L. and D. Forest, The Audion: A new receiver for wireless telegraphy, Proceedings of the American Institute of Electrical Engineers, vol.25, issue.10, pp.765-763, 2006.
DOI : 10.1109/PAIEE.1906.6741775

B. Levush, High-power Microwave/Milimeter-wave Tubes for Military Applications, IMS MTT Workshop, 2007.

M. Nagao, C. Yoshida, and . Yasumuro, Design and fabrication of an ultrahigh-luminance field-emission display, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.27, issue.2, pp.740-743, 2009.
DOI : 10.1116/1.3066759

D. R. Waley, 100 W Operation of a Cold Cathode TWT, IEEE Transactions on Electron Devices, vol.56, issue.5, 2009.
DOI : 10.1109/TED.2009.2015614

C. A. Spindt, Field-emitter arrays for vacuum microelectronics, IEEE Transactions on Electron Devices, vol.38, issue.10, p.2355, 1991.
DOI : 10.1109/16.88525

S. T. Purcell, Nanoprotrusion model for field emission from integrated microtips, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.5, p.1666, 1997.
DOI : 10.1116/1.589352

S. Lee, Characteristics of multiwalled carbon nanotube nanobridges fabricated by poly(methylmethacrylate) suspended dispersion, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.6, p.2773, 2002.
DOI : 10.1116/1.1520569

R. Saito, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, p.2204, 1992.
DOI : 10.1063/1.107080

J. Gavillet, Root-Growth Mechanism for Single-Wall Carbon Nanotubes, Physical Review Letters, vol.87, issue.27, p.275504, 2001.
DOI : 10.1103/PhysRevLett.87.275504

C. S. Cojocaru, Croissances de Nanotubes de Carbone à Basses Températures

E. Minoux, Étude et développement des cathodes à base de nanotubes de carbone', École Polytechnique, 2006.

H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi et al., Carbon nanotubes as electron source in an x-ray tube, Applied Physics Letters, vol.78, issue.17, 2001.
DOI : 10.1063/1.1367278

H. Y. Choia, J. U. Kima, and C. J. Leeb, Development of Carbon Nanotube Based Refection Type X-ray Source, Proceedings of the 2nd Euro-Asian Pulsed Power Conference, 2008.

D. S. Hsu and J. L. Shaw, 1 A/cm2 current density from microgated carbon nanotube field-emitter arrays grown by dc plasma chemical-vapor deposition, J. Vac. Sci. Technol. B, vol.24, 2006.

D. S. Hsu and J. L. Shaw, Open aperture microgated carbon nanotube FEAs', IVNC, 2007.
DOI : 10.1109/ivnc.2007.4480941

Z. Chen, Q. Zhang, P. Lan, B. Zhu, T. Yu et al., Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength, Nanotechnology, vol.18, issue.26, 2007.
DOI : 10.1088/0957-4484/18/26/265702

A. J. Lichtenberg, D. R. Whaley, R. Duggal, and C. M. Armstrong, Prebunched Beam Traveling-Wave Tube Studies', IRE Transactions on Electron DevicesTWT Operation with Low-Voltage Field Emitter Array Cathode, 1962.

K. B. Teo, Carbon Nanotubes as Cold Cathodes, Nature, vol.437, 2005.
DOI : 10.1038/437968a

J. Teo, W. I. Robertson, F. Milne, Y. André, D. Rozier et al., Carbon Nanotube Based Cathodes for Microwave Amplifiers, 2009.

C. A. Spindt, C. E. Holland, P. R. Schwoebel, and I. Brodie, Field emitter array development for microwave applications, J. Vac. Sci. Technol. B, vol.16, issue.2, 1998.

D. R. Whaley, TWT Operation With Low-Voltage Field Emitter Array Cathode, IEEE Trans. On Electron Devices, vol.30, issue.3, 2002.
DOI : 10.1109/ivelec.2007.4283378

C. Bower, A micromachined vacuum triode using a carbon nanotube cold cathode, IEEE Transactions on Electron Devices, vol.49, issue.8, 2002.
DOI : 10.1109/TED.2002.801247

S. Kanemaru, Control of emission characteristics of silicon field emitter arrays by an ion implantation technique, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.3, p.1885, 1996.
DOI : 10.1116/1.588572

J. L. Shaw, Scaling up Total Emission Current from Field Emitter Arrays', Workshop on Cathodes for Relativistic Electron Beams, 2001.

K. X. Liu and J. P. Heritage, Low leakage current optically gated silicon FEAs, J. Vac. Sci. Technol. B, vol.21, issue.1, 2003.

K. X. Liu, C. Chiang, and J. P. Heritage, Photoresponse of gated p-silicon field emitter array and correlation with theoretical models, Journal of Applied Physics, vol.99, issue.3, p.34502, 2006.
DOI : 10.1063/1.2168031

K. Goetz, D. Bimberg, H. Jurgensen, J. Selders, A. V. Solomonov et al., <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition, Journal of Applied Physics, vol.54, issue.8, pp.4543-4552, 1983.
DOI : 10.1063/1.332655

URL : https://hal.archives-ouvertes.fr/in2p3-00169529

S. Adachi, Physical Properties of III-Y Semiconductor compounds, 1992.

J. E. Bowers and C. A. Burrus, Ultrawide-band long-wavelength p-i-n photodetectors, Journal of Lightwave Technology, vol.5, issue.10, p.10, 1987.
DOI : 10.1109/JLT.1987.1075419

M. Dentan and B. De-cremoux, Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination, Journal of Lightwave Technology, vol.8, issue.8, p.8, 1990.
DOI : 10.1109/50.57833

F. G. Kellert, S. R. Sloan, M. J. Ludowise, and J. E. Turner, Zn-doping in OMVPE Grown lnP:Zn/lnGaAs/lnPp-i-n double heterojunctlons with lnGaAs:Zn contacting layers, Journal of Electronic Materials, vol.57, issue.10, pp.983-987, 1992.
DOI : 10.1007/BF02684207

M. S. Hybertsen, Band offset transitivity at the InGaAs/InAlAs/InP(001) heterointerfaces, Applied Physics Letters, vol.58, issue.16, pp.1759-1761, 1991.
DOI : 10.1063/1.105082

J. Carlin, Chemical Beam Epitaxiy of GaInAsP Quaternary Compounds for Optoelectronic Devices, Thèse N°1181, École Polytechnique Fédérales de Lausanne (EPFL), 1993.

T. P. Pearsall, G. Beuchet, J. P. Hirtz, N. Visentin, and M. Bonnet, Electron and Hole Mobilities in InGaAs, Proc. of the 8 th Int. Symp. GaAs and Rel. Comp.(IPCS N°56), pp.639-649, 1980.

T. H. Windhom, L. W. Cook, and G. E. Stillman, Temperature dependent electron velocity-field characteristics for In0.53Ga0.47AS at high electric fields, Journal of Electronic Materials, vol.17, issue.Supplement 16???1, pp.1065-1082, 1982.
DOI : 10.1007/BF02658917

P. Hill, J. Schlafer, W. Powasinik, M. Urban, E. Eichen et al., ???type InGaAs, Applied Physics Letters, vol.50, issue.18, pp.1260-1262, 1987.
DOI : 10.1063/1.97877

M. A. Haase, V. M. Robbins, N. Tabatabaie, and G. E. Stillman, As, Journal of Applied Physics, vol.57, issue.6, pp.2295-2298, 1985.
DOI : 10.1063/1.335464

URL : https://hal.archives-ouvertes.fr/hal-01504811

.. Fréquence-de-coupure-de-la-photocathode, 113 3.2.2.1 Calcul de la transconductance: gm, et perspectives, p.117

M. Takeda, Emission and focusing characteristics of volcano-structured double-gated field emitter arrays, J. Vac. Sci. Technol. B, vol.27, issue.2, pp.701-704, 2009.

A. F. Bernhardt, Arrays of field emission cathode structures with sub-300 nm gates, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, p.1212, 2002.
DOI : 10.1116/1.591363

N. , L. Sech, A. Guilley, and C. S. Cojocaru, Croissance PECVD de nanotubes de carbone à partir d'un plot catalytique réalisé par lithographie électronique, École Polytechnique LPICM -Thales Research & Technology, 2007.

G. Patriarche, F. Glas, M. Tchernycheva, C. Sartel, L. Largeau et al., Wurtzite to Zinc Blende Phase Transition in GaAs Nanowires Induced by Epitaxial Burying, Nano Letters, vol.8, issue.6, p.1638, 2008.
DOI : 10.1021/nl080319y

R. H. Fowler and L. W. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.119, issue.781, p.173, 1928.
DOI : 10.1098/rspa.1928.0091

O. Gröning, Field emission properties of carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.665, 2000.
DOI : 10.1116/1.591258

E. Minoux, Etude et Développement de Sources Electroniques à Emission de Champ à Base de Nanotubes de Carbone. Application aux Tubes Hyperfréquences, Thèse de l'Ecole Polyechnique, 2006.

H. Manohara, W. L. Dang, P. H. Siegel, M. Hoenk, A. Husain et al., Field emission testing of carbon nanotubes for THz frequency vacuum microtube sources, Reliability, Testing, and Characterization of MEMS/MOEMS III, p.227, 2004.
DOI : 10.1117/12.531403

D. Le-polissage, 129 4.1.3 Les barrières de diffusion, p.130

M. Bancs-de, Sous-ensemble grille-anode, ., p.173

A. Partir-d-'un-substrat-en-silicium-dopé and N. , ) et oxydé thermiquement, sur une épaisseur d'environ 1,5 µm (2), une étape de lithographie optique est réalisée De cette façon, nous reproduisons le motif de la grille dans la résine photosensible. Le motif de la grille est constitué d'ouvertures de 95 µm au pas de 100 µm (3) Une première étape de gravure par RIE (Reactive Ion Etching) grave la Silice en utilisant la résine comme masque. Le motif de la grille est ainsi transféré dans la Silice (4). Puis, une seconde étape de gravure (ICP) grave le Silicium, en utilisant la Silice comme masque

N. and L. Sech, Carbon Nanotubes based InP/InGaAs/InP Photodiodes as Microwave Electron Source', to be published NAchieving High-Current Carbon Nanotubes Photocathodes', to be published, Seuil de l'état Off Publications et conférences Publications

J. Teo, W. I. Robertson, M. Milne, D. Chatelet, P. Pribat et al., Carbon nanotube based photocathodes for high frequency amplifiers, Vacuum Electronics Conference IVEC '09Microwave amplifiers' in a book entitled 'Carbon nanotube and related field emitter : fundamentals and applications, 2009.

P. Legagneux, N. L. Sech, P. Guiset, L. Gangloff, C. Cojocaru et al., Carbon Nanotube Based Cathodes for Microwave Amplifiers', Vacuum Electronics Conference IVEC '09. IEEE International Conférences N. Le Sech et al., Keynote presentation, 'Carbon nanotube based cathodes for microwave amplifiers poster presentation, 'Carbon nanotube based photocathodes for high frequency amplifiers Oral presentation, 'Carbon nanotube based photocathodes', MRS Fall Oral presentation, 'Carbon nanotube based cathodes and photocathodes for electron tubes, 2008.