K. Nielsch, F. Müller, A. P. Li, and U. Gösele, Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition, Advanced Materials, vol.12, issue.8, p.582, 2000.
DOI : 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz et al., Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template, Advanced Materials, vol.24, issue.7, p.917, 2007.
DOI : 10.1002/adma.200700153

X. H. Huang, G. H. Li, X. C. Dou, and L. Li, Magnetic properties of single crystalline Co nanowire arrays with different diameters and orientations, Journal of Applied Physics, vol.105, issue.8, p.84306, 2009.
DOI : 10.1063/1.3108529

J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae et al., Growth of Carbon Nanotubes on Anodic Aluminum Oxide Templates:?? Fabrication of a Tube-in-Tube and Linearly Joined Tube, Chemistry of Materials, vol.13, issue.7, p.2387, 2001.
DOI : 10.1021/cm0014076

H. Y. Jung, S. M. Jung, J. R. Kim, and J. S. Suh, Chemical sensors for sensing gas adsorbed on the inner surface of carbon nanotube channels, Applied Physics Letters, vol.90, issue.15, p.153114, 2007.
DOI : 10.1063/1.2722196

S. M. Eichfeld, T. , C. M. Eichfeld, A. Cranmer, S. E. Mohney et al., Resistivity measurements of intentionally and unintentionally template-grown doped silicon nanowire arrays, Nanotechnology, vol.18, issue.31, p.315201, 2007.
DOI : 10.1088/0957-4484/18/31/315201

G. Cheng and M. Moskovits, A Highly Regular Two-Dimensional Array of Au Quantum Dots Deposited in a Periodically Nanoporous GaAs Epitaxial Layer, Advanced Materials, vol.14, issue.21, p.1567, 2002.
DOI : 10.1002/1521-4095(20021104)14:21<1567::AID-ADMA1567>3.0.CO;2-K

J. P. O-'sullivan and G. C. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.317, issue.1531, p.511, 1970.
DOI : 10.1098/rspa.1970.0129

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, Hexagonal pore arrays with a 50???420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, vol.84, issue.11, p.6023, 1998.
DOI : 10.1063/1.368911

S. M. Moon, S. I. Pyun, and J. , The mechanism of stress generation during the growth of anodic oxide films on pure aluminium in acidic solutions, Electrochimica Acta, vol.43, issue.21-22, p.3117, 1998.
DOI : 10.1016/S0013-4686(97)10194-3

T. P. Hoar and N. F. Mott, A mechanism for the formation of porous anodic oxide films on aluminium, Journal of Physics and Chemistry of Solids, vol.9, issue.2, p.97, 1959.
DOI : 10.1016/0022-3697(59)90199-4

V. P. Parkhutik and V. I. Shershulsky, Theoretical modelling of porous oxide growth on aluminium, Journal of Physics D: Applied Physics, vol.25, issue.8, p.1258, 1992.
DOI : 10.1088/0022-3727/25/8/017

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Self-ordering Regimes of Porous Alumina:?? The 10 Porosity Rule, Nano Letters, vol.2, issue.7, p.677, 2002.
DOI : 10.1021/nl025537k

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, Controlling Factor of Self-Ordering of Anodic Porous Alumina, Journal of The Electrochemical Society, vol.151, issue.8, p.473, 2004.
DOI : 10.1149/1.1767838

M. A. Kashi and A. Ramazani, The effect of temperature and concentration on the self-organized pore formation in anodic alumina, Journal of Physics D: Applied Physics, vol.38, issue.14, p.2396, 2005.
DOI : 10.1088/0022-3727/38/14/015

I. Vrublevsky, V. Parkoun, J. Schreckenbach, and W. A. , Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique, Applied Surface Science, vol.252, issue.14, p.5100, 2006.
DOI : 10.1016/j.apsusc.2005.07.028

G. Meng, Y. J. Jung, A. Cao, R. Vajtai, and P. M. Ajayan, From The Cover: Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proceedings of the National Academy of Sciences, vol.102, issue.20, p.7074, 2005.
DOI : 10.1073/pnas.0502098102

W. Cheng, M. Steinhart, U. Gösele, and R. B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization, Journal of Materials Chemistry, vol.5, issue.33, p.3493, 2007.
DOI : 10.1039/b709618f

G. P. Sklar, K. Paramguru, M. Misra, and J. C. Lacombe, Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays, Nanotechnology, vol.16, issue.8, p.1265, 2005.
DOI : 10.1088/0957-4484/16/8/047

A. Saedi and M. Ghorbani, Electrodeposition of Ni???Fe???Co alloy nanowire in modified AAO template, Materials Chemistry and Physics, vol.91, issue.2-3, p.417, 2005.
DOI : 10.1016/j.matchemphys.2004.12.001

G. J. Strijkers, J. H. Dalderop, M. A. Broeksteeg, H. J. Swagten, and W. J. De-jonge, Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina, Journal of Applied Physics, vol.86, issue.9, p.5141, 1999.
DOI : 10.1063/1.371490

V. Caboni, Italian Patent 339232, 1937.

D. Almawlawi, N. Coombs, and M. J. Moscovits, Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, Journal of Applied Physics, vol.70, issue.8, p.4421, 1991.
DOI : 10.1063/1.349125

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay et al., Magnetic properties of Ni nanowires in self-assembled arrays, Physical Review B, vol.62, issue.18, p.12282, 2000.
DOI : 10.1103/PhysRevB.62.12282

N. J. Gerein and J. A. Haber, Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates, The Journal of Physical Chemistry B, vol.109, issue.37, p.17372, 2005.
DOI : 10.1021/jp051320d

K. Nielsch, F. Müller, A. Li, and U. Gösele, Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition, Advanced Materials, vol.12, issue.8, p.582
DOI : 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3

W. Cheng, M. Steinhart, U. Gösele, and R. B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization, Journal of Materials Chemistry, vol.5, issue.33, p.3493, 2007.
DOI : 10.1039/b709618f

Y. Guo, L. J. Wan, C. Zhu, and D. , Ordered Ni???Cu Nanowire Array with Enhanced Coercivity, Chemistry of Materials, vol.15, issue.3, p.664, 2003.
DOI : 10.1021/cm0208962

K. Kim, M. Kim, and S. M. Cho, Pulsed electrodeposition of palladium nanowire arrays using AAO template, Materials Chemistry and Physics, vol.96, issue.2-3, p.278, 2006.
DOI : 10.1016/j.matchemphys.2005.07.013

A. Saedi and M. Ghorbani, Electrodeposition of Ni???Fe???Co alloy nanowire in modified AAO template, Materials Chemistry and Physics, vol.91, issue.2-3, p.417, 2005.
DOI : 10.1016/j.matchemphys.2004.12.001

G. Sharma, M. V. Pishko, and C. A. Grimes, Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer, Journal of Materials Science, vol.146, issue.13, p.4738, 2007.
DOI : 10.1007/s10853-006-0769-1

J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic?, Physical Review Letters, vol.68, issue.5, p.631, 1992.
DOI : 10.1103/PhysRevLett.68.631

H. J. Jeong, L. Eude, M. Gowtham, B. Marquardt, S. H. Lim et al., ATOMIC HYDROGEN-DRIVEN SIZE CONTROL OF CATALYTIC NANOPARTICLES FOR SINGLE-WALLED CARBON NANOTUBE GROWTH, Nano, vol.03, issue.03, p.145, 2008.
DOI : 10.1142/S1793292008000939

URL : https://hal.archives-ouvertes.fr/hal-00795000

C. H. Olk and J. P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes, Journal of Materials Research, vol.123, issue.02, p.259, 1994.
DOI : 10.1557/JMR.1994.0259

L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Pure Carbon Nanoscale Devices: Nanotube Heterojunctions, Physical Review Letters, vol.76, issue.6, p.971, 1996.
DOI : 10.1103/PhysRevLett.76.971

X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Physical Review Letters, vol.72, issue.12, p.1878, 1994.
DOI : 10.1103/PhysRevLett.72.1878

Z. F. Ren, Z. P. Huang, J. W. Xu, and J. H. Wang, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, vol.282, issue.5391, p.1105, 1998.
DOI : 10.1126/science.282.5391.1105

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

Y. Saito, Nanoparticles and filled nanocapsules, Carbon, vol.33, issue.7, p.979, 1995.
DOI : 10.1016/0008-6223(95)00026-A

C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, Diameter-Controlled Synthesis of Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.10, p.2429, 2002.
DOI : 10.1021/jp0142278

Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang et al., Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes, The Journal of Physical Chemistry B, vol.105, issue.46, p.11424, 2001.
DOI : 10.1021/jp012085b

Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, vol.282, issue.5391, p.1105, 1998.
DOI : 10.1126/science.282.5391.1105

A. Bachtold, P. Hardley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science, vol.294, issue.5545, p.1317, 2001.
DOI : 10.1126/science.1065824

P. Avouris, Z. H. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, vol.4, issue.10, p.605, 2007.
DOI : 10.1038/nature06037

M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu et al., Lattice-Oriented Growth of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.104, issue.28, p.6505, 2000.
DOI : 10.1021/jp0012404

S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar et al., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nature Nanotechnology, vol.123, issue.4, p.230, 2007.
DOI : 10.1038/nnano.2007.77

M. R. Maschmann, A. D. Franklin, T. D. Sands, and T. S. Fisher, Optimization of carbon nanotube synthesis from porous anodic Al???Fe???Al templates, Carbon, vol.45, issue.11, p.2290, 2007.
DOI : 10.1016/j.carbon.2007.05.031

H. Y. Jung, S. M. Jung, G. H. Gu, and J. S. Suh, Anodic aluminum oxide membrane bonded on a silicon wafer for carbon nanotube field emitter arrays, Applied Physics Letters, vol.89, issue.1, p.13121, 2006.
DOI : 10.1063/1.2216357

K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura et al., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, vol.306, issue.5700, p.1362, 2004.
DOI : 10.1126/science.1104962

C. Spindt, I. Brodie, C. E. Holland, and P. R. Schwoebel, Vacuum Microelectronics, Ed. W. Zhu, 2001.

D. S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha et al., Carbon nanotube electron emitters with a gated structure using backside exposure processes, Applied Physics Letters, vol.80, issue.21, p.4045, 2002.
DOI : 10.1063/1.1480104

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers, Applied Physics Letters, vol.76, issue.24, p.3555, 2000.
DOI : 10.1063/1.126705

S. A. Knaack, J. Eddington, Q. Leonard, F. Cerrina, and M. Onellion, Dense arrays of nanopores as x-ray lithography masks, Applied Physics Letters, vol.84, issue.17, p.3388, 2004.
DOI : 10.1063/1.1705724

M. Nakao, S. Oku, T. Tamakura, K. Yasui, and H. Masuda, GaAs and InP Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered Alumina Membranes, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 2B, p.1052, 1999.
DOI : 10.1143/JJAP.38.1052

M. Jung, S. Lee, Y. M. Jhon, S. Mho, J. W. Cho et al., Nanohole Arrays with Sub-30 nm Diameter Formed on GaAs Using Nanoporous Alumina Mask, Japanese Journal of Applied Physics, vol.46, issue.7A, p.4410, 2007.
DOI : 10.1143/JJAP.46.4410

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Applied Physics Letters, vol.78, issue.2, p.142, 2001.
DOI : 10.1063/1.1339845

S. W. Shin, S. G. Lee, J. Lee, C. N. Whang, J. H. Lee et al., Ion-beam nano-patterning by using porous anodic alumina as a mask, Nanotechnology, vol.16, issue.8, p.1392, 2005.
DOI : 10.1088/0957-4484/16/8/069

D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, Self-ordered pore structure of anodized aluminum on silicon and pattern transfer, Applied Physics Letters, vol.76, issue.1, p.49, 2000.
DOI : 10.1063/1.125652

J. Zou, X. Qi, L. Tan, and B. J. Stadler, Large-scale ordering of porous Si using anodic aluminum oxide grown by directed self-assembly, Applied Physics Letters, vol.89, issue.9, p.93106, 2006.
DOI : 10.1063/1.2337560

L. Menon, K. Bhargava-ram, S. Patibandla, D. Aurongzeb, M. Holtz et al., Plasma Etching Transfer of a Nanoporous Pattern on a Generic Substrate, Journal of The Electrochemical Society, vol.151, issue.7, p.492, 2004.
DOI : 10.1149/1.1759973

B. Chapman, Glow Discharge Processes, 1980.

H. Kawata, M. Yasuda, and Y. Hirai, Sheath Voltage Estimation for Inductively Coupled Plasma Etcher by Impedance Analysis, Japanese Journal of Applied Physics, vol.47, issue.8, p.6914, 2008.
DOI : 10.1143/JJAP.47.6914

K. R. Williams, K. Gupta, and M. Wasilik, Etch rates for micromachining processing, Journal of Microelectromechanical Systems, vol.5, issue.4, p.256, 1993.
DOI : 10.1109/84.546406

K. R. Williams, K. Gupta, and M. Wasilik, Etch rates for micromachining processing-part II, Journal of Microelectromechanical Systems, vol.12, issue.6, p.761, 2003.
DOI : 10.1109/JMEMS.2003.820936

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. Macdonald, Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications, Journal of The Electrochemical Society, vol.152, issue.10, p.675, 2005.
DOI : 10.1149/1.2006647