E. Results and .. , 105 4.4.1 Classification results, p.112

A. Appendix, . List, @. Journals, D. Paola-bermolen, and . Rossi, Support Vector Regression for Link Load Prediction (Extended version), Computer Networks, vol.53, issue.2, pp.1389-1286, 2009.

@. P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti, Abacus: Accurate behavioral classification of P2P-TV traffic, Computer Networks, vol.55, issue.6
DOI : 10.1016/j.comnet.2010.12.004

I. Conferences, @. Paola-bermolen, and F. Baccelli, Multiple Access Mechanisms with Performance Guarantees for Ad-Hoc Networks

@. S. Valenti, D. Rossi, M. Meo, M. Mellia, and P. Bermolen, Accurate, Fine-Grained Classification of P2P-TV Applications by Simply Counting Packets, Proceedings of Traffic Measurements and Analysis (TMA), pp.84-92, 2009.
DOI : 10.1007/978-3-540-31966-5_4

@. S. Valenti, D. Rossi, M. Meo, M. Mellia, and P. Bermolen, An Abacus for P2P- TV Traffic Classification (Demo), IEEE Infocom Demo, 2009.

@. Paola-bermolen and D. Rossi, Network Forecasting using support vector machines, Proceedings of Traffic Management and Traffic Engineering for the Future Internet (FiTRAMEn) -EuroNF workshop, 2008.

@. Paola-bermolen and D. Rossi, Support Vector Regression for Link Load Prediction, Proceedings of the 4th International Telecommunication NEtworking Workshop on QoS in Multiservice IP networks (IT-NEWS), 2008.

@. Paola-bermolen and D. Rossi, Network Forecasting using support vector machines Extended Abstract at EuroNGI Workshop on IP QoS and Traffic Control, 2007.

@. Work-in-progress, F. Paola-bermolen, and . Baccelli, Modeling and Comparison of CCA Modes: Extremal versus Additive Shot Noise

N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan et al., Resource management with hoses: point-to-cloud services for virtual private networks, IEEE/ACM Transactions on Networking, vol.10, issue.5, pp.679-692, 2002.
DOI : 10.1109/TNET.2002.803918

G. Maruti and S. Suresh, Greening of the Internet, SIGCOMM '03: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pp.19-26, 2003.

E. Leonardi, M. Mellia, A. Horvath, L. Muscariello, S. Niccolini et al., Building a cooperative P2P-TV application over a wise network: the approach of the European FP-7 strep NAPA-WINE, IEEE Communications Magazine, vol.46, issue.4, pp.20-22, 2008.
DOI : 10.1109/MCOM.2008.4481334

X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, A Measurement Study of a Large-Scale P2P IPTV System, IEEE Transactions on Multimedia, vol.9, issue.8, pp.1672-1687, 2007.

A. W. Moore and D. Zuev, Internet Traffic Classification Using Bayesian Analysis Techniques, SIGMETRICS '05: ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pp.50-60, 2005.

M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, Class-of-service mapping for QoS, Proceedings of the 4th ACM SIGCOMM conference on Internet measurement , IMC '04, pp.135-148, 2004.
DOI : 10.1145/1028788.1028805

T. Karagiannis, K. Papagiannaki, and M. Faloutsos, BLINC: Multilevel Traffic Classification in the Dark, SIGCOMM '05: Conference on applications, technologies, architectures, and protocols for computer communications, pp.229-240, 2005.

K. Xu, Z. Zhang, and S. Bhattacharyya, Profiling internet backbone traffic, ACM SIGCOMM Computer Communication Review, vol.35, issue.4, pp.169-180, 2005.
DOI : 10.1145/1090191.1080112

V. Vapnik, The Nature of Statistical Learning theory, 1995.

V. N. Vapnik, Statistical Learning Theory, 1998.

V. Vapnik, Estimation of Dependences Based on Empirical Data, 1979.

L. Khan, M. Awad, and B. Thuraisingham, A new intrusion detection system using support vector machines and hierarchical clustering, The International Journal on Very Large Data Bases (VLDB), pp.507-521, 2007.
DOI : 10.1007/s00778-006-0002-5

M. Mirza, J. Sommers, P. Barford, and X. Zhu, A machine learning approach to TCP throughput prediction, ACM SIGMETRICS Performance Evaluation Review, vol.35, issue.1, pp.97-108, 2007.
DOI : 10.1145/1269899.1254894

F. Baccelli and B. B. Laszczyszyn, Stochastic Geometry and Wireless Networks Foundation and Trends in Networking Series, 2009.

M. Durvy, Modeling the IEEE 802.11 Protocol in Wireless Multi-Hop Networks, 2007.

E. Pinsky and Y. Yemini, The Asymptotic Analysis of Some Packet Radio Networks, IEEE Journal on Selected Areas in Communications, vol.4, issue.6, 1986.
DOI : 10.1109/JSAC.1986.1146399

E. Nadaraya, On estimating Regression Theory of Probability and its Applications, pp.141-142, 1964.

C. J. Burges and B. Schölkopf, Improving the Accuracy and Speed of Support Vector Machines, Advances in Neural Information Processing Systems, 1997.

B. Schölkopf, C. Burges, and V. Vapnik, Incorporating invariances in support vector learning machines, ICANN 96: Proceedings of the 1996 International Conference on Artificial Neural Networks, pp.47-52, 1996.
DOI : 10.1007/3-540-61510-5_12

V. Blanz, B. Schölkopf, H. H. Bülthoff, C. Burges, V. Vapnik et al., Comparison of view-based object recognition algorithms using realistic 3D models, ICANN 96: Proceedings of the 1996 International Conference on Artificial Neural Networks, pp.251-256, 1996.
DOI : 10.1007/3-540-61510-5_45

E. Osuna, R. Freund, and F. Girosit, Training support vector machines: an application to face detection, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.130-136, 1997.
DOI : 10.1109/CVPR.1997.609310

J. Terrillon, M. N. Shirazi, M. Sadek, H. Fukamachi, and S. Akamatsu, Invariant face detection with support vector machines, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, p.4210, 2000.
DOI : 10.1109/ICPR.2000.902897

E. Leopold and J. Kindermann, Text Categorization with Support Vector Machines . How to Represent Texts in Input Space, Machine Learning, pp.423-444, 2002.

A. H. Sung and S. Mukkamala, Identifying important features for intrusion detection using support vector machines and neural networks, 2003 Symposium on Applications and the Internet, 2003. Proceedings., p.209, 2003.
DOI : 10.1109/SAINT.2003.1183050

K. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen et al., Predicting time series with support vector machines, ICANN '97: Proceedings of the 7th International Conference on Artificial Neural Networks, pp.999-1004, 1997.
DOI : 10.1007/BFb0020283

S. Mukherjee, E. Osuna, and F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, pp.511-520, 1997.
DOI : 10.1109/NNSP.1997.622433

E. E. Osuna and F. Girosi, Reducing the Run-Time Complexity in Support Vector Machines, Advances in Kernel Methods: Support Vector Learning, pp.271-283, 1999.

R. Beverly, K. Sollins, and A. Berger, SVM learning of IP address structure for latency prediction, Proceedings of the 2006 SIGCOMM workshop on Mining network data , MineNet '06, pp.299-304, 2006.
DOI : 10.1145/1162678.1162682

C. J. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

M. Anthony and N. Biggs, PAC Learning and Neural Networks The handbook of Brain Theory and Neural Networks, pp.694-697, 1998.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152, 1992.
DOI : 10.1145/130385.130401

A. Aizerman, E. M. Braverman, and L. Rozoner, Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning, Automation and Remote Control, vol.25, pp.821-837, 1964.

J. Mercer, Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations, Philosofical Transaction of the Royal Society, pp.415-446, 1909.

U. H. and -. Kreßel, Pairwise Classification and Support Vector Machines Advances in Kernel methods: Support Vector Learning, pp.255-268, 1999.

R. Rifkin and A. Klautau, In Defense of One-Vs-All Classification, Journal of Machine Learning Research, vol.5, pp.101-141, 2004.

J. C. Platt, N. Cristianini, and J. Shawe-taylor, Large Margin DAGs for Multiclass Classification, Advances in Neural Information Processing Systems, pp.547-553, 2000.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston, Solving multiclass support vector machines with LaRank, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.89-96, 2007.
DOI : 10.1145/1273496.1273508

URL : https://hal.archives-ouvertes.fr/hal-00750277

C. Hsu and C. Lin, A comparison of Methods for Multiclass Support Vector Machines, IEEE Transactions on Neural Networks, vol.13, issue.2, pp.415-425, 2002.

T. Joachims, Making Large-scale Support Vector Machine Learning Practical, Advances in Kernel Methods: Support Vector Learning, pp.169-184, 1999.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

A. J. Smola and B. Scholkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.199-222, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

Y. Guermeur and H. Paugam-moisy, Théorie de l'apprentisage de Vapnik et SVM, Support Vector Machines, Apprentissage Automatique, pp.109-138, 1999.

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, YALE, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.935-940, 2006.
DOI : 10.1145/1150402.1150531

B. Schölkopf, B. Scholkopf, K. Sung, C. Burges, F. Girosi et al., Comparing support vector machines with Gaussian kernels to radial basis function classifiers, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2758-2765, 1997.
DOI : 10.1109/78.650102

P. J. Brockwell and R. Davis, Introduction to Time Series and Forecasting, 1996.

J. Beran, Statistics for Long-memory Processes, 1994.

B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, ARCH-Based Traffic Forecasting and Dynamic Bandwidth Provisioning for Periodically Measured Nonstationary Traffic, IEEE/ACM Transactions on Networking, vol.15, issue.3, pp.683-696, 2007.
DOI : 10.1109/TNET.2007.893217

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of Ethernet traffic (extended version), IEEE/ACM Transactions on Networking, vol.2, issue.1, pp.1-15, 1994.
DOI : 10.1109/90.282603

Q. He, C. Dovrolis, and M. Ammar, On the predictability of large transfer TCP throughput, Computer Networks, vol.51, issue.14, pp.3959-3977, 2007.
DOI : 10.1016/j.comnet.2007.04.013

S. Ruping and K. Morik, Support vector machines and learning about time, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.864-871, 2003.
DOI : 10.1109/ICASSP.2003.1202780

G. Watson, Smooth regression analysis, Sankhya, Series, vol.A, issue.26, pp.359-372, 1964.

E. A. Nadaraya, Non Parametric Estimation of Probability Density and Regression Curves, ser. Soviet Series, 1989.

V. Cherkassky and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, vol.17, issue.1, pp.113-126, 2004.
DOI : 10.1016/S0893-6080(03)00169-2

M. A. Paxson, R. Pang, and B. Tierney, LBNL/ICSI Enterprise Tracing Project

R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson et al., A first look at modern enterprise traffic, Proceedings of the 5th ACM SIGCOMM conference on Internet measurement , IMC '05, pp.2-2, 2005.
DOI : 10.1145/1330107.1330110

R. E. Schapire, The Boosting Approach to Machine Learning: An Overview, MSRI Workshop on Nonlinear Estimation and Classification, pp.2-2, 2002.
DOI : 10.1007/978-0-387-21579-2_9

L. Breiman, Bagging predictors, Machine Learning, pp.123-140, 1996.
DOI : 10.1007/BF00058655

J. Liu, S. G. Rao, B. Li, and H. Zhang, Opportunities and Challenges of Peerto-Peer Internet Video Broadcast, IEEE Special Issue on Recent Advances in Distributed Multimedia Communications, 2007.

S. Sen, O. Spatscheck, and D. Wang, Accurate, scalable in-network identification of p2p traffic using application signatures, Proceedings of the 13th conference on World Wide Web , WWW '04, pp.512-521, 2004.
DOI : 10.1145/988672.988742

A. W. Moore and K. Papagiannaki, Toward the Accurate Identification of Network Applications, Passive and Active Network Measurement, pp.41-54, 2005.
DOI : 10.1007/978-3-540-31966-5_4

A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill, Flow Clustering Using Machine Learning Techniques, Passive and Active Network Measurement, pp.205-214, 2004.
DOI : 10.1007/978-3-540-24668-8_21

D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, Revealing skype traffic, ACM SIGCOMM Computer Communication Review, vol.37, issue.4, pp.37-48, 2007.
DOI : 10.1145/1282427.1282386

M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, Traffic classification through simple statistical fingerprinting, ACM SIGCOMM Computer Communication Review, vol.37, issue.1, pp.5-16, 2007.
DOI : 10.1145/1198255.1198257

L. Bernaille, R. Teixeira, and K. Salamatian, Early application identification, Proceedings of the 2006 ACM CoNEXT conference on , CoNEXT '06, pp.1-12, 2006.
DOI : 10.1145/1368436.1368445

URL : https://hal.archives-ouvertes.fr/hal-01097554

Y. Yang, R. Wang, Y. Liu, and X. Yong-zhou, Solving P2P Traffic Identification Problems Via Optimized Support Vector Machines, 2007 IEEE/ACS International Conference on Computer Systems and Applications, pp.165-171, 2007.
DOI : 10.1109/AICCSA.2007.370879

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, A Measurement Study of a Large-Scale P2P IPTV System, IEEE Transactions on Multimedia, 2007.

A. Bhattacharyya, On a Measure of Divergence Between Two Statistical Populations Defined by Probability Distributions, Bulletin Calcutta Mathematical Society, vol.35, pp.99-109, 1943.

T. Kailath, The Divergence and Bhattacharyya Distance Measures in Signal Selection, IEEE Transactions on Communications, vol.15, issue.1, pp.52-60, 1967.
DOI : 10.1109/TCOM.1967.1089532

K. Matusita, A Distance and Related Statistics in Multivariate Analysis, International Symposium on Multivariate Analysis, pp.187-200, 1966.

M. Mellia, R. Lo-cigno, and F. Neri, Measuring IP and TCP behavior on edge nodes with Tstat, Computer Networks, vol.47, issue.1, pp.1-21, 2005.
DOI : 10.1016/S1389-1286(04)00201-4

T. Jebara and R. Kondor, Bhattacharyya and Expected Likelihood Kernels, 16th Annual Conference on Learning Theory (COLT) and 7th Annual Workshop on Kernel Machines, 2003.
DOI : 10.1007/978-3-540-45167-9_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Silerston and O. Fourmaux, Measuring P2P IPTV Systems, NOSSDAV: International workshop on Network and Operating Systems Support for Digital Audio & Video, 2007.

E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo, P2P-TV Systems under Adverse Network Conditions: A Measurement Study, IEEE INFOCOM 2009, The 28th Conference on Computer Communications, 2009.
DOI : 10.1109/INFCOM.2009.5061911

S. Keshav, An Engineering Approach to Computer Networking: ATM networks, the Internet, and the Telephone Network, 1997.

X. Wang and K. Kar, Throughput Modelling and Fairness Issues in CSMA/CA Ad-hoc Networks, IEEE Infocom, 2005.

G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journal on Selected Areas in Communications, vol.18, issue.3, pp.535-547, 2000.
DOI : 10.1109/49.840210

A. Kumar, E. Altman, D. Miorandi, and M. Goyal, New Insights From a Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs, IEEE/ACM Transactions on Networking, vol.15, issue.3, pp.588-601, 2007.
DOI : 10.1109/TNET.2007.893091

URL : https://hal.archives-ouvertes.fr/inria-00070776

S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Van-der-perre et al., Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer, IEEE Transactions on Wireless Communications, vol.7, issue.9, pp.3359-3371, 2008.
DOI : 10.1109/TWC.2008.060057

I. Ramachandran and S. Roy, WLC46-2: On the Impact of Clear Channel Assessment on MAC Performance, IEEE Globecom 2006, pp.1-5, 2006.
DOI : 10.1109/GLOCOM.2006.884

M. Durvy and P. Thiran, A Packing Approach to Compare Slotted and Non-Slotted Medium Access Control, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, pp.1119-1207, 2006.
DOI : 10.1109/INFOCOM.2006.251

F. Kelly, Loss Networks, The Annals of Applied Probability, vol.1, issue.3, pp.319-378, 1991.
DOI : 10.1214/aoap/1177005872

P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues, 1999.

D. J. Daley, D. Vere, and -. , An Introduction to the Theory of Point Processes, 1988.

M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. , Stochastic Geoemtry and Random Graphs for Wireless Networks, 2009.

H. Nguyen, F. Baccelli, and D. Kofman, An stochastic geometry analysis of dense IEEE 802.11 networks ans its use in economic modeling, IEEE Infocom, pp.1119-1207, 2007.

M. Talagrand, Spin Glasses: A Challenge for Mathamaticians, 2000.

N. Campbell, Discontinuities in light emission, Mathematical Proceedings of the Cambridge Philosophical Society, vol.15, pp.117-136, 1909.

M. Haenggi and R. K. Ganti, Interference in Large Wireless Networks Foundation and Trends in Networking Series, 2009.

F. Baccelli and V. M. Nguyen, Best Signal Quality in Interference Fields, 2009.

F. Tournois, Modélisation et Simulation de Réseaux CDMA par la Géométrie Aléatoire, 2002.

B. Laszczyszyn and D. Yogeshwaran, Directionally convex ordering of random measures, shot noise fields, and some applications to wireless communications, Advances in Applied Probability, vol.14, issue.03, pp.623-646, 2009.
DOI : 10.1287/moor.24.2.472

V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, MACAW: a Media Access Protocol for Wireless LAN's, ACM SIGCOMM, pp.212-225, 1994.

F. Caì-i, M. Conti, and E. Gregori, Dynamic Tuning of the IEEE 802, IEEE/ACM Transactions on Networking, vol.11, issue.8, pp.785-799, 2000.

J. Deng, B. Liang, and P. K. Varshney, Tuning the carrier sensing range of IEEE 802.11 MAC, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04., 2004.
DOI : 10.1109/GLOCOM.2004.1378900

C. Chaudet, G. Chelius, H. Meunier, and D. Simplot-ryl, Adaptive Probabilistic NAV to Increase Fairness in Ad HOC 802.11 MAC Layer, Fourth Annual Mediterranean Ad Hoc NetworkingWorkshop, 2006.
DOI : 10.1007/0-387-31173-4_2

URL : https://hal.archives-ouvertes.fr/inria-00396343

G. J. Foschini and Z. Miljanic, A simple distributed autonomous power control algorithm and its convergence, IEEE Transactions on Vehicular Technology, vol.42, issue.4, pp.641-646, 1993.
DOI : 10.1109/25.260747

S. Grandhi, R. Viyajan, and D. Goodman, Distributed power control in cellular radio systems, IEEE Transactions on Communications, vol.42, issue.2/3/4, 1995.
DOI : 10.1109/TCOMM.1994.577019

T. Moscibroda and R. Wattenhofer, The Complexity of Connectivity in Wireless Networks, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, 2006.
DOI : 10.1109/INFOCOM.2006.23

S. A. Borbash and A. Ephremides, Wireless Link Scheduling With Power Control and SINR Constraints, IEEE Transactions on Information Theory, vol.52, issue.11, 2006.
DOI : 10.1109/TIT.2006.883617

R. Cruz and A. V. Santhanam, Optimal Routing, Link Scheduling and Power Control in Multi-hop Wireless Network, IEEE Infocom, 2003.

T. Elbatt and A. Ephremides, Joint Scheduling and Power Control for Wireless Ad-hoc Networks, IEEE Infocom, 2002.

T. Moscibroda, R. Wattenhofer, and Y. Weber, Protocol Design Beyond Graph Based Models, Topics in Networks, 2006.

G. Brar, D. Blough, and P. Santi, Computationally efficient scheduling with the physical interference model for throughput improvement in wireless mesh networks, Proceedings of the 12th annual international conference on Mobile computing and networking , MobiCom '06, 2006.
DOI : 10.1145/1161089.1161092

D. Chafekar, V. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan, Approximation Algorithms for Computing Capacity of Wireless Networks with SINR Constraints, IEEE INFOCOM 2008, The 27th Conference on Computer Communications, 2008.
DOI : 10.1109/INFOCOM.2008.172

O. Goussevskaia, R. Wattenhofer, M. M. Halldorsson, and E. Welzl, Capacity of Arbitrary Wireless Networks, IEEE INFOCOM 2009, The 28th Conference on Computer Communications, 2009.
DOI : 10.1109/INFCOM.2009.5062108

J. Zander, Performance of optimum transmitter power control in cellular radio systems, IEEE Transactions on Vehicular Technology, vol.41, issue.1, pp.57-62, 1992.
DOI : 10.1109/25.120145

T. Bonald and A. Proutì-ere, Conservative estimates of blocking and outage probabilities in CDMA networks, Performance Evaluation, vol.62, issue.1-4, pp.50-67, 2005.
DOI : 10.1016/j.peva.2005.07.001

URL : https://hal.archives-ouvertes.fr/hal-01244805