexity of the block from Lines 14

to 29 is O(1) + O(|Eu|). Indeed, we suppose that the test at Line 22 can be performed
in O(1) by assuming that the stack S is provided with an auxiliary array of booleans
which determines, for each element of N , whether it is stored in S.5 Then the to-
tal usual complexity between Lines 14 and 29 is O(size(H)) for a whole execution of
HMaxSccCount.

5Obviously, the push and pop operations on the stack S are still in O(1) under this assumption.
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❼ the usual complexity of the body of loop from Lines 32 to 41, without the recursive calls
to HVisit, is clearly O(1). As mentioned above, the total number of iterations of this
loop is less than

∑
e∈E |H(e)| ≤ size(H). Therefore, the total usual complexity of the

loop from Lines 30 to 42 is in O(size(H)).

❼ the usual complexity of the loop between Lines 48 and 52 for a whole execution of
HMaxSccCount is O(|N |), since in total, it is iterated exactly the number of times
the function Merge is called.

❼ the usual complexity of the loop between Lines 57 and 59 for a whole execution of
HMaxSccCount is O(|N |), because a given element is placed at most once into
Finished .

❼ if the two previous loops are not considered, less than 10 usual operations are executed
in the block from Lines 43 to 61, all of complexity O(1). The execution of this block
either follows a call to HVisit or the execution of the goto statement (at Line 54). The
latter is executed only if the stack F is not empty. Since each hyperedge can be pushed
on a local stack F and then popped from it only once, it is executed |E| in the worst case
during the whole execution of HMaxSccCount. It follows that the usual complexity
of the block from Lines 43 to 61 is O(|N |+ |E|) in total (excluding the loops previously
discussed).

Total time complexity. Summing all the complexities above proves that the time complexity
of HMaxSccCount is O(size(H)× α(|N |).
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CHAPTER 5

Algorithmics of tropical polyhedra

This chapter is devoted to the following algorithmic problem: given a tropical polyhedron, how
to compute an internal representation from an external description, and inversely? This is a
fundamental problem in the computational aspects of tropical polyhedra. In particular, we
will see in Chapter 7 that, in the application to static analysis, the scalability of the numerical
abstract domain based on tropical polyhedra is in close correlation with the performance of
the algorithms which convert one form of description to the other.

As explained in Chapter 1, the question has not received much attention until now. The
first algorithm has been introduced by Butkovič and Hegedus in [BH84] in 1984. It allows
to compute a generating representation of a tropical polyhedron defined by a system of in-
equalities. It has been later rediscovered by Gaubert in [Gau92], and discussed in the survey
of Max Plus in [GP97]. On the practical side, this algorithm has been implemented in the
Max-Plus toolbox [CGMQ] of the numerical computational software Scilab [Scib] and Sci-

cosLab [Scia].1 The same technique has been then implemented and optimized in the work
of Allamigeon, Gaubert, and Goubault in [AGG08].

In contrast, the analogue problem in classical convex polyhedra has been thoroughly
studied. It is known under various names, such as the vertex enumeration problem2, or dually
the facet enumeration problem3, depending on the kind of description which is expected in
output. Observe that in the classical case, the two problems of passing from the external

1The Max-Plus toolbox was available in Scilab until the versions 4.x. It is now integrated into ScicosLab.
2also known as extreme rays enumeration problem in the case of convex cones.
3sometimes called convex hull problem when it is relative to polytopes.
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to the internal representations, and inversely from the internal to the external descriptions,
are computationally equivalent. This is a consequence of the combinatorial duality between
cones and polar cones. The problem has been treated in many works, see [ABS97, Zie98] for
a survey. However, finding an algorithm which is both polynomial in the size of the input
and the output, is still an open problem.

One of the most famous algorithms solving the classical version of the problem has been
introduced by Motzkin et al. [MRTT53] in 1953. It is known as the double description method,
and applied on convex cones. It was later rediscovered and generalized to any convex poly-
hedra by Chernikova in [Che68]. Fukuda and Prodon have revisited this technique in [FP96],
providing some theoretical and practical recommandations on the way it should be implemen-
tated. Many software distributions are available, among others, CDD [Fuk], PORTA [CL],
PPL [BHZ08], APRON [JM], etc. While this method is rather ancient, double description
method based algorithms are still considered as references. This is probably due to their
good average performance in practice, while in comparison, some other techniques, such as
those developed by Avis and Fukuda [AF92, AF96], are efficient only on a particular class of
polyhedra (see [ABS97]).

In this chapter, we introduce two new algorithms. The first one, presented in Section 5.1,
allows to compute a minimal generating representation from a description by a system of
constraints. The second one, discussed in Section 5.2, computes a set of constraints, also
minimal in a certain sense, from a generating representation. Both algorithms only address
the problem on tropical polyhedral cones. However, their generalization to tropical polyhe-
dra is straightforward using the homogenization technique, and is left to the reader. The
two algorithms are based on an incremental approach, which is analogous to the classical
double description method. We give a precise characterization of their complexity. They are
compared theoretically and experimentally to the existing techniques, and to their classical
analogues. Finally, in Section 5.3, we discuss the problem of finding an upper bound on the
number of extreme elements in tropical polyhedra. In particular, this will allow to derive a
more global bound on the complexity of our algorihms in conclusion (Section 5.4).

5.1 From the external description to the internal description

In this section, we introduce an algorithm able to compute a minimal generating set of a
polyhedral cone, starting from a system of tropically linear inequalities defining it.

This algorithm is based on the tropical double description method, treated in Section 5.1.1,
which is the analogue of the double description method of Motzkin et al. in the tropical
setting. Since this method may return non-minimal representations, it is refined using the
combinatorial characterization of extreme element based on directed hypergraphs (Chapter 3)
and the related algorithm developed in Chapter 4. This leads to the final version of our
algorithm, detailled in Section 5.1.2. We will see that this algorithm is theoretically better
than the existing approaches and their implementations in the tropical and classical setting
(Sections 5.1.3 and 5.1.4). This is also confirmed experimentally in Section 5.1.5.

5.1.1 The tropical double description method

The tropical double description method is an incremental technique based on a successive
elimination of inequalities. Given a polyhedral cone C defined by a system of n constraints, it
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computes by induction on k (0 ≤ k ≤ n) a generating set Gk of the intermediate cone defined
by the first k constraints. Then Gn forms a generating set of the cone C.

Passing from the set Gk to the set Gk+1 relies on a result which, given a polyhedral cone
K and a tropical halfspace H = {x | ax ≤ bx }, allows to build a generating set G′ of K ∩H
from a generating set G of K. This is referred to as the elementary step of the method:

Theorem 5.1 (Elementary step of the tropical double description method). Let C ⊂ Rd
max

be a closed tropical cone generated by a set G of elements of Rd
max, and let H be a halfspace

{x | ax ≤ bx }, where a, b ∈ R1×d
max.

Then the cone C ∩ H is generated by the following set:

{ g ∈ G | ag ≤ bg } ∪ { (ah)g ⊕ (bg)h | g,h ∈ G, ag ≤ bg, and ah > bh }. (5.1)

Observe that this result holds on any closed tropical cones, and not only on polyhedral
cones.

Proof. Let G′ be the set given in (5.1). The relation cone(G′) ⊂ C ∩H is obvious.
Now consider x ∈ C ∩ H. Using Minkowski’s theorem for tropical closed cones [GK07,

Theorem 3.1], x can be written as a combination of at most d + 1 elements of G, i.e. x =⊕d+1
i=1 λig

i where gi ∈ G and λi ∈ Rmax for all i. Observe that ax ≤ bx implies:
⊕

agi≤bgi

λi(agi) ⊕
⊕

agj>bgj

λj(agj) ≤
⊕

agi≤bgi

λi(bgi) ⊕
⊕

agj>bgj

λj(bgj). (5.2)

Suppose that
⊕

agj>bgj λj(bgj) >
⊕

agi≤bgi λi(bgi). There exists k such that λk(bgk) =⊕
agj>bgj λj(bgj), and necessarily λk > ✵. But (5.2) leads to λk(bgk) ≥ λk(agk) while

agk > bgk, which is a contradiction. It follows that
⊕

agj>bgj λj(bgj) ≤
⊕

agi≤bgi λi(bgi),
so that, by (5.2), ⊕

agj>bgj

λj(agj) ≤
⊕

agi≤bgi

λi(bgi). (5.3)

Let κ be the right member of (5.3). If κ > ✵, then

x =
⊕

agi≤bgi

λig
i ⊕

⊕

agj<bgj

λjg
j

=
⊕

agi≤bgi

λig
i ⊕ κ−1

⊕

agi≤bgi

[ ⊕

agj>bgj

λj(agj)

]
λig

i

⊕ κ−1
⊕

agj>bgj

[ ⊕

agi≤bgi

λi(bgi)

]
λjg

j

=
⊕

agi≤bgi

λig
i ⊕ κ−1

⊕

agi≤bgi

agj>bgj

λiλj

[
(agj)gi ⊕ (bgi)gj

]

which shows x ∈ cone(G′). Otherwise, κ = ✵. By (5.3), λj(agj) = ✵ for each j such that
agj > bgj , hence λj = ✵. It follows that x =

⊕
agi≤bgi λig

i, thus x ∈ cone(G′).

The generating set given in (5.1) is formed by the elements g which belongs to the halfspace
H, and their pairwise combinations with elements h which are not located in H. Observe
that these combinations not only belong to satisfy the constraint ax ≤ bx, but also saturate
it.
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h2,0

h3,0
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Figure 5.1: The elementary step of the double
description method
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g′

Figure 5.2: Illustration of Remark 5.2

Example 5.1. Figure 5.1 provides an illustration of the elementary step of the double descrip-
tion method on the cone defined in Example 2.10 and the halfspace given by the constraint
y ≤ z + 2.5 (depicted in light blue in Figure 5.1, while the set of elements saturating the
inequality is in darker blue). The three elements g1, g2, and g3 satisfy the constraint, while
g0 does not. Their combinations are the elements h1,0, h2,0, and h3,0 respectively.

Let us denote by ǫi the element of Rd
max whose i-th coordinate is equal to ✶, and the other

coordinates to ✵. Intuitively, the set (ǫi)1≤i≤d is a tropical analogue of the canonical basis.

The following theorem describes the whole tropical double description method:

Theorem 5.2 (Tropical double description method). Let C ⊂ Rd
max be a polyhedral cone

defined as the set {x ∈ Rd
max | Ax ≤ Bx }, where A, B ∈ R

p×d
max (with p ≥ 0). Let G0, . . . , Gp

be the sequence of finite subsets of Rd
max defined as follows:






G0 = (ǫi)1≤i≤d,

Gi = { g ∈ Gi−1 | Aig ≤ Big }

∪ { (Aih)g ⊕ (Big)h | g,h ∈ Gi−1, Aig ≤ Big, and Aih > Bih },

for all 1 ≤ i ≤ p, where Ai and Bi are the i-th rows of A and B.

Then C is generated by the finite set Gp.

Proof. Using Theorem 5.1, it can be easily shown that each Gi forms a generating set of the
polyhedral cone {x ∈ Rd

max | Ajx ≤ Bjx for all j = 1, . . . , i }.

Observe that Theorem 5.2 provides a constructive proof of the “Minkowski part” of the
Minkowski-Weyl theorem (Theorem 2.6), since it shows that all tropical polyhedral cones are
generated by finite sets of elements of Rd

max. The other part (i.e. the “Weyl part”) will be
discussed in Section 5.2.1.

Remark 5.2. The tropical double description method looks very similar to the classical one,
but they are distinguished by a minor difference: in the elementary step, the combinations
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1: procedure ComputeExtRays(A, B, p) ⊲ A, B ∈ Rp×d
max

2: if p = 0 then ⊲ Base case
3: return (ǫi)1≤i≤d

4: else ⊲ Inductive case

5: C :=

(
A1...

Ap−1

)
, D :=

(
B1...

Bp−1

)
, a := Ap, b := Bp

6: G := ComputeExtRays(C, D, p− 1)
7: G≤ := { gi ∈ G | agi ≤ bgi }, G> := { gj ∈ G | agj > bgj }, H := G≤

8: for all gi ∈ G≤ and gj ∈ G> do

9: x := (agj)gi ⊕ (bgi)gj

10: H := BuildHypergraph(x, A,B, p)
11: if HMaxSccCount(H) = 1 then ⊲ Extremality test
12: append σ(x) to H
13: end

14: done

15: end

16: return H
17: end

Figure 5.3: Computing the extreme rays of tropical cones

(ah)g⊕ (bg)h with ag = bg and ah > bh do not appear in the classical case, while they are
essential in the tropical setting.

For instance, consider the cone of R3
max generated by the set G consisting of the elements

where g = (0, 0, 0) and h = (2, 1, 0) (in bold black in Figure 5.2). Its intersection with the
halfspace { (x, y, z) | y ≤ z } (in light blue) is generated by a minimal set containing: (i) g,
which is the unique element of G satisfying the condition y ≤ z, and which actually saturates
it, (ii) and g′ = (2, 1, 1), which results from the combination of g and h. The latter element
is therefore absolutely necessary here.

5.1.2 Resulting algorithm

We now define an algorithm which implements the tropical double description method. How-
ever, Theorem 5.1 and subsequently Theorem 5.2 may return non-extreme elements. For
instance, in Example 5.1, only h1,0 is extreme, whereas h2,0 and h3,0 are not. We know by
Theorem 2.3 that the extreme rays of a cone form a minimal generating set. Therefore, non-
extreme rays are redundant and useless elements, and if they are not eliminated, the approach
will not be scalable. Indeed, at each inductive step, the number of elements in the sets Gk

grows quadratically in the worst case (because of the pairwise combinations in Theorem 5.2
of the g and h). Hence the complexity of the inductive method in total is double exponential
(O(d2p

)), both in time and space, which is clearly untractable.
That is why we propose to eliminate non-extreme elements at each step of the induction,

using the combinatorial characterization based on directed hypergraphs (Chapter 3), and the
associated quasi-linear algorithm (Chapter 4).

The resulting algorithm ComputeExtRays (Figure 5.3) returns the set of the scaled
extreme elements of the cone C. The argument p corresponds to the number of constraints of
the system Ax ≤ Bx:

❼ when p = 0, the cone coincides with Rd
max, so that it is generated by the tropical

canonical basis (ǫi)1≤i≤d.
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❼ when p > 0, the system is split into the system Cx ≤ Dx formed by the (p − 1)
first inequalities, and the last inequality ax ≤ bx. Then the elements provided by
Theorem 5.2 are computed from the set G of extreme elements of the intermediary cone
D = {x ∈ Rd

max | Cx ≤ Dx }, and stored into the set H.
The extremality test is implemented at Lines 10-11. First, the tangent hypergraph
H(x, C) is computed thanks to a function BuildHypergraph (a possible implementa-
tion of this function is given in Appendix). Then, the function HMaxSccCount that
we have defined in Chapter 4 is called. According to Theorem 4.1, its result is equal
to 1 if and only if the tangent hypergraph admits a greastest Scc, which is a necessary
and sufficient condition of the extremality of x. If the test succeeds, the element x is
first normalized into a scaled element by σ (see Section 2.2.5), and then appended to
the set H. This ensures that H contains only one element of each represented ray.

Observe that the extremality test is applied only on the elements associated to the com-
binations (agj)gi ⊕ (bgi)gj , and not on the elements g ∈ G≤ which satisfy ag ≤ bg. This is
a consequence of the following lemma:

Lemma 5.1. Let C,D ⊂ Rd
max be two tropical cones such that C ⊂ D. Then if x ∈ C is

extreme in D, then it is also extreme in C.

Proof. Consider u,v ∈ D such that x = u⊕ x. Since u and x also belong to D, then x = u

or x = v, using the extremality of x in D. It follows that x is extreme in C.

In our setting, any element g ∈ G≤ belongs to the final C, and is extreme in the inter-
mediary cone D (by induction hypothesis). Since C is included into D, it is extreme in C
by Lemma 5.1. As a consequence, it is not necessary to apply the extremality test on the
elements of G≤.

Complexity analysis. Each operation in Rmax is supposed to take a unit time. We use hash
sets to encode subsets of Rd

max. A hash set is a hash table which maps keys to a same
meaningless value (for instance undef ).4 The keys stored in the hash table correspond to
the elements of the represented set. Therefore, the amortized time complexity of adding,
searching, and removing an element in the set is bounded by the complexity of hashing a
vector of Rd

max, which is supposed to be O(d).

Inductive step. We first study the complexity of the inductive step. This step, located from
Lines 7 to 14, begins after the termination of the last recursive call to ComputeExtRays.
Starting from the last intermediate set G, it consists in (i) computing the set given in (5.1),
and (ii) eliminating non-extreme combinations. Its complexity can be precisely characterized
in terms of the size of G. It can be easily verified that it is dominated by the extremality
tests performed in the loop from Lines 8 to 14. Each test requires to build the hypergraph H
(Line 10). This operation can be done in linear time in its size, which is in O(p×d). According
to Theorem 4.1, HMaxSccCount(H) is executed in time O(size(H)α(d)) = O(pdα(d)). The
loop is iterated O(|G|2) in the worst case, so that the following statement holds:

Proposition 5.2. The worst case time complexity of the inductive step in ComputeEx-

tRays is O(pdα(d)|G|2).

4An implementation for OCaml is provided by Filliâtre in [Fil08].
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We also stress that the inductive step is optimal in terms of space complexity, since a
non-extreme element is never stored in the resulting set H, even temporarily. It follows that
its space complexity is bounded by O(d max(|G|, |H|)).

Remark 5.3. Observe that the construction of the hypergraph H (Line 10) can be optimized
by maintaining some extra information for each element of the intermediate set G.

Indeed, consider a tropical linear form c ∈ R1×d
max and a non-null combination x = λu⊕µv

of two elements u,v ∈ Rd
max. Then the set arg max(cx) can be computed efficiently from the

sets arg max(cu) and arg max(cv):

arg max(cx) =






arg max(cu) if λ(cu) > µ(cv),

arg max(cv) if λ(cu) < µ(cv),

arg max(cu) ∪ arg max(cv) otherwise.

(5.4)

Similarly, the value of cx can be computed in O(1) from cu and cv.

Now, let x be an element returned by ComputeExtRays(A, B, p). Using (5.4), the list
of the tuples ((Akx, arg max(Akx)), (Bkx, arg max(Bkx))) (1 ≤ k ≤ p) can be propagated by
induction during the execution of ComputeExtRays(A, B, p). In practice, we have observed
that this optimization considerably speeds up the computation of the associated hypergraph.

Overall complexity. The overall complexity of the algorithm ComputeExtRays depends on
the maximal size of the sets Gi (i ≤ 0 ≤ p − 1) returned in the intermediate steps. By
Proposition 5.2, we get the following result:

Proposition 5.3. The worst case time complexity of the ComputeExtRays is bounded by:

O

(
p−1∑

i=0

pdα(d)|Gi|
2

)
,

and in particular by O(p2dα(d)G2
max), where Gmax is the maximal cardinality of the sets Gi

for i = 0, . . . , p− 1.

This result can be also expressed in terms of the maximal number N trop(p, d) of extreme
rays of a polyhedral cone of Rd

max defined by a system of p inequalities. This upper bound
will be discussed in detail in Section 5.3. Then we have the following result:

Proposition 5.4. The worst case time complexity of the ComputeExtRays is bounded by:

O

(
p−1∑

i=0

pdα(d)(N trop(i, d))2

)
,

and in particular, by O(p2dα(d)(N trop(p− 1, d))2).

5.1.3 Comparison with the existing approaches

In this section, we describe the existing approaches discussed in the introduction of the
chapter, which have been originally defined by Butkovič and Hegedus, then Gaubert, and
which are implemented in the Maxplus toolbox [CGMQ] and in [AGG08].
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5.1.3.a Main principle. Like ComputeExtRays, these algorithms rely on a successive
elimination of inequalities. However, they use a different, albeit equivalent, formulation of
the elementary step:

Theorem 5.3 (Elementary step used in [BH84, Gau92, GP97, AGG08]). Let C ⊂ Rd
max be

a tropical polyhedral cone generated by a set G of elements of Rd
max, and let H be a halfspace

{x | ax ≤ bx }, where a, b ∈ R1×d
max.

Then the cone C ∩ H is generated by the set {Gy | y ∈ G′ }, where G′ is a generating set
of the halfspace H′ = {y ∈ Rn

max | (aG)y ≤ (bG)y }, and n = |G|.

In this statement, the set G is assimilated to the (d × n)-matrix whose columns are
given by the elements of G (the order of the columns is meaningless). Then, the inequality
(aG)y ≤ (bG)y describes a tropical halfspace in Rn

max, where n is the cardinality of the set G
(and not the current dimension d). Theorem 5.3 can be associated to following result which
provides explicitly a generating set of any tropical halfspace in dimension n:

Proposition 5.5. Let H′ = {x ∈ Rn
max | ax ≤ bx } be a tropical halfspace (a = (ai), b =

(bi) ∈ R1×n
max). Then a generating family of H′ is given by:

{ ei | ai ≤ bi } ∪ {aje
i ⊕ bie

j | ai ≤ bi and aj > bj },

where (ei)i is the tropical canonical basis in dimension n.

It can be checked that combining Theorem 5.3 and Proposition 5.5 yields a generating set
of the cone C ∩ H which coincides with the set given in (5.1). In particular, Proposition 5.5
corresponds to the application of Theorem 5.2 with G = (ei)1≤i≤n, and d = n.

Nevertheless, Theorem 5.3 is a weaker result than Theorem 5.1, since the former applies
only on polyhedral cones, while the latter on any closed tropical cone. Furthermore, the
formulation provided in Theorem 5.1 is by far more concise, and has a simple geometric
interpretation. It allows to precisely understand on which elements the extremality test has
to be executed. As a comparison, the implementation of the Maxplus toolbox of Scilab and
of [AGG08] evaluate the extremality test on elements which actually belong to G≤, while it
is not needed.

5.1.3.b Elimination of non-extreme elements. The elimination technique of non-extreme
elements in the existing algorithms uses a radically different approach than the one defined
in Chapter 3. Indeed, it does not rely on the description of the cone by means of halfspaces.
It is based on the following statement:

Proposition 5.6. Let C be a polyhedral cone generated by a finite set G of scaled elements.
Then the scaled extreme generators of C are precisely the elements x ∈ G which cannot be
expressed as a tropical linear combination of the elements of G \ {x }, or, equivalently:

x 6∈ cone(G \ {x }).

Proof. Let G = { g1, . . . , gn }.
Suppose that x is a scaled extreme generator of C, and that x is equal to

⊕
gi 6=x λig

i

with λi ∈ Rmax. Then x is equal to one of the λig
i. Since x and gi are both scaled, and

‖λig
i‖ = eλ

i ×‖g
i‖ = eλ

i , we have λi = ✶. Hence x is equal to one of the gi, which contradicts
the assumption gi 6= x.
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Conversely, suppose that x 6=
⊕

gi 6=x λig
i. Let u, v ∈ C such that x = u ⊕ v. The

elements u and v can be expressed as tropical combinations of the elements of G:

u = αx⊕
⊕

1≤i≤n
gi 6=x

αig
i v = βx⊕

⊕

1≤i≤n
gi 6=x

βig
i

so that:
x = (α⊕ β)x⊕

⊕

1≤i≤n
gi 6=x

(αi ⊕ βi)g
i

If x is neither equal to u nor v, then α < ✶ and β < ✶. It follows that the last equality
amounts to

x =
⊕

1≤i≤n
gi 6=x

(αi ⊕ βi)g
i

which shows that x ∈ cone(G \ {x }), which is a contradiction with the initial assumption on
x. It follows that x = u or x = v.

In the tropical setting, there is a well-known method derived from residuation theory to
determine whether a given element is a linear combination of some others. It initially appeared
in the work of Vorobyev [Vor67] and Cuninghame-Green [CG76]. See also [BCOQ92, CG95,
GP97, BSS07].

Lemma 5.7. Let G ⊂ Rd
max be a finite set. Then x can be expressed as a tropical linear

combination of the elements of G if and only if:

x =
⊕

g∈G

(g\x)g

where g\x
def
= min1≤i≤d(xi − gi) (with the convention −∞+∞ = +∞).

Intuitively, the scalar g\x corresponds to the largest λ such that λg ≤ x. When the
vector g is not identically null, then g\x necessarily belongs to Rmax.

An equivalent criterion, studied in various works [Vor67, CG79, AGK05, BSS07], relies on
a set covering property:

Lemma 5.8. Let G ⊂ Rd
max be a finite set. Then x belongs to the tropical cone generated by

G if and only if ∪g∈GNx(g) = supp(x), where Nx(g) ⊂ supp(x) is defined by:

Nx(g)
def
=

{
{ i ∈ supp(x) | xi − gi = g\x } if g\x < +∞

∅ otherwise.
(5.5)

Lemmas 5.7 and 5.8 provide a very efficient method to determine whether x is a tropical
linear combination of the elements of the set G, in time O(d|G|). Observe that this is an
important difference with the classical case, in which the analogue of this problem, i.e. de-
termining whether x is a positive linear combination of given elements, is usually solved by
linear programming (hence in polynomial time, but with a worse complexity).

The extremality test used in the existing algorithms is based on the characterization
provided by Proposition 5.6, in conjunction with Lemmas 5.7 or 5.8. This is illustrated by
the algorithm OldComputeExtRays given in Figure 5.4.



92 Chapter 5. Algorithmics of tropical polyhedra

1: procedure OldComputeExtRays(A, B, p) ⊲ A, B ∈ Rp×d
max

2: if p = 0 then ⊲ Base case
3: return (ǫi)1≤i≤d

4: else ⊲ Inductive case

5: C :=

(
A1...

Ap−1

)
, D :=

(
B1...

Bp−1

)
, a := Ap, b := Bp

6: G := OldComputeExtRays(C, D, p− 1)
7: a′ := aG, b′ := bG
8: (ei)1≤i≤n := tropical canonical basis of Rn

max
, where n = |G|

9: G′ := { ei | a′
i ≤ b′

i } ∪ {a′
je

i ⊕ b′
ie

j | a′
i ≤ b′

i and a′
j > b′

j }
10: H := {Gy | y ∈ G′ }
11: for all x ∈ H do

12: if x =
⊕

h∈H\{x }(g\x)g then remove x from H
13: done

14: end

15: return H
16: end

Figure 5.4: Scheme of the most efficient existing methods to compute the extreme rays of
tropical cones

Remark 5.4. Since this approach has also been implemented by the author (see [AGG08]),
here are some recommandations to make the algorithm as scalable as possible.

First of all, it is not recommended to build the whole set H provided by Theorem 5.3
in a first step, and then apply the test on each element in a second step, as described in
Figure 5.4. Indeed, the number of elements provided by Theorem 5.3 may be very large, so
that the implementation can run out of memory.5 That is why an incremental method has
been introduced in the refined implementation of the paper [AGG08]: each time an element
x is appended to the set H, it is checked whether some element in H can be proved to be
non-extreme.

In practice, each element y of H is associated to the subset ∪h∈H\{y }Ny(h), where Ny(h)
is defined as in (5.5). It is also updated in an incremental way, i.e. each time an element is
appended to H. As soon as it is detected that it is equal to supp(y) (or more efficiently, that
its cardinality reaches the threshold |supp(y)|), the element y is removed from H.

From our experiments, it is the most efficient strategy of the elimination test by resid-
uation, and the only one which can compete with the extremality test based on directed
hypergraphs. Observe however that it does not improve the worst case time and space com-
plexity, as discussed below.

5.1.3.c Complexity analysis and comparison with our algorithm. As for ComputeEx-

tRays, we focus on an accurate estimation of the time complexity of the inductive step (i.e.
from Lines 7 to 13). It is still dominated by the extremality tests. In the worst case, the
O(|G|2) elements provided by Theorem 5.3 are extreme. In that case, each test has a time
complexity of order of O(d|G|2). Note that the complexity is still the same when the opti-
mizations of Remark 5.4 are used. Then, it can be verified that the total complexity of the
inductive step is O(d|G|4).

5This has been experimented with the Maxplus toolbox of Scilab.
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Table 5.1: Comparison of the complexity

ComputeExtRays OldComp.
classical DDM

comb. algebraic

extremality test O(pdα(d)) O(d|G|2) O(p|G|) O(pd2)

inductive step
time O(pdα(d)|G|2) O(d|G|4) O(p|G|3) O(pd2|G|2)

space optimal not optimal optimal

ratio O(1) O

(
|G|2

pα(d)

)
O

(
|G|

dα(d)

)
O

(
d

α(d)

)

overall O(p2dα(d)G2
max) O(pdG4

max) O(p2G3
max) O((pd)2G2

max)

As a consequence, the overall complexity of OldComputeExtRays is bounded by
O(pdG4

max), where Gmax is the maximal cardinality of the intermediate generating sets.

These results are compared to the complexity analysis of ComputeExtRays in Table 5.1.
The ratio of the worst case time complexity of the existing methods and ours is also provided.
Both for the extremality test and the inductive step, it is of order of |G|2/(pα(d)). As discussed
in Section 5.3, and confirmed by the experiments, the size of G, which is the number of
extreme rays in the intermediary cone D, is much larger than pα(d) in general.6 As a result,
the performance of ComputeExtRays is significantly better than the performance of the
existing methods.

Contrary to ComputeExtRays, the algorithm OldComputeExtRays may temporar-
ily store non-extreme elements of C in the set H during the inductive step (even if the
incremental elimination is used). As a consequence, the space complexity is not optimal, and
it can only be bounded by O(d|G|2). This non-optimality may be harmful to the scalability
of OldComputeExtRays.

5.1.4 Comparison with the classical double description method

The principle of the classical double description method is very close to our algorithm. It
is also based on successive elimination of inequalities, and its elementary step (see [FP96,
Lemmas 3 and 8]) is almost identical to Theorem 5.1.

The elimination of redundant elements is based on a characterization of the adjacency of
the elements of G in the intermediary cone D. Two possible criteria can be used. The first
one relies on an algebraic property on the rank of a matrix whose size is (p× d) in the worst
case.7 It can be evaluated in O(p2d) arithmetical operations, using Gaussian elimination
algorithm. The second one is based on a combinatorial property on the set of the inequalities
saturated by each ray. It can be checked in O(p|G|3), where G is the set of extreme rays of
the intermediate cone D. In the benchmarks of [FP96], it has been verified that the second
criterion is more efficient than the former. This may be due to an explosion of the size of the
coefficients of the matrices involved in the algebraic tests, which can severely slow down the
evaluation of their rank.

Therefore, suppose that the classical double description method uses the combinatorial

6This may also happen even if the cone C has few extreme rays.
7This matrix is formed by the saturated inequalities.
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Table 5.2: Execution time benchmarks on a single core of a 3 GHz Intel Xeon with 3 Gb
RAM

d p # final # inter. T (s) T ′ (s) T/T ′

rnd100 12 15 32 59 0.24 6.72 0.035
rnd100 15 10 555 292 2.87 321.78 8.9 · 10−3

rnd100 15 18 152 211 6.26 899.21 7.0 · 10−3

rnd30 17 10 1484 627 15.2 4667.9 3.3 · 10−3

rnd10 20 8 5153 1273 49.8 50941.9 9.7 · 10−4

rnd10 25 5 3999 808 9.9 12177.0 8.1 · 10−4

rnd10 25 10 32699 6670 3015.7 — —
cyclic 10 20 3296 887 25.8 4957.1 5.2 · 10−3

cyclic 15 7 2640 740 8.1 1672.2 5.2 · 10−3

cyclic 17 8 4895 1589 44.8 25861.1 1.7 · 10−3

cyclic 20 8 28028 5101 690 ∼ 45 days 1.8 · 10−4

cyclic 25 5 25025 1983 62.6 ∼ 8 days 9.1 · 10−5

cyclic 30 5 61880 3804 261 — —
cyclic 35 5 155040 7695 1232.6 — —

test. Since in general, the size of G, both in the classical and the tropical settings, is much
larger than dα(d), the extremality test and the inductive step of our algorithm have a better
complexity than their classical analogues (see the corresponding ratio in Table 5.1).

5.1.5 Benchmarks

The algorithm ComputeExtreme has been implemented in the library TPLib [All09]. Ta-
ble 5.2 reports some experiments for different classes of tropical cones: (i) samples formed by
several cones chosen randomly (referred to as rndx where x is the size of the sample), (ii) and
signed cyclic cones which are known to have a very large number of extreme elements. The
latter will be studied in Section 5.3. For each, the first columns respectively report the di-
mension d, the number of constraints p, the size of the final set of extreme rays, the mean
size of the intermediary sets, and the execution time T (for samples of “random” cones, we
give average results).

A common point between our algorithm and the classical double description method is
that the result does not depend on the order of the inequalities in the initial system. This
order may impact the size of the intermediary sets and subsequently the execution time. In
our experiments, inequalities are dynamically ordered during the execution: at each step of
the induction, the inequality ax ≤ bx is chosen so as to minimize the number of combinations
(agj)gi⊕(bgi)gj . Note that this strategy does not guarantee that the size of the intermediate
sets of extreme elements is smaller. However, it reports better results than without ordering.

We compare our algorithm with OldComputeExtRays, whose execution time T ′ is
given in the seventh column. The ratio T/T ′ shows that our algorithm brings a huge break-
through in terms of execution time. When the number of extreme rays is of order of 104, the
second algorithm needs several days to terminate. For instance, the execution of OldCom-

puteExtRays have lasted 45 days on the signed cyclic cone with the parameters d = 20 and
p = 8, while our algorithm ComputeExtRays has returned in only 690 seconds. Therefore,
for some extreme cases (for instance d ≥ 30), the comparison could not be made in practice.
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5.2 From the internal description to the external description

This section deals with the dual of the problem addressed in Section 5.1, i.e. determining a
system of inequalities of a polyhedral cone from a finite generating set.

To get a better understanding of this problem, the notion of polar of tropical cones is
introduced (Section 5.2.1). Intuitively, the polar of a tropical cone C is the tropical cone
formed by all the inequalities satisfied by C. Section 5.2.2 is focused on the polar of polyhedral
cones. It shows that the set of the extreme rays of the polar of a cone C forms a canonical
representation by inequalities of C.

We also show that there is no combinatorial and algorithmic duality between convex
cones and their polar in the tropical setting. In particular, we establish a strict refinement
of the combinatorial criterion of Chapter 3 to characterize extreme elements in polar cones
(Section 5.2.3). In Section 5.2.4, we will see how to algorithmically evaluate with a better
complexity than the algorithm of Chapter 4. We then derive the main algorithm, which
computes the set of the scaled extreme elements of the polar of a cone C, from a description
by a generating set of C. Finally, we compare the algorithm with the alternative approaches
(Section 5.2.5).

5.2.1 Polar of tropical cones

We denote by t· the transposition operator.
The polar of a tropical cone C represents the linear inequalities which are satisfied by all

elements of C:

Proposition-Definition 5.9. Let C ⊂ Rd
max be a tropical cone. Then the set C◦ ⊂ (Rd

max)
2,

defined by:

C◦
def
= { (a, b) ∈ (Rd

max)
2 | tax ≤ tbx for all x ∈ C },

is a tropical cone, and is called the polar cone of C.

Note that we implicitly use the isomorphism between (Rd
max)

2 and R2d
max.

Proof. Consider (a, b), (c, d) ∈ C◦. Clearly, for all λ, µ ∈ Rmax and all x ∈ C, we have:

t(λa⊕ µc)x = λtax⊕ µtcx ≤ λtbx⊕ µtdx = t(λb⊕ µd)x.

Hence, λ(a, b)⊕ µ(c, d) belongs to C◦.

A dual notion of polar cones of (Rd
max)

2 can be introduced:

Definition 5.1. Let C ⊂ (Rd
max)

2 be a tropical cone. Then the dual polar cone of C is the
tropical cone C ⋄ ⊂ Rd

max defined by:

C
⋄ def

= {x ∈ Rd
max |

tax ≤ tbx for all (a, b) ∈ C }.

Clearly, any tropical cone C is included into its bipolar, defined as (C◦)⋄. A separation
theorem [Zim77, Gau92, CGQS05] allows to show that both coincide when C is closed:

Theorem 5.4. Let C ⊂ Rd
max be a closed tropical cone. Then the cone C and its bipolar are

identical:
C = (C◦)⋄.

This implies that a closed tropical cone can be equivalently represented by the set of
inequalities which are satisfied by all of its elements.
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5.2.2 Polar of finitely generated cones

When the cone C is finitely generated, its polar is also finitely generated:

Proposition 5.10. Let G = { g1, . . . , gn } be a finite subset of Rd
max. Then the polar of

cone(G) is the following polyhedral cone:

{
(a, b) ∈ (Rd

max)
2 | tGa ≤ tGb

}
, (5.6)

where G is assimilated to the matrix of size d× n whose columns are the vectors g1, . . . , gn.

Proof. First note that (a, b) satisfies tGa ≤ tGb if and only if tagi ≤ tbgi for all i.
We then conclude by observing that an inequality holds for all elements of cone(G) if and

only if is satisfied by each vector of G.

Theorem 5.4 has a remarkable formulation when C is a finitely generated cone, since C can
be exactly expressed as the solution of the system of inequalities associated to the extreme
rays of C◦:

Corollary 5.11. Let C ⊂ Rd
max be a finitely generated tropical cone. Consider a sequence

(a1, b1), . . . , (ap, bp) formed by one representative of each extreme ray of the polar cone C◦.
Then the following statement holds:

C = {x ∈ Rd
max |

tajx ≤
tbjx for all j = 1, . . . , p }. (5.7)

Proof. Let S be the set given in the right member of (5.7). The inclusion C ⊂ S is a
straightfoward application of the definition of the polar of C.

Conversely, any element x ∈ S belongs to the dual polar of C◦. Indeed, if (a, b) ∈ C◦,
then there exist λ1, . . . , λp such that (a, b) =

⊕p
j=1 λj(aj , bj) by Theorem 2.2, so that

tax =

p⊕

j=1

λj
tajx ≤

p⊕

j=1

λj
tbjx = tbx.

Since C is a closed cone (Lemma 2.5), applying Theorem 5.4 shows that x ∈ C.

Corollary 5.11 completes the proof of the Minkowski-Weyl theorem (Theorem 2.6), since
it shows that every finitely generated cone is a polyhedral cone.

Remark 5.5. Any sequence (a1, b1), . . . , (ap, bp) as in Corollary 5.11 forms a minimal set of
elements of the polar cone C◦, according to Theorem 2.3. However, some of the corresponding
inequalities taix ≤

taib may be redundant. We say that an inequality is redundant in a
system of inequalities S defining a cone C if the set of the solutions of the system S minus
this inequality still coincides with the cone C.

This redundancy follows from the tropical bipolar theorem established by Gaubert and
Katz in [GK09a]:

A subset C ⊂ (Rd
max)

2 is the polar of a tropical cone if and only if the following
conditions hold:

(i) C is a tropical cone,

(ii) (u,v) ∈ C for all u, v ∈ Rd
max such that u ≤ v,



5.2. From the internal description to the external description 97

(iii) and if (u,v), (v,w) ∈ C , then (u,w) ∈ C .

Consequently, the polar C◦ necessarily contains all the tautologies, and is closed by transitivity.
It follows that some of its extreme rays are redundant. For instance, it can be easily verified
that any element of the form (✵✵✵, ǫi), which corresponds to the tautology xi ≥ ✵ (1 ≤ i ≤ d),
is extreme in C◦.

This is a major difference with the classical case, in which the extremality and non-
redundancy properties are equivalent, as a consequence of Farkas Lemma. Indeed, Farkas
Lemma (see e.g. [Zie98, Proposition 1.9]) states that an inequality is redundant in a system
if and only if it can be expressed as a positive linear combination of the other inequalities of
the system.

Despite it is not minimal in the sense of redundancy, the set of the extreme rays of the polar
cone C◦ forms a canonical external representation of the cone C. It provides an acceptable
solution in the absence of a well-defined notion of facets (see the work of Develin and Yu in
which some conjectures on the definition of faces have been studied [DY07]).

5.2.3 Efficient characterization of extreme elements of the polar of a polyhedral
cone

Observe that the inequalites which define the polar cone of C = cone(G) have a very particular
form. Suppose that G = { g1, . . . , gp }. Then recall that (a, b) belongs to C◦ if and only if:

⊕

1≤i≤d

gk
i ai ≤

⊕

1≤j≤d

gk
j bj for all 1 ≤ k ≤ p,

where a = (ai), b = (bi), and gk = (gk
i ). These inequalities have a very special form: their

left member involves only the first component a of (a, b), while their right member, only b.
As a consequence, the tangent hypergraph H((a, b), C◦) is also of a special kind: each

hyperedge necessary leaves a subset of supp(b), and enters a subset of supp(a). In the graph
terminology, we say that the hypergraph admits a cut (supp(b), supp(a)), and every hyperedge
crosses it, i.e. the cutset consists of all the hyperedges. This configuration is illustrated in
Figure 5.5, where we suppose that supp(a) = { 3, 4, 6, 8 } and supp(b) = { 1, 2, 5, 7, 9, 10 }. In
such hypergraphs, the existence of a greastest Scc can be characterized elementary:

Lemma 5.12. Let H = (N, E) be a directed hypergraph such that there exists a partition
(N1, N2) of N and for all e ∈ E, T (e) ⊂ N1 and H(e) ⊂ N2. Then H admits a greatest Scc

if and only if one of the two following conditions is satisfied:

❼ either N1 is reduced to a singleton and N2 is empty,

❼ or N2 is reduced to a singleton { v }, v 6∈ N1, and each node u ∈ N1 is bound to v by a
simple hyperedge ({u }, { v }).

Proof. Suppose that H admits a greatest Scc. If N2 = ∅, then each node of N1 forms a
maximal Scc. Therefore, N1 has to be reduced to a singleton. Otherwise, if N2 6= ∅, then
every node of N2 forms a maximal Scc. Hence N2 contains only one node v. Since (N1, N2)
forms a cut of H, v does not belong to N1. Besides, v must be reachable from any node
u ∈ N1. For any two nodes u, u′ ∈ N1, we clearly have u 6 H u′. Thus, v is reachable from j
only if there exists a hyperedge of the form ({u }, { v }) in H.

Conversely, any hypergraph satisfying one of the two conditions admits a greatest Scc.
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b1

b2

b10

b7

b9

b5

a3

a6

a8

a4

Figure 5.5: The cut (supp(b), supp(a)) in the directed hypergraph H((a, b), C◦)

Applying Lemma 5.12 and the characterization of extremality provided by Theorem 3.3
yields the following statement.8

Proposition 5.13. Let C ⊂ Rd
max be a tropical polyhedral cone generated by a finite set G,

and (a, b) ∈ C◦. Then (a, b) is extreme in C◦ if and only if one of the two conditions holds:

(1) either a = ✵✵✵ and supp(b) = { j } for some 1 ≤ j ≤ d,

(2) or supp(a) = { i } for some 1 ≤ i ≤ d, i 6∈ supp(b), and for all j ∈ supp(b), there exists
g ∈ G such that

aigi = bjgj > ✵ and bjgj > bkgk for all k 6= j. (5.8)

Observe that the elements of the form (1) are precisely the tautologies xj ≥ ✵.

5.2.4 Resulting algorithm

We now describe an algorithm which computes the extreme rays of the polar of a cone
C = cone(G) from a generating set G. It is a defined in a dual way to the algorithms
discussed in Section 5.1, i.e. by induction on the number of vectors in G. The elementary
step of this induction is described in Section 5.2.4.a, the extremality test in Sections 5.2.4.b
and 5.2.4.c, and the main algorithm is provided in Section 5.2.4.d.

5.2.4.a Elementary step. We begin with a dual formulation of the elementary step given
in Theorem 5.1:

8This result has also been established by Gaubert and Katz in [GK09b], but with a different proof.
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Corollary 5.14. Let C ⊂ Rd
max be a tropical polyhedral cone generated by a finite set G, and

g ∈ Rd
max. Let G ⊂ (Rd

max)
2 be a generating set of the polar C◦.

Then the polar of cone(G ∪ { g }) is generated by:

{ (a, b) ∈ G | tag ≤ tbg }

∪ { (tcg)(a, b)⊕ (tbg)(c, d) | (a, b), (c,d) ∈ G , tag ≤ tbg, and tcg > tdg }.

Proof. Observe that the polar of cone(G ∪ { g }) concides with the intersection of C◦ and the

halfspace H
def
= { (a, b) ∈ (Rd

max)
2 | tag ≤ tbg }, according to Proposition 5.10. Therefore,

Theorem 5.1 can be applied on the set G and the halfspace H .

5.2.4.b Extremality test. Following Proposition 5.13, we introduce a particular algorithm
to evaluate the extremality of an element in the polar of the cone C = cone(G).

This function, called CheckExtInPolar, is presented in Figure 5.6. It takes as input an
element (a, b) ∈ C◦ to be tested, and also a list L of additional data, called the max/arg max
information. This list is formed by the quadruples (tag, arg max(tag), tbg, arg max(tbg)) for
all the elements g ∈ G.

1: procedure CheckExtInPolar((a, b), L)
2: if a = ✵✵✵ and |supp(b)| = 1 then ⊲ Form (1)?
3: return true
4: else if |supp(a)| = 1 then ⊲ Form (2)?
5: let i such that supp(a) = { i }
6: if i 6∈ supp(b) then

7: R := ∅
8: for all (vl, argl, vr, argr) ∈ L do

⊲ the loop iterates over the quadruples (tag, arg max(tag), tbg, arg max(tbg))
9: if vl = vr > ✵ and |argr| = 1 then

10: let j such that argr = { j }
11: add j to R
12: end

13: done

14: if |R| = |supp(b)| then

15: return true
16: end

17: end

18: end

19: return false
20: end

Figure 5.6: Evaluation of the extremality in a polar cone, provided the max/arg max infor-
mation

Let us discuss the principle of CheckExtInPolar. The function first checks whether
(a, b) is of the form (1) (Line 2) in the sense of Proposition 5.13. If not, it tries to determine
whether it is of the form (2) (from Lines 4 to 18). The set R stores the elements j ∈ supp(b)
which satisfies the condition given in (5.8). If it is equal to supp(b), then the element (a, b)
is of the form (2) (Line 15). Otherwise, it is not extreme in C◦ (Line 19).9

9Note that the test R = supp(b) is replaced by the equality |R| = |supp(b)|, since by construction, R is
always a subset of supp(b).
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We suppose that subsets of [d] are encoded by hash sets. Thus the operations of adding
an element or evaluating the cardinality can be supposed to be in O(1).10 Then it can be
verified that the time complexity of CheckExtInPolar is in O(d+p) where p = |G|. Indeed,
computing the support of a and b can be done in O(d). Besides, the loop from Lines 8 to 13

is iterated O(p) times, and the amortized complexity of each iteration is in O(1).

The complexity of CheckExtInPolar in O(d+p) is a very important speed-up over the
evaluation of the extremality criterion in the general case (which is in O(pdα(d))). However,
we have supposed that the max/arg max information has been already computed. Without
optimization, they can be determined in time O(d× p). Fortunately, they can be much more
efficiently determined by induction, using an optimization similar to Remark 5.3. Indeed, as
in the dual algorithms, the extremality test will be applied only on combinations of elements
previously computed.

5.2.4.c Computing the max/arg max information by induction. We now describe how to
efficiently compute the max/arg max information of an element of the form (a, b) = λ(a′, b′)⊕
µ(a′′, b′′), from the max/arg max information of (a′, b′) and (a′′, b′′).

First observe that the extremality characterization of Proposition 5.13 never uses the
exact value of the sets arg max(tag) and arg max(tbg) when their cardinality is strictly greater
than 1. That is why such sets will be represented by the special value ⊤. By convention, |⊤|
evaluates to an integer greater than 2.11

The function Combine, presented in Figure 5.7, returns the combination λ(a′, b′) ⊕
µ(a′′, b′′) and its max/arg max information, starting from the elements (a′, b′) and (a′′, b′′)
and their max/arg max information L′ and L′′.

1: procedure Combine(λ, ((a′, b′), L′), µ, ((a′′, b′′), L′′))
2: a := λa′ ⊕ µa′′, b := λb′ ⊕ µb′′

3: L := [ ]
4: for all (v′l, arg′l, v

′
r, arg′r), (v

′′
l , arg′′l , v′′r , arg′′r ) ∈ (L′, L′′) do

5: (vl, argl) :=






(λv′
l, arg′l) if λv′

l > µv′′l
(µv′′l , arg′′l ) if λv′

l < µv′′l
(µv′′l ,Union( arg′l, arg′′l )) otherwise

6: (vr, argr) :=






(λv′
r, arg′r) if λv′

r > µv′′r
(µv′′r , arg′′r ) if λv′

r < µv′′r
(µv′′r ,Union( arg′r, arg′′r )) otherwise

7: append (vl, argl, vr, argr) at the end of the list L
8: done

9: return ((a, b), L)
10: end

Figure 5.7: Combining elements and the associated information

It traverses the list denoted by (L′, L′′), which is formed by the couples (l′i, l
′′
i ), where l′i and

l′i are the i-th elements of the lists L′ and L′′ respectively. The quadruples (vl, argl, vr, argr)

10Like in the implementation of [Fil08], we assume that each set is provided with a internal counter repre-
senting its cardinality.

11In the abstract interpretation jargon, we would say that subsets of the arg max are over-approximated
using the abstract domain of constants [Kil73].
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are built at Lines 5 and 6, using the following principle: for all g ∈ G,

arg max(tag) =






arg max(t
a′g) if λ(t

a′g) > µ(t
a′′g),

arg max(t
a′′g) if λ(t

a′g) < µ(t
a′′g),

arg max(t
a′g) ∪ arg max(t

a′′g) otherwise.

A similar identity holds for arg max(tbg), replacing a′ and a′′ by b′ and b′′ respectively.
The union (third case) is computed thanks to the function Union (Figure 5.8). The latter
precisely computes the result except when one of the arguments has more than 2 elements
(in which case it is encoded by the value ⊤, see Line 4). Its complexity is in O(1).

1: procedure Union(S1, S2)
2: if S1 = ∅ then return S2

3: if S2 = ∅ then return S1

4: if S1 = ⊤ or S2 = ⊤ then return ⊤
5: let (i, j) such that S1 = { i } and S2 = { j }
6: if i 6= j then return ⊤
7: else return { i }
8: end

Figure 5.8: O(1) union function

The time complexity of Combine is in O(d + p), where p is the number of elements in G
(also equal to the length of the lists L′ and L′′). Indeed, λa′⊕µa′′ andλb′⊕µb′′ are computed
in O(d) time. Besides, the loop over the list (L′, L′′) performs precisely p iterations, each of
which has a complexity in O(1).

5.2.4.d Main algorithm. The resulting algorithm ComputeExtRaysPolar is given in

Figure 5.9. Given a finite set G ⊂ Rd
max of p vectors, encoded as a (d × p)-matrix, Com-

puteExtRaysPolar(G, p) recursively computes the set of the scaled extreme elements of
the polar of cone(G) and their associated max/arg max information.

The structure is akin to ComputeExtRays:

(i) when p = 0, then cone(G) is reduced to the null vector ✵✵✵, hence its polar is equal to the
whole set (Rd

max)
2. Therefore, the canonical basis of (Rd

max)
2 is returned. It consists of

the elements of the form (ǫi),✵✵✵) and (✵✵✵, ǫi), for 1 ≤ i ≤ d. The associated lists are all
empty since G is empty.

(ii) when p > 0, the set G is first split into a set H of (p − 1) vectors and a vector g.
The function ComputeExtRaysPolar is called recursively on H. For each couple
((a, b), L) returned, the max/arg max information relative to g is added to L (Line 8),
in time O(d).

Then the combinations provided by Corollary 5.14 are examined from Lines 11 to 18.
Each combination is built thanks to the function Combine in time O(d + p) (Line 14),
and the extremality is checked at Line 15 in time O(d + p).

The normalization of the coefficients λ, µ of the combination into λ′, µ′ allows to ensure
that the combination λ′(a, b) ⊕ µ′(c,d) is a scaled element (provided that (a, b) and
(c,d) are also scaled).
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1: procedure ComputeExtRaysPolar(G, p) ⊲ G ∈ Rd×p
max

2: if p = 0 then ⊲ Base case
3: return the list formed by the elements ((ǫi),✵✵✵), [ ]) and ((✵✵✵, ǫi), [ ]) for i = 1, . . . , d
4: else ⊲ Inductive case
5: H := (p− 1) first columns of G, g := last column of G
6: G := ComputeExtRaysPolar(H, p− 1)
7: for all ((a, b), L) ∈ G do

8: append (ag, arg max(ag), bg, arg max(bg)) to the list L
9: done

10: G ≤ := { ((a, b), L) ∈ G | tag ≤ tbg }, G > := { ((c,d), L′) ∈ G | tcg > tdg }, H := G ≤

11: for all ((a, b), L) ∈ G ≤ and ((c,d), L) ∈ G > do

12: λ := cg, µ := bg

13: λ′ := (λ⊕ µ)−1λ, µ′ := (λ⊕ µ)−1µ
14: ((α,β), Λ) := Combine(λ′, ((a, b), L), µ′, ((c,d), L′))
15: if CheckExtInPolar((α,β), Λ) = true then ⊲ Extremality test
16: append ((α,β), Λ) to H

17: end

18: done

19: end

20: return H

21: end

Figure 5.9: Computing the extreme rays of the polar of a tropical cone

Like in ComputeExtRays, it can be verified that the elements of G≤ are all extreme
in the polar of cone(G).

We can now characterize the time complexity of the inductive step (from Lines 7 to 18),
in terms of the size of the intermediate set G :

Proposition 5.15. The worst case time complexity of the inductive step of ComputeEx-

tRaysPolar is O((d + p)|G |2).

This must be compared to the complexity bound in O(pdα(d)|G|2) of the same step in the
dual algorithm ComputeExtRays. As a result, we have shown that computing an external
representation of a polyhedral cone from an internal one can be performed more efficiently
than computing an internal description from an external one. This is a major algorithmic
difference with the classical algorithms, which have exactly the same theoretical complexity.

Following Remark 5.5, the algorithm ComputeExtRaysPolar necessarily returns ele-
ments (a, b) which represent redundant inequalities.

This algorithm is also implemented in the library TPLib.

5.2.5 Comparison with alternative approaches

As far as we know, the only existing algorithms to pass from an external representation to
an internal one rely on dual algorithms performing the inverse operation. More precisely,
given an algorithm ExternalToInternal which passes from the external to the internal
descriptions, we can define its dual InternalToExternal as follows:
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1: procedure InternalToExternal(G, p) ⊲ G ∈ Rd×p
max

2: A :=
(
tG ✵p×d

)
, B :=

(
✵p×d

tG
)

3: R := ExternalToInternal(A, B, p)
4: return { (a, b) | ( a

b ) ∈ R }
5: end

The argument G is a generating set, assimilated to the matrix formed by its elements,
and ✵p×d denoted the identically null matrix of size p× d.

The correctness of this construction is ensured by Proposition 5.10, which states that
(a, b) belongs to the polar of the cone cone(G) if and only if it is a solution of the system:

(
tG ✵p×d

)(a

b

)
≤
(
✵p×d

tG
)(a

b

)
.

When ExternalToInternal is instantiated by the algorithms ComputeExtRays or
OldComputeExtRays, the function InternalToExternal indeed returns the set of the
scaled extreme elements of the polar of cone(G).12 Table 5.3 provides the complexity of
InternalToExternal using these two instantiations, and compare it to ComputeEx-

tRaysPolar.13 In both cases, InternalToExternal is less efficient, since it does not use
the particular extremality criterion established in Section 5.2.3.

Table 5.3: Comparison of the complexity

Comp.ExtRaysPolar
InternalToExternal

ComputeExtRays OldComp.ExtRays

inductive step O((p + d)|G |2) O(pdα(2d)|G |2) O(d|G |4)

ratio O(1) O

(
pdα(2d)

p + d

)
O

(
d|G |2

p + d

)

overall O(p(p + d)G 2
max) O(p2dα(2d)G 2

max) O(pdG 4
max)

5.3 The number of extreme elements in tropical polyhedra

The complexity of the algorithms that we have developed in the two previous sections depends
on the size of the set of the extreme elements in the intermediate cones. In this section, we
propose to give some elements about the order of magnitude of the size of these sets in the
worst case.

An entire chapter could be dedicated to the problem of determining an upper bound on the
number of extreme elements in tropical polyhedra or polyhedral cones. It has been thoroughly
discussed by Allamigeon, Gaubert, and Katz in [AGK10]. In Sections 5.3.1 to 5.3.4, we include
a summary of the main results:

❼ Section 5.3.1 shows that the number of extreme rays in tropical polyhedral cones can
be bounded by a result akin to its classical analogue.

12In particular, Allamigeon et al. used the instantiation by OldComputeExtRays in [AGG08].
13The notation Gmax represents the maximal cardinality of the intermediate generating sets.
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❼ in Section 5.3.2, we introduce the signed cyclic polyhedral cones, which appear as natural
candidates to maximize the number of extreme rays.

❼ in Section 5.3.3, we show that the classical versions of the signed cyclic polyhedral cones
have in comparison much more extreme rays, and that they reach the bound established
in Section 5.3.1.

❼ Section 5.3.4 provides some lower and upper bound on the number of extreme rays
in tropical signed cyclic polyhedral cones. This shows in particular that the bound of
Section 5.3.1 is tight for a fixed number of constraints, and a dimension tending to +∞.

Finally, we develop in Section 5.3.5 an original result on the maximal number of extreme
rays in polar cones.

5.3.1 A first McMullen-type bound

The classical version of the upper bound problem is known to be solved by a remarkable result
of McMullen [McM70]:

Theorem 5.5 (Upper bound theorem [McM70]). Among all polytopes in Rd with p extreme
points, the cyclic polytope maximizes the number of faces of each dimension.

Remember that the cyclic polytope with p extreme points in Rd is the convex hull of p
points of the form (ti, t

2
i , . . . , t

d
i ) (i = 1, . . . , p) for a given choice of p pairwise distinct elements

t1, . . . , tp.

In particular, the number of facets (i.e. the faces of dimension d − 1) is known to be at
most

U(p, d)
def
=






(
p− ⌊d/2⌋

⌊d/2⌋

)
+

(
p− ⌊d/2⌋ − 1

⌊d/2⌋ − 1

)
for d even,

2

(
p− ⌊d/2⌋ − 1

⌊d/2⌋

)
for d odd.

By duality, the same upper bound applies to the number of extreme points of a d-dimensional
polytope defined by a system of p inequalities.

In the tropical setting, we have established the correctness of the McMullen-type following
bound:

Theorem 5.6 ([AGK10, Theorem 1]). The number of extreme rays of a tropical polyhedral
cone in Rd

max defined by a system of p inequalities cannot exceed U(p + d, d− 1).

The number p+d instead of p for the number of constraints can be explained intuitively by
the saturation of at most d implicit inequalities xi ≥ ✵ for each i 6∈ supp(x). The number d−1
instead of d for the dimension reflects the fact that the result is relative to cones. However,
tropical homogenization allows to derive a similar result for tropical polyhedra.

Since faces are not yet clearly defined in the tropical setting, the proof of Theorem 5.6
does not rely on the f -vector theory (unlike its classical counterpart). Instead, a different
approach is used, based on a deformation argument in which the tropical polyhedron is seen
as a degenerate limit of a sequence of classical polyhedra. The bound is then obtained by
applying the classical upper bound theorem on the polyhedra of the sequence.
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5.3.2 Signed cyclic polyhedral cones

We may now ask whether the bound U(p+d, d−1) is attained. In the classical case, the dual
polar of a cyclic polytope with p extreme points maximizes the number of extreme points
among all the polytopes of dimension d defined by p inequalities. We can define by analogy
natural candidates to maximize the number of extreme elements in the tropical case. The
notion of polar of cyclic polytopes is generalized to the two-sided nature of tropical linear
inequalities. To this aim, a sign pattern (ǫij) determines the distribution of the coefficients
between the left and the right members.

Definition 5.2. Let t1, . . . , tp be p scalars ✵ < t1 < . . . < tp, and let ǫ = (ǫij) be a (p×d)-sign
pattern, i.e. a collection of signs ǫij ∈ {+,−} (1 ≤ i ≤ p, 1 ≤ j ≤ d).

The signed cyclic polyhedral cone with sign pattern (ǫij) is the tropical cone of (Rd
max)

2

generated by the couples (C+
k , C−

k ), where C+
k = (C+

ki) and C−
k = (C−

kj) are elements of Rd
max

defined by:

C+
ki

def
=

{
tik if ǫki = +,

✵ otherwise,
C−

kj

def
=

{
tjk if ǫkj = −,

✵ otherwise.

The notation xi refers to the tropical exponentiation.

The dual polar of the signed cyclic polyhedral cone will be denoted by K(ǫ) (or K for
the sake of brevity). It is defined as the set of the solution x ∈ Rd

max of the system of p
inequalities:

C−
k x ≤ C+

k x, k = 1, . . . , p.

Example 5.6. Suppose that d = 4, p = 3, t1 = 0, t2 = 1, t3 = 2, and that the sign pattern ǫ is

defined as
[

+ − + −
+ − + −
+ − + −

]
. Then the cone K(ǫ) is the set of the elements (x, y, z, t) ∈ R4

max such

that:



−∞ 0 −∞ 0
−∞ 1 −∞ 3
−∞ 2 −∞ 6








x
y
z
t


 ≤




0 −∞ 0 −∞
0 −∞ 2 −∞
0 −∞ 4 −∞








x
y
z
t


 .

Given a sign pattern ǫ, the number of extreme rays of the dual polar of signed cyclic
polyhedral cones does not depend on the choice of the scalars t1,. . . ,tp. More precisely, such
extreme rays can be shown to be in one-to-one correspondence with tropically allowed paths
for the pattern ǫ:

Definition 5.3. Let ǫ = (ǫij) be (p× d)-sign pattern. A lattice path is said to be tropically
allowed for the sign pattern ǫ if the following conditions are satisfied:

(i) every sign occurring on the initial vertical segment, except possibly the sign at the
bottom of the segment, is positive.

(ii) every sign occurring on the final vertical segment, except possibly the sign at the top of
the segment, is positive.

(iii) every sign occurring in some other vertical segment, except possibly the signs at the top
and bottom of this segment, is positive.

(iv) for every horizontal segment, the pair of signs consisting of the signs of the leftmost and
rightmost positions of the segment is of the form (+,−) or (−, +).
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· + · · · · · · · · · · · · ·
· + · · · · · · · · · · · · ·
· + ⋆ ⋆ − · · · · · · · · · ·
· · · · + · · · · · · · · · ·
· · · · + · · · · · · · · · ·
· · · · + − · · · · · · · · ·
· · · · · + · · · · · · · · ·
· · · · · − ⋆ ⋆ ⋆ + · · · · ·
· · · · · · · · · + · · · · ·
· · · · · · · · · + · · · · ·
· · · · · · · · · + · · · · ·
· · · · · · · · · − ⋆ + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · − + · ·
· · · · · · · · · · · · + · ·
· · · · · · · · · · · · + · ·
· · · · · · · · · · · · + · ·

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

i1 i2 i3 i4 i5 i6

i1

i2

i3

i4

i5

i6

Figure 5.10: A tropically allowed lattice path (left), and the corresponding directed hyper-
graph (right)

(v) as soon as a pair (−,+) occurs as the pair of extreme signs of some horizontal segment,
the pairs of signs corresponding to all the horizontal segments below this one must also
be equal to (−,+).

Example 5.7. Figure 5.10 provides an example of tropically allowed lattice path. The symbol
“⋆” indicates positions of the path whose sign is irrelevant. The positions which do not belong
to the path are indicated by the symbol “·”.

Theorem 5.7 ([AGK10, Theorem 2]). The extreme rays of the polar of a signed cyclic
polyhedral cone are in one to one correspondence with tropically allowed lattice paths.

Example 5.8. Figure 5.11 provides two examples of polars of signed cyclic polyhedral cones
for d = 3. The two cones are defined by p = 2 and p = 5 inequalities respectively, and,
for all 1 ≤ i ≤ p, ti = i − 1 and ǫij = − if and only if j = 2. In other words, the first
cone is associated to the sign pattern

[
+ − +
+ − +

]
, and its polar is defined as the set of elements

(x, y, z) ∈ R3
max such that:

(
−∞ 0 −∞
−∞ 1 −∞

)


x
y
z



 ≤
(

0 −∞ 0
0 −∞ 2

)


x
y
z



 .

The extreme rays are depicted by blue points. For the first cone, a representative of each
extreme ray is provided, and the corresponding tropically allowed path is given beside.

5.3.3 Comparison with the classical case

In the classical case, given p real scalars t1 < . . . < tp and a (p× d)-sign pattern, the polar of
the signed cyclic polyhedral cones can be defined as well:

K′(ǫ)
def
=
{

x ∈ Rd | x ≥ 0 , Cx ≥ 0
}

where Cij = ǫijt
j−1
i .
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x y

z

[
+ · ·
+ · ·

] ( 0
−∞
−∞

)

(
−∞
−∞
0

) [
· · +
· · +

]

(
1
0

−∞

) [
+ · ·
+ − ·

]

(
1
1
0

) [
+ − ·
· − +

]

(
−∞
0
0

) [
· − +
· · +

]

x y

z

Figure 5.11: The polars of two signed cyclic polyhedral cones in R3
max.

The number of extreme rays of this classical cone is greater than the number of extreme rays
of the corresponding tropical cone. Indeed, the extreme rays of the former can be shown to
be in one-to-one correspondence with the non-tropically allowed paths in the sign pattern:

Definition 5.4. Let ǫ = (ǫij) be (p×d)-sign pattern. A lattice path is said to be non-tropically
allowed for the sign pattern ǫ if Conditions (i)-(iv) of Definition 5.3 are satisfied.

Theorem 5.8 ([AGK10, Theorem 5]). If the ratios t2/t1, . . . , tp+1/tp are sufficiently large,
the extreme rays of the classical polar K′(ǫ) are in one to one correspondence with the non-
tropically allowed lattice paths for the sign pattern (ǫij).

This result is a major difference with Theorem 5.7. It can be informally explained by
the fact that the characterization of the extremality of a ray in tropical cones not only relies
on the saturated inequalities like in the classical case, but also on the existence of a type
in the sense of Proposition 3.1, and subsequently of a greatest Scc in the tangent directed
hypergraph.

More precisely, consider an extreme ray of a tropical polar K(ǫ), and a tropically allowed
path in the sign pattern ǫ. Let i1 < . . . < iq be the indexes of the columns of the signs + or
− located at the left or right ends of the horizontal segments of the path (see the top line of
the sign pattern in Figure 5.10). We claim that the support of the ray coincides with the set
of the ij . Now, consider the first occurence of the pair (−, +) as in Condition (v), and let t be
index of the column of the sign −.14 In Figure 5.10, t is equal to the index i3. We claim that
the form of the hypergraph associated to the extreme ray is a “V”, where the bottom of the
V is precisely the node t. This is illustrated in the right side of Figure 5.10. This constraint
on the form of the hypergraph, which is provided by Condition (v) explains the combinatorial
difference between the results of Theorem 5.7 and Theorem 5.8.

Furthermore, in the classical setting, the polar of the signed cyclic polyhedral cone can
be proved to reach the bound of Theorem 5.6:

Theorem 5.9 ([AGK10, Theorem 6]). The number of extreme rays of the classical polar
K′(ǫ), with sign pattern ǫij = − if and only if j is even, is precisely U(p + d, d− 1).

14If no such pair occurs, t can be equivalently defined as the index of the column of − of the last (+,−)
horizontal pair.
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5.3.4 The number of extreme rays in signed cyclic polyhedral cones

Let us denote by N tpath(ǫ) (resp. Npath(ǫ)) the number of tropically (resp. non-tropically)
allowed lattice paths for the sign pattern ǫ. Recall that N trop(p, d) denotes the maximal
number of extreme rays of a tropical cone in dimension d defined by p inequalities. We have
shown the following relations:

max
ǫ∈{±1}p×d

N tpath(ǫ) ≤ N trop(p, d) ≤ U(p + d, d− 1) = max
ǫ∈{±1}p×d

Npath(ǫ). (5.9)

It has been conjectured in [AGK10] that the polar of signed cyclic polytopes maximize the
number of extreme rays (i.e. the two leftmost terms in (5.9) are equal). Albeit this conjecture
could have not been proved, it has been established that the maximal number of extreme rays
is reached by polyhedral cones which are defined as the intersection of halfspaces in general
position (in particular, like in signed cyclic polyhedral cones).

Upper and lower bounds on the number of extreme rays of the polar of signed cyclic
polyhedral cones have been established. They confirm our assumption on the worst-case size
of the set G of extreme rays of the intermediary cone made in Sections 5.1 and 5.2.

Proposition 5.16 ([AGK10, Propositions 2, 3, and 4]). For every p, d,

N tpath(p, d) ≤ (p(d− 1) + 1)2d−1.

For p ≥ 2d,
N tpath(p, d) ≥ (p− 2d + 7)(2d−2 − 2). (5.10)

For d ≥ 2p + 1, we have
N tpath(p, d) ≥ U(d, d− p− 1). (5.11)

Equation (5.11) implies that the bound U(p + d, d− 1) of Theorem 5.6 is asymptotically
reached when d → +∞ and p is fixed, since in that case, U(p + d, d − 1) ∼ U(d, d − p − 1).
This lower bound is obtained using the alternate sign pattern ǫ defined by ǫij = − if and only
if i + j is odd. The other lower bound provided in (5.10) is obtained with a pattern in which
the + form a kind of natural symbol shape (♮). Finding a general formula for maximizing
patterns is still an open problem.

Example 5.9. An example of signed cyclic polyhedral cone equipped with the “natural” pat-
tern for d = 4 and p = 10 is provided in Figure 5.12. The fourth coordinate is assimilated to an
affine dimension, so that each element (x, y, z, t) is represented by the point (x− t, y− t, z− t)
in R3 when t 6= −∞.

The cone contains 24 extreme rays, depicted by red points. It has been drawn using Poly-

Make, which also generates all the pseudo-vertices (i.e. the vertices of the corresponding
polyhedral complex in the sense of [DS04]), see [Jos08] for further details. The pseudo-vertices
which are not extreme rays are represented by yellow points. As explained in Chapter 1, they
are much more numerous: here, 1215 on top of the 24 extreme elements.

5.3.5 The number of extreme rays in polar cones

Polar cones are defined as tropical cones in (Rn
max)

2. However, as stated in Proposition 5.13,
their extreme rays are of a very special form, so that they do not have as many extreme rays
as arbitrary cones of (Rn

max)
2:
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Figure 5.12: Signed cyclic polyhedral cone equipped with the “natural” pattern, for d = 4
and p = 10

Theorem 5.10. Let C ⊂ Rd
max (d ≥ 2) be a tropical polyhedral cone generated by a finite

set G. Then the number of extreme rays in the polar C◦ is bounded by d · N trop(p, d), where
p = |G|.

Proof. According to Proposition 5.13, extreme elements (a, b) of the polar C◦ have two pos-
sible forms:

❼ either a = ✵✵✵ and supp(b) is reduced to a singleton. Such elements generate at most d
rays.

❼ or there exists i such that supp(a) = { i } and i 6∈ supp(b). They will be said to be
of kind i. Let φi be the function which maps such elements to x ∈ Rd

max defined by
xj = bj if j 6= i, and xi = ai. Let D ⊂ Rd

max be the polyhedral cone defined by the
following system of p inequalities:

gk
i xi ≤

⊕

j 6=i

gk
j xj for all 1 ≤ k ≤ p, (5.12)

where the gk are the elments of G, and gk = (gk
i ) for all k. Then clearly φi is an

injective function from the elements of C◦ of kind i to D. Since φi is also a morphism
for the addition in (Rd

max)
2, then (a, b) is extreme in C◦ if and only if φi(a, b) is extreme

in D. Let x = φi(a, b) for some extreme element (a, b) of kind i. The cone D admits
d− 1 elements extreme rays generated by the elements ǫj for j 6= i. Since xi 6= ✵, these
extreme rays cannot be generated by x. Consequently, the extreme elements (a, b) of
kind i cannot generate more than N trop(p, d)− (d− 1) extreme rays in C◦.

As a result, the number of extreme rays in C◦ is bounded by:

d + d · (N trop(p, d)− (d− 1)) ≤ d ·N trop(p, d).
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Remark 5.10. Observe that the system given in (5.12) has a particular form. Thus it may
be possible to refine the result of Theorem 5.10 using a tighter bound on the tropical cones
defined by such systems.

5.4 Conclusion of the chapter

Summary of the contributions. We have first defined the algorithm ComputeExtRays,
which computes the set of the scaled extreme elements of a polyhedral cone defined by means
of a system of inequalities, and is based on the incremental tropical double description method.
Thanks to the extremality criterion of Chapter 3 and the associated algorithm of Chapter 4,
it is theoretically more efficient than the existing solutions. Besides, the experiments shows
that it is able to scale up to instances which were previously by far inaccessible.

We have then developed the second algorithm, ComputeExtRaysPolar, which deter-
mines the set of the scaled extreme elements of the polar of a cone defined by means of
generating set. In particular, we have derived from the results of Chapter 3 a new char-
acterization of extremality in polar cones, which is simpler than in the general case. As a
consequence, ComputeExtRaysPolar is equipped with a more efficient extremality test,
so that its complexity is better that the alternative approaches.

Both algorithms have been implemented in the Tropical Polyhedra Library TPLib (in the
OCaml module Tplib core).

Moreover, we have studied the problem of determining an upper bound on the number of
extreme elements in tropical polyhedra and polyhedral cones. While this problem is still open,
we have made important advances, first by establishing a McMullen-type bound, and second
by identifying a class of tropical polyhedral cones with a large number of extreme rays. This
class allows to theoretically confirm the superiority of the algorithms ComputeExtRays

and ComputeExtRaysPolar over the existing methods. Besides, the cones of this class
have fewer extreme rays than their analogues in the classical setting.

The order of magnitude of the classical upper bound U(p, d) is known as O(p⌊d/2⌋). Using
the results of Section 5.3, we can now give upper bounds on the complexity of the algo-
rithms ComputeExtRays and ComputeExtRaysPolar:

Corollary 5.17. Given A, B ∈ R
p×d
max, the time complexity of ComputeExtRays(A, B, p) is

bounded by: {
O(p2dα(d)(p + d)d−2) if d is even,

O(p2dα(d)(p + d)d−1) if d is odd.

Given G ∈ R
d×p
max, the time complexity of ComputeExtRaysPolar(G, p) is bounded by:

{
O(pd2(p + d)d−1) if d is even,

O(pd2(p + d)d) if d is odd.

When p is fixed and d → +∞, the bound of Theorem 5.6 is tight. In that case, the
bounds of Corollary 5.17 can be seen as representative of the worst case complexity of the
algorithms ComputeExtRays and ComputeExtRaysPolar. However, this may not be
true for a choice of d and p such that d≪ p.



5.4. Conclusion of the chapter 111

Future work. Even if the algorithms ComputeExtRays and ComputeExtRaysPolar

represent positive advances, the algorithmics of tropical polyhedra is still in its first stages.
In particular, all the approaches discussed here are incremental, and follows the principle
of the double description method. We may ask whether other classical approaches, such as
the Beneath-and-Beyond algorithm, pivoting algorithms (such as [AF92, AF96]), or optimal
algorithms (see for instance [Cha93]) can be adapted to the tropical setting. However, it is
probable that further advances will require to have a better understanding of the notion of
faces in tropical polyhedra (see the conjectures of Develin and Yu on this topic [DY07]).

The question of the “tropical upper bound” is also a big challenge. Following the idea
of Theorem 5.10, it could be interesting to study in details the relation between the upper
bound on polyhedral cones, and the upper bound on the polar cones. Besides, the latter may
lead to a different class of maximizing candidates, which could maybe help to identify another
class in the general case.
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Part II

Application to static analysis by
abstract interpretation





CHAPTER 6

Introduction to static analysis by
abstract interpretation

This chapter provides a practical introduction to static program analysis by abstract inter-
pretation. In Section 6.1, we define the target programming language. It is rather simple, but
includes some of the essential features of the languages C or C++ relative to memory manip-
ulations, such as dynamic allocations of arrays and manipulations of strings. In Section 6.2,
the semantics of the language is introduced. Section 6.3 presents the theoretical framework
of abstract interpretation. It is then applied to the construction of two abstract semantics,
in Sections 6.4 and 6.5.

6.1 Kernel language

Programs written in real (high-level) programming languages are hard to analyze because of
the complexity and the richness of the languages. For instance, the C language has many
diverse constructs, some with implicit semantics information, some with unspecified or ar-
chitecture and compiler-dependent behaviors, and some other being redundant. This is the
reason why, for the sake of concision, we restrict ourselves to a simpler kernel language, which
nevertheless embodies some of C essential paradigms. Translation from the C language to our
kernel language is not explained here, as it is fairly obvious (although quite tedious). Some
intermediate forms such as [NMRW02] and especially [HL08], and their associated compilers
are good starting points for such a translation. In Section 6.1.1, we describe the fundamental
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principles of the kernel language which we will analyze. We define its syntax in Section 6.1.2.

6.1.1 Principles of the language

In our kernel language, data are of two kinds: either integers, or array of integers. Type
castings are forbidden, so that it can be assumed that the type of each variable is statically
known, and that the set of integer variables and of arrays are disjoint. The (finite) set of all
variables, and the (disjoint) sets of integer variables and arrays are respectively denoted by
Vars, IntVars, and ArrayVars.

We suppose that there exists a function read(), which returns an integer provided by an
external source, such as standard input, a file, or a network. It behaves similarly to the
function getchar in the C language. In the absence of further information on the source, the
returned value is assumed to be a random integer.

Following standard C compilation conventions, we suppose that the memory is split in
two disjoint parts: the stack and the heap. The stack stores the values of integer variables,
which are supposed to be statically allocated data (this corresponds to variable declaration
in C). In contrast, the heap stores the content of arrays. The latter are allocated dynamically
by a call to the function malloc. We assume that newly allocated data start with arbitrary
values (this is slightly different from the C language where global variables are, by default,
initialized to the value 0 with most compilers).

For the sake of simplicity, function definitions and function calls are not considered (except
calls to the functions read() and malloc).

6.1.2 Syntax of the language

The syntax of the language is given in Figure 6.1. The symbol x refers to an element of
IntVars, while t, t1, and t2 belong to ArrayVars.

A program is defined as a sequence of array allocations and commands. Commands allow
to control the execution flow, for instance using conditionals or loops. They also include
instructions, whose role is to manipulate the content of the memory. Observe that the syntax
forbids allocations in the branches of a conditional or in the body of a loop.1

Instructions are distinguished according as they manipulate the stack or the heap. Both
kinds include non-deterministic assignments, which store in the corresponding memory area
a value returned by the function read().

The conditions involved in loop, assertions, or conditionals, are either comparison tests
on the content of the memory, or conjunction/disjunction of conditions.2

Finally, expressions are built upon the integer variables. The symbol op denotes arithmetic
binary operations, such as the addition, the substraction, or the multiplication.

1This restriction is purely technical, in order to get a simpler formalism for the sake of concision. The
general case can be handled using the formalism developed by Allamigeon and Hymans in [AH08]. However,
note that the present restricted form of allocation cannot be assimilated to static allocation. Indeed, in our
setting, the size of the allocated arrays may not be statically known, e.g. when malloc(p) is called after a
non-deterministic assignment p := read(). In contrast, with static allocation, the size of the allocated data is
always known, as in malloc(10) for instance.

2Note that the sets of conditions is preserved by logical negation. For instance, the negation of e1 ≤ e2 is
e1 ≥ e2 + 1 since ei are integer expressions. Similarly, the negation of e1 = e2 is (e1 ≤ e2 − 1) ∨ (e1 ≥ e2 + 1),
the negation of t[e1] = e2 is t[e1] 6= e2, etc.
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prog ::= alloc allocation
| cmd command
| prog1 ; prog2 sequence

alloc ::= t := malloc(e) array allocation

cmd ::= instr stack stack instruction
| instrheap heap instruction
| while cond do cmd done loop
| if cond then cmd1 else cmd2 end conditional
| cmd1 ; cmd2 sequence
| assume cond assertion
| skip no-op

cond ::= e1 (≤ | = | ≥) e2 integer comparison
| t[e1] (= | 6=) e2 array comparison
| cond1 ∧ cond2 conjunction
| cond1 ∨ cond2 disjunction

instr stack ::= x := e arithmetic assignment
| x := read() non-deterministic assignment
| x := t[e] array lookup

instrheap ::= t[e1] := e2 arithmetic array assignment
| t[e] := read() non-deterministic array assignment
| t1[e1] := t2[e2] array copy

e ::= c constant
| x variable
| op(e1, e2) binary operation

Figure 6.1: Syntax of the language
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1 : assume (n ≥ 1);
2 : s := malloc(n);
3 : i := 0;
4 : while i ≤ n− 2 do

5 : s[i] := read();
6 : i := i + 1;
7 : done;
8 : s[i] := 0;
9 :

12

3

4

5

6

8 9

n ≥ 1

s := malloc(n)

i := 0

i ≤ n− 2

s[i] := read()

i := i + 1

i ≥ n− 1 s[i] := 0

Figure 6.2: A first example of program (left), with its associated control-flow graph (right)

Note that for the sake of simplicity, the integer variables are supposed to be implicitly
allocated before the execution of the program. In particular, they all have a global scope.

Example 6.1. Figure 6.2 provides an example of program written in our kernel language.

In this program, an array s is first allocated. Its size is equal to the integer n, which
can be seen as an argument of the program. It is then filled by n − 2 successive calls to the
function read() (Lines 4 to 7). Finally, its last element is assigned to the value 0.

6.2 Semantics of the language

In this section, we assign a formal semantics to programs written in the kernel language. We
first recall some of the necessary requirements on control-flow graphs, in Section 6.2.1. In
Section 6.2.2, we formally define the way memory states will be modelled as mathematial ob-
jects. In Section 6.2.3, we then describe a small-step structural operational semantics [Plo81]
of the language. This then leads to the definition of the collecting semantics of a program, in
Section 6.2.4. Finally, the formal characterization of the class of errors formed by the heap
overflows is discussed in Section 6.2.5.

6.2.1 Control-flow graph

The semantics defined in the following sections uses a representation of the programs by their
control-flow graph. The control-flow graph of a program is a description of the layout of the
elementary steps of the program, by means of a graph. Its nodes are formed by some of
the control points of the program, while its edges are labelled by allocations, instructions, or
conditions. An edge from ℓ to ℓ′ represents the possibility to go from the control point ℓ to
the control point ℓ′, while respectively executing an allocation, an instruction, or satisfying a
condition. Let us give some informal illustrations of the construction of such a control-flow
graph:

❼ a simple instruction, for instance x := e, and which starts at the control point ℓ1 and
ends at ℓ2, is represented as follows:
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ℓ1 : x := e;
ℓ2 : . . .

=⇒

ℓ1

ℓ2

x := e

❼ a sequence is represented as the concatenation of the two corresponding subgraphs:

ℓ1 : x := e;
ℓ2 : t := malloc(x);
ℓ3 : . . .

=⇒

ℓ1

ℓ2

ℓ3

x := e

t := malloc(x)

❼ a conditional statement if cond then . . . else . . . end starting from ℓ1 consists of two
branches respectively labelled by the condition cond and its negation, which later are
joined at the end of the statement:

ℓ1 : if x ≤ e then

ℓ2 : x := x + 1;
ℓ3 : else

ℓ4 : x := x− 1;
ℓ5 : end;
ℓ6 : . . .

=⇒

ℓ1

ℓ2 ℓ4

ℓ6

x ≤ e x ≥ e + 1

x := x + 1 x := x− 1

❼ finally, a loop in the program is transformed in a loop in the control-flow graph:

ℓ1 : while x ≤ e do

ℓ2 : x := x + 1;
ℓ3 : done;
ℓ4 : . . .

=⇒

ℓ1

ℓ2

ℓ4

x ≤ e x := x + 1

x ≥ e + 1

A more complete example can be found in the right part of Figure 6.2, which provides
the control-flow graph of the program introduced in Example 6.1.

The control-flow graph can be statically and automatically built from the source code of
the program. This task is very classic, implemented in most of compilers, thus we do not give
further details here. For a given program, we denote by 〈ℓ, step, ℓ′〉 the fact that there exists
an edge from ℓ to ℓ′ labelled by step in its control-flow graph. Each program P is supposed
to have an entry control point entry(P ), which is not reached by any incoming edge. For the
program of Example 6.1, it is the control point ℓ1.
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States
def
= Stack× Heap Stack

def
= ZVars

Σ = s ¦ h s function from Vars to Z

Heap
def
= Z(Addr) Addr

def
= ArrayVars× N

h partial function from Addr to Z a = (t, i)

Figure 6.3: Summary of the choices to model memory states.

6.2.2 Memory model

Following the principles of the language introduced in Section 6.1.1, a memory state is entirely
described the states s and h of the stack and the heap respectively. In that case, the memory
state is denoted by s ¦ h. The set of the memory states will be denoted by Mem. In this
section, the choices made for the modelization of the stack and the heap are discussed. They
are recapitulated in Figure 6.3.

Stack. The stack s contains the values of the integer variables. It is therefore represented by
a function from IntVars to Z, which maps each variable to its value. The set of all possible
stacks is denoted by Stack.

Remark 6.2. Note that, for the sake of simplicity, the set of the values taken by integer
variables is supposed to be the whole set of integers Z. In computers, such values are however
finitely encoded (usually on less than 64 bits), so that they should range over a finite set.
Our assumption is valid only when it is shown that the program does not lead to any integer
overflow during its execution. Automatically detecting all such overflows in a given program
has been the topic of active research (see for instance [BCC+03]), and is handled by many
static analyzers (for instance [Ast, Pol, Pen]).

Heap. Similarly, the heap h maps addresses to integers. An address is a valid memory
location in an allocated array. It consists in a couple (t, i), where t ∈ ArrayVars, and i ∈ N.
When i is strictly less than the size of the array, the address (t, i) refers to the (i + 1)-th
element of the array t.3 The set of the addresses is denoted by Addr.

With this choice, the heap is represented by a partial function from Addr to Z, mapping
the allocated addresses to their value. Indeed, the heap is defined only on the addresses which
have been previously allocated by some call to malloc. We will see in Section 6.2.5, that any
attempt to write to an address that is not allocated in the heap causes an error called heap
overflow. The domain of definition of a such partial function h is denoted by dom(h). The
set of all heaps is denoted by Heap.

Example 6.3. Consider the following very simple program:

1 : x := 0;
2 : t := malloc(2);
3 : t[0] := 2;
4 : t[1] := 1;
5 :

3Remember that in a array, the first element is stored at the index 0.
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c ∈ Z
s ⊢ c⇒ c

x ∈ IntVars

s ⊢ x⇒ s(x)

s ⊢ e1 ⇒ v1 s ⊢ e2 ⇒ v2 op(v1, v2) = v

s ⊢ op(e1, e2)⇒ v

Figure 6.4: Evaluation of expressions

Then the state of the memory at the end of this program (i.e. at the control point 5) is s ¦h,
where s : x 7→ 0, and h : (t, 0) 7→ 2, (t, 1) 7→ 1.

6.2.3 Operational semantics

This section deals with the operational semantics of the kernel language. It is defined by
means of a transition relation, denoted by →. Thus we will have Σ1 → Σ2 when the machine
can pass from the state Σ1 to the state Σ2 by an elementary program step (i.e. the execution
of an allocation, an instruction or a condition).

The transition relation will be defined thanks to inference rules, denoted under the form

C1 . . . Cn

D
.

The Ci are called the premises, and D the conclusion. The meaning of such a rule is the
following: “if all the conditions Ci are true, then the conclusion D holds”.

We first describe the mathematical model of the semantic states (Section 6.2.3.a), then the
evaluation of integer expressions in a given state (Section 6.2.3.b), the semantics of instructions
and allocations (Section 6.2.3.c), and the semantics of conditions (Section 6.2.3.d).

6.2.3.a Semantic states. The semantic state describes the current state of the machine.
In our setting, it is defined as a couple (ℓ, s ¦ h) formed by the current control point ℓ, and a
memory state s ¦ h. It means that before the execution of the step located at ℓ, the memory
is in state s ¦ h.

If Ctrl corresponds to the set of the control points appearing in the control-flow graph,

the set of semantic states is thus defined by States
def
= Ctrl×Mem.

6.2.3.b Evaluation of expressions. We first define the evaluation of an integer expression e
in a given memory state s¦h. Since e involves only integer variables, this evaluation is defined
only in the context of the stack. We will denote by s ⊢ e ⇒ v the fact that e is evaluated
to the integer v ∈ Z in the stack s. The relation s ⊢ e ⇒ v is defined by the inference rules
given in Figure 6.4.

6.2.3.c Semantics of allocations and instructions. The semantics of allocations and in-
structions is given by the following rule: for a given allocation or instruction step,

〈ℓ, step, ℓ′〉 s ¦ h ⊢ step : s′ ¦ h′

(ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′)
(6.1)
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s ⊢ e⇒ v
s ¦ h ⊢ x := e : s[x 7→ v] ¦ h

v ∈ Z

s ¦ h ⊢ x := read() : s[x 7→ v] ¦ h

s ⊢ e⇒ i (t, i) ∈ dom(h)

s ¦ h ⊢ x := t[e] : s[x 7→ h(t, i)] ¦ h

s ⊢ e1 ⇒ i s ⊢ e2 ⇒ v (t, i) ∈ dom(h)

s ¦ h ⊢ t[e1] := e2 : s ¦ h[(t, i) 7→ v]

s ⊢ e⇒ i (t, i) ∈ dom(h) v ∈ Z

s ¦ h ⊢ t[e] := read() : s ¦ h[(t, i) 7→ v]

s ⊢ e1 ⇒ i s ⊢ e2 ⇒ j (t1, i) ∈ dom(h) (t2, j) ∈ dom(h)

s ¦ h ⊢ t1[e1] := t2[e2] : s ¦ h[(t1, i) 7→ h(t2, j)]

s ⊢ e⇒ n n > 0 h′ = h|dom(h)\({t}×N) w0, . . . , wn−1 ∈ Z

s ¦ h ⊢ t := malloc(e) : s ¦ h′[(t, 0) 7→ w0] . . . [(t, n− 1) 7→ wn−1]

Figure 6.5: Side effect of the instructions on memory (Given a map f , g
def
= f [x 7→ v] is the

function which coincides with f on its domain, except on x where g(x) = v. Given a function
f and a set S, f|S denotes the restriction of f on S.)

where the relation s ¦ h ⊢ step : s′ ¦ h′, defined in Figure 6.5, describes the side effect of the
instruction or the allocation step on memory.

The interpretation of these rules is the following:

❼ the stack assignments x := e, x := read(), and x := t[e] consist in replacing in the stack
s the value of x by the value of the right member. For a simple assignment, it is equal to
the evaluation of the expression e in the stack s. If the assignment is non-deterministic,
the value is an arbitrary element v ∈ Z. Finally, if the assignment is an array lookup, it
is first ensured that the element t[e] is allocated, before getting the corresponding value
in the heap.

❼ for the heap assignment t[e1] := e2, the expression e2 is first evaluated to a value
v. This value is then stored into the heap at the address corresponding to t[e1], if this
address is indeed allocated (condition (t, i) ∈ dom(h)). The semantics of the assignments
t[e] := read() and t1[e1] := t2[e2] is defined similarly.

❼ the allocation t := malloc(e) first evaluates the value n of the expression e. The integer
n is required to be strictly positive.4 Then all the previously allocated addresses of the
form (t, i) in the heap h are removed, as if they were collected by a garbage collector.

4The case where n is negative is considered as an error which stops the execution (according to the standard
Ansi C, the behavior of malloc(0) is implementation-dependent [fS99, Section 7.20.3, Paragraph 1]).
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s ⊢ e1 ⇒ v1 s ⊢ e2 ⇒ v2 v1 ⋄ v2

s ¦ h ⊢ e1 ⋄ e2 : s ¦ h
where ⋄ ∈ {≤,=,≥}

s ⊢ e1 ⇒ i (t, i) ∈ dom(h) s ⊢ e2 ⇒ v h(t, i) ⋄ v

s ¦ h ⊢ t[e1] ⋄ e2 : s ¦ h
where ⋄ ∈ {=, 6= }

s ¦ h ⊢ cond1 : s ¦ h s ¦ h ⊢ cond2 : s ¦ h

s ¦ h ⊢ cond1 ∧ cond2 : s ¦ h

s ¦ h ⊢ cond i : s ¦ h

s ¦ h ⊢ cond1 ∨ cond2 : s ¦ h
where i = 1 or 2

Figure 6.6: Selection of memory states with respect to the conditions

This yields the restriction h′ of the partial function h on the domain dom(h)\ ({t}×N).
Finally, the addresses (t, 0), . . . , (t, n − 1) are freshly allocated in h′, and mapped to
arbitrary values.

6.2.3.d Semantics of conditions. The semantics of conditions is defined similarly to in-
structions: if cond is a condition,

〈ℓ, cond , ℓ′〉 s ¦ h ⊢ cond : s′ ¦ h′

(ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′)
(6.2)

where the relation s¦h ⊢ cond : s′ ¦h′, defined in Figure 6.6, consists in selecting the memory
states s ¦ h which satisfy the condition cond . The state s′ ¦ h′ is the same as initially, since
the conditions do not have any side effect on memory.

Example 6.4. Consider the simple program of Example 6.3. Let si ¦ hi (1 ≤ i ≤ 5) be the
memory states defined as follows:

{
s1 : x 7→ 314159265

h1 :

{
s2 : x 7→ 0

h2 :
{

s3 : x 7→ 0

h3 : (t, 0) 7→ 271828183, (t, 1) 7→ 161803399

{
s4 : x 7→ 0

h4 : (t, 0) 7→ 2, (t, 1) 7→ 161803399
{

s5 : x 7→ 0

h5 : (t, 0) 7→ 2, (t, 1) 7→ 1

They form a sequence of possible memory states during the execution of the program, i.e.

(1, s1 ¦ h1)→ (2, s2 ¦ h2)→ (3, s3 ¦ h3)→ (4, s4 ¦ h4)→ (5, s5 ¦ h5).

Observe that initially, the variable x has an arbitrary value (state (1, s1 ¦ h1)), and the heap
is empty. Just after the allocation of the array t (state (3, s3 ¦ h3)), the heap is defined on
the addresses (t, 0) and (t, 1) with arbitrary values.
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6.2.4 Collecting semantics of a program

The collecting semantics C(P ) of a program P consists of all the machine states reachable
during any execution of P . In particular, it is a subset of the set States. It is defined by
means of the function F : ℘(States) → ℘(States),5 which corresponds to the execution of an
additional step in the program:

F (X)
def
= {(entry(P ), s0 ¦ ∅) | s0 ∈ Stack} ∪

⋃

(ℓ,s¦h)∈X

{
(ℓ′, s′ ¦ h′) | (ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′)

}
.

Intuitively, the set {(entry(P ), s0 ¦ ∅) | s0 ∈ Stack} consists of the possible initial states of
the machine: as mentioned in Section 6.1.1, the variables in the stack are not initialized, and
the heap does not contain any data (the symbol ∅ refers here to the partial function from Addr

to Z with empty domain). Besides, the set {(ℓ′, s′ ¦ h′) | (ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′)} corresponds
to the states reachable from states (ℓ, s ¦ h) ∈ X after the execution of an instruction, an
allocation, or a condition.

Then, the collecting semantics C(P ) is defined as the smallest fixpoint of F , which is

denoted by C(P )
def
= lfpF . Since ℘(States), partially order by ⊂ and endowed with the join

and meet operators ∪ and ∩ respectively, is a complete lattice and F a monotone map, the
existence of such a fixpoint is ensured by the Knaster-Tarski theorem [Tar55]. Besides, the
function F is continuous, so that by Kleene’s theorem:

C(P ) =
⋃

n≥0

Fn(∅), (6.3)

where Fn is the n-th iterate of F .6 Intuitively, this means that the collecting semantics
consists of all the states reachable after a finite number n of execution steps, for any n ≥ 0.

The collecting semantics can be equivalently defined as a function which maps the set
Ctrl to the set ℘(Mem), and associates each ℓ ∈ Ctrl to the set of memory states possibly
arising at the control point ℓ. Then, F can be redefined as the application which maps each
X : Ctrl→ ℘(Mem) to the function F (X) : Ctrl→ ℘(Mem) defined by: for each ℓ′ ∈ Ctrl,

F (X)(ℓ′)
def
=






{s0 ¦ ∅ | s0 ∈ Stack} if ℓ′ = entry(P ),
⋃

s¦h∈X(ℓ)

{
s′ ¦ h′ | (ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′)

}
otherwise. (6.4)

We still have C(P ) = lfpF , and for the same reasons than before,

C(P ) =
⋃

n≥0

Fn(∅).

Note that this presentation is equivalent to the previous one, using the one-to-one correspon-
dence between ℘(States) and ℘(Mem)Ctrl defined by:

℘(States) ←→ ℘(Mem)Ctrl

X 7−→ X ′ such that X ′(ℓ)
def
= {Σ | (ℓ, Σ) ∈ X }

{ (ℓ, Σ) | Σ ∈ X ′(ℓ), ℓ ∈ Ctrl } ←−[ X ′

5Given a set S, ℘(S) refers to the powerset of S.
6Recall that a function F from a complete partial order to itself is said to be continuous if, for any non-

empty ascending chain (Xi)i, we have F (sup Xi) = sup F (Xi) (where sup Xi refers to the supremum of the
chain (Xi)i)
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Example 6.5. Using the second formalism, the collecting semantics C(P ) of the simple pro-
gram of Example 6.3 is defined as follows:

ℓ1 7→ { s ¦ ∅ | s ∈ Stack }

ℓ2 7→ { s ¦ ∅ | s(x) = 0 }

ℓ3 7→
{

s ¦ h | s(x) = 0 and dom(h) = { (t, 0), (t, 1) }
}

ℓ4 7→
{

s ¦ h | s(x) = 0, dom(h) = { (t, 0), (t, 1) }, h(t, 0) = 2
}

ℓ5 7→
{

s ¦ h | s(x) = 0, dom(h) = { (t, 0), (t, 1) }, h(t, 0) = 2, h(t, 1) = 1
}

It can be verified that, for each control point, it indeed represents the whole set of the
possible memory states, taking for instance into account the non-determinism introduced by
allocations.

6.2.5 Proving the absence of heap overflows

The collecting semantics yields the set of all the possible states of the machine during any
execution of a program. It can be used to verify that no state leads to the class of errors
formed by the heap overflows.

A heap overflow occurs if the program reads in or writes to an address which is not
allocated in the heap. It may happen when executing any instruction or condition which
accesses to the heap. Formally, there is a heap overflow if such an instruction or a condition
involves an expression of the form t[e] in a memory state s ¦ h such that s ⊢ e ⇒ i and
(t, i) 6∈ dom(h).

Heap overflows can be modelled by an error state �, added to the set States, and defined
by the following inference rules:

〈ℓ, x := t[e], ℓ2〉 s ⊢ e⇒ i (t, i) 6∈ dom(h)

(ℓ, s ¦ h)→ �
〈ℓ, t[e1] := e2, ℓ2〉 s ⊢ e1 ⇒ i (t, i) 6∈ dom(h)

(ℓ, s ¦ h)→ �
〈ℓ, t[e] := read(), ℓ2〉 s ⊢ e⇒ i (t, i) 6∈ dom(h)

(ℓ, s ¦ h)→ �
〈ℓ, t1[e1] := t2[e2], ℓ2〉 s ⊢ e1 ⇒ i (t1, i) 6∈ dom(h)

(ℓ, s ¦ h)→ �
〈ℓ, t1[e1] := t2[e2], ℓ2〉 s ⊢ e2 ⇒ j (t2, j) 6∈ dom(h)

(ℓ, s ¦ h)→ �
〈ℓ, t[e1] ⋄ e2, ℓ2〉 s ⊢ e1 ⇒ i (t, i) 6∈ dom(h)

(ℓ, s ¦ h)→ �
where ⋄ ∈ {=, 6= }

Then, the absence of heap overflows is equivalent to the condition � 6∈ C(P ).
Nevertheless, for the sake of simplicity, we prefer to encode the error state by the absence

of transition, as if the machine were stopping whenever the program tries to read in or write
to an invalid part of the heap. Then, the error state is assimilated to an unreachable state.
Such a semantics is said to be blocking. This formalism avoids the introduction of a special
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error state, and will allow to adopt a simpler formalism in the following parts. It can be
shown to be equivalent to the previous choice, see for instance [CDNB08].

Then, to ensure that a program does not cause any heap overflow, it suffices to check
that the following property on C(P ) is satisfied: for any state (ℓ, s ¦ h) ∈ C(P ) and any edge
〈ℓ, step, ℓ′〉,





s ⊢ e⇒ i and (t, i) ∈ dom(h) if step is of the form x := t[e] or t[e] := read()
s ⊢ e1 ⇒ i and (t, i) ∈ dom(h) if step is of the form t[e1] := e2 or t[e1] ⋄ e2

s ⊢ e1 ⇒ i, s ⊢ e2 ⇒ j,
if step is of the form t1[e1] := t2[e2]and (t1, i), (t2, j) ∈ dom(h)

(6.5)

6.3 Abstract interpretation

A naive method to statically analyze programs could consist in determining their collecting
semantics. Unfortunately, as discussed in Chapter 1, Rice’s theorem [Ric56] implies that the
collecting semantics is not computable in general. Subsequently, showing that a given program
satisfies, for instance, the non-trivial property given in (6.5), is a non-decidable problem.

More precisely, several difficulties would have to be tackled to “compute” C(P ) for any
program P :

❼ the subsets of ℘(States) may not be representable in machine,

❼ the function F may not be computable,

❼ and the iteration sequence to compute C(P ) by iterations (see (6.3)) may not necessarily
converge after a finite number of steps.

The principle of abstract interpretation is to determine an over-approximation of the
semantics. Using over-approximations allows to overcome all the difficulties previously men-
tioned:

❼ semantics states can be represented by computer-representable over-approximations,
called “abstract semantic states”,

❼ similarly, the transfer function can be over-approximated by a computable “abstract”
function,

❼ and finally, up to losing some precision, the convergence of the corresponding “abstract”
sequence in a finite number of iterations can be ensured.

This allows to compute an abstraction of the collecting semantics. Since every approximation
is sound, no semantic state is forgotten. Therefore, it can be used to determine whether a
program satisfies a given property. However, because of the non-exactness of the approxima-
tions in the general case, the analysis may sometimes fail to prove a property satisfied by the
program.

This section is organized as follows. Section 6.3.1 presents the theoretical framework
of abstract interpretation in a general setting. Section 6.3.2 then focuses on abstraction of
numerical properties.

6.3.1 Theoretical framework

Different formalisms have been developed for abstract interpretation (see [CC92b] for a sur-
vey). The presentation is here restricted to one of the most general formalism, because it is
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⊑

γ

γ

�abstract concrete

Figure 6.7: Diagram illustrating the notion of precision

adapted to the contributions of Chapter 7. Some other possible formalisms are discussed in
Section 6.3.1.d.

6.3.1.a Abstract domain. Let D be the set of the elements to be abstracted. We assume
that D is a complete lattice (D,�, -⊥, -⊤,g,f). The relation � is a partial order on the
elements of D, -⊥ and -⊤ are respectively the least and greatest elements of D, and g and f
are join and meet operators. The set D is called the concrete domain. It contains concrete
elements, as opposed to abstract ones.

Example 6.6. In the semantics introduced in Section 6.2, the concrete domain corresponds to
the complete lattice (℘(States),⊂, ∅,States,∪,∩).

An abstract domain is basically defined as follows:

Definition 6.1. An abstract domain over the set D is a couple (D, γ), where D is the set of
the abstract elements, and γ is a function from D to D, called the concretization operator.

The concretization operator represents the relation between abstract and concrete ele-
ments: it maps any abstract element X ∈ D to a concrete element which it represents.

Usually, abstract domains are equipped with a preorder which allows to compare two
different abstract elements in term of precision:

Definition 6.2. Let (D, γ) be an abstract domain over D. An abstract preorder ⊑ over D is
a preorder which satisfies: for all X ,Y ∈ D,

X ⊑ Y =⇒ γ(X ) � γ(Y).

Intuitively, if X ⊑ Y, then X is more precise than Y (possibly as precise), since it represents
a smaller (or equal) concrete element for the order � (see Figure 6.7). Note that the condition
on the abstract preorder ⊑ is equivalent to the monotonicity of the concretization operator
w.r.t. ⊑ and �. It is also sometimes called the soundness of the preorder.
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abstract

concrete

F

F

γ

γ

�

Figure 6.8: Diagram representing the soundness of an abstract function

6.3.1.b Sound abstract functions. Let F be a function manipulating concrete elements.
An abstraction of F is a function which performs the same manipulations, but on the corre-
sponding abstract elements. This abstract function has however to preserve the property of
over-approximation, in which case it is said to be sound:

Definition 6.3. Let F : Dp → D (p ≥ 1). Then F : Dp → D is said to be a sound abstraction
of F if it satisfies the following property: for all X1, . . . ,Xp ∈ D,

F (γ(X1), . . . , γ(Xp)) � γ(F(X1, . . . ,Xp)).

Intuitively, starting from over-approximations Xi of γ(Xi) for each i, F(X1, . . . ,Xp) is
still an over-approximation of F (γ(X1), . . . , γ(Xp)). Then, the application of F on the tuple
(X1, . . . ,Xp) does not forget any concrete elements. The case p = 1 is illustrated in Figure 6.8.

In the general case, a same concrete function admits several sound abstractions, whose
precision may vary. The following definition characterizes two particular levels of precision:

Definition 6.4. Let F : Dp → D (p ≥ 1), and F : Dp → D be a sound abstraction of F .
Then F is said to be exact when the following property holds: for all X1, . . . ,Xp ∈ D,

F (γ(X1), . . . , γ(Xp)) = γ(F(X1, . . . ,Xp)).

Besides, F is said to be a best possible abstraction of F when for any X1, . . . ,Xp,Y ∈ D,

F (γ(X1), . . . , γ(Xp)) � γ(Y) =⇒ γ(F(X1, . . . ,Xp)) � γ(Y).
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In the former case, the application of the abstract function F does not introduce further
approximations. In the latter case, F returns an abstract element which is as accurate as
possible.

An abstract domain is usually provided with sound abstractions of the join and meet
operations of the concrete lattice:

❼ an abstract join operator ⊔ : D ×D → D, such that for all X ,Y ∈ D,

γ(X )g γ(Y) � γ(X ⊔ Y),

❼ an abstract meet operator ⊓ : D ×D → D, verifying for all X ,Y ∈ D

γ(X )f γ(Y) � γ(X ⊓ Y);

Similarly, in most abstract domains, it can be supposed that the least and greatest ele-
ments -⊥ and -⊤ have abstract counterparts ⊥ and ⊤ respectively. Both are required to be
over-approximations, i.e.:

-⊥ � γ(⊥), -⊤ � γ(⊤).

and to satisfy ⊥ ⊑ X ⊑ ⊤ for all X ∈ D. The relation -⊥ � γ(⊥) is a tautology, and most
often, ⊥ is an exact approximation of -⊥, i.e. γ(⊥) = -⊥.

6.3.1.c Abstract fixpoint computation. Let F be a continuous function on the complete
lattice (D,�, -⊥, -⊤,g,f). By Kleene’s theorem, we know that F admits a least fixpoint,
which is given by:

lfpF =
j

n≥0

Fn( -⊥).

Let F be a sound abstraction of F . Then, each iterate Fn( -⊥) can be over-approximated
by Fn(⊥). Indeed, -⊥ � γ(⊥) by hypothesis, and by recursion, if for a given n, Fn( -⊥) �
γ(Fn(⊥)), then

Fn+1( -⊥) = F (Fn( -⊥))

� F (γ(Fn(⊥))) by recursion hypothesis and monotonicity of F

� γ(F(Fn(⊥))) by soundness of F

� γ(Fn+1(⊥)).

Moreover, as soon as F is monotone, the Fn(⊥) form an increasing sequence. Then, if
this sequence eventually stabilizes, i.e. if there exists an index N from which all the terms of
the sequence are equal, we have:

lfpF � γ(FN (⊥)). (6.6)

This may happen in particular when the abstract domain D forms a partially ordered set
satisfying the ascending chain condition.7 Nevertheless, this does not hold in the general
case. In order to obtain an over-approximation lfpF as a sequence of abstract elements, a
widening operator has to be used:

7The ascending chain condition states that increasing chain X1 ⊑ . . . ⊑ Xn ⊑ . . . eventually stabilizes.
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Definition 6.5. A function ∇ : D × D → D is said to be a widening operator if it satisfies
the following conditions:

❼ (soundness) X ,Y ⊑ X ∇Y for all X ,Y ∈ D,

❼ (ascending chain condition) for any increasing sequence of elements X0 ⊑ . . . ⊑ Xn ⊑
. . . , the sequence defined by





Y0

def
= X0

Yn+1
def
= Yn∇Xn+1

(6.7)

eventually stabilizes.

Intuitively, a widening operator maps any increasing sequence of abstract elements Xn

into an eventually stabilizing one, whose limit over-approximates every Xn.

Then the following statement holds:

Proposition 6.1. Let F : D → D be a continuous function, and F : D → D a sound and
monotone abstraction of F . If (Xn)n is the sequence defined by:






X0
def
= ⊥

Xn+1
def
=

{
Xn if F(Xn) ⊑ Xn

Xn∇F(Xn) otherwise

,

then this sequence eventually stabilizes, and its limit X∞ verifies:

lfpF � γ(X∞).

Besides, this limit is a post-fixpoint of F .

Proof. Let us first show that the sequence of the Xn eventually stabilizes. If not, then for all
n, we have Xn+1 = Xn∇F(Xn). The sequence (F(Xn))n is increasing because F is monotone
and the widening operator is sound, so that Xn ⊑ Xn+1. Since the widening operator satisfies
the ascending chain condition, the assumption leads to a contradiction.

Now, let us show by induction that for all n, Fn( -⊥) � γ(Xn). The case n = 0 is obvious.
Besides, if Fn( -⊥) � γ(Xn), then

Fn+1( -⊥) � F (γ(Xn)) since F is monotone

� γ(F(Xn)) by soundness of F

� γ(Xn+1) by soundness of ∇.

Since the sequence of the Fn( -⊥) is increasing, this shows that ∪n
i=0F

n( -⊥) � γ(Xn). Taking
the limit when n→ +∞ implies that lfpF � γ(X∞).

Finally, let N such that X∞ = XN = XN−1. Then F(XN ) ⊑ XN because either
F(XN−1) ⊑ XN−1 and XN = XN−1, or XN = XN−1∇F(XN−1) = XN ∇F(XN ), so that
F(XN ) ⊑ XN by soundness of ∇. In both cases, X∞ is a post-fixpoint of F .
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In order to enforce the convergence of any sequence, the widening operator may perform
rough over-approximations. As an example, the function which maps any couple (X ,Y) to the
element ⊤ is a correct widening operator, but is extremely imprecise. Nevertheless, since the
limit X∞ of Proposition 6.1 is a post-fixpoint of F , then Fn(X∞) is always more precise than
X∞ for all n, and by soundness of F , it is still an over-approximation of Fn(lfpF ) = lfpF . As
a consequence, the result provided by Proposition 6.1 can be refined thanks to the decreasing
sequence of the Fn(X∞). Obviously, the latter may naturally not stabilize ultimately. That
is why a narrowing operator can be used to enforce the convergence of such a sequence in a
finite number of steps:

Definition 6.6. A function
∇

: D ×D → D is said to be a narrowing operator if it satisfies
the following conditions:

❼ (soundness) Y ⊑ X
∇
Y ⊑ X for all X ,Y ∈ D such that Y ⊑ X ,

❼ (descending chain condition) for any decreasing sequence of elements X0 ⊒ . . . ⊒ Xn ⊒
. . . , the sequence defined by





Y0

def
= X0

Yn+1
def
= Yn

∇
Xn+1

(6.8)

eventually stabilizes.

Proposition 6.2. Let F : D → D be a continuous function, and F : D → D a sound and
monotone abstraction of F . Let X∞ be the limit of the sequence (Xn)n of Proposition 6.1. If
(Yn)n is the sequence defined by:






Y0
def
= X∞

Yn+1
def
=

{
Yn if Yn = F(Yn)

Yn
∇
F(Yn) otherwise

,

then this sequence eventually stabilizes, and its limit Y∞ verifies:

lfpF � γ(Y∞).

Proof. We claim that for all n, F(Yn) ⊑ Yn+1 ⊑ Yn.
This property holds when n = 0, since Y0 = X∞, F(Y0) ⊑ Y0 by Proposition 6.1, and

F(Y0) ⊑ Y0
∇
F(Y0) ⊑ Y0 by soundness of

∇
.

If the same property holds at the rank n− 1 (n ≥ 1), then:

❼ either Yn+1 = Yn and Yn = F(Yn), so that F(Yn) = Yn+1 = Yn,

❼ or Yn+1 = Yn
∇
F(Yn). By induction hypothesis, F(Yn−1) ⊑ Yn ⊑ Yn−1, so that

F(Yn) ⊑ F(Yn−1) ⊑ Yn since F is monotone. By soundness of
∇

, we consequently
have F(Yn) ⊑ Yn+1 ⊑ Yn.

This proof by induction implies that the sequence of the Yn, and thus of the F(Yn), is
decreasing. Since

∇
satisfies the descending chain condition, the sequence of the Yn can be

shown to be eventually stabilizing.
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Now let us show by induction that for all n, lfpF � γ(Yn). The case n = 0 is ensured by
Proposition 6.1. Now, if n ≥ 0, we have:

F(Yn) ⊑ Yn+1

⇐⇒ γ(F(Yn)) � γ(Yn+1) as γ is monotone

⇐⇒ F (γ(Yn)) � γ(Yn+1) because F is sound

⇐⇒ F (lfpF ) � γ(Yn+1) since F is monotone and using inductive hypothesis

⇐⇒ lfpF � γ(Yn+1).

It follows that lfpF � γ(Y∞).

6.3.1.d Alternative formalisms. The theory of abstract interpretation has been initially
introduced in [CC77] with a formalism based on Galois connections.

In this formalism, the abstract domain D is not only provided with concretization operator
γ, but also with an abstraction operator α : D → D, dual of the former. Like γ, the function
α is required to be monotone, and the two operators have to satisfy the following property:
for all X ∈ D and Y ∈ D,

α(X) ⊑ Y ⇐⇒ X � γ(Y ).

This condition means that for any concrete element X ∈ D, α(X) represents the most precise
abstraction in D.

Consider a function F : Dp → D. Then the abstract function F defined by:

F(X1, . . . ,Xp)
def
= α(F (γ(X1), . . . , γ(Xp))), (6.9)

can be proved to be sound, and even the best possible abstraction of F . As a consequence,
the abstract operator allows to systematically design sound and precise abstract functions.8

Given an abstraction operator α, the concretization operator γ is entirely determined as

the upper adjoint of α, i.e. for all X ∈ D, γ(X )
def
=
∨

α(X)⊑X X. That is why some works in
abstract interpretation (e.g. [SRW98]) define only an abstraction operator.

The reason why we decided not to introduce this formalism at first is that for some abstract
domains, including the one developed in Chapter 7, there is no abstraction operator. In other
words, there may not be a best possible abstraction of a given concrete element X ∈ D. An
example of an existing abstract domain having the same property is given in Section 6.3.2.a.

6.3.2 Numerical abstract domains

An abstract domain is said to be numerical when its elements over-approximate subsets of
KVars, where Vars = {v1, . . . ,vd } is a given set of variables, and K is a set of numerical values,
typically N, Z, Q, or R. In other words, the abstract elements represent sets of numerical
environments ν : Vars → K. Observe that any such environment can be assimilated to the
element (ν(v1), . . . , ν(vd)) of Kd. Under this convention, abstract elements of a numerical
domain can be seen as representing subsets of Kd. As an illustration, we choose K = R.

In Section 6.3.2.a, we present the most popular numerical abstract domains. In Sec-
tion 6.3.2.b, we give further details on the abstract domains of zones and octagons. Finally,
in Section 6.3.2.c, we deal with additional primitives which usually equip numerical abstract
domains.

8However, nothing ensures that the abstract function defined in (6.9) is computable.
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6.3.2.a Overview of the existing abstract domains. Numerical abstract domains have
been thoroughly studied in the literature, probably because the first properties addressed
in software verification are of numerical nature (integer overflows, array out of bounds,. . . ).
They now form a various collection of tools. We give a small description of the most used of
them, including the numerical properties that they are able to express, a geometric illustration
of their abstract elements for d = 2, and the complexity of the abstract primitives:

(a) the abstract domain of signs [CC77] infer properties on the signs of the variables vi. Its
elements represent intersections of half-spaces or lines of the form {x = (xi) | xi ⋄ 0 },
with ⋄ ∈ {<,≤,=,≥, > }.

x

y

The worst-case complexity of its primitives is O(d).

(b) the abstract domain of intervals [CC77] expresses interval invariants a ≤ vi ≤ b, a, b ∈ R∪
{−∞,+∞}. Each of its elements is concretized to a hyperrectangle of (R∪{−∞,+∞})d.

x

y

Like for the domain of signs, the worst-case complexity of the primitives on intervals is
O(d).

(c) the abstract domain of affine equalities has been developed by Karr in [Kar76], and
represents affine equalities over the vi, i.e. conjunctions of relationships of the form
a1v1 + . . . + advd = b, for some a1, . . . , ad, b ∈ R. Its elements consequently correspond
to affine linear varieties of Rd.



134 Chapter 6. Introduction to static analysis by abstract interpretation

x

y

The complexity of this abstract domain is dominated by the complexity of the Gaus-
sian elimination algorithm, in O(d3). Indeed, some abstract primitives manipulate the
abstract elements as a system of linear inequalities, while some others consider them as
affine subspaces of Rd generated by a point and some vectors. The Gaussian elimination
algorithm allows to pass from one of the form to the other.

(d) the abstract domain of zones, introduced by Mine in [Min01a], is able to express properties
of the form vi−vj ≥ a, and b ≤ vi ≤ −c, with a, b, c ∈ R∪{−∞}. They represent closed
convex polyhedra such that the slope of each edge is a vector of { 0, 1 }d.

x

y

We give further details on this abstract domain in Section 6.3.2.b. The complexity of the
abstract primitives is also dominated by O(d3).

(e) the abstract domain of octagons [Min01b] is an extension of the latter domain to inequal-
ities of the form ±vi±vj ≥ a and b ≤ vi ≤ −c. Geometrically, the only difference is that
edges can also have a slope with some coordinates equal to −1.

x

y
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The complexity in the worst case is O(d3).

(f) the abstract domain of convex polyhedra has been introduced by Cousot and Halbwachs
in [CH78]. Its abstract elements represent closed convex polyhedra, and represents affine
inequality invariants over the variables vi, i.e. of the form a1v1 + . . . + advd ≤ b.

x

y

Similarly to Karr’s domain, the complexity of the abstract domain of convex polyhedra is
dominated by the complexity of the algorithms passing from the description by systems
of inequalities to the representation by system of generators (i.e. vertices and rays), i.e.
exponential in d in the worst case. Contrary to the previous abstract domains, there is
in general no best possible abstraction of a given set in the domain of convex polyhedra.
For instance, in dimension d = 2, a circle can be over-approximated by several and
incomparable polyhedra whose facets are tangent to the circle.

We have omitted several other domains, such as the domain of constants [Kil73], congru-
ences over rationals [Gra97], octahedrons [CC04], affine inequalities with at most two vari-
ables [SKH03], linear congruence equalities [Gra91], linear programming templates [SSM05],
etc.

Each numerical abstract domain corresponds to a certain trade-off between precision and
scalability: in general, the more precise the over-approximation is, the worse its computational
complexity is. One of the most typical representative of this principle is the abstract domain
of convex polyhedra. In practice, it provides very precise over-approximations, since it is able
to capture any affine inequality invariants. Unfortunately, scaling up to problems with more
than 20 variables is almost impossible because of its exponential complexity. Historically,
this is the reason why more efficient subaffine abstract domains, such as those of zones or
octagons, have been introduced.

As discussed in Chapter 1, most of these numerical abstract domains are formed by ele-
ments representing convex subsets of Rd, since they basically infer conjunctions of (sub)affine
(in)equalities over the variables vi. As a consequence, they can not precisely over-approximate
disjunctive invariants, such as properties corresponding to non-convex subsets of Rd

max. A sys-
tematic way to lift non-disjunctive abstract domains to disjunctive ones is to use disjunctive
completion [CC79]. Using the notations of Section 6.3.1, the disjunctive completion of an
abstract domain (D, γ) is defined as the pair (℘(D), γ′), where

γ′({X1, . . . ,Xn })
def
=

nj

i=1

γ(Xi).

In other words, disjunctions are represented as sets of abstract elements of D. Unfortunately,
the complexity of this abstract domain is most often prohibitive, since the size of its abstract
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elements may grow arbitrarily (in particular, when computing a fixpoint following the iterative
scheme of Kleene’s Theorem). Some heuristics can be used to bound it, however they usually
lead to a uncontrolled loss of precision.

6.3.2.b More details on the abstract domains of zones and octagons. As mentioned
above, the numerical abstract domain of zones, denoted by Zone, allows to express relations
of the form vi − vj ≥ Aij , and bi ≤ vi ≤ −ci, where A = (Aij) is a matrix, and b = (bi) and
c = (ci) are vectors with coefficients in R ∪ {−∞}.9

Each abstract element is usually encoded as a matrix of (R ∪ {−∞})(d+1)×(d+1), where
the (d + 1)-column and row are respectively the vectors b and tc. The concretization of an
abstract element is defined by:

γZone

(
A b
tc d

)
def
=






{
ν ∈ RVars

∣∣∣
Aij ≤ ν(vi)− ν(vj) for i, j = 1, . . . , d

bi ≤ ν(vi) ≤ −ci for i = 1, . . . , d

}
if d ≤ 0,

∅ otherwise.

(6.10)
Abstract elements of Zone can be partially ordered by the point-wise extension of the order ≥
on each coefficient of the matrices: M ⊑Zone M ′ if and only if Mij ≥M ′

ij for all (i, j) ∈ [d]2.

Observe that two abstract elements M and M ′ can represent the same concrete elements,
i.e. γZone(M) = γZone(M

′), while M is smaller than M ′ w.r.t. ⊑Zone.

Example 6.7. When d = 3, consider the two following abstract elements:

M =




0 1 3 −∞
−∞ 0 2 −∞
−∞ −∞ 0 −∞
−∞ −∞ −∞ 0


 , M ′ =




0 1 0 −∞
−∞ 0 2 −∞
−∞ −∞ 0 −∞
−∞ −∞ −∞ 0


 .

Then the two abstract elements exactly represent the sets of environments ν such that ν(v1)−
ν(v2) ≥ 1, ν(v2)−ν(v3) ≥ 2, and ν(v1)−ν(v3) ≥ 3. Note that the third constraint is implied
by the two first ones, and is more precise than the weaker constraint ν(v1) − ν(v3) ≥ 0
in the abstract element M ′. The latter can be safely refined into M , while preserving the
over-approximation property.

Given an abstract element M ∈ Zone such that γZone(M) is not empty, there exists a least
abstract element representing the same subset of RVars. It is provided thanks to a closure
operator ηZone, which maps any M to the element of Zone defined by:

(ηZone(M))ij
def
=

{
0 if i = j,

max
{∑n−1

l=1 Mklkl+1
| k1 = i, k2, . . . , kn−1, kn = j

}
otherwise.

(6.11)

The reader will notice that this closure operator is similar to the maximal weight algorithm
applied on the associated graph G, in which each edge i→ j is assigned with the weight Mij .
It can be also written as the limit of the sum

⊕
n≥0 Mn, where M is seen as a matrix in

R
(n+1)×(n+1)
max .

9Note in their initial presentation [Min01a], zone invariants were given under the form vi − vj ≤ A′
ij , with

A′
ij ∈ R∪{+∞}. Up to considering the opposite inequalities, this presentation is naturally equivalent to ours.
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In contrast, the emptyness of γZone(M) can be characterized by the existence of a circuit
with a strictly positive weight in the graph previously mentioned.10 Discovering such a circuit
can be implemented in the operator ηZone. In that case, ηZone maps the element M to a special

element ⊥Zone. The latter is a canonical represention of the emptyset: γZone(⊥Zone)
def
= ∅.

The closure operator has a complexity in O(d3). An abstract element M which satisfies
ηZone(M) = M is said to be under closed form. We refer the reader to Mine’s thesis [Min04]
for a discussion on the algorithmic details.

The abstract domain of octagons, denoted by Oct, is a generalization of the domain Zone,
since it can be seen as expressing zone invariants over the variables vi and their opposite −vi.
Its elements are therefore encoded by elements of the abstract domain Zone in dimension 2d,
the last d coordinates representing the opposite variables −v1, . . . ,−vd:

γOct(M)
def
= { ν ∈ RVars | (ν(v1), . . . , ν(vd),−ν(v1), . . . ,−ν(vd)) ∈ γZone(M) }.

A closure operator on Oct is also defined. It extends its analogue ηZone, by enabling a com-
munication between the coordinates encoding the vi and those representing their opposite.

6.3.2.c Additional primitives on numerical abstract domains. Following the principles dis-
cussed in Section 6.3.1, numerical abstract domains are equipped with an abstract (pre)order,
abstract join and meet, least and greatest abstract elements, and widening and narrowing op-
erators. They are also provided with primitives over-approximating the side-effect of condi-
tions and assignments on environments, and which will be used to define abstract counterparts
of the rules of the concrete semantics given in Figures 6.5 and 6.6.

Assignments. An assignment vi ← e on an environment ν : Vars→ R consists in replacing the
value of vi in ν by the value v obtained when evaluating the expression e in the environment
ν. Expressions over the set Vars of variables are defined similarly to expressions in our kernel
language (see Figure 6.1), i.e. by a syntactic rule of the form:

e ::= c constant
| vi variable
| op(e1, e2) binary operation

where op denotes usual binary operations over R, such as addition, substraction, multipli-
cation, etc. The value v of an expression in a given environment is therefore given by the
relation ν ⊢ e⇒ v defined in Figure 6.4. Given a numerical abstract domain (D, γ), it will be
therefore supposed that there exists an abstract assignment primitive, denoted by Lvi ← eM,
from D to itself, and which satisfies the following soundness property:

{ ν[vi 7→ v] | ν ∈ γ(X ), ν ⊢ e⇒ v } ⊂ γ(Lvi ← eM(X ))

for every X ∈ D.

Example 6.8. In the abstract domain of intervals, an abstract element is represented by a tuple
of d intervals, each of them representing lower and upper bounds of the variables v1, . . . ,vd.

10That is why in particular the concretization of M in (6.10) is empty when the diagonal coefficient d is
strictly positive.
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Starting from an abstract element X , Lvi ← eM(X ) can be obtained by: (i) evaluating the ex-
pression e as an interval, i.e. replacing each variable vj in e by the corresponding interval and
then evaluating it in interval arithmetics, (ii) and then updating in X the interval associated
to vi by the result.

Assignments can also be parallel. In that case, they represent several assignments vi1 ← e1,
. . . , vin ← en performed simultaneously on an environment. The corresponding abstract prim-
itive will be denoted by Lvi1 ← e1, . . . ,vin ← enM, and must satisfy the soundness property:
for any X ∈ D,

{ ν[vik 7→ vk]k=1,...,n | ν ∈ γ(X ), ν ⊢ ek ⇒ vk for all k = 1, . . . , n }

⊂ γ(Lvi1 ← e1, . . . ,vin ← enM(X )).

A last class of assignments are non-deterministic assignments, which correspond to the
update of a variable vi by an arbitrary value v ∈ R. The abstract primitive will be denoted
by Lvi ← ? M, and will have to be such that, for all X ∈ D,

{ ν[vi 7→ v] | ν ∈ γ(X ), v ∈ R } ⊂ γ(Lvi ← ? M(X )).

Example 6.9 (Continuing Example 6.8). In interval domain, the abstract non-deterministic
assignment Lvi ← ? M(X ) on the abstract element X can be defined as replacing the interval
associated to vi in X by the interval ]−∞; +∞[.

Conditions. Conditions are also built under similar rules to those defined in Figure 6.1,
typically:

cond ::= e1 (≤ | = | ≥) e2 comparison of expressions
| cond1 ∧ cond2 conjunction
| cond1 ∨ cond2 disjunction

The fact that an environment ν satisfies a condition cond is denoted by ν |= cond , and is
defined by the following inference rules, analogous to the corresponding rules in the concrete
semantics (Figure 6.6):

ν ⊢ e1 ⇒ v1 ν ⊢ e2 ⇒ v2 v1 ⋄ v2

ν |= e1 ⋄ e2
where ⋄ ∈ {≤,=,≥}

ν |= cond1 ν |= cond2

ν |= cond1 ∧ cond2

ν |= cond i

ν |= cond1 ∨ cond2
for i = 1, 2

The abstract primitive LcondM associated to the condition cond must satisfy the following
soundness property: for all X ∈ D,

{ ν ∈ γ(X ) | ν |= cond } ⊂ γ(LcondM(X )).

Observe that the abstract primitives Lcond1∧cond2M and Lcond1∨cond2M can be generally
built from each abstract function Lcond iM using abstract meet and join operations, as follows:
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for all X ∈ D,

Lcond1 ∧ cond2M(X )
def
= Lcond1M(X ) ⊓ Lcond2)(X ),

Lcond1 ∨ cond2M(X )
def
= Lcond1M(X ) ⊔ Lcond2)(X ).

The construction of the abstract primitives Le1 ⋄ e2M depends on the nature of the abstract
domain.

6.4 A first possible abstract semantics

In this section, we give a first example of abstraction on the kernel language of Section 6.1.
The principle of the abstraction is the following:

❼ for the stack, integer variables are over-approximated by means of a numerical abstract
domain, such as one of those presented in Section 6.3.2.a.

❼ for the heap, the exact content of arrays is totally forgotten. The only numerical
information which is kept in the abstraction is the size of the arrays.

This abstraction is rough regarding the content of the arrays, but is nevertheless able to infer
properties between integer variables and the size of the arrays. Therefore, it will be maybe
able to prove the absence of some heap overflows.

Abstract domain. Formally, the abstraction is parametrized by a numerical abstract domain
Num, whose aim is to express numerical information over the integer variables of IntVars,
and ghost variables representing the size of arrays. The latter form the set denoted by
SizeVars. By convention, the size of the array t ∈ ArrayVars will be represented by the
variable sz t ∈ SizeVars.

We suppose that the numerical abstract domain Num is provided with a concretization
operator γNum : Num → ℘(ZIntVars∪SizeVars), an abstract order ⊑, and abstract primitives ⊔,
⊓, ⊥, ⊤, ∇, and

∇
, which satisfy all the properties given in Section 6.3.1. As explained in

Section 6.3.2.c, we also suppose that Num is provided with abstract operations which soundly
over-approximate the side-effect of assignments and conditions. Finally, we assume that ⊔,
⊓, and the assignment and condition abstract primitives are all monotone.

The abstract domain over-approximating memory states is denoted by AMem. The set
AMem is formed by the abstract elements of the domain Num, and its concretization operator
γMem : AMem→ ℘(Mem) gives the meaning of an abstract memory stateM:

γMem(M)
def
=





s ¦ h ∈ Mem

∣∣∣∣

ν ∈ γNum(M), ∀x ∈ IntVars, s(x) = ν(x),

for all t ∈ ArrayVars, ν(sz t) ≥ 0,

and (t, i) ∈ dom(h) iff 0 ≤ i ≤ ν(sz t)− 1





. (6.12)

Example 6.10. Assume that IntVars is reduced to a single integer variable x, and that ArrayVars

consists of only one array t. Suppose that Mem is instantiated with the abstract domain of
convex polyhedra. Then the abstract elementM represented by the system of inequalities:

{
2 ≤ x ≤ 5

3 ≤ sz t ≤ x + 1
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represents the set of the memory states s ¦ h in which the value of s(x) is bounded between
2 and 5, and the array t has a size between 3 and x + 1. For instance, if s(x) = 3, then the
heap h is an arbitrary function defined over the addresses (t, 0), . . . , (t, 2), and also possibly
over (t, 3).

The abstract domain of semantics states is denoted by AStates. It is formed by the
functions from Ctrl to AMem, and its concretization operator γ : AStates → ℘(States) is
defined as follows:

γ(X )
def
=

{
Ctrl → ℘(Mem)

ℓ 7→ γMem(X (ℓ))
.11 (6.13)

The partial ordering AStates, denoted by ⊑̇, is defined as the lift of the ordering ⊑ over
Ctrl: X ⊑̇ Y if and only if for any ℓ ∈ Ctrl, X (ℓ) ⊑ Y(ℓ).

Abstract join, meet, widening, and narrowing operators, as well as least and top elements
on AStates can be defined using the corresponding primitives in Num: given X ,Y ∈ AStates

and ℓ ∈ Ctrl,

⊥̇(ℓ)
def
= ⊥, ⊤̇(ℓ)

def
= ⊤,

(X ⊔̇Y)(ℓ)
def
= X (ℓ) ⊔ Y(ℓ), (X ⊓̇Y)(ℓ)

def
= X (ℓ) ⊓ Y(ℓ),

(X ∇̇Y)(ℓ)
def
= X (ℓ)∇Y(ℓ), (X

∇̇
Y)(ℓ)

def
= X (ℓ)

∇
Y(ℓ).

Abstract transfer function. Now, given a program P , we are going to build a sound abstrac-
tion F of the transfer function F defined by (6.4): for each X ∈ AStates, and for any ℓ′ ∈ Ctrl,
we define

F(X )(ℓ′)
def
=






Lsz t ← 0 for all t ∈ ArrayVarsM(⊤) if ℓ′ = entry(P ),
⊔

〈ℓ,step,ℓ′〉

[[step]](X (ℓ)) otherwise.

By convention, when an array is not allocated, its size is supposed to be equal to 0. Therefore,
the abstract memory state Lsz t ← 0 for all t ∈ ArrayVarsM(⊤) is a sound approximation of the
set of initial memory states. It can be verified that its concretization is actually formed by
memory states in which the variables in the stack have arbitrary values, while the heap is
empty.

If step is an allocation, an instruction, or a condition, then the function [[step]] : AMem→
AMem, defined in Figure 6.9, is an abstraction of the effect of the allocation, instruction, or
condition step:

Let us comment these definitions:

❼ the assignment x := e modifies the value of x in the abstract state M using the corre-
sponding primitive defined in the domain Num.

❼ the non-deterministic assignment x := read() is translated into the corresponding ab-
stract primitive on Num.

❼ for the assignment x := t[e], it is first verified that the array element t[e] is indeed
allocated. Then a non-deterministic assignment on x is performed, since we do not
have any information on the exact value of t[e].

11We here implicitly use the correspondence between ℘(States) and ℘(Mem)Ctrl.
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[[x := e]](M)
def
= Lx← eM(M)

[[x := read()]](M)
def
= Lx← ? M(M)

[[x := t[e]]](M)
def
= Lx← ?M ◦ L0 ≤ e ≤ sz t − 1M(M)

[[t[e1] := e2]](M)
def
= L0 ≤ e1 ≤ sz t − 1M(M)

[[t[e] := read()]](M)
def
= L0 ≤ e ≤ sz t − 1M(M)

[[t1[e1] := t2[e2]]](M)
def
= L(0 ≤ e1 ≤ sz t1 − 1) ∧ (0 ≤ e2 ≤ sz t2 − 1)M(M)

[[t[e1] ⋄ e2]](M)
def
= L0 ≤ e1 ≤ sz t − 1M(M) for ⋄ ∈ {=, 6= }

[[t := malloc(e)]](M)
def
= Lsz t ← eM ◦ Le ≥ 1M(M)

[[e1 ⋄ e2]](M)
def
= Le1 ⋄ e2M(M) for ⋄ ∈ {≤,=,≥}

[[cond1 ∧ cond2]](M)
def
= Lcond1M(M) ⊓ Lcond2M(M)

[[cond1 ∨ cond2]](M)
def
= Lcond1M(M) ⊔ Lcond2M(M)

Figure 6.9: Abstract primitives for allocations, intructions, and conditions

❼ the instructions t[e1] := e2, t[e] := read(), t1[e1] := t2[e2], and the condition t[e1] ⋄ e2

only filter the memory states for which the involved indexes are whithin the bounds of
the corresponding arrays.

❼ the allocation t := malloc(e) filters the values of e which are strictly positive (since
according to our convention, malloc(0) stops the machine). It then overwrites the size
of the array t to the value of e.

❼ the conditions e1 ⋄ e2, cond1 ∧ cond2, and cond1 ∨ cond2 are translated into the corre-
sponding operations on Num.

The soundness of the abstract operator [[step]] is ensured by the following lemma:

Lemma 6.3. Let M∈ AMem. Then:

{
s′ ¦ h′ | s ¦ h ∈ γMem(M) and s ¦ h ⊢ step : s′ ¦ h′

}
⊂ γMem ([[step]](M)) . (6.14)

It can be also verified that the function F is monotone, as a combination of the monotone
abstract primitives ⊔, ⊓, L· ← ·M, and LcondM. It follows that the function F is itself a sound
abstraction of the concrete transfer function F .

Proposition 6.4. Let X ∈ AStates. Then we have:

F (γ(X )) ⊂ γ(F(X )). (6.15)
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Proof. First note that when ℓ′ = entry(P ), we clearly have:

F (γ(X ))(ℓ′) = { s0 ¦ ∅ | s0 ∈ Stack }

⊂ γMem(Lsz t ← 0 for all t ∈ ArrayVarsM(⊤))

= γMem(F(X )(ℓ′)).

Besides, if ℓ′ 6= entry(P ),

F (γ(X ))(ℓ′) =
⋃

s¦h∈γ(X )(ℓ)

{ s′ ¦ h′ | (ℓ, s ¦ h)→ (ℓ′, s′ ¦ h′) }

=
⋃

〈ℓ,step,ℓ′〉
s¦h∈γMem(X (ℓ))

{ s′ ¦ h′ | s ¦ h ⊢ step : s′ ¦ h′ } using (6.1), (6.2), and (6.13)

⊂
⋃

〈ℓ,step,ℓ′〉

γMem ([[step]](X (ℓ))) according to Lemma 6.3

⊂ γMem




⊔

〈ℓ,step,ℓ′〉

[[step]](X (ℓ)



 by soundness of ⊔

= γMem(F(X )(ℓ′)).

As a consequence, we have F (γ(X )) ⊂ γ(F(X )).

Propositions 6.1 and 6.2 then allow to compute a sound abstraction of the collecting
semantics C(P ). This element of AStates will be denoted C(P ):

C(P ) ⊂ γ(C(P )).

Example 6.11. Consider the program defined in Example 6.1. Supposing that Num is instan-
tiated by the abstract domain of closed convex polyhedra, its abstract collecting semantics is
depicted in Figure 6.10.

Ensuring the absence of heap overflows. Once the abstract collecting semantics has been
computed, the abstract memory states C(P )(ℓ) represent program invariants at each control
point ℓ ∈ Ctrl. These invariants can be used to prove that there is no heap overflow.

Indeed, consider a program control point ℓ of an instruction or a condition involving an
expression of the form t[e]. If the abstract memory states at ℓ satisfies

Le ≤ −1 ∨ e ≥ sz tM(C(P )(ℓ)) = ⊥,

then all the memory states represented by C(P )(ℓ) necessarily satisfy 0 ≤ e ≤ sz t−1. Indeed,
the concretization of the memory states satisfying e ≤ −1 ∨ e ≥ sz t is equal to ∅. Since
C(P )(ℓ) over-approximates all the possible memory states at the control point ℓ, this proves
that the array lookup t[e] is safe.
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1 : sz s = 02 :
sz s = 0,

n ≥ 1

3 :
sz s = n,

n ≥ 1

4 :
0 ≤ i ≤ n − 1,

sz s = n

5 :
0 ≤ i ≤ n − 2,

sz s = n

6 :
0 ≤ i ≤ n − 2,

sz s = n

8 :

i = n − 1,

sz s = n,

n ≥ 1

9 :

i = n − 1,

sz s = n,

n ≥ 1

n ≥ 1

s := malloc(n)

i := 0

i ≤ n− 2

s[i] := read()

i := i + 1

i ≥ n− 1 s[i] := 0

Figure 6.10: The abstract collecting semantics of our running example, using the first ab-
straction

Using this principle, the following properties on the abstract semantics ensure that there
is no heap overflow during any execution of the program P :






Le ≤ −1 ∨ e ≥ sz tM(C(P )(ℓ)) = ⊥ if step is of the form x := t[e] or t[e] := read()
Le1 ≤ −1 ∨ e1 ≥ sz tM(C(P )(ℓ)) = ⊥ if step is of the form t[e1] := e2 or t[e1] ⋄ e2

Le1 ≤ −1 ∨ e1 ≥ sz t1M(C(P )(ℓ)) = ⊥
if step is of the form t1[e1] := t2[e2]Le2 ≤ −1 ∨ e2 ≥ sz t2M(C(P )(ℓ)) = ⊥

(6.16)

Example 6.12. In the abstract collecting semantics provided in Example 6.1, it can be verified
that for any access t[i] at index i, the invariants ensure that the property i ≤ −1 ∨ i ≥ sz t

never holds. As a consequence, there is no heap overflow.

6.5 An abstraction on strings

The abstraction which has been defined in the previous section is not precise regarding the
heap, since its whole content is forgotten. In this section, we propose a tighter abstraction
which allows to track information on the length of the strings which are stored in the heap.
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In programming languages like C, strings refer to a sequence of characters. Assimilating
here integers and characters (supposing for instance that characters are encoded by their
ASCII code) allows us to consider that the arrays of our kernel language store strings. The
null character, which is given by the integer 0, plays the role of the delimiter of the end of
strings, and any character stored after it is meaningless, and may have an arbitary value. The
length of a string is defined as the position of the first null character in the array (starting
from the index 0). To avoid confusion between the null character and the integer encoding
the character 0 (i.e. 48 in the ASCII standard), the latter will be denoted by ✬0✬.

The length of a string terminated by a null character is always strictly less than the size
of the array. If the array does not contain any null character, we use the convention that the
length of the string is equal to the size of the array. Informally, for a given array t ∈ ArrayVars,
the length of the string is therefore given by min({ i | t[i] = 0 } ∪ { sz t }).

Example 6.13. Consider the following array:

✬E✬ ✬X✬ ✬A✬ ✬M✬ ✬P✬ ✬L✬ ✬E✬ 0 ✬m✬ ✬&✬ ✬/✬ ✬2✬ ✬(✬ ✬%✬ ✬P✬

Its size is equal to 15. It contains the string EXAMPLE, whose length is equal to 7. All the
characters located after the null terminal character are irrelevant.

Example 6.14. Consider the program defined in Example 6.1 as manipulating strings. The
fact that the last character is assigned to 0 at Line 8 allows to ensure that the length of the
string stored in the array t is less than or equal to n− 1.

Let us discuss the principle of the string abstraction. For each array t, we associate a new
ghost variable, denoted by lent, which will represent the length of the string stored in the
array t. The set of such variables is denoted by LenVars, and is supposed to be disjoint from
IntVars and SizeVars. The principle of the abstraction is now to approximate the content of
the arrays by inferring numerical relations between their size, the length of the string which
is stored in, and the integer variables of the program. Intuitively, the content of an array in
the abstract world will be seen as follows:

6= 0 ?0

sz t

lent

The dark gray area contains only non-null characters, while the white one represents the first
null character (its index is equal to lent). Besides, we do not have precise information on the
rest of the array (in light gray): it may contain both non-null and null characters.

This abstraction is not really new. It follows the principles of the string analyses developed
by Simon et al. [SK02], Dor et al. [DRS03], and Allamigeon et al. [AGH06]. The major novelty
is that ours is described in a general setting, i.e. for any underlying numerical abstract domain.
In contrast, the existing abstractions are all presented with a particular instantiation (convex
polyhedra for the two first ones, intervals for the last one).

Abstract domain. Our abstraction is still parametrized by a numerical abstract domain
Num, provided with a concretization operator γNum which maps elements of Num to subsets
of ZIntVars∪SizeVars∪LenVars.
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The abstract domain of memory states AMem is still formed by elements of Num, but its
concretization operator γMem : AMem→ ℘(Mem) is now refined thanks to the information of
the length of the string stored in each array:

γMem(Mem)
def
=





s ¦ h ∈ Mem

∣∣∣∣∣

ν ∈ γNum(M), ∀x ∈ IntVars, s(x) = ν(x),

for all t ∈ ArrayVars, ν(sz t) ≥ 0,

(t, i) ∈ dom(h) iff 0 ≤ i ≤ ν(sz t),

and ν(lent) = min({ i | h(t, i) = 0 } ∪ { ν(sz t) })





. (6.17)

For each array t ∈ ArrayVars, the array elements whose index is strictly less than the length
lent must be non-null, while the element of index lent must contain the value 0 (if it is
allocated).

Example 6.15. Suppose that Num is the abstract domain of convex polyhedra, and consider
the abstract memory state M given by the following system of affine constraints:






1 ≤ n

n = sz t

0 ≤ lent ≤ sz t − 1

It represents the set of memory states s ¦ h in which the value of s(n) is greater than 1, the
heap is precisely defined on the addresses (t, 0), . . . , (t, s(n)− 1), and is such that there exists
at least one index i between 0 and s(n)− 1 such that h(t, i) is equal to 0.

The abstract domain of semantics states AStates and the abstract primitives ⊑̇, ⊔̇, ⊓̇, ∇̇,
∇̇

, ⊥̇, and ⊤̇ are defined as previously.

Abstract transfer functions. The abstract transfer function F is slightly modified, since in
the initial memory state, the length of every string is equal to 0 (i.e. following the convention
that the size of non-allocated arrays is 0):

F(X )(ℓ′)
def
=






Lsz t ← 0 and lent ← 0 for all t ∈ ArrayVarsM(⊤) if ℓ′ = entry(P ),
⊔

〈ℓ,step,ℓ′〉

[[step]](X (ℓ)) otherwise.

When step does not manipulate the content of the heap, the definition of [[step]] is not modi-
fied. Otherwise, [[step]] is built thanks to four abstract primitives, guard null, guard non null,
assign null, and assign non null. These primitives are defined as follows:

❼ guard null(M, t, e) filters the memory states abstracted by M, such that the array el-
ement t[e] contains the value 0. This happens only if e is greater than or equal to
the length lent. Indeed, the elements whose index is strictly less than the length are
necessarily non-null. Thus:

guard null(M, t, e)
def
= Le ≥ lent ∧ 0 ≤ e ≤ sz t − 1M(M),

which can be represented by the following figure:

6= 0 ?0

e
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❼ on the contrary, guard non null(M, t, e) yields an approximation of the memory states
abstracted by M, such that the array element t[e] does not store the null character.
This naturally happens when e < lent. It may also happen when e > lent, since in that
case, our abstraction does not have any precise information on the value of the array
element:

guard non null(M, t, e)
def
= Le ≤ lent − 1 ∧ 0 ≤ e ≤ sz t − 1M(M)

⊔ Le ≥ lent + 1 ∧ 0 ≤ e ≤ sz t − 1M(M),

which can be illustrated by:

6= 0 ?0

e or e

❼ assign null(M, t, e) is an abstraction of the assignment t[e] := 0 on the abstract state
M. Two cases can be distinguished: (i) either e is strictly less than lent, so that the
length has to be updated to the value of e, (ii) or e ≥ lent, in which case the length of
the string does not change. Therefore:

assign null(M, t, e)
def
= Llent ← eM ◦ Le ≤ lent − 1 ∧ 0 ≤ e ≤ sz t − 1M(M)

⊔ Le ≥ lent ∧ 0 ≤ e ≤ sz t − 1M(M).

The two cases can be represented as follows:

6= 0 0 ?

0

e

6= 0 0 ?

lent

6= 0 0 ?

e

6= 0 0 ?

lent

before after

❼ assign non null(M, t, e) is an abstraction of the assignment t[e] := c where c is a non-null
character. Three cases can be distinguished: e ≤ lent − 1, e ≥ lent + 1, or e = lent.
In the two first ones, the length of the string is not altered. In the last one, the null
terminal character is overwritten by a non-null character, so that the length is updated
to an arbitrary value between e + 1 and sz t:

assign non null(M, t, e)

def
= Le ≤ lent − 1 ∧ 0 ≤ e ≤ sz t − 1M(M) ⊔ Le ≥ lent + 1 ∧ 0 ≤ e ≤ sz t − 1M(M)

⊔ Le + 1 ≤ lent ≤ sz tM ◦ Llent ← ?M ◦ Le = lent ∧ 0 ≤ e ≤ sz t − 1M(M).

The three cases can be illustrated as follows:
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6= 0 0 ?

e

6= 0 0 ?

lent

6= 0 0 ?

e

6= 0 0 ?

lent

6= 0 0 ?

6= 0

e

6= 0 ?

e + 1

lent?

before after

The following lemma states that these primitives are sound:

Lemma 6.5. Let M∈ Mem. Then the following relations holds:

{
s ¦ h ∈ γMem(M)

∣∣∣
s ⊢ e⇒ i, (t, i) ∈ dom(h),

and h(t, i) = 0

}
⊂ γMem(guard null(M, t, e)),

{
s ¦ h ∈ γMem(M)

∣∣∣
s ⊢ e⇒ i, (t, i) ∈ dom(h),

and h(t, i) 6= 0

}
⊂ γMem(guard non null(M, t, e)),

{
s′ ¦ h′ | s ¦ h ∈ γMem(M), s ¦ h ⊢ t[e] := 0 : s′ ¦ h′

}
⊂ γMem(assign null(M, t, e)),

{
s′ ¦ h′

∣∣∣
c ∈ Z \ { 0 }, s ¦ h ∈ γMem(M),

and s ¦ h ⊢ t[e] := c : s′ ¦ h′

}
⊂ γMem(assign non null(M, t, e)).

We can now modify the definition of [[step]] when step performs operations on the heap:

❼ for the stack assignment x := t[e], the cases t[e] 6= 0 and t[e] = 0 are distinguished
thanks to the functions guard non null and guard null. In the former case, x is updated
to an arbitrary value which is then filtered to non-zero values, while in the latter case,
x is directly updated to the value 0:

[[x := t[e]]](M)
def
=
(
Lx ≤ −1 ∨ x ≥ 1M ◦ Lx← ?M

)
(guard non null(M, t, e))

⊔ Lx← 0M(guard null(M, t, e)).

❼ for the heap assignment t[e1] := e2, the primitives assign non null and assign null are
used according to the value of e2:

[[t[e1] := e2]](M)
def
= assign non null(Le2 ≤ −1 ∨ e2 ≥ 1M(M), t, e1)

⊔ assign null(Le2 = 0M(M), t, e1).
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❼ the non-deterministic heap assignment t[e] := read() is obtained by joining the cases
where the assigned character is null or not:

[[t[e] := read()]](M)
def
= assign non null(M, t, e) ⊔ assign null(M, t, e).

❼ similarly, for the array copy t1[e1] := t2[e2], two cases can be distinguished: (i) a non-
null value is assigned to t1[e1] when e2 ≤ lent2 − 1, or may be assigned when e2 ≥
lent2 +1, (ii) or the null character may be assigned as soon as e2 ≤ lent2 . The primitives
assign non null(·, t1, e1) and assign null(·, t1, e1) are used accordingly:

[[t1[e1] := t2[e2]]](M)
def
= assign non null(Le2 ≤ lent2 − 1 ∧ 0 ≤ e2 ≤ sz t2 − 1M(M, t1, e1)

⊔ assign non null(Le2 ≥ lent2 + 1 ∧ 0 ≤ e2 ≤ sz t2 − 1M(M, t1, e1)

⊔ assign null(Le2 ≥ lent2 ∧ 0 ≤ e2 ≤ sz t2 − 1M(M, t1, e1).

❼ the condition t[e1] = e2 on t[e1] is implemented using guard non null (resp. guard null)
when e2 is not null (resp. null):

[[t[e1] = e2]](M)
def
= (guard null(M, t, e1) ⊓ Le2 = 0M(M))

⊔ (guard non null(M, t, e1) ⊓ Le2 ≤ −1 ∨ e2 ≥ 1M(M)).

❼ for the condition t[e1] 6= e2, guard non null can be applied when e2 is null, while when
it is not null, no further information can be obtained:

[[t[e1] 6= e2]](M)
def
=
(
guard non null(M, t, e1) ⊓ Le2 = 0M(M)

)

⊔ Le2 ≤ −1 ∨ e2 ≥ 1M(M)

❼ the allocation t := malloc(e) not only updates the value of sz t to e, but also sets the
length lent to an arbitrary value between 0 and e:

[[t := malloc(e)]](M)
def
= L0 ≤ lent ≤ eM ◦ Llent ← ? , sz t ← eM ◦ Le ≥ 1M(M).

Then the following statement holds:

Lemma 6.6. Let M∈ AMem. Then:

{
s′ ¦ h′ | s ¦ h ∈ γMem(M) and s ¦ h ⊢ step : s′ ¦ h′

}
⊂ γMem ([[step]](M)) . (6.18)

As a consequence, F can be shown to be a sound abstraction of the concrete transfer
function F :

Proposition 6.7. Let X ∈ AStates. Then we have:

F (γ(X )) ⊂ γ(F(X )).

It can be also verified that F is still monotone. Thus the abstract semantics C(P ) can be
then computed using Propositions 6.1 and 6.2.
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1 :
lens = 0,

sz s = 0
2 :

lens = 0,

sz s = 0,

n ≥ 1

3 :
0 ≤ lens ≤ sz s,

sz s = n, n ≥ 1

4 :

0 ≤ i ≤ n − 1,

0 ≤ lens ≤ sz s,

sz s = n

5 :

0 ≤ i ≤ n − 2,

0 ≤ lens ≤ sz s,

sz = n

6 :

0 ≤ i ≤ n − 2,

0 ≤ lens ≤ sz s,

sz s = n

8 :

0 ≤ lens ≤ sz s,

i = n − 1,

sz s = n ≥ 1

9 :

0 ≤ lens ≤ sz s − 1,

i = n − 1,

sz s = n ≥ 1

n ≥ 1

s := malloc(n)

i := 0

i ≤ n− 2

s[i] := read()

i := i + 1

i ≥ n− 1 s[i] := 0

Figure 6.11: The abstract collecting semantics of our running example, using the string
abstraction

Example 6.16. Using the string abstraction, the abstract collecting semantics C(P ) provides
more precise invariants on the array s of the program of Example 6.1.

Indeed, at control point 8, the length of s is still unknown, being between 0 and n = sz s.
After the assignment s[i] := 0, the abstract primitive assign null is applied on M = C(P )(8).
It yields the abstract memory states:

assign null(M, s, i) = Llens ← iM ◦ Li ≤ lens − 1 ∧ 0 ≤ i ≤ sz s − 1M(M)

⊔ Li ≥ lens ∧ 0 ≤ i ≤ sz s − 1M(M)

In the first argument of the union, the invariant lens = i = n − 1 holds because of the
assignment lens ← i. The second argument over-approximates the states in which i = n−1 ≥
lens. In both cases, and therefore in the result of the abstract join operator, the invariant
lens ≤ n−1 holds. Therefore, at control point 9, it is ensured that the length of s is bounded
by 0 and n− 1.
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6.6 Conclusion of the chapter

In this chapter, we have introduced the basics of the theory of abstract interpretation, and
applied it to the construction of an analysis able to infer invariants over the length of the
strings in a kernel language equipped with dynamic allocation. In particular, this analysis has
been able to show the absence of heap overflows in an small example. Thus, for the moment,
the precision of the analysis is satisfactory.

Now, let us complete the program of Example 6.1 in the following way:

1 : assume (n ≥ 1);
2 : s := malloc(n);
3 : i := 0;
4 : while i ≤ n− 2 do

5 : s[i] := read();
6 : i := i + 1;
7 : done;
8 : s[i] := 0;
9 : upp := malloc(n);

10 : i := 0;
11 : while i ≤ n− 1 do

12 : upp[i] := s[i];
13 : i := i + 1;
14 : done;
15 : i := 0;
16 : while upp[i] 6= 0 do

17 : c := upp[i];
18 : if (c ≥ 97) ∧ (c ≤ 122) then

19 : upp[i] := c− 32;
20 : end;
22 : i := i + 1;
23 : done;

This version of the program performs the following additionnal manipulations:

❼ from Lines 9 to 14, it copies the whole content of the array s into a newly allocated
array upp. This is equivalent to a call to the function memcpy(upp, s, n) in C.

❼ from Lines 15 to 20, it transforms any character c of upp between 97 and 122, i.e.
ranging over the letters ’a’,. . . ,’z’ in ASCII code, into the character c− 32, which is the
corresponding upper case letter. This transformation is iterated until the null terminal
character of upp is encountered.

In other words, the program first reads a string from an external source, and then creates
the corresponding string in capital letters. This is a typical representative of the string
manipulations which can be found in most software.

This complete version is still correct. Indeed, after the “memcpy part”, the length of the
string stored in upp is precisely equal to lens, and in particular less than or equal to n − 1.
Thus, the loop from Lines 16 to 20 can not cause a heap overflow since it stops at the index
i = lenupp , which is strictly less than the size of the array upp (equal to n).

However, as discussed in Chapter 1, convex numerical abstract domains are not able to
precisely analyze the “memcpy part”. For instance, we have implemented the abstraction
on strings with convex polyhedra. The computed invariant on lenupp at control point 15
is then 0 ≤ lenupp ≤ n and lenupp + lens ≤ 2n − 2. In particular, it is not able to infer
the relation lenupp ≤ n − 1. This means that in the abstract memory state, we may have
lenupp = n = szupp , which corresponds to the fact that the array upp does not contain any
null terminal character. Then, the loop from Lines 16 to 20 can iterate until i reaches the
value of n, which causes a heap overflow at Line 16. This is naturally a false alarm, which is
entirely due to the lack of precision of the numerical domain.

As a consequence, using such a non-disjunctive numerical abstract domain, our string
analysis is not able to show the absence of heap overflows in the second loop.



CHAPTER 7

Numerical abstract domains based on
tropical polyhedra

In this chapter, we introduce three new numerical abstract domains based on tropical poly-
hedra. They respectively allow to infer max-invariants, min-invariants, and min- and max-
invariants, over a given set of variables. The first class of invariants is formed by systems of
tropically affine inequalities over these variables, i.e. with usual notations:

max(α0, max(α1 + v1, . . . , αd + vd)) ≤ max(β0,max(β1 + v1, . . . , βd + vd)),

where α0, . . . , αd and β0, . . . , βd range over the set Rmax. The second class of invariants is
obtained by replacing the operator max by min in the previous inequality. The third class is
able to express, in particular, both min- and max-invariants. The first two classes of invariants
contain zone invariants, of the form vi − vj ≥ α, and express in fact some disjunctions of
such invariants. Similarly, the third class is able to express some disjunctions of octagonal
invariants ±vi ± vj ≥ α.

As far as we know, the only other existing domain inferring similar invariants is due
by Gulavani and Gulwani in [GG08].1 Their domain is paramaterized by two fixed disjoint
sets U and V of variables, and an integer K > 0. It is able to express invariants of the
form e ≤ max(f1, . . . , fp), where e is a (classical) linear expression over the variables of U ,

1Purely coincidentally, it was introduced as the very same time as a first version of our approach was
published in [AGG08], while min-/max-invariants had been never discussed before in the literature.
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f1, . . . , fp are linear expressions over the variables of V , and p ≤ K. Their approach is based
on a kind of disjunctive completion, and is absolutely not related to tropical polyhedra nor
tropical convex sets. In particular, albeit it is sound, it may be very imprecise because of
the use of heuristics.2 This abstract domain is applied to timing analysis, which allows to
statically determine timing bounds on programs. Also note that it is cannot express the
invariants on memory manipulations which have discussed in Chapter 1.

The chapter is organized as follows. In Sections 7.1, 7.2, and 7.3, we define the three
numerical abstract domains. They all rely on tropical polyhedra to over-approximate sets of
environments. Each polyhedron is represented by a double description formed by a generating
set and a system of inequalities, following the equivalence of the two representations stated
in Theorem 2.5. We also define abstract primitives which soundly over-approximate their
concrete analogues. Most of the abstract primitives involve only one of the two components of
the double descriptions. The algorithms that we have defined in Chapter 5 will be therefore of
critical importance to obtain the full double descriptions when needed. Finally, in Section 7.4,
we combine the abstract semantics defined in Chapter 6 with the three domains, and evaluates
the resulting analysis on memory manipulating programs such as algorithms on arrays or
strings.

7.1 Inferring max-invariants: the abstract domain MaxPoly

We introduce the numerical abstract domain MaxPoly, which will be used to infer max-
invariants. We first discuss in Section 7.1.1 the choice of the abstract representation and
the corresponding concretization operator. We also express the max-invariants in terms of
disjunctions of zone invariants.

Section 7.1.2 to 7.1.5 define the usual primitives over-approximating the order, the union,
the intersection, and the assignments. Section 7.1.6 is devoted to the definition of two
widening operators. Section 7.1.7 introduces a primitive which, given an abstract element
of MaxPoly, allows to extract the smallest zone containing it. For each abstract primitive, the
soundness, the level of precision, and the complexity is discussed.

7.1.1 Definition of the abstract domain

The abstract domain MaxPoly over-approximates sets of numerical environments. The latter
are functions from Vars to R, where Vars is a set of variables d pairwise distinct variables
v1, . . . ,vd. The set Vars acts as a parameter of the abstract domain, and can be naturally
replaced by another set of variables. That is why the abstract domain may also be denoted
by MaxPoly(Vars), to highlight the fact that the computed invariants range over the variables
of Vars.

The elements of MaxPoly are tropical polyhedra. Obviously, a tropical polyhedron is
not represented by the set of its points, which may be not finite. Instead, every non-empty
tropical polyhedron is given under the form of a double representation, consisting in a minimal
generating representation (i.e. its extreme points and the extreme rays of its recession cone),
and a system of constraints which precisely defines it. Formally, the abstract domain MaxPoly

is defined as follows:

2The main heuristics ensures that the expressions max(f1, . . . , fp) do not contain more than K arguments.
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Definition 7.1. We define MaxPoly as the set formed by the element ⊥ and by the double
representations ((P,R), (A, c, B,d)), which have to satisfy the following conditions:

(i) the following identity holds

co(P )⊕ cone(R) = {x ∈ Rd
max | Ax⊕ c ≤ Bx⊕ d }, (7.1)

(ii) (P,R) is precisely formed by the extreme points and the scaled extreme rays of the
tropical polyhedron given in (7.1),

(iii) P is not empty, and there is no i ∈ [d] satisfying pi = ✵ and ri = ✵ for all p = (pi) ∈ P
and r = (ri) ∈ R,

(iv) A, B ∈ R
p×d
max, c,d ∈ Rd

max, and the inequalities of the system Ax ⊕ c ≤ Bx ⊕ d are
linearly independent.

Let us give some details about Definition 7.1. The special element ⊥ is meant to represent
the empty tropical polyhedron. Any other abstract element is a double representation: its first
component is said to be by generators, while the second one is referred to as by constraints.
Condition (i) ensures the equivalence of the two components. Each abstract element X ∈
MaxPoly is therefore associated to the tropical polyhedron X which it represents:

⊥
def
= ∅

((P,R), (A, c, B,d))
def
= co(P )⊕ cone(R)

or, equivalently, def
= {x ∈ Rd

max | Ax⊕ c ≤ Bx⊕ d }

Condition (ii) on the extremality of the elements of P and R ensures that (P,R) forms a
minimal generating representation of the tropical polyhedron P = X (Theorem 2.4). Observe
that it amounts to the fact that (P × {✶ }) ∪ (R × {✵ }) contains exactly one representative
of each extreme ray of the homogenized cone P̂ (Corollary 2.3). Equivalently, no element
of (P × {✶ }) ∪ (R × {✵ }) can be expressed as a tropical linear combination of the others
(Proposition 5.6). These equivalent formulations of Condition (ii) will be often used in the
sequel.

Similarly, Condition (iv) expresses that the constraints component is under minimal form.
Indeed, the inequalities of the system Ax⊕ c ≤ Bx⊕ d must be linearly independent, which
means that no inequality can be expressed as a tropical linear combination of the others

(Condition (iv)). Consider H ⊂ (R
(d+1)
max )2 the set formed by the elements

(
(
tAk ck

)
,
(
tBk dk

)
),

where Ak and Bk are the k-th row of the matrices A and B respectively, and c = (ci),
d = (di)). Then Condition (iv) ensures that H is indeed a minimal generating set of the

tropical cone cone(H) of (R
(d+1)
max )2. However, for the same reason than those discussed in

Remark 5.5, the system Ax⊕ c ≤ Bx⊕ d may contain some redundant inequalities.
Finally, since we are interested in over-approximating subsets of RVars, which is isomorphic

to Rd, the intersection of X with Rd should not be empty, unless X = ⊥. This is equivalent
to Condition (iii). Indeed, X ∩Rd is empty if and only if there exists i ∈ [d] such that xi = ✵

for all x = (xi) ∈ Rd
max. This precisely happens in one of the two following cases:
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❼ X is empty, which is equivalent to P = ∅,

❼ or for a given i ∈ [d], the i-th coordinate of all elements of P and R is equal to ✵.
Intuitively, this corresponds to the fact that xi = ✵ for all x ∈ X .

7.1.1.a Concretization operator. We can now define the concretization operator of the
abstract domain MaxPoly. It maps any abstract element to the set of environments ν :
Vars→ R such that the point (ν(v1), . . . , ν(vd)) belongs to the associated polyhedron: given
X ∈ MaxPoly,

γMaxPoly(X )
def
= { ν ∈ RVars | (ν(v1), . . . , ν(vd)) ∈ X }.

Observe that according to Definition 7.1, ⊥ is the unique abstract element whose con-
cretization is empty. The operator γMaxPoly will be simply denoted by γ when it is clear from
context.

7.1.1.b Full representations. In the following sections, we are going to define the abstract
primitives which manipulate the elements of the abstract domain MaxPoly, and are sound
approximations of their concrete counterparts.

Most of these primitives return only one of the components of the double representation.
For this reason, we introduce two functions allowing to obtain a full representation from one
of the components. They are naturally based on the algorithms which have been defined in
Chapter 5, and on the properties on homogenization (Corollary 2.10).

Recall that ι refers to the one-to-one correspondence allowing to pass from the scaled min-
imal generating representation of a tropical polyhedron to the scaled set of extreme elements
of its homogenized cone (defined in Corollary 2.10).

The function ofCons builds a full representation from a constraint component. It is defined
on quadruples (A, c, B,d) satisfying the requirement (iv):

ofCons(A, c, B,d)
def
=

{
((P,R), (A, c, B,d)) if (P,R) satisfies Condition (iii) of Def. 7.1,

⊥ otherwise,

where (P,R) = ι−1
(
ComputeExtRays

((
A c

)
,
(
B d

)
, p
))

, and p is the number of con-
straints in the constraint component.3 Observe that ⊥ is returned if (P,R) does not satisfy
Condition (iii) of Definition 7.1, which characterizes the emptyness of the intersection of the
represented tropical polyhedron with Rd. Corollary 2.10 and Theorem 5.2 ensure that the
returned element indeed belongs to MaxPoly. Using the complexity bound of Corollary 5.17,
we know that the worst-case complexity of ofCons is bounded by:

{
O(p2dα(d + 1)(p + d + 1)d−1) if d is odd,

O(p2dα(d + 1)(p + d + 1)d) if d is even.

Inversely, starting from a generating component (P,R) verifying (ii), the function ofGen

is defined by:

ofGen(P,R)
def
=

{
((P,R), (A, c, B,d)) if (P,R) satisfies Condition (iii) of Definition 7.1,

⊥ otherwise,

3i.e. A, B ∈ Rp×d
max, c, d ∈ Rp

max.
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where
t(

A c B d
)

= ComputeExtRaysPolar(ι(P,R), q), and q = |P | + |R|.4 Using
Corollary 5.17, the worst-case complexity of ofGen is bounded by:

{
O(pd2(p + d + 1)d) if d is odd,

O(pd2(p + d + 1)d+1) if d is even.

In practice, we will see in Section 7.4 that full representations are computed lazily so
as to optimize the performance of the whole static analysis. Therefore, we have chosen to
not include the cost of ofCons or ofGen in the presentation of the complexity results on the
abstract primitives defined in the following sections.

7.1.1.c Disjunctions of zones. Each max-invariant expresses a disjunction of zone invari-
ants over the variables vi. Indeed,

max(α0,max(α1 + v1, . . . , αd + vd)) ≤ max(β0, max(β1 + v1, . . . , βd + vd))

⇐⇒
∨

1≤i≤d
βi 6=−∞

[( ∧

1≤j≤d

αj − βi ≤ vi − vj

)
∧ (α0 − βi ≤ vi)

]

∨

[
∧

1≤i≤d
αi 6=−∞

vi ≤ β0 − αi

]
(this term appears only when α0 ≤ β0)

As conjunctions of max-invariants, the invariants represented by the abstract elements of
MaxPoly can also been expressed as disjunctions of zone invariants.

Note that this disjunctive point of view is reminiscent of the approach of Develin and
Sturmfels in [DS04, Theorem 15], in which tropical polytopes are expressed as unions of a
finite number of bounded cells. The latter are precisely defined by zone invariants. They can
be enumerated thanks to combinatorial considerations on the generating sets of the polytopes.

7.1.1.d No best possible abstraction. In general, there is no best possible abstraction of

a given X ⊂ RVars in the abstract domain MaxPoly. Consider for instance the set

X =

{
ν ∈ RVars

∣∣∣
ν(vi) ≥ 0 for all i,

(ν(v1))
2 + . . . + (ν(vd))

2 ≥ 1

}
.

It contains the environments ν such that ν(v1, . . . ,vd) is in the complement of the open d-
sphere in (R+)d. The case d = 2 is illustrated in Figure 7.1 (left side, with a radius equal to
4 instead of 1), with two incomparable abstract elements of MaxPoly (middle and right side).

7.1.2 Abstract preorder

In this section, we define a preorder ⊑ on the domain MaxPoly, which over-approximates the
partial order ⊂ over the powerset ℘(RVars

max).
First of all, we define {

⊥ ⊑ X for all X ∈ MaxPoly,

X ⊑ ⊥ if and only if X = ⊥.

4The integer q is also equal to the cardinality of ι(P, R).
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v1

v2

v1

v2

v1

v2

Figure 7.1: A set which has no best possible abstraction in MaxPoly

Now, if the two operands of ⊑ are provided by double representations, the abstract order
is defined using the generator component of the first operand, and equivalently one of the
components of the second operand: given X = ((P,R), ·) and X ′ = ((P ′, R′), (A′, c′, B′, d′))
in MaxPoly,

P ⊑ P ′ def
⇐⇒ g =

⊕

g′∈ι(P ′,R′)

(g′\g)g′ for all g ∈ ι(P,R), (7.2)

or, equivalently, def
⇐⇒

{
A′p⊕ c′ ≤ B′p⊕ d′ for all p ∈ P,

A′r ≤ B′r for all r ∈ R.
(7.3)

These definitions can be shown to be equivalent because of the following lemma:

Lemma 7.1. The two definitions (7.2) and (7.3) are both equivalent to the inclusion of X
into X ′.

Proof. Let P = X and P ′ = X ′. We first claim that P ⊂ P ′ if and only if P̂ ⊂ P̂ ′. Indeed, if
P ⊂ P ′, then

{ (αx, α) | x ∈ P, α ∈ Rmax } ⊂ { (αx, α) | x ∈ P ′, α ∈ Rmax }

so by applying cl on both sides,

P̂ ⊂ P̂ ′

Conversely, if P̂ ⊂ P̂ ′, then using Proposition 2.1, we have P = {x | (x,✶) ∈ P̂ } ⊂ {x |

(x,✶) ∈ P̂ ′ } = P ′.
On top of that, G = ι(P,R) and G′ = ι(P ′, R′) form a generating set of the cones P̂ and

P̂ ′ respectively, so that P̂ ⊂ P̂ ′ is equivalent to the fact that g ∈ cone(G′) for all g ∈ G.
Using Lemma 5.7, this happens if and only if g =

⊕
g′∈ι(P ′,R′)(g

′\g)g′. This shows that the

first definition is equivalent to the fact that P ⊂ P ′.
Now, P ⊂ P ′ if and only if p ∈ P ′ for all p ∈ P and r ∈ rec(P ′) for all r ∈ R. Using

Proposition 2.4, this happens if and only if the inequalities of the second definition holds.

As a consequence, the relation ⊑ can be shown to be sound and exact:

Proposition 7.2. Let X ,X ′ ∈ MaxPoly. Then γ(X ) ⊂ γ(X ′) if and only if X ⊑ X ′.
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Proof. When X ,X ′ 6= ⊥, the equivalence is obtained by applying Lemma 7.1. When X or X ′

is equal to ⊥, this is straightforward.

Proposition 7.3. Let X ,X ′ ∈ MaxPoly \ {⊥}.

Suppose that X = ((P,R), ·) and X ′ = ((P ′, R′), (A′, c′, B′,d′)), with p = |P ′| + |R′| and

A′, B′ ∈ R
q×d
max, c′,d′ ∈ R

q
max.

Then the complexity of the evaluation of X ⊑ X ′ is O(dp(|P |+ |R|)) if the definition (7.2)
of ⊑ is used, and O(dq(|P |+ |R|)) if (7.3) is used.

Remark 7.1. Observe that ⊑ is not a partial order over MaxPoly. Indeed, because of the non-
canonicity of the constraint component of the abstract elements, we may have P ⊑ P ′ ⊑ P
while P and P ′ are distinct.

Note that the canonicity of the constraint component could be enforced by requiring that

the constraints correspond to the scaled extreme elements of the polar cone of X̂ . However,
it could introduce additional redundant inequalities, such as tautologies (see Remark 5.5) in
the system.

We can also define least and greatest elements of the abstract domain MaxPoly. The least
element is naturally equal to ⊥, while we define ⊤ by:

⊤
def
= (({✵✵✵}, { ǫ1, . . . , ǫd }), ∅)

where, here, ∅ represents the empty system of inequalities.5 Then we have:

γ(⊥) = ∅, γ(⊤) = RVars
max.

7.1.3 Abstract union operator

The abstract union operator ⊔ over-approximates the union operator ∪ on ℘(RVars). It is
defined by means of the generator components of its two operands, and yields a result under
the same form. Given X ,X ′ ∈ MaxPoly, it is defined by:

X ⊔ X ′ def
=






X if P ′ = ⊥,

X ′ if P = ⊥,

ofGen(MinimizePoly(P ∪ P ′, R ∪R′)) if X = ((P,R), ·),X ′ = ((P ′, R′), ·).

(7.4)
The function MinimizePoly eliminates redundant elements in the generating representation
(P,R) given as input (Figure 7.2). It relies on an analogue function, Minimize (Figure 7.3),
defined on generating sets of tropical cones. The correctness of the two functions is ensured
by Proposition 5.6, Lemma 5.7, and Corollary 2.10. In particular, for any G ⊂ Rd

max, the
following relation holds:

cone(G) = cone(Minimize(G)),

since the set Minimize(G) consists of exactly one representative of each extreme ray of
cone(G). As a consequence, we also have:

co(P )⊕ cone(R) = co(Q)⊕ cone(S) where (Q, S) = MinimizePoly(P,R),
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1: procedure MinimizePoly(P, R)
2: ι−1(Minimize(ι(G)))
3: end

Figure 7.2: Eliminating redundant ele-
ments in a generating representation of a
tropical polyhedron

1: procedure Minimize(G)
2: H := ∅
3: for all g ∈ G do

4: if g 6=
L

h∈H(h\g)h then

5: append g to H

6: end

7: done

8: return H

9: end

Figure 7.3: Eliminating redundant ele-
ments in a generating set of a tropical
polyhedral cone

thanks to Corollary 2.10. The time complexity of a call to Minimize(G) is O(d|G|2). Note
that the linear independence criterion provided by Lemma 5.8 can be used as well, with the
same worst-case time complexity.

The operator ⊔ is sound, and is even the most precise abstract union operator:

Proposition 7.4. Let X ,X ′ ∈ MaxPoly. Then the following properties holds:

❼ γ(X ) ∪ γ(X ′) ⊂ γ(X ⊔ X ′).

❼ for every Y ∈ MaxPoly such that γ(X ) ∪ γ(X ′) ⊂ γ(Y), we have γ(X ⊔ X ′) ⊂ γ(Y).

Proof. First consider two non-empty tropical polyhedra P = co(P ) ⊕ cone(R) and P ′ =
co(P ′) ⊕ cone(R′), and let us define Q = co(P ∪ P ′) ⊕ cone(R ∪ R′). We claim that Q =
cl(co(P ∪ P ′)).

Indeed, we have co(P ) ⊂ co(P ∪ P ′) and cone(R) ⊂ cone(R ∪ R′), so that P = co(P ) ⊕
cone(R) ⊂ Q. Similarly, P ′ ⊂ Q. As a consequence, P ∪ P ′ ⊂ Q, and it follows that any
affine combination of the elements of P ∪ P ′ also belongs to Q. Therefore, co(P ∪ P ′) ⊂ Q.
Since Q is closed (Lemma 2.5), this implies that cl(co(P ∪ P ′)) ⊂ Q.

Conversely, let x ∈ Q. Supposing P = (pi), R = (ri), P ′ = (p′
i), and R′ = (r′

i), there
exists (αi)i, (βj)j , (λi)i, (µj)j such that

⊕
i αi ⊕

⊕
j βj = ✶, and:

x =
⊕

i

αipi ⊕
⊕

i

λiri ⊕
⊕

j

βjp
′
j ⊕

⊕

j

µjr
′
j .

Let κ =
⊕

i αi and κ′ =
⊕

j βj . Suppose without loss of generality that κ = ✶. We distinguish
two cases:

❼ first suppose that κ = ✶ and κ′ > ✵. Then

x = κy ⊕ κ′z

with y =
⊕

i αipi ⊕
⊕

i λiri, and z =
⊕

j κ−1βjp
′
j

⊕⊕
j µjr

′
j . Since

⊕
i αi = κ = ✶

and
⊕

j κ−1βj = ✶, then y ∈ P and z ∈ P ′. Besides, κ⊕κ′ = ✶, so that x ∈ co(P ∪P ′).

5Recall that the (ǫi)i are the d elements of the canonical basis of Rd
max.
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v1

v2

v1

v2

Figure 7.4: Abstract union of two elements of MaxPoly

❼ now suppose κ = ✶ and κ′ = ✵. Let xn (n ≥ 0) be defined by:

xn =
⊕

i

αipi ⊕
⊕

i

λiri ⊕
⊕

j

(−n)p′
j ⊕

⊕

j

µjr
′
j .

Since
⊕

i αi ⊕
⊕

j(−n) =
⊕

i αi = ✶, we have xn ∈ Q. Besides,
⊕

j(−n) = −n > ✵,
so that using the previous case, we have xn ∈ co(P ∪ P ′). As a consequence, x =
limn→+∞ xn ∈ cl(co(P ∪ P ′)).

Now, consider X ,X ′ ∈ MaxPoly. If X or X ′ is equal to ⊥, then clearly the statement
holds.

Otherwise, using (7.1.3) and the previous identity, supposing X = ((P,R), ·) and X =
((P ′, R′), ·), we have cl(co(X ∪ X ′)) = co(P ∪ P ′) ⊕ cone(R ∪ R′) = X ⊔ X ′. Then X ,X ′ ⊂
X ⊔ X ′, thus γ(X ), γ(X ′) ⊂ γ(X ⊔X ′). Besides, if Y ∈ MaxPoly satisfies γ(X ), γ(X ′) ⊂ γ(Y),
then X ⊔ X ′ = cl(co(X ∪ X ′)) ⊂ Y, so that γ(X ⊔ X ′) ⊂ γ(Y).

Example 7.2. Figure 7.4 provides an illustration of the abstract union of two abstract elements,
whose corresponding tropical polyhedra are depicted in green and red with their extreme
elements (left side). The resulting abstract element is represented in the right side. The
associated tropical polyhedron is indeed the least polyhedron which contains the two initial
polyhedra. Note that only the points depicted in blue are extreme, while the red and green
ones are eliminated by the call to MinimizePoly.

Proposition 7.5. Let X = ((P,R), ·),X ′ = ((P ′, R′), ·) ∈ MaxPoly. Then X ⊔ X ′ can be
computed in time O(d× (|P |+ |P ′|+ |R|+ |R′|)2).

Remark 7.3. The function MinimizePoly can be optimized, by observing that an element
of ι(P,R) of the form (r,✵) where r ∈ R, cannot be expressed as a tropical combination
involving elements (p,✶) with p ∈ P . Indeed, the (d + 1)-th entries of the latter are non-
null, while the (d + 1)-th entry of the former is null. Consequently, MinimizePoly could be
implemented as follows:
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1: procedure MinimizePoly((P,R))
2: Q := ∅, S := ∅
3: for all r ∈ R do

4: if r 6=
⊕

s∈S(s\r)s then

5: append r to S
6: end

7: done

8: for all p ∈ P do

9: if (p,✶) 6=
⊕

q∈Q((q,✶)\(p,✶))(q,✶)⊕
⊕

s∈S((s,✵)\(p,✶))(s,✵) then

10: append p to Q
11: end

12: done

13: return (Q, S)
14: end

The resulting time complexity is O(d|R|(|P |+ |R|)), instead of O(d(|P |+ |R|)2).

7.1.4 Abstract intersection primitives

7.1.4.a Intersection operator. The abstract intersection operator ⊓ over-approximates the

intersection ∩ on ℘(RVars). It is defined dually to the abstract union. It uses the constraints
forms of its operands, concatenates them, and eliminates the inequalities which can be ex-
pressed as tropical linear combinations of the others:

X ⊓ X ′ def
=

{
⊥ if X = ⊥ or X ′ = ⊥,

ofCons(A′′, c′′, B′′,d′′) if X = (·, (A, c, B,d)),X ′ = (·, (A′, c′, B′,d′)),
(7.5)

where the constraint component (A′′, c′′, B′′,d′′) is given by:

t(
A′′ c′′ B′′ d′′

)
= Minimize

(
t(

A c B d

A′ c′ B′ d′

))
.

(We assimilate matrices to the set formed by their columns, and inversely.) The call to
the function Minimize allows to eliminate constraints of the concatenated system which are
combinations of the others.

This intersection operator is both sound and exact:

Proposition 7.6. Let X ,X ′ ∈ MaxPoly. Then we have:

γ(X ) ∩ γ(X ′) = γ(X ⊓ X ′).

Proof. The statement obviously holds if X or X ′ is equal to ⊥.
Otherwise, we have:

ν ∈ γ(X ) ∩ γ(X ′)

⇐⇒

{
A(ν(v1), . . . , ν(vd))⊕ c ≤ B(ν(v1), . . . , ν(vd))⊕ d

A′(ν(v1), . . . , ν(vd))⊕ c′ ≤ B′(ν(v1), . . . , ν(vd))⊕ d′

⇐⇒ A′′(ν(v1), . . . , ν(vd))⊕ c′′ ≤ B′′(ν(v1), . . . , ν(vd))⊕ d′′ using (7.1.3)

⇐⇒ ν ∈ γ(X ⊓ X ′).
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Proposition 7.7. Let X = (·, (A, c, B,d)),X ′ = (·, (A′, c′, B′,d′)) ∈ MaxPoly. Suppose that
the systems Ax ⊕ c ≤ Bx ⊕ d and A′x ⊕ c′ ≤ B′x ⊕ d′ are respectively formed by p and q
inequalities.

Then X ⊓ X ′ can be computed in time O(d(p + q)2).

7.1.4.b Tropically affine conditions. A tropically affine condition refers to a system of
tropical affine inequalities over the elements of Vars, i.e. of the form A(v1, . . . ,vd) ⊕ c ≤

B(v1, . . . ,vd)⊕ d where A, B ∈ R
p×d
max and c,d ∈ R

p
max. We now define an abstract primitive

which over-approximates the effect of a condition on an abstract element (see Section 6.3.2.c).

Using the constraint form. A first abstract primitive can be defined by means of the constraint
component of the abstract element:

LA(v1, . . . ,vd)⊕ c ≤ B(v1, . . . ,vd)⊕ dM(X )
def
= X ⊓ ofCons(A′, c′, B′,d′).

where A′, B′ ∈ R
q×d
max and c′, d′ ∈ R

p
max are defined by:

t(
A′ c′ B′ d′

)
= Minimize

(
t(

A c B d
))

.

Proposition 7.6 allows to show that this abstract primitive is both sound and exact:

Proposition 7.8. Let X ∈ MaxPoly, A, B ∈ R
p×d
max and c,d ∈ R

p
max. Then we have:

{v ∈ γ(X ) | A(ν(v1), . . . , ν(vd))⊕ c ≤ B(ν(v1), . . . , ν(vd))⊕ d } =

γ(LA(v1, . . . ,vd)⊕ c ≤ B(v1, . . . ,vd)⊕ dM(X )).

Using the generator form. Alternatively, the abstract primitive can be defined so as to use
the generator component. Suppose that X = ((P,R), ·), and let P = (pi), R = (rj), p = |P |,
and r = |R|. Then x ∈ X satisfies the constraints Ax⊕ c ≤ Bx⊕ d if and only if there exist
λ = (λi) ∈ R

p
max and µ = (µi) ∈ Rr

max such that:






x =

p⊕

i=1

λip
i ⊕

r⊕

j=1

µjr
j

p⊕

i=1

λi = ✶

Ax⊕ c ≤ Bx⊕ d

It can be seen as a system of tropical linear inequalities over the unknown (λ, µ,x). The
homogenized system can be solved using the algorithm ComputeExtRays, which yields a
minimal generating set G ⊂ R

p+r+d+1
max . Let H ⊂ Rd+1

max be the system obtained by projecting
each element of G on its (d+1) last coordinates, and let (Q, S) = ι−1(G). We can now define:

{v ∈ γ(X ) | A(ν(v1), . . . , ν(vd))⊕ c ≤ B(ν(v1), . . . , ν(vd))⊕ d }(X )
def
=

{
ofGen(MinimizePoly(Q, S)) if (Q, S) satisfies Condition (iii) of Definition 7.1,

⊥ otherwise.

It can be shown that Proposition 7.8 still holds with this definition.
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v1

v2

p

q

r

v1

v2

f(p)

f(q)

g(r)

Figure 7.5: Illustration of the assignment v2 ← max(v1,v2, 1)

7.1.5 Abstract assignment operators

7.1.5.a Tropically affine assignments. A tropically affine assignment is an assignment of

the form vk ← λ0 ⊕
⊕d

l=1 λlvl for some λ0, λ1, . . . , λd ∈ Rmax (where the λi are not all equal
to ✵).

Intuitively, the effect of such an assignment can be seen as the application of a tropical
affine map on the tropical polyhedra. The corresponding abstract primitive Lvk ← λ0 ⊕⊕d

l=1 λlvlM takes as input and returns generators components, and is defined as follows:

Lvk ← λ0 ⊕
d⊕

l=1

λlvlM(X )
def
=

{
⊥ if X = ⊥,

ofGen(MinimizePoly(f(P ), (σ ◦ g)(R))) if X = ((P,R), ·)

where f, g : Rd
max → Rd

max are given by:

[f(x)]i =

{
xi if i 6= k,

λ0 ⊕
⊕d

l=1 λlxl if i = k,
[g(x)]i =

{
xi if i 6= k,
⊕d

l=1 λlxl if i = k.

The function g can be seen as a linear version of the function f . The functions f and g are
respectively affine and linear maps, which represent the side-effect of the assignment on the
points and rays of the tropical polyhedron. The function σ is then applied to provide scaled
representative of rays.6 Finally, the call to function MinimizePoly ensures that the resulting
generator component is under minimal form.

Example 7.4. Consider the abstract element represented by the tropical polyhedron given in
the left side of Figure 7.5. Its generator component is formed by the vertices p = (0,−∞)
and q = (2, 0), and by the ray r = (−∞, 0).

Its image by the abstract assignment operation Lv2 ← max(v1, v2, 1)M is depicted in the
right side. Its generator component consists of the vertices f(p) = (0, 1), f(q) = (2, 2), and
the ray g(r) = r = (−∞, 0).

6Recall that σ has been introduced in Section 2.2.5.
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This abstract operator can be shown to be sound and exact:

Proposition 7.9. Let X ∈ MaxPoly. Then we have:

{
ν[vk 7→ λ0 ⊕

d⊕

l=1

λlν(vl)] | ν ∈ γ(X )

}
= γ(Lvk ← λ0 ⊕

d⊕

l=1

λlvlM(X )).

Proof. The property is straightforward when X = ⊥.

Otherwise, let (P ′, R′) = MinimizePoly(f(P ), (σ ◦ g)(R)) as above. Using (7.1.3), we
have:

co(P ′)⊕ cone(R′) = co(f(P ))⊕ cone((σ ◦ g)(R)) = co(f(P ))⊕ cone(g(R)).

Let us define Y = Lvk ← λ0 ⊕
⊕d

l=1 λjvlM(X ).

Let ν ∈ γ(X ), and ν ′ = ν[vk 7→ λ0 ⊕
⊕d

l=1 λjν(vl)]. There exists (αi)i, (βj)j such that:

(ν(v1), . . . , ν(vd)) =
⊕

i

αip
i ⊕
⊕

j

βjr
j ,

with
⊕

i αi = ✶. As a consequence,

ν ′(vk) = λ0 ⊕
d⊕

l=1

λl(
⊕

i

αip
i
l ⊕
⊕

j

βjr
j
l )

= λ0 ⊕
⊕

i,l

(αiλl)p
i
l ⊕
⊕

j,l

(βjλl)r
j
l

=
⊕

i

αi(λ0 ⊕
⊕

l

λlp
i
l)⊕

⊕

j

βj(
⊕

l

λlr
j
l ) since

⊕

i

λ0αi = λ0

=
⊕

i

αi(f(pi))k ⊕
⊕

j

βj(g(rj))k

and trivially, ν ′(vl) =
⊕

i αi(f(pi))l ⊕
⊕

j βj(g(rj))l for l 6= k. Thus, (ν ′(v1), . . . , ν
′(vd)) ∈

co(f(P ))⊕ cone(g(R)), so that ν ′ ∈ γ(Y).

Conversely, supposing that ν ′ ∈ γ(Y), we have:

(ν(v1), . . . , ν(vd)) =
⊕

i

αif(pi)⊕
⊕

j

βjg(rj)

for some (αi)i, (βj)j such that
⊕

i αi = ✶. Let us introduce ν ∈ γ(X ) defined by:

(ν(v1), . . . , ν(vd))
def
=
⊕

i

αip
i ⊕
⊕

j

βjr
j .

Using the same sequence of identities, we can prove that ν ′ = ν[vk 7→ λ0 ⊕
⊕d

l=1 λjν(vl)],
which terminates the proof.
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Parallel tropically affine assignments. We can extend this method to parallel tropically affine
assignments, which are assignments vk ← λk

0 ⊕
⊕d

l=1 λk
l vl on different coordinates k ∈ K,

where K ⊂ [d]. We define:

Lvk ← λk
0 ⊕

d⊕

l=1

λk
l vl for each k ∈ KM(X )

def
=

{
⊥ if X = ⊥

ofGen(MinimizePoly(f ′(P ), (σ ◦ g′)(R))) if X = ((P,R), ·)

where f ′, g′ : Rd
max → Rd

max are given by:

[f ′(x)]i =

{
xi if i 6∈ K,

λi
0 ⊕

⊕d
l=1 λi

lxl if i ∈ K,
[g′(x)]i =

{
xi if i 6∈ K,
⊕d

l=1 λi
lxl if i ∈ K.

The soundness and exactness of the abstract primitives still holds:

Proposition 7.10. Let X ∈ MaxPoly. Then we have:

{
ν[vk 7→ λk

0 ⊕
d⊕

l=1

λk
l ν(vl)]k∈K | ν ∈ γ(X )

}

= γ(Lvk ← λk
0 ⊕

d⊕

l=1

λk
l vl for each k ∈ KM(X )).

Proposition 7.11. Let X = ((P,R), ·) ∈ MaxPoly.
The time complexity of the assignments Lvk ← λ0 ⊕

⊕d
l=1 λlvlM(X ) and Lvk ← λk

0 ⊕⊕d
l=1 λk

l vl for each k ∈ KM(X ) is O(d(|P | + |R|)2) and O(d(|P | + |R|)(|K| + |P | + |R|))
respectively.

7.1.5.b Non-deterministic assignments. Similarly, the abstract primitive Lvj ← ? M also
relies on the generator component of the abstract elements:

Lvk ← ? M(X )
def
=

{
⊥ if X = ⊥

ofGen(MinimizePoly(h(P ), (σ ◦ h)(R) ∪ { ǫk })) if X = ((P,R), ·)

where ǫk is the k-th element of the canonical basis in Rd
max, and h : Rd

max → Rd
max is given by:

[h(x)]i =

{
xi if i 6= k,

✵ otherwise.

Intuitively, the function h deletes the information relative to the variable vk in every generator
of (P,R). Then the ray ǫk is added so as the variable vk takes arbitrary values.

Example 7.5. The principle of the non-deterministic assignment abstract operator Lv2 ← ? M
is illustrated in Figure 7.6.

Consider the abstract element whose generator component consists of the vertices p1 =
(0,−∞), p2 = (2, 2), p3 = (2, 3.5), and p4 = (0, 3.5) (left side). The operator Lv2 ← ? M
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v1

v2

p1

p2

p3p4

v1

v2

h(p1) = h(p4) h(p2) = h(p3)

ǫ2

Figure 7.6: Illustration of the non-deterministic assignment v2 ← ?

annihilates the coordinate corresponding to v2 in the vertices, so that p1 and p4 are mapped
to p1, and p2 and p3 to (2,−∞).

The resulting abstract element is thus generated by the vertices p1 and (2,−∞), and by
the ray ǫ2 (right side).

This operator is both sound and exact:

Proposition 7.12. Let X ∈ MaxPoly. Then we have:

{ ν[vk 7→ x] | ν ∈ γ(X ), x ∈ R } = γ(Lvk ← ? M(X )).

Proof. The case X = ⊥ is trivial. Now suppose that X = ((P,R), ·). Let Y = Lvk ← ? LX )
and (P ′, R′) = MinimizePoly(h(P ), (σ ◦ h)(R) ∪ { ǫk })). By (7.1.3), we have:

co(P ′)⊕ cone(R′) = co(h(P ))⊕ cone(h(R) ∪ { ǫk }).

Consider ν ′ = ν[vk 7→ x] with ν ∈ γ(X ) and x ∈ R. Then for some (αi), (βj) such that⊕
i αi = ✶,

(ν(v1), . . . , ν(vd)) =
⊕

i

αip
i ⊕
⊕

j

βjr
j

so that:

(ν ′(v1), . . . , ν
′(vd)) = h(ν(v1), . . . , ν(vd))⊕ (xǫj)

=
⊕

i

αih(pi)⊕
⊕

j

βjh(rj)⊕ (xǫk),

which proves that (ν ′(v1), . . . , ν
′(vd)) belongs to γ(Y).

Conversely, consider ν ′ ∈ γ(Y). Let (αi), (βj) such that
⊕

i αi = ✶ and

(ν ′(v1), . . . , ν
′(vd)) =

⊕

i

αih(pi)⊕
⊕

j

βjh(rj)⊕ ν ′(vk)ǫ
k,
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since the k-th coordinate of the h(pi) and h(rj) is equal to ✵. Now let us define ν ∈ γ(X ) by:

(ν(v1), . . . , ν(vd)) =
⊕

i

αip
i ⊕
⊕

j

βjr
j .

Then ν ′ = ν[vj 7→ x] with x = ν ′(vj), which completes the proof.

Proposition 7.13. Let X = ((P,R), ·) ∈ MaxPoly. The time complexity of the assignment
Lvk ← ? M(X ) is O(d× (|P |+ |R|)2).

7.1.6 Widening operators

As soon as d ≥ 2, infinite ascending chains of tropical polyhedra of Rd
max can be built.7 As a

result, widening operators are defined to enforce convergence.
In this section, we define two possible widenings. The first (Section 7.1.6.a) is defined

in the same vein as the widening operator on classical convex polyhedra. The second one
(Section 7.1.6.b) is radically new. It is based on a projection operator on tropical cones, and
only needs the generator components of the operands.

7.1.6.a “Standard” widening based on stable constraints. We first introduce a widening
operator which is analogue to the widening initially defined on classical convex polyhedra
in [CH78]: given X ,X ′ ∈ MaxPoly,

X ∇X ′ def
=






X ′ if X = ⊥

X if X ′ = ⊥

ofCons(A′′, c′′, B′′,d′′) if X = (·, (A, c, B,d)) and X = ((P ′, R′), ·)

where the system of constraints A′′x⊕ c′′ ≤ B′′x⊕d′′ is formed by the inequalities ax⊕ c ≤
bx ⊕ d of the system Ax ⊕ c ≤ Bx ⊕ d which are satisfied for any element of the tropical
polyhedron X ′, i.e. {

ap′ ⊕ c ≤ bp′ ⊕ d for all p′ ∈ P ′,

ar′ ≤ br′ for all r′ ∈ R′.

Such constraints are said to be stable. The principle of the operator ∇ is therefore to keep
only the constraints of the abstract element X which are stable in X ′.

The following proposition ensures that ∇ is indeed a widening operator:

Proposition 7.14. The following statements hold:

(i) for all X ,X ′ ∈ MaxPoly, X ⊔ X ′ ⊑ X ∇X ′,

(ii) for any increasing sequence of elements X0 ⊑ . . . ⊑ Xn ⊑ . . . , the sequence defined by




Y0

def
= X0

Yn+1
def
= Yn∇Xn+1

eventually stabilizes.

7For instance, consider the sequence formed by the tropical analogue of cyclic polytopes defined in Re-
mark 2.8, for n = 1, 2, . . . .
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Proof. The first statement is obvious.

Now consider two sequences (Xn)n and (Yn) as in (ii). Up to extracting a subsequence,
let us suppose that X0 6= ⊥ (unless Xn = ⊥ for all n, in which case it is obvious that (Yn)n

converges in a finite number of steps). In that case, Xn 6= ⊥ for all n, and subsequently,
Yn 6= ⊥ for all n. The convergence of the sequence of the (Yn)n is ensured by the fact the
number of constraints in the system defining each Yn is strictly decreasing.

Nevertheless, this widening operator depends on the choice on the system of constraints
of the second operand, while, as discussed in Remark 7.1, there is no canonical form for
the constraint component of abstract elements of MaxPoly. As a consequence, X ∇X ′ and
X ∇X ′′ may be different while X ′ and X ′′ are equivalent (i.e. X ′ ⊑ X ′′ and X ′′ ⊑ X ′). In
the classical case, this difficulty has been overcomed in [Hal79] by adding to the resulting
system of constraints A′′x ⊕ c′′ ≤ B′′x ⊕ d′′ the constraints of A′x ⊕ c′ ≤ B′x ⊕ d′ which
are mutually redundant with some constraints of X . Such constraints can be identified using
combinatorial properties (see [BHRZ03, Proposition 1]). Unfortunately, these properties do
not have yet any tropical analogues, so that this method cannot be used in our setting.

Proposition 7.15. Let X = (·, (A, c, B,d)) and X = ((P ′, R′), ·) be two abstract elements of

MaxPoly (with A, B ∈ R
p×d
max and c,d ∈ R

p
max). The time complexity of X ∇X ′ is O(dp(|P ′|+

|R′|)).

7.1.6.b Widening on generator components. We now define a widening which only uses
the generator components of the abstract elements. Since the generator components of the
elements of MaxPoly are canonical representations, the problem previously discussed on the
standard widening is avoided.

We first define a widening operator on tropical cones. We will then derive a similar
primitive on abstract elements of MaxPoly using homogenization.

Widening on cones. This widening ∇cone is based on a projection operator on tropical poly-
hedral cones. Given a tropical polyhedral cone C = cone(G) ⊂ Rd

max, we define:

ΠC(x)
def
=
⊕

g∈G

(g\x)g.

This operator appeared for instance in [CGQ04, DS04]. As a consequence of Lemma 5.7, it
satisfies the following requirements: (i) ΠC(x) ∈ C for all x ∈ Rd

max, (ii) ΠC ◦ΠC = ΠC , and
(iii) ΠC(x) = x if and only if x ∈ C. On top of that, we have ΠC(x) ≤ x for all x ∈ Rd

max.
More precisely, ΠC(x) can be shown to be the greatest element of C which is less than or
equal to x. In particular, it is independent of the choice of the generating set G.

Definition 7.2. Let C, C′ ⊂ Rd
max be two tropical polyhedral cones. Let G, G′ be respectively

the set of their scaled extreme elements.

Then C ∇cone C
′ is defined as the tropical cone generated by the set G ∪ H, where H is

given by:

H =

{
h

∣∣∣∣ g
′ ∈ G′ and for all i ∈ [d],hi =

{
g′

i if (ΠC(g
′))i < g′

i

✵ otherwise

}
.
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x y

z

✶✶✶
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{ y, z }{x, z }
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z
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{x, y }

{x }

{ z }

{ y }

{x, z }

Figure 7.7: Widening tropical polyhedral cones

Intuitively, H is formed by elements h which allows to reach each g′ ∈ G′ from its
projection ΠC(g

′) on C. Indeed, it can be shown that the equality g′ = ΠC(g
′)⊕ h holds.

Example 7.6. Consider the cone C reduced to the element ✶✶✶ (left side of Figure 7.7), and the
cone C′ generated by the elements ✶✶✶ and g = (−2, 0,−1) (right side).

It can be easily verified that ΠC(g) = (−2,−2,−2) (it represents the same ray as ✶✶✶). This
is why the element h = (✵, 0,−1) is introduced in D = C ∇cone C

′ (see right side of Figure 7.7).

This operator can be shown to be a widening operator on the tropical cones:

Proposition 7.16. The operator ∇cone satisfies the following properties:

(i) for any tropical polyhedral cones C and C′, C ∪ C′ ⊂ C ∇cone C
′.

(ii) given a sequence of tropical polyhedral cones C0 ⊂ · · · ⊂ Cn ⊂ . . . , the increasing sequence
defined by: 




D0

def
= C0

Di+1
def
= Di∇cone Ci+1

, (7.6)

eventually stabilizes.

The proof of (ii) relies on a combinatorial argument based on a partitioning of the space
Rd

max induced by the projector ΠC . Given C a tropical polyhedral cone, we define, for I ⊂ [d]:

SC(I)
def
= {x ∈ Rd

max | (ΠC(x))i < xi iff i ∈ I},

Let sectors(C) be the set of the I ⊂ [d] such that SC(I) 6= ∅. The sets SC(I) for I ∈ sectors(C)
indeed form a partition of Rd

max. In particular, the cone C coincides with SC([d]).

Example 7.7 (Continuing Example 7.6). If C is reduced to the element ✶✶✶, the set Rd
max \ C

is split into three sectors RC({x, y }), RC({ y, z }), and RC({x, z }) (see Figure 7.7, left-hand
side).
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Given a set S ⊂ ℘([d]), we define by maxS the antichain formed by the maximal elements
of S, i.e.:

max S
def
= { I ∈ S | ∀J ∈ S, I ⊂ J =⇒ I = J }.

Let Antichain be the set formed by the antichains of elements of ℘([d]). Recall that Antichain
can be partially ordered by the following relation:

S1 � S2
def
⇐⇒ for all I1 ∈ S1, there exists I2 ∈ S2 s.t. I1 ⊂ I2.

Also note that since Antichain is finite, the partial order � is well-founded.

Lemma 7.17. Let C,D be two tropical polyhedral cones such that C ⊂ D. Then we have:

max sectors(D) � max sectors(C).

Proof. Let J ∈ max sectors(D), and x ∈ SD(J). For any j ∈ J ,

(ΠD(x))j < xj .

It can be shown that ΠC(x) ≤ ΠD(x) since C ⊂ D. Thus for every j ∈ J ,

(ΠC(x))j < xj .

Let I ′ ∈ sectors(C) such that x ∈ SC(I
′). Then J ⊂ I ′. Thus there exists I ∈ max sectors(C)

such that J ⊂ I. It follows that max sectors(D) � max sectors(C).

It follows that if (Cn) and (Dn) are two sequences as defined in Proposition 7.16 (ii), then
the sequence of the max sectors(Dn) is decreasing for the order �.

Example 7.8 (Continuing Example 7.6). Consider the cone D generated by the elements ✶✶✶
and h, depicted in the right hand side of Figure 7.7. We have

max sectors(D) = {{x, y }, {x, z }, { y }, { z }} ,

which is indeed less than:

max sectors(C) = {{x, y }, {x, z }, { y, z }} .

We are now going to show that when the sequence of the Dn is strictly increasing at index
n, then max sectors(Dn) 6= max sectors(Dn+1), so that the sequence max sectors(Dn) is also
strictly decreasing at this index.

Lemma 7.18. Let C, C′ be two tropical polyhedral cones, and D = C ∇cone C
′. If C 6= D, then

we have:
max sectors(C) 6= max sectors(D).

Proof. Let G and G′ be respectively the set of the scaled extreme elements of C and C′. If
C 6= D, then C′ cannot be included into C. As a consequence, there exists g′ ∈ G′ which is
not in C.

Let I ∈ sectors(C) such that g′ ∈ SC(I). Let us define h ∈ Rd
max such that:

hi =

{
g′

i if i ∈ I,

✵ otherwise.
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Then h is not identically null, and by definition, it belongs to D.
We claim that there is no J ∈ sectors(D) which contains I. Indeed, suppose that x ∈

SD(J) with J ⊃ I. Then for all i ∈ I,

(x\h)xi ≤ ΠD(x) < xi.

But x\h = mini(xi − vi) = mini∈I(xi − hi), because hi = ✵ for i 6∈ I. Hence, there exists
i0 ∈ I such that x\h = xi0 − hi0 . Necessarily, hi0 6= ✵ (since hi0 = gi0 > (ΠC(g))i0 ≥ ✵),
thus (x\h)xi0 = xi0 , which is a contradition. It follows that there is no J ∈ max sectors(D)
such that I ⊂ J .

Now, let I ′ be the unique element of max sectors(C) such that I ⊂ I ′. Then necessarily
I ′ 6∈ max sectors(D).

Example 7.9 (Continuing Example 7.6). Introducing the element h splits the set { y, z } ∈
max sectors(C) into two smaller sets {x } and { y } (see Figure 7.7), as expected by the proof
of Lemma 7.18.

We can now prove Proposition 7.16.

Proof of Proposition 7.16. (i) let D = C ∇cone C. Clearly, any element of G belongs to D,
so that C ⊂ D. Besides, any element g′ ∈ G′ can be expressed as the sum of ΠC(g

′) ∈ D
and an element of H ⊂ D, so that it also belongs to D, which shows that C′ ⊂ D.

(ii) straightforward using Lemmas 7.17, 7.18, and the well-foundness of the order �.

Remark 7.10. We claim that the result of the widening C ∇cone C
′ does not depend on the

choice of the representing set G and G′. In that case, the assumptions on G and G′ in
Definition 7.2 could be removed.

Back to tropical polyhedra. The widening defined on tropical polyhedral cones can be adapted
to tropical polyhedra using homogenization. Formally, we define:

X ∇gen X
′ def

=






X ′ if X = ⊥

X if X ′ = ⊥

ofGen(P ′′, R′′) if X = ((P,R), ·),X ′ = ((P ′, R′), ·)

where G = ι(P,R), G′ = ι(P ′, R′), and

(P ′′, R′′) = ι−1(Minimize(G ∪ σ(H)))

H =

{
h
∣∣ g′ ∈ G′ and for all i ∈ [d],hi =

{
g′

i if (Πcone(G)(g
′))i < g′

i

✵ otherwise

}
.

Remark 7.11. According to Condition (iii) of Definition 7.1, note that there exists g = (gi) ∈
G such that gd+1 = ✶, so that cone(Minimize(G ∪ σ(H))) = cone(G ∪ σ(H)) contains an
element z ∈ Rd+1

max verifying zd+1 = ✶. Using Proposition 2.9, this ensures that the tropical
polyhedron X ∇gen X ′ is non-empty, and that its homogenized cone is precisely cone(G ∪
σ(H)).

Proposition 7.19. The following statements hold:
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(i) for all X ,X ′ ∈ MaxPoly, X ⊔ X ′ ⊑ X ∇gen X
′,

(ii) for any increasing sequence of elements X0 ⊑ . . . ⊑ Xn ⊑ . . . , the sequence defined by




Y0

def
= X0

Yn+1
def
= Yn∇gen Xn+1

converges in a finite number of steps.

Proof. Let X ,X ′ ∈ MaxPoly, and X ′′ = X ∇gen X
′. Let C = X̂ , C′ = X̂ ′, and C′′ = X̂ ′′. We

claim that C′′ = C ∇cone C
′.

If X or X ′ is equal to ⊥, then one of the cones C or C′ is empty, in which case the statement
can be proved straightforwardly.

Otherwise, let X = ((P,R), ·) and X ′ = ((P ′, R′), ·). Let G = ι(P,R), G′ = ι(P ′, R′),
and H ′ defined as above. Thanks to Corollary 2.10, we indeed have C = cone(G) and C′ =
cone(G′), and G and G′ are respectively the set of the scaled extreme rays of C and C′.
Similarly, C′′ = cone(G ∪ σ(H)) = cone(G ∪H), which proves that C′′ = C ∇cone C

′.
Now let us show the two statements of Proposition 7.19.

(i) if X ,X ′ ∈ MaxPoly, and X ′′ = X ∇gen X
′. Let C = X̂ , C′ = X̂ ′, and C′′ = X̂ ′′. We know

that C′′ = C ∇cone C
′. By Proposition 7.16, we have:

C ∪ C′ ⊂ C′′

hence, by Proposition 2.1,

X ∪ X ′ ⊂ X ′′

or, equivalently,

γ(X ) ∪ γ(X ′) ⊂ γ(X ′′)

which shows that X ⊔ X ′′ ⊑ X ′′ by Proposition 7.2.

(ii) now consider (Xn) and (Yn). Let Cn = X̂n and Dn = Ŷn.

Clearly, Dn+1 = Dn∇cone Cn+1 for all n. Besides, the sequence of the Cn is increasing,
since the sequence of the γ(Xn) is increasing according to Proposition 7.2. It follows that
the sequence of the Dn converges after a finite number of steps using Proposition 7.16.

As a consequence, if for all n, Gn is the set of the scaled extreme generators of Dn, then
there exists N such that for all n ≥ N , Gn+1 = Gn. It that case, it can be verified that
for all n ≥ N +1, Yn is defined as ofGen(ι−1(Minimize(Gn))), so that for all n ≥ N +1,
we also have Yn+1 = Yn.

Example 7.12. Consider the abstract elements X and X ′ given by:

X =

(
({✶✶✶ }, ∅),

[
x ≤ 0 0 ≤ x

y ≤ 0 0 ≤ y

])

X ′ =


({✶✶✶,p }, ∅),




x ≤ 0 0 ≤ max(x, y − 1)

y ≤ 1 y ≤ x + 2

0 ≤ y






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Figure 7.8: Comparing the two widening operators on MaxPoly

where p = (−1, 1). They are respectively represented by the left and middle polyhedra in the
top of Figure 7.8. Their homogenized cones are respectively the cones C and C′ introduced
in Example 7.6. The element X ′′ = X ∇X ′ (top right) is therefore generated by the points ✶✶✶
and q = ι−1(h) = (−∞, 1).

In contrast, the standard widening applied on X and X ′ is less precise, since it yields the
element corresponding to the bottom right polyhedron, which strictly contains X ′′. Indeed,
the inequalities x ≤ 0 and 0 ≤ y are the only constraints of X which are stable.

However, the widening ∇gen can also be less precise than the standard widening. Consider
for instance the following abstract elements:

Y =

(
({p, q }, { r }),

[
max(y, 0) ≤ x

x ≤ 1

])

Y ′ =

(
({p, q′ }, { r }),

[
max(y, 0) ≤ x

x ≤ 2

])

representing the tropical polyhedra in the left and the middle of Figure 7.9. The inequality
max(y, 0) ≤ x is obviously stable, so that it is kept by the standard widening (right top in
Figure 7.9). The represented polyhedron is clearly included into the set represented by the
abstract element provided by the widening ∇gen (right bottom).
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Figure 7.9: Comparing the two widening operators on MaxPoly (cont.)

Proposition 7.20. Let X = ((P ′, R′), ·) and X = ((P ′, R′), ·) be two abstract elements of
MaxPoly. The time complexity of X ∇gen X

′ is O(d(|P |+ |R|+ |P ′|+ |R′|)2).

7.1.7 Reduction with zones

7.1.7.a Zones and tropical polyhedra. Recall that zones are sets defined by bound con-
straints on the differences xi − xj .

8 In this section, we show that zones form a particular
class of tropical polyhedra. Besides, we introduce an abstract primitive allowing to extract
from an abstract element of MaxPoly the smallest abstract element of Zone containing it.

Let us first introduce formal definitions of zones in the tropical setting.

Definition 7.3. Let Z ⊂ Rd
max. The set Z is said to be a linear zone if it is equal to the set

of the solutions of a system of inequalities of the form

Aijxj ≤ xi for all (i, j) ∈ [d]2,

with A ∈ Rd×d
max. We will use the notation Z = linzone(A).

8Pay attention to the fact that we distinguish the term zone, which refers to such sets, from the abstract
elements of the domain Zone. The latter are mapped to the former by the concretization operator γZone.
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Definition 7.4. Let Z ⊂ Rd
max. The set Z is said to be an affine zone if it is equal to the

set of the solutions of a system of inequality of the form





Aijxj ≤ xi for all (i, j) ∈ [d]2

bi ≤ xi for all i ∈ [d]

cixi ≤ ✶ for all i ∈ [d]

with A ∈ Rd×d
max and b, c ∈ Rd

max. We will use the notation Z = affzone(A, b, c).

Proposition 7.21. Linear and affine zones are respectively tropical polyhedral cones and
tropical polyhedra.

Proof. It can be easily verified that each inequality corresponds to a tropical (affine) halfspace.

The following lemma expresses homogenization of affine zones:

Lemma 7.22. Let Z = affzone(A, b, c) be a non-empty affine zone (A ∈ Rd×d
max, b, c ∈ Rd

max).

Then Ẑ is a linear zone, and Ẑ = linzone(A′) where A ∈ R
(d+1)×(d+1)
max is defined by:

A′ =

(
A b
tc ✶

)
.

Proof. It is a direct consequence of Proposition 2.8.

Given a matrix A ∈ R
n×p
max, we define the residuate matrix A/A ∈ R

n×n
max by

(A/A)ij
def
= min

1≤k≤p
Aik −Ajk,

with the convention −∞+∞ = −∞.

Proposition 7.23. Let C ⊂ Rd
max be a tropical polyhedral cone. Let G be the matrix whose

columns are the scaled extreme elements of C. Suppose that G has no row consisting of null
entries.

Then the set linzone(G/G) is the smallest linear zone which contains C.

Proof. First observe that all coefficients of G/G are elements of Rmax.
For the sake of simplicity, we assimilate G to the set formed by the scaled extreme elements

of C. Clearly, for all h ∈ G and (i, j) ∈ [d]2, we have:

hi − hj ≥ min
g∈G

(gi − gj)

so that

hi ≥ min
g∈G

(gi − gj)hj

since ming∈G(gi − gj) ∈ Rmax. This shows that G ⊂ linzone(G/G), hence C ⊂ linzone(G/G).
Now, let Z = linzone(A) be a linear zone such that C ⊂ Z. For all g ∈ G, we have:

Aijgj ≤ gi

thus

Aij ≤ gi − gj

which shows that Aij ≤ (G/G)ij for all (i, j) ∈ [d]2. This implies that linzone(G/G) ⊂
linzone(A).
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Proposition 7.24. Let P ⊂ Rd
max be a tropical polyhedron such that P∩Rd is not empty. Let

(P,R) be the scaled minimal representation of P. Let A ∈ Rd×d
max and b, c ∈ Rd

max be defined
by the relation:

(
A b
tc ✶

)
= ι(P,R)/ι(P,R),

where ι(P,R) is assimilated the matrix whose columns are the elements of ι(P,R).

Then the set affzone(A, b, c) is the smallest affine zone which contains P.

Proof. Let G be the matrix whose columns are the elements of ι(P,R). The fact that P∩Rd 6=
∅ ensures that G has no identically null row.

Thanks to Corollary 2.10, we know that P̂ is the tropical cone generated by the columns
of G.

Using Proposition 7.23, we know that P̂ ⊂ linzone(G/G) so that P = {x ∈ Rd
max |

(x,✶) ∈ P̂ } ⊂ {x ∈ Rd
max | (x,✶) ∈ linzone(G/G) }. It can be verified that since G contains

at least one element g such that gd+1 6= ✵ (since P 6= ∅), then the set {x ∈ Rd
max | (x,✶) ∈

linzone(G/G) } is precisely the affine zone affzone(A, b, c).

Now, consider Z = affzone(A′, b′, c′) such that P ⊂ Z. Then P̂ ⊂ Ẑ, so that by Proposi-
tion 7.23, linzone(G/G) ⊂ Ẑ. By Lemma 7.22, we have:

(
A b
tc ✶

)
≥

(
A′ b′

t
c′ ✶

)
,

which ensures that affzone(A, b, c) is contained into Z.

Using the notations of Section 6.3.2.b, Zone denotes the abstract domain of (affine) zones
over the variables Vars. Recall that its elements are either represented by ⊥Zone or by matrices

of R
(d+1)×(d+1)
max , and that its concretization operator γZone maps them to affine zones of Rd

max.

We can now define the primitive toZone : MaxPoly→ Zone by:

toZone(X )
def
=

{
⊥Zone if X = ⊥,

ι(P,R)/ι(P,R) if X = ((P,R), ·),

According to Proposition 7.24, the following proposition holds:

Corollary 7.25. Let X ∈ MaxPoly. Then toZone(X ) is the smallest element M of Zone such
that γ(X ) ⊂ γZone(M).

Proposition 7.26. Let X = ((P,R), ·) ∈ MaxPoly. The time complexity of the call to
toZone(X ) is equal to O(d2(|P |+ |R|)).

Example 7.13. Figure 7.10 provides an illustration of the primitive toZone on an element of
MaxPoly.

Remark 7.14. Observe that the zones returned by toZone are necessarily under closed form.
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v1

v2

Figure 7.10: Smallest zone containing an element of MaxPoly

7.1.7.b Reduction of abstract primitives with zones. Let us consider a concrete primitive

F : (RVars)p → RVars of arity p (p ≥ 0). Suppose that F is a sound abstract counterpart
defined on our abstract domain MaxPoly, i.e. F : MaxPolyp → MaxPoly satisfies: for all
X1, . . . ,Xp ∈ MaxPoly,

F (γ(X1), . . . , γ(Xp)) ⊂ γ(F(X1, . . . ,Xp)).

Suppose that the abstract domain of zones is provided with a sound abstraction FZone :
Zonep → Zone of F . Then the precision of the function F can be refined thanks to the
function FZone. Indeed, let us define F ′ : MaxPolyp → MaxPoly by:

F ′(X1, . . . ,Xp)
def
= (LFZone(toZone(X1), . . . , toZone(Xp))M ◦ F)(X1, . . . ,Xp).

Note that given an abstract element M ∈ Zone, we denote by LMM the abstract operator
on MaxPoly which applies on the elements of MaxPoly the conditions given by the affine
inequalities representing the zone M : if M is represented by the matrix

(
A b
tc d

)
, LMM is defined

as

LAijvj ≤ vi for all i, j, bi ≤ vi and civi ≤ ✶ for all i, and d ≤ ✶M.

The following statement holds:

Proposition 7.27. Let X1, . . . ,Xp ∈ MaxPoly. Then F ′ is a sound abstraction of F , and is
more precise than F :

F (γ(X1), . . . , γ(Xp)) ⊂ γ(F ′(X1, . . . ,Xp)) ⊂ γ(F(X1, . . . ,Xp)).

Besides, F ′ is more precise than FZone: if Mi is the smallest zone containing γ(Xi) for all
i ∈ [p], then:

γ(F ′(X1, . . . ,Xp)) ⊂ γZone(FZone(M1, . . . ,Mp)).



7.2. Inferring min-invariants: the abstract domain MinPoly 177

Proof. It is a straightforward consequence of the soundness and exactness of the operator
LcondM where cond is a system of tropically affine inequalities (Proposition 7.8), and of Corol-
lary 7.25.

As a consequence, all abstract primitives defined on MaxPoly can be systematically refined
so as to be more precise than their analogues on the abstract domain Zone. Note however
that this refinement is useless for abstract primitives which are already the best possible
abstraction (in particular, those which are exact).

7.1.8 Non-tropically affine abstract primitives

Tropically affine conditions and assignments are handled by abstract primitives. This includes
conditions of the form vi ⋄ α or vi + β ⋄ vj where ⋄ ∈ {≤,=,≥}, and assignments vi ← α or
vj ← vi + β (α, β ∈ R).

However, other forms of conditions and assignments, such as classical affine ones (and
which are not tropically affine), are not handled in general. Some techniques have been
developed in [AGG08] to tropically linearize assignments of the form vk ← vi + vj or vj ←
α× vi.

A systematic way to handle general conditions and assignments is to treat them as non-
deterministic, i.e. conditions are safely ignored (which is sound), and assignments are replaced
by non-deterministic ones. The resulting abstract primitives can be then refined using the
corresponding primitives on zones, and the method of Section 7.1.7. This ensures that the
abstract primitive defined on MaxPoly is at least more precise than its counterpart defined on
Zone (Proposition 7.27).

7.1.9 Summary of abstract primitives behavior

Albeit we did not mention it for the moment, it can be verified that the abstract primi-
tives of union, intersection, condition, assignment, and reduction to zones, are all monotone.
Therefore, the abstract domain MaxPoly meets the requirements of the analysis developped
in Section 6.5.

Figure 7.11 recapitulates which components of the abstract double descriptions are used
by the abstract primitives that we have previously defined.

7.2 Inferring min-invariants: the abstract domain MinPoly

In this section, we explain how tropical polyhedra can be used to infer min-invariants over the
set of variables Vars = {v1, . . . ,vd }. Let Vars− be a disjoint set of variables {w1, . . . ,wd }.
We define MinPoly(Vars) as the abstract domain whose elements belong to MaxPoly(Vars−),
and the concretization operator is defined by:

γMinPoly(X )
def
= {ν ∈ RVars | ν− ∈ γMaxPoly(X ), ν−(wi) = −ν(vi) for all i }.

Intuitively, each wi represent the opposite of vi, and elements of MaxPoly are used to abstract
max-invariants over the −vi.

Naturally, zone invariants over the variables Vars− are still zone invariants over Vars, so
that the abstract elements of MinPoly express disjunctions of zone invariants, like the elements
of MaxPoly (see Section 7.1.1.c).
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abtract primitive first operand
second
operand

result

⊑ generators
generators or
constraints

NA

⊤ NA NA
generators and

constraints

⊥ NA NA NA

⊔ generators generators generators

⊓ constraints constraints constaints

tropical conditions
constraints NA constraints
generators NA generators

tropical
assignments

generators NA generators

non-deterministic
assignments

generators NA generators

∇ constraints generators constraints

∇gen generators generators generators

toZone generators NA constraints

Figure 7.11: Summary of the kinds of components involved in abstract primitives

Observe that the operator γMinPoly is obtained as the composition of γMaxPoly with the one-

to-one correspondence RVars− → RVars which maps ν ∈ RVars− to ν ′ defined by ν ′(vi) = −ν(wi)
for all i ∈ [d]. This allows to easily reuse all the abstract primitives defined on MaxPoly. If
necessary, we distinguish the abstract primitives of MinPoly from those of MaxPoly by adding
the domain in subscript (for instance L· ← ·MMaxPoly).

7.2.1 Order-theoretic abstract primitives

It can be shown that the primitives ⊥, ⊤, ⊑, ⊔, ⊓, ∇, and ∇gen on MaxPoly can be used as
such on MinPoly, and that they preserve their properties:

Proposition 7.28. The abstract primitives ⊥, ⊤, ⊑, ⊔, and ⊓ are all sound. Besides, ⊑
and ⊓ are exact, and ⊔ is the best possible abstraction of the union. Finally, ∇ and ∇gen are
widening operators.

7.2.2 Conditions and assignments

Recall that the min-plus semiring refers to set Rmin = R∪ {+∞}, endowed with the laws ⊕′

and ⊗′ given by x⊕′ y
def
= min(x, y) and x⊗′ y

def
= x + y.

Tropically affine conditions and assignments now have to be interpreted in the min-plus
semiring. They are respectively of the form:

A⊗′ (v1, . . . ,vd)⊕
′ c ≤ B ⊗′ (v1, . . . ,vd)⊕

′ d with A, B ∈ R
p×d
min , c,d ∈ R

p
min

vk ← λ0 ⊕
′

d⊕′

l=1

λlvl with λ0, . . . , λd ∈ Rmin
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Given x ∈ Rmin, we denote by−x the opposite element in Rmax, with the convention−(+∞) =
−∞. This notation can be also used for the reciprocal association, and is extended to matrices.
Then we define:

LA⊗′ (v1, . . . ,vd)⊕
′ c ≤ B ⊗′ (v1), . . . ,vd))⊕

′ dMMinPoly

def
= L(−A)⊗ (w1), . . . ,wd)⊕ (−c) ≤ (−B)⊗ (w1, . . . ,wd)⊕ (−d)MMaxPoly

and

Lvk ← λ0 ⊕
′

d⊕′

l=1

λlvlMMinPoly
def
= Lwk ← (−λ0)⊕

d⊕

l=1

(−λl)wlMMaxPoly.

Non-deterministic assignments still have the same form, and the corresponding abstract prim-
itive is defined by:

Lvk ← ? MMinPoly
def
= Lwk ← ? MMaxPoly.

The abstract primitive of this class of conditions and assignments are both sound and
exact:

Proposition 7.29. Let X ∈ MinPoly. Then we have:

{v ∈ γMinPoly(X ) | A⊗′ (ν(v1), . . . , ν(vd))⊕
′ c ≤ B ⊗′ (ν(v1), . . . , ν(vd))⊕

′ d }

= γ(LA⊗′ (v1, . . . ,vd)⊕
′ c ≤ B ⊗′ (v1, . . . ,vd)⊕

′ dMMinPoly(X ))

and



 ν[vk 7→ λ0 ⊕
′

d⊕′

l=1

λlν(vl)] | ν ∈ γMinPoly(X )




 = γMinPoly(Lvk ← λ0 ⊕
′

d⊕′

l=1

λlvlMMinPoly(X ))

{ ν[vk 7→ x] | ν ∈ γMinPoly(X ), x ∈ R } = γ(Lvk ← ? M(X )).

Proof. This is a direct consequence of Propositions 7.8 and 7.9.

7.2.3 Reduction with zones

Observe that the image of an affine zone affzone(A, b, c) by the map x 7→ −x is precisely
the affine zone affzone(tA, c, b). It follows that the reduction with zones on MinPoly can be
defined as follows: for all X ∈ MinPoly,

toZoneMinPoly(X )
def
=

{
⊥Zone if X = ⊥,
ttoZoneMaxPoly(X ) if X 6= ⊥.

Proposition 7.30. Let X ∈ MinPoly. Then toZoneMinPoly(X ) is the smallest element M of
Zone such that γMinPoly(X ) ⊂ γMinPoly(M).

Any abstract primitive on MinPoly can be then refined using its counterpart on Zone. This
refinement is analogous to the method discussed in Section 7.1.7.
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7.3 Inferring min- and max-invariants: the domain MinMaxPoly

We now discuss how to infer both min- and max-invariants on a set of variables Vars =
{v1, . . . ,vd }.

Let us define Vars± = Vars∪Vars−. Then the abstract domain MinMaxPoly(Vars) is formed
by elements of MaxPoly(Vars±). The concretization operator γMinMaxPoly is defined as follows:

γMinMaxPoly(X )
def
=

{
ν ∈ RVars

∣∣∣∣ ν
± ∈ γMaxPoly(X ), and for all i,

{
ν±(vi) = ν(vi)

ν±(wi) = −ν(vi)

}
,

so that each element of MaxPoly(Vars±) abstract max-properties on the variable vi and their
opposite. In particular they are able to infer both min- and max-invariants over Vars at the
same time. Similar, they can express disjunctions of zone invariants over Vars±, i.e. octagonal
invariants over Vars.

7.3.1 Order-theoretic abstract primitives

Like in Section 7.2, the abstract primitives ⊥, ⊤, ⊑, ⊔, ⊓, ∇, and ∇gen on MaxPoly can be
used as on MinMaxPoly.

Proposition 7.31. The abstract primitives ⊥, ⊤, ⊑, ⊔, and ⊓ are all sound. Besides, ⊓ is
exact. Finally, ∇ and ∇gen are widening operators.

However, ⊑ is not exact anymore, and ⊔ is not the best possible abstraction of the union.
This loss of precision can be intuitively explained by the fact that the primitives do not
perform any “communication” between the variables vi and wi, while in the concrete world,
the wi are necessarily equal to the opposite of the vi.

Proof. We only detail the proof of the exactness of ⊓. Let X ,X ′ ∈ MinMaxPoly. Consider
ν ∈ γMinMaxPoly(X ⊓ X

′), and let ν± ∈ γMaxPoly(X ⊓ X
′) be the associated element of RVars± .

Then ν± ∈ γMaxPoly(X ) using Proposition 7.6, so that clearly ν ∈ γMinMaxPoly(X ). Similarly,
it can be shown that ν ∈ γMinMaxPoly(X

′), which completes the proof.

7.3.2 Conditions and assignments

Using the corresponding abstract primitives of MaxPoly, the abstract domain MinMaxPoly is
able to handle conditions and assignment of the form:

A(v1, . . . ,vd,−v1, . . . ,−vd)⊕ c

≤ B(v1, . . . ,vd,−v1, . . . ,−vd)⊕ d with A, B ∈ Rp×2d
max , c,d ∈ Rp

max

±vk ← λ0 ⊕
d⊕

l=1

λlvl ⊕
d⊕

l=1

λl+d(−vl) with λ0, . . . , λ2d ∈ Rmax

Observe that this includes the class of conditions and assignments handled by both abstract
domains MaxPoly and MinPoly. The abstract primitives on MinMaxPoly are defined by:

LA(v1, . . . ,vd,−v1, . . . ,−vd)⊕ c ≤ B(v1, . . . ,vd,−v1, . . . ,−vd)⊕ dMMinMaxPoly

def
= LA(v1, . . . ,vd,w1, . . . ,wd)⊕ c ≤ B(v1, . . . ,vd,w1, . . . ,wd)⊕ dMMaxPoly



7.3. Inferring min- and max-invariants: the domain MinMaxPoly 181

and

Lvk ← λ0 ⊕
⊕d

l=1
λlvl ⊕

⊕d

l=1
λl+d(−vl)MMinMaxPoly

def
= Lvk ← λ0 ⊕

⊕d

l=1
λlvl ⊕

⊕d

l=1
λl+dwl and wk ← ? MMaxPoly,

L−vk ← λ0 ⊕
⊕d

l=1
λlvl ⊕

⊕d

l=1
λl+d(−vl)MMinMaxPoly

def
= Lwk ← λ0 ⊕

⊕d

l=1
λlvl ⊕

⊕d

l=1
λl+dwl and vk ← ? MMaxPoly.

Remark 7.15. Note that the variable ∓vk opposed to ±vk is necessarily assigned to a non-
deterministic value. Indeed, the opposite assignement cannot be expressed as a tropical
assignment in general.

However, this operation can be omitted when the assignment is of the form ±vk ← λ0

or ±vk ← λj(±vj), since in that case, the opposite assignment is given by ∓vk ← −λ0 and
∓vk ← (−λj)(∓vj) respectively.

Non-deterministic assignments are also handled, but both vk and its opposite wk have to
be updated:

Lvk ← ? MMinMaxPoly
def
= Lwk ← ? MMaxPoly ◦ Lvk ← ? MMaxPoly

Proposition 7.32. The condition and assignment primitives defined above are sound. Con-
dition primitives are exact.

Proof. The proof of the exactness of the condition primitives is similar to the proof of the
exactness of ⊓ on MinMaxPoly (Proposition 7.31).

7.3.3 Reduction with octagons

As discussed in Section 6.3.2.b, octagonal invariants are given by inequalities of the form
±vi ± vj ≥ α, and can be seen as zone invariants over the set of variables Vars±. Such
invariants are precisely expressed by the abstract domain Oct of octagons. Its elements can
be encoded by elements of the abstract domain Zone(Vars±), and its concretization operator
can be defined as:

γOct(M)
def
= { ν ∈ RVars | (ν(v1), . . . , ν(vd),−ν(v1), . . . ,−ν(vd)) ∈ γZone(M) }.

The abstract domain Oct is provided with a reduction operator ηOct : Oct → Oct which, in
particular, makes communicate information between the variables vi and their opposite (here
wi following our convention). Formally, given M ∈ Oct, ηOct(M) is the smallest element of Oct

which contains γOct(M). This reduction operator can be used to allow the same information
sharing in elements of MinMaxPoly.

More precisely, we define the primitive toOct : MinMaxPoly → Oct which extracts an
abstract element of Oct from an element of MinMaxPoly:

toOct
def
= ηOct ◦ toZone

This primitive can be shown to be sound:

Proposition 7.33. Let X ∈ MinMaxPoly. Then we have:

γMinMaxPoly(X ) ⊂ γOct(toOct(X )).



182 Chapter 7. Numerical abstract domains based on tropical polyhedra

Proof. Let M = toZoneMaxPoly(X ). According to Corollary 7.25, γMaxPoly(X ) ⊂ γZone(M).
Now, let us consider ν ∈ γMinMaxPoly(X ), and let ν± ∈ γMaxPoly(X ) be associated to ν.
Then ν± ∈ γZone(M), so that ν ∈ γOct(M). Since γOct(M) = γOct(ηOct(M)), we have
ν ∈ γOct(toOct(X )).

Nevertheless, unlike its analogue toZone on MaxPoly or MinPoly, the primitive toOct does
not necessarily yield the smallest octagon which contains γMinMaxPoly(X ), as shown in the
following example.

Example 7.16. Consider the abstract element X of MinMaxPoly over the variable v1, which
can also be seen as an element of MaxPoly({v1,w1 }), represented by the tropical polyhedron
depicted in black:

v1

w1

p

q

Its generator component is formed by the vertices p = (2, 0) and q = (0, 2). Seen as an element
of MinMaxPoly, its concretization γMinMaxPoly(X ) is empty. Indeed, for any ν± ∈ γMaxPoly(X ),
ν±(v1) and ν±(w1) are never opposed.
It can be verified that the zone toZone(X ) over the variables v1 and w1 corresponds to the
square depicted in green. It represents the invariants 0 ≤ v1 ≤ 2 and 0 ≤ w1 ≤ 2, and is
encoded by the matrix: 


0 −2 0
−2 0 0
−2 −2 0



 .

This matrix also represents the element of Oct characterized by the invariants 0 ≤ v1 ≤ 2
and 0 ≤ −v1 ≤ 2. It is reduced by the operator ηOct to the octagon representing the
invariant v1 = 0. As a non-empty octagon, it is not the smallest element of Oct containing
γMinMaxPoly(X ) = ∅.

Even if the lack of precision of the abstract primitive toOct is a little disappointing,
it should be stressed that the abstract elements of MinMaxPoly precisely interact with oc-
tagons. Indeed, thanks to the exactness of the intersection with octagonal invariants (Propo-
sition 7.32), for all X ∈ MinMaxPoly and M ∈ Oct, we have:

γMinMaxPoly(LM)LX )) ⊂ γOct(M) ∩ γMinMaxPoly(X ),

where LMM is the intersection abstract primitive of MinMaxPoly which applies the conditions
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represented by the octagon M . The domain MinMaxPoly can be therefore successfully reduced
with the abstract domain of octagons (for instance using reduced product [CC79]).

Following the principle of the refinement on abstract primitives developed in Section 7.1.7,
any abstract primitive F : MinMaxPolyp×MinMaxPoly can be refined into F ′ : MinMaxPolyp×
MinMaxPoly, defined as:

F ′(X1, . . . ,Xp)
def
= (LFOct(toOct(X1), . . . , toOct(Xp))MMinMaxPoly ◦ F)(X1, . . . ,Xp).

This technique can be used to improve the precision on primitives such as the abstract union
or assignments, because it allows to gain precision on the ±vi using the information on their
opposite. Naturally, since the abstract primitive toOct is not as precise as possible, the
primitive F ′ is not ensured to be more precise than FOct.

7.4 Experiments

The three numerical abstract domains MaxPoly, MinPoly, and MinMaxPoly have been imple-
mented in the library TPLib [All09], atop the module providing the algorithms Compute-

ExtRays and ComputeExtRaysPolar on tropical polyhedra. The implementation of the
domains with the abstract semantics presented in Section 6.5 is not publicly available.

In this section, we discuss some experiments on programs of various kinds. We first present
the principles of the implementation of the static analysis tool (Section 7.4.1). We then focus
on the analysis of memory manipulation programs (Section 7.4.2), and show that our tropical
polyhedra based domains can also be useful for array predicate abstractions (Section 7.4.3).
Sections 7.4.4 and 7.4.5 are devoted to scalability benchmarks, showing that our domains are
able to represent highly disjunctive invariants. Section 7.4.6 finally provides general remarks
on the performance of the analyzer.

At the end of the section, Table 7.1 summarizes the data relative to the analysis experi-
ments on the programs discussed in this section. For each program, the number of lines and
of variables are provided. The execution time of the analyzer using the standard widening ∇
and the widening on the generator component ∇gen are also given. It is compared to our first
implementation of the analyzer presented in [AGG08]. Finally, the number of generators in
the final abstract element is provided.

7.4.1 Principles of the implementation

The static analysis tool is fully parametric, since it can use one of the three numerical abstract
domains, and one of the two widening operators ∇ or ∇gen , depending on the options passed
by the user.

As mentioned in Section 7.1.1, the analyzer does not manipulate systematically double
descriptions of tropical polyhedra. Generator or constraint components are computed lazily
from the other. The tool returns the min-/max-invariants inferred by the final abstract
element. Thus, if necessary, the constraint component of this element is computed from its
generator component.

An interesting feature is that the tool manipulates only integers, and no floating-point
numbers. Indeed, the kernel language defined in Chapter 6 manipulate exclusively integers.
Therefore, integer-based representations by constraints or by generators are preserved by all
abstract primitives. In practice, we use arbitrary precision integers provided by the library
GMP [GMP].
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7.4.2 Analysis of memory manipulating programs

7.4.2.a The function memcpy. This section deals with experiments on memory manipulat-
ing programs. We first begin with the analysis of the function memcpy. In our kernel language,
it can be written as follows:

1 : assume ((p ≥ 1) ∧ (q ≥ 1));
2 : src := malloc(p);
3 : dst := malloc(q);
4 : assume ((n ≤ p) ∧ (n ≤ q));
5 : i := 0;
6 : while i ≤ n− 1 do

7 : dst [i] := src[i];
8 : i := i + 1;
9 : done;

10 :

The function itself is implemented from Lines 5 to 9. The part of the program between Lines 1
and 4 allows to create a general memory context, in which src and dst are initialized to arrays
with an arbitrary content, and of size p and q respectively. The condition n ≤ p and n ≤ q
allows to avoid that the call to memcpy leads to a heap overflow.

This example is analyzed using the abstract domain MinPoly. Then the tool returns the
following invariant:






1 ≤ sz src = p, 1 ≤ sz dst = q

i = n, n ≤ p, n ≤ q

0 ≤ lensrc ≤ sz src , 0 ≤ lendst ≤ sz dst ,

min(lensrc , n) = min(lendst , n)

(7.7)

In particular, the tool has successfully inferred the invariant min(lensrc , n) = min(lendst , n),
which exactly encodes the disjunction of the cases (i) and (ii) presented in Chapter 1.

7.4.2.b The function strncpy. The function strncpy is another well-known string manip-
ulating function in C. It takes as input three arguments, a destination array dst , a source
array src, and a integer parameter n. Paraphrasing its manual page:

The strncpy function copies not more than n characters (characters that fol-
low a null character are not copied) from the array src to the array dst.

. . .

If the array src stores a string that is shorter than n characters, null characters
are appended to the copy in the array dst, until n characters in all are written.
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In our kernel language, it can be implemented as follows:

1 : assume ((p ≥ 1) ∧ (q ≥ 1));
2 : src := malloc(p);
3 : dst := malloc(q);
4 : assume ((n ≤ p) ∧ (n ≤ q));
5 : i := 0;
6 : while (i ≤ n− 1) ∧ (src[i] 6= 0) do

7 : dst [i] := src[i];
8 : i := i + 1;
9 : done;

10 : while i ≤ n− 1 do

11 : dst [i] := 0;
12 : i := i + 1;
13 : done;
14 :

As for the function memcpy, the final invariant between lendst , lensrc , and n is a disjunction
of two cases:

❼ either n > lensrc , in which case the null terminal character of src is copied into dst .
Some other null characters may be copied after, but in any case, lendst = lensrc .
On the string “example” and n = 9, we obtain:

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 ? ?

src

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 0 ?

dst

Observe that the null characters represented in red have been inserted by the second
loop (Lines 10 to 13).

❼ or n is smaller than the source length lensrc , in which case, lendst ≥ n. On the same
example, but with n = 5, we have:

’e’ ’x’ ’a’ ’m’ ’p’ ’l’ ’e’ 0 ? ?

src

’e’ ’x’ ’a’ ’m’ ’p’ ? ? ? ? ?

dst

lendst?

As a consequence, the final invariant is identical to (7.7). It is also successfully inferred by
our tool. Note however that the intermediate invariants computed in the analysis of strncpy
and memcpy are naturally not the same.

7.4.2.c Application to our running example. We can now experiment our static analyzer
on the example given in the conclusion of Chapter 6. We use the instantiation by the numerical
domain MinPoly. The abstract collecting semantics is represented in Figure 7.12. Note that
we do not include the first part of the abstract semantics (i.e. from control points 1 to 9), since
the corresponding invariants are precisely the same as those inferred by convex polyhedra,
and given in Figure 6.11.9

9These invariants are indeed zone invariants, both contained in the abstract domains MinPoly and of convex
polyhedra. Note that in Figure 6.11, we should append to each state of the abstract collecting semantics, the
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Contrary to its instantiation by convex polyhedra, our static analyzer is now able to
precisely compute the loop invariant of control point 11 (in particular, the min-invariant
min(lens, i) = min(lenupp , i)). This allows to show that in control point 15, lenupp is equal
to lens. Since we know that the latter is strictly less than n = sz s = szupp , this ensures that
lenupp ≤ sz s−1. In particular, the loop from Lines 16 to 20 stops strictly before reaching the
end of the array upp. Thus, the analyzer proves that the program does not cause any heap
overflow.

Also note that our static analyzer is now able to prove that at control point 24, the length
result of the upper case character string upp is precisely equal to the length of the original
string s, as expected.

7.4.3 Application to array predicate abstractions

In this section, we illustrate that our numerical abstract domains can also be useful for other
kinds of memory analyses, such as array predicate abstractions [FQ02, Cou03, GRS05, JM07,
BHMR07, GMT08, All08, HP08]. The latter aim at automatically determining properties over
consecutive array elements. The following program is a typical target of such abstractions:

1 : assume (n ≥ 1);
2 : t := malloc(n);
3 : assume (p ≤ n) ∧ (q ≤ n);
4 : i := p;
5 : while i ≤ q − 1 do

6 : t[i] := c;
7 : i := i + 1;
8 : done;
9 :

It is an incrementing initialization program which fills an array t with a value c, from the
indexes p to q − 1. Array predicate abstractions are parameterized by a numerical abstract
domains. For instance, for the loop invariant at Line 5, they are able to determine the
property

[
c(t, u, v), u = p, v = i − 1

]
, which means that the array t contains the value c

between the indexes u = p and v = i − 1. However, the final invariant over p, q, and i at
Line 9 relies on a disjunction of the two following cases:

(i) either the loop is entered at least once, in which case the final value of i is equal to q,
and p ≤ q − 1,

(ii) or p ≥ q, so that the loop is not executed, and i = p.

Our analyzer parameterized with the domain MaxPoly is able to successfully infer the exact
encoding i = max(p, q) of this disjunction. Using classical convex polyhedra, we would obtain
only the inequalities i ≥ p and i ≥ q, which would be a major loss of precision.

Note that our string analysis described in Section 6.5 is not able to infer a precise invariant
on the array t, since the latter is here manipulated as an integer data storage rather than as
a string. Integrating our numerical abstract domains in an array predicate abstraction is an
interesting objective for future works.10

invariants lenupp = szupp = 0 corresponding to the fact that the array upp is not allocated before control
point 10.

10Also observe the array predicate abstractions described in [GRS05, HP08] rely on a strong disjunction of
array properties. They are consequently able to infer the disjunction of the two cases (i) and (ii), but they
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9 :

0 ≤ lens ≤ szs − 1,

i = n − 1, szs = n, n ≥ 1,

lenupp = szupp = 0

10 :

0 ≤ lens ≤ szs − 1,

i = n − 1, szs = szupp = n,

0 ≤ lenupp ≤ szupp

11 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n, 0 ≤ i ≤ n,

0 ≤ lenupp ≤ szupp ,

min(i, lenupp) = min(i, lens)

12 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n,

0 ≤ i ≤ n − 1,

0 ≤ lenupp ≤ szupp ,

min(i, lenupp)

= min(i, lens)

13 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n,

0 ≤ i ≤ n,

0 ≤ lenupp ≤ szupp

min(i + 1, lenupp)

= min(i + 1, lens)

15 :

0 ≤ lens ≤ szs − 1,

i = szs = szupp = n

lenupp = lens

16 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i ≤ lenupp = lens

17 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i ≤ lenupp − 1,

lenupp = lens

18 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i ≤ lenupp − 1,

lenupp = lens

19 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i ≤ lenupp − 1,

lenupp = lens,

97 ≤ c ≤ 122

22 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i ≤ lenupp − 1,

lenupp = lens

24 :

0 ≤ lens ≤ szs − 1,

szs = szupp = n

i = lenupp = lens

upp := malloc(n)

i := 0

i ≤ n− 1

upp[i] := src[i]

i := i + 1

i ≥ n

i := 0

upp[i] 6= 0

c := upp[i]

(c ≥ 97) ∧ (c ≤ 122)

upp[i] := c− 32

(c ≤ 96)

∨ (c ≥ 123)

i := i + 1

upp[i] = 0

Figure 7.12: The abstract collecting semantics of the second part of our running example
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7.4.4 Efficiently handling many disjunctions

The array manipulating program discussed in Section 7.4.3 has inspired us to create a set
of benchmarks to test the scalability of our numerical abstract domains, and compare it to
the other existing disjunctive techniques. Consider the following program whose length is
parameterized by an integer n ≥ 1:

1 : i := p1;
2 : while i ≤ p2 − 1 do

3 : i := i + 1;
4 : done;
5 :
6 : while i ≤ p3 − 1 do

7 : i := i + 1;

8 : done;
9 :

...
4n− 6 : while i ≤ pn − 1 do

4n− 5 : i := i + 1;
4n− 4 : done;
4n− 3 :

It consists of (n − 1) incrementing loops in the same vein as those involved in the program
of Section 7.4.3. Our analyzer, equipped with the domain MaxPoly, is able to infer the final
max-invariant

i = max(p1, . . . , pn).

The benchmarks are given in Table 7.1, under the name of incrementing-n, for several values
of n, up to 60. A very interesting feature is that the number of generators in the tropical
polyhedra involved in the analysis grows linearly, so that the analysis can scale up to large
values of n.

As a comparison, in order to precisely analyze such programs, existing analyzers usually
rely on trace partitioning techniques (e.g. [HT98, MR05b, RM07]). For instance, at Line 5,
such techniques infer a disjunction between the memory states arising directly from Line 1, and
those generated by at least one loop iteration. As a consequence, they infer the disjunction:

or

p1 ≥ p2,

i = p1

p1 ≤ p2 − 1,

i = p2

However, the size of the disjunction clearly grows exponentially during the analysis of the
following loops. For instance, after Line 9, we should get a disjunction of size 4:

or

or or

p1 ≥ p2,

p1 ≥ p3,

i = p1

p1 ≥ p2,

p1 ≤ p3 − 1,

i = p3

p1 ≥ p2,

p1 ≤ p3 − 1,

i = p2

p1 ≤ p2 − 1,

p1 ≤ p3 − 1,

i = p3

may also suffer from an explosion of the size of abstract states.
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In practice, such techniques cannot be used.11 Indeed, supposing that only one byte is
necessary to store the abstract element in each leaf, the element would take in memory 260

bytes, i.e. 100 petabytes (or equivalently, 105 terabytes), for n = 60.

As a consequence, this family of examples shows the ability of tropical polyhedra based
domains to intrinsically handle many disjunctions without any explosion of the size of the
representations, which was not possible with the existing techniques.

7.4.5 Sort algorithms

This section deals with the analysis of sort algorithms. As illustration, we have chosen to
experiment our static analysis tool on the odd-even sort algorithm [Bat68]. The odd-even
sort of n elements is performed by a matrix of O(n2) elementary sorting blocks, each taking
as input two arguments x, y, and outputting min(x, y) and max(x, y) respectively. The odd-
even sort of 8 variables is depicted in Figure 7.13. The code of an elementary block is given
beside. Using the instantiation with the domain MinPoly (resp. MaxPoly), the static analyzer
is able to infer that at the end of the algorithm, the leftmost (resp. rightmost) element is
the minimum (resp. maximum) of the initial variables. Note that the exact invariants on
the intermediary elements cannot be inferred, since they involve expressions composing the
operator min and max (for instance of the form max(min(. . . ), . . . ,min(. . . ))).

Contrary to the experiments discussed in Section 7.4.4, the growth of the size of the
representation by generators is here exponential (see the entries oddeven-n in Table 7.1).
Despite that, tropical polyhedra are still a very good alternative to the existing disjunctive
techniques, which would not be able to scale up to such values of n. For instance, for
n = 10, the program oddeven-n contains 45 elementary sorting blocks. At each block, a
trace partitioning technique would distinguish abstract states arising from the execution of
the “if” branch, from those arising from the “else” branch. At the end of the program, it
would provide a disjunction of 245 abstract states, which would be of prohibitive size.

In these experiments, the abstract elements are exclusively computer under their generator
component. However, the final abstract element is converted to the constraint form in order
to display the final min-/max-invariants to users. This conversion is possibly more costly
than the rest of the analysis, while it was negligible in the other experiments. For this reason,
the time execution of the rest of the analysis and of this conversion are reported separately
in Table 7.1.

7.4.6 Performance of the analysis

Table 7.1 shows that our current version of the analysis clearly outperforms the initial version
implemented in [AGG08]. The former benefits from the improvements provided by Com-

puteExtRays and ComputeExtRaysPolar, while the latter is based on the previous
algorithm OldComputeExtRays. In particular, in the analysis of oddeven-n, the imple-
mentation of [AGG08] is not able to compute in reasonable time the min-/max-invariants
represented by the final abstract element (for n = 4, it takes almost 80 seconds).

In every experiment, both widening operators allow to enforce the convergence of the
sequences of invariants after only one iteration. However, the widening ∇gen is always more
efficient than the standard widening ∇ on the experimented programs. This is due to the fact
that the latter needs the constraint component of its first operand, while the abstract elements

11Unless merging some elements of the disjunctions, and subsequently losing precision.
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x y

min(x, y) max(x, y)

Corresponding code:

if x ≥ y + 1 then

u := x;
x := y;
y := u;

else

skip;
end

Figure 7.13: Odd-even sort algorithm of 8 elements
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Table 7.1: Analysis benchmarks on a 3 GHz Pentium with 4 Gb RAM

Program # line # var.
time (s)
with ∇

time (s) with

∇gen +
narrowing

time (s) [AGG08] # gen.

memcpy 16 8 0.056 0.024 2.87 7
strncpy 20 8 0.044 0.024 2.82 7

incrementing-1 7 3 < 0.001 < 0.001 0.004 3
incrementing-2 10 4 0.004 < 0.001 0.04 4
incrementing-3 14 5 0.012 0.004 0.128 5
incrementing-4 17 6 0.024 0.008 0.336 6
incrementing-5 20 7 0.040 0.016 0.95 7
incrementing-6 22 8 0.060 0.020 2.85 8
incrementing-7 25 9 0.092 0.028 4.61 9
incrementing-8 28 10 0.128 0.036 10.75 10
incrementing-9 31 11 0.184 0.048 16.625 11
incrementing-10 34 12 0.244 0.064 27.3 12
incrementing-11 37 13 0.336 0.088 49.64 13
incrementing-12 40 14 0.44 0.108 77.12 14
incrementing-13 43 15 0.580 0.136 130.65 15
incrementing-14 46 16 0.732 0.158 158.28 16
incrementing-15 49 17 0.94 0.210 245.32 17
incrementing-20 64 22 2.52 0.5 1289.29 22
incrementing-25 79 27 5.63 1.0 5258.55 27
incrementing-30 94 32 11.24 1.7 15692.9 32
incrementing-40 124 42 35.41 4.7 87134.8 42
incrementing-45 139 47 57.5 7.0 188866.0 47
incrementing-60 184 62 190.2 19.0 — 62

analysis + conversion analysis + conv.
oddeven-4 39 9 0.012 + 0.016 0.028 + 79.51 16
oddeven-5 70 11 0.10 + 0.064 0.47 + — 32
oddeven-6 86 13 0.52 + 0.57 3.08 + — 64
oddeven-7 102 15 4.05 + 4.48 59.55 + — 128
oddeven-8 118 17 21.90 + 31.6 437.17 + — 256
oddeven-9 214 19 202.2 + 254.38 8240.65 + — 512
oddeven-10 240 19 1979.7 + 2591.0 81050.27 + — 1024

are most often represented only by their generator component. Therefore, the standard
widening causes an additional call to the algorithm ComputeExtRaysPolar. However,
note that to obtain the same level of precision, ∇gen has to be combined with a narrowing
operator. Here, the narrowing operator

∇
maps any decreasing sequence of elements X0 ⊒

. . . ⊒ Xn ⊒ . . . to the following sequence:





Y0

def
= X0

Yn+1
def
= Yn

∇
nXn+1

where
∇

1 is defined as the intersection operator ⊓, and X
∇

n Y = X for any n ≥ 2. Intuitively,
this narrowing operator applies the intersection on the two first elements X0 and X1, and then
returns the sequence constant to X0 ⊓ X1. Observe that the sort algorithms oddeven-n does
not involve loops, so that their analysis does not use widening or narrowing operators.
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7.5 Conclusion of the chapter

In this chapter, we have introduced three new numerical abstract domains, which respectively
infer max-invariants, min-invariants, and a superset of min- and max-invariants, and which
are based on tropical polyhedra. We have also defined sound and precise abstract primitives
on these domains. The two first domains are more precise that the abstract domain of zones,
while the third one is able to precisely interact with the abstract domain of octagons.

We have implemented these three abstract domains in the library TPLib, and experi-
mented them on several program analyses. We have shown that they allow to infer precise
invariants on memory manipulating programs. We have also seen that our numerical abstract
domains are able to scale up to highly disjunctive invariants, which would be practically
impossible with other existing disjunctive abstractions.



CHAPTER 8

Conclusion

8.1 Summary of the contributions

Advances in combinatorics and algorithmics of tropical polyhedra. We have defined two
algorithms allowing to pass from the external to the internal representations of tropical poly-
hedra, and vice versa (Chapter 5).

The key ingredient of these two algorithms is a better understanding of the notion of
extremality in tropical polyhedra and cones defined as the intersection of tropical halfspaces
(Chapter 3). We have indeed reduced the characterization of the extremality of an element x

in a tropical polyhedron P to the existence of a greatest strongly connected component in a
given directed hypergraph. This hypergraph corresponds to a combinatorial encoding of the
neighborhood of x in the polyhedron P. On top of that, we have derived an even simpler
extremality criterion in the polar of cones defined by means of generating sets (Section 5.2.3).
This is a singular result, which constrasts with the exact duality between the extremality
characterization in cones and their polar in the classical case.

The first algorithm, ComputeExtRays, computes a minimal generating representation
of a tropical polyhedron from a system of constraints. It consists in a combination of an
incremental method and the extremality criterion previously discussed. The former, the trop-
ical double description method, is a generalization of the famous algorithm of Motzkin et
al. [MRTT53] to the tropical setting. It allows to compute a generating set of a tropical
polyhedron by induction on the system of constraints defining it. We have precisely charac-
terized the worst-case complexity of ComputeExtRays. Thanks to our efficient extremality
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criterion, it has been proved to be more efficient than the existing methods by several orders
of magnitude. This result has been confirmed by a practical comparison of their implemen-
tations, which has shown that our method is able to scale to instances inaccessible until
now.

The second algorithm, ComputeExtRaysPolar, determines a minimal generating set
of the polar of a tropical cone defined by means of generators. It is based on a dual variant
of the tropical double description method, and an efficient implementation of the extremality
criterion in polar cones. We have shown that, in terms of worst-case complexity, it is more
efficient than the naive dualization of the algorithm ComputeExtRays or of the other
existing methods (Section 5.2.5).

We have completed this algorithmic study by novel results on the maximal number of
extreme elements in tropical polyhedra. We have established that a bound analogue to Mc-
Mullen’s one (which holds in the classical setting) is also valid in the tropical case. We have
studied a particular class of tropical polyhedra which have appeared as potential candidates to
maximize the number of extreme elements. This has allowed to show that the McMullen-type
bound is asymptotically reached when the dimension d tends to infinity, while the number
p of inequalities defining the polyhedron is fixed. This has also proved that the number of
elements is still exponential in some other configurations of d and p. The problem of finding
the exact upper bound and the maximizing class of polyhedron is however still open.

Strongly connected components in directed hypergraphs. Chapter 4 has been devoted to
the computation of strongly connected components which are maximal for the order induced
by the reachability relation in directed hypergraphs. Very surprisingly, algorithms discovering
strongly connected components in directed hypergraphs had not been studied in the litera-
ture. The only existing solution consisted in a sequence of calls to an algorithm of Gallo et
al. [GLPN93], which provides the set of reachable nodes from a given node of a hypergraph.
We have shown that this approach is not optimal. For this reason, we have introduced an
original algorithm which discovers the maximal components in quasi-linear time in the size of
the hypergraph given in input. It is defined as an extension of Tarjan’s algorithm on directed
graphs. Correctness and complexity have been formally proved. We have also discussed
why determining all strongly connected components in directed hypergraphs appears to be a
harder problem.

Tropical polyhedra based abstract domains. We have defined a family of disjunctive nu-
merical abstract domains based on tropical polyhedra (Chapter 7).

The two first ones, MaxPoly and MinPoly, respectively allow to infer max- and min-
invariants over a given set of variables, of the form f(α1+v1, . . . , αd+vd) ≤ f(β1+v1, . . . , βd+
vd) where f is one of the two operators max and min. Such invariants correspond to a certain
class of disjunctions of zone invariants (of the form vi − vj ≥ κ). The domain MaxPoly and
MinPoly are both provided with the usual abstract primitives. All have been proven to be
sound, and many precision results have been established. In particular, the union operator
has been shown to be as precise as possible, while intersection and assignment primitives
are exact. These primitives rely on the description of tropical polyhedra either by means
of generating representations, or by means of tropically affine constraint systems. They are
consequently based on the conversion algorithms previously discussed. Their complexity have
been precisely characterized. Two kinds of widening operators have been introduced. The
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first one can be seen as a generalization of the widening primitive defined by Cousot and Halb-
wachs in [CH78]. The second one is entirely original, and is based on a projection operator
on tropical polyhedra. The two domains MaxPoly and MinPoly have been proved to be more
precise than Mine’s zone abstract domain. In particular, we have defined a primitive allowing
to extract the smallest zone containing the abstract elements of MaxPoly and MinPoly.

The third domain MinMaxPoly is a generalization of the two previous domains. Its abstract
elements express max-invariants over the variables vi and their opposite, which includes both
min- and max-invariants over the vi. By extension, they encode some disjunctions of octagonal
invariants (±vi ± vj ≥ κ). It is also provided with sound abstract primitives. Besides, the
domain can be precisely combined with the abstract domain of octagons, which allows to
enable a communication of the numerical information between the vi and their opposite.

The three numerical abstract domains have been integrated in a static analysis on mem-
ory manipulations, able to automatically compute sound invariants between integer variables,
the size of arrays, and the length of strings (introduced in Chapter 6). The whole contribu-
tion has been implemented in a prototype analyzer, and experimented on several programs.
We have shown that the resulting analyzer successfully infers precise properties on memory
manipulating programs, while non-disjunctive techniques were not sufficient. We have also
seen that our tropical polyhedra based domains are a significant contribution as a scalable
and entirely automatic method to compute disjunctive invariants. This scalability is mostly
provided by the algorithmic improvements on tropical polyhedra brought by ComputeEx-

tRays and ComputeExtRaysPolar. The abstract domains based on tropical polyhedra
consequently appear as a real alternative to the existing disjunctive analysis techniques, such
that disjunctive completion or trace partitioning.

Software. All the algorithms on tropical polyhedra and on directed hypergraphs defined in
this work, and the abstract domains MaxPoly, MinPoly and MinMaxPoly, have been imple-
mented in the library TPLib [All09], written in OCaml and distributed under the LGPL.

8.2 Perspectives

8.2.1 Combinatorics and algorithmics of tropical convex sets

8.2.1.a Faces in the tropical setting. The combinatorial criterion developed in Chapter 3
gives a better insight into the notion of extreme points in tropical polyhedra. We think that
it would be very useful to generalize this work to the study of faces.

Nevertheless, faces are not yet precisely defined in the tropical setting. In [Jos05], Joswig
proposed a first defininition of facets of a tropical polytope P, as the tropical convex hull
of the extreme points contained in a tropical halfspace H such that H ⊃ P. Then, faces
are intuitively defined as intersection of facets, thus forming a distributive lattice. However,
Develin and Yu discovered in [DY07] that this definition was not satisfactory in dimensions
greater than 2. For this reason, they revisited faces, following the initial approach to tropical
geometry developed by Richter-Gebert et al. [RGST05]. In this latter work, a tropical poly-
tope is defined as the image by the degree map of a lift, which is a convex polytope over the
d-fold of the Puiseux series field with real exponents R[[tα]]. Then Develin and Yu defined
the faces of a tropical polytope P by means of the faces of the possible lifts of P. They
conjectured that with this formalism, faces are “well-defined” (see [DY07, Conjecture 4.7]).
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In any case, it would be of benefit, both from a combinatorial and an algorithmic point
of view, to get an “intrisic” definition of faces, i.e. which would rely on the description of
tropical polyhedra as the convex hull of points or as the intersection of tropical halfspaces.
Indeed:

(i) faces would bring a better understanding of the combinatorial complexity of tropical
polyhedra. They could certainly lead to establish an upper bound on the number of
extreme elements, and provide the maximizing class, by developing a tropical analogue
of the theory of f -vectors for instance.

(ii) facets could also help to provide a canonical, and hopefully minimal in some sense,
external representation of tropical polyhedra and polyhedral cones. Indeed, even if the
extreme elements of the polars can be used as such, some of them necessarily represent
redundant inequalities, which can be annoying in some algorithmic applications.

8.2.1.b Tropical linear programming and related problems. An other important algorith-
mic challenge is to develop algorithms allowing to perform linear programming in the tropical
case, i.e. to solve problems of the form:

Maximize ex

Subject to Ax⊕ b ≤ Cx⊕ d

or of the form:
Minimize fx

Subject to Ax⊕ c ≤ Bx⊕ d

where A, B ∈ R
p×d
max, c, d ∈ R

p
max, and e, f ∈ Rd

max. They consist in respectively maximizing
or minimizing tropical linear forms under polyhedral constraints. Such problems have been
studied by Butkovič and Aminu in [BA08]. They have defined pseudo-polynomial time algo-
rithms able to handle instances with integer entries. The question “Can linear programming
problems be solved in worst-case polynomial time?” is however still open.

A related problem, “Find a solution of a tropical affine system Ax⊕c ≤ Bx⊕d”, is also of
great interest. It can be seen as a particular instance of the two previous problems. Naturally,
using the tropical double description method for this problem would be an overkill, since this
latter computes the whole set of the solutions, while here, only one solution is expected. The
corresponding linear problem “Find a non-identically null solution of the tropical linear system
Ax ≤ Bx” has already been studied in the literature. The alternating method, developed by
Cuninghame-Green and Butkovič in [CGB03], allows to find a solution (x,y) of an equation
of the form Cx = Dy.1 It runs in pseudo-polynomial time when the entries of the matrices
are integers. Butkovič and Zimmerman later proposed an algorithm to find a non-identically
null solution of Ax = Bx [BZ06]. They thought that its complexity was linear, but this
statement was disproved by Bezem et al. [BNRC08a]. The latter proved that this problem
belongs to the complexity class NP ∩ coNP [BNRC08b]. This result has been generalized by
Akian et al. [AGG09a], who have shown that the linear and affine problems, and some other
problems related to tropical linear convexity, reduce to mean payoff games. They similarly

1Solving Ax ≤ Bx and Cx = Dy are two equivalent problems. The latter can be used to solve the former

defining C =
`

A⊕B
B

´

and D =
“

Id
Id

”

, where Id is the tropical identity d× d-matrix. Conversely, the latter can

be seen as an instance of A(x, y) ≤ B(x, y) by setting A =
“

C ✵p×d

✵p×d D

”

and B =
“

✵p×d D

C ✵p×d

”

.
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derived that they are all in NP ∩ coNP. Finding polynomial time algorithms is still an open
problem, which consequently also have important applications to game theory.

8.2.1.c Further work on the tropical convex hull problem. As discussed in the conclusion
of Chapter 5, a very interesting perspective is to develop further algorithms allowing to pass
from the external form of tropical polyhedra to their internal form, and conversely. The
algorithms ComputeExtRays and ComputeExtRaysPolar are both defined incremen-
tally. In the classical case, some other well-known algorithms, such as the optimal solution of
Chazelle [Cha93], or the Beneath-and-Beyond method of Seidel [Sei81] use a similar principle.
It would be natural to ask whether they can be generalized to the tropical setting.

However, the major drawback of the previous algorithms is that none are output-sensitive
(i.e. their time complexity can not be bounded in terms of the size of the result), since
their complexity highly depends on the size of the intermediate results. For this reason, we
think that an important challenge is to define another class of algorithms, such as pivoting
algorithms, for tropical polyhedra. In the classical case, pivoting algorithms usually refer
to variants of the simplex algorithm. The initial purpose of the simplex method is linear
programming [Dan63]. It consists in iterating over the vertices of a polyhedron given by
a system Ax ≤ b, by enumerating the feasible bases. A basis corresponds to a subsystem
A′x ≤ b′ of rank d. It is said to be feasible when the unique solution of A′x = b′ also satisfies
the initial system Ax ≤ b. Each vertex of the polyhedron can naturally be associated to
at least one feasible basis. It can be shown that starting from a vertex, and then iterating
over the feasible bases by “pivoting”, i.e. by exchanging at each step one of the inequali-
ties of the basis by another constraint of the system Ax ≤ b, allows to discover the whole
set of vertices. One of the most famous convex hull pivoting algorithms is due to Avis and
Fukuda [AF92]. It consists in iterating over all the feasible bases using a particular traversal
algorithm, the reverse-search method, which has been later generalized to other combinatorial
enumeration problems [AF96]. Pivoting algorithms are particularly efficient for simple poly-
topes, in which each vertex admits a unique feasible basis.2 For instance, the time complexity
of the reverse-search method can be shown to be polynomial in the size of the input and the
output. However, in practice, pivoting algorithms usually have poor performance on “degen-
erate” inputs, which admit much more feasible bases than vertices. In constrast, incremental
methods behave much better on such instances.

Observe that the classical pivoting algorithms all start from a particular vertex. As
previously discussed, finding such a point in the tropical setting may not be that easy (in
particular, we do not have yet polynomial time methods in the general case). However, the
conversion problems, from external to internal forms, and inversely from internal to external
forms, may not be computationally equivalent. In particular, finding an extreme element of
the polar of a cone is straightforward, since any tautology xi ≥ ✵ is a valid candidate. That is
why we think that in a first step, it could be easier to define pivoting algorithms to compute
the extreme elements of polar cones. Also note that a pivoting algorithm in the tropical
setting would also be interesting to solve tropical linear programming problems discussed in
Section 8.2.1.b.

Finally, we know that in general, computing the whole set of the vertices of a polyhedron
given by a system of inequalities is a NP-hard problem [KBB+06]. Is it still true in the tropical
case?

2Formally, a polytope is said to be simple when every vertex is in precisely d facets.



198 Chapter 8. Conclusion

8.2.1.d Studying other operations on tropical polyhedral sets. While the conversion al-
gorithms that we have defined in Chapter 5 are of critical importance, algorithms performing
other kinds of operations are also of interest. For instance, it would be interesting to study
how to efficiently compute the intersection of two tropical polyhedra P and Q when both are
provided by generating representations. If the corresponding homogenized cones are given by
two generating sets G and H, then the homogenized cone of P ∩ Q is formed by the vectors

x such that there exist λ ∈ R
|G|
max, µ ∈ R

|H|
max satisfying the system:

x = Gλ = Hµ, (8.1)

where the sets G and H are assimilated to matrices whose columns are formed by their
elements. A generating family of the cone P̂ ∩ Q can be computed by solving the system (8.1)
over the triples (x, λ,µ), and then projecting the result on the first d coordinates. However,
this projection may yield redundant elements. That is why we may ask whether there exists
a method to directly compute a minimal generating representation of P ∩ Q. Similarly,
computing the inverse image by a tropical linear map f : x 7→Mx (M ∈ R

p×d
max) of a tropical

polyhedra cone C = cone(G) amounts to solve the system

Mx = Gλ

in the unknown (x, λ), and then projecting the provided generating set on the first d coordi-
nates. Can we compute a minimal generating set of f−1(C) directly, i.e. without having to
generate redundant candidates? Generalizing the extremality criterion of Chapter 3 to such
configurations could certainly help to answer these questions.

8.2.2 Numerical abstract domains.

8.2.2.a Improving precision: mixing tropical and classical linear invariants. The numeri-
cal domains developed in Chapter 7 are able to infer precise invariants involving the operators
min and max, which is an important advantage over the existing convex domains. However,
they do not precisely handle classical linear invariants, except zone and octagonal properties.
That is why we may wonder how to combine them with some classical convex domains.

In the abstract interpretation framework, domains are usually combined using reduced
product [CC79]. The latter intuitively consists in a cartesian product of domains, equipped
with a reduction operator enabling communication between the different domains. Neverthe-
less, a more powerful combination could be performed following a technique due to Nelson and
Oppen [NO79], and generalized to abstract domains by Gulwani and Tiwari in [GT06]. Such
a combination of the abstract domain MaxPoly with the domain of classical convex polyhedra
would allow for instance to express the following invariant:

max(v1,v2 + v3) ≤ max(0,v2 + 2v4)− 2 max(1,v1 + 1).

This relation is actually encoded by a couple of abstract elements of each domain. Each
abstract element expresses invariants over the variables vi and some shared variables, denoted
here si, which are the key ingredient of the combination. In our example:

max(v1, s1) = s2

max(0, s3) = s4

max(1,v1 + 1) = s5︸ ︷︷ ︸
MaxPoly

s1 = v2 + v3

s3 = v2 + 2v4

s2 ≤ s4 − 2s5︸ ︷︷ ︸
convex polyhedra
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Unfortunately, because of the non-convexity of the domain MaxPoly, the additional time cost
of the Nelson-Oppen combination may be exponential in the number of shared variables.
However, this combination is very expressive, and applies to a very general setting. Hopefully
we could develop an ad-hoc combination which would be maybe less precise but more efficient.
We could for instance restrict the expressiveness to invariants of the form:

max(α0, α1 + f1, . . . , αp + fp) ≤ max(β0, β1 + f ′
1, . . . , βp + f ′

q) (8.2)

where the fi and f ′
j are linear forms over the variables vk.

3 This would allow to be more
precise than the abstract domain developped by Gulavani and Gulwani in [GG08], and applied
to timing analysis.

8.2.2.b Improving scalability: towards subpolyhedral domains. An other challenge is the
definition of more scalable tropically convex domains. In particular, it would be particularly
interesting to find subclasses of invariants which could be inferred in polynomial time.

Naturally, zones are an illustration of such domains. We think that it would be certainly
instructive to rediscover this abstract domain as a tropical subpolyhedral domain, and to
redefine its abstract primitives, in particular widening operators, so as to use the generator
form.4

Similarly, we could develop a tropical analogue of the abstract domain of linear tem-
plates [SSM05]. This domain infers lower and upper bounds on a pre-fixed set of linear forms
f1,. . . ,fp over the set of the variables v1,. . . ,vd. Its abstract primitives are based on linear
programming algorithms, and their time complexity are therefore polynomial. Generalizing
this domain to the tropical setting would naturally require to have a better insight into the
complexity of tropical linear programming. However, the existing algorithms discussed in
Section 8.2.1.b would be probably a good starting point.

8.2.2.c Application to further static analyses. Finally, we believe that other static analyses
could benefit from the precision of the abstract domains based on tropical polyhedra.

As discussed in Section 7.4.3, these domains could be used in array predicate abstraction.
More generally, they could be also involved in static analyses inferring “pattern” invariants
on string buffers, such as

/[^/]i1/[^/]i2/[^/]i3

which represents a path of depth 3 in a UNIX filesystem (using a POSIX-like regular expres-
sion notation). To get a precise information, these patterns would be decorated with numerical
data (here the i1, i2, i3 represent the number of characters located between the delimiters /).
The whole invariants on strings would include numerical properties on these variables. Such
invariants are omnipresent in string processing software.5 In particular, precisely analyzing

3Also observe that if the coefficients of the linear forms are positive integers, the invariant (8.2) is actually
a non-affine polynomial relation in the tropical sense. For instance, a term of the form max(v1, v2 + 2v3) can
be indeed written as v1 ⊕ (v2 ⊗ v2

3). Consequently, another approach could be to define an abstract domain
able to infer tropical polynomial invariants. Nevertheless, the complexity of such a domain would be certainly
much worse that the affine domains introduced in this manuscript.

4Until now, no generator form for zones could be used in practice, since zones were seen as convex sets in
the classical case. They could therefore have an exponential number of extreme elements in the worst case
(consider for instance a hypercube).

5This includes a very large class of software, such as web, email, database servers and clients, spam filters,
versioning tools, etc.
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such pattern manipulations certainly requires to express min- or max-relations between the
program variables and the numerical data decorating the pattern invariants.

Final words

Finally, we really hope that the free distribution of the algorithms on tropical polyhedra and
the corresponding abstract domains in the open source library TPLib will help to overcome
the challenges previously discussed. The integration of the abstract domains of TPLib into
the APRON library [JM] is one of the goals of the project “ASOPT” of the French National
Agency of Research (ANR).
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[CC04] Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In
Roberto Giacobazzi, editor, Static Analysis Symposium (SAS), volume 3148 of
Lecture Notes in Computer Science, pages 312–327. Springer, 2004.



Bibliography 205

[CCF+05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
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Mines de Paris, July 1992.

[GG08] Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain based
on expression abstraction and max operator with application in timing analysis.
In Aarti Gupta and Sharad Malik, editors, Computer Aided Verification, 20th
International Conference, volume 5123 of Lecture Notes in Computer Science,
pages 370–384. Springer, 2008.

[GGPR98] Giorgio Gallo, Claudio Gentile, Daniele Pretolani, and Gabriella Rago. Max
horn sat and the minimum cut problem in directed hypergraphs. Math. Pro-
gram., 80:213–237, 1998.

[GK06] S. Gaubert and R. Katz. Max-plus convex geometry. In R. A. Schmidt, editor,
RelMiCS/AKA 2006, volume 4136 of Lecture Notes in Comput. Sci., pages 192–
206. Springer, 2006.

[GK07] S. Gaubert and R. Katz. The Minkowski theorem for max-plus convex sets.
Linear Algebra and Appl., 421:356–369, 2007.

[GK09a] S. Gaubert and R. Katz. The tropical analogue of polar cones. Linear Algebra
and Appl., 431:608–625, 2009.
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[Min01a] A. Miné. A new numerical abstract domain based on difference-bound matrices.
In PADO II, volume 2053 of LNCS, pages 155–172. Springer-Verlag, May 2001.
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf.



Bibliography 211
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[Min04] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
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[Min06] A. Miné. Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In ACM SIGPLAN LCTES’06, pages 54–63.
ACM Press, June 2006.

[Mon08] David Monniaux. The pitfalls of verifying floating-point computations. ACM
Transactions on programming languages and systems, 30(3):12, May 2008.

[MOS04] Markus Müller-Olm and Helmut Seidl. A Note on Karr’s Algorithm. In Josep
Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP,
volume 3142 of Lecture Notes in Computer Science, pages 1016–1028. Springer,
2004.

[MR05a] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In ESOP’05, 2005.

[MR05b] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpre-
tation based static analyzers. In M. Sagiv, editor, European Symposium on
Programming (ESOP’05), volume 3444 of Lecture Notes in Computer Science,
pages 5–20. Springer-Verlag, 2005.

[MRTT53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double descrip-
tion method. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the
Theory of Games, volume II, pages 51–73, 1953.

[Nil71] Nils J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill
Pub. Co., 1971.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C pro-
grams. In CC ’02: Proceedings of the 11th International Conference on Compiler
Construction, pages 213–228, London, UK, 2002. Springer-Verlag.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NP89] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In COMO
’86: Lectures given at the third session of the Centro Internazionale Matematico
Estivo (C.I.M.E.) on Combinatorial optimization, Lectures Notes in Mathemat-
ics, pages 258–271, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[NPG98] Sang Nguyen, Stefano Pallottino, and Michel Gendreau. Implicit enumeration
of hyperpaths in a logit model for transit networks. Transportation Science,
32(1):54–64, 1998.



212 Bibliography

[NS07] V. Nitica and I. Singer. Max-plus convex sets and max-plus semispaces. I.
Optimization, 56(1–2):171–205, 2007.

[NuS] Nusmv. http://nusmv.irst.itc.it/.

[Off92] United States General Accounting Office. Patriot missile defense, software prob-
lem led to system failure at dhahran, saudi arabia. http://archive.gao.gov/
t2pbat6/145960.pdf, February 1992.
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APPENDIX A

Non-disjunctive numerical domain for
array predicate abstraction

We present a numerical abstract domain to infer invariants on (a possibly unbounded number
of) consecutive array elements using array predicates. It is able to represent and compute
affine equality relations over the predicate parameters and the program variables, without
using disjunctions or heuristics. It is the cornerstone of a sound static analysis of one- and
two-dimensional array manipulation algorithms. The implementation shows very good perfor-
mance on representative benchmarks. Our approach is sufficiently robust to handle programs
traversing arrays and matrices in various ways.

A.1 Introduction

Program analysis now involves a large variety of methods able to infer complex program
invariants, by using specific computer-representable structures, such as intervals [CC77], oc-
tagons [Min01b], linear (more exactly affine) equality constraints [Kar76], or affine inequality
constraints [CH78]. Each abstract domain induces an equivalence relation: two abstract ele-
ments are equivalent if and only if they represent the same concrete elements. In this context,
an equivalence class corresponds to a set of equivalent abstract elements, called representa-
tives. Although all representatives are equivalent, they may not be identically treated by
abstract operators or transfer functions, which implies that the choice of a “bad” represen-
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1: int i, n, p; bool t[n];

2: assert 0 <= p <= n;

3: i := 0;

4: while i < n do

5: t[i] := 0;

6: i := i+1;

7: done;

8: while i > p do

9: t[i-1] := 1;

10: i := i-1;

11: done;

12:

Figure A.1: Incrementing then
decrementing array manipulations

int i, n; bool t[n];

i := 0;

while i < n do

t[i] := 0;

i := i+1;

done;

while ... do

if ... then

write_one();

else

write_zero();

end;

done;

write_one() {

if i > 0 then

t[i-1] := 1;

i := i-1;

end;

}

write_zero() {

if i < n then

t[i] := 0;

i := i+1;

end;

}

Figure A.2: Both incrementing and decrementing
array manipulations. The notation ... stands for a
non-deterministic condition.

tative may cause a loss of precision. Most numerical domains (for instance, reduced prod-
uct [CC92a]) are provided with a reduction operator which associates each abstract element
to a “good” equivalent element, which will allow gaining precision.

Unfortunately, in some abstract domains, it may not be possible to define a precise re-
duction operator, because for some equivalence classes, the notion of “good” representatives
may depend on further analysis steps, or on parts of the program not yet analyzed. This
difficulty appears in abstract domains based on universally quantified predicates ranging over
(a possibly unbounded number of) consecutive array elements (first introduced in [Cou03]).
The abstract elements of these domains consist of a predicate p and two parameters u and v:
p(u, v) means that all the elements whose index is between u and v (both included) contain
values for which the statement p holds. These predicates are then combined with classic
numerical abstractions to bind their parameters to the values of the program variables.

Overview of the problem. As an example, let us try to analyze the first loop of the program
given in Figure A.1, which initializes the array t with the boolean 0. For that purpose, we
introduce the predicate zero (which means that the associated array elements contain the
value 0), combined with the affine inequality domain. Informally, the loop invariant consists
in joining the abstract representations Σk of the concrete memory states arising after exactly
k loop iterations. For example, after one loop iteration (k = 1), the instruction t[i] := 0

has assigned a zero to the array element of index 0, so that zero(u, v), with u = v = 0,
i = 1 and n ≥ 1. Similarly, after ten loop iterations, the ten first array elements have been
initialized, thus zero(u, v), with u = 0, v = 9, i = 10 and n ≥ 10. It can be shown that
joining all the abstract states Σk with k ≥ 1, i.e. which have entered the loop at least
once, yields the invariant zero(u, v), with u = 0, v = i − 1, and 1 ≤ i ≤ n. We now
have to join this invariant with Σ0 to obtain the whole loop invariant. The abstract state Σ0

represents the concrete memory states which have not entered the loop. Since the array t is not
initialized, Σ0 is necessarily represented by a degenerate predicate, i.e. a predicate zero(l,m)
such that l > m, which ranges over an empty set of array elements. Degenerate predicates
naturally form an equivalence class, containing an infinite number of representatives, while
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non-degenerate predicates form classes containing a unique representative. Now, choosing
the degenerate predicate zero(u, v) with u = 0, v = −1, i = 0, and n ≥ 0, to represent Σ0,
yields the expected loop invariant u = 0, v = i, and 0 ≤ i ≤ n. On the contrary, if we choose
zero(u, v) with u = 10, v = 9, i = 0, and n ≥ 0, we obtain an invariant zero(u, v) with much
less precise affine inequality relations, in which, in particular, the value of u is not known
exactly anymore (it ranges between 0 and 10). Therefore, the representative zero(0,−1) is a
judicious choice in the first loop analysis. But choosing the same representative for the second
loop analysis will lead to a major loss of precision. The second loop partly initializes the array
with the boolean 1 between from the index n − 1 to the index p. Using a predicate one to
represent array elements containing the value 1, the analysis yields the expected invariant
only if the representative one(t, s) with t = n and s = n− 1 is chosen to represent the class
of degenerate predicates one.

This example illustrates that the choice of right representatives for the degenerate classes
to avoid loss of precision, is not an obvious operation, even for simple one-dimensional array
manipulations. In [Cou03, GRS05], some solutions are proposed to overcome the problem:
(i) use heuristics to introduce the right degenerate predicates. This solution is clearly well-
suited for the analysis of programs involving very few different natures of loops, such as
incrementing loops always starting from the index 0 of the arrays, but is not adapted for more
complex array manipulations. In particular, we will see in Section A.4 that even classic matrix
manipulation algorithms involve various different configurations for degenerate predicates.
(ii) partition degenerate and non-degenerate predicates, instead of merging them in a single
(and convex) representation. However such a disjunction may lead to an algorithmic explosion,
since at least one disjunction has to be preserved for each predicate, including at control points
located after loops: for example, the expected invariant at the control point 12 in Figure A.1 is
zero(u, v)∧one(s, t) with u = 0, v = p−1, s = p, and t = n−1. Without further information
on n and p, this invariant contains non-degenerate and degenerate configurations of both
predicates zero(u, v) and one(s, t). Partitioning these configurations yields the disjunction
(n = p = 0) ∨ (n > p = 0) ∨ (p = n > 0) ∨ (0 < p < n). And, if the program contains
instructions after control point 12, the disjunction must be propagated through the rest of the
program analysis. Therefore, this approach may not scale up to programs manipulating many
arrays.1 (iii) partition traces [MR05a], for instance unroll loops, in order to distinguish traces
in which non-degenerate predicates are inferred, from others. This solution is adapted to
simple loops: as an example, for the loop located at control point 4 in Figure A.1, degenerate
predicates occur only in the trace which does not enter the loop. But, in general, it may
be difficult to automatically discover well-suited trace partitions: for example, in Figure A.2,
traces in which the functions write_one and write_zero are called the same number of times,
or equivalently, i = n, should be distinguished from others, since they contain a degenerate
form of the predicate one. Besides, if traces are not ultimately merged, trace partitioning
may lead to an algorithmic explosion for the same reasons as state partitions, while merging
traces amounts to the problem of merging non-degenerate and degenerate predicates in a
non-disjunctive way.

As we aim at building an efficient and automatic static analysis, we do not consider any
existing solution as fully satisfactory.

1However, some techniques could allow merging disjunctions in certain cases. We will see at the end of
Section A.3 that these techniques coincide with the join operation that we develop in this paper.
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Contributions. We present a numerical abstract domain to be combined with array pred-
icates. It represents sets of equivalence classes of predicates, by inferring affine invariants
on some representatives of each class. In particular, the right representatives are automati-
cally discovered, without any heuristics. As it is built as an extension of the affine equality
constraint domain [Kar76, MOS04], it does not use any disjunctive representations. Several
abstract transfer functions are defined, all are proven to be sound. This domain allows the
construction and the implementation of a sound static analysis of array manipulations. It is
adapted to array predicates ranging over the elements of one-dimensional or two-dimensional
arrays. Our work does not focus on handling a very large and expressive family of pred-
icates relative to the content of the array itself, but rather on the complexity due to the
automatic discovery of affine relations among program variables and predicate parameters,
hence of right representatives for degenerate predicates. Therefore, the analysis has been
experimented on programs traversing arrays and matrices in various ways. In all cases, the
most precise invariants are discovered, which proves the robustness of our approach.

Section A.2 presents the principles of the representation of equivalence classes of array
predicates. Section A.3 introduces the domain of formal affine spaces to abstract sets of
equivalence classes of array predicates by affine invariants on some of their representatives.
In Section A.4, the construction of the array analysis and experiments are discussed. Finally,
related work is presented in Section A.5.

A.2 Principles of the representation

As explained in Section A.1, array predicates are related by an equivalence relation, depending
on their nature (degenerate or non-degenerate): for an one-dimensional array predicate p,
two representations p(u, v) and p(u′, v′) are equivalent if and only if both are degenerate, i.e.
u > v ∧ u′ > v′, or they are equal (u = u′ ∧ v = v′). More generally, given predicates with
p parameters, we assume that there exists an equivalence relation ∼ over Rp, defining the
equivalence of two numerical p-tuples of predicate parameters.

Given a program with n scalar variables, a memory state can be represented by an ele-
ment of Rn+p, where each scalar variable is associated to one of the n first dimensions, and
array predicate parameters are mapped to the p last ones. Then, the equivalence relation ∼
can be extended to Rn+p to characterize memory states which are provided with equivalent
predicates: two memory states M, N in Rn+p are equivalent, which is denoted by M ≃ N ,
if and only if M and N coincide on their n first dimensions, and if the p-tuples formed by
the p last dimensions are equivalent w.r.t. ∼. We adopt the notation [M ] to represent the
equivalence class of M , i.e. the set of elements equivalent to M .

We have seen in Section A.1 that the representation of equivalence classes by arbitrarily-
chosen representative elements may lead to a very complex invariant, possibly not precisely
representable in classic numerical domains. Our solution consists in representing an equiv-
alence class by a formal representative instead: it consists in a (n + p)-tuple, whose n first
coordinates contain values in R, while the p last ones (related to predicate parameters) con-
tain formal variables, taken in a given set X . A formal representative R is provided with a
set of valuations over X : each valuation ν maps R to a point Rν of Rn+p, by replacing each
formal variable x in R by the value ν(x) ∈ R. Then, an equivalence class C can be represented
by a formal representative R and a set of valuations V such that for any ν ∈ V , the element
Rν is in the class C. In other words, a formal representative can represent several elements
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of a same equivalence class.
Let us illustrate the principle of formal representative with the program in Figure A.1,

with n = 3 scalar variables i, n, and p. Consider the equivalence class of a memory state at
control point 4 which has not yet entered the loop, thus in which the predicate zero(u, v) is
degenerate, and in which, for instance, i = 0, n = 10, and p = 5. It can be represented by
the formal representative R = (0, 10, 5, x, y) (written as a row vector for reason of space) and
the set of valuations V = {ν | ν(x) > ν(y)}: indeed, each representative Rν corresponds to a
predicate zero(u, v) such that u > v. In that case, all the equivalent numerical configurations
for the degenerate predicate zero(u, v) are represented in the formal representative.

Therefore, formal representatives allow keeping several representatives for a given class C
instead on focusing on only one of them. In the following sections, we define formal affine
spaces, which extend the affine equality domain to range over formal representatives. These
formal affine spaces are combined with sets of valuations represented by affine inequality
constraints over X , giving the right values for the representatives. Besides, we describe how
to compute the formal affine spaces, so as to automatically discover affine invariants on some
representatives of distinct equivalence classes.

A.3 Formal affine spaces

We now formally introduce the abstract domain to represent sets of equivalence classes of
array predicates. We follow the abstract interpretation methodology [CC77], by defining a
concretization operator, and then abstract operators such as union.

Let ∆ be the set of equivalence classes w.r.t the equivalence relation ≃, and ∆(X ) be
the set of formal representatives. Formally, ∆(X ) is isomorphic to the cartesian product of
Rn, representing the set of memory states over scalar variables, with X p. Given a formal
representative M , π1(M) represent the n-tuple consisting in the n first coordinates. This
element of Rn is called the real component of M . Besides, the p last coordinates of M forms
π2(M), called formal component of M . Similarly, the ith coordinate of M is said to be real
(respectively formal) if i ≤ n (resp. i > n).

While the affine equality domain was initially introduced using conjunctions of equality
constraints [Kar76], affine spaces can be represented by means of generators as well [MOS04].
An affine generator system E + Ω is given by a family E = (ei)1≤i≤s of linearly independent
vectors of Rn, and a point Ω ∈ Rn. It is associated to the affine space defined by:

Span(E + Ω) =

{
Ω +

s∑

i=1

λiei | λ1, . . . , λs ∈ R

}
, (A.1)

corresponding to the set of the points generated by the addition of linear combinations of the
vectors ei to the point Ω. Affine generator systems are equivalent to sets of affine constraints.
Indeed, the elimination of the λi in the combinations given in (A.1) yields an equivalent set
of affine constraints over the coordinates of the points.

Formal affine spaces are defined by extending affine generator systems of Rn with p formal
coordinates: generators are now elements of ∆(X ), provided with a set of valuations.

Definition A.1. A formal affine space E + Ω ¦ V is given by a family E = (e1, . . . , es) of
vectors of ∆(X ), a point Ω of ∆(X ) verifying:

❼ the (π1(ei))1≤i≤s are linearly independent,
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π1
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where V = {x1 = x2 ∧ y1 = y2 ∧ z1 > z2}
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where V ′ = {x′
1 = x′

2 = 0∧y′1 = y′2 = 0∧z′1 =
z′2 = 0}

Figure A.3: Two formal affine spaces for n = 3 and p = 2

❼ any two formal variables occurring in (π2(ei))i and π2(Ω) are distinct,

and an affine inequality constraint system V over the formal variables occurring in (π2(ei))i

and π2(Ω).

Figure A.3 gives an example of formal affine spaces. We abusively denote by ν ∈ V
the fact that the valuation ν satisfies the constraint system V . Similarly to “classic” affine
generator systems, a formal affine space E + Ω ¦ V generates a set of formal representatives,
written as combinations Ω +

∑
i λiei. As explained in Section A.2, each formal representative

R, provided with the set of valuations satisfying V , represents a set of several representatives
which belong to a same equivalence class C: for any ν ∈ V , C = [Rν]. Following these
principles, the concretization operator γ maps any formal space E + Ω ¦ V to the set of the
equivalence classes represented by the generated formal representatives:

γ(E + Ω ¦ V )
def
= {C | R ∈ Span(E + Ω) ∧ ∀ν ∈ V. C = [Rν]} , (A.2)

where Span(E + Ω) consists of the combinations Ω +
∑s

i=1 λiei, for λi ∈ R.

Example A.1. Consider the formal affine space E +Ω ¦V on the left-hand side of Figure A.3.
Any combination in Span(E +Ω) is a formal representative R of the form (0, λ, µ, λx1 +µy1 +
z1, λx2 +µy2 + z2) (written as a row vector for reason of space) where λ, µ ∈ R. Suppose that
the dimensions respectively represent the scalar variables i, n, p, and the parameters u and
v of a predicate zero(u, v). Then R represents the equivalence classes of memory states in
which i = 0, n and p have independent values, and for any valuation ν ∈ V ,

u = λν(x1) + µν(y1) + ν(z1) > λν(x2) + µν(y2) + ν(z2) = v , (A.3)

or equivalently, the predicate zero(u, v) is degenerate. In particular, E + Ω ¦ V allows
abstracting the memory states at control point 4 in Figure A.1 which have not yet entered
the loop. Besides, it represents several representatives for the degenerate predicate zero(u, v),
while a “classic” affine invariant would select only one of them. Similarly, the formal affine
space F + Ω′

¦ V ′ on the right-hand side of Figure A.3 yields formal representatives R′

corresponding to classes of memory states such that i = 1, n and p are arbitrary, and u = v =
0, since for i ∈ {1, 2}, λν ′(x′

i) + µν ′(y′i) + ν ′(z′i) = 0 for any valuation ν ′ ∈ V ′. Then, it is an
abstraction of the memory states after the first iteration of the first body loop in Figure A.1:
the first element of the array t (index 0) contains the value 0.
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A.3.1 Joining two formal spaces

We wish to define a union operator ⊔ which provides an over-approximation of two formal
affine spaces E + Ω ¦ V and F + Ω′

¦ V ′. Let us illustrate the intuition behind the definition
of ⊔ by sufficient conditions.

Suppose that G + O ¦W is the resulting formal space. A good start is to require ⊔ to
be sound w.r.t. the underlying real affine generator systems: if π1(G + O) denotes the real
affine generator system obtained by applying π1 on each vector gi of G and on the origin,
then π1(G + O) has to represent a larger affine space than those generated by π1(E + Ω) and
π1(F +Ω′). To ensure this condition, let us build G+O ¦W by extending the sum system of
the two real systems π1(E + Ω) and π1(F + Ω′).2 More precisely, if Gr + Or denotes the sum
system, we add p fresh formal variables to each vector of Gr and to Or, which yields G + O.

Then, to ensure γ(E+Ω¦V ) ⊂ γ(G+O¦W ), we require Span(E+Ω) to be “included” in
Span(G + O). Although the inclusion already holds for their real components (Span(π1(E +
Ω)) ⊂ Span(π1(G + O))), Span(E + Ω) and Span(G + O) can not be directly compared
since they may contain different formal variables. Therefore, we build a substitution σP

over the formal variables occurring in π2(E + Ω), such that for any R ∈ Span(E + Ω), we
have RσP ∈ Span(G+O). This substitution is induced by the change-of-basis matrix P from
π1(E+Ω) to π1(G+O), which verifies mat(π1(E+Ω)) = mat(π1(G+O))×P (mat(π1(E+Ω))
is the matrix whose columns are formed by the vectors (π1(ei))i and π1(Ω)). The matrix P
expresses the coefficients of the (unique) decomposition of each π1(ei) and π1(Ω) in terms of
the π1(O) and (π1(gk))k. It allows to express the π2(ei) and π2(Ω) in terms of the π2(O) and

(π2(gk))k as well, by defining σP by σP (mat(π2(E + Ω)))
def
= mat(π2(G + O))× P .

Now, it suffices that W be a stronger system of constraints than V σP , the system obtained
by applying the substitution σP on V . Indeed, for any class C ∈ γ(E + Ω ¦ V ), there exists
R ∈ Span(E + Ω) such that for any ν ∈ V , C = [Rν]. Then, for any ν ′ ∈ W , we have
ν ′ ∈ V σP , so that there exists a valuation ν ∈ V such that ∀x.(σP (x))ν ′ = ν(x). This implies
(RσP )ν ′ = Rν, hence C = [(RσP )ν ′]. A similar reasoning can be performed for F + Ω′

¦ V ′,
which leads to the following definition of ⊔:

Definition A.2. The union (E+Ω¦V )⊔(F +Ω′
¦V ′) is defined as the formal space G+O¦W

where π1(G+O) is the sum of π1(E+Ω) and π1(F +Ω′), yielding two change-of-basis matrices
P and Q respectively, and W is the conjunction of the two systems of constraints V σP and
V ′σQ.

The following proposition states that the union operator is sound.

Proposition A.1. The union (E + Ω ¦ V ) ⊔ (F + Ω′
¦ V ′) over-approximates the union of

the sets of classes represented by E + Ω ¦ V and F + Ω′
¦ V ′.

Example A.2. Consider the formal spaces E + Ω ¦ V and F + Ω′
¦ V ′ introduced in Ex. A.1.

The sum of the two real affine generator systems π1(E + Ω) and π1(F + Ω′) is a system in

2The sum system is obtained by extracting a free family Gr from the vectors (π1(ei))i, (π1(fi))j , and
π1(Ω

′) − π1(Ω), and choosing Or = π1(Ω). Then, Gr + Or generates the smallest affine space greatest than
the affine spaces represented by both π1(E + Ω) and π1(F + Ω′).
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P =




0 0 0
1 0 0
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
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
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σP (zi) 7→ ti






σQ(x′
i) 7→ yi

σQ(y′i) 7→ zi

σQ(z′i) 7→ ti + xi

Figure A.4: Change-of-basis matrices and their associated substitutions
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. (A.4)

The corresponding change-of-basis matrices P and Q are given in Figure A.4. In particular,
these matrices represent the relation π1(Ω

′) = π1(O) + π1(g1), which generates the substi-
tutions z′1 7→ t1 + x1 and z′2 7→ t2 + x2. The associated substitutions σP and σQ are then
defined in Figure A.4. Applying them on the constraint systems V and V ′ yields: V σP =
{y1 = y2∧z1 = z2∧t1 > t2} and V ′σQ = {y1 = y2 = 0∧z1 = z2 = 0∧t1+x1 = t2+x2 = 0},
so that:

W = {x1 = −t1 ∧ x2 = −t2 ∧ y1 = y2 = 0 ∧ z1 = z2 = 0 ∧ t1 > t2} . (A.5)

It can be intuitively verified that G + O ¦ W contains the formal spaces E + Ω ¦ V and
F + Ω′

¦ V ′:

❼ when i = 0, we have u = t1 + λy1 + µz1 and v = t2 + λy2 + µz2 for some λ, µ ∈ R,
so that for any ν ∈ W , uν = ν(t1) > ν(t2) = vν. Then the predicate zero(u, v) is
degenerate.

❼ when i = 1, we have u = t1 + x1 + λy1 + µz1 and v = t2 + x2 + λy2 + µz2, hence
uν = vν = 0 for any valuation ν ∈ W . In that case, the predicate zero(u, v) ranges
over the first element of the array.

The resulting formal space G + O ¦W is an over-approximation of the memory states arising
at control point 4 in Figure A.1, after at most one loop iteration.

We could show that joining E +Ω ¦V with the formal space resulting from the loop body
execution on G + O ¦W , yields the affine space G + O ¦W ′, where W ′ = {x′

1 = 0 ∧ x′
2 =

1 ∧ y′
1 = y′

2 = 0 ∧ z′1 = z′2 = 0 ∧ t′1 = 0 ∧ t′2 = −1}. It could be also verified that this affine
space is a fixpoint of the loop transfer function. It represents the expected invariant u = 0
and v = i−1. In particular, the computation automatically discovers the right representative
zero(0,−1) (obtained with i = 0) among all the representatives zero(u, v) such that u > v
contained in E + Ω ¦ V .

Definition A.2 and Ex. A.2 raise some remarks. Firstly, when considering increasing for-
mal affine spaces, the underlying real affine generators are logically growing, while the sets
of valuations become smaller (the constraint system becomes stronger). Intuitively, this cor-
responds to an increasing determinism in the choice of the representatives in the equivalence
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classes abstracted by the formal space. In particular, when considering formal spaces obtained
by iterating an increasing transfer function to compute a global invariant, two cases (among
possibly more) are singular: when the set of valuations is reduced to a singleton, and when
this set is empty. In the former, the formal affine space coincide with an affine generator
system over Rn+p: in other words, some representatives in the over-approximated equivalence
classes are bound with program variables by an affine invariant. This situation happens at
the end of Ex. A.2, in which u = 0 and v = i− 1 in the affine space over-approximating the
loop invariant. In the latter case, the discovery of an affine invariant failed: by definition of
γ, the concretization of the formal space is the entire set ∆.

Secondly, consider the two abstract memory states that we tried to join in Section A.1
to compute an invariant of the first loop in Figure A.1: on the one hand, a degenerate
predicate zero(u, v) with i = 0, and on the other hand, a non-degenerate one zero(u, v)
with u = 0, v = i − 1, and 1 ≤ i ≤ n. We could verify that joining the two representa-
tions by means of formal spaces, and in particular, computing the conjunction of the two
corresponding constraint systems V σP and V ′σQ, exactly amounts to check whether the
affine relations u = 0 and v = i − 1 match the degenerate condition u > v when i = 0.
More generally, when it succeeds, the approach based on matching degenerate condition
coincides with the operations performed when joining two formal spaces. The major ad-
vantage of formal affine spaces is that it is adapted to any program or coding style, while
matching degenerate conditions may fail. For example, let us consider the piece of program
i := n-1; if ... then t[i] := 0; i := i-1; fi;. The matching approach would check
if the non-degenerate invariant zero(u, v)∧ u = v = i + 1 = n− 1 match the degenerate con-
dition when i = n− 1, which is obviously false.

A.3.2 Precision and further abstract operators

All usual abstract operators can be defined on formal affine spaces. For reason of space, we
only give an enumeration. First, a partial order ⊑, defined in a similar way to the union
operator, can be introduced. Then, the concretization γ can be shown to be monotonic, and
the union ⊔ is the best possible join operator w.r.t. the order ⊑. Furthermore, the definition
of guard, constraint satisfiability, and assignment operations closely follows the definition
of the same primitives on real affine generator systems [Kar76, MOS04], thus their design
is simple. The main difference is that guards, satisfiability and assignments over predicate
parameters involve operations on both the family of generators and the system of constraints
representing the sets of valuations. For the latter, only usual operators, such as assignments
or extracting a valuation satisfying the set of constraints, are necessary. All the operators
on formal affine spaces are proven to be conservative. Moreover, exactness holds for guards,
satisfiability, and invertible assignments, when they are applied to a formal affine space whose
system of constraints representing the valuations is satisfiable.

A.4 Application to the analysis of array manipulations

Formal affine spaces has been implemented to analyze array manipulation programs. The
analysis computes abstract memory states consisting in a finite sequence of predicates, and
a formal affine space over the program variables and the predicate parameters. Note that a
reduced product of formal affine spaces with convex polyhedra [CH78] over scalar variables
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Figure A.5: Merging two contigu-
ous predicates
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Figure A.6: Example of a two-dimensional predicate

is used to increase precision, since affine generator systems do not precisely handle inequality
guards.

Array assignments (i.e. assignments of the form t[i] := e) introduce new predicates in
the abtract state (intuitively, non-degenerate predicates of the form p(u, v) with u = v = i).
Then, some predicates may represent contiguous memory areas of a same array, and thus
can be merged in a single predicate. The situations in which two predicates p and q can
be merged correspond to simple geometric configurations. Two of these configurations for
one- and two-dimensional are depicted respectively at the top and the bottom of Figure A.5.
All these situations can be expressed as conjunctions of affine equality constraints over the
parameters of the two predicates. When these constraints are satisfied, a new predicate pgq

is introduced in the abstract state. The statement p g q itself over-approximates p and
q: it expresses a property on the values of the array element which is weaker than those
expressed by p and q. And its parameters are initialized to fit the whole area obtained by
concatenating the memory areas corresponding to p and q. Finally, the predicates p and q

and their parameters are removed from the abstract state.

One-dimensional Predicates. Two kinds of predicates are used to analyze array manipulations,
depending on the type of arrays.

For arrays whose elements take their values in a finite set of cardinal K (such as booleans
or C enumerations), we consider one predicate c per possible value. Then c(u, v) states that
the array contains the value c between the indices u and v. We allow at most K pairwise
distinct predicates c1, . . . , cK per array. The merging operations are applied only to predicates
representing the same constant. Besides, if two predicates c(u1, v1) and c(u2, v2) ranging over
the same array can not be merged, they are simply removed from the abstract state. Although
this choice is very strict, it offers a tractable analysis, which is precise enough to handle the
examples given in Figs. A.1 and A.2, as reported in Table A.1.

For integer arrays, conjunctions of interval and bounded difference constraints (i.e. of the
form c1 ≤ x ≤ c2 or c1 ≤ x− y ≤ c2) between the array content and the scalar variables are
used. For instance, the predicate 〈0 ≤ t ≤ n− 1〉 (u, v) represents the fact that the elements of
the array t located between the indices u and v all contain values between 0 and n−1 (n being
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Table A.1: Analysis benchmarks

Programs Invariants (by default, at the end of the program) Time

Figure A.1 zero(0, p − 1) ∧ one(p, n − 1) ∼ 0.6 s
Figure A.2 outer loop invariant: zero(0, i − 1) ∧ one(i, n − 1) ∼ 0.7 s
full_init i. and d. 〈0 ≤ t ≤ n − 1〉 (0, n − 1) < 0.2 s
range_init i. and d. 〈p ≤ t ≤ q − 1〉 (p, q − 1) < 0.2 s
partial_init i. 〈0 ≤ t ≤ n − 1〉 (0, j − 1) and d. 〈0 ≤ t ≤ n − 1〉 (j, n − 1) ∼ 0.2 s
partition i. 〈ge ≥ 0〉 (0, gelen − 1) ∧ 〈lt ≤ −1〉 (0, ltlen − 1) ∼ 0.4 s

d. 〈ge ≥ 0〉 (gelen, n − 1) ∧ 〈lt ≤ −1〉 (ltlen, n − 1) ∼ 0.5 s
full_matrix r. 〈m = 0〉 ((0, 0), (0, n − 1), (n − 1, n − 1), (n − 1, 0)) 12.9 s

c.. 〈m = 0〉 ((n − 1, 0), (0, 0), (0, n − 1), (n − 1, n − 1)) 13.4 s
lower_triang r. 〈m = 0〉 ((0, 1), (0, n − 1), (i − 1, n − 1), (i − 1, i)) 12.6 s
(outer loop c. 〈m = 0〉 ((0, 1), (0, 1), (0, j − 1), (j − 2, j − 1)) 14.7 s
invariants) dg. 〈m = 0〉 ((0, 1), (0, k − 1), (n − k, n − 1), (n − 2, n − 1)) 11.3 s
upper_triang r. 〈m = 0〉 ((1, 0), (1, 0), (i − 1, i − 2), (i − 1, 0)) 14.6 s
(outer loop c. 〈m = 0〉 ((n − 1, 0), (1, 0), (j, j − 1), (n − 1, j − 1)) 13.1 s
invariants) dg. 〈m = 0〉 ((n − 1, 0), (n − k + 1, 0), (n − 1, k − 2), (n − 1, 0)) 15.0 s

a program scalar variable). Such predicates are implemented under the form of n+1 intervals:
one to bound the array values in an interval, n to bound the differences with the n scalar
variables. Then, the analysis allows at most one predicate per array. If a predicate associated
to an array is introduced during the computation while this array already has a predicate,
both are merged if possible, or simply removed if not. Moreover, to ensure termination, the
statement pg q is obtained by pointwise widening the intervals contained in p and q.

Two-dimensional Predicates. We use two-dimensional predicates which range over convex
quadrilateral areas of two-dimensional arrays. Predicates are of the form p(O1, O2, O3, O4),
and have now eight parameters, corresponding the x- and y-coordinates of the associated
vertices O1, O2, O3, and O4. Degenerate and non-degenerate predicates are distinguished
by the rotation direction of the points O1, O2, O3, and O4. We use the convention that
the interior of the polygon O1O2O3O4 is not empty if and only if O1, O2, O3, and O4 are
ordered clockwise, as in Figure A.6. The shape of the polygons O1O2O3O4 is restricted by
requirements, not fully detailed here, but implying in particular that the coordinates of the
Oi are integer, and the lines (OiOi+1) are either horizontal, vertical, or diagonal. These
requirements are weak enough to express the invariants used in the targeted algorithms.
Moreover, they allow characterizing degenerate polygons by a condition consisting of several
affine inequalities over the predicate parameters.

The analysis allows for each matrix at most two predicates: one is one-dimensional, while
the other is two-dimensional. Indeed, the matrix algorithms we wish to analyze performs
intermediate manipulations on rows, columns, or diagonals. Thus, the former predicate is
used to represent the invariant on the current one-dimensional structure, while the latter
collects the information on the older structures, which form a two-dimensional shape. The
predicates propagate bounded difference constraints relative to the matrix content.

Benchmarks. Table A.1 reports the invariants discovered by our analyzer, implemented in
Objective Caml (5000 lines of code), and the time taken for each analysis on a 1 Gb RAM
laptop using one core of a 2 GHz Intel Pentium Core Duo processor. The first six programs
involve only one-dimensional arrays. The two first programs are successfully analyzed us-
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ing constant predicates, and the right array shape is discovered. The third one, full_init,
initializes each element t[i] of the array t of size n with the value i. It results in a fully
initialized array with values ranging between 0 and n − 1. The program range_init has a
similar behavior, except that it performs the initialization between the indices p and q only.
The programs partial_init and partition are taken from [GRS05] and [BHMR07] respec-
tively. The former copies the value i in t[j] when the values of two other arrays a[i] and
b[i] are equal, and then increments j. The latter partitions the positive or null and strictly
negative values of a source array a into the destination arrays ge and lt respectively. The
three last programs involve matrices. The first one, full_matrix, fully initializes a matrix m

of size n × n. The two last ones only fill the upper- and lower-triangular part of the matrix
with the value 0. Each program contains two nested loops. As an illustration, the invari-
ant of the outer loop of the column-after-column version of lower_triang discovered by the
analysis is given in Figure A.6. The reader can verify that the final invariant obtained for
i = n−1 corresponds to a lower-triangular matrix. Several versions of each program are ana-
lyzed: for one-dimensional array manipulation algorithms, incrementing (i.) or decrementing
(d.) loops (except for the programs in Figs. A.1 and A.2 which already use both versions of
loops), and for matrix manipulation loops, row-after-row (r.), column-after-column (c.), or
diagonal-after-diagonal (dg.) matrix traversal.3 All the examples involving one-dimensional
arrays only are successfully analyzed in less than a second. Analysis time does not exceed
15 s on programs manipulating matrices, which is a good result, considering the complexity
of the merge conditions for two-dimensional predicates, and the fact that these programs con-
tain nested loops. These benchmarks show that the analysis is sufficiently robust to discover
the excepted invariant for several stategies of array or matrix manipulations programs. In
particular, the right representatives for degenerate predicates are automatically found out in
various and complex situations. As an example, the degenerate predicates discovered for the
programs lower_triang (obtained with i = 0, j = 1, and k = 1) and upper_triang (ob-
tained with i = 1, j = 0, and k = 1) all represent different configurations of interior-empty
quadrilateral shapes. Furthermore, although not reported in Table A.1, the analysis handles
simple transformations (such as loop unrolling) on the experimented programs, without any
loss of precision. Finally, for one-dimensional predicates, we have experimented, with formal
affine spaces, the manual substitution of the general degenerate condition u > v by the right
degenerate configurations for each program. In that case, operations on formal affine spaces
roughly coincide with operations in a usual equality constraint domain. We have found that
the additional cost in time due to formal affine spaces is small (between 8% and 30%), which
suggests that this numerical abstract domain has good performance, while it automatically
discovers the right representatives.

A.5 Related work

Several static analyses use predicates to represent memory shape properties: among others,
[SRW99, BMMR01, DOY06, BCC+07b, BHT06] infer elaborate invariants on dynamic mem-
ory structures, such as lists and trees. Most of these works do not involve a precise treatment
of arrays. Some abstract interpretation based analyzers [VB04, CCF+05, AGH06] precisely
handle manipulations of arrays whose size is exactly known. Besides, [CCF+05] can represent

3The source code of each program is available at http://www.lix.polytechnique.fr/Labo/Xavier.

Allamigeon.
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all the array elements by a single abstract element (array smashing). Albeit not very precise,
it could also represent an unbounded number of array elements.

To our knowledge, only [FQ02, Cou03, GRS05, JM07, BHMR07, GMT08] handle precise
properties ranging over an unbounded number of one-dimensional array elements. Most of
them involve the predicates presented in this paper, and some other expressing more prop-
erties on the values of the array elements, such as equality, sorting or pointer aliasing prop-
erties. The approach of [FQ02, JM07, BHMR07] differs ours in the use of a theorem prover
in order to abstract reachable states in [FQ02], and of counterexample-guided abstraction
refinement in [JM07, BHMR07]. They share with our analysis common benchmarks: for ex-
ample, [JM07, BHMR07] analyzes the program full_init in respectively 1.190 s and 0.27 s,
and partition in 7.960 s and 3.6 s.4 The returned invariants are the same as those given in Ta-
ble A.1. The other works [Cou03, GRS05, GMT08] use the abstract interpretation framework.
The analysis developed in [GMT08] involves predicates on arrays and lists, and allows express-
ing invariants of the form E ∧

∧
j ∀Uj(Fj ⇒ ej), where E, Fj and ej are quantifier-free facts.

This approach is more general than ours, since it automatically discovers universally quanti-
fied predicates, while we explicitely define the family of predicates (uni- or two-dimensional)
in our analysis. The drawback is that it requires under-approximation abstract domains and
associated operators because of the universal quantification. In constrast, our concretization
operator (defined in (A.2)) involves a universal quantifier over valuations ν ∈ V , which can be
shown to commute with the existential quantifier ∃R ∈ Span(E +Ω). Then, exact operations
on the inequality constraint systems representing the valuations, such as intersections or as-
signments, yield sound and precise results (see Section A.3.2). In [GMT08], full_init and
partition are respectively analyzed in 3.2 s and 73.0 s on a 3 GHz machine, yielding the same
invariants than with our analysis. In [Cou03], semantic loop unrolling and introduction by
heuristics of well-chosen degenerate predicates (called tautologies) are combined. It handles
array initialization algorithm (the exact nature of the algorithm, partial, incrementing, decre-
menting, etc, is not mentionned), and bubble sort and QuickSort algorithms. In [GRS05],
array elements are distinguished according to their position w.r.t. to the current loop index
(strictly before, equal to, or strictly after). This yields a partition of the memory configura-
tions into distinct categories, which are characterized by the presence or the absence of array
elements having a certain position w.r.t. to a loop index. The program partial_init is
analyzed in 40 s on a 2.4 GHz machine, and yields a partition of four memory configurations
corresponding to the invariant given in Table A.1. Finally, as far as we know, no existing
work reports any experiments on two-dimensional array manipulation programs.

A.6 Conclusion

We have introduced a numerical abstract domain which allows to represent sets of equivalence
classes of predicates, by inferring affine invariants on some representatives of each class,
without any heuristics. Combined with array predicates, it has been experimented in a sound
static analysis of array and matrix manipulation programs. Experimental results are very
good, and the approach is sufficiently robust to handle several array traversing stategies.
Future work will focus on the extension of the abstraction to other systems of generators,
such as convex polyhedra, in order to incorporate the reduced product implemented in the
analysis into the abstraction of equivalence classes.

4A 1.7GHz machine was used in both works.
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APPENDIX B

Additional proofs

Proof of Proposition 4.4. Let H′ = f(H). Suppose that s  H t. Observe that if X,Y are
subsets of N , f(X) ⊂ f(Y ) as soon as X ⊂ Y , and f(X ∪ Y ) ⊂ f(X) ∪ f(Y ). Therefore, if
e1, . . . , ep is a hyperpath from s to t, then:

T (ei) ⊂ { s } ∪H(e1) ∪ · · · ∪H(ei−1) for all 1 ≤ i ≤ p

t ∈ H(ep)

so that:

f(T (ei)) ⊂ { f(s) } ∪ f(H(e1)) ∪ · · · ∪ f(H(ei−1)) for all 1 ≤ i ≤ p

f(t) ∈ f(H(ep))

It follows that f(s) f(H) f(t).

Conversely, suppose that f(t) is reachable from f(s) in H′, and that f(t) 6= f(s) (the case
f(t) = f(s) is trivial). Let H0 = { s } and Tp+1 = { t }.

By definition, there exist e1 = (T1, H1), . . . , ep = (Tp, Hp) in E such that for each i ∈
{ 1, . . . , p + 1 }, f(Ti) ⊂ f(H0) ∪ · · · ∪ f(Hi−1).

Also note that for any s ∈ ℘(N), f(s) = s in s ∩ {x, y } = ∅ and f(s) = s ∪ { z } \ {x, y }
otherwise. In particular, as soon as z 6∈ f(s), f(s) coincides with s. Besides, f(s) \ { z } ⊂
s ⊂ f(s) \ { z } ∪ {x, y }.

Two cases can be distinguished:

(a) suppose that z does not belong to any f(Hj), so that f(Hj) = Hj . Similarly, for each
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i ≥ 1, f(Ti) does not contain z, hence f(Ti) = Ti. Besides, Ti ⊂ H0 ∪ · · · ∪Hi−1 for each
i, so that is is straightforward that f(s) H′ f(t).

(b) now, if z in one of the f(Hj), let k be the smallest integer such that z ∈ f(Hk). Say for
instance that x ∈ Hk. Let (T ′

1, H
′
1), . . . , (T

′
q, H

′
q) be taken from a hyperpath from x to y

in H.

When i ≤ k, f(Ti) does not contain z, hence f(Ti) = Ti and Ti ⊂ f(H0)∪· · ·∪f(Hi−1) =
H0 ∪ . . . ∪Hi−1.

Besides, T ′
1 = {x } ⊂ H0 ∪ . . . ∪Hk, and for each i ∈ { 2, . . . , q }, T ′

i ⊂ H0 ∪ · · · ∪Hk ∪
H ′

1 ∪ · · · ∪H ′
i−1 since x ∈ Hk.

Finally, let us prove for i ≥ k+1 that Ti ⊂ H0∪· · ·∪Hk∪H ′
1∪· · ·∪H ′

q ∪Hk+1∪ . . . Hi−1.

Clearly, f(Ti) \ { z } ⊂
⋃i−1

j=0(f(Hj) \ { z }). Besides, x ∈ Hk and y ∈ H ′
q, and since Ti is

included into f(Ti) \ { z } ∪ {x, y}, then Ti is also contained in H0 ∪ · · · ∪Hk ∪H ′
1 ∪ · · · ∪

H ′
q ∪Hk+1 ∪ · · · ∪Hi−1.

It follows that (Ti, Hi)i=1,...,k, (T
′
i , H

′
i)i=1,...,q, (Ti, Hi)i=k+1,...,p forms a hyperpath from s

to t in H.
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List of symbols

Rmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
The set R ∪ {−∞}.

⊕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Additive law of the tropical semiring, here max.

⊗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Multiplicative law of the tropical semiring, here +.

✵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Zero element of the tropical semiring, here −∞.

✶ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Unit element of the tropical semiring, here 0.

α−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
When α > ✵, refers the tropical inverse of α w.r.t. ⊗, here the classical opposite −α.

x, y, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Elements of Rd

max.

xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
When x ∈ Rd

max, refers to the i-th entry of x. This notation is also used for row-vector
x ∈ R1×d

max.
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✵✵✵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Element of Rd

max whose all entries are ✵.

✶✶✶ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Element of Rd

max whose all entries are ✶.

S ⊕ S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Minkowski sum of two sets S, S′ ⊂ Rd

max.

co(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Tropical convex hull of S ⊂ Rd

max.

cone(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Tropical cone generated by S ⊂ Rd

max.

〈x〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Tropical ray generated by a non-null x ∈ Rd

max.

cl(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Closure of a set S ⊂ Rd

max for the usual topology.

rec(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Recession cone of a closed tropical convex set C ⊂ Rd

max.

extp(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Set of the extreme points of a convex set C ⊂ Rd

max.

extg(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Set of the extreme generators (also called extreme elements) of a tropical cone C ⊂
Rd

max.

‖·‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Norm over Rd

max defined as ‖x‖ = max1≤i≤d exi .

σ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
When x 6= ✵✵✵, refers to the scaled element ‖x‖−1

x.

Ĉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Homogenized cone of a closed convex set C ⊂ Rd

max.

ι . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Correspondence between the scaled minimal generating representions of a tropical
polyhedron and its homogenized polyhedral cone.

[d] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
The set of the integers between 1 and d.

supp(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Given x ∈ Rd

max, refers to the set of the coordinates i such that xi 6= ✵.

T (x, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tangent cone to the tropical cone C at the element x ∈ C.
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εI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
For I ⊂ [d], refers to the element of Rd

max whose i-th entry is equal to ✶ if i ∈ I, and
✵ otherwise.

T (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Given a hyperedge e of a directed hypergraph, refers to the tail of e.

H(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Given a hyperedge e of a directed hypergraph, refers to the head of e.

 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Reachability relation in a directed hypergraph.

H(x, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tangent directed hypergraph to the cone C at the element x ∈ C.

ǫi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
For i ∈ [d], refers to the element of Rd

max whose j-th entry is equal to ✶ if j = i, and ✵

otherwise.

g\x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Residuation operator, defined as min1≤i≤d(xi − gi).

〈ℓ, step, ℓ′〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Edge from the control points ℓ to ℓ′ in the control-flow graph.

entry(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Entry point of the control-flow graph.

s ¦ h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Memory state formed by the stack s and the heap h.

dom(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Domain of definition of a partial function h.

ν ⊢ e⇒ v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Relation corresponding to the fact that the expression e evaluates to v in the environ-
ment ν.

C(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Collecting semantics of a program.

℘(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Given a set S, refers to powerset of S.

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Concretization operator.

⊑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Abstract preorder.

⊔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Abstract join operator.



234 Chapter C. List of symbols

⊓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Abstract meet operator.

⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Abstract least element.

⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Abstract greatest element.

∇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Widening operator.

∇
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Narrowing operator.

Lvi ← ·M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Abstract assignement operator on the variable vi.

LcondM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Abstract condition operator.

C(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Abstract collecting semantics of a program.


	Introduction
	Context of this work
	Analyzing memory manipulations by abstract interpretation
	Main principles of abstract interpretation
	Abstractions for memory manipulations

	An overview of tropical polyhedra
	Contributions
	Organization of the manuscript
	A few words on notations

	I Combinatorial and algorithmic aspects of tropical polyhedra
	Introduction to tropical convexity
	Preliminaries on tropical algebra
	Preliminaries on tropical convexity
	Notations
	Tropical convex sets
	Tropical cones
	Extreme elements
	Minimal generating representations
	Tropical homogenization

	Tropical polyhedra and polyhedral cones
	Definition
	Minkowski-Weyl theorem
	Homogenization of tropical polyhedra

	Conclusion of the chapter

	Combinatorial characterization of extremality from halfspaces
	Preliminaries on extremality
	Characterizing extremality using the tangent cone
	Tangent cone
	The {0,1}-cones and their extreme elements

	Characterizing extremality using directed hypergraphs
	Preliminaries on directed hypergraphs
	Tangent directed hypergraph

	Conclusion of the chapter

	Maximal strongly connected components in directed hypergraphs
	Reachability in directed hypergraphs
	Computing maximal strongly connected components
	Principle of the algorithm for directed hypergraphs
	Computing maximal strongly connected components in directed graphs
	Optimized algorithm
	Example of a complete execution trace

	Conclusion of the chapter
	Proving Theorem 4.1
	Correctness of the algorithm
	Complexity proof


	Algorithmics of tropical polyhedra
	From the external description to the internal description
	The tropical double description method
	Resulting algorithm
	Comparison with the existing approaches
	Comparison with the classical double description method
	Benchmarks

	From the internal description to the external description
	Polar of tropical cones
	Polar of finitely generated cones
	Efficient characterization of extreme elements of the polar of a polyhedral cone
	Resulting algorithm
	Comparison with alternative approaches

	The number of extreme elements in tropical polyhedra
	A first McMullen-type bound
	Signed cyclic polyhedral cones
	Comparison with the classical case
	The number of extreme rays in signed cyclic polyhedral cones
	The number of extreme rays in polar cones

	Conclusion of the chapter


	II Application to static analysis by abstract interpretation
	Introduction to static analysis by abstract interpretation
	Kernel language
	Principles of the language
	Syntax of the language

	Semantics of the language
	Control-flow graph
	Memory model
	Operational semantics
	Collecting semantics of a program
	Proving the absence of heap overflows

	Abstract interpretation
	Theoretical framework
	Numerical abstract domains

	A first possible abstract semantics
	An abstraction on strings
	Conclusion of the chapter

	Numerical abstract domains based on tropical polyhedra
	Inferring max-invariants: the abstract domain MaxPoly
	Definition of the abstract domain
	Abstract preorder
	Abstract union operator
	Abstract intersection primitives
	Abstract assignment operators
	Widening operators
	Reduction with zones
	Non-tropically affine abstract primitives
	Summary of abstract primitives behavior

	Inferring min-invariants: the abstract domain MinPoly
	Order-theoretic abstract primitives
	Conditions and assignments
	Reduction with zones

	Inferring min- and max-invariants: the domain MinMaxPoly
	Order-theoretic abstract primitives
	Conditions and assignments
	Reduction with octagons

	Experiments
	Principles of the implementation
	Analysis of memory manipulating programs
	Application to array predicate abstractions
	Efficiently handling many disjunctions
	Sort algorithms
	Performance of the analysis

	Conclusion of the chapter

	Conclusion
	Summary of the contributions
	Perspectives
	Combinatorics and algorithmics of tropical convex sets
	Numerical abstract domains.


	Bibliography
	Non-disjunctive numerical domain for array predicate abstraction
	Introduction
	Principles of the representation
	Formal affine spaces
	Joining two formal spaces
	Precision and further abstract operators

	Application to the analysis of array manipulations
	Related work
	Conclusion

	Additional proofs
	List of symbols


