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Résumé

Le problème étudié dans cette thèse est la commande d'un système DOC (Diesel Oxidation Ca-
talyst) tel qu'utilisé dans les systèmes de dépollution des gaz d'échappement des moteurs Diesel
automobiles.

Ce système est par nature un système à paramètres répartis en raison de sa géométrie allongée
parcourue par un �ux gazeux en contact avec un catalyseur réparti. Après avoir étudié expérimenta-
lement ce système, nous avons décidé de prendre en compte cette nature répartie, qui comme on le
montre, se retrouve également dans les autres systèmes de dépollution (�ltres à particules, pièges à
NOx, SCR).

Une première contribution du manuscrit consiste en un modèle du système DOC. Celui-ci est
obtenu par des simpli�cations successives, justi�ées expérimentalement (observations, estimations
des ordres de grandeurs) ou par analyse des équations régissant la dynamique du système (déve-
loppements asymptotiques, changements de variables). Ce modèle permet de rendre compte de la
complexité de la réponse de la température de sortie du DOC à des variations des grandeurs d'entrée.
En particulier, les effets de réponses inverses et de retards sont bien représentés.

Une seconde contribution est un ensemble d'algorithmes de commande (précompensation, rétro-
action, et synchronisation) permettant de maîtriser les phénomènes thermiques dans le DOC.

Ces deux contributions ont été testées expérimentalement et validées. En conclusion, les perfor-
mances obtenues sont évaluées. En résumé, en utilisant l'approche présentée dans ce manuscrit, il est
possible de commander,en conditions réelles, la température de sortie du DOC à� 15� C.
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Summary

The problem studied in this thesis is the control of a DOC (Diesel Oxidation Catalyst) as used in
aftertreatment systems of diesel vehicles.

This system is inherently a distributed parameter system due to its elongated geometry where
a gas stream is in contact with a distributed catalyst. After having studied this system experimen-
tally, we decided to take into account its distributed nature, which as shown, is also found in other
aftertreatment devices (particulate �lters, NOx traps, SCR).

A �rst contribution of the thesis is a model for the DOC system. It is obtained by successive
simpli�cations justi�ed either experimentally (from observations, estimates of orders of magnitudes)
or by an analysis of governing equations (through asymptotic developments, change of variables).
This model can account for the complexity of the temperature response of DOC output to changes in
input variables. In particular, the effects of inverse responses and delays are well represented.

A second contribution is a combination of algorithms (feedback, feedforward, and synchroniza-
tion) to control the thermal phenomena in the DOC.

Both contributions have been tested and validated experimentally. In conclusion, the outcomes
are evaluated. In summary, using the approach presented in this manuscript, it is possible to control,
in real conditions, the outlet temperature of the DOC within� 15� C.
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Chapitre 1

Introduction

Dans ce chapitre, on présente différentes technologies de systèmes de post-traitement diesel, et on
souligne quelques unes de leurs particularités. L'accent est mis sur leur nature spatialement répartie.
L'organisation de la thèse est présentée à la �n de ce chapitre.

1.1 Panorama des systèmes de post-traitement diesel : piège à NOx,
SCR, FAP et DOC

Ces dernières décennies, les moteurs diesels ont été de plus en plus utilisés dans le domaine
de l'automobile en Europe. Ceci est lié à leur rendement important. En 1990, moins de 15% des
nouveaux véhicules à usage particulier étaient des véhicules diesels - la partie restante étant pour
les véhicules à essence. En 2008, plus de 50% étaient des diesels1 (ACEA 2009). En parallèle, les
normes sur les émissions polluantes sont devenues de plus en plus strictes (Ecopoint Inc. 2008). A�n
de satisfaire ces normes, un effort important de recherche et développement a été mis en place dans
l'industrie automobile.

FIGURE 1.1 – Evolution des principales normes passées et attendues concernant les NOx et les parti-
cules (PM) pour les véhicules diesels légers (Source : Bosch, MinNOx 2007)

1100% des véhicules poids lourds sont des diesels

17
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FIGURE 1.2 – Différentes con�gurations possibles de systèmes de post-traitement dans la ligne
d'échappement

FIGURE 1.3 – Les couches constitutives d'un convertisseur catalytique

Quatre polluants sont actuellement réglementés : les hydrocarbures (HC), le monoxyde de carbone
(CO), les oxydes d'azote (NOx), et les particules (PM). Malgré les avancées importantes dans la
technologie des moteurs à combustion interne, ces normes ne pourront sans doute pas être satisfaites
sans l'utilisation extensive desystèmes de post-traitement. L'évolution des normes de NOx et de PM
est présentée en Fig. 1.1 pour les véhicules légers diesels (les besoins nécessaires pour les atteindre
sont également décrits dans la �gure).

Les NOx et les PM sont les polluants les plus problématiques pour les systèmes de post-traitement
diesels. Ces polluants sont, d'un point de vue simpliste, le résultat d'un compromis lors de l'optimi-
sation du moteur. Ceci est lié à leurs conditions respectives de formation. Pour cette raison, deux
stratégies consensuelles ont émergé. D'abord, la norme Euro 5 (2009) nécessite l'utilisation d'un sys-
tème de traitement des particules pour les véhicules diesels légers. Ensuite, la norme Euro 6 (2014)
nécessitera sans doute l'utilisation d'un système de post-traitement pour les NOx. Une brève présen-
tation des systèmes de post-traitement est réalisée dans ce chapitre.2 D'abord, dans le § 1.1.1, les
systèmes de post-traitement pour les NOx sont présentés. A l'heure actuelle, deux technologies sont
utilisées : les pièges à NOx (PàNOx) et la réduction catalytique sélective (SCR) par l'urée (Urea-
SCR). Ensuite, dans § 1.1.2, les �ltres à particules (FAP) (utilisés pour traiter les particules) sont

2Des informations détaillées sur ce sujet sont largement diffusées, cf. par exemple AECC (2007), Auto-innovations
EURL (2007) ou Ecopoint Inc. (2008).
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présentés. Dans une dernière partie, on abordera les catalyseurs d'oxydation (DOC).
Le DOC est le sujet de cette thèse. Il est utilisé pour traiter HC et CO. Des exemples d'archi-

tectures de systèmes de post-traitement dans la ligne d'échappement sont donnés sur la Fig. 1.2. Les
différents systèmes impliqués (DOC, FAP, SCR) ont des géométries similaires. Ce sont des réacteurs
monolithiques (dans la plupart des cas en céramique) constitués de nombreux canaux �ns permettant
l'écoulement gazeux. Cette géométrie a pour but de maximiser les échanges entre gaz et solide, tout
en limitant l'espace occupé par le système. Ces systèmes (excepté certains cas de FAP) incluent un
catalyseur (métal précieux dans la plupart des cas). Ce catalyseur est habituellement logé sur un sup-
port en alumine, comme schématisé sur la Fig. 1.3. Le support est poreux et les polluants ont ainsi
accès au métal précieux. Il faut noter que le support peut aussi avoir une in�uence dans le processus
réactionnel.

1.1.1 Les systèmes de post-traitement pour les NOx

La norme Euro 5 pour véhicules diesels légers peut être satisfaite sans l'utilisation de système de
post-traitement pour les NOx. Toutefois, la limite attendue pour Euro 6 impliquera leur utilisation.
Nous présentons ici deux technologies, le piège à NOx (PàNOx) et la réduction catalytique sélective
par l'urée (Urea-SCR).

Piège à NOx (PàNOx)

Un PàNOx est un réacteur monolithique recouvert par un support en alumine sur lequel on trouve
un « piège » à base de baryum et un catalyseur à base de platine et de rhodium. Ce système nécessite
que les gaz d'échappement passent dans des conditions riches3 quelques secondes toutes les quelques
minutes. L'environnement riche est, dans plupart des cas, créé à l'aide d'une injection tardive dans le
cylindre. Inévitablement, ceci génère des problèmes de dilution d'huile et de surconsommation de car-
burant. Dans la ligne d'échappement, la fonction PàNOx peut être supportée par le même monolithe
que le DOC, ou bien par un élément distinct.

A�n de simpli�er la description du processus de conversion, il est possible de considérer que
les NOx sont piégés dans des sites catalytiques disponibles pendant les phases pauvres. Pendant les
phases riches, les NOx sont relargués et réagissent pour former du dihydrogène et du dioxyde de
carbone. Cette phase est également appelée « purge riche ». Le processus de réaction est détaillé
sur la Fig. 1.4. Il peut être décrit comme suit. Pendant les phases pauvres, le rapport NO2 sur NOx
augmente, dû à la catalyse sur le platine. Le NO2 réagit avec le baryum pour former le composé
stable de Ba(NO3)2. Pendant les phases riches, le composé est « dissocié » et des NOx sont relargués.
Ensuite, les NOx réagissent sur le rhodium pour former du dihydrogène et du dioxyde carbone.

De plus, les PàNOx peuvent être empoisonnés par les composés soufrés. Ils doivent être pério-
diquement désulfatés dans un environnement riche et à haute température. Ces phases sont appelées
« désulfatations ».

Le lecteur intéressé pourra se reporter à Olsson et al. (2005) pour plus de détails.

3Les conditions sont ditesricheslorsque le rapport air/fuel est inférieur aux conditions stoechiométriques etpauvres
lorsque ce rapport est supérieur aux conditions stoechiométriques.
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FIGURE 1.4 – Fonctionnement du PàNOx. En conditions pauvres, le NO est oxydé, et le NO2 est
stocké. En conditions riches, des NOx sont reformés et réduits à l'aide du rhodium. Source : IFP.

La réduction catalytique sélective par l'urée (Urea-SCR)

La technologie SCR est déjà très répandue dans les applications poids lourds. Elle est en train
d'être adaptée pour les véhicules particuliers en vue de satisfaire la norme Euro 6, particulièrement
exigeante en ce qui concerne les NOx. La technologie SCR a des rendements très élevés mais a un
coût additionnel dans le véhicule et nécessite un entretien spéci�que.

Un système Urea-SCR est composé d'un réservoir spéci�que contenant de l'urée, qui est injectée
dans la ligne d'échappement à l'aide d'un circuit dédié. L'urée se décompose en ammoniac (NH3)
qui réagit avec les NOx sur le catalyseur SCR (lequel peut être par exemple TiO2, V2O5, Fe-Ze,
Cu-Ze, . . . ).

Dans la ligne d'échappement, le système SCR est habituellement placé en aval du DOC et du
FAP, tel qu'illustré dans la Fig. 1.2.

Les principales réactions SCR sont brièvement décrites. D'abord, les principales voies de réduc-
tions des NOx sont

� 2 NH3 + 2 NO +
1
2

O2 ! 2 N2 + 3 H2O (Réaction « Standard SCR »)

� 2 NH3 + NO + NO2 ! 2 N2 + 3 H2O (Réaction « Fast SCR »)

� 8 NH3 + 6 NO2 ! 7 N2 + 12 H2O (Réaction NO2 SCR)

De plus, le stockage NH3 est un paramètre clé en commande de système SCR. Si l'on note� un site
catalytique libre et NH3* la forme adsorbée de NH3, un schéma simpli�é (typé contrôle-commande)
de stockage d'ammoniac peut s'écrire
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� NH3 + � ! NH3* (Adsorption de l'ammoniac)

� NH3* ! � + NH3 (Désorption de ammoniac)

Notons que dans certains cas, différentes formes adsorbées de NH3 doivent être considérées (Grossale
et al. 2008) (Frobert, Creff, Raux, Charial, Audouin & Gagnepain 2009). Aussi, l'oxydation directe
de l'ammoniac est importante puisque le débit d'ammoniac constitue la variable de commande pour
le système SCR, et la proportion qui n'est pas utilisée dans l'oxydation des HC doit être connue avec
précision :

� 2 NH3 +
3
2

O2 ! N2 + 3 H2O (Oxydation de l'ammoniac)

Finalement, l'oxydation du NO/réduction du NO2 doit être considérée puisque le ratio NO=NO2 est
un autre paramètre clé dans la commande des systèmes SCR :

� NO +
1
2

O2 $ NO2

1.1.2 Le �ltre à particules (FAP)

Sur la plupart des nouveaux véhicules diesels, les exigences à l'égard des particules (Ecopoint
Inc. 2008) sont satisfaites par l'utilisation d'un �ltre à particules (FAP). La norme Euro 5 réduit d'un
facteur cinq (comparé à Euro 4) la limite sur les émissions de particules. Le �ltre, placé dans la ligne
d'échappement du véhicule, accumule les particules, qui sont ensuite brûlées dans un processus de
régénération active (Achour 2001).

FIGURE 1.5 – Schéma des canaux d'un FAP. Le gaz chargé en particules, en bleu foncé, est �ltré
lorsqu'il traverse les parois poreuses. Le gaz traité, en bleu clair, sort par les canaux adjacents. Figure
source : www.cd-adpco.com.

Le FAP est un réacteur en céramique (le plus souvent en cordiérite ou carbure de silicium) com-
posé de nombreux canaux. Ces canaux sont bouchés alternativement d'un côté ou de l'autre. Ils sont
reliés aux canaux adjacents par des parois poreuses. Les gaz sont donc forcés de traverser ces parois,
qui agissent comme des �ltres pour les particules. Ce processus est schématisé en Fig. 1.5. Tous les
500 km environ, le �ltre doit être nettoyé. Ceci est réalisé en élevant sa température (entre450� C et
600� C suivant les supports) en présence d'oxygène (i.e. dans un environnement pauvre). Ce processus
est appelé régénération active du FAP.

1.1.3 Le catalyseur d'oxydation diesel (DOC)

Historiquement, les catalyseurs d'oxydation ont été les premiers systèmes de post-traitement uti-
lisés dans l'industrie automobile. Ils ont été largement développés depuis le milieu des années 70s
pour les moteurs à essence à cause de leurs émissions importantes en HC et CO.
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(a) DOC utilisé sur le modèle Peu-
geot 407 HDi FAP 2.0-L. 1.22-L /
Ø 5.63 x 3 in / densité de canaux :
400 cpsi

(b) DOC utilisé sur le modèle
Renault M9R 2.0-L. 2.21-L /
Ø 5.67 x 5.5 in / densité de ca-
naux : 400 cpsi

FIGURE 1.6 – Exemples de DOC trouvés sur véhicules. Les deux DOC sont composés d'environ 900
canaux. Photographies : IFP

Les catalyseurs d'oxydation utilisés pour les moteurs diesels (i.e. DOC) sont apparus plus tard.
Ceci est lié à leurs émissions relativement faibles en HC et CO, comparées à celles des moteurs à es-
sence. Ces espèces sont dans la plupart des cas traitées par un catalyseur à base de platine. De plus, le
DOC permet de réduire la masse des particules. Ceci explique pourquoi le DOC est systématiquement
utilisé dans les systèmes de post-traitement diesels.

Les oxydations de HC et CO sont fortement exothermiques. C'est pourquoi le DOC est aussi
utilisé pour contrôler la température dans la ligne d'échappement. En particulier, il est utilisé pour
générer la température nécessaire pour le processus derégénération active du FAP(Van Nieuwstadt
& Tennison 2006). Pour augmenter la température en amont du FAP, des réducteurs sont oxydés dans
le DOC, ce qui provoque l'augmentation de sa température de sortie. C'est pourquoi, dans la plupart
des architectures de systèmes de post-traitement, un DOC est placé en amont du FAP dans la ligne
d'échappement (voir Fig. 1.2).

1.2 Nature répartie des systèmes de post-traitement et perspectives de
commande

Tel qu'on l'a déjà présenté, les systèmes de post-traitement sont des réacteurs monolithiques
conçus pour maximiser le transfert de matière à la surface catalytique. Pour cela, les canaux du mo-
nolithe sont étroits et nombreux (un ordre de grandeur typique est de 400 cpsi4). Cette con�guration
géométrique conduit aussi à des transferts de chaleur très ef�caces entre gaz et solide. C'est pour-
quoi la phase solide (i.e. le monolithe) agit comme un réservoir réparti d'énergie et de matière. Le
phénomène de propagation qui en résulte conduit à des réponses fortement retardées. Cet aspect sera
illustré à plusieurs occasions dans ce manuscrit.

Les modèles pour ces systèmes sont basés sur des équations monodimensionnelles à paramètres
répartis, assez similaires à celles qui seront présentées dans le Chapitre 2 (les équations du FAP sont
légèrement différentes). Par la suite, on soulignera que les aspects monodimensionnels doivent être

4cells per square inch (cellules par pouces carrés) .
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inclus dans la modélisation, et qui plus est, qu'ils doivent être pris en compte dans les stratégies de
contrôle-commande.

Un exemple de nature répartie monodimensionnel pour la matière : SCR

Un modèle de commande pour la SCR peut s'écrire de la manière suivante
8
>>>>>><

>>>>>>:

@X
@t

+ v
@X
@z

= � a X (1 � � ) + d �

@Y
@t

+ v
@Y
@z

= � c � Y



@�
@t

= a X (1 � � ) � d � � c � Y

(1.1)

où

� X est la concentration molaire de NH3 ;

� Y est la concentration molaire de NOx ;

� 
 est la capacité totale des sites catalytiques ;

� � est la proportion de sites catalytiques disponibles ;

� a est une fonction d'adsorption du NH3. Elle dépend en particulier de la température ;

� d est une fonction de désorption du NH3. Elle dépend en particulier de la température ;

� c est une fonction de consommation des NOx. Elle dépend en particulier de la température.c
inclut toutes les réactions de consommation des NOx décrites dans § 1.1.1 ;

� v est la vitesse des gaz dans les canaux.

Ce modèle minimal, arrive à décrire les expériences basiques. L'une d'elles est détaillée par la suite.
La Fig. 1.7 reproduit une expérience sur un catalyseur SCR (Fe-ZSM5), pour un point de fonctionne-
ment du moteur correspondant à une température relativement basse (213� C en entrée du catalyseur)
et à un débit de gaz faible (34 kg/h) (Frobert, Creff, Raux, Charial, Audouin & Gagnepain 2009). Au
tempst = 0 , l'urée est injectée. Son débit est ajusté pour maintenir le rapport molaire NH3 sur NOx
égal à 1. L'ef�cacité, i.e. le pourcentage des NOx traités sur le catalyseur, est tracée. L'ef�cacité croît
lentement jusqu'à ce que l'injection d'urée soit coupée àt = 3600s. L'origine de cette augmentation
lente n'est pas commentée ici. On veut se focaliser sur la forme de la courbe lors de la coupure de
l'injection d'urée. Cette coupure se produit ensuite lorsque l'ammoniac stocké sur le catalyseur est
consommé, ce qui explique que l'ef�cacité ne chute pas de manière brutale à 0. Quoi qu'il en soit, si
le stockage est modélisé par un modèle 0D, on devrait observer une décroissance se rapprochant d'un
comportement exponentiel. On décrit les choses de la manière suivante :

� le NH3 stocké le long du catalyseur est progressivement relargué pour réduire les NOx, depuis
l'entrée jusqu'à la sortie, ce qui explique la chute d'ef�cacité ;

� lorsqu'il ne reste presque plus de NH3 stocké, l'ef�cacité chute brutalement.

Ce comportement ne peut donc pas être décrit sans utiliser un modèle qui prend en compte la dis-
tribution inhomogène du NH3 dans le pain catalytique. Ceci souligne le besoin de modèle monodi-
mensionnel, tel que celui présenté ci-dessus, pour prendre en compte le stockage NH3 et améliorer la
commande du système SCR. De nombreuses améliorations de ce modèle sont évidemment possibles,
mais ceci est le sujet d'autres travaux.
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FIGURE 1.7 – Exemple d'ef�cacité de conversion des NOx suite à des changements type échelons de
débit de NH3. Au tempst = 0 , l'urée est injectée. Au tempst = 3600s l'injection d'urée est coupée.
Données expérimentales.

Un exemple de nature répartie monodimensionnel pour la thermique : DOC-FAP

Un modèle de référence pour le FAP est présenté dans Bisset (1984). Pendant le processus de
régénération, le FAP se comporte comme un réacteur potentiellement instable (Achour 2001), et sa
température doit être commandée avec précaution a�n d'éviter tout risque d'emballement. La loi
de commande ne peut être basée uniquement sur une rétroaction de la température en aval du FAP.
Cela est dû aux phénomènes monodimensionnels dans le FAP et aux retards induits : l'élévation de
température liée à l'oxydation des particules en entrée ou au centre du réacteur est fortement retardée
à la sortie. La commande de cet élément s'effectue en boucle ouverte par la température des gaz
entrants. En fait, le FAP peut être vu comme un élément passif. Pour mener à bien le processus de
régénération, un pro�l de température doit être dé�ni en prenant en compte le type de particules et le
chargement. Toutefois, en pratique, ce pro�l est souvent réduit à une consigne constante. Un exemple
de tel pro�l peut être trouvé dans Mercuri (2007). Il est reproduit dans la Fig. 1.8.

Comme expliqué précédemment, le DOC peut être utilisé pour commander la température de la
ligne d'échappement. En particulier, il est utilisé pour les régénérations actives du FAP.

Le DOC est aussi décrit par des équations monodimensionnelles (qui seront présentées dans le
Chapitre 2). On peut faire la constation basique suivante, soulignant cet aspect monodimensionnel :
le temps de réponse thermique global est important (environ 10 à 100 secondes), alors que le temps
de résidence du gaz est très court (typiquement une fraction de seconde). En fait, le DOC agit comme
un réservoir localisé pour la chaleur. D'un point de vue de système dynamique, la température en
sortie de DOC peut être commandée par un débit spéci�que de HC (variable de contrôle). Comme
pour le FAP, la commande de la température DOC ne peut être uniquement basée sur l'information du
capteur de température en sortie du DOC (rétroaction). Ceci est dû aux temps de réponse importants
causés par la nature répartie du système et à la fréquence et l'importance des perturbations auxquelles
le système est soumis. Ces perturbations sont principalement la température d'entrée, le débit de gaz,



1.3 Aperçu de la thèse 25

FIGURE 1.8 – Exemple de pro�l de température à suivre lors de la régénération du FAP (Source :
Mercuri (2007)).

et la composition non désirée du gaz en entrée (HC, CO, . . . , résultants d'une combustion incomplète
dans les cylindres).

Le DOC est un sujet d'intérêt particulier dans les systèmes de post-traitement. Une meilleure stra-
tégie de commande peut réduire signi�cativement les temps d'élaboration et de réglage du contrôleur.
Elle peut en outre améliorer la maîtrise de la température et ainsi réduire le risque d'emballement du
�ltre à particules. Si les �uctuations de température sont réduites, il est alors possible de décaler la
valeur de consigne vers la limite d'emballement et, en conséquence, réduire le temps nécessaire à
la régénération. Ceci a aussi des effets béné�ques en terme de surconsommation de carburant et de
dilution d'huile. En�n, on peut souligner un autre aspect béné�que indirect. Du point de vue de la
conception, une meilleure maîtrise de la température DOC peut permettre d'utiliser des monolithes
plus longs (plus le monolithe est long, plus sa commande est dif�cile). Ce sont les raisons qui motivent
le travail de recherche présenté dans cette thèse.

1.3 Aperçu de la thèse

Comme discuté précédemment, les systèmes de post-traitement sont de plus en plus fréquemment
incorporés dans les nouveaux véhicules. La réduction des coûts, et l'allongement de la durée de vie
de ces réacteurs chimiques peuvent être obtenus par des algorithmes de commande performants. Pour
être réaliste, leur effort de calibration doit être restreint.

Après avoir souligné certains aspects liés à la nature répartie (1D) de différents systèmes de post-
traitement dans cette introduction, nous allons maintenant nous focaliser sur le problème de com-
mande de la température DOC pour la régénération active du FAP. C'est le sujet de cette thèse, qui
est organisée comme suit. Dans le chapitre 2, nous présentons un modèle détaillé pour le DOC, issu
de la littérature, et qui s'est complexi�é au cours du temps. Dans le chapitre 3, ce modèle est réduit
au minimum nécessaire à la description des réponses thermiques. Un modèle agrégeant les réactions
chimiques dans un terme « source » réparti sert de base pour notre loi de commande.

Dans le chapitre 4, il est montré que ce terme source réparti peut être approximé par une condi-
tion au bord. En�n, on présente un modèle paramétré basé sur l'équation advection-diffusion. Cette
approximation représente le comportement du système lorsque ses principaux paramètres varient.
Cependant, d'autres effets doivent être considérés en vue d'une application réelle. Ils sont détaillés,
avec les possibilités de précompensation, dans le chapitre 5. Dans le chapitre 6, on développe une
loi de commande par précompensation de la température d'entrée (perturbation), basée sur le modèle
proposé. De plus, une action de précompensation est proposée pour atténuer les effets des variations
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de débit de gaz (perturbation). Le modèle de commande proposé permet aussi d'adapter l'évolution
des paramètres dans la loi de rétroaction dans des conditions variables de débit de gaz. Finalement,
pour souligner la pertinence de la stratégie proposée, des résultats expérimentaux sont présentés dans
le chapitre 7.

Concernant l'implémentation pratique On pourra se reporter au chapitre 7 pour une présentation
détaillée de la loi de commande proposée et des résultats expérimentaux.

Remarque importante Dans le corps du manuscrit, une perturbation est intentionnellement omise
a�n de clari�er la présentation. Les adaptations de la stratégie proposée sont faites en Annexe A pour
le traiter le « cas réel ». Dans l'Annexe C, un contrôleur utilisant des stratégies de commande clas-
siques est développé en tant que référence. Les paramètres d'un modèle de premier ordre avec retard
sont calculés à l'aide des valeurs physiques du DOC, ce qui permet un effort de calibration restreint
et une synthèse directe de contrôleur. Malheureusement, cette voie classique ne donne pas de résul-
tats complètement satisfaisants. L'étude présentée dans l'Annexe D a pour but d'accélérer la réponse
thermique du DOC. Bien qu'elle ne soit pas utilisée directement dans la stratégie de commande, cette
stratégie donne des indications intéressantes qui sont utilisées dans le corps du texte. L'Annexe E
rassemble les calculs dont les résultats sont présentés dans le texte principal. L'Annexe F présente le
banc d'essai utilisé pour les expériences. En Annexe G, les problèmes de commande relatifs à l'en-
vironnement du contrôleur de température DOC (boucle d'air, boucle de carburant, estimation des
émissions) ayant conduits aux résultats expérimentaux sont présentés.

Remarque.Tous les résultats expérimentaux présentés dans ce manuscrit ont été obtenus lors d'expé-
riences menées au cours de la thèse.



Introduction

In this chapter, we present the various technologies found in diesel aftertreatment systems and
stress some of their particularities. A particular emphasis is put on the spatially distributed nature
which is a common factor between them. At the end of the chapter, we present the organization of
this thesis.

1.4 A panorama of diesel aftertreatment systems: NOx trap, SCR, DPF
and DOC

Due to their high ef�ciency, the use of diesel engines in automotive has been in constant growth
over the last decades in Europe. In 1990, less than 15% of new European passenger car registrations
were diesel engines (CI) (the remaining part being for Spark Ignited (SI) engines). In 2008, more
than 50% were for CI5 (ACEA 2009). In the meantime, the automotive emissions standards have
steadily become more stringent (Ecopoint Inc. 2008). Satisfying these emissions requirements has
needed much research and development work for the automotive industry.

Figure 1.9: Main NOx and PM standards evolution for light-duty diesel vehicles and expected re-
quired aftertreatment systems (Source: Bosch, MinNOx 2007)

Four pollutants are regulated by current standards: hydrocarbons (HC), carbon monoxide (CO),
nitrogen oxides (NOx), and particulate matter (PM). In spite of striking advances in engine tech-
nologies, it is likely that emissions constraints will not be satis�ed without extensive use ofexhaust

5the ratio CI-DI is also 0%-100% for trucks
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Figure 1.10: Different possible con�gurations of aftertreatment devices in the exhaust line

Figure 1.11: Layers of aftertreatment catalytic converters

aftertreatment systems. The evolution of the standards is presented in Fig. 1.9 for NOx and PM for
diesel light-duty vehicles (corresponding needs to reach these levels are also described in the �gure).

NOx and PM are the most problematic issues for diesel aftertreatment. They are, from a simplistic
viewpoint, contradictory objectives in engine optimization. This is due to their respective conditions
of formation. For this reason, two consensus-based strategies have emerged in European standards.
First, Euro 5 (2009) requires the use of a PM aftertreatment device for most light-duty vehicles.
Then, Euro 6 (2014) will require the use of a NOx aftertreatment device. A brief presentation of
aftertreatment systems is made in this chapter.6 First, in § 1.4.1, NOx aftertreatment systems are
presented. Two main technologies are currently in use: lean NOx trap (LNT) and urea selective
catalytic reduction (SCR). Then, in § 1.4.2, diesel particulate �lters (DPF), which are used to treat
PM, are presented. Finally, diesel oxidation catalysts (DOC) are introduced.

The DOC is the subject of this thesis. It is used to treat HC and CO. Examples of con�gurations
of aftertreatment devices in the exhaust line are pictured in Fig. 1.10. The various systems involved
(DOC, DPF, SCR) have similar geometries. They are monolithic reactors (in most cases made of
ceramics) composed of numerous thin channels conveying the gas �ow. This geometry is designed
to maximize gas exchange with solid surface while limiting the room occupied by the system. These
systems (except in some speci�c cases of DPFs) include a solid catalyst (precious metals in most

6Comprehensive information on the subject can be found e.g. in AECC (2007), Auto-innovations EURL (2007) or
Ecopoint Inc. (2008).
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cases). This catalyst is usually borne by an alumina washcoat as is pictured in Fig. 1.11. The washcoat
is porous so that molecules have access to precious metals. Washcoat material have also an in�uence
on the catalytic reaction.

1.4.1 NOx aftertreatment systems

In diesel engines, Euro 5 standard requirements on NOx can be met without aftertreatment system
for light vehicles. However, the expected limit for Euro 6 does imply the use of a NOx aftertreatment
system. We now present two such technologies, Lean NOx Trap (LNT) and Urea Selective Catalytic
Reduction (Urea-SCR).

Lean NOx Trap (LNT)

A lean NOx trap is a monolith covered by an alumina washcoat bearing a barium-based trap and
a platinum and rhodium based catalyst. This system requires the gases to switch to rich7 conditions
for a few seconds every few minutes. This rich environment is most often created by in-cylinder late
post-injection. Unavoidably, this generates engine oil dilution and extra fuel consumption. In the
exhaust line, the LNT can either be included in a separated monolith or included in the DOC or the
DPF.

Figure 1.12: LNT process. Under lean conditions, NO is oxidized and NO2 is stored. Under rich
conditions, NOx is re-formed and is reduced over rhodium. Source: IFP.

To simplify the conversion process description, it is possible to consider that NOx is trapped in
available sites during lean combustion phases. During rich phases, NOx is released from the sites and
reacts to form nitrogen and carbon dioxide. This phase is also called “rich purge”. Detailed reaction

7Conditions arerich when the air to fuel ratio is below stoichiometry andleanwhen it is above stoichiometry.
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process is pictured in Fig. 1.12 and described as follows. During the lean phases, the NO2 to NOx
ratio is increased by platinum-based catalysis. NO2 reacts with barium to form a stable compound
Ba(NO3)2. During the rich phases, the compound is “dissociated” and NOx is released. Then, NOx
reacts over the rhodium to form nitrogen and carbon dioxide.

Besides, LNT get poisoned by sulfur compounds. It must be periodically desulfated under high
temperatures and rich conditions. These phases are called “desulfations”.

The interested reader can report to Olsson et al. (2005) for more details.

Urea Selective Catalytic Reduction (Urea-SCR)

The SCR technology is already widespread among heavy duty applications. It is currently being
adapted to passenger cars because of the coming NOx-stringent Euro 6 emission requirements. SCR
systems yield high NOx conversion rates but require costly additional in-vehicle hardware and speci�c
servicing.

A Urea-SCR system is composed of a speci�c tank containing urea, which is injected into the
exhaust line through a dedicated circuit. Then, it is decomposed into ammonia (NH3) which reacts
with NOx on the SCR catalyst (which can be e.g. TiO2, V2O5, Fe-Ze, Cu-Ze . . . ).

In the exhaust line, the SCR system is usually located downstream of both the DOC and the DPF
as shown in Fig. 1.10.

Main reactions with SCR systems are brie�y introduced. First, main NOx reduction reactions are

� 2 NH3 + 2 NO +
1
2

O2 ! 2 N2 + 3 H2O (Standard SCR reaction)

� 2 NH3 + NO + NO2 ! 2 N2 + 3 H2O (Fast SCR reaction)

� 8 NH3 + 6 NO2 ! 7 N2 + 12 H2O (NO2 SCR reaction)

Besides, NH3 storage is a key parameter in SCR control. Denoting� a free catalytic site and NH3*
an adsorbed form of NH3, a simpli�ed ammonia storage control-oriented scheme can be written as

� NH3 + � ! NH3* (Ammonia adsorption)

� NH3* ! � + NH3 (Ammonia desorption)

Note that, in some cases, different forms of adsorbed NH3 must be considered (Grossale et al. 2008)
(Frobert, Creff, Raux, Charial, Audouin & Gagnepain 2009). Further direct oxidation of ammonia
is important because ammonia represents the control variable in SCR control, and it must be known
when it is not used for NOx reduction.

� 2 NH3 +
3
2

O2 ! N2 + 3 H2O (Ammonia oxidation)

Finally, NO oxidation/ NO2 reduction should be considered because the NO=NO2 ratio is another key
parameter in SCR control.

� NO +
1
2

O2 $ NO2



1.4 A panorama of diesel aftertreatment systems 31

Figure 1.13: Schematic view of DPF channels. Gas loaded with PM, in dark blue, is �ltered when
�owing through porous walls. Clean �ow, in light blue, exits to adjacent channels. Figure source:
www.cd-adpco.com.

1.4.2 Diesel Particulate Filter (DPF)

On most modern diesel vehicles, the increasing requirements regarding particulate matter emis-
sions (Ecopoint Inc. 2008) are satis�ed using a diesel particulate �lter (DPF). The Euro 5 standard
has divided by �ve (compared to Euro 4) the maximum allowable value of particulate matter. This
device is now widely spread among new vehicles. The �lter, located in the vehicle exhaust line, stores
particulate matter until it is burnt in an active regeneration process (Achour 2001).

In fact, the DPF is a reactor made of ceramic (mainly cordierite or silicon carbide) composed of
numerous channels. These channels are blocked alternatively at one end or the other. They are related
to adjacent channels by porous walls. Therefore, gases are forced to �ow through the walls which act
as �lters for the particulate matter. This process is illustrated in Fig. 1.13. About every 500 km, the
�lter must be cleaned. This is achieved by raising the �lter temperature (between450� C and600� C
depending on the supports) in the presence of oxygen (i.e. in a lean environment). This process is
called DPF active regeneration.

1.4.3 Diesel Oxidation Catalyst (DOC)

Historically, oxidation catalysts have been the �rst aftertreatment systems in automotive industry.
They have been widely developed since the mid-70s for SI engine applications because of the high
HC and CO emissions levels of these engines.

Catalysts used for diesel applications (i.e. DOC) have appeared later because of the relative lower
values of HC and CO emissions found in CI engines compared against SI engines. These species are
most often treated by a platinum-based catalyst. Further, DOC reduces PM mass. This explains why
DOC is systematically used in diesel aftertreatment systems.

Because the HC and CO reactions are strongly exothermic, the DOC is also used to control the
exhaust line temperature. In particular, it is used to generate the temperature required for the already
mentionedDPF active regeneration(Van Nieuwstadt & Tennison 2006). To increase the DPF inlet
temperature, reductants are oxidized in the DOC, which, in turn, increases its outlet temperature. This
is why, in commonly observed aftertreatment architectures, a DOC is placed upstream of the DPF in
the vehicle exhaust line (see Fig. 1.10).
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(a) DOC used with a Peugeot 407
HDi DPF 2.0-L engine. 1.22-L /
Ø 5.63 x 3 in / cell density: 400 cpsi

(b) DOC used with Renault
M9R 2.0-L engine. 2.21-L /
Ø 5.67 x 5.5 in / cell density:
400 cpsi

Figure 1.14: Examples of DOC found in commercial vehicles. Both the DOCs are composed of about
900 channels. Pictures: IFP

1.5 One-dimensional distributed nature of aftertreatment devices and
control perspectives

As has been presented, aftertreatment systems use monolith converters which are designed to
maximize the mass transfer to the catalytic surface. To this end, the channels of the monolith are
narrow and numerous (a typical order of magnitude is 400 cpsi8). This geometric con�guration also
yields highly-ef�cient heat transfer between gas and solid. Hence, the solid phase (i.e. the monolith)
acts as a spatially-distributed storage of energy and species. The induced propagation phenomenon
leads to highly-delayed responses. This point will be illustrated at several occasions in the manuscript.

Models for these devices are based on one-dimensional distributed parameters equations similar
to those presented in Chapter 2 (the DPF equations are slightly different). In the following it will be
pointed out that one-dimensional effects must be included for in the modeling and further, that they
should be accounted for in the control strategies.

An example of a 1D distributed parameter chemical model: SCR

A control-oriented model for the SCR can be written as
8
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where

� X is the molar concentration of NH3;

8cells per square inch.
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� Y is the molar concentration of NOx;

� 
 is the total capacity of catalytic sites;

� � is the fraction of available catalytic sites;

� a is an adsorption function for NH3. In particular, it depends on the temperature;

� d is a desorption function for NH3. In particular, it depends on the temperature;

� c is a consumption function of NOx. In particular, it depends on the temperature.cencompasses
all the NOx consumption reactions described in § 1.4.1;

� v is the gas velocity in channels.

This minimal model successfully describes basic experiments, one of which is illustrated in the fol-
lowing. Fig. 1.15 reproduces an experiment on a SCR catalyst (Fe-ZSM5), for an operating point cor-
responding to a low temperature (213� C at catalyst inlet) and a low gas �ow rate (34 kg/h) (Frobert,
Creff, Raux, Charial, Audouin & Gagnepain 2009). At timet = 0 , urea is injected. Its �ow rate is

Figure 1.15: Example of NOx conversion ef�ciency during step changes in NH3 supply. At time
t = 0 , urea is injected. Att = 3600s urea injection is cut. Experimental data.

adjusted such that the molar NH3 to NOx ratio is equal to 1. The ef�ciency, i.e. the percentage of
NOx that are treated on the catalyst, is plotted. The ef�ciency slowly rises until the urea injection
is cut att = 3600s. The origin of this slow rise is not commented here. We want to focus on the
shape of the curve once the urea injection is cut. What happens then is a consumption of the ammonia
stored in the catalyst, which explains why the ef�ciency does not immediately drops to 0. Anyway, if
this storage were to be modeled by a 0-dimensional model, one should see a decrease merely looking
like an exponential decrease. Here, what indeed happens is the following:

� NH3 stored along the catalyst is progressively released to reduce NOx, from inlet to outlet,
explaining the ef�ciency loss;



34 CHAPTER 1. INTRODUCTION

� when almost no NH3 remains stored, ef�ciency quickly falls.

So, the observed behavior cannot be properly described, unless a model is used that accounts for an
non-homogeneous spreading of NH3 inside the catalyst. This underlines the need of a 1-dimensional
model, such as the one presented above, to account for NH3 storage and improve the SCR control.
Many improvements of this model are obviously possible. This is the topic of other works.

An example of 1D thermal distributed dynamics: DOC-DPF

A reference model for DPF is presented in Bisset (1984). During the regeneration process, DPF
behaves like a potentially unstable reactor (Achour 2001), and its temperature must be carefully con-
trolled to prevent its runaway. This control cannot be only based on feedback information from a
DPF downstream sensor. This is due to one-dimensional phenomena in the DPF and induced lag:
temperature effects of PM oxidation taking place at the inlet or at the center of the reactor are highly
delayed at the DPF outlet. Control of this element is achieved in open-loop by controlling its inlet gas
�ow temperature. In facts, a DPF is usually seen as passive element. To carry out the regeneration
process ef�ciently, a DPF inlet gas �ow temperature pro�le can be de�ned, taking into account the
kind of PM and the PM loading. In practice, however, it is often restricted to a constant setpoint. An
example of such a pro�le can be found in Mercuri (2007). It is reproduced in Fig. 1.16.

Figure 1.16: Example of strategy for DPF temperature pro�le for regeneration (Source: Mercuri
(2007)).

As has been explained earlier, the DOC can be used to control the exhaust line temperature. In
particular, it is used for DPF active regeneration.

DOC follows also 1D equations (that will be described in Chapter 2). One basic observation
pointing out this one-dimensional nature is that, while the gas residence time is very short (typically
a fraction of a second), the overall thermal response is important (about 10 to 100 seconds). In
facts, a DOC acts as a distributed heat reservoir. From a dynamical system standpoint, the DOC
outlet temperature can be controlled by a speci�c amount of injected HC (control variable). As for
the DPF, DOC outlet temperature control strategies cannot be only based on feedback information
from the DOC downstream sensor. This is because of the mentioned long response times due to 1D
distributed nature of the system, and because of the large and frequent disturbances it is subject to.
These are mostly inlet temperature, gas �ow rate, and undesired upstream gas composition (HC, CO,
. . . , resulting from in-cylinder engine partial combustion).

DOC control is a topic of strong interest in aftertreatement systems. A better control can alleviate
calibration effort and save time in the controller design and tuning. Further, improving the temperature
control performance reduces the risk of �lter runaway. When temperature �uctuations are reduced,
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one can shift the setpoint closer to the runaway limit, and in turn decrease the required regeneration
time. This also has some bene�cial effects in terms of fuel consumption and engine oil dilution
problems. Finally, there is another (indirect) bene�cial aspect. From a design viewpoint, a better
DOC temperature control allows the use of longer monoliths (the longer the monolith, the more
dif�cult the control is).These are the reasons motivating the research work presented in this thesis.

1.6 Thesis outline

As discussed earlier, aftertreatment systems will tend to be systematically incorporated into mod-
ern vehicles. Reducing the costs and lengthening the life expectancy of these chemical reactors can
be achieved thanks to improved control algorithms. To be realistic, one should keep their calibration
effort low.

After having sketched some of the issues related to the distributed (1D) natures of various af-
tertreatment systems in this introduction, we will now focus on the problem of the DOC temperature
control for the DPF active regeneration. This is the subject of this thesis which is organized as follows.
In Chapter 2, we present a detailed model for the DOC using results from the literature, which has
become richer and richer over the years. In Chapter 3, we reduce this model to a minimum required
to describe the thermal responses properly. A model encompassing all the chemical reactions in a dis-
tributed “source” term serves as a basis for validation. In Chapter 4, it is shown that this distributed
source term can be well-approximated by a boundary condition. Then, a parameterized model based
on the advection-diffusion equation is considered. This approximation represents the behavior of the
system when its main parameters are varying. Yet, some effects must be considered in view of real
applications. They are detailed along with compensation possibilities in Chapter 5. In Chapter 6, a
feedforward control based on the proposed model is developed for the inlet temperature (disturbance).
Besides, a feedforward action is proposed to attenuate effects of the gas �ow variations (disturbance).
The proposed control scheme allows the evolution of parameters in the feedback law to be scheduled
under varying gas �ow conditions. To stress the relevance of the contribution, experimental control
results are presented in Chapter 7.

For practical implementation Report to Chapter 7 for a detailed presentation of the proposed
control solution and experimental results.

Important remark In the main body of the manuscript, a disturbance is intentionally omitted to
clarify the presentation. Adaptations of the proposed control solution are made in Appendix A for
the “real case”. In Appendix C, a controller using classic control methods is developed as reference.
The parameters of a �rst order plus delay model are calculated with physical parameters of the DOC,
allowing a light calibration effort and straightforward controller design. Unfortunately, this classic
path leads to not completely satisfying results. The study presented in Appendix D aims at speeding
up DOC temperature response. Although not used in the control application, these insightful results
are referred to in the main text. Appendix E gathers computation developments whose results are
used in the main chapters. Appendix F presents the experimental setup used for experiments. In
Appendix G, control problems related to the DOC temperature controller environment (air path, fuel
path, emission estimation) having led to experimental results are presented. Management strategies
for the actuators (and related dif�culties) are presented.

Remark.All presented experimental data are the results of tests carried out during the Ph.D. term.
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Chapter 2

DOC detailed modeling

In the �eld of diesel oxidation, catalytic phenomena are a topic of intense research. Models used
by catalyst manufacturers and scientists to understand and optimize ef�ciency have steadily become
more complex over the years. Early models essentially described simpli�ed energy balances (Vardi &
Biller 1968), and progressively, more detailed mass balances were added (at least two mass balances
per considered species are now considered). Spatial inhomogeneity has been considered too, from
a multi 0-dimensional model (Kuo et al. 1971) or a 1-dimensional model (Oh & Cavendish 1982),
most recent automotive catalyst models lead to 2-dimensional or 3-dimensional simulation softwares
((Chen et al. 1988), (Tischer et al. 2001), (Shamim et al. 2002)). Obviously, they require heavy
computational effort. Because of the geometric symmetry of the monolith which is mostly cylindrical,
it is reasonable, as we do it in this thesis, to base our analysis on 1-dimensional models. As detailed
in Depcik & Assanis (2005), and as will appear in the light of experimental results, this reveals to be
a quite accurate approach and yields a substantial reduction of the mathematical dif�culties.

In the approach of Depcik (2003), 1-dimensional models are based on the Euler equations of
motion (mass, momentum, energy and molar species), which are often used for low viscosity 1-
dimensional reacting �ow in channels
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wheret is the time variable,z is the coordinate along the �ow axis,� g is the gas density,v stands for
the gas velocity in the channel,p is the gas pressure,E is the total internal energy of gas,H is total
enthalpy of gas,NM is the number of considered species and, subscriptj refers to the speciesj , Cg

is gas molar concentration, andS terms are generalized source terms. One can refer to the work of
Depcik & Assanis (2005) for comprehensive details.

These equations represent a generalization of a simpler set of equations proposed by various
authors in earlier works such as those cited above. This general formulation has allowed relevance
veri�cation of explicit or implicit assumptions formulated in those earlier works: it is found that most
of the representations were indeed relevant although results may differ in some speci�c cases. The
main phenomena at stake are summarized in Fig. 2.1. Usually, corresponding models include

� one temperature equation for the gas phase

37
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Figure 2.1: Phenomena involved in the numerous channels of the DOC. Reductant species in exhaust
gas (in blue) are converted over the catalytic surface (in red).

� one temperature equation for the solid phase

� one balance equation per considered species in the gas phase

� one balance equation per considered species at the interface (surface)

These formulations include at least the following species: CO, O2, H2, two types of HC; and prefer-
ably NO, NO2, CO2, H2O and other species.

In the following, we present a classic model based on the formulation of Oh & Cavendish (1982).
It is a reference in terms of description of governing phenomena. The following symbols are used.
T, C and� refer to the temperature, the molar concentration, and the density, respectively. Subscript
s refers to monolith or surface. Where present, subscriptg refers to gas.Cp is the speci�c gas
heat,Cps is the speci�c heat of monolith,F is the gas mass �ow rate," is the ratio of gas volume
to total volume (void ratio),Acell is the mean cell cross-sectional area (wall and channel),kg is the
thermal conductivity of gas,hg is the convective heat transfer coef�cient between gas and solid,Ga

is the geometric surface area-to-volume ratio,Gca is the catalytic surface area-to-volume ratio,Rj is
the rate of reaction of speciesj , hj is the enthalpy of chemical speciesj , km;j is the mass transfer
coef�cient of speciesj . For more details on these variables, the reader can report to Depcik & Assanis
(2005).

Balances equations are written as

� Gas temperature equation as
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� Monolith temperature equation as
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� Mass balance for gas species
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� Mass balance for surface gas species
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where the reaction rateRj is often �t to a Langmuir-Hinshelwood rate equation (see e.g. Olsson &
Andersson (2004))
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where i ,j ,k and m refer to species index,A j is the pre-exponential factors of speciesj , Ea;j is
activation energy of speciesj , Cs;j are the species mass concentrations of speciesj , K are the pre-
exponential factors of inhibition terms,� H a are the adsorption heats in inhibition terms,n are power-
law terms in reaction rate inhibition terms,� i and� k are power-law on species, andRu is the universal
gas constant. Alternatively, many different formulations can be considered for the reaction rate.

Note that most authors in the literature neglect the gas storage term
@Cs;j

@t
in the surface species

balance (2.5). It is found in Depcik & Assanis (2005) that this approximation systematically leads
yields little errors and is fully justi�ed.

Although surface gas species storage is negligible, it must be noted that, in reality, washcoat plays
an important role in the chemical reaction process (report to Herz & Sell (1985)). Taking into account
detailed catalytic mechanisms requires another equation. This equation has been �rst introduced by
Pattas et al. (1994) and later generalized by Windmann et al. (2003), Yamauchi et al. (2005), Depcik
(2003). In its simplest form, it can be seen as an equation of availability of catalytic sites and is
written as

d� m

dt
=

_sm

�
j = 1 ; : : : ; NS (2.7)

whereNS is the number of surface intermediate species,� m is the coverage fraction of surface
intermediate of speciesm, _sm is the chemical species heterogeneous molar production rate of species
m, and� is the surface site density.
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It turns useful to model formation of intermediate species and, in turn, describe mechanisms like
oxygen storage over cerium or NO2 storage over barium. Hence, it is particularly important when
modeling three-way catalysts (catalyst used for SI engine and working in a close to stoichiometric
environment) or LNT functions.

Finally, minimal catalyst formulations include 5 species as in Oh & Cavendish (1982) and, there-
fore, models includes at least 10 equations for the species. We will focus on the energy balances in
the next chapter, gathering oxidation reactions in a single macroscopic source term.



Chapter 3

Reduced model

A DOC is a chemical system dif�cult to control because of the highly-varying delays and because
of the large and frequent disturbances it is subjected to. As explained in Chapter 2, the natural
complexity of this system has given birth to increasingly complex models over the years. Classic
models are usually composed of at least a dozen of coupled partial differential equations ((2.2)-(2.5)).
This large dimension makes dif�cult the development of model-based control laws. Later, simpli�ed
catalyst modeling approaches have been introduced (e.g. (Please et al. 1994), (Leighton & Chang
1995), (Ramanathan et al. 2004), (Keith et al. 2001)). Such approaches have provided insights into
catalyst parameters optimization (void fraction, material, precious metal loading distribution, . . . ) or
light-off prediction, but not on control design. In this thesis, our goal is to present a simpli�ed model
dedicated to DOC outlet temperature control during DPF regeneration. This will be accomplished in
two steps. In this chapter, we �rst determine a distributed parameter model that takes the form of two
1-dimensional hyperbolic partial derivatives equations. In the following Chapter 4, we determine an
approaching parabolic equation.

After an outline of modeling objectives corresponding to experimental observations that we wish
the model to capture, simpli�cations are proposed and motivated, and, �nally, a reduced model is
extracted. As is demonstrated, it closely imitates the physical observations but does not directly lead
to a control design. It is validated by experimental results.

3.1 Modeling objectives

We focus on the dynamics of the simple system pictured in Fig. 3.1, for which the steady-state ef-
fects are easily captured. The inputs are the control variableu (control HC �ow rate), the disturbance
variableT in (inlet temperature), and the disturbance variablev (gas speed).This latter disturbance is
also referred to as gas �ow rateF from now on, since a straightforward relation relates gas �ow rate
and gas speed (given later by (3.18)).

Figure 3.1: DOC reduced model

41



42 CHAPTER 3. REDUCED MODEL

Certainly, the real picture of the DOC is more complicated, as it involves several other disturbances,
among which is, in particular, the reductants �ow (having effects similar to the control HC's). The
reductants will be referred to asdisturbance reductants(or variableFdis ) from now on. They will be
mentioned and explained in some of the experimental results interpretations. Otherwise,for sake of
clarity, they will be voluntarily omitted. Relevant extensions of the approach presented in the thesis
are given in Appendix A.

Figure 3.2: Simpli�ed overview of the DOC experimental setup. See Appendix F for details.

A simpli�ed overview of the DOC experimental setup used in the testbench modeling experiments is
presented in Fig. 3.2. Gas temperatures are measured upstream and downstream of the DOC. Addi-
tionally, an intra-catalyst temperature sensor is located at the center of the DOC. Gas compositions
can be measured upstream or downstream of the DOC. For a detailed description of the experimental
setup, the reader can refer to Appendix F.

It is worth noticing that the input and output variables (u, T in , Tout , v) are indeed available
in embedded applications:u is the control variable related to the injector energizing time,T in and
Tout are provided by the DOC inlet and outlet temperature sensors (embedded sensors), andv can be
evaluated from the mass air �ow sensor, the inlet temperature sensor, and a pressure sensor (embedded
sensors). On the other hand, intra-catalyst temperature (T intra ) as well as upstream and downstream
gas compositions arenotavailable in embedded applications. Further details are given in Appendix F.

Model requirements The description of the following phenomena is desired:

� response ofTout to control HC (u);

� response ofTout to inlet temperature (T in );

� in�uence of gas speed (v).

The above objectives can be divided into two subsets: steady-state values, and dynamic response
matching. First, the steady-state effects ofu andT in are considered. It is shown that they can be
easily described, under various constant gas speed (v) conditions. On the other hand, the dynamic
effects ofu andT in are studied, �rst, under various constant gas speedv conditions, and then, the
in�uence of the gas speed variations is considered.For a sake of clarity, after their presentation, it
will be assumed that the steady-state effects (§ 3.1.1) are known a priori and our focus will be on the
dynamic responses (§ 3.1.2) in the rest of the thesis.
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3.1.1 Steady-state effects

First, we wish to relate the steady-state output temperature value to the input parameters (control
HC �ow rate, inlet temperature, and gas speed). The two inputsu andT in have superimposing effects,
that we describe one after the other.

3.1.1.1 u-to-Tout steady-state gain

We report here physical observations that suggest to write the steady-state gain of the DOC as the
gain of an adiabatic reactor.

Main factor: gas �ow rate For a given HC �ow rateu, the output temperatureTout rise is strongly
related to the gas �ow rateF . In Fig. 3.3, the steady-state gain (i.e. the ratio ofTout rise to corre-
spondingu variation) is reported. This �gure shows a close to hyperbolic relationship of this ratio
on the gas �ow rate. Equivalently, one can consider that the inlet-to-outlet temperature difference is
proportional to the inlet concentration (ratio of HC mass �ow rate to gas mass �ow rate). This point
is supported by the data obtained with the gas analyzers that are reported in Fig. 3.41.

In more details, temperature rise is also impacted by the conversion ef�ciency, i.e. only the
fraction of reductants that are actually oxidized in the catalyst contribute the temperature rise. As
presented in Fig. 3.5, the conversion ef�ciency� mostly depends on the gas �ow rate (or gas speed).
At low gas �ow rates, the ef�ciency is very high. It continuously decreases when gas �ow rate
increases. This can be easily taken into account by a look-up table.

Figure 3.3: Steady-state gain versus gas �ow rateF . Inlet temperature remains constant during HC
�ow rate variations. Experimental data.

1Disturbance reductants are accounted for in this �gure
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Figure 3.4: Inlet-to-outlet temperature rise versus inlet reductants concentration. Experimental data.

Figure 3.5: DOC conversion ef�ciency� versus gas volume �ow rate. Experimental data.
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About inlet reductants �ow rate and inlet temperature To be consistent with real world regen-
eration scenarios of DOC usage, most of the results in the thesis are obtained at high temperatures
and under lean conditions (i.e. in excess of oxygen). Under these conditions, oxidation reactions
are fast. This corresponds to normal conditions for DPF regeneration. Absolute values of reductants
�ow rate (includingu, other reductants are accounted for in Appendix A) and absolute inlet temper-
ature are neglected in the steady-state gain considerations. The gain can be, as illustrated in Fig. 3.3,
considered to be a function of the gas �ow rate only.

About heat losses Because of the DOC geometry (it consists of a large number of channels), the
adiabatic assumption for channels near the center line is common and relevant (see references in
Chapter (2)). In Fig. 3.6, outlet-to-inlet temperature difference is compared to adiabatic theoretical
value recalculated from gas analyses measurements for various gas �ow rate, inlet temperature, and
HC �ow rate conditions. It is shown that DOC inlet-to-outlet thermal losses (in the �ow center line)
are almost independent of the operating point. In an attempt to model heat losses, the temperature
difference between DOC and ambient would be the �rst factor of in�uence. During the regenera-
tion process, because the outlet temperature is globally constant, this factor has a small impact. In
embedded applications, heat losses may vary to some extent. They can be impacted by the ambient
temperature, and the vehicle speed. However, it is assumed that they vary slowly enough so that
they can be compensated by integral effects in the control law. Hence, this phenomenon will not be
accounted for in our modeling.

Figure 3.6: Outlet-to-inlet temperature difference in DOC from temperature sensors measurement
compared against iso-thermal computation from gas analyzer measurement at various engine operat-
ing points (engine speed of 1500 rpm). Heat losses are independent of the operating point. Experi-
mental data.

Steady-state gain Consider the DOC as an adiabatic system. Steady-state energy balance for the
system is commonly written as (according to the previously de�ned notations)

F Cp T in � F Cp Tout + � � Hu u = 0 (3.1)
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where� Hu is the heat of combustion of the control HC. We get

Tout � T in =
� � Hu

F Cp
u (3.2)

From this, inlet-to-outlet temperature rise varies as an hyperbolic function of the gas �ow (scaled by
� ). From another viewpoint, temperature rise is simply proportional to the HC inlet concentration
Cu = u=F (scaled by� ).

Tout � T in = �
� Hu

Cp
Cu

These results are in accordance with the previous experimental observations. From (3.2), the steady-
state in�uence of control HC to outlet temperature can be easily determined. The steady state gain of
the transfer function from the control HC �ow rate to the outlet temperature is given by

Gu = �
� Hu

F Cp
(3.3)

3.1.1.2 T in -to-Tout steady-state gain

According to previous conclusions about heat losses, the inlet-to-outlet temperature steady-state
gain of the considered adiabatic system is equal to 1. We note

GT in = 1

3.1.2 Dynamic responses

We now brie�y describe the dynamic effects that we wish our model to capture. These are:
response under constant gas speed, and the (counter-intuitive) response to variation of gas speed.
Eventually a model is proposed in § 3.2.

3.1.2.1 Outlet temperature response to control HC (u) and inlet temperature (T in ) at constant
gas speed (v)

Temperature response to control HC (u) A main requirement for our modeling is to describe the
dynamic response to control HC �ow rate, which is the control variable. In Fig. 3.7, an example of
experimental HC step responses is given for two different gas �ow rates. One can see that response
times and overall response shapes are signi�cantly different between the two cases.

Temperature response to inlet temperature (T in ) Considering the experimental device presented
in Appendix F, it is dif�cult to experimentally isolate the in�uence of inlet temperature variations from
variations of the other disturbances. However, it can be observed that responses to inlet temperature
are highly-delayed and highly-variable, in a similar way as responses to control HC.
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Figure 3.7: 3-inch long DOC thermal response to a step increase (att = 0 ) in the control variable.
Response times strongly depend on the gas �ow rate (gas �ow rate of 32 kg/h (left) vs. 190 kg/h
(right)). Inlet temperature is kept constant during the tests. Experimental data.

3.1.2.2 Effects of gas speed variations (v) on the DOC outlet temperature (“overshoot and
undershoot” phenomena)

Again, in view of the experimental device considered in this thesis, gas �ow variations cannot be
generated independently of inlet temperature variations, nor of the engine disturbance reductants (see
Appendix A for more details). However, this does not prevent us from investigating the phenomena
involved in the DOC during gas �ow rate variations.

It can be noticed in Fig. 3.8 that a fall in the gas �ow rate (it is illustrated in Fig. 3.5 that this fall
is associated to an increase of conversion ef�ciency) together with an increase in HC concentration
upstream of the DOC imply an increase in the intra-catalyst temperature. Despite this increase, the
outlet temperature undershoots during a transient phase (see Fig. 3.8).

By contrast, an increase in gas �ow rate (associated with a fall in ef�ciency) together with a
fall in HC concentration imply a fall in intra-catalyst temperature. Despite this decrease, the outlet
temperature is overshooting during a transient phase (see again Fig. 3.8).

Experimental results show that these two phenomena appear irrespective of whether the inlet
temperature is rising or falling2. This is not surprising: because of the one-dimensional distributed
state nature discussed in § 1.5, there is no direct transfer from the inlet temperature to the outlet
temperature3.

2See Fig. 5.6 for an example of a rising inlet temperature while the outlet temperature is undershooting.
3More details about inlet temperature response are given in § 3.5.1.
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Figure 3.8: DOC outlet temperature undergoes counter-intuitive evolutions related to gas �ow rate
variations. Experimental data.
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3.2 Proposed reduced model

In this section, an overview of the proposed reduced model, as well as its main properties, is given.
Experimental validation results will be presented in § 3.3. Assumptions and justi�cations leading to
the presented reduced model will be detailed in § 3.4.

The proposed reduced model is given by
8
>>><

>>>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t)) + 	( z; u(t); v(t))

(3.4)

where

� T is the gas temperature

� Ts is the solid phase temperature

� Tout (t) , T(L; t ) is the system output (outlet gas temperature) whereL is the length of the
DOC

� T in (t) , T(0; t) is a system disturbance (inlet gas temperature)

� v is a system disturbance (speed of the gas �owing through the DOC)

� 	 is a distributed input variable related to the control variableu (called “source” term)

� k1 andk2 are constant parameters

	 is a distributed source term constant over some spatial interval
�

	( z; u; v) =  (u; v); 0 � z � L c(v)
	( z; u; v) = 0 ; L c(v) < z � L

(3.5)

whereL c is a piecewise af�ne function of the channel gas speedv,

L c(v) = min( L; a � v + b) (3.6)

a andbbeing two positive constants. The source term is depending on the lengthL c, and the control
HC �ow rate u by the following relation

 (u; v) =
1

L c(v)
Gu(v)

k2 v
k1

u (3.7)

Comments on the model

The model (3.4) is a linear in�nite-dimensional (distributed parameter) model with distributed
control (3.5) acting homogenously on a reduced spatial domain de�ned by (3.6) by the disturbance
variablev. The gain of the controlu is de�ned by the static model determined earlier in § 3.1.1 and
expressed in (3.7). The model has been obtained by keeping the energy balances (2.2) and (2.3) of
the detailed model, where the conduction effects have been neglected, and where the source term
gathers the distributed reaction enthalpy presented above. Precisely,	( z; u; v) includes the sum of
the enthalpies of the various reactions taking place inside the DOC.L c is the length of the portion of
the DOC where the heat is released (reactive length) as is pictured in Fig. 3.9.
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Figure 3.9: Reduced model reactive zone. Reductants are oxidized uniformly on the upstream part of
the DOC.

About calibration Gas speedv can be easily computed using air �ow rate measurements (see
later (3.18)). The set of parameters(k1; k2) can either be deduced from (3.18) and from usual cor-
relations (given for example in Osizik (1977)), or identi�ed from experimental variations of the inlet
temperature (an example is given in § 3.3.3). On the other hand,L c can be readily identi�ed from
experimental HC step responses. However, it is not used directly in the controller, and the calibration
is performed by another variable (see Chapter 7).

Considering temperature variations To study the proposedlinear model (3.4)-(3.5)-(3.6)-(3.7),
it can be assumed that the reactor is initially at steady state, i.e.T(z;0) andTs(z;0) are equal and
constant. It is then correct to assume thatT andTs represent the variations of temperature about
steady state instead of the (absolute) temperatures themselves. Therefore, from now on, the initial
conditions are �

T(z;0) = 0
Ts(z;0) = 0 :

(3.8)

3.3 Experimental validation

In this part, the reduced model is experimentally validated in terms of dynamic response to HC
(inputu) in § 3.3.1, under variable gas speedv conditions in § 3.3.2, and in terms of dynamic response
to inlet temperatureT in (disturbance) in § 3.3.3.

3.3.1 Experimental validation by HC step responses at constant gas speed

In this part, to validate the previously proposed reduced model, we focus on the temperature
response to control HC variationu. Detailed calculations yielding the following results can be found
in Appendix E.1.

Transfer function Consider a step input of magnitude� , i.e.

 (u(t); v) = � �( t); (3.9)

where� is the Heaviside function. In the Laplace domain, the response of theT variables to this
input signal is

T̂ (z; s) = T̂ in exp
�

� Âz
�

�
B̂

Â
exp

�
� Âz

�
+

B̂

Â
exp

�
� Â(z � L c)

�
(3.10)
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where 8
>><

>>:

Â(s) =
1
v

�
s + k1 �

k1k2

s + k2

�

B̂ (s) =
k1

v
�

s(s + k2)

(3.11)

and wheres is the Laplace variable,̂x is the Laplace transform ofx (for every functiont 7! x(t)).

Steady-state value The steady-state value of the temperature can be computed using (3.10), for
every value ofz. It is given by

lim
t !1

T(z; t) = T in +
k1�L c

k2v
(3.12)

whereT in is the steady-state inlet temperature value. In particular, whenT in = 0 , one has

lim
t !1

T(z; t) =
k1�L c

k2v
(3.13)

Variables� , L c andGu are related through by (3.7)

� L c = Gu
k2 v
k1

u (3.14)

HC step response In the time domain, the response to step input (3.9) is given by the inverse
Laplace transform of (3.10)

Th(z; t) = � ( t � z=v) exp
�

�
k1z
v

�
M (z; t � z=v)

� � ( t � z=v) exp
�

�
k1z
v

�
N (z; t � z=v)

+ � ( t � z=v) exp
�

�
k1z
v

�
N (z � L c; t � z=v)

(3.15)

where
8
>>>>>>>>><

>>>>>>>>>:

M (z; t) = T in (t) +
Z t

0
exp (� k2� )

r
m(z)

�
I1(2

p
m(z)� )T in (t � � )d�

N (z; t) = g(t) +
Z t

0
exp (� k2� )

r
m(z)

�
I1(2

p
m(z)� )g(t � � )d�

g(t) =
k1�

k1 + k2
t �

k1�
(k1 + k2)2 (1 � exp (� (k1 + k2)t))

m(z) = k1k2z=v

with I1 the modi�ed Bessel function of the �rst kind (see Abramowitz & Stegun (1965)).

Experimental validation In Fig. 3.10, we present experimental HC step responses obtained under
various operating conditions. Gas speedv remains constant during each of these tests, as well as the
inlet temperature. It is shown that the analytic formula (3.15) �ts experimental data well.
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Figure 3.10: Experimental HC step responseu in various operating conditions and at steady gas �ow
rate.

3.3.2 Experimental validation under variable gas speed conditions

In the proposed model, oxidation reactions starts at the DOC inlet. The value of the reactive length
L c depends on the gas speedv through (3.6). We wish to investigate the relevance of this assumption.
The model is compared against experimental data in Fig. 3.11. Physical measurements (gas �ow
rate, inlet temperature, inlet HC4), related to the model inputs, are also plotted. It appears that the
temperature variations are well represented by our model. In particular, the phenomena of “overshoot”
and “undershoot” related to the gas �ow rate increase att = 90 s, and, decrease att = 275 s are well
reproduced. For comparisons, the simulation results in the case of a constant reactive length are also
plotted. Clearly, the proposed model of varying reactive length (3.6) outperforms it. This stresses that
relating the reactive length to the gas �ow rate is a solution to reproduce the observed counter-intuitive
overshoot and undershoot phenomena.

4Disturbance reductants are accounted for in this experiment.
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Figure 3.11: Model validation under variable gas �ow conditions. Accounting for variable reactive
lengthL c reproduces the inverse response experimentally observed. The label “Temperature varia-
tions” refers to variations about a reference value (approximately 450� C for the experimental data).

3.3.3 Experimental validation by large inlet temperature variations

On the experimental setup considered in this thesis (see Appendix F), it is not possible to generate
inlet temperature variations totally independently from other disturbances (gas �ow rate, inlet HC5).
Nevertheless, we present in Fig. 3.12 an experiment in which the catalyst undergoes mostlyT in

variations.
In this experiment, the engine is initially working under low gas �ow rate conditions, the tem-

perature responses are slow, and, there exists a HC �ow at the catalyst inlet due to engine partial
combustion (see Appendix A). Then, the engine injection system is switched off. This makes the
DOC inlet temperature plummet. Gas �ow rate remains roughly constant, because an electric motor
drives the engine at a constant speed. Injection cut-off (att � 500s) implies a HC variation. This
impacts on the beginning of the response. Additionally to this variation,T in is varying over a long
period, such that, fromt � 600 s, it can be assumed that outlet temperature variation is the conse-
quence ofT in variation only. Interestingly, the response is well-represented by our model over the
whole time range.

Moreover, in this test, the temperature variation range is large, and, interestingly, accuracy of the
results stresses the validity of linearity assumption.

5Disturbance reductants are accounted for in this experiment (see Appendix A).
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Figure 3.12: In this experiment, gas �ow rate remains constant and response to inlet temperature
variations is stressed. Experimental and simulation data.

3.4 Model assumptions & justi�cations

As discussed in Chapter 2, numerous models have been used and improved since the 1960s for
oxidation catalysts. Following Depcik & Assanis (2005), several key simplifying assumptions are
usually considered. As seen in Chapter 2, the channels are in large number and they are all similar.
This geometry allows only one “average” channel to be considered in the modeling. It is supposed
to represent them all. Further, because of its geometry, the DOC is thermally isolated and heat losses
to the surroundings can be neglected. Axial diffusion in the �uid phase is negligible since the Peclet
number (Osizik 1977) is large (Pe> 50) while the axial conduction in the solid is not important6.
Except under very high �ow rate conditions, the entry length is a small fraction of the converter
length. As a result, the Nusselt and Sherwood numbers (Osizik 1977) can be assumed equal to
the fully-developed �ow constant values. Neglecting dependencies corresponding to the previous
assumptions, the following equations can be written from gas and solid energy balances (2.2) and (2.3)

"� gCp
@T
@t

(z; t) +
F (t)
Acell

Cp
@T
@z

(z; t) = � hgGa (T(z; t) � Ts(z; t)) (3.16)

(1 � " )� sCps
@Ts
@t

(z; t) = hgGa (T(z; t) � Ts(z; t)) + Gca

NMX

j =1

Rj (t) � hj (3.17)

6Authors of �rst catalyst models ((Vardi & Biller 1968), (Kuo et al. 1971), (Harned 1972), (Young & Finlayson 1974))
do not include axial diffusion in their calculation. However it is found that accurate results can be achieved. It has been
�rst stated by Oh & Cavendish (1982) that conduction should be included in the calculations to properly model temperature
propagation in the direction opposite to gas �ow during light-off phase. Our model is dedicated to temperatures higher than
light-off temperature. In these conditions, the “backward” propagation is no longer dominating. Moreover, our modeling
aims at being used for control design. Diffusion phenomenon actually helps temperature control, because its tends to
“smooth” temperature peaks. Then, as demonstrated in this thesis, even if diffusion is underestimated in the modeling,
control strategies remain valid. We remark that neglecting solid diffusion does not mean that there is no global diffusion.
Global diffusion is due to gas and solid exchanges as explained in § 4.2. Also, attention must be paid to numerical scheme
used to solve 1D equations, as it has a strong in�uence on numerical diffusion effects.
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Rewriting (3.16) and (3.17) with the following normalizing parameters
8
>>>>>>>>>>><

>>>>>>>>>>>:

k1 =
hgGa

"� gCp

k2 =
hgGa

(1 � " )� sCps

v =
F

"� gAcell

	( z; t) =
Gca

(1 � " )� sCps

NMX

j =1

Rj (z; t; Ts(z)) � hj (z; t; Ts(z))

(3.18)

we get 8
>>><

>>>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t)) + 	( z; t)

(3.19)

In the full-order modeling, the source term is determined by species balances (2.4) and (2.5).
This approach requires the determination of chemical coef�cients depending on the catalyst and on
the fuel speciation. Referring to Benjamin & Roberts (2004), this approach leads to results that are
signi�cantly dependent on the catalyst formulation. As a result, most authors perform careful calibra-
tion of their kinetic constants. In practice, adjusting these coef�cients is a tedious and dif�cult task
requiring thorough experimental analyses and time-consuming optimization procedures. Hence, our
viewpoint is to transfer this calibration effort to a simpler macroscopic source term. In the following,
assumptions are made to reduce the source term calibration effort to its minimum.

3.4.1 Hypothesis underlying the de�nition of the “source” term

A main feature of the proposed model is that it involves a single but (uniformly) distributed source
term to represent the effects of the chemical reactions. We now comment on this.

Encompassing exothermic reactions in a single source termDuring the regeneration process,
the DOC is used at high temperatures, which ensures that the rate of conversion of reductants is high.
Moreover, a large quantity of HC is injected to generate exothermicity. Consequently, the effect of
these reductants is dominating over other species'. For this reason, we have proposed to encompass
all the chemical reactions in a distributed “source term	 ”.

Accounting for disturbance reductants �ow separately In a strict approach, the total reductants
�ow rate at the catalyst inlet is split into the control HC mass �ow rateu and the “disturbance” reduc-
tants �ow rateFdis resulting from in-cylinder incomplete combustion and modifying undesirably the
DOC inlet reductants �ow rate. For sake of simplicity, the source term describes only the effects of
u. Because of the linearity of model (3.4) with respect to	 , the same approach can be used forFdis .
It will be seen in Appendix A how, in an accurate description,Fdis can be taken into account in the
model and the control laws.

Temperature independence As explained above, the catalyst is used at a temperature signi�cantly
higher than the light-off temperature. Experimental HC step responses are not really impacted by
the temperature level. Implicitly, we consider that the inlet temperature does not in�uence the source
term. Hence,	( z; t) is not a function ofTs.
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Decoupling chemical and thermal dynamics By construction, a DOC is designed to yield large
heat and mass transfer. These transfers are very effective, and the time scales implying the thermal
phenomena are much higher than the ones implying chemical reactions. For the experiments pre-
sented in this thesis, gas residence time (typically a fraction of a second) is approximately 1000 times
smaller than the outlet temperature response time. Because there is no HC storage effect at high tem-
perature, and because experiments show high conversion rates, time constants of chemical reactions
are at least one order of magnitude lower than thermal time constants. Hence, for a thermal model,
chemical reactions establish very rapidly to the steady-state value of	( z; v(t); u(t)) . In other words,
	( z; v(t); u(t)) is not explicitly a function oft. This is why the source term	 , and in particular the
reactive lengthL c (see below § 3.4.2), is studied under steady-state conditions ofv.

Uniform pro�le of 	( z; v(t); u(t)) As mentioned above, the temperature does not in�uence the
chemical reaction process much, and because thermal and chemical dynamics have been decoupled,
it can be assumed that, for a given value of(v(t); u(t)) , a z-pro�le of 	 can be considered. The
uniform pro�le is presented here.

The heat transfer between the monolith and the gas is very ef�cient. Further, the conversion rate
is high. This suggests that it can also be true for the mass transfer. The con�guration of the monolith
plays a particular role here. We assume that the rate of reaction is, at �rst order,independent of the
species concentration. Formally, considering (2.4) and (2.5) with a constant rate of reaction over the
DOC, the HC concentration pro�le decreases linearly until the zero concentration is reached, and the
consumption pro�le is constant. Then, the heat release and therefore the source term	 are constant
over the reactive spatial interval which is de�ned as the zone of non-zero concentration. Then, the
following discontinuous function is considered

�
	( z; u(t); v(t)) =  (u(t); v(t)) ; 0 � z � L c(v(t))
	( z; u(t); v(t)) = 0 ; L c(v(t)) < z � L

(3.20)

Remark.In these conditions, consider a �ow rateu1 of control HC (u = u1), reacting over the length
L c. The HC concentration decays linearly uponz and reaches zero atz = L c. The value of	 is
uniform over the lengthL c and zero over the remaining length. Now, if the inlet HC �ow rate is
doubled (u2 = 2 � u1), then the HC concentration decays linearly uponz (more rapidly than in the
latter case), and reaches zero atz = L c. 	 is again uniform overL c but higher than in the latter case
(see (3.7)). This is illustrated in Fig. 3.13. Assuming that the reactive length is independent of the inlet
HC concentration obviously has some limitations. In particular, this assumption is wrong when high
concentrations of HC are reached. This phenomenon is well illustrated by the second part of § 5.2.2,
and explained in particular in Fig. 5.8. However, we consider that, in normal cases, the reactive
length is independent of the inlet concentration. On the contrary, considering that the reactive length
depends, at �rst order, on the concentration would lead to signi�cantly different response times for
different inlet concentrations, which has not been observed in our experiments. Finally, it is important
to note that a uniform pro�le of	 has been considered because it is the simplest form that describes
experimental data well. The detailed description of the pro�le is not primordial here, because, in
Chapter 4, the data are re-identi�ed to another model.

In (3.20), the source term is related to the lengthL c, the gainGu , andu the amount of control
HC. We now detail this. Consider the system (3.4) under quasi-steady-state conditions

8
><

>:

v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

0 = k2 (T(z; t) � Ts(z; t)) + 	( z; u(t); v(t))
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Figure 3.13: Schematic evolution of source term	 for different inlet HC concentrations and at con-
stant gas �ow ratev.

These equations lead to
@T
@z

(z; t) =
k1

k2 v
	( z; u(t); v(t))

or, equivalently,

T(z; t) =
k1

k2 v

Z L

0
	( z; u(t); v(t)) dz + K

whereK is a constant. Boundary conditionT(0) = T in yields, after an evaluation of the above
integral

T � T in =
k1

k2 v
 L c

Further, by invoking the steady-state gainGu from § 3.1.1 we simply identify the following rela-
tion (3.7) (provided thatT in is constant)

 (u; v) =
1

L c(v)
Gu(v)

k2 v
k1

u

Finally, the dependence ofL c onv(t) is detailed below in § 3.4.2. As a summary, for a givenv(t),
the controlu(t) determines the input	( z; v(t); u(t)) through the equation above and (3.20).

Other pro�les of 	( z; v(t); u(t)) Additionally to the uniform pro�le, other pro�les of	 have
been considered (e.g. exponentially decaying, linearly decaying, freely optimized). They were
tested through identi�cation to experimental results. These possible candidates are presented in Ap-
pendix E.1. They do not improve the results of the uniform pro�le, and are therefore left unused in
the following. More details about the process that have led us to select a uniform pro�le of	 rather
than other pro�les can be found in Appendix E.1.5.

3.4.2 Accounting for variablev: modeling of the reactive lengthL c

It has been explained in § 3.4.1 that, in the proposed model, the chemical phenomena are en-
compassed in a simple source term distributed over a reactive zone. Now, we detail the nature of the
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reactive zone which length isL c. In § 3.4.2.1, the existence of the moving reactive zone is stressed,
and in § 3.4.2.2 the parameterL c is constrained to minimize the calibration effort and to respect our
modeling objectives.

3.4.2.1 Moving reactive zone

Experimental data presented in Fig. 3.14 show that there exists a reactive zone moving inside
the DOC. The outlet temperature roughly remains constant while the gas �ow rateF (v is related to

Figure 3.14: Variations ofT intra with gas �ow while Tout remains constant is interpreted as a dis-
placement of reactive zone. Experimental data.

F ) is switched between 140 kg/h and 70 kg/h (u is adapted accordingly). At 140 kg/h, the inlet-to-
outlet temperature difference is about 150� C; at 70 kg/h, it is about 125� C. Hence, in the second case,
the inlet HC concentration (related to inlet-to-outlet temperature difference) is lower than in the �rst
case. Smaller exotherm is generated in the second case. However, the intra-catalyst temperature is
signi�cantly higher in the second case than in the �rst one. This is because, in the second case, the
reactive zone is smaller than in the �rst one (as pictured in Fig. 3.2 intra-catalyst temperatureT intra

is measured at half the catalyst length). Then, the monolith temperature in the middle of the catalyst
length is higher. This proves that the spatial distribution of the reaction has changed asv has.

Another way to stress the displacement of this reactive zone is to analyze the steady-stateT intra �
Tout difference for an increasing inlet HC concentration. It is shown in Fig. 3.15, that, at low gas �ow
rate, an increase in the inlet concentration implies an increase in theT intra � Tout difference. In other
words,T intra grows more rapidly thanTout does. This is because the reactive zone is small. Then,
the vast majority of HC is oxidized upstream of the intra-catalyst temperature sensor.

On the contrary, under high gas �ow rate conditions, an increase in the inlet concentration implies
a decrease in theT intra � Tout difference. In other words,Tout grows more rapidly thanT intra does.
Increasing the inlet concentration in�uencesTout more than it in�uencesT intra . This is because
the reactive zone is longer. Then, a larger part of HC is oxidized downstream of the intra-catalyst
temperature sensor.
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Figure 3.15:T intra � Tout versus concentration of control HC (exhaust injection in this case) for two
different engine operating points. At low gas �ow rate (up), theT intra � Tout difference increases
when HC concentration increases. At high gas �ow rate (down) trend is opposite. It shows that the
length of reactive zone increases with gas �ow rate. Experimental data.

3.4.2.2 Model description with variable reactive length

It has been considered previously that catalytic HC combustion takes place in the upstream zone
of the DOC. The lengthL c of this zone has not been speci�ed. In fact, it depends on the nature of
the catalyst and it is a priori unknown. Further, for a given catalyst, this length also depends on the
operating point (as is evidenced in § 3.4.2.1). In this section, consequences of a change in the reactive
length are detailed and a simple model to de�neL c corresponding to experimental observations is
proposed.

From our macroscopic viewpoint, we assume that heat is homogeneously released along the re-
active length, and is zero on the downstream non-reactive length. Now, consider an increase in the
reactive length as pictured in Fig. 3.16. During this transient, a part of the formerly non-reactive zone

Figure 3.16: Simplistic scheme of phenomena involved during a variation of reactive length. In
transient state, a zone is overheated (increase inL c) or underheated (decrease inL c).

is covered by the reactive zone, where HC heat is now released. Then, the new heat supply in this
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covered zone is more than required by the �nal steady-state conditions, because it has already stored
energy during the initial steady-state conditions. The heat propagates mostly in the �ow direction and
causes an outlet temperature increase until the �nal steady state is reached. Now, consider a decrease
in the reactive length: there exists a zone which is not supplied with heat during the transient. This
causes an outlet temperature decrease until steady state is reached. Contrary to the highly-delayed
inlet temperature effects, the described phenomena are almost synchronous to the gas �ow variations
because they take place in the vicinity of the outlet of the DOC.

This approach is in accordance with preliminary observations of § 3.1.2.2. To take them into
account, we propose here to detail the dependency of the reactive lengthL c of model (3.4) upon
gas �ow rate. Residence time of reductants in the monolith determines how they reach the catalytic
surface. As a �rst approximation,L c is considered to be a piecewise af�ne function of the channel
gas speedv,

L c(v) = min( a � v + b; L) (3.21)

wherea andb are positive constants, andL is the DOC length. This assumption is corroborated by
identi�cation results ofL c, obtained in § 3.3.1. Further, this model description is validated experi-
mentally in § 3.3.2.

Remark.This proposed description is useful to simply describe the DOC behavior under normal DPF
regeneration conditions. In fact, when the HC �ow rate is high, a large HC fraction slips to the outlet,
and, in this case, the lengthL c is not a function of the gas speed only. However, these extreme special
conditions should not happen in practice.

3.5 Disturbance rejection possibilities

In this section, compensation possibilities for inlet temperature and gas �ow rate disturbances are
explored. Further, disturbance reductants compensation is detailed in Appendix A.

3.5.1 Rejection possibilities of the inlet temperature disturbance

Inlet temperature variationsT in are a disturbance. In order to study possibilities to reject them, it
is insightful to compare theT in step response and the HC (inputu) step response that we have already
computed in Eq. (3.15). Experimental results reported in § 3.3, have shown that analytic formulas
derived from model (3.4) are quite accurate regarding theT in and HC �ow rate inputs. In particular,
the model (3.4) yields theT in step response (see Appendix E.1.3 for calculation details), forz = L ,
as

Th(z; t) = �( t �
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v
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For ef�cient numeric evaluation of the above expression, the following (exact) power series expansion
can be used (see Appendix E.1.3)
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Equivalently, in the Laplace domain, the transfer function from inputT̂ in (s) to outputT̂ (z; s) is

T̂ (z; s)
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The steady-state value can be computed using (3.24)

lim
t !1

T(z; t) = T in (3.25)

whereT in is the steady-state value ofT in . The steady-state gain from inlet to outlet temperature is

GT in = 1 (3.26)

which stresses that heat losses have been neglected. We now wish to compare the DOC responses to

Figure 3.17: Comparison between HC step response andT in step response (analytic data obtained
from (3.15) and (3.22)). Inlet temperature response is slower than HC temperature response. This
observation will be exploited for disturbance compensation. Simulation data.

T in and HC variations. In practice, it is not possible with our experimental setup to fully decouple
inlet temperature variations (see Appendix F), this is why the comparison is made based on the de-
termined analytic form only. Analytic results derived from this model are presented in Fig. 3.17. For
easier comparison,T in and HC step responses are normalized using the steady-state values (3.25)
and (3.13).Results show that inlet temperature effects are slower than HC effects. It is then theoret-
ically possible to compensate totally for these variations.Extensive studies for various parameters
give the same conclusions.

3.5.2 Rejection possibilities for the gas �ow rate variations

Consider a change in gas �ow rate (orv), taking place at constantT in . Consider also that the
HC �ow rate u is adapted instantaneously with the steady-state gainGu (given by 3.3) to keep the
steady-state valueTout constant. In other words, the HC inlet concentration (scaled by� ) is kept
constant at the DOC inlet. The variation ofv causes a variation in the reactive lengthL c (see (3.6)).
As is explained in 3.4.2.2, this variation transiently impacts on the DOC outlet temperature, causing
the so-called overshoot and undershoot phenomena effect (see in particular Fig. 3.16). Although all
conditions are met to keepTout constant in the quasi-steady-state, in fact,Tout is disturbed. By
abuse of terminology, it can be said that a “pure” (i.e. other variables are constant or adapted the
quasi-steady-state conditions) variation ofv causesTout variations.

During a gas �ow rise, the reactive zone lengthens and, in quasi-steady-state conditions, a zone is
affected by heat release more than necessary. From a theoretical viewpoint, this local energy surplus
can be compensated by reducing the HC supply. However, the combustion takes place from the DOC
entry to this zone. Then, reducing the HC supply to compensate for a local surplus also affects the
entry zone of the DOC, where HC supply is too small. If nothing is undertaken, this local lack of HC
supply generates a delayed undershoot (because thermal phenomena evolve in the �ow direction). A
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new action is then necessary to compensate for it. So, from a theoretical viewpoint, it seems that an
increase inv can be totally compensated by considering a highly-delayed oscillatory control, which
is not suitable for real applications.

On the contrary, during a gas �ow drop, the combustion zone shortens, leaving a zone unsupplied
with heat release. This zone cannot be directly accessed by HC, because HC �ow acts upstream of
this zone. So, the only solution to make up for the coming undershoot is to heat the upstream local
zone much more than necessary. This action compensates for the downstream-located lack of energy
by thermal mixing effects similar to solid diffusion (phenomena will explained in § 4.2). Similarly
to gas �ow increase, this action has a consequence in the upstream zone, which will create a delayed
temperature overshoot, and so on. Then, a compensating control requires more high-amplitude os-
cillations and more delays (see Appendix D for examples of control laws required to speed up DOC
thermal responses).

As a conclusion, it seems dif�cult to get a realistic control law under unknown gas �ow variations
by solving this control problem. However, in both cases of gas �ow rise and drop, the induced
temperature variation can be attenuated. As will appear in Chapter 5, this conclusion is corroborated
by experimental results.

3.6 Conclusions about the reduced model

In this chapter, a reduced model has been proposed and experimentally validated. It captures
the main effects (even transient counter-intuitive ones) observed in practice, but it does not directly
lead to control solutions. We need to go further into the analysis to determine appropriate control
laws. To do so, we proceed in two steps. In Chapter 4, we focus on the propagation of thermal
phenomena. We show that, under some assumptions, the reduced model is equivalent to a set of
two parabolic equations (advection+diffusion) with inlet boundary conditions only. Their properties
allow us to propose a mean to simply synchronize the inlet temperature and the control. It is used
in the feedforward control law, dedicated to the rejection of the inlet temperature disturbances. This
approach is also used to schedule the parameters of the feedback law, but it is not suf�cient to cope
with transient phenomena related to the variations of the gas �ow rate. This issue is addressed in
Chapter 5, where we show how the overshoot and undershoot can be partially compensated for. This
provides guidelines for the design of a complementary feedforward control law, dedicated to the
(partial) rejection of the effects due to the gas �ow variations. The developments of Chapters 4 and 5
are gathered in Chapter 6, where the complete control law is proposed.



Chapter 4

Parameterized advection diffusion model

In the previous chapter, a reduced model describing all the main physical observations (see § 3.1),
has been proposed. In this chapter, a parameterized model is inferred from this reduced model. Our
goal is to get some further insight into the thermal propagation phenomenon, to be able to design
a control law and to schedule its parameters according to the current value of the gas �ow rate.
Interesting properties resulting from this study will be exploited in the control strategy in Chapter 6:
�rst in a part of the feedforward control law, to synchronize the disturbanceT in with the controlu;
second, to schedule the parameters of the feedback law. The approach developed in this chapter is not
suf�cient to describe the overshoot and undershoot phenomena presented in the previous chapter (see
§ 3.3.2 and § 3.4.2.2). Ways to compensate for these effects are studied in Chapter 5, which grounds
a complementary part of the feedforward control law proposed in Chapter 6.

The study presented in this chapter is organized as follows. First, adaptations are made to trans-
form the distributed control input of the reduced model into a boundary input. To proceed, we aggre-
gate the distributed reactive zone as an entry point for a propagation zone described by two hyperbolic
equations without any source terms except at the (inlet) boundary. The length of this propagation
zone is determined to account for the variable length of the distributed reactive length and of the
DOC length. Then, the resulting hyperbolic model is shown to be well-approximated by a parabolic
advection-diffusion model. Finally, the model, which accounts for both the inlet temperature and the
control variableu (HC inlet �ow rate), is presented.

4.1 From distributed control to boundary control

Consider the reduced model (3.4)-(3.5)-(3.6)-(3.7), in which the source term	 is set to zero.
This model describes propagation of the inlet temperature. In this section, it is shown how the HC
response, previously modeled using a distributed input	 , can be approximated using an equivalent
boundary inputT in

eq . This approximation only requires the adaptation of the considered propagation
length.

4.1.1 Fitting the reduced model with an equivalent model

We aim at using the boundary input response to describe the response to distributed control input
of the reduced model.

In Fig. 4.1a, the reduced model is used. It is shown that the overall shape of the HC step response,
corresponding to a distributed input (computed with (3.15)), is very similar to the inlet temperature
step response, corresponding to a boundary input (computed using (3.22) withz = L). This similarity
suggests that it is possible to approximate HC step response by boundary input step response at the

63
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(a) Comparison between HC step response (distributed input of the reduced model) and
T in step response (boundary input of the reduced model). Analytic results obtained
respectively from (3.15) and (3.22) withz = L . Results identical to those in Fig. 3.17.

(b) Comparison between HC step response (distributed input of the reduced model) us-
ing the real DOC length (z = L ) and T in step response (boundary input of the re-
duced model) using an adapted value of the length. Analytic results obtained respectively
from (3.15) and (3.22) with an adapted value of the length.

Figure 4.1: HC step response approximation in various operating conditions. Formulas (3.12)
and (3.25) are used for normalization. Simulation data.

expense of an alternative identi�cation procedure. Note that, for easier comparisons, responses are
normalized using (3.13) and (3.25).

It is shown in Fig. 4.1b that it suf�ces to adapt the DOC length in the reduced model (3.4) and to
use its boundary input, to get responses very similar to the ones obtained with the reduced model (3.4)
using its distributed input and its full lengthL . In other words, generating heat with HC is quite
equivalent to propagatingT in through a DOC having a shorter lengthL u . This idea, that focuses on
the propagation along the DOC rather than on the way heat is generated, is pictured in Fig. 4.2.

Remark.Note that this �ctitious “transport” lengthL u does not equal the “non-reactive” length of
§ 3.4.2.2 (i.e.L � L c). In typical cases, everything behaves as if the source were located at about half
the reactive lengthL c. To precisely get in accordance the two viewpoints, a numeric identi�cation is
performed.

Equivalence between	 and the boundary input, notedT in
eq for clarity, has a particular interest for

the control becauseT in
eq can be seen as a control variable on the length-adapted model with no source

term.
This principle will ground a control design based on a synchronization technique in § 6.2. Before

we experimentally validate this principle, we now make a precise presentation of the obtained model.
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Figure 4.2: Schematic description of transformation of the control variable in the reduced model into
the control variable of the model (4.1). The distributed input is transformed into a boundary input
provided a length adaptation.

4.1.2 “Boundary-source” model presentation

This model can be viewed as a particular case of the reduced model (3.4)-(3.5)-(3.6)-(3.7), in
which the source term is null:	 = 0 . It is referred to as “boundary-source model” and writes,at
constantv, 8

><

>:
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(z; t) = � k1 (T(z; t) � Ts(z; t))
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(z; t) = k2 (T(z; t) � Ts(z; t))
(4.1)

NoteT in
eq the boundary condition (the boundary condition is notedT in in the reduced model)

T in
eq (t) , T(z = 0 ; t) (4.2)

Here,T in
eq is the control variable. It plays a role similar to the one played by the distributed control

variableu in the reduced model. It is related tou by

T in
eq = Gu u (4.3)

The system outputTout
eq corresponds to the temperature at the previously-introduced transport lengthL u

Tout
eq (t) , T(z = L u ; t) (4.4)

The lengthL u is de�ned by

L u(v) = max( L � au v � bu ; 0) (4.5)

whereau andbu are positive constants. These constants are identi�ed and are not equal to the con-
stantsa andbof the reduced model.

In the Laplace domain, the transfer function from inputT̂ in
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4.1.3 Experimental validation of the model(4.1)with HC step responses

As stressed in the previous paragraph, considering a tuning of the parametersau andbu , model (4.1)
and model (3.4) yield similar results. In Fig. 4.3, experimental HC step responses under various op-
erating conditions are presented. These responses are well �tted by theT in

eq step response, given by,
for z = L u :
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corresponding to the model (4.1). Again (as in § 3.5.1), for ef�cient numeric evaluation of the above
expression, the following power series expansion can be used, forz = L u ,
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As illustrated in Fig. 4.3 this formula �ts well experimental data formally described using a source
term (as was illustrated in Fig. 3.10).

Figure 4.3: Experimental HC step response identi�ed to model (4.1) under various operating condi-
tions

4.1.4 Experimental validation of the model(4.1)with warm-up strategy

A �rst interesting feature of the proposed “boundary-source” model (4.1) is that it gives a very
simple input-output view of the problem. This view can be exploited to solve an inverse problem,
e.g. a motion planning problem. The employed methodology is presented in Appendix D.1, and
we only reproduce here the experimental results that stress the relevance of this model. Further
results are given in Appendix D. The theoretical approach was proposed in Lepreux et al. (2008), and
experimental results and extensions appeared in Lepreux et al. (2009c).

In order to validate further the model (4.1) equivalence to the reduced model (T in andv remain
constant in the following experiments), we formulate the problem of the motion planning for the
model (4.1) and validate it experimentally with HC �ow control (corresponding to the reduced model).



4.1 From distributed control to boundary control 67

Summary of motion planning results It is shown in Appendix D.1 how to derive an open-loop
control law corresponding to a desired �nite-time transition of the outlet temperature from one steady
state to another. It results in high-frequency, large-amplitude and long-delayed control variations.
This control is beyond actuation possibilities, safe DOC conditions of use, and model validity domain,
but is insightful to develop numerical methods which can deal with explicit constraints. Two such
methods are proposed in Appendix D.2. Eventually, it is shown that a pulse input signal is simple to
implement and produces ef�cient solutions. Proposed solution consists of two pulses (n = 2 ) for the
input signal before setting it to its steady-state value (Fig. 4.4 at abscissa 0%). Such a control pro�le is
found to provide good performance (see Appendix D.3). Moreover, the pulse magnitude is set twice
as high as the �nal step value (M = 2 ), or three times as high as the �nal step value (M = 3 ), in
order not to affect the conversion ef�ciency.

Optimization results provide a theoretical temperature distribution as reported in Fig. 4.4: the
pulse input generates temperature oscillations along the catalyst, and, �nally, results in a temperature
rise which is faster than the step response.

Figure 4.4: Optimized spatially-distributed temperature evolution. Pulse control input (abscissa 0%)
leads to a fast transient output response (abscissa 100%). Simulation data.

Outlet temperature Two optimized control laws and corresponding experimental responses are
presented in Fig. 4.5. The �rst pulse occurs att = 0 . For comparison, the step response is plotted. It
clearly appears that the proposed strategies signi�cantly shorten the rise time while keeping oscilla-
tions about �nal values very small. It is shown how oscillations appear when pulses get more spaced.
This stresses that the choice of pulse switch times allows any potential oscillation to be canceled.
Also, it stresses the robustness regarding the pulse switch times. In this last case, the 95%-rise time
(time from 0% of the step size to 95% of the step size) is reduced by a factor of 37%.

Intra-catalyst temperature As detailed in Appendix F, the intra-catalyst temperature has also been
measured. It is not a control objective, but it is instructive to examine how its variations are captured
by the model. This shows how sounded is the simplifying assumption about the oxidation kinetics.
A typical example of obtained experimental results is reported in Fig. 4.6 for both casesM = 2
andM = 3 . Oscillations are clearly visible and give a representation of spatial evolution of bound-
ary pulses: they produce oscillations near the inlet that gradually fade out at the outlet, as expected
from the theoretical results given in simulation in Fig. 4.4. This phenomenon is well captured by our
models. For validation, an experimental result is selected and the corresponding boundary control,
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originally computed through (4.1), is applied to the reduced model (3.4). In Fig. 4.7, we present
results of simulation and experimental data for both intra-catalyst temperature (atz = L=2) and out-
let temperature (atz = L). Again, intra-catalyst and outlet temperatures are normalized for easier
comparisons. We notice that simulated intra-catalyst temperature oscillations match closely the ex-
perimental data, although simulated temperature shows more pronounced oscillations. Globally, the
dynamics are well-captured for both the intra-catalyst temperature and the outlet temperature. Al-
though all phenomena are not included in this model (diffusion, thermal losses, . . . ), the essential
feature of the DOC thermal dynamics appears to be well represented. This point stresses, at constant
v, the relevance of the proposed reduced model (3.4) and the accuracy of its approximation by the
“boundary-source” model (4.1) that we are going to use for the control design.

(a) M=2 (b) M=3

Figure 4.5: Outlet temperatures and controls. Experimental data.
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Figure 4.6: Intra-catalyst temperature. Experimental data.

Figure 4.7: Pulse control signals responses (intra-catalyst and outlet temperatures) applied to the
reduced model. Simulation and experimental data.
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4.2 Equivalent advection-diffusion model

In this section, we now show that the model (4.1) describing two phases exchanging energy
through two hyperbolic equations can be approximated by a parabolic advection-diffusion model in
which the temperature evolves at a speed lower thanv. To obtain this model, we perform a low-order
series expansion of the partial derivatives equation. Finally, the obtained model is experimentally
validated. Also, its properties that will be useful in the control design are discussed.

4.2.1 Advection-diffusion equation approximation

Introduction

In this part, it is shown that the system (4.1) (recalled below)

8
><

>:

@T
@t

(z; t) + v
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t))

can be approximated by the following advection-diffusion equation1 whenv=k1 is small

@T(z; t)
@t

+ #
@T(z; t)

@z
= �

@2T(z; t)
@z2

(4.9)

with 8
>><

>>:

# =
k2v
k1

� =
k2v2

k2
1

(4.10)

Neglecting gas thermal storage

As will now appear, it is possible to neglect the gas thermal storage term of (4.1). Gas has a
very small storage capacity compared to monolith ((� gCp)=(� sCps) � 1). For practical cases,
neglecting the gas thermal storage term is thus a reasonable assumption. It has been considered in
the past by numerous authors for modeling similar chemical processes with no further justi�cation.
In particular Depcik & Assanis (2005) conclude that this assumption holds for the vast majority of
operating conditions.

As an illustration, we show how small the in�uence of this storage term on the transfer func-
tion (4.6) is. Consider the system (4.1) for a constant value of the gas speedv (in the case of a
variable gas �ow rate, the transfer can not be calculated as simply) in which the term@T=@thas been
neglected 8

><

>:

v
k1

@T
@z

(z; t) = � (T(z; t) � Ts(z; t))

@Ts(z; t)
@t

= k2(T(z; t) � Ts(z; t))
(4.11)

1 It is interesting to note thatTs follows exactly the same equation (boundary conditions are different)

@Ts (z; t)
@t

+ #
@Ts (z; t)

@z
= �

@2Ts (z; t)
@z2
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This approximation corresponds to neglecting gas storage. In the Laplace domain, let us now cal-
culate the transfer function̂T=T̂ in

eq of the new system (4.11) and compare it to the original transfer
function (4.6). Some operational calculus leads to

8
><

>:

v
k1

@̂T
@z

(z; s) = � (T̂ (z; s) � T̂s(z; s))

s T̂s(z; s) = k2 (T̂ (z; s) � T̂s(z; s))

and so, to
@̂T
@z

(z; s) =
�

k2

s + k2
� 1

�
k1

v
T̂ (z; s) (4.12)

Finally
T̂ (z; s)

T̂ in
eq (s)

= exp
�

�
k1z
v

�
exp

�
k1k2z=v
s + k2

�
(4.13)

It can be noticed that this result is the same as equation (4.6) without thez=v-delay. This delay is
very small (a fraction of a second) when compared to DOC response time (typically102 s). This
guarantees the validity of the approximation.

Considering this approximation, the system of equations (4.11) leads, after a substitution of the
second equation in the �rst equation, to the following PDE

@T(z; t)
@t

+
k2v
k1

@T(z; t)
@z

+
v
k1

@2T(z; t)
@t@z

= 0 (4.14)

Let us denote

# =
k2v
k1

� =
k2v2

k2
1

(4.15)

Equation (4.14) can be rewritten as

@T(z; t)
@t

+ #
@T(z; t)

@z
+

�
#

@2T(z; t)
@t@z

= 0 (4.16)

Series expansion of equation(4.16)

On one hand, we consider equation (4.16). Noting" ,
�
#

=
v
k1

, one has

@T(z; t)
@t

+ #
@T(z; t)

@z
+ "

@2T(z; t)
@t@z

= 0 : (4.17)

We wish to simplify this equation when" is small. Following Il'in (1998), we expandT in the
following series

T = T0 + "T " + "2T" 2 + : : : (4.18)

whereT0 is the solution of the following advection equation (i.e. (4.17) for" = 0 )

@T0(z; t)
@t

+ #
@T0(z; t)

@z
= 0 (4.19)
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A substitution of (4.18) into (4.17) gives the expansion

"
@2T0

@t@z
+ "

@T"
@t

+ #"
@T"
@z

+ "2 @2T"

@t@z
+ : : : = 0 (4.20)

Matching"-terms, we obtain

"
@2T0

@t@z
+ "

@T"
@t

+ #"
@T"
@z

= 0 (4.21)

Expansion of a simpler advection-diffusion equation

On the other hand, we consider the advection-diffusion equation (4.9)

@T(z; t)
@t

+ #
@T(z; t)

@z
= �

@2T(z; t)
@z2

rewritten as
@T(z; t)

@t
+ #

@T(z; t)
@z

= "#
@2T(z; t)

@z2
: (4.22)

Expanding (4.22) with (4.18) leads to (4.19) and

� "#
@2T0

@z2
+ "

@T"
@t

+ #"
@T"
@z

� "2#
@2T"

@z2
+ : : : = 0 (4.23)

Equation (4.19) yields

� "#
@2T0

@z2
= "

@2T0

@t@z
(4.24)

So, (4.23) can be rewritten as

"
@2T0

@t@z
+ "

@T"
@t

+ #"
@T"
@z

� "2#
@2T"

@z2
+ : : : = 0 (4.25)

Matching"-terms, we obtain

"
@2T0

@t@z
+ "

@T"
@t

+ #"
@T"
@z

= 0 (4.26)

Expanding solutions ofT in " for (4.16) and (4.9) lead to the same equations (4.21) and (4.26)
up to order 1 in" , i.e. T0 andT" are the same in both cases. In this way, (4.16) and (4.9) are similar:
their asymptotic expansions are equal up to order 1 (included) (see Il'in (1998)). From now on, we
will work with (4.9).

4.2.2 Advection-diffusion model validation

Advection-diffusion models are frequently used to describe the behavior of temperatures or con-
centrations of a �uid (Danckwerts 1953). Considering the nature of the DOC, which is very similar
to a tubular reactor, this is not a real surprise to see such a model (4.9) here. The model includes two
parameters# and� . � represents a diffusion in (m2=s) and# is a speed in (m/s). Interestingly, the
parameter# differs from the actual �uid speedv. In the DOC,# represents anapparent speedfor
the temperature, which is signi�cantly scaled down from the �uid speed.� represents anapparent
diffusiondue to mixing effects by heat storage in the monolith.

In the following, the model is compared against experimentally measured HC step response. It
is shown in Danckwerts (1953) that, when diffusion� is small relatively to the speed#, (4.9) with
boundary condition

T(z = 0 ; t) = �( t) (4.27)
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can be accurately approximated using the followinginitial condition instead of theboundary condi-
tion (4.27)

T(z; t = 0) = �( � z) (4.28)

Then, it follows that the step response evolution is simply given by

T(z; t) =
1
2

erfc
�

z � # � t

2
p

� � t

�
(4.29)

One can report to Barraud (2006) for the details on the resolution.
In Fig. 4.8 temperature pro�les for the two equations (4.29) and (4.7) are plotted at different times.

It appears that the temperature pro�les given by model (4.7) are approximated well by (4.29). The

(a) Case A - Temperature pro�les in response to a step input at
times0s; 5s; 10s; : : :

(b) Case B - Temperature pro�les in response to a step input at
times0s; 5s; 10s; : : :

Figure 4.8: Comparison between the DOC and the advection diffusion responses to step input

approximation is particularly accurate where the diffusion effect is not important.
Fig. 4.9 shows parameters# and� resulting from an identi�cation of model (4.29) to experimen-

tal results. It clearly validates the determined linear dependence of# on the gas �ow rate and the
parabolic dependence of� (see (4.10)). Fig. 4.9 presents mean values over multiple points. It must
be speci�ed that, at high gas �ow rates, dispersion is important for the� parameter. In this �ow
range, temperature response is very fast, and the approximations made do not remain very accurate.
In particular, the change of boundary condition to initial condition, is wrong. Simply speaking, the
overall shape for the temperature response in a high �ow range differs from the advection-diffusion
model step response. However the lack of accuracy in this zone is not problematic at all, because it is
indeed the zone where the delay is small, and, thus, where the temperature control is easy.
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(a) Parameter� (b) Parameter#

Figure 4.9: Results of advection-diffusion model (4.9) identi�cation to control HC experimental step
responses. Experimental data.

4.2.3 Delay evolution under variable gas �ow conditions

We must account for varying gas �ow rate (v). Our goal is to compute a time that is characteristic
of the thermal propagation phenomena described by the equation (4.1). This time will be used for
model scheduling.

Previously, it has been shown that (4.1) can be approximated by the advection-diffusion equa-
tion (4.9). Although calculus have been carried out inv-pseudo-steady state conditions,we assume
that this approximation also holds whenv depends on the time.We now consider

#(t) =
k2v(t)

k1

� (t) =
k2v(t)2

k2
1

The advection-diffusion equation (4.9) allows, under some conditions, the separation of the propaga-
tion from the diffusion phenomena. Following along several calculus given in Cannon (1984), this
separation is clearly made visible by using the following change of variablesw(�; � ) = T(z; t),

8
>><

>>:

� = z �
Z t

0
#(s)ds

� =
Z t

0
� (s)ds

(4.30)

Then, equation (4.9) simply leads to the heat equation

@w
@�

=
@2w
@�2

(4.31)

The reader can report to Appendix E.4 for more details. It is worth noticing that this transforma-
tion can be easily performed under variable conditions because the advection-diffusion equation (4.9)
resulting from approximation of (4.1) leads to coef�cients� and# depending only on the time vari-
ablet.
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Consider now the following initial conditions for (4.9)

T(z;0) = �( � z)

In the(�; � )-coordinates, it is transformed into

w(�; 0) = �( � � )

Implicitly, by writing this initial condition, temperature propagation is studied on a system having an
in�nite length. In this in�nite-length system, the boundary conditions are located at� = �1 in the
(�; � )-coordinates or atz = �1 in the (z; t)-coordinates. In other words, it is considered that the
boundaries are “far” from the phenomena studied (relatively to diffusion effects).

Referring to the heat equation For the in�nite-length system, the well-known solution for (4.31),
is

w(�; � ) =
1
2

erfc
�

�
2
p

�

�

This formula represents a symmetric propagation ofw, relatively to the point of abscissa� = 0 . This
point of abscissa� = 0 , for which w = 0 :5, is invariant, and represents areference pointin the
current development. For this point, everything is as if the system were not diffusive.

Referring to the advection diffusion equation In the in�nite-length system, and the (z; t)-coor-
dinates (i.e. for the advection diffusion equation (4.9)), the initial condition is similar to the case
of the heat equation, i.e.T(z;0) = �( � z). The temperatureT behaves in the following way.
Everything is as in the case of the heat equation, i.e. diffusion symmetrically takes place relatively to
the invariant reference point de�ned above. This point corresponds to the point of abscissa� = 0 , i.e.

z =
Z t

0
#(s) ds. For this point, as in the previous case, normalized temperature isT = 0 :5. This is

what expresses the solution

T(z; t) =
1
2

erfc

0

B
B
B
B
@

z �
Z t

0
#(s) ds

2

s Z t

0
� (s) ds

1

C
C
C
C
A

(4.32)

This is also expressed, at constant(�; # ), in the solution (4.29) given e.g. in Danckwerts (1953).

Referring to equation (4.1) What expresses Danckwerts (1953), by changing boundary conditions
to initial conditions, is that diffusion is not too fast compared to advection. From the coordinates of
the reference point (de�ned above), transported at the speed of advection equation, the system rapidly
becomes similar to the in�nite-length system, since it is “quickly” far away from the boundaries
effects. Generating an initial condition signal is then an approximation of generating a boundary
condition signal.

Remark.Response to a discrete signal can be generated by considering a series of initial conditions
taking place in parallel systems. This is exactly what is done in the online-computable model pre-
sented in Appendix E.4.
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Furthermore, the performed transformation of equation (4.1) into advection-diffusion equation is
particularly accurate in zones that are not in�uenced by the boundary conditions (this is explicitly
mentioned in Il'in (1998)). Then, in the series of approximations leading to equation (4.31), it seems
relevant to assume that the properties regarding evolution of the reference point (de�ned above) re-
main valid. In particular, the propagation of this point veri�es the same equation as in (4.31) with
initial conditions.

As a summary, a series of approximations, series expansion and a change of variables has trans-
formed equation (4.1) into equation (4.31). The property �nally extracted from the advection equation
(see below), concerns the reference point, for which every performed approximation is the “most”
valid.

As an illustration, one can refer to Fig. 4.8 to see that the approximation is “more” valid around
the reference points (aroundT = 0 :5 for each trace) than at places where diffusion and boundaries
effects are large (aroundT = 1 andT = 0 ).

Relation with advection equation The advection equation (see below (4.34)) expresses the con-
veyance of its boundary condition. In this transformation, the value of the boundary condition has
not a direct in�uence on the state of the system. Because of this, in an in�nite-length system such as
considered above, temperatureT evolution is exactly the same as in a �nite-length system. The initial
condition is strictly equivalent to the boundary condition.

Remark.This explains why these conditions are useless to get the relation (4.35) below.

Then, the transformation of the reference point of the advection-diffusion system in the in�nite-
length system, can be described using the advection equation.

Delay evolution Consider the delay� (t) de�ned by

T(zp; t) = T(z � zp; t � � (t)) (4.33)

wherezp represents the considered length of propagation. It is shown in Appendix E.2 that the delay
evolution for the following advection equation

@T
@t

+ #(t)
@T
@z

= 0 (4.34)

veri�es the following implicit equation, in which� (t) is unknown

zp =
Z t

t � � (t )
#(w)dw (4.35)

Reference points will be computed in the controller using (4.35) as a basis for the synchronization
control strategy. This implicit equation will be used in the control design to describe the evolution of
thermal phenomena and, in particular, to synchronize the control action with the disturbance effect.

4.3 Summary of the proposed model

As explained in § 3.2, the linearity of the reduced model allows the inlet temperatureT in effects
and the HC effects to be decoupled. We have carefully studied the HC effect, and we now have to
account for theT in effects.
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On one hand, as shown in § 4.1 the control variable of the reduced model can be transformed into
a boundary condition, provided model identi�cation is performed. Then, the obtained system can be
approximated by an advection-diffusion system (§ 4.2).

On the other hand, in the reduced model, the inlet temperature is taken into account by using
the inlet temperature as boundary condition and the source term equal to zero. This corresponds to
the model (4.1) usingT in as boundary condition. Then, the approximation to an advection-diffusion
system developed in the previous section remains valid (withT in instead ofT in

eq ). The inlet temper-
ature propagation is described by an advection-diffusion system having a lengthz = L andT in as
boundary condition. The temperature propagation time will be used in the control strategy (see § 6)
using the general equation (4.35) (see § 6.2).

In summary, a schematic view of theT in effects and the HC effects is presented in Fig. 4.10. The

Figure 4.10: Proposed model. The HC effects can be assimilated to a front of temperatureT in
eq

propagating on a �ctitious lengthL u . On the contrary, theT in effect is propagating over the whole
DOC lengthL .

HC �ow rate u effects can be assimilated to a temperatureT in
eq propagating on a �ctitious lengthL u ,

which is shorter than the DOC real length. Besides,T in is propagating over the whole DOC lengthL .
Both sub-subsystems use the advection-diffusion equation to describe propagation. Although vari-
able,v is identical in both sub-systems, and in particular, does not depends onz. This interesting
property allows us to exploit the linearity of the model (4.1) to decouple theT in effects and the HC
effects. In both sub-systems, propagation coef�cients (# and� ) are identical (they depend onv). Al-
together, the parameterized model consists of the two sub-models, the outputs of which are summed
to yield the model output.

4.4 Conclusions

In this chapter, a parameterized model has been presented. It focuses on the thermal phenom-
ena propagation in the DOC. It has been stressed that the reduced model used for inlet temperature
response (i.e.	 = 0 ) could also be used as model for HC response, provided a boundary input
equivalent to the source term and an adapted propagation length. This modeling suggests a part of
the control solution consisting of synchronizing the controlu to the disturbanceT in . Also, it allows
the computation of the propagation times that will be used in the feedback control law. However,
this model, which aggregates the distributed control as a boundary control, is unable to describe ef-
fects related to variations of reactive length. These effects were well-described by the reduced model
presented in Chapter 3. Hence, in the next chapter, compensation possibilities for these disturbances
(related tov) are investigated.
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Chapter 5

Investigations on overshoot and
undershoot phenomena

In this chapter, we �rst use in § 5.1 a simple advection model with a distributed source term. It is
helpful to understand the origin of the overshoot and undershoot, that are observed in the experiments
when the total gas �ow rate varies, and the control HCu is adapted accordingly to keep the same
output temperature value at equilibrium (these effect have already been discussed in § 3.5.2). For
this advection model, we also propose a control approach to limit the overshoot. In summary, for an
overshoot, after a gas �ow increase, this method consists of zeroing the control, and then ramping it
to its �nal value. This allows the overshoot magnitude to be limited, at the expense of a subsequent
undershoot. In § 5.2, open loop experiments are reported1, that apply control HC trajectories derived
from the conclusions of § 5.1. It is shown that these trajectories indeed limit the magnitude of over-
shoot (resp. undershoot), but imply delayed undershoot (overshoot). In this sense, the disturbances
related to the variations of the gas �ow rate cannot be totally compensated for. We discuss the issue
of practically achievable performance and suggest �rst to partly compensate for overshoots, second
to limit the -risky- compensation of the undershoots.

The approach presented in this chapter is implemented in a speci�c feedforward control law,
which, complemented with a feedforward law to rejectT in disturbances and a feedback law (both
designed from results of Chapter 4), forms the actual controller presented in Chapter 6.

5.1 Explanation of overshoot on a simple model

In this section, we �rst present a simple model deduced from the reduced model. We give the for-
mal expression of the output response to a step change inL c(t), for an arbitrary trajectory� (t), related
to the actual control and forced to be uniform over the lengthL c(t). We show that, if� (t)L c(t) is kept
constant (the control being instantaneously changed to keep the same equilibrium output value), then
the output response is subject to an overshoot. Then, we propose a trajectory that limits the overshoot
magnitude, but induces an undershoot.

1This experimental approach is proposed in Lepreux et al. (2009b).

79
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5.1.1 A simple model to understand the origin of overshoot

From the study of § 4.2, it can be veri�ed that the model
8
>>><

>>>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t)) + 	( z; u(t); v(t))

is equivalent, at constant speedv(t) = v and at order 0 in" = v=k1, with # = k1 v=k2, to

@T(z; t)
@t

+ #
@T(z; t)

@z
= 	( z; u(t); v) (5.1)

Now, consider a lengthL = 1 , # = 1 and	( z; u(t); v) = A(t) with
�

A(t) = � (t); 0 � z � L c(t)
A(t) = 0 ; L c(t) < z � 1

(5.2)

To summarize, focusing on the advection effect, we analyze step changes ofL c on the following
system

@T(z; t)
@t

+
@T(z; t)

@z
= A(t) (5.3)

5.1.2 Existence of overshoot. Means to limit its magnitude

ForT(0; t) = 0 , L c(t) = L c;1, and� (t) = � 1, the equilibrium is given by:

T(z; t) =
�

� 1z 0 � z � L c;1

� 1L c;1 L c;1 � z � 1

From this equilibrium, assuming that� (t) follows a trajectory such that

d�( t)=dt = � (t)

we have, asL c(t) is stepped fromL c;1 to L c;2 (L c;2 > L c;1) at t = 0 :

T(1; t) =

8
>><

>>:

� 1L c;1 0 � t � 1 � L c;2

� 1L c;1 � �(0) + �( t � 1 + L c;2) 1 � L c;2 � t � 1 � L c;1

� 1(1 � t) � �(0) + �( t � 1 + L c;2) 1 � L c;1 � t � 1
�( t � 1 + L c;2) � �( t � 1) t � 1

The reader can refer to Appendix E.3 for details of computations.

Simultaneous step change inL c(t) and � (t): overshoot We assume that, asL c(t) changes from
L c;1 to L c;2 (L c;2 � L c;1), � (t) simultaneously changes from� 1 to � 2. To keep the same equilibrium
value forT(1; t), � 2 is chosen such that

� 1L c;1 = � 2L c;2

Then,� 1 � � 2. In this case,�( t) = � 2t and (see Fig. 5.1)

T(1; t) =

8
>><

>>:

� 1L c;1 0 � t � 1 � L c;2

� 1L c;1 + � 2(t � 1 + L c;2) 1 � L c;2 � t � 1 � L c;1

� 1(1 � t) + � 2(t � 1 + L c;2) 1 � L c;1 � t � 1
� 2L c;2 t � 1
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Figure 5.1: Plot ofT(1; t) to illustrate the existence of an overshoot when applying quasi-steady-state
conditions

For t from 0 to 1 � L c;2, the output is constant to its previous value� 1L c;1. At t = 1 � L c;2, it
begins to increase to reach its maximum� 1L c;1 + � 2(L c;2 � L c;1) at t = 1 � L c;1. From that time, it
decreases to reach its �nal value� 2L c;2 at t = 1 . There is an overshoot of durationL c;2.

Figure 5.2: Pro�le of� (t) is plotted to illustrate the proposed compensation pro�le. Here, the length
is changed from one constant value to another and the source term is updated to keep the same
equilibrium point. Yet, during a period of time, an overshoot is observed at the outlet of the system

Limiting the overshoot Now, consider that� (t) (plotted in Fig. 5.2) follows a ramp, from 0 at time
0 to � 2 reached att = L c;2 � L c;1. From that time,� (t) = � 2:

� (t) =

( � 2

L c;2 � L c;1
t 0 � t � L c;2 � L c;1

� 2 t � L c;2 � L c;1
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Figure 5.3: Pro�le ofT(1; T) is plotted to illustrate a partial overshoot compensation and the creation
of a delayed undershoot. Compared to the result of Fig. 5.1, the overshoot has been divided by two.

Then, following computations details in Appendix E.3,

�( t) =

8
><

>:

� 2

2(L c;2 � L c;1)
t2 0 � t � L c;2 � L c;1

� 2t �
� 2(L c;2 � L c;1)

2
t � L c;2 � L c;1

and

T(1; t) =

8
>>>>>>>>><

>>>>>>>>>:

� 1L c;1 0 � t � 1 � L c;2

� 1L c;1 +
� 2

2(L c;2 � L c;1)
(t � 1 + L c;2)2 1 � L c;2 � t � 1 � L c;1

� 1(1 � t) + � 2(t � 1 + L c;2) �
� 2(L c;2 � L c;1)

2
1 � L c;1 � t � 1

�
� 2

2(L c;2 � L c;1)
(t � 1)2 + � 2(t � 1) +

� 2(L c;1 + L c;2)
2

1 � t � 1 + L c;2 � L c;1

� 2L c;2 t � 1 + L c;2 � L c;1

For t from 0 to1 � L c;2, the output is constant to its previous value� 1L c;1. At t = 1 � L c;2, it begins
to increase to reach its maximum� 1L c;1 + � 2(L c;2 � L c;1)=2 at att = 1 � L c;1. From that time, it
decreases to reach the value� 2(L c;1 + L c;2)=2 = � 1L c;1 � � 2(L c;2 � L c;1)=2 at t = 1 . Fromt = 1
it increases to reach its �nal value� 2L c;2 at t = 1 + L c;2 � L c;1. Refer to Fig. 5.3. There is still an
overshoot, but its maximum isdivided by two. The counterpart is an undershoot that has the same
magnitude than the overshoot. The total duration of the disturbance is increased byL c;2 � L c;1.
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5.2 Practical compensation of overshoot and undershoot

5.2.1 Compensation of overshoot

The overshoot phenomenon is caused by an increase in the gas �ow rate2. This overshoot is
problematic for the DPF regeneration because it increases the risk of DPF runaway. We want to
sketch here how it can be compensated for.

As has been shown, the overshoot appears almost synchronously to the gas �ow variation. Under
driving conditions, the future values of the gas �ow rate are unknown to the engine control system.
So, as shown in § 5.1 an intuitive way to compensate for the overshoot is to reduce injection as
soon as the gas �ow increase is detected. In the experimental case presented in Fig. 5.4, one can
see that this reduction is indeed effective. The consequence of this action is a delayed temperature

Figure 5.4: Catalyst undergoes a large increase in gas �ow rate att � 125 s. Without compensa-
tion, HC �ow is adapted to keep a constant inlet HC concentration. With compensation, HC �ow is
temporarily reduced when the gas �ow variation is detected. With compensation, the overshoot is at-
tenuated but still present. Moreover, when compensating, a delayed undershoot appears consequently
to the transient drop in heat supply.T in is plotted for information but has no consequence on the
describe phenomenon. Experimental data.

undershoot (as underlined in Fig. 5.4), which could be expected from the results of § 5.1. This is
an important result for control application since undershooting does not increase the risks of DPF
runaway. However, overshoot compensation is limited. First, because compensating totally for it
creates a large delayed undershoot. It is usually better to allow a small overshoot in order to prevent
large delayed undershooting. Second, because the gas �ow rate increase corresponds to a fast increase
in engine power request. Then, a signi�cant quantity of disturbance reductants may be present in the
engine exhaust gas. When this is the case, the overshoot cannot be avoided. In the scenario presented

2To properly analyze the experimental results, it should be noticed that the phenomena of “undershoot” and “overshoot”
appear irrespective of whether the inlet temperature is rising or falling. As presented in § 3.5.1,T in effects are highly
delayed (because of the one-dimensional distributed state nature discussed in § 1.5). This is corroborated by experimental
observations (see Fig. 5.6 for an example of a rising inlet temperature while the outlet temperature is undershooting).
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in Fig. 5.5, it is shown that stopping late post-injection, for a rather long period, at the time of the
gas �ow rate detection “only” attenuates the overshoot. For robustness regarding unknown coming
gas �ow rate variations, late post-injection is stopped shortly after the beginning of the gas �ow rate
detection. The drop in heat supply, corresponding to stopping the late post-injection, is, in this case,
not suf�cient to completely compensate for this overshoot.

Figure 5.5: In this practical case, despite control HC �ow rate of zero, overshoot is not totally com-
pensated. The actuator (late post-injection) is stopped when the gas �ow rate variation is detected.
The detection is based on an algorithm using the �ltered derivative of the gas �ow rate. To ensure the
algorithm robustness, the actuator energizing time (ET), which is the low-level control variable foru
(see Appendix F), is “only” reduced at the beginning of the gas �ow rate variation, and �nally totally
cut off (ET=0) “only” about 2 s after gas �ow rate starts varying. Upstream HC is measured using a
slow gas analyzer, and its time constant must be accounted for. Also, disturbance reductants �ow rate
may be signi�cant during the increase in engine power (producing the increase in the gas �ow rate).
This is why HC measurement decreases slowly. Experimental data.

5.2.2 Compensation of undershoot: a risky strategy

The undershoot phenomenon, which was introduced in § 3.1.2.2, is caused by a decrease in the
gas �ow rate. Although it generates no particular risk of DPF damage, this variation is problematic
for DPF regeneration. It increases the time required to oxidize the trapped soot and, in turn, also
increases the fuel consumption. However, we want to show that it cannot be compensated without
side effects.
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To compensate for this undershoot, the HC �ow rate can be increased. Two cases are worth
discussions. First, under normal operating conditions, it is shown in Fig. 5.6 that the undershoot is
not totally compensated by the above mentioned strategy. It is only reduced. It is worth noticing

Figure 5.6: Catalyst undergoes a large decrease in gas �ow rate att � 35 s. When compensating
the undershoot by a more-than-steady-state HC �ow, a delayed overshoot appears consequently to
the transient excess in heat supply.T in is plotted for information but has no consequence on the
described phenomenon. Experimental data.

that this action causes a delayed temperature overshoot (as can be noticed in Fig. 5.6). This delayed
overshoot is caused by a pulse of injected HC during the gas �ow drop. The larger the pulse is, the
better the correction of the �rst undershoot is, but the larger the delayed overshoot is. Time between
the pulse (and the gas �ow variation) and the delayed overshoot is related to one-dimensional effects
described in § 1.5. Referring to the scheme in Fig. 3.16b, the pulse acts in a distributed way on the
reactive lengthL c during the transient state. On the contrary, the undershoot is related to the gap
between the reactive length and the transport length. Therefore, the pulse has no direct action on
this gap: it acts always upstream. In fact, considering the involved time scales, the pulse effects and
the supply gap effects are combined together and smoothed by diffusion effects. This explains why
the undershoot is attenuated by the pulse. For the reasons mentioned previously, from a practical
viewpoint, this delayed overshoot is not suitable. It is not easy to “re-compensate” for it, as this
would imply an oscillatory highly-delayed control. Consequently, the undershoot must be carefully
compensated for.

A second case is presented in Fig. 5.7. Compared to the latter case, the HC quantity is increased
further. This allows the complete compensation of the undershoot. Nevertheless, it must be noticed
that the amount of HC required at the inlet is very large. Moreover, as shown in Fig. 5.7, the amount of
HC slipping to the outlet is also substantial. Hence, the DOC is saturated and the conversion ef�ciency
plummets. It is interesting to note that the intra-catalyst temperature rises less in the second case than
in the �rst one. This is because, in the second case, catalyst ef�ciency has dropped and more HC
are oxidized close to the DOC outlet. In fact, by saturating the DOC, we forced the access to theL c

variable, which is, under normal operation, given by the external conditions (by the gas �ow rate in
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Figure 5.7: Large compensation for the undershoot (experimental data)

our modeling, see remark § 3.4.2.2). By this way, it is possible to compensate for theL c decrease
that would induce the decrease in gas �ow rate. In other words, in the very special case of a huge
level of inlet HC, in spite of the decrease in gas �ow rate, the phenomena must be described as
pictured in Fig. 5.8. Such phenomenon could be easily included in the model presented in § 3.4.2.2

Figure 5.8: Phenomena involved in the special case of DOC saturation

by considering a growingL c length versus HC concentration. However, it is not useful to complicate
the modeling, because this “�ooding” phenomenon must not be used in real applications. Saturations
on the actuators must be implemented to prevent it.

We have shown that, although the compensation is physically possible, it clearly makes no sense
to use it. As a conclusion, the undershoot phenomenon cannot be totally compensated for under
normal operating conditions.
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5.3 Conclusions

The simple advection model studied in § 5.1 helps to understand the overshoot phenomenon. The
key aspect is the combination of heat storage and under-actuation, on a reactive length that is set by a
disturbance, namely the gas �ow rate. Means to limit the overshoot magnitude are also sketched in this
section. Unfortunately, this overshoot compensation induces an undershoot. Section 5.2 illustrates
the conclusions of § 5.1. Two scenarios of gas �ow increase and gas �ow decrease are analyzed
through experimental observations. Practically, the temperature overshoot, which is caused by an
increase in the gas �ow rate, can most often be experimentally compensated for. The temperature
undershoot, which is caused by a decrease in the gas �ow rate, can be experimentally compensated
for, but this causes high-level HC-slip, so it is advised not to try to totally compensate for it in
practice. As a consequence, the achievable performance for the DOC outlet temperature control is
limited. Depending on the tested DOC device, the expected range of performance would commonly
not be better than� 10� C to � 20� C (or even worse). In chapter 6, following the lines of the approach
described in § 5.1.2, a feedforward law is proposed, to limit the overshoot and undershoot effects
due to gas �ow rate variations. With the other feedforward control law design to reject the inlet
temperature disturbances, and the feedback control law, both based on results of Chapter 4, this law
forms the actual controller, presented in the next chapter.
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Chapter 6

Proposed control strategy

6.1 Introduction

6.1.1 Control problem summary

Figure 6.1: Control problem viewpoint after analysis of the thermal phenomena. Downstream temper-
ature is the output variable. Control HC �ow rate is the control variable. Inlet temperature variations
(1) are propagating through the DOC, creating long delays due to gas/solid heat exchange (2). Inlet
temperature is regarded as a disturbance. Delays value are strongly related to the gas �ow rate (3).
For the delays, gas �ow rate (3) is regarded as a scheduling variable. Control HC �ow is oxidized
on a reactive lengthL c (4). Control HC �ow rate is regarded as a distributed control variable. Alter-
natively, it can be regarded as a boundary control variable equivalent to a temperature variation for a
catalyst having an equivalent transport lengthL u (5). Temperature rise corresponding to the control
HC �ow is strongly related to the gas �ow rate (3), which is, once again, regarded as a scheduling
variable. Gas �ow rate (3) is not only a scheduling variable. When varying, it makes the reactive
length - and the equivalent transport zone - vary (6 and 7). Then, it creates temperature disturbances
inside the DOC. This is why it is also regarded as a disturbance.

Let us start by summarizing the physical analysis and simpli�ed modeling of the thermal phe-
nomena detailed in the previous chapters. Following along these lines, the control problem can be
speci�ed in the scheme presented in Fig. 6.1. In theory, the system is modeled by the proposed
reduced model (3.4)-(3.5)-(3.6)-(3.7) as described in § 3.2. The conversion ef�ciency is taken into

89
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account explicitly in the injection calculation of control input by (3.7). The output variable is the
DOC outlet temperature, which must be controlled to a setpoint. Input variables are the control HC
�ow rate (u) and the disturbances: the inlet temperature (T in ), and the gas �ow rate (so the speedv).
Steady state value of the temperature response to the control HC is strongly related to the gas �ow
rate. The gas �ow rate also governs the temperature dynamics response. For the inlet temperature and
the control HC �ow, the gas �ow rate is regarded as a scheduling variable. Further, the gas �ow must
also be considered as a disturbance, because it has been shown that its variations (even under constant
inlet temperature and constant oxidized reductants concentration) also create temperature effects at
the DOC outlet due to variations of the reactive length.

6.1.2 Proposed control solution overview

Figure 6.2: Advanced controller overview. Part (1) corresponds to feedforward control related to inlet
temperature. Part (2) corresponds to feedforward control related to gas �ow. Part (3) corresponds to
feedback control.

From the previous description, a control strategy can be proposed. Our proposed strategy is
implemented in three parts as schematized in Fig. 6.2. We will now detail these parts. First, a
feedforward control law designed to handle inlet temperature disturbances is presented (block (1) in
Fig. 6.2). Then, a feedforward solution accounting for the gas �ow rate disturbance is detailed. It will
appear that the actual solution consists of modifying gains (block (2) in Fig. 6.2). Finally, a simple
feedback action is introduced (block (3) in Fig. 6.2).

Necessary adaptations to deal with disturbance reductants are detailed in Appendix A.

6.2 Feedforward treatment of inlet temperature

It has been shown in § 4.1.1 that a HC response can be approximated by an equivalentT in

response provided that an adaptation of the catalyst length is performed. Hence,it is possible to
compensate for effects ofT in by synchronizing them with delayed effects of HC. As has been noted
before, these delays are highly varying and have to be scheduled online. Thanks to the approximation
to the advection-diffusion model, evaluation of the delay can be based on the implicit relation (4.35).

This section presents such an approach. The synchronizing method is based on the model from
§ 4.3. The analysis developed in § 4.2 allows us to schedule the controller parameters during gas �ow
transients.
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Figure 6.3: In this part, we focus on the feedforward treatment ofT in

In Fig. 6.4, a schematic view of theT in effects and HC effects is presented. HC effects are

Figure 6.4: Temperature propagation from the advection diffusion modeling viewpoint. It grounds
principles forT in compensation. Propagation coef�cients (# and� ) are identical forT in effects and
HC effects. Hence, the difference in propagation length (L � L u) plays a keyrole forT in compensa-
tion.

assimilated to a front of temperature propagating on a �ctitious lengthL u , which is shorter than the
DOC real lengthL . On the contrary, theT in effect is propagating over the whole DOC lengthL .
variablev is identical in both models, and in particular does not depends onz. In both sub-systems,
propagation coef�cients (# and � ) are identical forT in effects and HC effects. In the controller,
these effects can be represented by two partial states. As pictured in Fig. 6.4, the synchronization
betweenT in and control HC must be considered on the �rst part of the DOC for the length difference
L � L u . Hence, from the advection-diffusion model viewpoint, the delay� (t) to synchronize the
inlet temperature variations with the control HC variations is simply given by the implicit equation,
in which � (t) is unknown and# represents an apparent propagation speed.

L � L u =
Z t

t � � (t )
#(w)dw (6.1)

Finally, the “F” block of the controller is simply a delay operator applying a delay value of� (t)

TF F (t) = T in (t � � (t))

Simulation Results : random inputs

Simulations are carried out with the reduced model (3.4)-(3.5)-(3.6)-(3.7) with aconstantreactive
length, so that theT in compensation is isolated, as done in Appendix C.2.3 for a simpler control
law based on �rst order plus delay models. The presented controller includes only the feedforward
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Figure 6.5: Test controller for feedforward treatment ofT in

Figure 6.6: Results obtained by feedforward treatment ofT in on model (3.4). Inlet temperature vari-
ations are attenuated by a factor of 10 at the outlet even under high-amplitude gas velocity variations.
Simulation data.

treatment ofT in as presented in Fig. 6.5. In this method, the adaptive gainGdyn
u noted in Fig. 6.5 is

chosen equal to the steady-state gain calculated with (3.3). The gainGdyn
u will be adapted dynamically

for feedforward gas �ow rate compensation in the next part (see § 6.3).

In the simulation, the inlet temperature varies every 10 s randomly between� 10 and10. These
variations should be compared to the outlet temperature variations. The channel gas speed varies every
5 s randomly between0:1 m s� 1 and10 m s� 1. These represent indeed large gas speed variations
in the sensitive zone of low gas speed values (corresponding to high delays). As a result of the
controller, at the DOC outlet, temperature variations are attenuated between� 1 and 1. Obtained
results are reported in Fig. 6.6. The frequency of the variations are representative of those of a driving
cycle, whereas the magnitude of the variations are greater than those taking place in a driving cycle.
This situation is unfacilitating for the DOC controller.
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6.3 Feedforward treatment of gas �ow rate

Figure 6.7: In this part, we focus on the feedforward treatment of gas �ow rate. This is done by using
the “adaptive” gainGdyn

u .

It has been established in § 3.3.2 that gas �ow variations cause undesired outlet temperature
evolutions. In this section, we present an approach to compensate for this disturbance, according to
considerations discussed in Chapter 5. An easy-to-implement dynamic gain adaptation is used, based
on the time derivative of the gas �ow rate. Such an approach is pictured in Fig. 6.7. Its behavior is
illustrated by a simulation, carried out with model (3.4)-(3.5)-(3.6)-(3.7). The actual method mimics

Figure 6.8: Overshoot compensation based on gas �ow derivative. Simulation data.

the ramp variation described in § 5.1.2. It consists of a transient modi�cation of the gain. A �ltered
derivative of the speedv(t) is computed. The �lter is a �rst order �lter with time constant� B . The
�ltered derivative is normalized with the current value of the gas �ow rate, and multiplied by a gain
K B to give a correction termX . The gain eventuallyGdyn

u used is given byGdyn
u = Gu=(1 � X ).

According to this relation, a rise (resp. decrease) ofv(t) induces a rise (resp. decrease) ofX : the
valueGdyn

u of the gain is then smaller (resp. larger) than the values of the static gainGu . Accordingly,
the control HCu is less than what is required to keepTout constant. Whilev(t) stabilizes to a new
constant value, its derivative tends to 0. Then,X tends toward 0 and, asGdyn

u tends towardGu , the
control HCu takes the value that is required to reachTout setpoint. In details,

1

Gdyn
u (t)

=
1 � X (t)

Gu(t)
(6.2)
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whereX (t) is given byY(t)=v(t), Y (t) corresponds to the inverse Laplace transform ofŶ (s) given
by

Ŷ (s) =
K B s

1 + � B s
v̂sat

andvsat is the saturated value of the current gas �ow rate. This saturation corresponds to the saturation
of the lengthL c in (3.6).

K B is a tuning parameter corresponding to compensation strength. The greaterK B is, the more
the control HC �ow is adapted during gas �ow transients. If set too high, this parameter will favor
side effects described in Chapter 5. Besides,� B is a tuning parameter corresponding to a time during
which the compensation acts after a gas �ow variation. Referring to § 5.1.2, it should be theoretically
adapted to the current variation ofL c. However, in practice, this extra tuning is not needed since the
correction is already quite ef�cient with constant parameter values.

A drawback of this method is that it may lead to HC peaks during gas �ow drops. However, as the
effects of gas �ow drops are temperature undershoots, compensation is not critical, and the strategy
can be less aggressive than during gas �ow rises. Setting a small value ofK B during this phase is a
good solution.

Another implementation detail is that, depending on the controller sample time, and because
of the strictly causal �ltering, a signi�cant delay can be undergone before the detection of the gas
�ow variation becomes signi�cant in the gain dynamic effect while the gain steady-state effect (Gu

of (6.2)) has a direct transfer. This can be easily circumvented by delaying in turn the static gainGu .
This limits large temperature overshoots during gas �ow increases.

The main advantage of this method is that it is extremely fast to compute. It is also interesting to
notice that the use of a �ltered derivative ensures a high stability regarding the noisy gas �ow sensor.

6.4 Feedback control

As has been detailed before, control HC effects for a catalyst length ofL are equivalent to bound-
ary temperature effects for a catalyst lengthL u . A variation of HC is interpreted as a boundary
conditionT(z = 0 ; t) = T in

eq (t) of system (4.9) over a propagation lengthL u . Applying results
of § 4.2.3, HC response time calculation can be based on the evaluation of the following implicit
equation in which� L u is unknown

L u =
Z t

t � � L u (t )
#(� )d� (6.3)

For an HC step input,� L u is the time at which the outlet temperature reaches about half its steady-state
value.

Figure 6.9: In this part, we focus on the feedback control
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Figure 6.10: Phenomena governing control HC dynamic effects. Effects are propagating over the
“transport” lengthL u . Corresponding response time is used in feedback control design.

6.4.1 Actual feedback control

It has been shown in § 3.5 that, in practice, DOC outlet temperature cannot be perfectly controlled
due to changes of reactive zone during gas �ow variations. Typically, for a 4-inch long DOC, practical
achievable performance is about� 15� C. This observation is a big concern because this result is close
to the performance requested for real applications. Therefore, the feedback control in this zone cannot
be totally turned off (as would be done for example by a deadzone management) but it has to be very
“slow”. Typically, in this zone, it is not possible to use a classic feedback control law (as proposed
for example in Appendix B and enhanced in § 6.4.2) because error to setpoint is related to non-
compensable (weakly-compensable) disturbance effects.

To compensate for steady-state errors, an integral action is used. For the experiments presented
in Chapter 7, integral time is set to� i = 2 � � L u . It means that, for a given gas �ow rate, integral time
is set equal to the duration of the “whole” HC effect. Finally, typical feedback action would set in
Fig. 6.9 the “B” block of the controller to a simple integral term

TF B =
Z t

0

1
� i (w)

�
T sp(w) � Tout (w)

�
dw

6.4.2 Other feedback control possibilities

Scheduling classic feedback control for changes of setpoint

In the previous section (§ 6.4.1), the proposed feedback control law is designed to stay unaffected
by non-compensable disturbance effects. These disturbances affect only a limited temperature zone.
Hence, they become dominant when the error between the temperature setpoint and the measure
(T sp � Tout ) is within the order of magnitude of the size of this small zone (typically� 15� C for our
device).

Using this feedback control law for large values ofjT sp � Tout j is not suf�cient, because the
integral action is not strong enough. This situation happens (for example) when the regeneration con-
troller is started. At that time, the DOC outlet temperature is around 450� C whereas the temperature
setpoint is around 600� C.

In these situations, classical laws can be used. An attractive solution is to ground these laws on
a �rst-order plus delay model such as the one presented in Appendix C. This control design was the
work of Lepreux et al. (2009a). These laws require little calibration effort because the �rst-order plus
delay model parameters� c and� c can be computed from the model of Chapter 4.

A drawback of the method is that the parameter adaptation is designed at a constant gas �ow rate,
and adapting directly the parameters value to the gas �ow rate value may not be ef�cient.
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To circumvent this, a method to schedule the parameters upon the gas �ow rate is developed. On
one hand, in Appendix C, the HC step response of model (4.1) is studied at constant gas �ow rate.
On the other hand, in § 4.2, equation (4.1) is approximated by equation (4.9) especially well for a
reference point, which, furthermore, corresponds to the in�exion point of the response (4.32). We
relate results of Appendix C to results of § 4.2 by matching the in�exion pointt I of the HC step
response to the reference point of (4.1)

� L u = t I (6.4)

It leads to
k1L u

v
= k2 � L u (6.5)

Then, we get from (B.16)
8
>><

>>:

� c =
1 � Th(z; � L u )

exp (� 2k2� L u )k2I1(2k2� L u )

� c = � L u �
1 � Th(z; � L u )

exp (� 2k2� L u )k2I1(2k2� L u )

(6.6)

Parameters� c and� c of the �rst order plus delay model can be calculated online. Using this method
easily allows an accurate description of the HC response and, further, to schedule the parameter
adaptation during gas �ow variations. The �rst order plus delay model is straightforwardly accounted
for in the feedback control laws presented in Appendix C (these are PI, PID, and, Smith predictor).

Remark.Internal model represents an interesting option to remove the non-compensable effects from
the feedback signal. If developed, such a model could allow more reactive strategies in the weakly-
compensable error zone.

6.5 Conclusions

In this chapter, a control strategy derived from analyses of the previous chapters is presented. It
is divided into three parts. The disturbanceT in is compensated by a feedforward strategy based on
the application of a delay between the disturbance detection and the control HC action. The gas �ow
rate disturbance is treated by a gain adaptation. Its action attenuates the overshoot and undershoot
phenomena caused by gas �ow rate variations while limiting side effects. Finally, a simple feedback
law is proposed. It is chosen weakly reactive so that it is undisturbed by non-compensable disturbance
effects. The proposed control strategy is experimentally validated in the next chapter.



Chapter 7

Experimental results

In the previous chapter, we have presented different possible solutions for the controller subsys-
tems:T in feedforward control, gas �ow rate feedforward control, and feedback control. From these,
one complete controller scheme was constituted. We now present it along with obtained experimental
results. We detail our implementation methodology, with a particular focus on the required calibra-
tion effort. General calibration principles for the engine during regeneration phases are explained in a
dedicated part in Appendix G. In the second part of this chapter, experimental results obtained on the
engine testbench are presented. The reader can refer to Appendix F for details on the experimental
setup.

7.1 Controller used for experimental results

7.1.1 Controller

The control problem is pictured in Fig. 7.1. Input and output variables are:

� DOC downstream temperature is the output variable;

� control HC �ow rate is the control variable;

� inlet temperature and gas �ow rate are measured disturbances;

� disturbance reductants �ow rate (undesired gas composition) is an unmeasured disturbance.

Figure 7.1: Input-to-output control problem.
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Figure 7.2: Advanced controller overview.

Controller overview is pictured in Fig. 7.2. Its design is divided into four parts:

(1) a feedforward control law forT in

(2) an adaptation law for the gainGdyn
u that handles gas �ow rate disturbances

(3) a feedback control law

(4) a correction to account for disturbance reductantsFdis

(1) T in feedforward control law

The “FF” block applies a delay� (t),

TF F (t) = T in (t � � (t))

where� (t) is obtained by solving the following implicit equation

L � L u =
Z t

t � � (t )
#(w)dw

(2) Gdyn
u adaptation law

1

Gdyn
u (t)

=
1 � X (t)

Gu(t)

whereX (t) is given byY(t)=v(t), Y (t) corresponds to the inverse Laplace transform ofŶ (s) given
by

Ŷ (s) =
K B s

1 + � B s
v̂sat
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(3) Feedback control law

We use a feedback actionuF B de�ned by

uF B (t) =
1

Gdyn
u (t)

Z t

0

1
2 � � L u (w)

�
T sp(w) � Tout (w)

�
dw

where� L u (t) is obtained by solving the following implicit equation

L u =
Z t

t � � L u (t )
#(w)dw

Remark.In practice, integral time is saturated for low values.

(4) Accounting for Fdis

Here, the late post-injection is used as actuator, response to the disturbance reductants (corre-
sponding to undesired engine exhaust gas composition) are similar to those to the control HC. Hence,
the control HC �ow rateu is computed by a simple subtraction of the estimated disturbance reductants
�ow rate Fdis . The reader can refer to Appendix A for further explanations.

7.1.2 Methodology and calibration effort for the DOC controller

Generally, the low to medium gas �ow rate zone is the most dif�cult to control. By contrast,
almost no time should be spent for calibration of the high gas �ow rate zone. The calibration of the
controller is divided into 3 steps. We now detail these.

Step 1 - HC dynamics

Experiments Engine operating points are chosen inversely spaced with the gas �ow rate. Typically,
�ve or six operating points are selected. For each chosen engine operating point corresponding to a
gas �ow rate value, open-loop control HC step responses are obtained. A typical response to control
HC step pro�le for calibration results inTout is pictured in Fig. 7.3. To getTout steps close to

Figure 7.3: Illustration of a typicalTout � T in pro�le caused by control HCu step increases and
decreases.T in remains roughly constant during the test.

pre-de�ned values (for example 50� C), control HC �ow rate can be easily pre-evaluated using the
following approximate relation: 100� C increase corresponds to 5000ppmC of HC. This corresponds
to the static gain detailed in (3.3).

Computations DOC geometric and material data are known. Then,k2 is computed using these
data and (3.18). The set of parameters(k1; L u) is identi�ed to HC step responses using (4.8). Finally,
k1 is chosen constant to minimize the variability of constantsau andbu .



100 CHAPTER 7. EXPERIMENTAL RESULTS

On-line calibration time Few days (typically four days).

Step 2 - Build steady-state gain and ef�ciency look-up tables

Experiments Results of previous experiments are used.

Computations Because of the lack of reliability in the absolute value given by the gas analyzers
(for the presented controller settings), it is preferred to account for the gain and the HC conversion
ef�ciency together. Results are analyzed in terms of temperature variations upon gas �ow rate and
control HC �ow rate, in order to directly get the look-up table of� � Hu uponv (or F ). This leads to
a gain such as presented in Fig. 3.3 of § 3.1.1. This approach is relevant because the �nal objective is
to control a temperature. We try to skip intermediate mappings.

Then, this global approach does not give the conversion ef�ciency map such as presented in
Fig. 3.5. This information is also, to a minor degree, useful. First, it allows the consistency with
the previous global method to be checked (drift must be checked in particular). Also, it is necessary
to roughly estimate the conversion ef�ciency in order to evaluate HC �ow rate at the DOC outlet.
This HC quantity is oxidized on the DPF (which is usually catalyzed), causing direct heat supply
in the DPF. At very large gas �ow rates, this quantity may be signi�cantly high, and it may be
useful to decrease the DOC outlet temperature setpoint consequently. For these purposes, ef�ciency
need not be known precisely and can be computed using the gas analyzers. The reader can refer to
Appendix G.4 for a coarse identi�cation method of the conversion ef�ciency.

Step 3 -v-transients

Experiments Fast drop-to-idle transient tests are performed.

On-line tuning Constant� B is set to1=k2. Open-loop control is used during the transients, i.e.
feedback control(4) of the controller presented in § 7.1.1 is not active. ParameterK B is tuned so that
no overshoot is obtained and HC-slip are prevented (K B � 4).

On-line calibration time Typically two days.

Veri�cation of model parameters Experimental transient data are matched against simulation data
using the reduced model. Values ofk1 andk2 for the model may be slightly tuned if necessary. This
veri�cation procedure usually takes one day.

Total calibration time

On overall, the controller calibration time is six or seven days of testbench experiments and a
couple of days of of�ine analysis.

7.2 Experimental results

In this section, three practical cases using the temperature controller are presented. The �rst
experimental result corresponds to a large drop in the gas �ow rate, which is a dif�cult situation to
handle. The second result illustrates the controller ability to deal with large and dynamic gas �ow
transients. The third experimental result is a European urban driving cycle, which is the most dif�cult
part of the NEDC cycle in terms of control application (lowest �ow rates, largest delays).
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7.2.1 Scenario 1: large gas �ow rate variations

Application interest This situation is close to a drop-to-idle situation. It corresponds to a realistic
and problematic case of interest. This situation happens typically when a vehicle switches from
motorway driving to urban driving. Once the regeneration process has started, in order to save fuel,
regeneration time and catalyst wear, it is better to continue the regeneration process.

Figure 7.4: Results ofTout control during drop in gas �owrate. The DOC outlet temperature error
remains within� 11� C. Experimental data obtained with a 3-inch long DOC.

Control dif�culties Drop-to-idle tests are among the most dif�cult situations to control. Control
dif�culties in this kind of situations are that

1. large drop in gas �ow rate implies large non-compensable temperature effects (undershoot);

2. large drop in gas �ow rate implies large delay variation. Also, �nal delay (i.e. the delay after
the variation) is very large;

3. disturbance reductants �ow is varying to a large extent.

Note that the presented case does not exactly correspond to an “idle” point. This is because
it is dif�cult to keep a reasonable DOC inlet temperature level (seeTmin in the engine calibration
constraints of § G.2). Corresponding level of disturbance reductants is high, and it varies so that there
is a real need to estimate them. Theoretical estimation is beyond the scope of this work. Empirical
estimation is dif�cult because of the emissions variability. On low-load low-speed engine operating
points, disturbance reductants cause inlet-to-outlet steady-state temperature rise as high as 100� C
with high variability. A little time has been spent on this point with this setup. It has been preferred
to focus on another setup to obtain the results presented in § 7.2.3.
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In Fig. 7.4, inlet gas �ow rate sensor measurement is represented. Att � 160 s, the engine
operating point is changed in a 3-second transition from 2500 rpm - 9 b (IMEP) to 1000 rpm - 4 b
(IMEP). From this time the inlet temperature continuously decreases in a medium range. One can
report to Fig. 7.4 to get the corresponding steady-state disturbance HC emissions levels.

Remark.Large gas �ow increase cause temperature overshoot, which must be compensated by feed-
forward control. Using �lter derivative-based detection is not fast enough to totally compensate for it.
Adding a small delay in the gain adaptation looks promising to further reduce the overshoot (method
has not been tested experimentally). However, more generally, and regardless of the gas �ow rate
feedforward control strategy achievable performance, dealing with large gas �ow increase is easier
than dealing with gas �ow decrease because the �nal delays (delays after the variation) are small.
Small-delay situations can be ef�ciently treated by feedback control. Also, disturbance reductants
�ow rate is zero in this situation.

7.2.2 Scenario 2: experimental full range cycle

Application interest The situation presented in Fig. 7.5 corresponds to large and dynamic gas �ow
transients. It corresponds to an aggressive driving situation.

Figure 7.5: Results ofTout control during large gas �owrate variations. The DOC outlet temperature
error remains within� 10� C. Experimental data obtained with a 4-inch long DOC.

Control dif�culties This test stresses the controller ability to deal with large and frequent gas �ow
rate variations. These variations are higher and more frequent than those taking place during a normal-
ized driving cycle (such as the one presented § 7.2.3). Then, this situation might seem more dif�cult
to control. However, this is not the case, because, in this situation gas �ow rate often increases to
high values. When these values are reached, the delay gets very small and the presented feedback
control is very ef�cient. Hence, these high gas �ow rate values regularly “reset” the history in the
DOC, which can be viewed as a �nite memory system, as well as feedforward correction errors. This
is described by the general formula

zp =
Z t

t � � (t )
#(w)dw
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in which � is small when# is high.

7.2.3 Scenario 3: experimental urban cycle

Application interest The test presented in this section corresponds to the urban part of the NEDC
European driving cycle. It is composed of four ECE driving cycles. NEDC cycle is normalized and is
used in European countries for regulation tests. It is usually run when the engine is cold to test engine
pollutant emission levels. However, DPF regeneration phases are started with warm engine. So, the
presented test is run when the engine is already warm.

Figure 7.6: Results ofTout control for the urban part of the NEDC driving cycle. The DOC outlet
temperature error remains within� 15� C. Experimental data obtained with a 4-inch long DOC.

Control dif�culties Although this test (presented in Fig. 7.6) is less aggressive than the full range
cycle presented in the previous section (§ 7.2.2) for example, it represents one of the most dif�cult
situation to control, together with the drop-to-idle test. In fact, operating points are continuously in
dif�cult to control zones, which gather the four following dif�culties:

� zones where delays vary on the sensitive part of the “hyperbolic” curve as pictured in Fig. 7.7;

� zones where the length of combustion is strongly impacted, leading to large and frequent non-
compensable disturbance effects;

� zones where the inlet temperature largely varies;

� zones where the disturbance reductants �ow rate largely varies.

Hence, testing larger and more frequent variations are not more dif�cult to control. Then, this exper-
iment is considered particularly relevant to test the controller performance.
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Figure 7.7: Illustration of delays involved during a urban cycle. Experimental data are identi�ed to a
�rst order plus delay model using a least mean-square algorithm.

7.3 Conclusions

Advanced control strategy has been tested on an engine testbench. The controller, which requires
about eight days of calibration, has been detailed, as well as the calibration procedure. Experimental
results are close to the best achievable performance (see Chapter 5) in the worst case situations: urban
driving cycle and large gas �ow rate transients. In particular, performance on the urban part of the
normalized NEDC cycle obtained with a 4-inch long DOC is� 15� C about the setpoint value.



Conclusion and perspectives

In this manuscript, the problem of the thermal control of a DOC (Diesel Oxidation Catalyst) as
used in aftertreatment systems of diesel vehicles has been studied. It has been stressed that the one-
dimensional distributed nature of the DOC causes long and largely varying time responses of the out-
let temperature (measured output variable) to HC �ow (control variable). Besides, the DOC is subject
to large and frequent disturbances. It is shown that a model-based approach successfully addresses
the problem of DOC outlet temperature control. The proposed controller has few parameters and
requires light calibration effort. It describes the main physical observations that can affect the control
performance. The proposed strategy synchronizes the inlet temperature (measured disturbance) to the
HC �ow (control variable). Further, an additional feedforward control strategy partially compensates
for effects related to gas �ow rate variations (measured disturbance). The feedback control law is
based on the delay evaluation from a parameterized model, which is derived from a proposed reduced
model. Altogether, the solution proves to be ef�cient on an engine testbench. It leads to a control
performance among the best practically achievable results: for the tested 4-inch long DOC,� 15� C
on the urban part of the urban part of a NEDC cycle.

For practical implementation The reader can report to Chapter 7 for a detailed presentation of the
proposed control solution and experimental results.

Perspectives An important perspective would be to account for the catalyst ageing, which causes a
decrease in the catalyst activity. In this situation, it is erroneous to assume that the combustion zone
starts at the catalyst inlet. To account for this, our idea is to shift the reactive zone towards the catalyst
outlet simply as is pictured in Fig. 7.8.

Figure 7.8: Model reactive zone

In term of control design, this would simply require the addition of a drift law for the beginning
of reactive length over the time. Certainly, the study of this law would require investigations. Also,
more complex combustion pro�les could be considered. It is important to remark that the structure
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of the proposed control law is not impacted by such model modi�cations. The oxidation of control
HC would simply take place closer to the DOC outlet, yielding faster temperature responses. On the
other hand, the inlet temperature disturbance still acts at inlet boundary. Therefore, the delay between
the inlet temperature disturbance and the control HC �ow rate in the synchronization technique is
increased.
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Appendix A

Accounting for disturbance reductants
�ow

For sake of clarity, the control problem detailed in Chapter 3 omits several disturbances. In
particular, the reductants referred to asdisturbance reductantswere omitted. In details, the actual
reductants �ow at the DOC inlet is composed of disturbance reductants �ow and control HC �ow.
The disturbance reductants �ow rate is a disturbance variable. It is mainly produced by unburnt
reductants of the coupled post-injection, which are used to increase the exhaust line temperature, and,
in turn, ensure the DOC oxidation capacity. The control HC �ow rate is the control variable. It is
mainly produced by late-post injection or by exhaust injection.

In this appendix, an extension of results presented in the thesis to the case of disturbance reduc-
tants is detailed. This extension is required for real experimentations.

A.1 Modeling objectives

A.1.1 Distinguishing between disturbance reductants and control HC

The total reductants �ow rateFred at the DOC inlet is composed of control HC �ow rateu and
disturbance reductants �ow rateFdis

Fred = u + Fdis

Disturbance reductants �ow rate may result in a catalyst inlet-to-outlet temperature rise as high as
100� C1. It has to be considered in the controller. Obviously, variablesu andFdis need to be separated
because one is the control variable and the other is a disturbance variable. Further, it will be shown
below that these variables may generate different temperature responses. Similarly, disturbance re-
ductants �ow rateFdis can be decomposed into disturbance HC �ow rateFdis;HC and disturbance
CO �ow rate Fdis;CO , HC and CO being the main reductants in the �ow composition

Fdis = Fdis;HC + Fdis;CO

Because CO is easier to oxidize than HC, this distinction could, in theory, be worth mentioning.
However, in the following, we do not get into this level of details and consider only one disturbance
variableFdis that includes all the kinds of disturbance reductants. Then, the scheme considered for
control is given in Fig. A.1. The four inputs are the control variableu, the measured disturbancesv,

1During DPF regeneration, engine is used in a particular mode leading to high HC emissions (refer to § G for more
information)
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Figure A.1: In the “real picture”, the model includes one (or more) disturbance reductants �ow

T in , andFdis . The measured output isTout . Note thatFdis is not measured online. It is estimated
by look-up tables. In a rigorous approach, variablesu andFdis refer to actual �ow rates at the DOC
inlet. Control HC �ow rate and disturbance reductants �ow rate may interact before reaching the
DOC inlet. However, in practice, it is considered that they are independent. Obviously, steady-state
effects presented in § 3.1.1 relate to all kinds of reductants. Therefore, in the following we focus on
the dynamic effects.

A.1.2 Preliminary observation: temperature response to different injection methods

It is experimentally observed that different HC speciation or injection method may lead to dif-
ferent DOC temperature responses. In particular, one can observe different responses to HC injected
by late post-injection and to HC injected by exhaust injector, respectively. The different methods of
injection (see Appendix F) lead to different HC speciation at the DOC inlet (Frobert, Creff, Lepreux,
Schmidt & Raux 2009).

Remark.The different methods of injection and fuel speciation also lead to different DOC conversion
ef�ciencies (see Fig. G.2 in § G.4).

Fig. A.2 clearly shows different response delays2 for these two different types of injection. Re-
sults were obtained through an experimental study. In spite of several investigations (Kuo et al.
1971) (Dubien et al. 1998), such differences remain insuf�ciently understood from a chemical mod-
eling viewpoint. In theory, coupled post-injection and late post-injection could potentially lead to
different results, butwe assume that their effects are similar. These injections are referred to as
in-cylinderpost-injection. To summarize:

� When the exhaust injector is used as actuator, the �ow rate of HCs injected by exhaust injec-
tion is the control variable whereas the �ow rate of “in-cylinder” reductants is the disturbance
variable.

� When the late post-injection system is used as actuator, the �ow rate of late post-injection
is the control variable and the �ow rate of the reductants resulting from other injections is a
disturbance variable.

Consequences from a control viewpoint When using an exhaust injector as actuator, the effects of
the disturbance reductants must be compensated in a speci�c way. When using the late post-injection
as actuator, the reductants �ow rateFdis can simply be subtracted.

2Experimental step responses are identi�ed to a �rst order plus delay model step response using a least squares algorithm
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Figure A.2: Comparison of delay values for different injection methods of HC versus gas �ow rate
(step responses are identi�ed to a �rst order plus delay model). Responses to HC injected by late
post-injection are slower than responses to HC injected by the exhaust injector.

A.2 Model

In this section, adaptations of the reduced model presented in Chapter 3 and of the control model
derived in Chapter 4 are presented.

A.2.1 Reduced model

The proposed reduced model is given by
8
>>><

>>>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t)) + 	( z; u(t); v(t)) + 	 dis (z; u(t); v(t))

(A.1)

where	 dis is a distributed input variable related to the disturbance variableFdis . This source term
is different from	 , which refers to control HC.	 dis is a distributed source term. It is constant over
some spatial interval

�
	 dis (z; u; v) =  dis (u; v); 0 � z � L c;dis (v)
	 dis (z; u; v) = 0 ; L c;dis (v) < z � L

(A.2)

whereL c;dis is a piecewise af�ne function of the channel gas speedv,

L c;dis (v) = min( L; adis � v + bdis ) (A.3)

adis andbdis are two positive constants. The source term dis is related to the lengthL c;dis , andFdis

the disturbance reductants �ow rate through the following relation

 dis (u; v) =
1

L c;dis (v)
Gdis (v)

k2 v
k1

Fdis (A.4)

whereGdis is given by

Gdis = � dis
� Hdis

F Cp
(A.5)
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In the controller, the disturbance reductants conversion ef�ciency� dis is assumed to equal the in-
cylinder conversion ef�ciency (see Fig. G.2 in § G.4). Similarly, the heat of combustion� Hdis of
disturbance reductants is assumed to be equal to� Hu .

A.2.2 Model validation

The presented reduced model allows the comparison of temperature responses to late post-injection
input (which is assumed similar to response to disturbance reductants) to responses to exhaust injec-
tion input (exhaust injection �ow rate is the control variable when this con�guration is used). Further,
as has been introduced in A.1.2, these responses differ when different injection methods are used.
We show here how it is captured by our model. Interestingly, these differences can be explained by
a variation of reactive length, as is evidenced by simulation results presented in Fig. A.3b. These

(a) Experimental data (b) Simulation for 2 different reactive lengths (obtained
from (3.15))

Figure A.3: Different reactive lengths are used to model responses of different kinds of HC. Temper-
ature response of in-cylinder injection HC is slower than response of exhaust injection HC. Reactive
length corresponding to exhaust injection is longer.

macroscopic results roughly encompass all the chemical phenomena. They describe that in-cylinder
reductants (resulting from in-cylinder injections) are oxidized in a short entry part of the DOC. Then,
the thermal response, which propagates along the catalyst, is highly delayed. By contrast, HCs re-
sulting of the exhaust injection are oxidized on a longer part of the DOC. Therefore, this kind of HCs
acts closer to the catalyst outlet and its temperature response is faster.3 Finally, these observations
allow the integration of different dynamics for the two kinds of HCs in the control strategy.

3“In-cylinder” HCs correspond to a short carbon chain and “exhaust” HCs correspond to a longer carbon chain (Du-
bien et al. 1998). Then, respective oxidation properties and access possibilities to catalytic surface are different. These
differences may be intuitively related to the proposed different macroscopic reactive lengths.
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A.2.3 Disturbance reductants “boundary-source” sub-model

Following § 4.1, disturbance reductants “boundary-source” sub-model corresponds to a particular
case of the reduced model, in which the source terms are null. Here, system (A.1) yields

8
><

>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t))
(A.6)

NoteT in
eq;dis the boundary condition of this sub-model

T in
eq;dis(t) , T(z = 0 ; t) (A.7)

In this sub-model,T in
eq;dis is the input variable, which represents the disturbance �ow rateFdis . It

plays a role similar to the one of the distributed disturbance variable	 dis in the reduced model. It is
related toFdis by

T in
eq;dis = Gdis Fdis (A.8)

The system outputTout
eq;dis corresponds to the temperature at the equivalent transport lengthL u;dis

Tout
eq;dis(t) , T(z = L u;dis ; t) (A.9)

where the lengthL u;dis is de�ned by

L u;dis (v) = max( L � au;dis v � bu;dis ; 0) (A.10)

whereau;dis andbu;dis are constants. In this conception, the constantsau;dis andbu;dis are identi�ed
instead of the constantsadis andbdis of the reduced model.

A.2.4 Control model

In the same manner as for the development of the control model in § 4.3, the inlet temperature
effects, the control HC effects, and the disturbance reductants effects are decoupled. As shown in
§ A.2.3 the disturbance reductants �ow rate of the reduced model is transformed into a boundary
condition, provided model adaptations. Following results of § 4.2, the obtained system can be ap-
proximated by an advection-diffusion system. Considering results of § 4.3, this leads to a model as
pictured in Fig. A.4. The HC effects can be assimilated to a front of temperatureT in

eq propagating
on a �ctitious lengthL u . TheT in effects are propagating over the whole DOC lengthL . The dis-
turbance reductants are assimilated to a front of temperatureT in

eq;dis propagating on the lengthL u;dis .
The three sub-subsystems use the advection-diffusion equation to describe propagation. Propagation
coef�cients (# and� ) are identical (they depend onv). Altogether, the control model consists of the
sub-models, the outputs of which are added up to yield the control model output.
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Figure A.4: Control model. The HC effects can be assimilated to a front of temperatureT in
eq prop-

agating on a �ctitious lengthL u . TheT in effect is propagating over the whole DOC lengthL . The
disturbance reductants are assimilated to the boundary conditionT in

eq;dis over the lengthL u;dis .

A.2.5 Rejection possibilities of the disturbance reductants effects

It has been mentioned in § A.2.2 that responses to “in-cylinder” reductants are faster than re-
sponses to “exhaust” HCs. Then, by using exhaust injection as actuator, it is theoretically possible to
compensate for this disturbance.

When using late-post injection as actuator, both disturbance reductants and control HC are consid-
ered to be “in-cylinder” reductant and to have similar effects. Then, in this case, it is also theoretically
possible to compensate for this disturbance reductants.

A.3 Accounting for undesired gas composition disturbance in the ad-
vanced control law

Figure A.5: Advanced controller overview.

The difference between “in-cylinder” reductants and “exhaust” HCs can be accounted for in an
additional “J” block(4) as pictured in Fig. A.5. When using late post-injection system as actuator,
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the two �ow dynamics are considered similar, i.e. the “J” block is equal to 1. When using the exhaust
injector as actuator, the two �ow dynamics must be differentiated. Following the design of the “F”
block presented in § 4.3, the delay� dis (t) to synchronize the disturbance reductants variations with
the control HC variations is given by the following implicit equation, in which� dis (t) is unknown

L u;dis � L u =
Z t

t � � dis (t )
#(w)dw (A.11)

The “J” block of the controller is simply a delay operator with the delay value� dis (t)

Tdis (t) = T in
eq;dis(t � � dis (t))

Similarly to Gdyn
u , Gdyn

dis is the “dynamic” gain forFdis . In practice,Gdyn
dis = Gdyn

u .
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Appendix B

Approximating the DOC
“boundary-source” model by a
�rst-order plus delay model

This appendix details the (approximate) reduction of the “boundary-source” control sub-model
equation (4.1) to a simple (�nite dimensional) �rst order plus delay model

8
><

>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t))

This approximation is used in the control design in Chapter 6 and Appendix C. The desired repre-
sentation of this equation is, for a constantv, a �rst order plus delay model, which belongs to a class
of models relatively easy to design a controller for (Silva et al. 2005). The corresponding transfer
function from boundary inputT in

eq (t) to outputT(z; t) is (see § E.1.3 for calculation details)

T̂ (z; s)

T̂ in
eq (s)

= exp
�

�
z
v

s
�

exp
�

�
k1 z

v

�
exp

�
k1 k2 z=v

s + k2

�
(B.1)

whereT in
eq represents an input equivalent to HC, and the length of the DOC isL u . One can refer to

Chapter 4 for details. Alternatively, this transfer function represents the inlet temperature effects (see
Eq. (3.24)). In this case, the boundary condition is notedT in the length of the DOC isL . It is shown
in this appendix that the transfer function (B.1) can be approximated by a �rst order plus delay model
of the general form

T̂(z; s)

T̂ in
eq (s)

=
exp (� �s )

1 + �s

with 8
>><

>>:

� =
1 � Th(z; tI )

exp (� 2k1z=v)k2I1(2k1z=v)

� =
z
v

+
k1z
k2v

�
1 � Th(z; tI )

exp (� 2k1z=v)k2I1(2k1z=v)
and whereTh is the step response of (4.1) given by

Th(z; t) = exp
�

�
k1z
v

�
�( t � z=v) �

"

1 +
1X

r =1

� inc (k2(t � z=v); r )
r !(k2=m(z)) r

#
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Low frequency approximation

It is explained in Appendix D that a DOC is a very low-pass system and that it is in fact almost
insensitive to the high frequency content of the input signal. For this reason, the following approx-
imation from the transfer function (B.1) can be made for small values ofjsj (i.e. the range of low
frequencies)

T̂ (z; s)

T̂ in
eq (s)

exp
� z

v
s
�

exp
�

k1 z
v

�
= exp

�
k1 k2 z=v

s + k2

�

= exp
�

� (1 � � ) k1z
k2v s

�
exp

�
k1z
v

�
(1 � � )s=k2 + 1

1+ s=k2

��

� exp
�

� (1 � � ) k1z
k2v s

�
exp ((1 � � )s=k2 + 1 � s=k2)

k 1z
v

� exp
�

� (1 � � ) k1z
k2v s

�
exp

�
k1z
v

�
exp (� �s=k 2)

k 1z
v

� exp
�

� (1 � � ) k1z
k2v s

�
exp

�
k1z
v

� 1

1 + � k1z
k2v s

(B.2)

for every� 2 ]0; 1[. In fact � can be seen as a weighting variable which will be discussed later on.
This computation leads to the following transfer function which stands as an approximation of (B.1)

T̂ (z; s)

T̂ in
eq (s)

� exp

 

�
�

z
v

+ (1 � � )
k1z
k2v

�

| {z }
�

s

!
1

1 + �
k1z
k2v| {z }
�

s
(B.3)

As a result, one obtains a delayed �rst-order transfer function
exp (� �s )

1 + �s
where

8
><

>:

� = �
k1z
k2v

� =
z
v

+ (1 � � )
k1z
k2v

(B.4)

The weighting variable� relates� and� . Explicitly, we get

� =
z
v

+
k1z
k2v

� � (B.5)

From a parameter identi�cation standpoint, the next step is to formulate a constraint to determine the
value of� , which, in turn, sets the value of� and� .

In�exion point

The control model step response (3.22) is recalled here

Th(z; t) = �( t �
z
v

) exp
�

�
k1z
v

�
�

"

1 +
Z t � z=v

0
exp (� k2� )

r
m(z)

�
I1(2

p
m(z)� )d�

#

with m(z) = k1k2z=v. One can calculate the abscissa of its in�exion point. It will be used to set the
values of the weighting variable� . The second-order derivative of the step response with respect to
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the time variable is

@2

@t2
T(z; t +

z
v

) = � �( t) exp
�

�
k1z
v

�
exp (� k2t)�

" �
k2 +

1
t

� r
m(z)

t
I1

�
2
p

m(z)t
�

�
m(z)

t
I0

�
2
p

m(z)t
�

# (B.6)

Using the following asymptotic expansion of the Bessel functionI � (see Abramowitz & Stegun
(1965)) 8

<

:
I � (z) �

ez
p

2�z

�
1 �

� � 1
8z

+
(� � 1)(� � 9)

2!(8z)2 � : : :
�

� = 4 � 2
(B.7)

at �rst-order, we get, for
3

16
p

m(z)t
� 1,

@2

@t2
T(z; t +

z
v

) � � �( t) exp
�

�
k1z
v

�
exp (� k2t)�

2

4
�

k2 +
1
t

� r
m(z)

t
e2

p
m(z)t

q
4�

p
m(z)t

�
m(z)

t
e2

p
m(z)t

q
4�

p
m(z)t

3

5
(B.8)

The equation of the in�exion point, of whicht I is the unknown abscissa, is given by

@2

@t2
Th(z; tI ) = 0 (B.9)

Denotingt I 0 = t I � z=v, this leads to

k2 +
1
t I 0

�

s
m(z)

t I 0
= 0 (B.10)

Then,

t I 0 �
k1z
k2v

�
1
2

+
1
2

r

1 �
4v
k1z

�
�

1
k2

(B.11)

and assuming
4v
k1z

� 1 (strong assumption), we �nally obtain

t I �
k1z
k2v

+
z
v

(B.12)

Parameters� and �

Notef the delayed �rst order model step response

f (t) = 1 � exp
�

�
t � �

�

�

Let tE be the solution of
f (tE ) = Th(z; tI ) (B.13)
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We request the slope off at abscissatE to equal the slope of theTh at t I , i.e.

d
dt

f (tE ) =
@
@t

Th(z; tI ) (B.14)

Then, we get

� =
1 � Th(z; tI )

exp (� 2k1z=v)k2I1(2k1z=v)
(B.15)

To sum up, with the additional requirement (B.13)-(B.14), it is possible to write explicit values of�
and� as a function of model parameters and the input disturbancev. This gives

8
>><

>>:

� =
1 � Th(z; tI )

exp (� 2k1z=v)k2I1(2k1z=v)

� =
z
v

+
k1z
k2v

�
1 � Th(z; tI )

exp (� 2k1z=v)k2I1(2k1z=v)

(B.16)

Figure B.1: Matching the DOC step response with a �rst order plus delay model.k1=400,k2=0.35,
v=4 (left). k1=1591.09,k2=0.82,v=4.597 (right). Simulation data.

Two different cases that are representative of real DOC parameter values, are reported in Fig. B.1.
It is shown that the choice of the constraint (B.13)-(B.14) leads to good matching of responses. Values
of � and� for control HC step responses1 at different �ow rates are shown in Fig. B.2. Corresponding
analytical values of (B.16) withz = L u , are obtained using constant parametersk1 andk2, andL u

function ofv (as mentioned in Chapter 4).
For easy online computation of� and � , Th(z; tI ) is computed of�ine and assumed constant.

Exact computation ofTh(z; tI ) has minor consequences on the control because it slightly affects the
weighting variable� (see above Eq. (B.5)), i.e. a small error on� is compensated by� . Further, a
look-up table is built of�ine for the Bessel functionI1. If necessary, further approximation can be
used to remove the need for an exact evaluation of the Bessel function. They are presented in the
following.

1Experimental step responses are identi�ed to a �rst order plus delay model step response using a least mean-square
algorithm
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Figure B.2: Comparison of� and� evolution obtained by (B.16) (withz = L u) or by experimental
control HC step responses identi�cation.

Further approximation of � and �

It has been shown that the choice of the constraint (B.13)-(B.14) leads to good matching of re-
sponses results. Further approximation can be made to prevent evaluation of the Bessel function.
In experiment of Fig. B.1, we get38

1
2k1z=v � 1 for the two presented cases. Referring to expan-

sion (B.7), this validates the use of an asymptotic expansion ofI1. We can make the approximation
I1(2k1z=v) � exp (2k1z=v)p

2� 2k1z=v
. Then, we get the following expressions

8
>><

>>:

� = 1
k2

(1 � Th(z; tI )) � 2 �
p

� �

r
k1z
v

� =
z
v

+
1
k2

k1z
v

�
1
k2

(1 � Th(z; tI )) � 2 �
p

� �

r
k1z
v

(B.17)

It is interesting to note that, considering requirement (B.13)-(B.14),� does not have an hyperbolic
behavior with respect tov.
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Appendix C

DOC classic control design: an
alternative (inef�cient) control law

In this appendix, classic control design approach is followed to treat the problem of DOC out-
let temperature control is presented. It corresponds to the derivation of a simple model (using two
�rst-order plus delay models in parallel) straightforwardly leading to a control solution. The model,
derived from the model (4.1), has its few parameters related to the original physical parameters. Ob-
tained controllers require little tuning effort.

This appendix is organized as follows. First, the control model, alternative control model of
Chapter 4, is developed. Then, derived control structures (adaptive PI, PID, Smith predictor) as well
as simulation results are presented. Conclusions stress the need of the advanced control approach
presented in Chapter 6.

Note that, adaptations of the results of advanced control (Chapter 6) to the case of disturbance
reductants (undesired gas composition from engine) are presented in Appendix A. For the clarity of
the presentation, this disturbance is not treated in this appendix. However, following the method
presented for compensation of the inlet temperature (and presentation of Appendix A), extension
to the case of disturbance reductants for the model and the controller developed in this appendix is
straightforward.

C.1 First order plus delay model

On one hand, it has been shown in § 4.1 that the response of the DOC to the inlet temperature
(which is regarded as a disturbance) could be described using the “boundary-source” model (4.1). On
the other hand, it has been shown that the response to the control HC (u control variable) could be
described using the same model considering a �ctitious adaptation of the DOC length. This equation
can be accurately approximated by a �rst order plus delay model (see Appendix B). Finally, the
linearity of the reduced model allowsT in effects andu effects to be treated in separated states. As

Figure C.1: Scheme of the �rst order plus delay model
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Figure C.2: Scheme of the �rst order plus delay model

a result, the DOC is decomposed into two sub-systems, one having the disturbanceT in as input and
the other having the control variableu as input as is pictured in Fig. C.1. The obtained model is a
combination of two �rst order plus delay models as is detailed in Fig. C.2. The �rst one usesT in as
input and� T in and� T in as parameters. These are evaluated using the general formula (B.16) and the
whole DOC lengthL . The steady-state gain of this sub-system is evaluated using (3.26). Explicitly,
the sub-system governing differential equation is

(
� T in (t) _xT (t) = � xT (t) + GT in (t) T in (t)

Tout; 1(t) = xT (t � � T in (t))
(C.1)

with 8
>>>>><

>>>>>:

� T in =
1 � Th(L; t I )

exp (� 2k1L=v)k2I1(2k1L=v)

� T in =
L
v

+
k1L
k2v

�
1 � Th(L; t I )

exp (� 2k1L=v)k2I1(2k1L=v)

GT in = 1

(C.2)

The second sub-system usesu as input, and corresponding parameters� u and� u which are evaluated
by the same formula (B.16) using a partL u of the DOC length as explained in § 4.1. The steady-
state gain of this sub-system (from the control HC to the outlet temperature) is evaluated using (3.3).
Explicitly, the second sub-system governing differential equation is

(
� u(t) _xu(t) = � xu(t) + Gu(t) u(t)

Tout; 2(t) = xu(t � � u(t))
(C.3)

with 8
>>>>>><

>>>>>>:

� u =
1 � Th(L u ; t I )

exp (� 2k1L u=v)k2I1(2k1L u=v)

� u =
L u

v
+

k1L u

k2v
�

1 � Th(L u ; t I )
exp (� 2k1L u=v)k2I1(2k1L u=v)

Gu = �
� Hu

F Cp

(C.4)
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For both sub-systems,k1 andk2 are constant and equal. Finally, the two sub-systems are connected
by the output equation

Tout (t) = Tout; 1(t) + Tout; 2(t) (C.5)

In this section, the DOC model has been reduced to one of its simplest form. Such linear �nite
dimensional forms have been extensively studied in the literature before, and it is straightforward
to design well-suited controllers for them with little tuning effort. We now present some of these
solutions.

C.2 Controller presentation

C.2.1 Design motivations

Following the observations having led the alternative control model of the previous section, the
following control design is proposed. First, the system is low-pass and has possibly large time con-
stants, which suggests to look for a control design from the classic “toolboxes” of Corriou (2004) of
process control methods. Second, the time constants are largely-varying and these variations (related
to the disturbancev) require some adaptation. Third, decouplingT in andu into partial states al-
lows easy feedforward control for the disturbance. From this, it follows that good candidates control
techniques are adaptive Smith controller or PI(D), including a feedforward term forT in .

C.2.2 Control designs

We now consider the three mentioned classic controllers and evaluate their performance. The �rst
two designs are simple PI and PID controllers with a feedforward term as presented in Fig. C.3. The
third controller, presented in Fig. C.4, consists of a Smith controller (see e.g. Levine (1996)).

Figure C.3: Control scheme for the adaptive PI(D) controller

The feedforward “FF” block (of inputT in and outputuF F ) is dedicated to treating theT in dis-
turbance. As has been shown in § 3.5.1, theT in response are slower than theu response. For this
reason it is possible, theoretically speaking, to compensate for theT in disturbance. In the last section,
these responses were approximated by two �rst order plus delay functions. Considering this fact, it
is possible to use a standard feedforward strategy based on theexact inverse controlcomputation
for the disturbance compensation. Computation steps are brie�y recalled here assuming thatv has a
steady-state value.

Consider that the disturbance delay is greater than the process delay (� T in > � u), such as illus-
trated in Fig. C.2. The desired output historiesTout � are

Tout � = 0 (C.6)
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Figure C.4: Control scheme for the adaptive Smith controller

which leads to the equation veri�ed by the desired feedforward transfer functionFF �

T in (s) FF � (s) Gu
exp (� � u s)

� u s + 1
+ T in (s) GT in

exp (� (� T in � � u) s) exp (� u s)
� T in s + 1

= 0 (C.7)

Finally,

FF � (s) = �
GT in

Gu

� us + 1
� T in s + 1

exp (� (� T in � � u) s) (C.8)

To compute a similar solution in a time-varying case, the following equations are solved
8
>>>>><

>>>>>:

uF F (t) = y (t � (� T in (t) � � u(t)))

y(t) =
GT in (t)
Gu(t)

1
� T in (t)

�
T in (t) � u(t) + ( � T in (t) � � u(t)) x(t)

�

� T in (t) _x(t) = � x(t) + T in (t)

x(0) = 0

(C.9)

where parameters� u , � u , Gu , � T in , � T in andGT in and are evaluated using (C.2) and (C.4) respec-
tively. This “FF” block is used in the three cases of the PI, the PID and the Smith predictor controllers.

Regarding the feedback control design for the PI and the PID controllers, we use respectively Tavakoli
& Fleming (2003) and Tavakoli & Tavakoli (2003) parameters tuning rules. The PI controller of input
e(t) and outputuF B (t) is given by

uF B (t) =
1

Gu(t)

�
0:3047 +

�
0:4849

� u(t)
� u(t)

��
�

�
e(t) +

Z t

0

1
(0:4262� u(� ) + 0 :9581� u(� ))

e(� ) d�
� (C.10)

while the PID controller is given by

uF B (t) =
1

Gu(t)

0

B
B
@

1

0:2 +
� u(t)
� u(t)

1

C
C
A �

0

B
B
@e(t) +

Z t

0
e(� )

0:08 +
� u(� )
� u(� )�

1:2 + 0:3
� u(� )
� u(� )

�
� u(� )

d� +
d
dt

�
e(t)

� u(t)
90

�
1

C
C
A

(C.11)
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Transfer functions for the Smith predictor controller (Fig. C.4) are detailed in the following. For
the “T” block, of inpute(t) and outputuF B (t), we choose

uF B (t) =
1

Gu(t)

�
1 +

Z t

0

1
� u(t)

e(t)
�

(C.12)

which corresponds to non-conservative settings. For the “M” block, of inputuF B (t) and output
yM (t), we have

� u(t) _yM (t) = yM (t) + Gu(t)uF B (t) (C.13)

Finally, the “D” block operator, of inputyM (t) and outputyMD (t), applies a delay of� u(t)

T(t) = yM (t � � u(t)) (C.14)

The robustness �lter “F” in the feedback loop is a �rst order �lter which time constant set to1 s.
Classically, its role is to robustify the controller when the delay is not well-known. It is not strictly
required here because, thanks to the presented detailed analysis of the DOC equations, delays are well
approximated.

C.2.3 Simulation results

First, we study the in�uence of a disturbance step variation. Then, we present control performance
obtained for a NEDC driving cycle. Simulation results are shown on the reduced model (3.4) with
representative valuesk1 = 870 s� 1, k2 = 0 :45 s� 1, L c = 0 :0305m, L = 0 :0762m. Note that the
L c parameter has been chosen constant in these simulations so that the performance of the presented
inlet feedforward strategy is not impacted by gas �ow rate variations. These results are then the best
achievable a priori. Also, they can easily be compared to results of advancedT in feedforward control
strategies that have been presented in § 6.2.

Basic performance

Fig. C.5 compares performance of the three controllers for a setpoint change. Setpoint is risen
from 0 to 50 at t = 200. At the end of the transient, the system is disturbed by an important gas
speed variation. These variations are directly caused by the driver's torque request. They are very
fast and cannot be avoided. Although both controllers show similar tracking performance, the Smith
controller has much better disturbance rejection capabilities. Similar results are presented in Fig. C.6

Figure C.5: Step setpoint transition and step v variation for PI, PID, and Smith controllers.T in = 0 .
Simulation data.

with a 20% error on thek1 parameter, which implies important delay misestimations. All three
proposed controllers are quite robust with respect to this error.
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Figure C.6: Step setpoint transition and step v variation for PI, PID, and Smith controllers with a
20%-error onk1. T in = 0 . Simulation data.

Performance on the NEDC cycle

Here, the three controllers are tested on a simulated NEDC cycle. Results are presented in
Fig. C.7. In this case of a constantly-varying gas �ow rate, the differences between the controllers are
very small. Similar results are presented in Fig. C.8 with a 20% error on thek1 parameter. Once again,

Figure C.7: PI, PID, and Smith controllers on NEDC cycle. Simulation data.

the presented controllers show good results of robustness with respect to this fundamental parameter.
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Figure C.8: PI, PID, and Smith controllers on NEDC cycle with a 20%-error onk1. Simulation data.

Robustness on gain error on NEDC cycle

All three presented controllers need an estimate of the system steady-state gainGu (see (C.4)).
In real applications, the gain can be impacted, for example, by thermal losses or by the catalyst
ef�ciency. Yet, they are usually relatively easy to evaluate. To limit overshoot, setpoint transition
must be slowed down (ramp. . . ), which results in a loss of time and energy, especially when starting
a DPF regeneration. Indeed, a change of setpoint happens every time a DPF new regeneration phase
is started, and, to a minor degree, during DPF regeneration process. Hence, this fact appears as an
important issue. Results with a 20% error onGu are shown in Fig. C.9 and in Fig. C.10.

Figure C.9: Control results with a 20%-error onk1 (k0
1 = 1 :2 � k1) and a 20%-error onGu (G0

u =
0:8 � Gu). Simulation data.
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Figure C.10: Control results with a 20%-error onk1 (k0
1 = 1 :2 � k1) and a 20%-error onGu (G0

u =
1:2 � Gu). Simulation data.

C.2.4 Conclusion

The presented Smith controller requires more computational effort than the presented PI(D) con-
trollers and shows some advantages in speci�c cases (setpoint transition, large gas �ow rate variation).
It should be discussed if it is necessary to use it or not for every speci�c cases of application. It should
be noted that its major drawback (lack of robustness toward a misestimation of the delay) has been cir-
cumvented thanks to the presented detailed analysis of the DOC equations and the relatively accurate
estimate of the delays involved.

C.3 Conclusion

In this appendix, a simple model using two �rst-order plus delay sub-systems has been presented.
It straightforwardly leads to control solutions. The obtained controllers require little tuning effort
since the controller parameters are related to the model physical parameters.

Three classic control structures have been compared. Unfortunately, despite care taken for mod-
eling, and although the controllers have all the inlet temperature (T in ) and control HC (u) dynamic
information available, they lead to average performance (probably around� 40� in practice) due to
the not-perfectly-suited classic control structures. This stresses the relevance of the advanced control
approach presented in Chapter 6.



Appendix D

Speeding up temperature response

In this appendix, several methods to speed up the DOC step response are explored. This study is
used for the experimental validation of the model and gives insight into the DOC thermal behavior,
which motivates the control model development (such as low-order order reduction or conclusions
about practical disturbance rejection possibilities). It is based on the control sub-model (4.1) (recalled
below)

8
><

>:

@T
@t

(z; t) + v(t)
@T
@z

(z; t) = � k1 (T(z; t) � Ts(z; t))

@Ts
@t

(z; t) = k2 (T(z; t) � Ts(z; t))

with T in
eq as boundary condition

T in
eq (t) , T(z = 0 ; t)

D.1 Inversion-based open-loop control

To solve the motion planning problem, i.e. to a compute control law providing some desired
output trajectories, we propose an open-loop control law based on a formal inversion of the input-
output transfer function.

D.1.1 Inverse control

It is straightforward to invert (4.6) and formulate the inputT̂ in
eq (s) as a function of the output̂y(s)

(for all values ofz)

T̂ in
eq (s) = exp

�
z
v

s +
k1z
v

�
m

s + k2

�
ŷ(s) (D.1)

The outputy(t) can be any delayed function of time. This delay equalsz=v. Let f (t) denote this
function. We can write

ŷ(s) = exp
�

�
z
v

s
�

f̂ (s) (D.2)

Combining (D.1) and (D.2), we get

T̂ in
eq (s) = exp

�
k1z
v

�
m

s + k2

�
f̂ (s)
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The inverse Laplace calculus leads to
8
>><

>>:

T in
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v �( t) �

�
f (t) �
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m� ) exp (� k2� )f (t � � )d�
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y(t) = f (t � z=v)

(D.3)

This result stems from the inverse Laplace transform of the following transfer function (from inputf̂
to outputT̂ in

eq ):
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where� denotes the Dirac delta function and� the convolution. This yields

T in
eq (t) = exp

�
k1z
v

�
�( t)

"

f (t) �
Z t

0

r
m
�

J1(2
p

m� ) exp (� k2� )f (t � � )d�
�

which is the �rst formula in (D.3).
In our application, the dead timez=v (typically 10� 2 s) is very small when compared to the

response time of the system (typically102 s), so thatf (t) can be almost regarded asy(t).

D.1.2 Simulation results

In this section, we consider two numeric scenarios that stress general problems that are encoun-
tered when controlling the DOC. In case A, we usek1 = 400 s� 1, k2 = 0 :35 s� 1, v = 4 m.s� 1 and
L = 7 :62 cm. In case B, we usek1 = 1600 s� 1, k2 = 0 :82 s� 1, v = 4 :6 m.s� 1 andL = 7 :62 cm.
These two different cases (corresponding to two different geometries) correspond to long response
times, which are in practice the most problematic to control. Because the system is linear and the
steady-state gain is 1, �gures are plotted with normalized temperature responses. The choice of the
trajectory isa priori free, but several tries of usual transition functions have shown us it has important
consequences. In order to obtain a smooth transition we choose the followingC1 Gevrey function
of order1 + 1


 (see Laroche et al. (2000) for the mathematical properties of this function, and the
smoothness of its derivative)
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Transition timest f chosen in this section are inspired from results that will be obtained in § D.2. They
are realistic. We uset f = 21:5 s for case A andt f = 38:5 s for case B, and
 = 0 :6 for both cases.
Depending on the values of parameters(k1; k2; v; L), we can get drastically different types of control
trajectories. Although not intuitive, the control presented for case A in Fig. D.1a is quite simple. For
case B, on the other hand, the control presented in Fig. D.1b is unrealistic because of its frequency
and its amplitude. Further, in this case (actually probably in both cases) the control obtained by
model inversion goes beyond the model validity region (non negligible conduction, non constants
coef�cients and non negligible heat losses . . . ). However, the computed control stresses interesting
problems, related to the high-capacity energy storage of the solid phase. This partly explains why a
DOC is a dif�cult system to control.

(a) Case A (b) Case B

Figure D.1: Control corresponding to a smooth �nite-time transition. Simulation data.

D.2 Trajectory optimization for constrained input

As seen in § D.1, inversion of the model can lead to a “shaking” control. Actually, this does not
mean that such a system cannot be accelerated, but attention must be paid to the control bounds. In
this section, to address this issue, we generate output trajectories under input constraints. First, we
use a classic optimization approach, then we formulate the problem in a different way: we impose a
limited number of possible values for the control, and a limited number of switches between these val-
ues. This drastically reduces the number of optimization variables, whereas the loss of performance
appears negligible.
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(a) Case A (b) Case B

Figure D.2: Optimized control with method 1. Simulation data.

D.2.1 Problem formulation 1 and simulation results

In this �rst formulation, we want to compute a piecewise constant control, subject to lower and
upper bounds. This problem can be formally written under the form

min
(u0 ;:::;u n )

Z H

0
(T sp � y(� ))2d�

8
><

>:

T in
eq;min � ui = T in

eq (iTs) � T in
eq;max 8i 2 f 0; : : : ; ng

y(t) � T sp + " 8t 2 [0; H ]

y(t) � T sp � " 8t 2 [G; H ]

(D.4)

whereT sp is the setpoint," is a small positive constant,Ts is the control sampling period,n Ts is
the control horizon, andH is the prediction horizon.G corresponds to the minimum time for which
problem (D.4) is feasible. It is found iteratively, for example by dichotomy. Enforcing this minimum
constraint avoids oscillations after the rise time. For numeric evaluation, we useT sp = 1 , n = 60,
Ts = 1 s, H = 200 s, T in

eq;min = 0 , T in
eq;max = 4 , and" = 0 :003. Since the model is linear, for

numerical experiments, its response to a given piecewise constant input can be quickly evaluated by
a linear combination of time-delayed step responses. Step responseTh is evaluated by (4.8) andy is
given by

y(t) = u0 Th(t) +
nX

i =1

(ui � ui � 1) Th(t � iTs)

Fig. D.2 shows that, in both cases, the system is accelerated as in § D.1, but, now, input constraints
are satis�ed. The transitions are not achieved in �nite-time but, from the end time used in § D.1, the
output remains within a tight range around the �nal value.

D.2.2 Problem formulation 2 and simulation results

The second method presented allows further simpli�cation of the control with minor conse-
quences on performance. We can notice in § D.2.1 that the control presents numerous pulses before
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(a) Case A (b) Case B

Figure D.3: Optimized control with method 2. Simulation data.

�nally setting to 1. In other words, once the output has almost reached its �nal value, the control still
acts over a long period. We would like to shorten this period for an easier implementation of the con-
trol. To this end, we consider only a limited number of pulsesn, before the �nal control value is kept
constant. Then pulses share the same magnitude (equal to the allowed maximumT in

eq;max ), while
their switch times have to be optimized. The optimizer also computes the time when the control is set
to its �nal value. The constraints ony, as well as the objective function, are kept from problem (D.4).
It seems clear that this problem has a solution for anyn: shortening enough the pulses durations will
generate a response close to the step response which satis�es the constraints.

We denotet i the successive rise and fall times of the pulses, we choosen = 2 (i.e. i 2 f 0; ::; 4g
with t0 = 0 andt4 representing the time of �nal step change) andT in

eq;max = 4 . The problem is
formulated as

min
(t1 ;:::;t 2n )

Z H

0
(T sp � y(� ))2d�

8
><

>:

t i � t i +1 � H 8i 2 f 1; : : : ; 2n � 1g

y(t) � T sp + " 8t 2 [0; H ]

y(t) � T sp � " 8t 2 [G; H ]

(D.5)

In the same way as in § D.2.1 the response can be quickly evaluated by

y(t) = T in
eq;max

N � 1X

i =0

(Th(t � t2i ) � Th(t � t2i +1 )) + Th(t � tN )

Results of optimizations for cases A and B are presented in Fig. D.3. Control is simpler and time
duration after which the control has reached its �nal value has been reduced. As shown in Table D.1,
performance in terms of output variation has remained very close to the previous case. Moreover,
the number of variables in the optimization problem has been considerably reduced, allowing a sub-
stantial reduction of the computational effort. Also, an energy expense index is obtained simply by
integrating the absolute control value over the whole time range of the simulations (the integration
time is equal for all scenarios, and the control value is 1 at the end of the integration time). It stresses
the dif�culty to follow precisely a given trajectory by the inversion method.
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Case A

Method Rise time (s) Energy Computational
expense index effort index

Inversion 19.77 86.18 12.53
Optimization 1 19.70 71.73 18.54
Optimization 2 19.74 71.73 1.000

Case B

Method Rise time (s) Energy Computational
expense index effort index

Inversion 35.40 2.19� 106 4881
Optimization 1 34.28 68.59 42.93
Optimization 2 35.30 68.93 1.000

Table D.1: Performance & Cost

D.2.3 Inversion of the resulting trajectory

We can notice that the trajectory resulting from optimization in § D.2 “takes off” much slower
than the trajectory used for inverse control in § D.1. We can wonder if the “shaking” inverse control
is caused by a wrongly chosen trajectory. In order to check this point, we inverse the trajectory
obtained with optimization in § D.2. Fig. D.4 presents the inversion-based control corresponding to
the trajectory obtained in Fig. D.3a. We notice a close matching between the two controls despite
inaccuracy which is certainly due to dif�culties in evaluating (D.3). This logically points out the fact
that the trajectory should not be chosen as a simple transition function.

Figure D.4: Inverse control for optimized trajectory - case A. Simulation data.

D.3 Choice of step inputs parameters for problem formulation 2

It is previously found in § D.2 that two different control strategies can lead to very similar re-
sponses. Further, it is found that the problem formulation 2 (§ D.2.2) ef�ciently leads to a realistic
control signal. In this section, choices of parameters of problem formulation 2 are examined. These
are the number of pulsesn and the pulse magnitudeM .
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D.3.1 Choice of the number of pulses

The �rst parameter to tune is the number of pulsesn. Using a small number of pulses reduces
computational efforts. It is shown in Fig. D.5 that, compared to step response, performance is much

Figure D.5: In�uence of pulse numbern. Simulation data.

improved when using 1 pulse, slightly more when using 2 pulses, and that it is almost useless to
consider more than 2 pulses. Results are identical for other pulse magnitudes. Hence, we choose to
use 2 pulses.

D.3.2 Choice of pulse magnitudeM

We compare here the two control laws obtained for different pulse magnitudesM . Once again,
the obtained temperature responses are very similar whereas control laws are largely different. This
effect is clearly shown in Fig. D.6 where experimental cases forM = 2 andM = 3 are reported.
Temperatures are normalized for direct comparison. Temperature response in the caseM = 3 is a bit
faster than in the caseM = 2 . In simulations presented in Fig. D.7, we validate this fact for higher
pulse magnitudes. UsingM = 3 ; 4; 5; 6::: instead ofM = 2 does not increase performance much.
This fact is explained because a DOC is a very low-pass system. Using a constantly varying high
frequency control yields almost no performance improvement. Indeed,the system is mainly sensible
to the low-pass content of the control. Choosing a high pulse magnitude allows the next pulse to take
place sooner. Nevertheless, consequences on the response are only minor. To obtain good results, the
critical point is, for a given maximum magnitude, to compute switch times accurately.

So, increasing pulse magnitude does not increase performance much. In real application, the
choice ofM is limited by the decrease of the DOC ef�ciency when a very large amount of reductants
is injected during pulses. Moreover, increasing pulse magnitude - that is enthalpy �ow - obviously
implies shortening pulse durations and, consequently, requires the accurate determination of the pulse
switch times. The model may also fail to provide such accuracy. For all of these reasons, it is relevant
to limit the pulse magnitude to aboutM = 2 to M = 3 , depending on the application case.
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Figure D.6: In�uence of pulse magnitude. Experimental data.

Figure D.7: In�uence of pulse magnitude. Simulation.
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D.4 Conclusion

Three different methods leading to control laws that speed up DOC temperature response have
been presented. They have led to successful experimental results.

In practice, developed strategies are not used in the controller, because the rise time is only a
small part of the regeneration process. However, this gives precious hints on the system behavior.

First, the different methods lead to very different control histories. However, the output histories
are very similar. The system is mainly sensitive to the low-pass content of the control. This motivates
low-order reduction of the model.

Accelerating the system responses requires a high control effort. Forcing the response to exact
desired transient histories leads to unrealistic results. This hints at limited rejection possibilities for
gas �ow rate disturbances, which take place in the vicinity of the outlet.

Finally, optimizations are carried out using a boundary control in the control sub-model (4.1).
On the contrary, experimental results correspond to a distributed input (reduced model). Presented
strategies are used in Chapter 4 for experimental validation of the equivalence between these two
models.
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Appendix E

Details of computations

In this appendix, we detail several computations yielding formulas used in Chapters 3 and 4.

E.1 DOC temperature response

DenoteL the Laplace operator,s the Laplace variable,̂x(s) = L (x(t)) , and� the Heaviside
function. Consider the following form for the source term	

	( z; u(t); v) = �( t) � � (�z )

with � and� real positive constants. Equations (3.4) and (3.8) lead to
8
><

>:

sT̂ + v
@̂T
@z

= � k1(T̂ � T̂s)

sT̂s = k2(T̂ � T̂s) +
� � (�z )

s

and the boundary condition is written as

T̂ (0; s) = T̂ in (s):

This gives the following �rst order linear differential equation
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| {z }
Â(s)
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v
�
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| {z }

B̂ (s)

� (�z ) (E.1)

In the following different pro�les for the source term are considered.

E.1.1 Response to an exponentially decaying source term

In this subsection, the case� (�z ) = exp ( � �z ) is considered. Equation (E.1) leads to

T̂ = T̂ in exp
�

� Âz
�

+
B̂

Â � �

�
exp (� �z ) � exp

�
� Âz

��
(E.2)

First, let us invert the following expression

f̂ 01(s) =
B̂

Â � �
= k1�

1
s (s2 + ( k1 + k2 � �v )s � �k 2v)

(E.3)
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This yields, through the inverse Laplace transformL � 1

f 01(t) = L � 1
�

f̂ 01(s)
�
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2k1�
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�
1 � exp (T1t)
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(E.4)
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Now, let us invert
B̂

Â � �
exp (� Az). For this, we compute the following intermediate result, where

� denotes the Dirac delta function and� the convolution
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whereI1 is the modi�ed Bessel function of the �rst kind. Using (E.6), we get
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v
(E.8)

and, then
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To inverseT̂ in exp (� Az), it is suf�cient to replacef 10 with T in in (E.9). Finally, the result is written
as
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(E.10)

Final value According to the fact that a �nite amount of energy is provided to the system, the �nal
value ofT exists and is given by

lim
t !1

T(t) = lim
s! 0

sT̂ (s) = T in +
k1�
�k 2v

(1 � exp (� �z )) (E.11)

whereT in is the steady-state value ofT in .

Relation with the control variable u The steady-state system analysis leads to the following rela-
tion between	 andu

u =
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Gu

Z z

0
	( �; u; v )d� (E.12)

In particular,
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Gu
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0
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E.1.2 Response to a spatially uniform source term

We treat the following discontinuous case
�

	( z; u(t); v) =  (u(t); v); 0 � z � L c(v)
	( z; u(t); v) = 0 ; L c(v) < z � L

for a step input of (u(t); v)
 (u(t); v) = � �( t)

This is a particular case of § E.1.1, in which� = 0 for the DOC reactive lengthL c, and� = 0 for the
non-reactive length. We get
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Then, forz > L c, solving equation (E.2) with� = 0 andT̂(L c; s) as boundary condition

T̂ (z; s) = T̂ (L c; s) exp
�

� Â(z � L c)
�

(E.15)

yields

T̂ (z; s) = T̂ in exp
�

� Âz
�

�
B̂

Â
exp

�
� Âz

�
+

B̂

Â
exp

�
� Â(z � L c)

�
(E.16)
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Now, we use (E.3) with� = 0 . Then,

f̂ 02 =
B̂

Â
= k1�

1
s2 (s + k1 + k2)

(E.17)

and

f 02 =
k1�

k1 + k2
t �

k1�
(k1 + k2)2 (1 � exp (� (k1 + k2)t)) (E.18)

Finally, an inverse Laplace transform on̂T yields

T(z; t) = � ( t � z=v) exp
�

�
k1z
v

�
M (z; t � z=v)

� � ( t � z=v) exp
�

�
k1z
v

�
N (z; t � z=v)

+ � ( t � z=v) exp
�

�
k1z
v

�
N (z � L c; t � z=v)

(E.19)

where
8
>>>>>>>>><

>>>>>>>>>:

M (z; t) = T in (t) +
Z t

0
exp (� k2� )

r
m(z)

�
I1(2

p
m(z)� )T in (t � � )d�

N (z; t) = f 02(t) +
Z t

0
exp (� k2� )

r
m(z)

�
I1(2

p
m(z)� )f 02(t � � )d�

f 02(t) =
k1�

k1 + k2
t �

k1�
(k1 + k2)2 (1 � exp (� (k1 + k2)t))

m(z) = k1k2z=v

Final value The �nal value forT̂ in (s) = T in =sand ̂ (s) = �=s can easily be computed. Accord-
ing to the fact that a �nite amount of energy is provided to the system, the �nal value ofT exists and
is given by

lim
t !1

T(t) = lim
s! 0

sT̂ (s) = T in +
k1�L c

k2v
(E.20)

E.1.3 Response to boundary step input

We treat the case� = 0 from § E.1.1. ConsiderT in (t) = T in �( t). Let us invertT̂ in exp
�

� Âz
�

.

To this end, the result (E.9) is used withf 01(t) = T in �( t). Then, we get

L � 1
�

T in �( t) exp
�

� Âz
��

= T in �
�

t �
z
v

�
exp

�
�

k1z
v

�
0

@1 +
Z t �

z
v

0
exp (� k2� )

r
m
�

I1(2
p

m� )d�

1

A
(E.21)

Series expansion of the integral term Denotingw = 2
p

m� , dw =
p

m=�d� andb = k2=(4m),
integral representation (E.21)

Z t � z=v

0
exp (� k2� )

r
m
�

I 1(2
p

m� )d� (E.22)
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can be transformed into
Z 2

p
m(t � z=v)

0
exp(� bw2)I 1(w)dw: (E.23)

Besides, considering the following result (Wolfram Research Inc. 2006)

Z t

0
exp(� mvb)v� � 1dv =

m� �=b

b
�( �=b )� inc (mt b; �=b ); (E.24)

where

� inc (x; m) =
1

�( m)

Z x

0
tm� 1 exp(� t)dt

with the integral representation of the Bessel functionI 1 (Abramowitz & Stegun 1965)

I 1(x) =
1X

r =0

1
r !(r + 1)!

� x
2

� 2r +1
(E.25)

it is possible to write integral (E.22) as an in�nite sum of standards functions. We use the series
representation (E.25) in integral term (E.23), and use property (E.24). Finally, this yields

Z t � z=v

0
exp(� k2� )

r
m
�

I 1(2
p

m� )d� =
1X

r =1

� inc (k2(t � z=v); r )
r !(k2=m)r

E.1.4 Response to a discrete source term

In § E.1.1 and § E.1.2, the responses to an exponentially decaying source term, and to spatially
uniform source term have been computed. In order to get further insights into the source term spatial
distribution in experimental responses, we now propose to compute the analytic response to a discrete
source term. Several optimization procedures have been carried out with these results to analyze the
distribution of the heat release. It has been concluded that most heat was released in the upstream
part of the DOC, and that a spatially uniform source term was suf�cient to handle the phenomena
description well. However, computations details are reported here for information.

We divide the source term intoN source terms of magnitude� n , n 2 f 1; ::; N g. We treat the
following discontinuous case

	 = � n �( t); L n� 1 � z � L n ; n 2 f 1; ::; N g

denotingL 0 = 0 andL N � L . Following results of § E.1.2, it can be shown that the general solution
is

T̂ (z � L N ; t) =

 

T̂0 �
B̂1

Â

!

exp
�

� Â L N

�

+
n� 1X

i =1

B̂ i � B̂ i +1

Â
exp

�
� Â (z � L i )

�
+

B̂N

Â
exp

�
� Â (z � L N )

�

where 8
>><

>>:

B̂ i =
k1

v (s + k2)
� i

s

Â =
1
v

�
s + k1 �

k1 k2

s + k2

�
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Denoting

gi (t) = L � 1

 
B̂ i � B̂ i +1

Â

!

�nally, this yields
8
>>><

>>>:

TN (z; t) =
NX

i =0

�
�

t �
z � L i

v

�
exp

�
� k1

z � L i

v

�
f i (z � L i ; t �

z � L i

v
)

f i (z; t) = gi (t) +
Z t

0
exp (� k2� )

r
mi (z)

�
I1(2

p
mi (z)� )gi (t � � )d�

where
8
>>>>>><

>>>>>>:

gi (t) =
k1 (� i � � i +1 )

k1 + k2
t �

k1 (� i � � i +1 )
(k1 + k2)2 (1 � exp (� (k1 + k2)t))

mi (z) = k1k2z=v
L 0 = 0

� N +1 = 0
� 0 = 0

This result can be easily extended to the caseT in 6= 0 .

Final value The �nal value for the source term considered above, andT̂ in (s) = T in =s can easily
be computed. According to the fact that a �nite amount of energy is provided to the system, the �nal
value ofT exists and is given by

lim
t !1

T(t) = lim
s! 0

sT̂ (s) = T in +
k1

k2v

 

� 1L 1 +
NX

i =2

� i (L i � L i � 1)

!

E.1.5 Selection of thez-pro�le

Here are some details on the process the have led us to select a uniform pro�le rather than other
pro�les.

During identi�cation process to experimental results, a step ofu is performed. As mentioned
in § 3.4, it is supposed that thez-pro�le establishes very rapidly to its steady state value. Only HC
are considered. Then, consider equations (2.4) and (2.5) at steady state, i.e.dCu;g=dt = 0 and
dCu;s=dt = 0 , whereCu refers to the control HC concentration. Then,dCu=dz = � K � R, whereR
is the reaction rate of control HC. Then, two hypotheses are considered:

� R is independent of concentration. This leads toCu = a � bz, wherea andb are constants.
This hypothesis refers to the “uniform pro�le”.

� R depends, at �rst order, on the concentration, i.e.,R = c � Cu wherec is constant. This leads
to Cu = a � exp (� � � z). This hypothesis refers to the “exponentially decaying pro�le”.

The following identi�cation procedure has been used (refer to Appendix E.1.1 for details on compu-
tation of analytical responses):

� the steady state values of temperature are known, i.e.
R

	( z)dz is constrained to match the
difference between the steady-state temperature values (before and after the step change). Pa-
rametera is computed from this integral;
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� parameter k2 is �xed;

� the following sets of parameters are identi�ed

– (k1; L c) for the uniform pro�le

– (k1; � ) for the exponentially decaying pro�le

At large gas �ow rates both the uniform and the exponentially decaying pro�les lead to a good
description of the experimental data. Typical identi�cation results are reported in Fig. E.1. However,
we are particularly interested in describing responses at low gas �ow rates. In this case, experimental
responses are not well described by an exponentially decaying pro�le. In particular, it can be noticed
in Fig. E.2 that the exponentially decaying pro�le poorly describes the “beginning” of the response
compared to the uniform pro�le. We therefore use a uniform pro�le. Other pro�les are left unused.

Figure E.1: At large gas �ow rates, quality of identi�cation results is identical for both the uniform
pro�le (left) and the exponentially decaying pro�le (right). Experimental and analytical data.

Figure E.2: At low gas �ow rates, quality of identi�cation results is better for the uniform pro�le
(left) than for the exponentially decaying pro�le (right). Experimental and analytical data.

E.2 Delay evolution in the advection equation

Consider the advection equation

@x
@t

+ v(t)
@x
@z

= 0 (E.26)
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and the following change of variables

x(z; t) = X (f (z; t); g(z; t))�
f (z; t) = t
g(z; t) = � z +

Rt
0 v(s)ds; v > 0

Equation (E.26) leads to
@X
@f

= 0

X (f; g ) = �( g)
x(z; t) = �( � z +

Rt
0 v(s)ds)

(E.27)

De�ne the delay� (t) by

x(z; t) = x(z � zp; t � � (t))

wherezp is the considered length of propagation. Equivalently, we have

�
�

� z +
Z t

0
v(s)ds

�
= �

 

� z + zp +
Z t � � (t )

0
v(s)ds

!

and the delay� (t) veri�es the following implicit equation

zp =
Z t

t � � (t )
v(� )d�

For a given value ofzp > 0, consideringv > 0, � (t) exists and is unique.

E.3 Computations on a simple advection model

Consider
@x
@t

+
@x
@z

= 	( z; t)

with

� x(z = 0 ; t) = 0 8t � 0

� x(z; t = 0) = 0 8t 2 [0; 1]

� 	( z; t) =
�

� (t) 0 � z � l (t)
0 z � l (t)

We study the response at the output, i.e.x(1; t).

Remark.The solution of
@x
@t

+
@x
@z

= � (t)

for � (t) = d�( t)=dt has the formx(z; t) = g(t � z) + �( t)
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E.3.1 Initial condition

Assume that, fort � 0, � (t) = � 1 andl(t) = l1.
� For z 2 [l1; 1],

@x
@t

+
@x
@z

= 0

Then x(z; t) = h(t � z). This yields, fort = 0 , x(z;0) = h(� z) = 0 , for z 2 [l1; 1]. Also
x(l1; t) = h(t � l1) = b(t) for t � 0, whereb(t) is a function to be determined. These two relations
give

h(z) =
�

0 � 1 � z � � l1
b(z + l1) z � � l1

� For z 2 [0; l1],
@x
@t

+
@x
@z

= � 1

As � (t) = � 1, �( t) = � 1t, and,x(z; t) = g(t � z) + � 1t. Then, fort = 0 , x(z;0) = 0 = g(� z)
for z 2 [0; l1]. Also x(0; t) = 0 = g(t) + � 1t, for t � 0. These two relations give

g(z) =
�

0 � l1 � z � 0
� � 1z z � 0

� We haveb(t) = x(l1; t) = g(t � l1) + � 1t, with

g(t � l1) =
�

0 0 � t � l1
� � 1(t � l1) t � l1

which yields

b(t) =
�

� 1t 0 � t � l1
� 1l1 t � l1

� According to the previously established relations, givent0 suf�ciently large, we have

� for z 2 [0; l1], x(z; t0) = � 1z;

� for z 2 [l1; 1], x(z; t0) = � 1l1.

These relations will serve as initial conditionsi (z) in the sequel:

i (z) =
�

� 1z 0 � z � l1
� 1l1 l1 � z � 1

E.3.2 Step change inl(t)

At time t = 0 , l(t) is subject to a step change froml1 to l2, with l2 � l1, while � (t) becomes
such that� (t) = d�( t)=dt.
� For z 2 [0; l2],

@x
@t

+
@x
@z

= � (t)

Thenx(z; t) = k(t � z) + �( t). For t = 0 , x(z;0) = i (z) = k(� z) + �(0) for 0 � z � l2. For
z = 0 , x(0; t) = k(t) + �( t) = 0 for t � 0, as it is assumed thatx(0; t) is always null. Then,

k(z) =
�

i (� z) � �(0) � l2 � z � 0
� �( z) z � 0
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which leads to

x(z; t) =
�

i (z � t) � �(0) + �( t) z � l2 � t � z
� �( t � z) + �( t) t � z

In particular, we have

bc(t) = x(l2; t) =
�

i (l2 � t) � �(0) + �( t) 0 � t � l2
� �( t � l2) + �( t) t � l2

� For z 2 [l2; 1],
@x
@t

+
@x
@z

= 0

Thenx(z; t) = p(t � z). We havex(z;0) = i (z) = p(� z) for l2 � z � 1, andx(l2; t) = bc(t) =
p(t � l2) for t � 0, which leads to

p(z) =
�

i (� z) � 1 � z � � l2
bc(z + l2) z � � l2

so

x(z; t) =
�

i (z � t) z � 1 � t � z � l2
bc(t � z + l2) t � z � l2

� At the outletz = 1 , we then have

x(1; t) =
�

i (1 � t) 0 � t � 1 � l2
bc(t � 1 + l2) t � 1 � l2

with

bc(t � 1 + l2) =
�

i (1 � t) � �(0) + �( t � 1 + l2) 1 � l2 � t � 1
� �( t � 1) + �( t � 1 + l2) t � 1

As l2 � l1, for 0 � t � 1 � l2, i (1 � t) = � 1l1. But for 1 � l2 � t � 1, two cases must be
distinguished fori (1 � t), depending on the position oft with respect to1 � l1. Finally, we obtain

x(1; t) =

8
>><

>>:

� 1l1 0 � t � 1 � l2
� 1l1 � �(0) + �( t � 1 + l2) 1 � l2 � t � 1 � l1
� 1(1 � t) � �(0) + �( t � 1 + l2) 1 � l1 � t � 1
�( t � 1 + l2) � �( t � 1) t � 1

E.3.3 Simultaneous step change in� (t)

We assume that, asl(t) changes froml1 to l2 (l2 � l1), � (t) simultaneously changes from� 1

to � 2. To keep the same equilibrium value forx(1; t), � 2 is chosen such that� 1l1 = � 2l2. Then,
� 1 � � 2. In this case,�( t) = � 2t, and

x(1; t) =

8
>><

>>:

� 1l1 0 � t � 1 � l2
� 1l1 + � 2(t � 1 + l2) 1 � l2 � t � 1 � l1
� 1(1 � t) + � 2(t � 1 + l2) 1 � l1 � t � 1
� 2l2 t � 1

For t from 0 to 1 � l2, the output is constant and equals its previous value� 1l1. At t = 1 � l2, it
begins to increase to reach its maximum� 1l1 + � 2(l2 � l1) at t = 1 � l1. From that time, it decreases
to reach its �nal value� 2l2 at t = 1 . There is an overshoot of durationl2.
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E.3.4 Limiting the overshoot

Now, � (t) follows a ramp, from 0 at time 0 to� 2 reached att = l2 � l1. From that time,� (t) = � 2

� (t) =

( � 2

l2 � l1
t 0 � t � l2 � l1

� 2 t � l2 � l1

Then,

�( t) =

8
><

>:

� 2

2(l2 � l1)
t2 0 � t � l2 � l1

� 2t �
� 2(l2 � l1)

2
t � l2 � l1

and

x(1; t) =

8
>>>>>>>>><

>>>>>>>>>:

� 1l1 0 � t � 1 � l2
� 1l1 +

� 2

2(l2 � l1)
(t � 1 + l2)2 1 � l2 � t � 1 � l1

� 1(1 � t) + � 2(t � 1 + l2) �
� 2(l2 � l1)

2
1 � l1 � t � 1

�
� 2

2(l2 � l1)
(t � 1)2 + � 2(t � 1) +

� 2(l1 + l2)
2

1 � t � 1 + l2 � l1

� 2l2 t � 1 + l2 � l1

For t from 0 to1 � l2, the output is constant to its previous value� 1l1. At t = 1 � l2, it begins to
increase to reach its maximum� 1l1 + � 2(l2 � l1)=2 at att = 1 � l1. From that time, it decreases to
reach the value� 2(l1 + l2)=2 = � 1l1 � � 2(l2 � l1)=2 at t = 1 . Fromt = 1 it increases to reach its
�nal value � 2l2 at t = 1 + l2 � l1. There is still an overshoot, but it maximum is divided by two. The
counterpart is an undershoot that has the same magnitude than the overshoot.

E.4 A change of variables for the advection-diffusion equation

Let us consider the following advection-diffusion equation with variable coef�cients� (t) and
#(t)

@T(z; t)
@t

+ #(t)
@T(z; t)

@z
= � (t)

@2T(z; t)
@z2

(E.28)

with initial condition

T(z;0) = �( � z) (E.29)

where� denote the Heaviside step function. Let us use the following change of variables

w(�; � ) = T(z; t)

with 8
>><

>>:

� = z �
Z t

0
#(s)ds

� =
Z t

0
� (s)ds
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Equation (E.28) leads to

@T
@t

=
@w
@�

@�
@t

+
@w
@�

@�
@t

=
@w
@�

� (t) �
@w
@�

#(t)

@T
@z

=
@w
@�

@�
@z

+
@w
@�

@�
@z

=
@w
@�

@2T
@z2

=
@
@�

�
@w
@�

�
@�
@z

+
@
@�

�
@w
@�

�
@�
@z

=
@2w
@�2

Finally, Eq. (E.28) leads to the heat equation

@w
@�

=
@2w
@�2

Because variablev(t) > 0, we have� (t) > 0 and#(t) > 0, then

t = 0 ()

(
� = 0

� = z

Initial condition (E.29) is transformed into

w(�; 0) = �( � � )



Appendix F

Experimental setup

The experiments reported in this thesis were conducted on an experimental setup that is described
here. The DOC is installed inside a diesel engine exhaust line. The OEM Engine Control Unit (ECU)
is fully bypassed. The engine is used to vary both the gas �ow rate and the DOC inlet temperature.
DOC inlet temperatureT in can be risen from300� C to 500� C by means of a coupled post-injection
taking place in addition to the pilot and the main injections. As is pictured in Fig. F.1, two distinct
con�gurations can be used to control the reductants �ow: either by an Exhaust Port Injector (EPI)
located right upstream of the turbine, or by common-rail late post-injection. The reader can report to
Appendix G.6 for details about EPI management and to Appendix G.5 for more information about
the late-injection.

Experimental results presented in the thesis were all obtained with one of these two setups. Two
2.2L 4-cylinder engines were used. In all cases, mass air �ow rate is measured at the engine intake
(thanks to an embedded1 sensor). Note that the gas �ow rate is not measured in the exhaust line. The
engine air path is actuated by an intake throttle, a Variable Geometry Turbine (VGT), an Exhaust Gas
Recirculation (EGR) valve and an EGR bypass valve (not pictured in Fig. F.1). The engine fuel path
is actuated by a high-pressure pump and common-rail injectors (up to 5 injections are possible).

The aftertreatment experimental setup is composed of a DOC and a DPF as presented in Fig. F.2.
Both a 3-inch long and a 4-inch long platinum-based DOC were tested. Both monoliths are made of
cordierite and have a cell density of 400 cpsi. Temperature is measured at three different locations:
the DOC inlet (thanks to an embedded sensor), the DOC outlet (thanks to an embedded sensor), and
at the center of the DOC (using a testbench-speci�c sensor2). An inlet pressure sensor (which is
embedded) is used to compute the density, and then the gas speed. Note that the inlet temperature
and pressure sensors are the turbine downstream sensors. They are present in most turbocharged
engine commercial lines con�gurations. The DPF differential pressure (measured with an embedded
sensor) is used to estimate particulate matter (PM) loading of the DPF. The gas composition can be
analyzed either upstream or downstream of the DOC by a 5-gas analyzer (testbench sensor).In some
experiments, gas analyses are reported for both upstream and downstream locations. In fact, these
experiments have been carried out twice, taking a particular care to verify that all external conditions,
inputs and measurements were very close.Thermocouples are mainly used for model �tting. In
particular, the intra-catalyst thermocouple is used to understand some DOC thermal phenomena (see
§ 3.1), the corresponding simpli�ed model descriptions (see § 3.4.2) and consequences on control
performance (§ 3.5). It is also used for an extensive model validation (see § 4.1.4). Gas analyzer

1Sensor is needed and commonly available in embedded applications. It is used in the control strategies.
2Sensor is NOT available in embedded application. It is NOT used in the control strategies.
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Figure F.1: Simpli�ed scheme of the engine in the considered experimental setup (not all devices
are represented). The mass air �ow (MAF) sensor at the engine intake, is used to estimate the gas
�ow rate in the exhaust line. Intake throttle (IT), exhaust gas recirculation (EGR) valve, and variable
geometry turbine (VGT) are the actuators used for air path control. In order to produce the control
HC �ow, late post-injection is used in the engine injection system. Alternatively, control HC �ow rate
can be supplied by a speci�c exhaust injection using the exhaust port injector (EPI). In both cases the
fuel is supplied by pumps (P).

is used to measure the DOC conversion ef�ciency and to build up a model for engine unburnt HC
(details are given in Appendix G.3).

On the considered experimental setup, generating an input signal (inlet temperature, gas �ow rate,
engine gas composition) independently from the others is not possible. This explains why they are
not isolated in the results presented in the thesis.



157

Figure F.2: Exhaust aftertreatment system of the considered experimental setup. Double borders refer
to commonly available sensors in embedded applications. Thermocouples are mainly used for model
�tting. Gas analyzer is used to measure the DOC conversion ef�ciency and to build up a model
for engine unburnt HC. It can be switched to the upstream or the downstream location. Gas speed
is computed from the engine intake mass air �ow sensor and the DOC inlet pressure sensor. DPF
differential pressure sensor is used to estimate particulate matter loading of the DPF.
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Appendix G

Controller environment: engine
calibration, actuators management &
DOC calibration details

G.1 Introduction

In order to start an active regeneration process, an obvious requirement is that the DOC is activated
(i.e. its temperature is above the light-off temperature of about 250� C). This is usually the case except
during cold-start phases.

At high-load operating points, the exhaust gas temperature may be suf�cient even to generate a
partial regeneration process (called passive regeneration).

In general, the normal engine operation does not provide good conditions for the active regenera-
tion process or for other aftertreatment operations requiring catalyst heating (e.g. LNT desulfations).
For example, performing an active regeneration when the exhaust gas temperature is low (even if
above the light-off temperature) would require a large control HC quantity to be injected in order to
reach the regeneration temperature and would cause many issues. Especially, when using exhaust
injection (EPI) as actuator, high exhaust HC quantity cause DOC ef�ciency drop. When using in-
cylinder late post-injection as actuator, exhaust HC quantity must be carefully looked at because it
severely increases oil dilution, which could be a cause of frequent servicing. Further, when the engine
switches from low to high load operating points, this induces higher DOC inlet temperature variations
and, thus, unnecessary disturbances.

In order to limit the HC �ow in the exhaust line, and gas temperature variations at the DOC
inlet, the engine is used in a sub-optimal mode (its power ef�ciency is decreased). At a constant
power output (speed and torque), exhaust gas temperature is increased when compared to the normal
operation mode.

This sub-optimal mode is called post-injection mode (PI mode), because a coupled post-injection
is used. In the normal injection mode (NI mode), the injection pattern is usually composed of a pilot
and a main injection. In PI mode, these injections are postponed in the engine cycle, and a third
injection is added (referred to as coupled post-injection (coupled PI)). This mode requires a speci�c
calibration, which, at least, doubles the engine calibration effort.

In this appendix, �rst, we stress the objectives for PI mode calibration. Then, a black-box model
for engine reductants emissions (variableFdis ) is proposed. Also, some details are given about the
conversion ef�ciency identi�cation procedure. Finally, actuation issues related to late post-injection
are addressed.

159
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G.2 Engine optimization objectives

The calibration is performed in PI mode to reach the following objectives:

1. maximizing engine exhaust temperature;

2. minimizing HC & CO emissions;

3. minimizing HC & CO variability in the engine map;

4. minimizing temperature variability in the engine map;

with the following hard constraints :

Tmin < T < T max

Typically, Tmin = 300� C andTmax = 480� C. Tmin value is chosen greater than the light-off tem-
perature, taking into account a margin in case of particularly large heat losses (due to cold ambient
temperature). Note that it is checked online that the exhaust gas temperature is higher than the light-
off temperature before starting the regeneration. TheTmax value is chosen signi�cantly lower than
PM oxidation temperature so that the active regeneration process does not start without control HC
injection. Maximizing engine exhaust temperature and minimizing HC emissions (objectives 1 and 2)
are opposite objectives, especially for the low-load, low-speed engine operating points. Minimizing
HC and temperature variability in the engine map (objective 3) aims at yielding smooth maps. It is not
an easy task because HC emissions are high at engine low-load, low-speed operating points and are
almost zero at points of higher load. In a similar manner, minimizing temperature variability in the
engine map (objective 4) is not easy to realize together with objective 3, because temperature is close
to Tmin at low-load, low-speed operating points and is rapidly increasing toTmax when load is in-
creasing with small HC variability. Solving this optimization problem is usually carried out manually
by engine engineering practitioners.

G.3 Disturbance reductants emissions (Fdis)

As explained in § G.1, in PI mode, a coupled post-injection is used. Calibration objectives for
this mode (see § G.2) are dif�cult and unavoidably lead to high HC emissions for low-load operating
points. Resulting disturbance reductants �ow rateFdis is signi�cant. It may result, in some cases, in
a reductants �ow rate causing a DOC temperature increase as high as 100� C. This quantity largely
varies largely with the engine operating point. Then, an evaluation of a “real” HC �ow rate at the cat-
alyst inlet is necessary. Unlike the inlet gas temperature and the gas �ow rate (disturbancesT in and
F ), HC �ow rate is not measured online. Its evaluation would probably require a minimal (online-
computable) model for engine emissions. Such a model is the subject of on-going research. To carry
out the experiments, a simple black-box model was used instead. This model requires the measure-
ment of the steady-state emissions, especially for the low-load operating points. These measures are
usually available from the engine calibration process and do not require any speci�c calibration. Dy-
namic responses are obtained by performing fast transients between operating points. Typically, a few
transients are performed between low-load points (where emissions are high) and higher load points
(where emissions are negligible).

Bene�ts of including a disturbance reductants �owFdis at the control inlet has been clearly made
visible when using the exhaust injection, which does not in�uence the in-cylinder oxidation process.
Obviously, using the late post-injection as actuator would ideally require �ner analyses of in�uence
of this additional injection. However, the same model was used.
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We sketch here the black-box model used in the controller. This brief presentation is for informa-
tion (and perspectives) only. A little time has been allowed for theory in this �eld, which is beyond
the scope of this thesis.

An example of HC emissions caused by a fast change of engine operating point, is reported
in Fig. G.1. It leads, in this case (decrease in engine load), to an important rise in HC emissions.
We propose to identify this response to the response of a �rst order model using two different time

Figure G.1: A simple identi�cation model is used to take into account unburnt HC emissions without
late-injection.

constants. The ratio of HC variation to static variation, at which the time constant is switched is also
identi�ed. It is called “cut factor”. In the model, two different modes are used: a “rise mode” and a
“fall mode”. The rise mode is used when the current emission value is below its static-mapped value
given by current engine operating point. For each mode, two different time constants are proposed.
These time constants are signi�cantly different. When a change of mode is detected, e.g. current
value increases and crosses the static-mapped value that decreases (according to the engine operating
point), a reference value is stored. This reference is used in each mode to select the right time constant,
according to the so-called cut factor. In summary, the model has 6 parameters: 2 time constants and
1 cut factor for each mode.

Note that many factors of in�uence may signi�cantly shift the steady-state map value. In partic-
ular, emissions are strongly correlated to the gas temperature. An interesting perspective would be to
infer the emissions from this measurement (and other variables).

G.4 Conversion ef�ciency identi�cation

As presented in Fig. G.2, the conversion ef�ciency mostly depends on the gas �ow rate (or gas
speed), the HC speciation (fuel type), and the injection method. Once a setup has been selected (i.e.
injection method (see § F) and fuel type), it is considered that the conversion ef�ciency depends only
on the gas �ow rate (or gas speed). Further details about this study can be found in Frobert, Creff,
Lepreux, Schmidt & Raux (2009).

The conversion ef�ciency is identi�ed to two af�ne decreasing functions, one for the low gas �ow
rate, and the other for the medium to high gas �ow rate. It is assumed thatlim

F ! 0
� (F ) = 1 . The

identi�cation model is written as

� (F ) =

(
1 � c1 F (v); 0 < F < F L

1 � c1 FL � c2 F; FL < F
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Figure G.2: DOC conversion ef�ciency� versus gas volumetric �ow rate depends. Conversion ef�-
ciency on the experimental setup. Experimental data.

where0 < c 1 < c 2 andFL are identi�ed values.
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G.5 Actuator management: common-rail late post-injection

An approach based on the torque analysis is presented here because it relates the problem directly
to the use of the system in real conditions. Obviously the system should be more instrumented (pres-
sure sensors, . . . ), and studied �rst on a dedicated testbench. This is a topic of on-going activities.

Description of phenomena

In this part, the common-rail late post-injection (late PI) is considered as actuator.
In the DOC control problem, the high-level control variable is HC control �ow rate, which is

provided by post-injection (PI). In fact, the low-level variable is the injector energizing time, i.e.
the time during which current acts to open the injector. Each injector is open at each engine cycle,
allowing HC to discharge from the injector pipe into the cylinder (discontinuous �ow). Additionally
to this energizing time, another degree of freedom is the phase of the injection, which is the time at
which the injection begins in the combustion cycle.

In order to precisely master the control variable (exhaust HC �ow rate), it is desired that this
control is not intrusive for engine and aftertreatment strategies. From the engine control system
viewpoint, a key requirement is that the output torque is not affected by the late-injection. From the
aftertreatment control system viewpoint, a key requirement is that the HC �ow reaching the DOC
inlet closely matches the desired control variable �ow rate (u).

To these ends, �rst, control HC are injected late in the engine combustion cycle (around -130� CA1).
At this time of the engine cycle, HC are not (not much) oxidized while being in the cylinders. It is
also commonly assumed that they produce no extra torque (this assumption will be veri�ed in the
following conclusions).

However, these requirements are dif�cult to satisfy. In fact, if no particular care is taken, it leads
to important dif�culties, which are described in the sequel.

First obvious observation, pictured in Fig. G.3, is that the phase of the late PI can strongly impact
on the engine output torque (linear transform of BMEP2). For these experiments, a constant energizing
time is used. However, the output torque is strongly affected by the phase of this injection. These
torque variations are caused by variations of injected masses by the other injections. It is clearly made
visible in Fig. G.3, that the �ow rate of total supplied fuel signi�cantly varies. Impact on the torque
is a fundamental issue to provide acceptable driving conditions.

Further, in some cases, this injection impacts the combustion process differently from one cylinder
to the other. Such an observation is pictured in Fig. G.4. It is shown in Fig. G.5 that the late PI can
even cause global instabilities in the engine output torque. This leads to unusual balancing of the
mechanical parts, and may reduce engine life expectancy.

These variations are also associated to signi�cant variations of the exhaust temperature, and ex-
haust emissions, which raises important issues for actuation of aftertreatment control systems.

Although impact on torque, temperature, and HC emissions are usually correlated (e.g. torque is
lower when HC is higher), it is possible to show that, even if the fuel supply is globally constant and
the torque is constant, phasing the late PI can strongly impact on the temperature control possibilities.
Two different late PI phases, for which the output torques are equal, are reported in Fig. G.6. As
evidenced by the �ow rate measurement, the HC �ow rate in the exhaust line is decreased, while the
exhaust temperature remains constant. Corresponding steady-state value of the DOC outlet tempera-
ture is decreased by about 50� C, which is beyond our temperature control objective. It stresses that
the importance of the problem of actuation when considering aftertreatment control systems.

1Crankshaft Angle degrees
2Break Mean Effective Pressure
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Figure G.3: BMEP (linear transform of torque), supplied fuel mass �ow rate, and DOC inlet and
outlet temperaturevs. the phase of the late post-injection(SOI LPI). All injections energizing times
(ETs), and in particular, the late post-injection ET stays constant during the experiment. The choice
of the phase of the late post-injection (PI) heavily impacts on injected fuel masses, and, in turn, on
torque, and onT in andTout . Reductants �ow rate (not plotted) varies also (it is related toTout � T in

variations). Experimental data.

Modeling and controlling the injection systems, i.e. transforming the low-level variable (energiz-
ing time) into the high level variable (injected mass), is a critical issue in engine management. In
particular, multi-pulse injection control has been the subject of numerous research works since the
introduction of this actuator. However, most of the literature on the subject focuses on pressure waves
oscillations inside the pipe connecting the rail to the injector (see e.g. Sciarretta & Corde (2007)).
Although common-rail pressure wave oscillation have been reported in the literature, it is generally
concluded that the impact of an injection on the consecutive injector is much smaller than the impact
of multiple pulses of a given injector; because the dwell time to consecutive injector is large (see e.g.
Bianchi et al. (2005)). Our experimental observations clearly evidence interactions between injectors.
When a late PI is used, it seems that pressure waves are weakly damped in the common-rail. Then,
they affects the pressure inside the next injector. In fact, the dwell time between the coupled PI and
the late PI is smaller than the dwell time between the late PI and the injection of the consecutive
injector.
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Figure G.4: The choice of the phase of late post-injection (SOI LPI) at constant energizing time (ET),
can have different in�uences on IMEP (related to BMEP) in each cylinder (down) compared to a
“normal” case (up). Experimental data.
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Figure G.5: The choice of the phase of late post-injection (SOI LPI) at constant energizing time, can
cause global instabilities. BMEP is the image of the torque. Experimental data.
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Figure G.6: The choice of the phase of the late post-injection (PI) impacts on the steady-state value
of Tout by 47� C. In this experiment, energizing time (low-level variable) is constant (not plotted).
The torque and the inlet temperatureT in roughly remain constant. However, the choice of the late PI
impacts on the total fuel �ow rate. Note that, on this experimental device, the mass �ow rate mea-
surements are unavailable during a period of time reported in the �gure. This technical detail is not a
big concern because one should focus on the steady-state values for this measurement. Experimental
data.
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Ideas for compensation

Different factors of in�uence (engine speed, rail pressure, injections (pilot, main, coupled PI,
dwell times, ETs)) have been studied to get further insights into the selection of late PI phases. One
�rst interesting observation is that the crank angle interval of the variations, such as pictured by
arrows in Fig. G.7, is independent of all other factors but the engine speed. Further, it is found

Figure G.7: BMEPvs. the phase of the late post-injection(SOI LPI). Late post-injection ET stays
constant. Experimental data.

linearly dependent on the engine speed (see Fig. G.8). The length of the time interval (in seconds)

Figure G.8: Period of oscillations observed in Fig. G.7 are linearly dependent on the engine speed.
Then, period of oscillations in time are constant, and it seems that they are independent of all param-
eters but the system (including pump) natural frequency. Experimental data.

is inversely proportional to engine speed and proportional to the period (in� CA). Then, the period
(in time units) of the oscillations is independent of all other factors. It only depends on the system
(including pumping device which is directly related to the engine speed) natural frequency.

In�uence of the other factors is not so straightforward. A simpli�ed approach for compensation
would require more insight into modeling. In particular, it is important to note that the late post-
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injection ET has an impact on the torque (see e.g. Fig. G.9). When late PI is active, it is desired

Figure G.9: Late post-injection energizing time (PI ET) impacts on the torque (and therefore BMEP).
In order to be able to use a continuous value of late PI ET to control the exhaust HC �ow, the late PI
phase must be carefully selected. Experimental data.

that the torque remains constant. This must be veri�ed, �rst, when the late PI is activated, and
further, in operation, late post-injection in�uence should be decoupled from the other injections so
that continuous late PI ET can be used. A simple way to meet this requirement, is to select the phase
of the late PI such that the torque is equal to the torque when no late PI is present (see again Fig. G.9).
At different ET values, the phase values can differ. Then, the phase of the late PI is implemented as a
function of the injection time is. Using this mapping, the torque roughly remains constant whatever
the ET value used by the controller.

Model-based modeling is a good candidate to reduce the calibration process.

G.6 Actuator management: exhaust injector

Exhaust injector is an optional device to replace late post-injection (late PI). It discharges HC
directly into the exhaust line (see Chapter F). Its use has an extra cost, but it limits the discussed oil
dilution problems. Also, it is easier to implement than late PI because it is totally independent of
the other injections. This is because a dedicated low-pressure pumping system supplies the exhaust
injector with fuel. However, a couple of speci�cities are worth mentioning:

� It is subject to pressure oscillations in the pumping system.

� DOC conversion ef�ciency can be reduced compared to PI HC's (see § G.4).

� It becomes clogged when not used.

The last two points are now brie�y commented. First, it is noted in § G.4 that the DOC conversion
ef�ciency is reduced when using EPI. To address this issue, an interesting option can be to use the
late PI only for large gas �ow rate values. Regarding the third point, a simple strategy consists of
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injecting a small quantity of fuel with the exhaust injector at regularly-spaced periods of time (e.g. a
pulse injection every few seconds).

It has been noticed that injected quantities largely vary depending on the separation between
two pulses (dwell time). In order to meet the request for continuous rate and reduce the calibration
process, the following procedure is used:

� Determine the minimum injection durationTi to get repeatable injection massm1. The goal
here is to maximize the DOC conversion ef�ciency.

� Determine pressure oscillations stabilization durationTw .

� Calculate the maximum obtainable �ow rate fromm1 andTw . If too low, determine a 2-pulse
injection pattern, and the corresponding injected massm2. All pulses have the minimal duration
Ti determined above. Choose the separation to get a repeatable massm2.

� If necessary, determine a 3-pulse injection pattern and the corresponding massm3 and so on.

Then the following algorithm is used. Integrate �ow rateu to get the mass to injectM . Inject the
massmi so thatmi < M < m i +1 by applying the corresponding injection pattern, and subtract the
injected massmi from the mass to injectM . Formally,M is given by

M =
Z t

0
u(� )d� �

Z t

0
mi (M (� ))d�

About involved delays This method involves a delay between the control signal and the actuation
(M can be seen as a buffer). This delay is not problematic. At high gas �ow rates, injected quantities
are high. Then, there is no risk of delay. At low gas �ow rates, injected quantities are small. So,
time between injection may be large. However, the DOC is a very low-pass system: the effects of
this discrete strategy are completely smoothed out, and lead to results that are equivalent to strategies
allowing continuous variations of the injection time, which requires heavier calibration effort.
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