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Résumé

Contrôle Actif de Structures O�shores: Posi-
tionnement et Réduction des Vibrations Induites
par Vortex

L'exploration pétrolière en eaux profondes crée aujourd'hui de nouveaux dé-
�s technologiques. Plusieurs problèmes sont liés aux très longues structures
servant à relier la plate-forme à la tête de puits. L'augmentation de la pro-
fondeur implique des structures plus longues et, par conséquent, plus souples.
Deux problèmes liés à ce type de structure sont étudiés dans ce rapport : le
positionnement de la structure pour sa connexion à la tête de puits (opération
de ré-entrée), et les vibrations induites par vortex. La première partie de ce
rapport est consacrée au contrôle de l'opération de ré-entrée. Deux stratégies
di�érentes de plani�cation sont proposées. La première est basée sur un mod-
èle obtenu par une approche modale. La seconde approxime le comportement
de la structure par l'équation d'un câble de Bernoulli avec amortissement.
Les solutions approximées de cette EDP sont directement utilisées dans la
conception du contrôleur. Deux types de contrôle en boucle fermée sont pro-
posés : un système de suivi de trajectoire utilisant une fonction de Lyapunov,
et un autre qui utilise l'inverse du système. La deuxième partie de ce rap-
port est consacrée à l'étude des vibrations induites par vortex (VIV) et à leur
contrôle. Elle présente une première stratégie de contrôle a�n de réduire les
VIV. Cette stratégie est basée sur une analyse modale des équations du sys-
tème. La loi de commande génère un déplacement en opposition de phase
par rapport aux VIV, l'atténuation résultant d'un e�et d'antirésonance. Les
résultats de simulation sont con�rmés par des expériences réalisées sur une
maquette en modèle réduit.
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Abstract

The petroleum exploration in deep water induces many challenges. Several
problems are due to the extremely long structure that links the platform to
the wellhead (risers). The depth increase makes the structure more slender,
and consequently much more �exible. Its dynamical behavior can be described
by an in�nite dimensional system. Two associated problems are studied in
this report: the positioning of the bottom end of structure, to connect it to
the wellhead (reentry operation), and the vortex induced vibrations of these
slender structures. The �rst part of this thesis is dedicated to the control of
the reentry operation. Two di�erent strategies are proposed. The �rst one is
based on a �nite dimensional model obtained by a modal approach. The other
one considers that the behavior of the structure is close to the behavior of the
Bernoulli's historical cable equation, completed with a damping factor. The
proposed approximate solutions of this PDE are directly used in the control
design. Two di�erent closed loop controls are proposed: one using a Lya-
punov function, and another tracking system that uses the system inversion
to calculate the tracking feedback. The second part is dedicated to the study
of the structure's undergoing vortex induced vibrations (VIV) and to their
control. It presents a �rst control strategy to reduce the VIV. This control
strategy is based on a modal analysis of the system equations. The control
system generates a displacement in phase opposition to the VIV, attenuat-
ing the VIV because of an anti-resonance e�ect. The simulation results are
con�rmed by experiments done on a reduced scale setup.
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Introduction

This report presents the work made during the three years of a PhD program
between IFP and the École des Mines de Paris, with the support of the French
council of research (ANRT, French acronym), according to the program of
partnership between industries and academic institutions (CIFRE, French
acronym).

The research is dedicated to the control of long �exible structures used in
o�shore applications. The interest of studying o�shore structures is linked to
the discovery of large oil and gas reserves in deep water regions, and to the
technological challenges associated to the drilling and exploration in these
areas.

Two di�erent problems are studied: the reentry operation and the vortex
induced vibrations. The reentry operation consists in positioning the riser
bottom end above the wellhead in order to connect it to a petroleum well.
The objective of an active control is to minimize the time required for this
operation, and to extend the range of meteorological conditions within which
the connection is possible. To reach this goal, it is necessary to move the
riser bottom end to the wellhead as fast as possible, and to make it stop
accurately above the wellhead.

The vortex induced vibrations (VIV) are vibrations occurring for slender
structures submerged in a �ow, within a given range of Reynolds numbers.
Within this range, the periodic vortex shedding generates an oscillating lift
force. A lock-in phenomenon can appear and change the frequency of this
force into one or more low damped natural frequencies of the structure. In
these special cases the structure enters in resonance, generating vibrations
that can drastically reduce its service life.
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Unfortunately, o�shore structures as the mooring cables and risers are ex-
tremely slender and often have low damped modes in the same frequency
range than the periodic vortex shedding. That is the reason why the VIV
study is interesting from an economical point of view, and many research
groups dedicated to the subject around the world have been founded.

The studied subjects are presented in two di�erent parts, each one dedicated
to the modelling of the studied system and to the design of dedicated control
laws.

Reentry control

This part is dedicated to the control of the reentry operation. The equations
that de�ne the behavior of slender structures are presented in chapter 2:

• The structure internal forces are de�ned and some assumptions are
proposed to simplify the model, without any important loss of precision.

• The hydrodynamics forces, in this chapter, are de�ned by the linearized
Morison's equation.

• A brief description of the methods to spatially discretize the model
partial di�erential equation (PDE) is given.

In chapter 3, the reentry problem is analyzed and two di�erent control strate-
gies are proposed. The �rst one improves the control strategy developed by
Sabri [33]. It is based on a discrete model that is reduced through a modal
approach. Subsection 3.1.1 explains the method to rewrite a system into a
modal base, and the principle of the modal reduction of high order systems
(interests and drawbacks). The direct transfer generated by this reduction is
replaced by a delay that tends to improve the model accuracy. The feedback
control is obtained by model inversion.

The other control strategy considers that the behavior of several �exible
structures is close to the behavior of the Bernoulli's historical cable equation,
completed with a damping factor, that is associated to the hydrodynamic
force described by the linearized Morison's equation. Approximate solutions
are directly used in the control design, providing an extension to previous

18



works by Petit and Rouchon [35] on the control of heavy chains systems,
in the framework of �atness as proposed by Fliess et al [12]. Two di�erent
closed loop control laws are proposed in this case: a tracking system using a
Lyapunov function, following the idea of Thull et al [41], and another tracking
system that uses the system inversion to calculate the tracking feedback.

These control systems can achieve the reentry with high precision, even in
the presence of disturbances (sea current and marine waves).

VIV control

This part is dedicated to the study of structures undergoing vortex induced
vibrations (VIV) and to their control. The main characteristics of this phe-
nomenon and the current solutions are presented in chapter 5. The structure
forces are considered as similar to the forces presented in chapter 2. However
the hydrodynamic forces are represented with a more complex model pro-
posed by Facchinetti [10]. This model contains a linear term inspired by the
Morison's equation, plus a second term described by a non linear di�erential
equation. Chapter 6 presents this wake model and the study of the limit
cycle described by it.

Chapter 7 presents a �rst control strategy to reduce the vortex induced vi-
brations. This control strategy is based on the system equations and on a
modal analysis. This modal analysis shows that, for low damped resonant
frequencies, there is a phase shift of ±90◦ between a periodic external force
at the riser top end, and the generated vibration along the structure. This
phase shift is used in the design of the control law to reduce the VIV along the
structure. The control system generates a displacement in phase opposition
to the VIV, attenuating the VIV because of an anti-resonance e�ect.

Two di�erent control laws are proposed to produce this displacement in the
same frequency of the main vibration, but in phase opposition. The �rst
one uses a series association of a bandpass �lter with an adaptive gain and a
phase shifter. The second one uses a dedicated observer especially designed
to observe periodic disturbances and decompose it into sine and cosine, then
the control is computed considering the adaptive gain and the phase shift.

The advantages of these strategies are the small displacements required to

19



reduce VIV, and the fact that no structural change is required along the struc-
ture submerged part. However, a displacement sensor close to the structure
bottom is required.

For some operating conditions, simulations show a mechanical fatigue reduc-
tion of more than 70%. An interesting point of this technique is the small
top displacement amplitude required to reduce the vibration along the en-
tire riser. The current technique uses a top displacement of about 10% of
the maximum riser displacement, for a 35% reduction of the vibration along
the riser. These simulations results are con�rmed by experiments done on a
reduced scale system, presented in chapter 8.1.
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Part I

Reentry control
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Main Nomenclature

Capital letters.
A State matrix.
B Input matrix.
Bm Input matrix of modal base.
B′

m Reduced input matrix of modal base.
B′

m2 Delay system input matrix.
C Output matrix.
Cm Output matrix of modal base.
C ′

m Reduced output matrix of modal base.
D Direct transfer.
D2 Delay system direct transfer.
E Elastic modulus.
F Hydrodynamic force.
Fn Normal force.
Ft Tangential force.
H Lyapunov function.
I Identity matrix.
J Second moment of area.
K Sti�ness matrix.
L Region or subspace of a vector �eld.
N Number of discretisation points.
O Damping matrix.
P disturbance.
R Surface riser section.
S Shearing force.
T Tension.
U Flow speed.
V Eigenvector matrix.
Ṽ Modi�ed eigenvector matrix.
X Structure state vector.
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W Modal state vector.
W ′ Reduced modal state vector.
W ′

2 State vector of the system with delay.
Y Transverse riser displacement vector.
Ẏ Transverse riser speed vector.

Lowercase letters.
a Structure force over the �uid.
b Mode associated gain.
c1 Auxiliary constant 1.
c2 Auxiliary constant 2.
e Sine average amplitude.
f Cosine average amplitude.
g Apparent gravity.
h Fluid force constant.
i Imaginary unit.
k Feedback gain.
l Auxiliary variable.
m Riser and �uid linear mass.
mF Fluid added linear mass.
mI Inertia coe�cient.
mS Riser linear mass.
n Number of discretization points.
o Riser equilibrium position.
r Tangential riser displacement.
s Laplace variable.
t Time.
u Riser top external force.
û Riser top external force

Laplace transform.
w Apparent weight.
x Horizontal axis.
y System output.
ŷ Laplace transform of

the system output.
ŷP Laplace transform of

output part generated by P.
y2 Delay system output.
z Vertical axis.
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Greek letters.
Θ Bending.
Λ Modi�ed eigenvalue matrix.
Λ′ Reduced modi�ed eigenvalue matrix.
Υ Main riser displacement.
Υo Reference trajectory.
ΥR Relative displacement.
Ω Structure natural frequency.
α Damping constant.
γ Eigenvector real part.
ε Delay.
ε Van der Pol's equation parameter.
ζ Auxiliary variable.
θ Integration variable.
ϑ Convergence time.
ι Measure noise.
λ Eigenvalue.
ϕ Eigenvector imaginary part.
% Integration variable.
τ Drag constant.
φ Riser angle with the vertical.
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Chapter 1

Introduction and background

The reentry operation consists in positioning the riser bottom end above the
wellhead in order to connect it with the petroleum well. To reach this goal, it
is necessary to move the riser bottom end to the wellhead as fast as possible,
and to make it stop accurately above the wellhead. The main idea is to de�ne
a reference trajectory to move the riser bottom end from its initial position
to the wellhead. Because of disturbances, a closed loop control is designed
to make the structure bottom end track this trajectory.

Nowadays, reentry operations are made using a manual control. The inter-
ests of using an automatic control are to reduce the operation time and to
extend the range of meteorological conditions within which the connection is
possible. Nowadays, due to the severe weather conditions, a drilling ship or
a FPSO (�oating, production, storage and o�oading unit) can wait several
days until the manual reentry operation becomes possible. The �nal eco-
nomic bene�t of an active control is linked to the possible reduction of the
global time necessary to drill an o�shore well or to restart the production of
a production well.

The riser is a structure with a low damping. The propagation of a mechan-
ical wave from the top end to the bottom end induces large delays. These
characteristics make manual control di�cult, because a wrong control can
easily make the riser oscillate, and it is quite di�cult to manually reduce
vibrations on a system involving large delay.

The dynamic behavior of o�shore platforms has been largely studied. A
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Figure 1.1: Platform during the reentry operation

model is presented in chapter 2. Some active control systems have been de-
veloped with di�erent types of strategies. Two recent examples are a linear
quadratic regulator (LQR) proposed by Yamamoto et al [44] and a linear
parameter varying (LPV) proposed by Ioki et al [25]. However the preci-
sion of these methods and their ability to reduce the e�ect of the external
disturbances remain limited. Chapter 3 presents two control systems.

The main strategy chosen to solve this problem is to de�ne a reference tra-
jectory that links the riser bottom end initial position to the wellhead, and
then calculate the riser top end trajectory required to track this reference
trajectory.

Two di�erent approaches are proposed to calculate the top end trajectory in
order to move the riser bottom end. The �rst one is presented in section 3.1.
It is based on a reduced order model with a delay. This simple model comes
from a modal reduction, the introduction of the delay improving the repre-
sentation of the dynamic behavior of the structure.

The �rst step to obtain this reduced model is to spatially discretize the PDE
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that de�nes the system behavior. The second step is a traditional modal
reduction. The third and last step is the introduction of a delay that reduces
the direct transfer introduced by the modal reduction.

The control system is based on this reduced model with a delay. It is used in
the motion planning and in the tracking system. The stability of the closed
loop system is proved by application of the simpli�ed Nyquist criterion. The
main advantages of this control system are the satisfactory performances,
the robustness to external disturbances and the easy application for di�erent
kinds of �exible structures.

The second approach to design the open-loop control is presented in sec-
tion 3.2 and uses the analytical solution of a PDE, that in several cases
provides a good approximation of vertical structures dynamics. This motion
planning is described in section 3.2.1.

Two di�erent approaches are proposed for the closed loop. The �rst one is
presented in section 3.2.2 and is based on a Lyapunov design that considers
the mechanical energy of the system (dynamic and elastic). It gives good
results in the undisturbed case as well as in presence of sea current. However
it is ine�cient in the case of waves.

The second feedback strategy in the case of the analytical motion planning is
presented in section 3.2.3. It uses the analytical solution of the approximate
system in the feedback loop and provides satisfactory results, not only in
the cases where the Lyapunov control is e�cient, but also in presence of
waves. The stability of this control system is also proved with the use of the
simpli�ed Nyquist criterion.
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Chapter 2

Modelling

In the o�shore domain, riser is the usual term for any pipeline which links the
platform to the seabed. As suggested by its name, this kind of pipeline usu-
ally serves to produce hydrocarbons from the undersea petroleum reservoirs.
The most common form is a simple hollow cylinder.

In this chapter, we �rst present in section 2.1 a physical model of the riser,
with the forces in the structure and the associated assumptions. Then, in
section 2.2, we present a model for the hydrodynamic forces and the associ-
ated assumptions. The boundary conditions are presented in section 2.3. In
section 2.4, two di�erent methods are presented to discretize the complete
model. Finally, section 2.4.3 summarizes the assumptions and presents the
discrete model used along the sequence.

2.1 Structure forces

2.1.1 General case

The forces to be considered are depicted in �gure 2.1. The forces over each
point of the structure can be divided into internal and external forces. The
internal forces for a riser are linked to the traction T and to the shearing
force S, that are respectively locally parallel and locally perpendicular to the
principal axis of the structure. The most important external forces are the
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Figure 2.1: Forces schema

linear apparent weight w and the hydrodynamic forces, linked to the relative
displacements of the structure and the �uid. For a better understanding, the
riser dynamics and forces are described here in a curve coordinate system
o(z(ς), x(ς)), where z is the vertical axis and x the horizontal axis. It is a
parametric curve, function of ς, with the following characteristics: ∀ς, |−→∇o| =
1; o(z(ς), x(ς)) represents the riser equilibrium position in the (z, x) plan. The
tangential riser displacements are represented by Ξ(ς, t) and the transverse
displacements are de�ned by Υ(ς, t).

Using Newton's inertia principle, it is possible to de�ne the displacements in
the cartesian directions Ξ(ς, t) and Υ(ς, t) as functions of the forces repre-
sented in �gure 2.1. We respectively de�ne Ft and Fn as the tangential and
normal hydrodynamic forces. θ and φ are respectively the bending and the
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angle between the riser and the vertical axis z; ms is the riser linear mass.
We have:

ms
∂2Ξ

∂t2
=

T+ cos(θ)− T− cos(θ)

2
− S+ sin(θ) + S− sin(θ)

2−w cos(φ) + Ft(ς, t)

ms
∂2Υ

∂t2
=

T+ sin(θ) + T− sin(θ)

2
+

S+ cos(θ)− S− cos(θ)

2
+w sin(φ) + Fn(ς, t)

Considering T+ = T + ∂T/∂ς, T− = T − ∂T/∂ς,S+ = S + ∂S/∂ς and
S− = S − ∂S/∂ς we can rewrite the �rst two equations into the following
form:

ms
∂2Ξ

∂t2
= −S sin(θ) +

∂T

∂ς
cos(θ)− w cos(φ) + Ft(ς, t)

ms
∂2Υ

∂t2
= T sin(θ) +

∂S

∂ς
+ w sin(φ) + Fn(ς, t)

A third system equation comes from the Timoshenko beam equation. It
describes the punctual relationship between the shearing force and the struc-
ture bending. This equation uses the constants E, J and A, that respectively
denote the elastic modulus, the second moment of area and the surface riser
section:

∂θ

∂ς

(
EJ

(
1 +

T

EA

)−3
)

= −S

A fourth equation is based on the assumed linear elastic behavior of the
structure, linked to the Hook's law, that correctly represents the behavior of
ferrous materials in their elastic deformation domain:

∂

∂ς

(
∂Ξ

∂t

)
=

1

EA

∂T

∂t

Using the time derivative of the φ de�nition we get the �fth equation:

∂

∂ς

(
∂Υ

∂t

)
=

∂ sin φ

∂t

The last equation comes from the de�nition of θ:

∂φ

∂ς
= θ
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2.1.2 Small angle assumption

The risers can be considered as vertical structures (ς 7→ (0, z),
−→∇o = (0, 1)).

Υ and Ξ are the displacements, respectively in the x and z directions. The
o�shore structures present small angles and small transversal displacements
when compared to its length. This fact justi�es that E and J can be con-
sidered constant and the following approximations: θ → 0, sin(θ) → θ,
cos(θ) → 1, and w → ∂T/∂z. This induces further approximations: φ → 0,
sin(φ) → φ, and cos(φ) → 1. Finally, under these assumptions, it is possible
to rewrite the structure's equations as:





ms
∂2Ξ

∂t2
=

∂T

∂z
− θS − ∂T

∂z
+ Ft(z, t)

ms
∂2Υ

∂t2
=

∂S

∂z
+ θT +

∂T

∂z
φ + Fn(z, t)

EJ
∂θ

∂z

(
1 +

T

EA

)−3

= −S

∂

∂z

(
∂Ξ

∂t

)
=

1

EA

∂T

∂t

∂

∂z

(
∂Υ

∂t

)
=

∂φ

∂t

∂φ

∂z
= θ

(2.1)

The de�nition of vertical structures (ς 7→ (0, z)) gives φ = 0 for Υ = 0. So
neither Υ nor φ have a constant term, and the EDP represented in the �fth
equation of system 2.1 can be integrated in time to give

φ =
∂Υ

∂z
(2.2)

According to the approximations, vertical and lateral displacements are inde-
pendent; T does not depend on time t and is signi�catively smaller than EA.
The third equation of system 2.1 can be rewritten without loss of accuracy
as

S = −EJ
∂θ

∂z
(2.3)
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This results assumes that the modi�ed length of the riser, due to its apparent
weight, is constant. In other words, the relative vertical displacements of
the riser bottom end, in relation to the riser top end displacements, are
considered as negligible. Applying equations 2.2 and 2.3 in the third equation
of system 2.1, the equation of the transverse displacement becomes

ms
∂2Υ

∂t2
= −EJ

∂4Υ

∂z4
+

∂

∂z

(
T (z)

∂Υ

∂z

)
+ Fn(z, t) (2.4)

Equation 2.4 shows that a vertical slender structure with small transverse
displacements can be analyzed (see [11, 31]) as a linearized Euler-Bernoulli
beam with a constant section, under an axial traction plus external forces
from the �uid. In this case, the transversal force associated to the beam
model is represented by −EJ(∂4Υ)/(∂z4). The transversal force associated
to the traction is similar to the internal transversal force in a cable, and
is represented by ∂(T (z)(∂Υ/∂z))/∂z. In some special cases, the di�erence
between these two terms is so large that the structure behavior can be rep-
resented by only one of them. This is often the case for �exible risers, that
are usually slender with small second moment of area J when compared to
the riser length (J = πr4/4 for a circular section of radius r).

2.2 Hydrodynamic forces

The hydrodynamic forces are de�ned in a general way by the Navier-Stokes
equations, they are the unique external forces, except for the riser structure
ends where external forces are present due to the boundary condition. In
the case of reentry operation, the main hydrodynamic forces are in the plane
including the riser bottom end and the wellhead. This force denoted Fn(z, t)
can be de�ned by the Morison's equation (valid for the actual Reynolds
number of the �ow around the structure):

Fn(z, t) = −mF
∂2Υ

∂t2
− µ

∂Υ

∂t

∣∣∣∣
∂Υ

∂t

∣∣∣∣ (2.5)

In this equation, µ is the drag constant and mF is the �uid added mass.
Denoting m = mS + mF , and considering the hydrodynamic force 2.5, equa-
tion 2.4 becomes

m
∂2Υ

∂t2
= −EJ

∂4Υ

∂z4
+

∂

∂z

(
T (z)

∂Υ

∂z

)
− µ

∂Υ

∂t

∣∣∣∣
∂Υ

∂t

∣∣∣∣ (2.6)
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The drag term is linearized: µ
m
|∂Υ

∂t
| is substituted by the constant τ , that

is calculated as a function of µ/m and of the mean value of ∂Υ
∂t

along the
structure. With this approximation the system becomes:

∂2Υ

∂t2
= −EJ

m

∂4Υ

∂z4
+

∂

∂z

(
T (z)

m

∂Υ

∂z

)
− τ

∂Υ

∂t
(2.7)

2.3 Boundary conditions

The boundary conditions are de�ned by considering the physical �xation of
the two extremities of the structure. The two kinds of �xation used in engi-
neering are the �xed support and the rotary joint, as depicted in �gure 2.2.
The �xed support is used as default along this report. In this case, the

Figure 2.2: a) Fixed support b) Rotary joint

boundary conditions are Υ(L, t) = u(t), Υ(0, t) = 0 (riser bottom end �xed),
and (∂Υ/∂z)(L, t) = (∂Υ/∂z)(0, t) = 0 (rigidity condition at the �xation
point). This boundary condition represents the external forces and moments
applied by the supports to avoid the local displacement and rotation of the
structure (for further information see [30]).

For a connected riser with rotary joints instead of �xed supports, the bound-
ary conditions become: Υ(L, t) = u(t), Υ(0, t) = 0, (∂2Υ/∂z2)(L, t) = 0 and
(∂2Υ/∂z2)(0, t) = 0. This physically means that the rotary joint applies an
external force over the structure to avoid its local displacement, however this
kind of joint lets the structure free to turn around the �xation point.

The case of a riser with a disconnected bottom end with a punctual mass
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ma has the following boundaries conditions: T0 = mag, (∂2Υ/∂z2)(0, t) = 0,
and at z = 0 the cable term ∂(mgz∂Y/∂z)/∂z is replaced by mg∂Y/∂z.

2.4 Discretization of the physical model

The PDE presented in equation 2.7 does not have an analytical solution, so
we propose two numerical methods, that can give an approximation of this
solution. These methods discretize the transverse displacement function Υ
and de�ne Y as a vector of the structure displacement for N equidistant
points along the structure.

2.4.1 Finite di�erence method

2.4.1.1 Numerical scheme

For the �nite di�erence method, we denote L the structure length. The dis-
tance between two points, or between one riser extremity and its closest point,
is de�ned by l = L/(N + 1). The tension T is represented by T = T0 + mgz,
where T0 is the tension on the riser bottom end and g the apparent grav-
ity. The discrete derivatives of Y are calculated with the following recursive
formula:

∂jYn

∂zj
=

1

l

(
∂j−1Yn+0.5

∂zj−1
− ∂j−1Yn−0.5

∂zj−1

)
(2.8)

The values of Y are only available for n ∈ IN , so in the special case of the
�rst derivative at n ∈ IN it is not possible to use the values Yn+0.5 and Yn−0.5.
Then the formula used is

∂Yn

∂z
=

Yn+1 − Yn−1

2l
(2.9)

Considering equation 2.7, the partial derivatives with respect to z at a point
n (not an extremity) can be represented by

∂4Yn

∂z4
=

Yn−2 − 4Yn−1 + 6Yn − 4Yn+1 + Yn+2

l4

∂

∂z

(
T (z)

∂Yn

∂z

)
= (T0 + mgz)

Yn−1 − 2Yn + Yn+1

l2
+ mg

−Yn−1 + Yn+1

2l
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Observing that z = nl at Yn, equation 2.7 can be rewritten in a general way,
for all the points not a�ected by the boundary conditions, as

d2Yn

dt2
= EJ

−Yn−2 + 4Yn−1 − 6Yn + 4Yn+1 − Yn+2

ml4

+(T0 + mgnl)
Yn−1 − 2Yn + Yn+1

ml2

+g
−Yn−1 + Yn+1

2l
− τ

dYn

dt

(2.10)

2.4.1.2 Boundary conditions

Considering u(t) as the platform position, for a riser with both extremities
connected to �xed supports (support used as default along this report), the
boundary conditions are Υ(L, t) = u(t), Υ(0, t) = 0 (riser bottom end �xed),
and (∂Υ/∂z)(L, t) = (∂Υ/∂z)(0, t) = 0 (rigidity condition at the �xation
point). Equation 2.7 can be rede�ned with these boundary conditions for
the points n = 1 and n = N as follows:

d2Y1

dt2
= EJ

−6Y1 + 4Y2 − Y3

ml4
+ (T0 + mgl)

−2Y1 + Y2

ml2

+g
Y2

2l
− τ

dY1

dt

d2YN

dt2
= EJ

−YN−2 + 4YN−1 − 6YN + 3u(t)

ml4

+(T0 + mglN)
YN−1 − 2YN + u

ml2

+g
−YN−1 + u

2l
− τ

dYN

dt

For a connected riser with rotary joints instead of �xed supports, the bound-
ary conditions become Υ(L, t) = u(t), Υ(0, t) = 0, (∂2Υ/∂z2)(L, t) = 0 and
(∂2Υ/∂z2)(0, t) = 0. Equation 2.7 can be rede�ned for the points n = 1 and
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n = N , now considering the rotary joints:

d2Y1

dt2
= EJ

−5Y1 + 4Y2 − Y3

ml4
+

(
T0 +

mgl

2

) −2Y1 + Y2

ml2

+g
Y2

2l
− τ

dY1

dt

d2YN

dt2
= EJ

−YN−2 + 4YN−1 − 5YN + 2u

ml4

(T0 + mglN)
+YN−1 − 2YN + u

ml2

+g
−YN−1 + u

2l
− τ

dYN

dt

The case of a riser with a disconnected bottom end and a punctual mass
ma should be analyzed considering N + 1 displacement points (Y0 repre-
sents the riser bottom end displacement). In this case, the boundaries con-
ditions are T0 = mag, (∂2Υ/∂z2)(0, t) = 0, and at z = 0 the cable term
∂(mgz∂Y/∂z)/∂z is replaced by mg∂Y/∂z. The equation for Y0 displace-
ments is

d2Y0

dt2
= EJ

−Y0 + 2Y1 − Y2

mal4
+ g

−Y0 + Y1

l
(2.11)

2.4.2 Finite element method

2.4.2.1 Numerical scheme

Discretization results similar to those of subsection 2.4.1 can be obtained
using the �nite element method (the fact that both approaches yield the same
equations in this case is well known). This method divides the structure into
N parts, and concentrates all the masses and forces of these parts on their
gravity centers. The system becomes discrete in z, so the derivatives with
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Figure 2.3: Discretization schema

respect to z can be calculated the same way than for equations 2.8 and 2.9.

∂2Y

∂t2

∫ nl+l/2

nl−l/2

mdz =

∫ nl+l/2

nl−l/2

(
−EJ

∂4Y

∂z4
+

∂

∂z

(
T (z)

∂Y

∂z

)
−mτ

∂Y

∂t

)
dz

∂2Y

∂t2
ml =

[
−EJ

∂3Y

∂z3
+ T (z)

∂Y

∂z

]nl+l/2

nl−l/2

+

∫ nl+l/2

nl−l/2

−mτ
∂Y

∂t
dz
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Considering the beam term given by−EJ ∂4Y /∂z4, and the cable term given
by ∂(mgz ∂Y/∂z)/∂z, both discretization schemes give equivalent results.

[
−EJ

∂3Y

∂z3

]nl+l/2

nl−l/2

= −EJ
+Yn−2 − 4Yn−1 + 6Yn − 4Yn+1 + Yn+2

l3

[
T (z)

∂Y

∂z

]nl+l/2

nl−l/2

=

(
T0 + mg

(
np +

l

2

))
Yn+1 − Yn

l

−
(

T0 + mg

(
np− l

2

))
Yn − Yn−1

l

= (T0 + mgnl)
+Yn−1 − 2Yn + Yn+1

l

+mg
−Yn−1 + Yn+1

2

The �nite element of �rst order approximates the transverse position of any
element point by the position of center of mass of the element. So the hy-
drodynamic force can be de�ned as

∫ nl+l/2

nl−l/2

−τ
∂Y

∂t
dz = −mlτ

∂Y

∂t

In the case of the structures under study, the �nal model obtained by the
�nite element method of �rst order is exactly the same as the model obtained
by the method of �nite di�erence represented in equation 2.10.

ml
d2Yn

dt2
= EJ

−Yn−2 + 4Yn−1 − 6Yn + 4Yn+1 − Yn+2

l3

+(T0 + mgnl)
Yn−1 − 2Yn + Yn+1

l

+mg
−Yn−1 + Yn+1

2
−mlτ

dYn

dt

(2.12)

2.4.2.2 Boundary conditions

Considering u(t) as the platform position, for a riser with both extremities
connected to �xed supports (support used as default along this report), the

41



boundary conditions are Υ(L, t) = u(t), Υ(0, t) = 0 (riser bottom end �xed),
and (∂Υ/∂z)(L, t) = (∂Υ/∂z)(0, t) = 0 (rigidity condition at the �xation
point). Equation 2.7 can be rede�ned with these boundary conditions for
the points n = 1 and n = N as follows:

ml
d2Y1

dt2
= EJ

−6Y1 + 4Y2 − Y3

l3
+ (T0 + mgl)

−2Y1 + Y2

l

+mg
Y2

2
−mlτ

dY1

dt

ml
d2YN

dt2
= EJ

−YN−2 + 4YN−1 − 6YN + 3u(t)

l4

+(T0 + mglN)
YN−1 − 2YN + u

l2

+mg
−YN−1 + u

2
−mlτ

dYN

dt

For a connected riser with rotary joints instead of �xed supports, the bound-
ary conditions become Υ(L, t) = u(t), Υ(0, t) = 0, (∂2Υ/∂z2)(L, t) = 0 and
(∂2Υ/∂z2)(0, t) = 0. Equation 2.7 can be rede�ned for the points n = 1 and
n = N , now considering the rotary joints:

ml
d2Y1

dt2
= EJ

−5Y1 + 4Y2 − Y3

l3
+

(
T0 +

mgl

2

) −2Y1 + Y2

l

+mg
Y2

2
−mlτ

dY1

dt
U(l)

ml
d2YN

dt2
= EJ

−YN−2 + 4YN−1 − 5YN + 2u

l3

(T0 + mglN)
+YN−1 − 2YN + u

l

+mg
−YN−1 + u

2
−mlτ

dYN

dt
U(Nl)

The case of a riser with a disconnected bottom end and a punctual mass
ma should be analyzed considering N + 1 displacement points (Y0 repre-
sents the riser bottom end displacement). In this case, the boundaries con-
ditions are T0 = mag, (∂2Υ/∂z2)(0, t) = 0, and at z = 0 the cable term
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∂(mgz∂Y/∂z)/∂z is replaced by mg∂Y/∂z. The equation for Y0 displace-
ments is

mal
d2Y0

dt2
= EJ

−Y0 + 2Y1 − Y2

l3
+ mag(−Y0 + Y1) (2.13)

2.4.3 Discrete model

The used continuous model is de�ned by equation 2.7. It is obtained with
the assumptions of vertical structure, small angles displacements and linear
drag.

∂2Υ

∂t2
= −EJ

m

∂4Υ

∂z4
+

∂

∂z

(
T (z)

m

∂Υ

∂z

)
− τ

∂Υ

∂t

Υ(L, t) = u(t) and ∂Υ

∂z
(L, t) = 0

∂2Υ

∂z2
(0, t) = 0 and ∂3Υ

∂z3
(0, t) = 0

The system obtained by one of the two methods of space discretization, for
a structure with a top �xed support and a free bottom end, has a state X
given by X = (Y1, . . . , YN , Ẏ1, . . . , ẎN)T . N is the number of discretization
points used to discretize the system (normally about one hundred or more in
the studied cases). The control u is de�ned as the riser top end displacement
(u = Υ(L, t)). This displacement is proportional to a force at the riser top
end, giving:





Ẋ = AX + Bu, withA =

(
0 I

−K −O

)

y = CX
(2.14)

O is a diagonal matrix which form is O = τI, where I is an identity matrix. O
contains the accelerations associated to the hydrodynamic damping. Vector
B is the acceleration of the structure associated to the riser top end dis-
placement, B = (0..,−EJ/(l4m), 3EJ/(l4m)+ (T0 +mgl(N +0.5))/(l2m))T .
The system output y is the displacement of the closest point to the riser
bottom end Υ(0, t). The output equation can be expressed as Υ(0, t) = CX
for a given row-matrix C with only one non-zero entry C = (1, 0.., 0). The
sti�ness matrix K is a symmetric matrix containing the structure internal ac-
celerations according to the discretization scheme presented in sections 2.4.1
and 2.4.2. For instance, a restricted part of K writes
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K(N−3...N,N−3...N) =
(

6EJ/(l4m) + 2(T0 + mgl(N − 2))/(l2m)

−4EJ/(l4m)− (T0 + mgl(N − 1.5))/(l2m)

EJ/(l4m)

−4EJ/(l4m)− (T0 + mgl(N − 1.5))/(l2m) EJ/(l4m)

6EJ/(l4m) + 2(T0 + mgl(N − 1))/(l2m) −4EJ/(l4m)− (T0 + mgl(N − 0.5))/(l2m)

−4EJ/(l4m)− (T0 + mgl(N − 0.5))/(l2m) 6EJ/(l4m) + 2(T0 + mglN)/(l2m)

)
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Chapter 3

Control designs

In this chapter, we use the structure model, and its discretized form, both
presented in section 2.4.3. The main strategy adopted in this chapter to
design the control system can be divided into two main points:

• De�ne a convenient control model, that links the riser top end position
u = Υ(L, t) to the position of the riser bottom end y = Υ(0, t).

• Use this control model to de�ne reference trajectories for the system
input and output, and to design closed loops to track the output refer-
ence.

The analytical solution of the continuous model is unknown and the inversion
of the high order discrete model can not be robust, in particular because of
numerical errors. In sections 3.1 and 3.2, two di�erent solutions are proposed
to de�ne control models and associated control laws.

The �rst one is presented in 3.1. It is based on a reduced order model with a
delay. This simple model comes from a modal reduction and correctly repre-
sents the dynamic behavior of the structure. The second approach to design
the open-loop control is presented in 3.2 and uses the analytical solution of
a PDE, that in several cases provides a good approximation of the system
dynamics.
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3.1 Control using the modal reduction

In this section, the high order discretized system of equations is approximated
by a convenient control model, obtained by modal reduction, described in
section 3.1.1, and by the introduction of a delay. In section 3.1.2, the inverted
reduced model is used to directly calculate the input reference trajectory, and
associated to a �lter in the design of the feedback loop.

3.1.1 Modal reduction of the discrete model

3.1.1.1 Modal base

In�nite order physical models represented by PDEs are approximated by
high order systems of Ordinary Di�erential Equations (ODE), as presented
in sections 2.4.1 and 2.4.2. For these discretized models, it is very di�cult
to identify the in�uence of each state on the system output y, in response
to variations of the input u. Changes of coordinates can be searched for,
in order to clarify the picture. Such a change of coordinates is proposed
by the modal base, that uses the system eigenvalues. For the transformed
dynamics, it is possible to analyze the system output variations as a sum of
in�uences due to distinct sets containing only one or two states (see [40, 20]
for further information). However, using the eigenvalues matrix as the new
state matrix implies the introduction of complex numbers. To avoid this, it
is possible to use a block-diagonal matrix, for which each pair of complex
conjugate eigenvalues is represented by a 2× 2 sub-matrix. This coordinate
change is usually called modal decomposition and is described in this section.
We write the discrete model of the structure:





Ẋ = AX + Bu, withA =

(
0 I

−K −O

)

y = CX
(3.1)

The state vector X represents the positions and speeds of all the discretisation
points, u = Υ(L, t) is the riser top end position and y = Υ(0, t) is the position
of the riser bottom end. The �rst step for the modal decomposition of the
state matrix A is to calculate the eigenvector matrix V , that is also a square
2N -dimensional matrix. It contains two kinds of columns (eigenvectors): one
corresponding to negative real eigenvalues, with real entries, and the other,
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pairwise, corresponding to complex conjugate eigenvalues λj and λ̄j, and
containing complex conjugates values. The latter pairs of columns can be
replaced by two columns, the �rst with the real part γ, and the other with
the imaginary part ϕ. This leads to a new change of coordinates matrix Ṽ .
In these coordinates, the dynamics of equation (3.1) with AM = Ṽ −1AṼ ,
W = Ṽ −1X, BM = Ṽ −1B and CM = CṼ , writes

{
Ẇ = AMW + BMu
y = CMW

(3.2)

where AM has the same dimension of A, only real entries and the following
form:

AM =




λ1

. . . 0
Re(λj) Im(λj)
−Im(λj) Re(λj)

0
. . .

λ2N




(3.3)

In this base, an under-damped mode of the structure is associated to a pair of
complex conjugate eigenvalues (λj,λ̄j) with negative real parts. Its dynamic
behavior is given by

(
Ẇj

Ẇj+1

)
=

(
Re(λj) Im(λj)

−Im(λj) Re(λj)

)(
Wj

Wj+1

)
+

(
BMj

BMj+1

)
u (3.4)

The dynamic behavior of an over-damped mode of the structure is associated
to two real eigenvalues. It is represented in the following form:

(
Ẇj

Ẇj+1

)
=

(
λj 0
0 λj+1

)(
Wj

Wj+1

)
+

(
BMj

BMj+1

)
u

Rewriting the dynamical system into this coordinate system makes the sub-
systems independent between them. So, it is possible to analyze the dynamic
response of each sub-system separately. In the case of o�shore structures, a
speci�c excitation produces a system response largely dominated by a group
of sub-matrices. A possible reduced order model is made of this group of
sub-matrices as state matrix. The choice of this group and the replacement
of the other part of the state matrix is di�erent for each kind of system. Two
di�erent cases are detailed in sections 3.1.1.3 and 7.1.
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3.1.1.2 Modal base: numerical example

Consider the equation 7.1 in the case of an adimensional model of a ver-
tical soft cable (strong in�uence of the hydrodynamic drag). The input is
considered as the cable top end and the free structure bottom end is the
output:

Ẋ =




0 0 1 0
0 0 0 1
−1 1 −2 0
1 −3 0 −2


 +




0
0
0
2


 Υ(L, t) (3.5)

For sake of simplicity, only two discrete points are considered. The eigen-
values of the state matrix are −1± 1.55i,−0.36 and −1.64. The eigenvector
matrix is

V =




−0.0986− 0.1532i −0.0986 + 0.1532i −0.8703 −0.4802
0.2380 + 0.3698i 0.2380− 0.3698i −0.3605 −0.1989

0.3366 0.3366 0.3102 0.7893
−0.8125 −0.8125 0.1285 0.3269




and the matrix Ṽ and AM have the following form:

Ṽ =




−0.0986 0.1532 −0.8703 −0.4802
0.2380 −0.3698 −0.3605 −0.1989
0.3366 0 0.3102 0.7893
−0.8125 0 0.1285 0.3269




AM =




−1 −1.5538 0 0
1.5538 −1 0 0

0 0 −0.3564 0
0 0 0 −1.6436




Equation 3.6 writes in this case

Ẇ =




−1 −1.55 0 0
1.55 −1 0 0
0 0 −0.37 0
0 0 0 −1.64


W +




−2.10
−1.35
−0.63
1.14


 Υ(L, t)

Υ(0, t) =
( −0.098 0.153 −0.870 −0.480

)
W

(3.6)

In this example, three groups of independent equations can be isolated.
The �rst is associated to the complex conjugate eigenvalues and the 2 × 2
sub-matrix. The two others groups are associated to real eigenvalues.
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3.1.1.3 Modal reduction

The main objective of the reentry operation is to move the riser to a speci�c
horizontal position and to stop it at this position. Consider the system
represented in its modal base by

{
Ẇ = AMW + BMu
y = CMW

(3.7)

The suggested modal reduction consists in only keeping the modes associated
to the largest static gains between the input u = Υ(L, t) and the output
y = Υ(0, t), to represent the major part of the slow-frequencies behavior of
system 3.1. These modes are captured in a low order system as in Sabri's
work [33]. The matrix A′

M and the vectors B′
M , C ′

M and W ′ are the small
part of the original system that approximates the dynamic behavior of the
structure associated to the chosen eigenvalues

{
Ẇ ′ = A′

MW ′ + B′
Mu

y = C ′
MW ′ + D′

Mu
(3.8)

The classical modal reduction represented in equation 3.8 (see Benner [4] for
further information) replaces all the others modes by a direct transfer D′

M .
Equation 3.9 represents this direct transfer. Its value is the static gain of the
removed part of the system, so that the reduction conserves the static gain:

D′
M = C ′

MA′−1
M B′

M − CMA−1
M BM (3.9)

Identi�ed model In the case of the reentry operation, the conventional
modal reduction represented in equation 3.8 is not adapted, because of the
direct transfer D′

M : this direct transfer gives to the model a high frequency
behavior, which is not at all in accordance with the structure behavior as,
normally, the structure does not present such a large direct transfer.

The solution proposed by Sabri in [33] is to keep the matrix A′
M and to use an

identi�cation procedure, from sinusoidal input excitation on the real system.
This identi�cation considers D = 0, and de�nes the values for BI and CI to
best �t the real structure response by the following reduced model

{
ẆI = A′

MWI + BIu
y = CIWI

(3.10)

49



The main limitations of this strategy are the cost of on �eld identi�cation,
the problems of accuracy associated to the measurement, and the fact that
slender vertical structures behavior is better represented when a pure delay
is used in the reduced order model.

Reduced model with a delay As discussed in the previous section, the
conventional modal reduction is not adapted to describe the structure behav-
ior. In order to improve accuracy of the reduced model, the proposed solution
is to determine the equivalent model with a delay ε that best represents the
dynamic behavior of the high order model 3.7

{
ẆD = A′

MWD + BDu(t− ε)
y = C ′

MWD + DDu(t− ε)
(3.11)

Proposition 1 Consider a step input at time t′. For t ≥ t′ + ε, providing
that vectors BD and DD in 3.11 satisfy

BD = A′
M(eεA′M − I)A′−1

M B′
M + B′

M

DD = C ′
M(eεA′M − I)A′−1

M B′
M + D′

M

(3.12)

the output of system 3.11 is equal to the output of system 3.8. For t < t′ + ε,
the output of system 3.11 keeps its initial value.

Proof The ε input delay guarantees that system 3.11 keeps its initial state
until t = t′ + ε. Assume that for t ≥ t′ + ε, the two systems have the same
output. As the systems inputs u(t) and u(t−ε) are constant for t ≥ t′, if there
exists T ≥ t′ + ε such that ẆD(T ) = Ẇ ′(T ) and C ′

MWD(T ) + DDu(T − ε) =
C ′

MW ′(T ) + D′
Mu(T ), then, for all t ≥ t′ + ε, C ′

MWD(t) + DDu(t − ε) =
C ′

MW ′(t) + D′
Mu(t). Considering T = t′ + ε, the following expressions hold:

BDu(t′) = (A′
M(eεA′M − I)A′−1

M B′
M + B′

M)u(t′ + ε)

DDu(t′) = (C ′
M(eεA′M − I)A′−1

M B′
M + D′

M)u(t′ + ε)

from which expressions of BD and DD are derived, as for all t ≥ t′ + ε,
u(t− ε) = u(t).

The delay ε can be chosen to reduce DD. Actually, the delay ε is chosen in
such a way that
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• the direct transfer is small but di�erent from zero;

• the sign of the time derivative of the output at t+ ε is equal to the sign
of the input variation. Otherwise stated, subject to an input step, the
reduced system does not exhibit any inverse response.

The �rst condition tells that the reduced system is non strictly causal, which
permits the realization of its inverse. The second condition induces that
the zeroes of the reduced system are stable, guaranteing the stability of the
inverse system.

Figure 3.1: Dynamic response of the di�erent models

In �gure 3.1, the reduced models are compared using the complete model of
a the reduced scale system used by Sabri [33]. The complete system response
is represented in blue, the response of the reduced models 3.8, 3.10 and 3.11
are respectively presented in green, black and red. On the blue curve, non
stable zeroes generate the initial oscillations. Figure 3.2 is a zoom on the

51



Figure 3.2: Dynamic response of the di�erent models (zoom)

initial part of the step responses. The complete model is a 80th order system
and the reduced models are 4th orders systems, that represent a reduction of
95% of the system order. However this drastic reduction does not imply a
large loss of precision.

3.1.2 Control system

This subsection presents the control strategy based upon the reduced model 3.11.
In the Laplace domain, the transfer function for this model is denoted G(s) =
e−εs(C ′

M(sI − A′
M)−1BD + DD). The open loop control uo can be calcu-

lated using the system inverse G(s)−1 and the bottom reference trajectory
yo (uo = G(s)−1yo).

Proposition 2 Applied on system 3.11, the control law

u(s) =
−kG(s)−1e−εs

s
(y(s)− yo(s)) + u0(s) (3.13)
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Figure 3.3: Block diagram of the tracking system

stabilizes system 3.11 around any trajectory yo if k < π/(2ε).

Proof As the transfer function G(s) does not have unstable zeros or poles,
the closed loop does not induce any cancellation between unstable zeros and
poles. Thus the stability of this feedback law can be analyzed by the simpli-
�ed Nyquist criterion. Denote M(s) the open loop transfer function between
yo(s) and y(s), M(s) = k exp(−εs)/s. Rewriting exp(−εs) into its trigono-
metric form and replacing s = iω:

M(iω) =
k(cos(εω)− i sin(εω))

iω
(3.14)

Considering k > 0, the most negative real value of equation 3.14 occurs for
ω = ω0 = π/(2ε). For this value, M(ω0) = −k/ω0. A su�cient condition for
the closed loop stability is M(ω0) > −1, which leads to k < π/(2ε).

In practice, a value of k much smaller than k < π/(2ε) is used, to provide
robustness. Typically, k = π/(16ε). The diagram of this tracking system
is presented in �gure 3.3. The same principle is used in the sequel (section
3.2.3). The main di�erence between the tracking systems comes from the
inverted model that is used. In this section, the inverted model comes from
a reduced order system, and in section 3.2.3 the inverted system comes from
the analytical solution of a simpli�ed model.

For this feedback design, the inverted system G(s)−1 is associated to an
integrator k/s. This integrator is used as a �lter to attenuate high frequencies
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brought by the inversion process.

Proposition 3 Applied on system 3.11, the control law 3.13 rejects low fre-
quencies disturbances.

Proof The closed loop transfer function between the disturbance P (s) and
the system output y(s) is

y(s)

P (s)
=

s

s + ke−εs
(3.15)

Replacing s = iω, The transfer function 3.15 gives the associated system gain
to each frequency ω.

y(iω)

P (iω)
=

iω

iω + ke−εiω

For low frequencies disturbances (ω → 0), the in�uence of the disturbances
over the system output goes to zero (|y(iω)/P (iω)| → 0).

The delay is added in the controller to insure its causality. Results are
illustrated in �gure 3.4. We respectively have in blue, red and green, the
reference trajectory, the open loop and the closed loop response for a system
with external disturbances. Even if the system is stable, the disturbances
generate errors on the system trajectory. The tracking system is able to
reduce the system error in the case of disturbances with periods larger than
the system delay.
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Figure 3.4: Closed loop system output
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3.2 Analytical reentry control

This chapter presents a control strategy based on an approximated solution
of a PDE, valid for �exible structures with low damping (see Fortaleza et
al in [15] and [16]). The corresponding model turns out to be di�erentially
�at [12], a property directly used in the control design, providing an ex-
tension to previous works of Petit and Rouchon [34], Thull et al [41]. The
presented solution permits to calculate the reference trajectory for the riser
top position, from a pre-de�ned reference trajectory for the riser bottom end
position. This solution avoids the errors introduced in the model by the
spatial discretization.

Two controllers are proposed to ensure that the trajectories are tracked. The
�rst one is based on a Lyapunov function. It provides an e�cient solution in
the undisturbed case and, with slight modi�cations, in presence of sea cur-
rent. The second one is directly based on the system analytical solution and
provides a larger application range that also includes the systems disturbed
by waves.

3.2.1 Motion planning

As presented in chapter 2, we can consider a structure with small trans-
verse displacements (see [11, 31]) as a linearized Euler-Bernoulli beam with a
constant section, under an axial traction plus external forces from the �uid:

∂2Υ

∂t2
= −EJ

m

∂4Υ

∂z4
+

∂

∂z

(
T (z)

m

∂Υ

∂z

)
− τ

∂Υ

∂t

The tension for a disconnected riser without an added mass is a linear func-
tion of its weight (T = (ms − ρS)z), where ρ represents the water density
and S the transverse section surface. The constant term (ms − ρS)/m can
be replaced by an e�ective gravity g, so we can rewrite equation 2.7 as

∂2Υ

∂t2
= −EJ

m

∂4Υ

∂z4
+

∂

∂z

(
gz

∂Υ

∂z

)
− τ

∂Υ

∂t
(3.16)

Extremely long vertical structures with small angles displacements or small
Young modulus E share the particular characteristic that EJ ∂4Υ/∂z4 ¿
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∂(T (∂Υ)/∂z)/∂z. So equation 3.16 can be reduced to the Bernoulli's tradi-
tional cable equation, completed with a damping factor:

∂2Υ

∂t2
(z, t) =

∂

∂z

(
gz

∂Υ

∂z
(z, t)

)
− τ

∂Υ

∂t
(z, t) (3.17)

Proposition 4 The damping factor τ can be developed in Taylor series
around zero, to get an approximate solution of 3.17. This solution links
the trajectory of the structure bottom end to the trajectory of any other point
of the structure. In particular, it can be used to link the bottom trajectory
to the top trajectory. For a development up to order 2 in τ , this solution is
given by

Υ(z, t) =
1

2π

∫ π

−π

(
Υ(0, t− 2

√
z

g
sin θ)

(1− τ

√
z

g
sin θ + τ 2 z sin2 θ

g
)

+
τ 2

2

∫ t

0

Υ(0, %− 2

√
z

g
sin θ)

√
z

g
sin θd% · · ·

)
dθ

(3.18)

Proof First the change of coordinates l = 2
√

z/g transforms equation 3.17
into

−l
∂2Υ

∂t2
(l, t)− τ l

∂Υ

∂t
(l, t) +

∂Υ

∂l
(l, t) + l

∂2Υ

∂l2
(l, t) = 0 (3.19)

Using a t−Laplace transform and considering the cable stopped at t = 0,
equation 3.19 can be rewritten, with Υ̂ the Laplace transform of Υ, as:

−ls2Υ̂(l, s)− τ lsΥ̂(l, s) +
∂Υ̂

∂l
(l, s) + l

∂2Υ̂

∂l2
(l, s) = 0 (3.20)

Consider the second change of coordinates ζ = il
√

s(s + τ). It transforms
(3.20) into a well-known Bessel equation of the �rst kind:

ζΥ̂(ζ, s) +
∂Υ̂

∂ζ
(ζ, s) + ζ

∂2Υ̂

∂ζ2
(ζ, s) = 0 (3.21)

The solution Υ̂(z, s) has the following form:

Υ̂(z, s) = c1J0(2i
√

s(s + τ)
√

z/g) + c2Y0(2i
√

s(s + τ)
√

z/g)
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where J0 and Y0 are respectively the Bessel functions of �rst and second
kinds [1]. Sought after solutions are �nite for z = 0, so these solutions must
be such that c2 = 0.

Υ̂(z, s) = Υ̂(0, s)J0(2i
√

s(s + τ)
√

z/g) (3.22)
Another way to de�ne Υ̂(z, s) is:

Υ̂(z, s) =
1

2π

∫ π

−π

exp(−2
√

s(s + τ)
√

z/g sin θ)Υ̂(0, s)dθ (3.23)

The term exp(−2
√

s(s + τ)
√

z/g sin θ) in equation 3.23 can be expanded
into a Taylor series around τ = 0:

exp(−2
√

s(s + τ)
√

z/g sin θ) =
(
exp(−2

√
s(s + τ)

√
z/g sin θ)

)
τ=0

+τ

(
∂(exp(−2

√
s(s + τ)

√
z/g sin θ))

∂τ

)

τ=0

+τ 2

(
∂2(exp(−2

√
s(s + τ)

√
z/g sin θ))

∂τ 2

)

τ=0

...

The terms of the series can be rewritten into the following form:(
exp(−2

√
s(s + τ)

√
z/g sin θ)

)
τ=0

= exp(−2
√

s2
√

z/g sin θ)

(
∂(exp(−2

√
s(s + τ)

√
z/g sin θ))

∂τ

)

τ=0

= − exp(−2
√

s2
√

z/g sin θ)

√
z/g sin θ

(
∂2(exp(−2

√
s(s + τ)

√
z/g sin θ))

∂τ 2

)

τ=0

= exp(−2
√

s2
√

z/g sin θ)

(
z sin2 θ

g
+

√
z/g

sin θ

s
)

(3.24)
Using the Taylor series, the transfer function between Υ̂(0, s) and Υ̂(z, s) can
be represented in the Laplace domain by

Υ̂(z, s) =
1

2π

∫ π

−π

Υ̂(0, s) exp(−2
√

s2
√

z/g sin θ)

(
1− τ

√
z

g
sin θ + τ 2

(
z sin2 θ

g
+

√
z

g

sin θ

2s

))
+ · · · dθ

(3.25)
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Figure 3.5: System input

Inverse Laplace transforms are easily found for the terms of the series. They
can be analyzed as delays and associated to a reference trajectory Υ(0, t) as

Υ(z, t) =
1

2π

∫ π

−π

(
Υ(0, t− 2

√
z

g
sin θ)

(1− τ

√
z

g
sin θ + τ 2 z sin2 θ

g
)

+
τ 2

2

∫ t

0

Υ(0, %− 2

√
z

g
sin θ)

√
z

g
sin θd% · · ·

)
dθ

The open loop solution is found by numerically integrating equation 3.18, to
de�ne the control trajectory Υo(L, t), where L is the riser length. A numerical
example shows that the accuracy is increased when the number of terms in
the series increases. Figure 3.5 shows the reference trajectory of Υ(0, t) in
blue and the lines in red, green and black respectively show the trajectories
of Υ(L, t) using the terms of the series up to the �rst one, the second one
and third one (order 2 in τ). Looking at equation 3.18, we observe that the
smaller τ is, the faster the series converges to the exact trajectory.

Figure 3.6 shows in blue the reference trajectory of Υ(0, t) and the output
trajectories, using the input trajectories calculated with series up to the �rst,
second and third term (respectively in red, dark blue and green).
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Figure 3.6: System output

One way to estimate the validity of the approximations in the real operation
conditions is to simulate a typical case of reentry. The considered discrete
system for this numerical simulation comes from the use of the �nite element
method on the equation (2.4), for a vertical 2 km long steel riser with external
diameter = 0.55 m, internal diameter = 0.5 m and a �xed support at the top.
These are typical values for a drilling riser in deep water. In �gure 3.7, the
hydrodynamic force is represented by equation (2.5). The example in Figure
3.7 shows that the approximations made have a small e�ect on the open loop
system response.

3.2.2 Lyapunov design

This section presents a strategy that uses a Lyapunov function to design a
tracking system in order to ensure the stability and reduce the system error,
de�ned as the di�erence between the real position of the structure and the
reference trajectory.
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Figure 3.7: Undisturbed case. Reference trajectory and system response.

3.2.2.1 Undisturbed case

We consider the relative displacement ΥR around the reference trajectory
Υo: ΥR = Υ − Υo. The objective is to de�ne a tracking system to enforce
the convergence of ΥR to zero.

Proposition 5 Applied on system given by the equation 3.17, the control
law

Υ(L, t) = Υo(L, t)− k

∫ t

0

(
g
∂ΥR

∂z
(L, v) +

ΥR(L, v)

ϑ2

)
dv (3.26)

can be used to asymptotically track any bottom reference Υo(0, t). In equa-
tion 3.26, k is the controller gain, ϑ a tuning parameter, and Υo(L, t) a top
reference trajectory, computed from the speci�ed bottom reference trajectory
Υo(0, t) from equation 3.18.

Proof Consider the system given by 3.17. Following the idea proposed by
Thull et al [41], a candidate Lyapunov function H, based on the system
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energy associated to ΥR, is given by

H =
LΥ2

R(L, t)

2ϑ2
+

1

2

∫ L

0

(
z

(
∂ΥR

∂z

)2

+

(
∂ΥR

∂t

)2
)

dz (3.27)

Parameter ϑ represents the convergence time and determines the energy as-
sociated to the relative displacement of the structure top. Using equation
(3.17), the time derivative of H is computed as follows:

dH

dt
=

LΥR(L, t)

ϑ2

∂ΥR

∂t
(L, t) +

∫ L

0

(
z
∂ΥR

∂z

∂2ΥR

∂z∂t

)
dz

+

∫ L

0

(
∂ΥR

∂t

(
∂

∂z

(
gz

∂Υ

∂z

)
− τ

∂Υ

∂t

))
dz

(3.28)

After integration by parts, it comes

dH

dt
= L

∂ΥR

∂t
(L, t)

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)

ϑ2

)
− τ

∫ L

0

(
∂ΥR

∂t

)2

dz

A proposed control law is
∂ΥR

∂t
(L, t) = −k

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)

ϑ2

)
(3.29)

With this law, dH/dt ≤ 0, so the system converges to the largest invariant
set contained in dH/dt = 0.

dH/dt = −kL

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)

ϑ2

)2

− τ

∫ L

0

(
∂ΥR

∂t

)2

dz

This set is such that
∫ L

0

(
∂ΥR

∂t

)2

dz = 0 and ∂

∂z

(
gz

∂Υ

∂z

)
= 0

This �rst relation implies ∂ΥR/∂t(z, t) = 0 for all z and all t, so the solution
of the second relation is ΥR(z) = c ln(z), where c is an arbitrary constant.
At rest, the balance of the external forces is given, at the top, by the sum
of Ft, accounting for the horizontal part of the tension at the top of the
structure, and Fp, the resultant of the disturbances. By de�nition, Ft is
proportional to ∂ΥR/∂z(L, t). In this undisturbed case, Fp = 0, so Ft = 0
and ∂ΥR/∂z(L, t) = 0, which leads to ΥR(L, t) = 0. The unique possible
solution for ΥR(z) = c ln(z) considering ΥR(L) = (∂ΥR)/(∂z)(L) = 0 is
c = 0. That proves the convergence of ΥR to zero for all z, and in particular
gives ΥR(0, t) = ΥR(L, t) = 0: the re-entry operation is successful.
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3.2.2.2 Disturbances

In practical cases, the structure has two main kinds of disturbances, that
change the �ow speed: waves and marine currents. The waves have their
energy concentrated on the initial meters of the depth. They normally have
two main frequencies, the faster around 50 mHz and the other around 10
mHz. The marine currents have their energy distributed more uniformly, with
smooth time variations. The e�ect of the marine currents generates an o�set
that slowly changes. The changes of the �ow speed due to these disturbances
are represented by the function U(z, t), that, with respect to the undisturbed
case given by 2.5, induces the following changes in the hydrodynamic forces
(mI is a constant usually called the inertia coe�cient):

F (z, t) = −mF
∂2Υ

∂t2
+ µ

(
U(z, t)− ∂Υ

∂t

) ∣∣∣∣U(z, t)− ∂Υ

∂t

∣∣∣∣ + mI
∂U

∂t
(3.30)

During the re-entry operation, the marine current can be assumed constant
and generates a static deformation of the structure Ῡ(z). If the assumption
of small angles in the vertical direction holds, Ῡ(z) can be de�ned by

− ∂

∂z

(
gz

∂Ῡ

∂z
(z)

)
=

µ

m
U(z)|U(z)|

with the boundary condition Ῡ(L) = 0. In these conditions, when the control
law used in the undisturbed case is applied, it is easily proved that the system
is stabilized at an equilibrium point given by Υ(z, t) = Ῡ(z)−gϑ2∂Ῡ/∂z(L).
To avoid this bias at the bottom end, we propose the following solution.
Before applying the control law:

• Estimate the current distance from the bottom end to the wellhead.
From this estimation, choose a reference trajectory for the bottom end,
and compute the top reference trajectory as in the undisturbed case.

• Estimate the current angle at the top (∂Ῡ/∂z(L)).

The de�nition of ΥR(z, t) is modi�ed into ΥR(z, t) = Υ(z, t)−Υo(z, t)−Ῡ(z).
So, the computation of the control law obeys equation 3.26, exactly like in the
undisturbed case. Indeed, the only di�erence lies in the use of the estimation
∂Ῡ/∂z(L). Simulation of closed loop is presented in Figure 3.8.
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Figure 3.8: Structure under constant disturbance due to the current.

The considered discrete system for these numerical simulations (Figures 3.8
and 3.10) comes from the discretization of equation (2.4), for a vertical 2
km long steel riser with a �xed support at the top external diameter = 0.55
m, internal diameter = 0.5 m. These are typical values for a drilling riser
in deep water. The hydrodynamic force is represented by equation (3.30).
In the case of sea current, the �ow U is considered uniform. In the case
of waves, the �ow has two di�erent parts: close to the surface the �ow is
considered as a linear combination of two sinusoidal functions with di�erent
frequencies; for the other part of the riser the �ow is considered as equal to
zero.

In the case of waves, the structure deformation linked to the disturbance is
not constant. We miss a formal approach for a Lyapunov function, that could
guide us to an e�cient closed loop control in this case. For all the simulated
situations, the control approach derived from a Lyapunov function does not
provide good results in case of sea current plus waves.
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Figure 3.9: Block diagram of the tracking system.

3.2.3 Inverse model control

There are di�erent alternatives to reduce the e�ects of disturbances. One
of them is to use the system inversion to de�ne a tracking system, a second
one is to choose an open loop trajectory, that reduces the disturbances in-
�uence on the system output. The proposed approach consists in combining
these two aspects using a tracking system with the inverted model de�ned
by equation 3.18. Regarding equation 2.5, it is possible to observe that an
arti�cial increase of the structure speed ∂Υ/∂t implies a larger system damp-
ing, that reduces the relative e�ect of the �ow speed changes. So, an open
loop trajectory, that is fast enough to increase the damping during a given
period of time, can reduce the e�ect of waves. Figure 3.9 presents the block
diagram of the tracking system. The transfer function G(s) between the riser
top Υ(L, s) and the riser bottom end Υ(0, s) is represented by

G(s) =
2π∫ π

−π
exp(−2

√
s2

√
z/g sin θ)

Denote Υo is the reference trajectories and Υ is the real riser position.

Proposition 6 Applied on system given by equation 3.17, the control law

Υ(L, s) =
−kG(s)−1e−εs

s
(Υ(0, s)−Υo(0, s)) + Υo(L, s) (3.31)
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stabilizes system 3.17 around any trajectory Υo(0, s) if k < π/(2ε).

Proof As the transfer function G(s) does not have unstable zeros or poles,
the closed loop does not induce any cancellation between unstable zeros and
poles. In fact, the Bessel function of �rst order J0 just have real zeros (see
Ismail and Muldoon [24] for further information). So, the poles of G(s)
only lie in the region Re(s) < 0. The stability of this feedback law can be
analyzed by the simpli�ed Nyquist criterion. Denote M(s) the open loop
transfer function between yo(s) and y(s), M(s) = k exp(−εs)/s. Rewriting
exp(−εs) into its trigonometric form and replacing s = iω:

M(iω) =
k(cos(εω)− i sin(εω))

iω
(3.32)

Considering k > 0, the most negative real value of equation 3.32 occurs for
ω = ω0 = π/(2ε). For this value, M(ω0) = −k/ω0. A su�cient condition for
the closed loop stability is M(ω0) > −1, which leads to k < π/(2ε).

In practise, a value of k much smaller than k < π/(2ε) is used, to provide
robustness. Typically, k = π/(16ε). G(s) has a maximum delay equal to
ε = 2

√
L/g (see equation 3.18), so its inverse G(s)−1 is associated to the

same delay to insure causality. The delay of the control estimation is an
important problem for the high frequencies, however for the low frequencies
this delay is negligible.

Proposition 7 Applied on system given by equation 3.17, the control law
given by equation 3.31 rejects low frequencies disturbances.

Proof The closed loop transfer function between the disturbance P (s) and
the system output Υ(0, s) is

y(s)

P (s)
=

s

s + ke−εs
(3.33)

Replacing s = iω, The transfer function 3.33 gives the associated system gain
to each frequency ω.

y(iω)

P (iω)
=

iω

iω + ke−εiω

For low frequencies disturbances (ω → 0), the in�uence of the disturbances
over the system output goes to zero (|y(iω)/P (iω)| → 0).
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Figure 3.10 gives an example of what can be obtained with this approach for
the control of a structure with waves and sea current disturbances. The use
of the tracking system associated to the motion planning stabilizes the riser
bottom end at its target during a certain time (region close to t = 1000 s in
the �gure). During this time the connection of the riser bottom end to the
wellhead is possible.
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Figure 3.10: Structure under disturbances due to waves and sea current.

The shape of the reference trajectory is such that the reference speed is kept
large almost until the end of the bottom end displacement (but indeed this
reference trajectory is chosen smooth enough to be followed on the nominal
model with no modeling errors and no disturbances). This avoids the increase
of the disturbances before the structure has reached its target.

A problem with this kind of trajectory is that, for a given disturbance, a
maximum speed must be used, during a large enough period for the distur-
bances to be attenuated. This turns out to require a minimum initial distance
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between the bottom end of the structure and the wellhead. The choice of
this maximum speed is constrained by the following considerations, that are
di�cult to quantify in advance and does not prevent the constraints of the
actuators:

• if the speed is too large, the small angles assumption does not hold,
and more terms are required in the expansion of the damping term;

• if the acceleration is too large, the beam e�ect is no more negligible.
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Chapter 4

Conclusion for the reentry control
part

In this part, the fundamental characteristics of long o�shore structures have
been described. Simpli�ed structure models have been presented, that are
adapted to the practical control problem associated to the reentry operation.
For each model presented in this part, a dedicated control law has been
designed. The choice of the model and the control strategy are not only
linked to the system to be controlled, but also to the disturbances.

The reentry operation is used to displace the riser bottom end to the well-
head and stabilize it. The proposed solutions achieve the reentry. In both
proposed control systems, the required time to achieve the operation de-
pends on the initial distance between the wellhead and the riser bottom end.
The assumption that the riser presents small deformation angles limits the
maximum displacement speed that can be applied.

The reduced model associated to a delay is obtained from the modal analysis
presented in chapter 3.1. It is used to model the in�nite order system, which
does not seem to have an analytical solution. The interest is to avoid the use
of high orders state models that are sources of numerical problems and so can
not be e�ciently used in the design of feedback controls. The closed loop uses
the inverted reduced system, however a delay must be added for causality.
The results with this technique are satisfactory. They favorably compare
with classical internal model controls, not described in this document. The
largest advantage of this technique lies in the possibility to easily apply it to
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a large group of o�shore structures subject to di�erent kinds of disturbances.

The other proposed solution is presented in chapter 3.2. It consists in a
two steps procedure: �rst approximate the structure by the model of a ca-
ble with a linear damping; then transpose the analytical solution from the
Laplace domain to the time domain thanks to a series expansion. The �nal
result is a function that has as input the bottom reference trajectory and as
output the top trajectory necessary to produce the bottom end displacement.
This motion planning is presented in section 3.2.1. Two di�erent closed loop
controls are proposed in sections 3.2.2 and 3.2.3. The �rst one is based on
a Lyapunov function and proposes a less conventional solution. It uses the
top structure angle as a measured input and the structure top position as
control output. This closed loop gives satisfactory results, in the cases of
undisturbed systems and systems submerged in a constant �ow. However,
we still miss a strategy to take into account non stationary disturbances in
a Lyapunov design.

The other way to design the feedback control is to rely on the PDE solution,
that was used to de�ne the open loop control. Provided the addition of a
delay, it is possible to use it in the feedback control. The association of the
closed and open loop control based on the analytical solution is presented
in section 3.2.3. This complete control system has very interesting perfor-
mances, not only in the undisturbed case or systems submerged in a constant
�ow, but also in the presence of waves. The possibility to compensate for the
waves e�ects, and so to ensure the reentry operation under di�cult weather
conditions, is the most important result of this part.
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Part II

VIV control
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Main Nomenclature

Capital letters.
A State matrix.
B Input matrix.
E Elastic modulus.
F Hydrodynamic force.
FV IV Vortex shedding force.
I Identity matrix.
J Second moment of area.
K Sti�ness matrix.
L Observer state vector.
O Damping matrix.
P Vortex shedding acceleration vector.
Pm Vortex shedding acceleration vector of modal base.
Q Fluid variable.
R Surface riser section.
S Shearing force.
T Tension.
U Flow speed.
V Eigenvector matrix.
Ṽ Modi�ed eigenvector matrix.
X Structure state vector.
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Y Transverse riser displacement vector.
Ẏ Transverse riser speed vector.

Lowercase letters.
a Structure force over the �uid.
b Mode associated gain.
c1 Auxiliary constant 1.
c2 Auxiliary constant 2.
e Sine average amplitude.
f Cosine average amplitude.
g Apparent gravity.
h Fluid force constant.
i Imaginary unit.
m Riser and �uid linear mass.
mF Fluid added linear mass.
mI Inertia coe�cient.
mS Riser linear mass.
n Number of discretization points.
s Laplace variable.
t Time.
u Riser top external force.
û Riser top external force

Laplace transform.
w Apparent weight.
x Horizontal axis.
y System output.
ŷ Laplace transform of

the system output.
ŷP Laplace transform of

output part generated by P.
z Vertical axis.
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Greek letters.
Υ Riser displacement, transverse to the �ow.
Ω Structure natural frequency.
γ Eigenvector real part.
ε Van der Pol's equation parameter.
ζ Auxiliary variable.
ι Transfer function constant.
κ Filter gain.
λ Eigenvalue.
ϕ Eigenvector imaginary part.
% Integration variable.
σ Limit cycle frequency.
τ Drag constant.
ω Vortex shedding natural frequency.
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Chapter 5

VIV background

5.1 Vortex Induced Vibrations

In regions with large sea currents, a known source of mechanical fatigue is the
vibration generated by an alternating vortex shedding that periodically pro-
duces lift forces on the structure. These vibrations are usually called vortex
induced vibrations (VIV). The slender structures in a �ow, like mooring ca-
bles, catenary and vertical risers, are the most a�ected by this phenomenon.
The mechanical fatigue generated by the VIV can be the cause of a me-
chanical failure of the structure. A mechanical failure in a riser represents
a stop of the well production that can spend weeks, because the tools and
heavy machines required for the riser replacement are not present on a FPSO.
Usually this operation is only made by a dedicated installation vessel. The
exploration and production of new petroleum �elds each time deeper makes
the VIV a more frequent problem, because of the larger sea currents present
in these regions, and the fact that the structures are each time more �exible,
because of the increase of the structure ratio length per diameter.

This kind of vibrations along o�shore �exible structures is an important
research domain, however some characteristics of the VIV are nowadays well
known (see [5], [10] and [43]):

• The VIV normally have their largest displacements in a perpendicular
direction to the �ow and the structure axis.
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Figure 5.1: System under analysis

• For a �xed cylinder, the frequency of the vortex shedding is a function
of the cylinder diameter and the sea current speed. This frequency is
considered as the natural frequency of the vortex shedding.

• For a �exible structure, the frequency of the vortex shedding and conse-
quently the generated vibration can be di�erent from the vortex shed-
ding natural frequency. In this case, there is a phenomenon of lock-in,
that makes the structure oscillates at its natural frequency that is the
closest to the natural frequency of the vortex shedding.

• VIV have large amplitudes only when associated to low damped modes
of the structure.

• The vortex shedding is a hydrodynamic phenomenon, that has a local
e�ect over the structure and the �uid around it, however this e�ect is
propagated by the structure and generates a synchronism of the vortex
shedding along all the regions with a similar vortex shedding frequency.

These characteristics of VIV give essential information about this phenomenon.
This information is used in the design of the control system presented in sec-
tion 5.4 and chapter 7.
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5.2 Passive VIV limitation

Nowadays, the proposed solutions to reduce VIV are always associated to
mechanical devices, that are put around the riser to change its hydrodynamic
behavior. They can be divided into two main groups represented in �gure 5.2:

• The �rst group is designed to reduce the turbulence around the riser,
and consequently the forces associated to the vortex shedding (see [6]
for further explanations). Normally they are free to rotate around the
riser and have an external pro�le that looks like a symmetric aircraft
wing.

• The second group of mechanical devices for VIV suppression are de-
signed to reduce the synchronism of the vortex shedding (solution ex-
empli�ed by Vaz in [42]). These structures are basically straps or small
objects, that are �xed in a helicoidal way along the structure.

The most usual problems linked to this kind of solutions are the restricted
range of sea currents for which some of these systems are e�ective, the in-
crease of the drag force over the structure, and the problems of reliability.

In �gure 5.2, a) is an example of a mechanical device that is designed to
reduce VIV by the reduction of the �ow turbulence. It is important to
observe that each part of this device is supposed to be free to turn around
the riser following the changes of the sea current. Figure 5.2 b) represents a
mechanical device that tries to reduce the VIV by the reduction of the vortex
shedding synchronism. The fact that this device does not have mobile parts
increases its reliability, however its performance can be reduced along the
time, because of the marine environment. For instance, marine growth can
stick on the structure and change the hydrodynamic pro�le.

The increase of the drag force is related to the increase of the structure trans-
verse section and its new pro�le. This consequently increases the mechanical
fatigue. In certain cases, the mechanical fatigue generated by this drag in-
crease can be larger than the reduction of the mechanical fatigue associated
to the VIV reduction.

These devices are positioned over the riser, where maintenance is almost im-
possible and very expensive when it is possible. So, the reliability is essential
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for these devices, because they must resist to the environment and be e�cient
along all the service life of the riser without maintenance.

5.3 Vibration control

The term vibration control is largely applied nowadays to de�ne a precise
group of control systems. For this group of systems, the main (or unique)
objective of the active control is the reduction of the e�ect of external dis-
turbances over the controlled system. The three classical ways to solve this
kind of problems are the control systems that act as cancel devices, isolators
or dampers.

The principle of a cancellation system is to put a control system in parallel
to the source of disturbances. This control system is designed in such a way
that its output is in phase opposition to the disturbances. This con�guration
makes the sum of the control and disturbance signals close to zero, so the
global excitation of the system is reduced. The most known application is in
the �eld of acoustic noise as proposed by Adachi and Sano in [2]. Another
practical example is given in �gure 5.3. It represents a building with an anti-
earthquake system. The building displacement x1 is given by the following
equation

ẍ1 = −kx1 − αẋ1 + kx2 + αẋ2 + u (5.1)

where u is the force applied by the active control, k and α are respectively
the elastic and damping constants. x2 is the ground displacement generated
by the earthquake. In this case, a cancellation system can be de�ned by
u = −kx2 − αẋ2. This control system cancels the earthquake e�ect, so the
building displacement becomes independent from the ground displacement.

The second kind of vibration control system is the isolator. The principle of
an isolator is to put a control system in series between the disturbance source
and the controlled system. This control system is designed in such a way
that its response for the disturbance excitation is close to zero. This strategy
is largely used in domains where the disturbance just has high frequencies
and the link between the controlled system and the disturbance source is
necessary to support the weight of one of the parts. This principle is used
for washing machines, or anti-earthquakes devices for buildings and bridges
for instance. This kind of technology is well described by El-Sinawi in [9].
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In the case of an anti-earthquake device as the one represented in �gure 5.3
and equation 5.1, the transfer function between the ground displacement x2

and the building displacement x1 is given by

x1(s)

x2(s)
=

αs + k

s2 + αs + k
(5.2)

The earthquakes are disturbances with large frequencies. The isolator system
can be a passive device, that reduces the values for k and α, thus the gain of
the transfer function 5.2 for high frequencies.

The third kind of vibration control is the damper. It is designed to dissipate
the maximum of kinetic energy from the system to reduce the vibration
amplitudes. They can be passive, active or semi-active, although they are
characterized by the application of a force with a sign opposite to the local
speed at the force application point. An interesting explanation about the
calculus of the optimal force amplitude is proposed by Inman in [23].

Just to exemplify the usual limitation of collocated sensor and actuator,
we consider a horizontal cable with two masses. We de�ne the transversal
displacements of these two masses as x1 and x2, and consider the measure y
equal to x1 and the control u as a force applied at the same point (see �gure
5.4). The system can be written as





ẍ1 = −2x1 + x2 + u(y)
ẍ2 = x1 − 2x2

y = x1

For u = 0, this system is marginally stable, in other words any external
disturbance makes the system continually oscillate. In the case of a linear
damping (u = −αẋ1) the system is stable for any positive α, however for
α → ∞ the system becomes marginal stable again. Equation 5.3 repre-
sents the system dynamics for α → ∞. This system shows the limitation
of a collocated control, because of the in�uence of the feedback control over
the measure of the disturbance. In this case a too large damping coe�-
cient reduce the x1 amplitudes and the possibility for the control system to
accurately measure the vibration introduced by the disturbance.
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{
ẍ2 = −2x2

y = 0
(5.3)

Even with this limitation, the linear dampers are largely used in all engineer-
ing �elds because of their robustness, reliability and simple design. However,
in the case of VIV, the vibrations are distributed all along the structure, so
the bias of the feedback control over the measured signal represents a key
problem for the e�ciency of such controllers.

5.4 Active VIV limitation

Instead of trying to reduce vibrations by changing the behavior of the �ow
around the structure, the technology proposed in the present work is a system
that uses an active vibration control, acting on the structure top end in order
to change the dynamic behavior of the structure. The fact that displacements
at the structure top end can reduce VIV has been observed by Vandiver [37].
The present technique focuses on this aspect, and proposes a preliminary
control strategy to minimize VIV of slender structures. The objective is to
design a control system that reduces the VIV, while requiring the smallest
external force at the riser top end (minimum energy requirement).

We present in chapter 6 the wake model used to model the alternating lift
force. The limit cycle, that results from the action of such a force over a rigid
cylinder �xed by a spring, is also studied.

In chapter 7, a modal analysis is proposed, that emphasizes some speci�c as-
pects of the slender structures undergoing VIV: linear behavior of the struc-
ture for small lateral displacements, convergence of the vibration frequencies
to one or some natural frequencies of the structure, synchronism and modal
behavior of the structure.

A control strategy is proposed to reduce the vibrations along the riser, and
thus minimize the fatigue of the structure. The e�ect of hydrodynamic forces
over the structure is attenuated by the active control. This control induces
a change in the structure modal behavior, thus reducing the VIV.

For control design, the idea is to consider the displacements of the structure
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points as the sum of two displacements. The �rst displacement accounts for
the result of movements at the structure's top. The structure is described
by a linear PDE model, under the assumption of small displacements (small
angles). It gives a relationship between the control u (force applied at the
structure's top) and the controlled output y (displacement of a structure
point located near the structure's bottom end). The second displacement is
due to nonlinear e�ects (non linear part of the hydrodynamic forces plus the
vortex shedding). This nonlinear force is considered as a disturbance in the
control design.

The relationship between u and y that is provided by the linear partial di�er-
ential equation is still too complicated for control design. We rely upon the
fact that structures with low damping undergoing VIV behave like oscillators
(oscillating at frequencies corresponding to the structure resonant modes).
We then approximate the input-output relationship between u and y by a
second order transfer function, corresponding to the most excited mode. It
is derived from a modal analysis, done on a spatially discretized model of the
structure.

The control law derived from this transfer function is tested in two di�erent
ways: the �rst one is presented in section 7.4. It uses numerical simulations of
a complete model, that couples the lift forces and the structure displacement
to test the control system. The second one is a reduced scale system, that
is presented in chapter 8. This reduced scale system is a �exible structure,
that has its natural frequencies close to the natural frequencies of the vortex
shedding.

This control system can be viewed as a damping system, with an important
di�erence when compared to traditional systems, as the measure point is
away from the force application point. This physical distance between mea-
sure and force application point avoids the measurement problem discussed
in section 5.3.

Not collocating actuator and sensor avoids the disturbance measurement
problem, however this introduces other problems. In this con�guration, the
design of the best damping system is much more complicated and its perfor-
mance is totally dependent of the model precision. That is why the control
system for structure undergoing VIV only acts upon the main frequency of
the vibration, as the characteristics of those frequencies permits some as-
sumptions about the dynamic behavior of the structure, that are used in the
control system design.
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The proposed control system has rather good experimental and numerical
simulation results. It reduces the displacement and speed of 35% all along
the structure, noticing that the control simply implies a punctual force that
generates a displacement of the riser top end (of about 10% of the maximum
punctual displacement). The �nal result concerning the mechanical fatigue
of the structure is a reduction of more than 70% of the mechanical fatigue
associated to the VIV.
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Figure 5.2: Transversal section and lateral view of devices to suppress VIV
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Figure 5.3: Simpli�ed model of building undergoing an earthquake

Figure 5.4: Tensioned cable
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Chapter 6

Wake model

This chapter �rst recalls in section 6.1 the phenomenological model developed
by Facchinetti [10] for the structures undergoing vortex induced vibrations.
This model is used for all the simulations reported in this part of the thesis.
The remaining sections of this chapter are devoted to qualitative studies of
a simpli�ed version of this model, that deals with a rigid structure �xed by
strings.

In section 6.2, a �rst harmonic study suggests possible limit cycles. The
amplitude and frequency of these cycles are studied quantitatively. The two
remaining sections are dedicated to the stability of these limit cycles:

• in section 6.3, we show that, for a given range of values for the natural
frequencies of the structure and the vortex shedding, the study of the
limit cycle can be achieved, following the lines given by Guckenheimer
and Holmes [19] for the study of the Van der Pol equation. Namely,
a rotation group is proposed, governing the high frequency part of the
dynamics. An averaging method is applied to derive the slow dynamics.
Its (numerical) study shows that the limit cycles are stable.

• in section 6.4, an attempt is also made to use the averaging method.
However, in this case, it is di�cult to distinguish between fast and slow
dynamics: using the averaging method is not fully justi�ed. Yet, the
numerical solutions that follow its application, indicating stability for
the limit cycle, lead to results that kindly agree with those of both the
�rst harmonic study and the simulations.
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Figure 6.1: VIV amplitudes for di�erent vortex shedding frequencies

Figures 6.1 and 6.2 compare the results from non dimensional model. They
compare the �rst harmonic approximation to the stable limit cycles obtained
with the two di�erent averaging methods. Are also plotted on these curves
values for the amplitude and frequency, that are estimated on plots resulting
from numerical simulations. In these �gures the natural frequency of the
vortex shedding is normalized with respect to the structure natural frequency
(ωU/Ω). It is possible to distinguish between small amplitudes (referred to
as non-resonant cases) and large amplitudes (referred to as resonant cases).
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Figure 6.2: VIV frequencies for di�erent vortex shedding frequencies

6.1 Phenomenological model

Several models have been designed to describe the forces associated to a
relative movement between a solid and a �uid (see Larsen [27] for further in-
formation). A common fact for all these models is a nonlinear damping ratio
that always increases with the speed of the relative movement. This non-
linear e�ect causes a kinetic energy concentration around some frequencies.
The displacements associated to one frequency increase the average speed
of the structure and so the damping ratio of the structure. In other words,
the fact that one frequency is excited helps to damp the movement at other
frequencies.

Our interest is to use a wake model that is complicated enough to represent
the main aspects of VIV (frequency concentration of the movement, phase
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lock between the structure and the vortex shedding at the natural frequencies
of the structure), but kept simple enough for numerical simulations to be
tractable. The model chosen to represent the nonlinear �uid forces is the
wake oscillator model described by Facchinetti [10], and compared to direct
numerical simulations of Navier-Stokes equations in [38].

This phenomenological model considers the structure undergoing VIV as a
vertical structure with small angles displacements, thus it de�nes the struc-
ture as the Euler-bernoulli beam under traction:

m
∂2Υ

∂t2
= −EJ

∂4Υ

∂z4
+

∂

∂z

(
T (z)

∂Υ

∂z

)
+ Fn(z, t)

where E and J are respectively the elastic modulus and the second moment
of area; Υ represents the structure displacement transverse to its main axis
and to the �ow. The hydrodynamic forces are de�ned in a general way by
the Navier-Stokes equations. In the case of VIV the main vibrations are in
the transverse plane to the sea current U(z). This force denoted Fn(z, t) is
approximated by a linear part inspired by the Morison's equation and a non
linear part represented by FV IV (z, t):

Fn(z, t) = FV IV (z, t)−mF
∂2Υ

∂t2
− τ

∂Υ

∂t
U(z)

Considering τ as the drag constant, mF as the linear �uid added mass and ms

the structure linear mass, we denote the total linear mass of the structure as
m = mS+mF . The association of the structures forces and the hydrodynamic
loads de�nes the system behavior on the main direction of VIV as

m
∂2Υ

∂t2
= −EJ

∂4Υ

∂z4
+

∂

∂z

(
T (z)

∂Υ

∂z

)
− τ

∂Υ

∂t
U(z) + FV IV (z, t) (6.1)

The two �rst terms of the left hand side represent the conservative forces
of the structure. The VIV present a constant amplitude when the energy
introduced by the lift force associated to FV IV is equal to the energy taken
by the drag force −τ(∂Υ/∂t)U(z).

This model represents a phenomenological approach to describe the wake
dynamics. It uses the historical Van der Pol equation (see subsection 6.3) to
describe the non linear part of the �uid dynamics, instead of using Navier-
Stokes equations for direct simulation. Q represent the �uid state, ωU(z) the
natural frequency of the vortex shedding, while a, ε and h are phenomeno-
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logical constants:




FV IV = hU(z)2Q

∂2Q

∂t2
= −εU(z)(Q2 − 1)

∂Q

∂t
− (ωU(z))2Q + a

∂2Υ

∂t2

(6.2)

We replace equation 6.2 in equation 6.1 to obtain the complete system model:




m
∂2Υ

∂t2
= −EJ

∂4Υ

∂z4
+

∂

∂z

(
T (z)

∂Υ

∂z

)
− τU(z)

∂Υ

∂t
+ hU(z)2Q

∂2Q

∂t2
= −εU(z)(Q2 − 1)

∂Q

∂t
− (ωU(z))2Q + a

∂2Υ

∂t2

(6.3)

Figure 6.3 presents a numerical simulation of this model in the case of a
�exible structure.

6.2 First harmonic approximation

This section presents the study made on the �rst harmonic behavior of a
structure undergoing VIV. The approach is used to describe the limit cycle
characteristics of a unitary mass (m = 1) rigid cylinder, submerged in a �ow
and �xed by a spring. We identify the �rst harmonic of a possible oscillating
solution for the system (frequency and amplitude of the limit cycle). The
stability of this solution, so the limit cycle existence is analyzed in sections 6.3
and 6.4. The rigid cylinder assumption gives ∂4Υ/∂z4 = ∂(T∂Υ/∂z)/∂z = 0,
and the unique natural pulsation Ω is the square root of the spring constant.
System 6.3 simpli�es into:





d2Υ

dt2
= −Ω2Υ− τU

dΥ

dt
+ hU2Q

d2Q

dt2
= −εU(Q2 − 1)

dQ

dt
− (ωU)2Q + a

d2Υ

dt2

(6.4)

The �rst equation describes a linear system with input Q. Q is linearly linked
to Υ, so we search for a �rst harmonic behavior, where [Υ, Υ̇] also oscillate on
a cycle at the same frequency than Q (see Slotine [36]). The �rst harmonic
behavior of variables Υ and Q are de�ned as:{

Q = ρ sin(σt)
Υ = e sin(σt) + f cos(σt)

(6.5)
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Figure 6.3: Flexible structure undergoing VIV

Using these de�nitions, it is possible to rewrite the �rst equation of system 6.4
as:

−σ2(e sin(σt) + f cos(σt)) = −Ω2(e sin(σt) + f cos(σt))
−τUσ(e cos(σt)− f sin(σt)) + hU2ρ sin(σt)

(6.6)

So, separating the terms of equation (6.6) in relation to sine and cosine, we
get the following equations:

{
eσ2 − eΩ2 + fτUσ + hU2ρ = 0

fσ2 − fΩ2 − eτUσ = 0

The two coe�cients e and f can be expressed as functions of ρ and σ. In other
words the �rst harmonic behavior of the structure is de�ned with respect to
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the �uid behavior.




e =
−ρhU2(σ2 − Ω2)

(σ2 − Ω2)2 + τ 2U2σ2

f =
−ρhτU3σ

(σ2 − Ω2)2 + τ 2U2σ2

(6.7)

Inserting (6.5) in the second equation of system (6.4) gives

−σ2ρ sin(σt) = −(ωU)2ρ sin(σt)+
εU(1− ρ2 sin(σt)2)σρ cos(σt)− aσ2(e sin(σt) + f cos(σt))

(6.8)

Only the �rst harmonic component of the nonlinear dynamic of Q is con-
sidered to determine the low frequency behavior of the system. The high
frequency component of equation 6.8 is reduced to its average value:

sin(σt)2 cos(σt) =
1

4
(cos(σt)− cos(3σt))

∫

0

2π
σ

cos(3σt)dt = 0

sin(σt)2 cos(σt) ∼ 1

4
cos(σt)

With this �rst harmonic approximation of the nonlinearities, we can rewrite
equation 6.8 the following way:

−σ2ρ sin(σt) = −(ωU)2ρ sin(σt)+
εU(1− ρ2/4)σρ cos(σt)− aσ2(e sin(σt) + f cos(σt))

This approximation permits to compute Q �rst harmonic frequency and am-
plitude, thanks to the two equations de�ned by the sine and cosine parts:





σ2 − (ωU)2 +
ahU2(σ2 − Ω2)σ2

(σ2 − Ω2)2 + τ 2U2σ2
= 0

εU(1− ρ2

4
) +

ahU3τσ2

(σ2 − Ω2)2 + τ 2U2σ2
= 0

(6.9)

For example, if we consider the case where ωU = Ω, the �rst harmonic
parameters are de�ned as:





σ = Ω

ρ = 2

√
1 +

ah

ετ
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



Q = 2

√
1 +

ah

ετ
sin(Ωt)

Υ = −2

√
1 +

ah

ετ

h

τ
cos(Ωt)

The interesting point of this analysis is the description of a resonant e�ect
when ω is close to Ω. This e�ect largely increases the Υ and Q amplitudes,
as in these cases ahUσ2/((σ2 − Ω2)2 + τ 2U2σ2) > 1, so σ ' Ω. This be-
havior kindly �ts the practical experiments related by [5, 18, 37]. In the
sequel, section 7.1 proposes to analyze a �exible structure vibrating in one
of its natural frequencies as a single mode structure. This reduction justi�es
why these �exible structures have a similar resonant behavior than the one
described in this section.

The numerical solution of equation (6.9) shows that, varying the �ow speed
U , we can observe two di�erent types of limit cycles. For ωU close to Ω
we have large amplitudes ρ and σ ' Ω, meaning that the system oscillates
at a frequency close to the natural frequency of the structure. The second
kind of limit cycle is present when Ω and ωU are not close. In this case the
system oscillates with small amplitudes ρ and σ ' ωU meaning that in this
case the system oscillates at a frequency close to the natural frequency of the
vortex shedding. These two kinds of limit cycles and their di�erent aspects
are studied in sections 6.3 and 6.4.

6.3 VIV limit cycle: non resonant case

The objective of this section is to study the stability of limit cycles of equa-
tion (6.4), suggested in section 6.2, in the cases where the natural frequency
of the structure is not close to the natural frequency of the vortex shedding.
The proposed analysis is based on the averaging method. This method at-
tempts to de�ne a part of the system that de�nes a fast periodic response,
then analyzes the in�uence of the slow part of the system on this periodic
response.

Approach We consider a general approach to apply the averaging method
for all dynamic systems that can be written as

Ẋ = AX + εA′(X) (6.10)
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where X represents the system state, Ẋ its derivative with respect to time t,
the matrix A has di�erent and purely imaginary eigenvalues. The function
εA′ represents the remaining part of the system, including the nonlinear part.
It is assumed to be small compared to the linear part linked to A, this being
underlined by the real parameter ε (0 <ε ¿ 1)

Let Γ(t) be a linear change of coordinates, and denote Z the transformed
vector, X = Γ(t)Z. Equation (6.10) is transformed into:

(
Γ̇− AΓ

)
Z + ΓŻ = εA′(ΓZ) (6.11)

Therefore, if we set Γ̇ = AΓ, or Γ(t) = etAΓ0, where Γ0 is an invertible
arbitrary matrix, equation (6.11) admits the following slow representation:

Ż = εΓ(t)−1A′(Γ(t)Z) (6.12)

The fact that all eigenvalues of A are purely imaginary and di�erent gives to
Γ the form of rotation matrix periodic in time. This fact permits to analyze
the e�ects of A′ over this oscillating solution.

Example of the Van der Pol equation First, we propose to apply this
technique on a simple example, and consider the system de�ned by the his-
torical Van der Pol equation, that is characterized by a nonlinear damping,
positive for small amplitudes and negative for the large ones (see Gucken-
heimer and Holmes [19]):

(
Ẋ1

Ẋ2

)
=

(
0 1
−k2 0

)(
X1

X2

)
+ ε

(
0 0
0 −(X2

1 − 1)X2

)
(6.13)

The matrix of coordinate change Γ is given by Γ̇ =

(
0 1
−k2 0

)
Γ, or

Γ =

(
cos(kt) 1

k
sin(kt)

−k sin(kt) cos(kt)

)
Γ0

Without loss of generality, we can choose Γ0 as

Γ0 =

(
1 0
0 −k

)
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So the proposed change of coordinate is
(

X1

X2

)
=

(
cos(kt) − sin(kt)
−k sin(kt) −k cos(kt)

)(
Z1

Z2

)

and its inverse is
(

Z1

Z2

)
=

(
cos(kt) − 1

k
sin(kt)

− sin(kt) − 1
k

cos(kt)

)(
X1

X2

)

then, equation (6.12) reads




Ż1 = ε(4kZ1 − kZ3
1 − kZ1Z

2
2 − 4kZ1 cos(2kt)

+4kZ1Z
2
2 cos(2kt) + kZ3

1 cos(4kt)− 3kZ1Z
2
2 cos(4kt)

+4kZ2 sin(2kt) + 2kZ2
1Z2 sin(2kt)− 2kZ3

2 sin(2kt)
−3kZ2

1Z2 sin(4kt) + kZ3
2 sin(4kt))/8k

Ż2 = ε(4kZ2 − kZ2
1Z2 − kZ3

2 + 4kZ2 cos(2kt)
−4kZ2

1Z2 cos(2kt)− 3kZ2
1Z2 cos(4kt) + kZ3

2 cos(4kt)
+4kZ1 sin(2kt)− 2kZ3

1 sin(2kt) + 2kZ1Z
2
2 sin(2kt)

−kZ3
1 sin(4kt) + 3kZ1Z

2
2 sin(4kt))/8k

(6.14)

The fact that εA′ is considered small permits to consider that its e�ect is slow,
when compared to the system's period. So observing the system (6.14), we
can replace the terms by their averages over one period([t, t + 2π/k]) and
represent the average dynamic of the system as

(
Ż1

Ż2

)
=

ε

2

(
Z1(1− 1

4
(Z2

1 + Z2
2)

Z2(1− 1
4
(Z2

1 + Z2
2))

)

Rewriting this system with the polar coordinates R = Z2
1 +Z2

2 and sin θ = Z1

R

we get: 



Ṙ =
εR

2

(
1− R2

4

)

θ̇ = 0

The �rst equation has two equilibrium points: one unstable at R = 0 and
the other one, stable at R = 2. This second equilibrium point corresponds
to an attractive limit cycle with an average radius equal to 2. The second
equation means that the angle between the rotation matrix and the system
state is constant and de�ned by the initial condition θ0.
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Figure 6.4: Real part of matrix A eigenvalues. Zero values are associated to
the non-resonant case.

Application to the VIV system The lines applied on the Van der Pol
equation can be followed to analyze the behavior of a structure undergoing
vortex induced vibrations in the cases where the eigenvalues of the matrix
with large parameters A are all purely imaginary and di�erent. This condi-
tion is satis�ed for small values of U (in fact small values of τU and εU), see
�gure 6.4 for abscissa around 0.5. In these cases the terms τU and εU can
be considered as small parameters.

Considering the system (6.4), we use the �rst equation to determine the �uid
variable Q as a function of the structure position Υ and its derivatives:

Q =
1

hU2
(Ϋ + τUΥ̇ + Ω2Υ)

Thus, the system represented by (6.4) is written as the fourth order di�er-
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ential equation

Υ(4) + τUΥ(3) + (Ω2 + ω2U2 − hU2a)Ϋ + ω2U3τΥ̇ + ω2U2Ω2Υ

= εU

(
1− 1

h2U4
(Ϋ + τUΥ̇ + Ω2Υ)2

) (
Υ(3) + τUΫ + Ω2Υ̇

) (6.15)

We consider that Ω is not close to ωU . Then the roots of the biquadratic
characteristic polynomial s4 + (U2(ah−ω2)−Ω2)s2 + ω2U2Ω2 = 0 of matrix
A are purely imaginary and di�erent. As described before, we can de�ne the
matrices A and Γ as

A =




0 1 0 0
0 0 1 0
0 0 0 1

−ω2U2Ω2 0 U2(ah− ω2)− Ω2 0




Γ =




cos(σ1t) − sin(σ1t) cos(σ2t) − sin(σ2t)
−σ1 sin(σ1t) −σ1 cos(σ1t) −σ2 sin(σ2t) −σ2 cos(σ2t)
−σ2

1 cos(σ1t) σ2
1 sin(σ1t) −σ2

2 cos(σ2t) σ2
2 sin(σ2t)

σ3
1 sin(σ1t) σ3

1 cos(σ1t) σ3
2 sin(σ2t) σ3

2 cos(σ2t)




where ±σ1i and ±σ2i are the roots of the characteristic polynomial. The
dynamics of Z can be expressed as Ż = Γ̇−1Z + Γ−1Ẋ, where Γ−1 is given
by

Γ−1 =
1

σ2
1 − σ2

2




−σ2
2 cos(σ1t) σ2

2 sin(σ1t)/σ1 − cos(σ1t) sin(σ1t)/σ1

σ2
2 sin(σ1t) σ2

2 cos(σ1t)/σ1 sin(σ1t) cos(σ1t)/σ1

σ2
1 cos(σ2t) −σ2

1 sin(σ2t)/σ2 cos(σ2t) − sin(σ2t)/σ2

−σ2
1 sin(σ2t) −σ2

1 cos(σ2t)/σ2 − sin(σ2t) − cos(σ2t)/σ2




Substituting into equation 6.12 and applying the averaging method, we ob-
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tain the slow average dynamics of Z:





Ż1 =
−ε

8σ1(σ2
1 − σ2

2)h2U3
(Z1(4σ1h

2U4(Ω2 − σ2
1) + 4σ1τh2ω2U4

(σ2
1 − U2)/ε)− 4σ2

1h
2ω2U5τZ2 + (Z1(σ7

1 − 3σ5
1Ω

2 + 3σ3
1Ω

4

−σ1Ω6 + σ5
1τ

2U2 − σ3
1Ω

2τ2U2) + Z2(+σ6
1τU − 2σ4

1Ω
2τU

+σ2
1Ω

4τU + σ4
1τ

3U3))(Z2
1 + Z2

2 ) + (Z1(2σ3
1σ

4
2 − 4σ3

1σ
2
2Ω

2 − 2σ1σ
4
2Ω

2

+2σ3
1Ω

4 + 4σ1σ
2
2Ω

4 − 2σ1Ω6 + 2σ3
1σ

2
2τ

2U2 − 2σ1σ
2
2Ω

2τ2U2)
+Z2(2σ2

1σ
4
2τU − 4σ2

1σ
2
2Ω

2τU + 2σ2
1Ω

4τU + 2σ2
1σ

2
2τ

3U3))(Z2
3 + Z2

4 ))

Ż2 =
−ε

8σ1(σ2
1 − σ2

2)h2U3
(Z2(4σ1h

2U4(Ω2 − σ2
1) + 4σ1τh2ω2U4

(σ2
1 − U2)/ε) + 4σ2

1h
2ω2U5τZ1 + (Z1(−σ6

1τU + 2σ4
1Ω

2τU
−σ2

1Ω
4τU − σ4

1τ
3U3) + Z2(σ7

1 − 3σ5
1Ω

2 + 3σ3
1Ω

4 − σ1Ω6 + σ5
1τ

2U2

−σ3
1Ω

2τ2U2))(Z2
1 + Z2

2 ) + (Z1(−2σ2
1σ

4
2τU + 4σ2

1σ
2
2Ω

2τU − 2σ2
1Ω

4τU
−2σ2

1σ
2
2τ

3U3) + Z2(2σ3
1σ

4
2 − 4σ3

1σ
2
2Ω

2 − 2σ1σ
4
2Ω

2 + 2σ3
1Ω

4

+4σ1σ
2
2Ω

4 − 2σ1Ω6 + 2σ3
1σ

2
2τ

2U2 − 2σ1σ
2
2Ω

2τ2U2))(Z2
3 + Z2

4 ))

Ż3 =
ε

8σ2(σ2
2 − σ2

1)h2U3
(+Z3(4σ2h

2U4(Ω2 − σ2
2) + 4σ2τh2ω2U4

(σ2
2 − U2)/ε)− 4σ2

2h
2ω2U5τZ4 + (Z3(σ7

2 − 3σ5
2Ω

2 + 3σ3
2Ω

4 − σ2Ω6

+σ5
2τ

2U2 − σ3
2Ω

2τ2U2) + Z4(+σ6
2τU − 2σ4

2Ω
2τU + σ2

2Ω
4τU

+σ4
2τ

3U3))(Z2
3 + Z2

4 ) + (Z3(2σ3
2σ

4
1 − 4σ3

2σ
2
1Ω

2 − 2σ2σ
4
1Ω

2 + 2σ3
2Ω

4

+4σ2σ
2
1Ω

4 − 2σ2Ω6 + 2σ3
2σ

2
1τ

2U2 − 2σ2σ
2
1Ω

2τ2U2)
+Z4(2σ2

2σ
4
1τU − 4σ2

2σ
2
1Ω

2τU + 2σ2
2Ω

4τU + 2σ2
2σ

2
1τ

3U3))(Z2
1 + Z2

2 ))

Ż4 =
ε

8σ2(σ2
2 − σ2

1)h2U3
(+Z4(4σ2h

2U4(Ω2 − σ2
2) + 4σ2τh2ω2U4

(σ2
2 − U2)/ε) + 4σ2

2h
2ω2U5τZ3 + (Z3(−σ6

2τU + 2σ4
2Ω

2τU
−σ2

2Ω
4τU − σ4

2τ
3U3) + Z4(σ7

2 − 3σ5
2Ω

2 + 3σ3
2Ω

4 − σ2Ω6 + σ5
2τ

2U2

−σ3
2Ω

2τ2U2))(Z2
3 + Z2

4 ) + (Z3(−2σ2
2σ

4
1τU + 4σ2

2σ
2
1Ω

2τU − 2σ2
2Ω

4τU
−2σ2

2σ
2
1τ

3U3) + Z4(2σ3
2σ

4
1 − 4σ3

2σ
2
1Ω

2 − 2σ2σ
4
1Ω

2 + 2σ3
2Ω

4

+4σ2σ
2
1Ω

4 − 2σ2Ω6 + 2σ3
2σ

2
1τ

2U2 − 2σ2σ
2
1Ω

2τ2U2))(Z2
1 + Z2

2 ))
(6.16)

Applying the second change of coordinates given by R2
1 = Z2

1 + Z2
2 , R2

2 =
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Z2
3 + Z2

4 , sin θ1 = Z1/R1 and sin θ2 = Z3/R2, we get




Ṙ1 =
−εR1

8(σ2
1 − σ2

2)h
2U3

((σ2
1 − Ω2)(−4h2U4 + ((σ2

1 − Ω2)2

+σ2
1τ

2U2)R2
1 + 2((σ2

2 − Ω2)2 + σ2
2τ

2U2)R2
2)

−4τhω2U2(U2 − σ2
1)/ε)

Ṙ2 =
εR2

8(σ2
1 − σ2

2)h
2U3

((σ2
2 − Ω2)(−4h2U4 + 2((σ2

1 − Ω2)2

+σ2
1τ

2U2)R2
1 + ((σ2

2 − Ω2)2 + σ2
2τ

2U2)R2
2)

−4τhω2U4(U2 − σ2
2)/ε)

θ̇1 =
−ε

8(σ2
1 − σ2

2)h
2U2

(−4σ1h
2ω2U4τ + (σ5

1τ − 2σ3
1Ω

2τ

+σ1Ω
4τ + σ3

1τ
3U2)R2

1 + (2σ1σ
4
2τ − 4σ1σ

2
2Ω

2τ
+2σ1Ω

4τ + 2σ1σ
2
2τ

3U2)R2
2)

θ̇2 =
ε

8(σ2
1 − σ2

2)h
2U2

(−4σ2h
2ω2U4τ + (σ5

2τ − 2σ3
2Ω

2τ

+σ2Ω
4τ + σ3

2τ
3U2)R2

2 + (2σ2σ
4
1τ − 4σ2σ

2
1Ω

2τ
+2σ2Ω

4τ + 2σ2σ
2
1τ

3U2)R2
1)

(6.17)

For R1 and R2 at an equilibrium point, θ̇1 and θ̇2 are constant. This means
that the system oscillates with a constant frequency. Analyzing the �rst two
equations that de�ne the behavior of R1 and R2, it is possible to observe
that this system has 4 di�erent equilibrium points [R1, R2]. The study of
the stability of the system around these points is made using the linearized
system de�ned by Ṙ = ARR in the regions close to these points.

AR =
ε

8(c2
1 − c2

2)h
2U3




4τh2ω2U4(U2 − σ2
1)/ε

+(σ2
1 − Ω2)(4h2U4

−3((σ2
1 − Ω2)2 + σ2

1τ2U2)R
2

1

−2((σ2
2 − Ω2)2 + σ2

2τ2U2)R
2

2)

−4((σ2
2 − Ω2)2 + σ2

2τ2U2)
(σ2

1 − Ω2)R1R2

4((σ2
1 − Ω2)2 + σ2

2τ2U2)
(σ2

2 − Ω2)R1R2

−4τh2ω2U4(U2 − σ2
2)/ε

−(σ2
2 − Ω2)(4h2U4

−3((σ2
2 − Ω2)2 + σ2

2τ2U2)R
2

2

−2((σ2
1 − Ω2)2 + σ2

1τ2U2)R
2

1)




(6.18)
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First of all, we consider the origin (R1 = R2 = 0):

AR =
U

2(σ2
1 − σ2

2)

(
ε(σ2

1 − Ω2)− τω2(σ2
1 − U2) 0

0 −ε(σ2
2 − Ω2) + τω2(σ2

2 − U2)

)

In this case, AR always has at least one unstable eigenvalue whatever the
value of τ is. This fact represents the instability of the system at the origin.

The second and the third equilibrium points to be analyzed are R1 = 0,
R2 = 2

√
h2U4(σ2

2−Ω2)−τh2ω2U4(σ2
2−U2)/ε

(σ2
2−Ω2)((σ2

2−Ω2)2+σ2
2τ2U2)

and R1 = 2
√

h2U4(σ2
1−Ω2)−τω2h2U4(σ2

1−U2)/ε

(σ2
1−Ω2)((σ2

1−Ω2)2+σ2
1τ2U2)

,
R2 = 0. Considering the �rst of these two points the state matrix AR be-
comes

AR =
U

2(σ2
1 − σ2

2)




−ε(σ2
1 − Ω2)− τω2(σ2

1 − U2)
+2τω2(σ2

2 − U2)
(σ2

1 − Ω2)/(σ2
2 − Ω2)

0

0
2(ε(σ2

2 − Ω2)
−τω2(σ2

2 − U2))




(6.19)

Considering the second of these two equilibrium points, we get the following
state matrix AR:

AR =
U

2(σ2
1 − σ2

2)




−2(ε(σ2
1 − Ω2)

+τω2(σ2
1 − U2))

0

0
ε(σ2

2 − Ω2) + τω2(σ2
2 − U2)

−2τω2(σ2
1 − U2)

(σ2
2 − Ω2)/(σ2

1 − Ω2)




(6.20)

For any pair of ωU and Ω there is a τ0 such that for τ ≥ τ0, either (6.19) or
(6.20) has both eigenvalues strictly negative. That means for τ ≥ τ0 there
is a limit cycle that is stable and attractive. This limit cycle corresponds to
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the solution calculated by the �rst harmonic method. The equilibrium point
for which R̄1 6= 0 and R̄2 6= 0 can not be analyzed by this method. In this
case, the periodic function de�ned by the composition of these two di�erent
sines has a too long period and the assumption that we can separate the
system into two di�erent time scales and apply the averaging method does
not hold any more. However, in the analyzed region, the �rst harmonic
method suggests just one limit cycle and this limit cycle is represented by
the equilibrium points previously analyzed.

The numerical simulations correspond in frequency and amplitude to the
limit cycle described by this analysis. Figure 6.5 represents a typical non
dimensional behavior associated to this kind of limit cycle:

• Extremely small structure displacement.

• Phase shift between the wake variable Q and the structure displacement
of 0◦ or 180◦.

• The system oscillates at the natural frequency (ωU) of the wake vari-
able.

6.4 VIV limit cycle: resonant case

The objective of this section is to study the stability of a limit cycle suggested
in section 6.2, in the particular cases where the structure natural frequency
Ω is close to the natural frequency of the vortex shedding ωU . The rigid
cylinder assumption gives ∂4Υ/∂z4 = ∂(T∂Υ/∂z)/∂z = 0, and the unique
natural pulsation Ω is the square root of the spring constant. The system
can be written as





Ϋ = −Ω2Υ− τUΥ̇ + hU2Q

Q̈ = −εU(Q2 − 1)Q̇− (ωU)2Q + aΫ

(6.21)

It is important to note that the speci�c limit cycle studied in this section
corresponds to cases where Ω and ωU are close to each other. So we can
de�ne the limit cycle frequency σ such |σ2 −Ω2| ¿ 1 and |σ2 − (ωU)2| ¿ 1.
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To use the averaging method, we suggest the following change of coordinates:




H1 = Υsin(σt) +
Υ̇
σ

cos(σt)

H2 = Υcos(σt)− Υ̇
σ

sin(σt)

Z1 = Q cos(σt)− Q̇

σ
sin(σt)

Z2 = −Q sin(σt)− Q̇

σ
cos(σt)

(6.22)

The detailed computations are given in appendix A. This change of coordi-
nates de�nes new dynamics, for which the averaging method is applied. On
the averaged dynamics, the following change of coordinates is applied





R2
H = H2

1 + H2
2

R2
Z = Z2

1 + Z2
2

sin θH = H1/RH

sin θZ = Z1/RZ

(6.23)

We are the left with the stability study of the equilibria for the following
system:





ṘH =
U

2σ
(−τσRH + hURZ cos(θZ − θH))

ṘZ =
1

2σ

(
−εUσ(

R2
Z

4
− 1)RZ + aRH(Ω2cos(θZ − θH)

−τUσ sin(θZ − θH)))

θ̇H =
1

2σ

(−Ω2 + σ2 + hU2 sin(θZ − θH)RZ/RH

)

θ̇Z =
1

2σ

(−(ωU)2 + σ2 + hU2a + a(−Ω2 sin(θZ − θH)

−τUσ cos(θZ − θH) )RH/RZ)

(6.24)

The equilibria of (6.24) are numerically computed. For values of ωU ' Ω, the
tangent approximation around these equilibria indicates stable limit cycles.
These equilibria correspond in frequency and amplitude to the limit cycles
described in 6.2 and observed in numerical simulations, with this parameter
set. Figure 6.6 represents a typical behavior of this kind of limit cycle:
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• Ampli�ed structure displacement.

• Delay of 90◦ between the wake variable Q and the structure displace-
ment.

• The system oscillates at the natural frequency of the structure.
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Figure 6.5: Rigid cylinder undergoing vortex induced vibration in a non
resonant case: structure displacement Υ (continuous line), wake variable Q
(dashed line)

105



5 10 15 20

−4

−3

−2

−1

0

1

2

3

4

5

6

Time (s)

R
at

io
 (

di
sp

la
ce

m
en

t)
/(

st
ru

ct
ur

e 
di

am
et

er
)

 

 
Structure position
Wake variable

Figure 6.6: Rigid cylinder undergoing vortex induced vibration in a resonant
case: Structure displacement Υ (continuous line), wake variable Q (dashed
line)
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Chapter 7

VIV control

This chapter proposes a control system to reduce the mechanical fatigue
associated to the VIV. The riser top end is the unique part of the riser
that is non-submerged and easily accessible, as the remaining part of the
structure is underwater and more di�cult to access. So the proposed idea is
to introduce an active control using actuators at the riser top end, because of
the ease of installation and maintenance in this non-submerged part, and the
less aggressive environment for the actuators. A vibration sensor is required,
and is the unique submerged part of the control system. Note that some
of the new risers are already equipped with a sensor to measure the angle
between the riser bottom end and the wellhead; this sensor can be used to
calculate the vibration of the structure close to the wellhead.

The phenomenological model presented in section 6.1 is used to model the
structure undergoing VIV. This model gives to the structure a behavior in
amplitude and frequency that �ts real measurements, in the sense that the
average radius of the the limit cycle, as well as its associated oscillation
period, are correctly represented. A more detailed picture of the interaction
between the structure and the hydrodynamic forces would be much more
complicated to accurately model. This discards the design of observers or
control laws that are based upon accurate estimations of the hydrodynamic
forces.

The chosen approach is to attenuate the vibration associated to the most
excited frequency. It uses a control only based on the structure behavior
at this frequency. This choice for the control design bene�ts from the fact
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that VIV frequencies are low damped and that the vortex shedding along the
structure ampli�es small displacement at this frequency. These two features
help the force applied at the riser top end to propagate along the structure,
so a small force amplitude is required to modify the whole structure behavior.

Physically, the actuators system consists in a device or a group of devices
able to apply a force over the riser top end. This force should be in the same
direction than the main vibrations. In practical cases, the direction of the
sea current can change, as well as the main direction of the vibrations. So
the actuators must be able to apply a force in any direction that is included
in the plane perpendicular to the riser top end. An example is given by an
hydraulic piston over a kind of rotatory table, with its rotation axis coinciding
with the riser axis. Another example of actuators is a group of pistons in
two perpendicular directions in the plan de�ned by the axis of the riser top
end. Further details of these technologies are presented by Fortaleza et al in
[13].

7.1 VIV modal analysis

The considered model comes from the spatial discretization of equation (6.3)
in N points, with a distance l between two points. Yj represents the struc-
ture transversal displacement at point j. The state vector is given by X =
(Y1, . . . , YN , Ẏ1, . . . , ẎN)T . The control u is de�ned as a force at the riser top
end, giving:





Ẋ = AX + Bu + P, withA =

(
0 I

−K −O

)

y = CX

P represents the system disturbances generated by the nonlinear behavior of
the vortex shedding. O is a diagonal matrix that writes O = τI, where I is
the N -dimensional identity matrix. O contains the accelerations associated
to the hydrodynamic damping. Vector B is the acceleration of the structure
associated to the riser's top end displacement, B = (0.., 1/(ml))T . The
system output y is the displacement of the discretization point closest to the
riser bottom end Υ(0, t). The output equation can be expressed as y = CX
for a given row-matrix C with only one non-zero entry C = (1, 0.., 0). The
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sti�ness matrix K is a symmetric matrix containing the structure internal
accelerations, according to the discretization scheme of the �nite di�erence
method. For instance, a restricted 3× 3 part of K writes

K(N−3...N,N−3...N) =
(

6EJ/(l4m) + 2(T0 + mgl(N − 2))/(l2m)

−4EJ/(l4m)− (T0 + mgl(N − 1.5))/(l2m)

EJ/(l4m)

−4EJ/(l4m)− (T0 + mgl(N − 1.5))/(l2m) EJ/(l4m)

6EJ/(l4m) + 2(T0 + mgl(N − 1))/(l2m) −4EJ/(l4m)− (T0 + mgl(N − 0.5))/(l2m)

−4EJ/(l4m)− (T0 + mgl(N − 0.5))/(l2m) 6EJ/(l4m) + 2(T0 + mglN)/(l2m)

)

The VIV frequencies belong to the set of the structure's natural frequen-
cies, because of the e�ect of lock-in between the vortex shedding and the
structure natural frequencies (for further information see Govardhan and
Williamson [18]).

Proposition 8 The structures with low damping that undergo VIV have a
behavior close to the behavior of the resonant mode locked with the VIV main
frequency. So, an external force at this frequency presents a ±90◦ phase shift
with respect to the generated vibration.

The following assumption is required to prove the previous proposition.

Assumption An appropriate change of coordinates expresses the system in
its so-called modal base, as presented in subsection 3.1.1. For low damped
systems, the structure forces plus the linear damping can be represented in
the modal base by N second order transfer functions in parallel:

y(s)

u(s)
=

N∑
j=1

bj(ιjs + 1)

s2 − (λj + λj)s + |λj|2
(7.1)

In (7.1), λ1..N and λ1..N are the system eigenvalues; b1..N and ι1..N are real
constants associated to the transfer functions. If the current is assumed to
present small variations along the z-direction, the damping, proportional to
the current, also presents small variations. Combined to the fact that the
damping is small, this implies that ιj ¿ 1 (see [8]).

Proof For an excitation with a pulsation |λj| (i.e. s = i|λj|) associated to
a low damped mode (λj + λj ∼ 0), the amplitude of the resonant mode is
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expressed by
lim

Re(λj)→0

∣∣∣∣
bj(1 + i|λj|ιj)
((λj + λj)|λj|)

i

∣∣∣∣ = ∞

The excited mode has an amplitude that tends toward in�nity, thus it has a
larger amplitude than the �nite sum of the bounded amplitudes of the others
modes. So, the structure dynamics can be approximated by the dynamics of
the corresponding excited mode:

y(i|λj|)
u(i|λj|) =

bj(ιji|λj|+ 1)

2Re(λj)|λj| i (7.2)

As ιj ¿ 1, the transfer function for s = i|λj| tends toward a purely imaginary
number. Thus the displacements tend to become orthogonal (phase = ±90◦)
to the force that generates them.

This is a key aspect to understand the behavior of a structure undergoing
VIV, because VIV only have large amplitudes when they are associated to
these resonant frequencies. To illustrate this point, �gure 7.1 compares the
Bode diagram of a 200th order system and the Bode diagram of a second
order model that only represents one system mode.

After modal reduction, once a single mode that corresponds to pulsation
|λj| has been kept, the relation between the top end external force u(i|λj|)
and the displacement y(i|λj|) of another point of the structure, taken as the
output, is simply given by equation (7.2).

In the case of a force that has the same frequency than a natural mode,
for all the points in phase with the force application point (bj > 0), the
phase between the displacements of these points and the force is −90◦; for
the others points (bj < 0), the phase shift is 90◦. This property allows to
determine the required phase relation between a measured vibration and the
top riser force, in order to generate a vibration in phase opposition.

7.2 Control system

The idea is to generate a vibration in phase opposition (±180◦) to the VIV, in
order to neutralize them (see Fortaleza et al in [14]). The control strategy uses
some system information: VIV have large amplitudes only for the natural
frequencies of the structure [5], and for these frequencies, the modal analysis
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Figure 7.1: Bode diagrams of the structure (continuous line) and the single
mode model

shows that structure displacements are orthogonal (±90◦) to the forces that
generate them. So, it is su�cient to add a ±90◦ shift to generate a vibration
in phase opposition.

Proposition 9 Using a top force with a phase shift of ±90◦ with respect to
the measured vibration can reduce VIV.

Proof The relation (7.2) can be rewritten, considering ιj = 0 and including
the main component of the vortex shedding disturbance yP (i|λj|), as

y(i|λj|) =
bj

2Re(λj)|λj| iu(i|λj|) + yP (i|λj|) (7.3)

The external force at the riser top end is such that (±90◦ shift) u(i|λj|) =
−iκy(i|λj|), where κ has the same sign of bj. Thus the equation (7.3) becomes

y(i|λj|) =
bjκ

2Re(λj)|λj|y(i|λj|) + yP (i|λj|) (7.4)
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Equation (7.4) gives a relationship between the vortex shedding excitation
and the structure vibration:

y(i|λj|) = yP (i|λj|)
(

1− bjκ

2Re(λj)|λj|
)−1

(7.5)

According to equation (7.5), as bjκ > 0 and Re(λj) < 0, the in�uence of an
unmodi�ed disturbance yP on y is reduced at the resonance frequency.

However, the following limits of this approach must be noticed:

• According to simulations and experimental results, the gain κ must be
kept su�ciently small. Otherwise, movements at the structure's top
end become too large, regarding the assumptions made in the control
design: the structure behavior cannot be reduced to the behavior of a
simple oscillator anymore. For instance, for large κ, the structure can
su�er from large vibrations, due to a lock in with vortex shedding at
another natural frequency.

• It is well known that disturbance yP increases when the amplitude of
y is reduced, i.e. when the control is applied. However the analysis
presented in chapter 6 and the modal analysis presented in section 7.1
suggest that, if κ is chosen small enough for the original frequency of
VIV (open loop frequency) to remain unchanged (no switch to another
structure mode), the control law works. The control system can be
analyzed as an arti�cial damping increase, that reduces the amplitude
of the limit cycle generated by the vortex shedding. Yet, as it can be
seen, for example in �gures 7.3 and 7.4, the control can slightly increase
the mean amplitude of the vibrations for some speci�c points of the
structure, those close to the excited mode nodes. As these regions have
small displacements, the impact of their vibrations over the mechanical
fatigue remains negligible.

The control system is made of two physical parts: an actuator to impose
horizontal forces at the riser top end, and two sensors, one close to the
riser top end, and the other close to the riser bottom end. The system
starts in a VIV detection mode. In this mode, the system measures the
vibrations at the two points, detects their amplitudes and the phase shift
between them. Once the vibration amplitude crosses a speci�ed threshold, a
control law is generated, considering the main frequency of the VIV and the
phase shift between the displacement at the bottom measure point and the
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force application point. This part identi�es if bj is positive or negative, thus
it de�nes the sign of κ. This control law is designed with three features:

• A bandpass e�ect, that makes the control system only react to the
dynamics of the main frequency excited by the vortex shedding. This
condition avoids the control system to generate vibrations in other fre-
quencies.

• A phase shifter, to generate a force at the same frequency, but in phase
opposition to the VIV.

• A gain κ, between the measured vibration and the force to be applied.
The value of this gain can be increased on-line, through an adaption
law, as long as the VIV frequency does not change.

Linear �lter These features can be implemented through the following
linear control law:

û(s)

ŷ(s)
=

2καs

s2 + 2αs + |λj|2 ×
±(|λj| − s)

|λj|+ s
(7.6)

Notice that, as the vibrations are perpendicular to the current, the reference
position at rest always corresponds to y = 0. That is why no reference
appears in equation (7.6). This transfer function combines two terms in
series. The �rst term is a second order bandpass. It �lters the signal, in order
to keep just a narrow frequency band around the excited natural frequency.
It also de�nes the gain between the measured signal and the top riser external
force. The second term is a phase shifter, that gives ±90◦ depending on the
sign of bj, identi�ed during the VIV detection mode.

The width of the frequency band is based on the precision of the main fre-
quency estimation. In the transfer function represented in equation (7.6),
the bandwidth is related to the damping constant α. Replacing s = i|λj| in
equation (7.6), it is readily veri�ed that this transfer function satis�es the
condition û(i|λj|) = −iκŷ(i|λj|).

Observer Dedicated observers provide another way to calculate the control
output with an orthogonal phase (±90◦). This is a two steps approach.
First, an observer, especially designed to observe periodic disturbances at
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the vibration known main frequency (that corresponds to |λj|), decomposes
the vibration into two terms (sine and cosine). Then the control is computed,
considering the adaptive gain κ and the orthogonal direction (±90◦). The
chosen observer is in the spirit of the work of Chauvin [7]. The signal to
be observed being y(t) = L1 sin(|λj|t) + L2 cos(|λj|t), with L = (L1, L2)

T ,
the observation ŷ of y, computed from the estimated gains L̂1 and L̂2, with
L̂ = (L̂1, L̂2)

T , is obtained by





dL̂1

dt
= α sin(|λj|t)(y − ŷ)

dL̂2

dt
= α cos(|λj|t)(y − ŷ)

ŷ = L̂1 sin(|λj|t) + L̂2 cos(|λj|t)

(7.7)

α is a tuning parameter, proportional to the width of the frequency band.
The larger α, the larger the in�uence of the frequencies close to |λj| over L.
The control is computed considering the adaptive gain κ and the orthogonal
direction ±90◦. For example, considering an orthogonal direction of −90◦,
the riser top end displacement can be computed as:

u(t) = κ( − cos(|λj|t) sin(|λj|t) )L(t) (7.8)

L represents the �rst terms of an estimated Fourier series. This method is
advantageous in cases where the system does not have a constant discretiza-
tion period. In these cases, the fact that the discretization period is not
constant makes variable the width of the frequency band, however it does
not change the main observed frequency |λj|.

7.3 Mechanical fatigue

The accurate estimation of the mechanical fatigue of o�shore structures re-
mains a research domain. However, an estimation of this mechanical fatigue
can be done, based on the intensity of the maximum structure stress over a
cycle, and on the number of cycles that the structure material can support.
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Figure 7.2: Typical example of Wöhler curve

Normally a Wöhler curve is de�ned for each material. This is an experimen-
tal curve that relates the maximum stress over a cycle and the number of
cycles that the material can support. Figure 7.2 represents a typical example
of Wöhler curve.

The mechanical structures are designed to be on the right hand side of the
curve, thus they support a large number of stress cycles. In this region a
small change on the system stress represents a large change on the number
of cycles supported by the structure.

For a given frequency, the stress generated by the VIV is proportional to
the structure displacement. However the direct e�ect of a VIV reduction
over the reduction of the associated mechanical fatigue depends on other
structure parameters and on the e�ect of the other fatigue sources (drag
force, waves, etc). A safe assumption is to consider that the mechanical
fatigue in those cases is reduced by a factor of (Υc/Υo)

3, where Υc is the
system closed loop response and Υo the system open loop response. For the
numerical simulations presented in section 7.4, the control system provides
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a fatigue reduction of more than 70%. That is a rather good result for a
controller that only uses small displacements at the riser top.

7.4 Numerical simulations

Equation (6.3) is discretized using the �nite element method. The simulated
structure is a steel vertical riser held by rotary joints at both ends. The
tension at the riser bottom end is taken equal to zero. Geometric dimensions
and other constants used to simulate the system are presented in table 7.1.

Table 7.1: Structure dimensions and constants.

Type Value Unit
Height 103 m
External Diameter .2 m
Internal Diameter .18 m
Elastic Modulus 2.1× 1011 Pa
Steel Density 7.8× 103 kg/m3

Water Density 103 kg/m3

Two di�erent cases are simulated. The �rst case represents the structure
totally immersed, with a constant �ow along the structure. The considered
�ow speed is 0.1 m/s. The second case represents a marine current that is
constant with respect to time, but linearly increases from the sea bed (z = 0
m) to the surface, its speed is represented in m/s as U(z) = 0.05 + 0.00005z.

These two di�erent pro�les of sea current excite the same mode. The interest
of this choice is to show that the structure cross displacement has a form
mainly de�ned by the structure and its most excited mode j, and that the
sea current pro�le is important to de�ne the amplitude envelope. Note that
the structure behavior is much more complex than the one used for the
control design. However simulations show that the vibration control suitably
reduces the vibration envelope. The structure envelope is close to the modal
envelope de�ned by the associated eigenvectors (Vj, V j)

T .
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Figure 7.3: Cross-�ow displacement for a constant sea current: open loop
(dashed line) closed loop (continuous line)

In �gures 7.3 to 7.10, the vibrations are compared, considering the following
four aspects: cross-�ow displacements, speeds, highest punctual displacement
and its Fourier transform. The interest is to compare the vibration intensity
and to observe the impact of the feedback control along the structure and
on the other structure modes. The cross-�ow displacements presented in
�gures 7.3 and 7.4 present a displacement reduction of 35% at the critical
points. It is interesting to observe a small amplitude ampli�cation in the
minimum displacement regions. This phenomenon happens because of the
non linear damping. A vibration reduction in the main frequency increases
the lift forces, and consequently increases the vibrations associated to other
modes.

The cross-�ow speeds presented in �gures 7.5 and 7.6 show an average speed
decrease of almost 35%, the same rate as for the displacement reduction.
This point shows that the structure under active control keeps the same rela-
tion between displacement and speed, and it happens because the structure
continues to oscillate with the same natural main frequencies than in open
loop. The results are interesting, noticing that the control simply implies a
punctual force that generates a displacement of the riser top end about 10%
of the maximum punctual displacement, and a reduction of the mechanical
fatigue associated to the VIV up to 70%.
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Figure 7.4: Cross-�ow displacement for a variable sea current: open loop
(dashed line) closed loop (continuous line)

Figures 7.7 and 7.8 show an important reduction of the vibration associ-
ated to the main frequency. They also show a slight ampli�cation of other
modes, because the lift force increases when the structure mean speed is re-
duced. These other frequencies remain of minor importance for the structure
fatigue, according to their small amplitudes and to the fact that the dis-
placement peaks do not coincide. Figure 7.9 shows a single mode open loop
behavior due to the uniform current pro�le, which becomes multi-modal in
closed loop, thus showing the attenuation of the vibrations for the structure
natural frequency that is the closest to the vortex shedding natural frequency.
Figure 7.10 shows this tendency for a case where the open loop has already
a multi-modal behavior.
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Figure 7.5: Cross-�ow speed for a constant sea current: open loop (dashed
line) closed loop (continuous line)
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Figure 7.6: Cross-�ow speed for a variable sea current: open loop (dashed
line) closed loop (continuous line)
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Figure 7.7: Cross-�ow highest vibration Fourier transform for a constant sea
current: open loop (dashed line) closed loop (continuous line)
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Figure 7.8: Cross-�ow highest vibration Fourier transform for a variable sea
current: open loop (dashed line) closed loop (continuous line)
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Figure 7.9: Cross-�ow highest displacement for a constant sea current: open
loop (dashed line) closed loop (continuous line)
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Figure 7.10: Cross-�ow highest displacement for a variable sea current: open
loop (dashed line) closed loop (continuous line)
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Chapter 8

Reduced scale system

This chapter �rst presents, in section 8.1, the reduced scale system built
at IFP Lyon. The main objectives of this experiment are to reproduce the
phenomenon of vortex induced vibration in laboratory conditions and to
test the proposed control strategy on a real system. This experimental set
can be divided into three di�erent parts: the hydraulic plant, the structure
undergoing VIV and the control system. In section 8.2, experimental data
are compared with numerical simulations, on a model that represents the
experimental set. Section 8.3 is devoted to numerical simulations in open
and closed loop. In section 8.4, the corresponding experimental results are
presented and discussed.

8.1 Experimental set description

The reduced scale system is depicted in �gure 8.1

8.1.1 Hydraulic plant

The hydraulic plant generates the �ow around the structure. It can be di-
vided into three parts:

123



Figure 8.1: Experimental set overview

• Basin: it is the place where the studied structure is submerged. It has
two honeycomb panels to avoid a turbulent �ow. They separate the
zone close to the studied structure and the zones of �ow input and
output.

• Flow lines: they link the pumping system to the basin, with six inputs
and six outputs. The associated twelve valves are used to change the
�ow pro�le in the basin.

• Pumping system: it is made of a centrifugal pump and a variable-
frequency drive. The �ow range of the pump is limited by the available
Npsh, the minimum and maximum rotation speeds of the pumping
system. In the current con�guration, the pumping system can deliver
a �ow between 20 and 60 m3/h.
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Table 8.1: Reduced structure dimensions and constants.

Type Value Unit
Height 1.3 m
Submerged part 1.1 m
Flow speed 0.04 m/s
External Diameter 11× 10−3 m
Internal Diameter 9× 10−3 m
Elastic Modulus 5.6× 106 Pa
Bottom added Mass 80× 10−3 kg
Viton Density 1.96× 103 kg/m3

Water Density 103 kg/m3

Upper bounder condition Fixed top -
Lower bounder condition Free bottom -

8.1.2 Structure undergoing VIV

The main objective during the design of the reduced scale structure was
to reproduce the phenomenon of vortex induced vibration over a �exible
structure. The chosen solution is a tube made of a special polymer called
Viton, the characteristics of which are presented in table 8.1.

One punctual mass was added at the structure bottom end. Its main ob-
jective is to increase the tension along all the structure, thus to reduce the
structure static deformation in the �ow direction. The fact that the structure
is almost vertical avoids that any part of the structure gets out of the region
of laminar current. With the data presented in table 8.1, it is possible to
calculate some systems characteristics: the structure has a Reynolds number
around 430; its three �rst natural frequencies are respectively close to 0.13
Hz, 0.56 Hz and 1.25 Hz. The natural frequency of the vortex shedding ω is
given in rad/s by

ω =
2πStU

d
(8.1)

where St represents the Strouhal number [10]. For the experimental set, the
Strouhal number can be considered equal to 0.2, so the natural frequency of
the vortex shedding is close to 4.4 rad/s or 0.7 Hz. These conditions have
been chosen to produce a VIV at the same frequency than the structure
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Figure 8.2: Stereovision system diagram

second mode, thus to test the theory in the less intuitive case, where the
structure top and bottom ends are in phase opposition. In this case, the
force at the structure top end should be applied with a phase shift of +90◦

with respect to the measured bottom end displacement.

8.1.3 Control system

The control system is physically made of three parts: cameras, computer and
actuator. There are two cameras that have well-known angles and positions
in a cartesian plane, as presented in �gure 8.2. The measured point is the
structure bottom end. Its position in the space is calculated by comparing
the images from the two cameras and by using the stereovision principle
presented by Sabri in [33]. The computer uses a binarization technique to
localize the structure and its bottom end in each frame. Then, it calculates
the tridimensional position of the structure bottom end by comparing the
frames of the two cameras.

The used computer does not use a real-time operating system. The actuators
are servo-motors able to introduce an external force over the structure, by
forcing the displacement of its upper part in the three cartesian directions.
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Figure 8.3: Open loop cross-�ow displacement: numerical simulation and
measured data

Even if the experimental set can apply external forces over the structure in
the three directions, the lack of a convenient model to describe the structure
undergoing VIV in the other directions limits the use of external forces to
the direction of the main vibrations (horizontal cross-�ow direction).

8.2 Comparative analysis between numerical and
experimental results

The studied structure is presented in section 8.1.2. A numerical model is
obtained trough the discretization using the �nite element method of equa-
tion (6.3) into 40 points. The results provided by this numerical model are
compared to the experimental results in �gures 8.3 to 8.6.

Figure 8.3 presents the open loop cross �ow displacement of the structure bot-
tom end. The measured vibration is slightly di�erent to the vibration com-
puted with the numerical model. The two signals have a similar frequency
spectrum, even if the measured signal has a measure noise with components
in a large range of frequencies (see �gure 8.4).
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Figure 8.4: Fourier transform of the cross-�ow displacement (open loop):
numerical simulation and measured data

The numerical simulation and the measured data are also similar in the closed
loop case. In both cases, there is a vibration reduction of at least 30%.

Figure 8.5 presents the closed loop cross �ow displacement of the structure
bottom end. As in the open loop case, the measured vibration is slightly
di�erent than the vibration computed with the numerical model. The two
signals have a similar frequency spectrum, even if the measured signal has a
measure noise with components in a large range of frequencies (see �gure 8.6).

8.3 Numerical simulations

This section compares the open loop and closed loop results provided by
the numerical model. In �gures 8.7 to 8.10, the vibrations are compared,
considering the following four aspects: cross-�ow displacements, speeds, bot-
tom end punctual displacement and its Fourier transform. The interest is to
compare the vibration intensity and to observe the impact of the feedback
control along the structure and on the other structure modes.
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Figure 8.5: Closed loop cross-�ow displacement: numerical simulation and
measured data

The closed loop cross-�ow displacements in �gure 8.7 present a displacement
reduction of 30% with the use of top end displacements smaller than 10%
of the maximum punctual displacement. Section 8.4 presents similar results
obtained on the experimental set.

The cross-�ow speed presented in �gure 8.8 shows an average speed decrease
of 30% in the closed loop case. It is the same rate than for the displacement
reduction. This point shows that the structure under active control keeps the
same relation between displacement and speed, this happening because the
structure continues to oscillate with the same main frequency than in open
loop.

Figure 8.9 shows an important reduction of the vibration associated to the
main frequency. Figure 8.10 con�rms this single mode behavior, that is due
to the uniform current pro�le.
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Figure 8.6: Fourier transform of the cross-�ow displacement (closed loop):
numerical simulation and measured data

8.4 Experimental results and discussion

This section presents the results obtained on the reduced scale system, using
the same control system than for the numerical simulations of section 8.3.
The current con�guration of the experimental set only permits the measure-
ment of the structure bottom end displacement. Thus in �gures 8.11 and 8.12,
the vibrations are compared by only considering displacements of the struc-
ture bottom, as well as its Fourier transform. The cross-�ow displacements
presented in �gures 8.11 present a displacement reduction of about 35% at
the measured point.

The experimental results kindly agree with simulations. In the tested cases,
they are even slightly better than the numerical results. Some facts can
justify these di�erences:

• The �ow pro�le is considered as exactly uniform in the numerical sim-
ulations, however in practice it presents small variations along the ver-
tical z-direction.

• There are inaccuracies in the structure data used to generate the nu-
merical model.
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Figure 8.7: Cross-�ow mean displacement amplitude (open and closed loop):
numerical simulation

• The use of phenomenological model that was developed to represent the
VIV on its limit cycle. The increase of lift force due to the reduction of
the vibrations is maybe slightly smaller in reality than in the numerical
simulations.

The reduced scale system was useful to validate the control strategy, the nu-
merical simulations and the principle of a vibration reduction system using
a measurement point away from the force application point. This valida-
tion has been made in presence of a strong measure noise generated by the
camera discretization (see �gure 8.11). This also shows the robustness of the
approach. From an economical point of view, the main result is the reduction
of 35% of the vibrations, with the use of a minimum energy control law. Such
a reduction has an important impact over the service life, as it represents a
fatigue reduction due to the VIV of more than 70%.
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Figure 8.8: Cross-�ow mean speed amplitude (open and closed loop): nu-
merical simulation
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Figure 8.9: Fourier transform of the cross-�ow bottom end vibration ( open
and closed loop): numerical simulation
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Figure 8.10: Cross-�ow bottom end displacement (open and closed loop):
numerical simulation
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Figure 8.11: Measured cross-�ow displacement: open and closed loop
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Figure 8.12: Fourier transform of the measured cross-�ow displacement: open
and closed loop
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Chapter 9

Conclusion for the VIV control
part

This research work presented the fundamental characteristics of long o�-
shore structures undergoing vortex induced vibrations. The phenomenologi-
cal model of the �uid-structure interaction that is used correctly represents
real cases. A dedicated vibration control strategy has been developed. It is
based on the modal analysis and the limit cycle behavior generated by the
vortex shedding.

In the case of structures undergoing VIV, the objective of an active control
is to reduce the structure displacements. This problem has been analyzed
through the study of a system with a stable and constant reference position,
associated to a special disturbance source. An accurate estimation of this
disturbance source was not possible in the studied case, because of the impos-
sibility to measure the sea current and the riser position all along the depth.
However, the fact that these vibrations have speci�c frequencies and an e�ect
all along the structure, guided the work toward a solution that reduces the
displacement amplitudes associated to these special frequencies.

This system has interesting features: VIV reduction almost all along the
riser, small top forces and small associated displacements, an adaptive con-
cept using two sensors, that can be used to design the controller by on-line
identi�cation of the main vibration frequency and amplitude, thus eliminat-
ing the need to estimate which structure mode is excited.
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The displacement and speed reductions of 35% all along the structure are
rather good results, noticing that the control simply implies a punctual force
that generates a displacement of the riser's top end (of about 10% of the
maximum punctual displacement). The �nal result concerning the mechani-
cal fatigue of the structure is a reduction of more than 70% of the mechanical
fatigue associated to the VIV. These results were obtained with a simple and
robust control system, that requires small actuators and a low power con-
sumption.

Perspectives The control system is only based on the modal behavior
of the structure. Further works could consist in analyzing the results of
a larger test campaign on the experimental set. This campaign could test
di�erent structures and current pro�les, to validate the control system for
a larger group of cases. A perspective to improve the control performance
is to consider in the control design the delay due to the mechanical wave
propagation between the control application point and the measure point.
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Appendix A

Computations for the wake model
in the resonant case

We here detail the study sketched in section 6.4.

The objective of this section is to study the stability of a limit cycle suggested
in section 6.2, in the particular case where the structure natural frequency
Ω is close to the natural frequency of the vortex shedding ωU . The rigid
cylinder assumption gives ∂4Υ/∂z4 = ∂(T∂Υ/∂z)/∂z = 0, and the unique
natural pulsation Ω is the square root of the spring constant. The system
can be written as





Ϋ = −Ω2Υ− τUΥ̇ + hU2Q

Q̈ = −εU(Q2 − 1)Q̇− (ωU)2Q + aΫ

(A.1)

It is important to note that the speci�c limit cycle studied in this section
corresponds to cases where Ω and ωU are close to each other. So we can
de�ne the limit cycle frequency σ such |σ2 −Ω2| ¿ 1 and |σ2 − (ωU)2| ¿ 1.
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To use the averaging method, we suggest the following change of coordinates:




H1 = Υsin(σt) +
Υ̇
σ

cos(σt)

H2 = Υcos(σt)− Υ̇
σ

sin(σt)

Z1 = Q cos(σt)− Q̇

σ
sin(σt)

Z2 = −Q sin(σt)− Q̇

σ
cos(σt)

(A.2)

So we can rede�ne the transverse displacement Υ, the wake state Q and their
derivatives as:





Υ = H1 sin(σt) + H2 cos(σt)

Υ̇ = σ(H1 cos(σt)−H2 sin(σt))
Q = Z1 cos(σt)− Z2 sin(σt)

Q̇ = −σ(Z1 sin(σt) + Z2 cos(σt))

(A.3)

The new di�erential system can be de�ned as




Ḣ1 =
cos(σt)

σ

(−(Ω2 − σ2)(H1 sin(σt) + H2 cos(σt))

−τUσ(H1 cos(σt)−H2 sin(σt)) + hU2(Z1 cos(σt)− Z2 sin(σt))
)

Ḣ2 =
sin(σt)

σ

(
(Ω2 − σ2)(H1 sin(σt) + H2 cos(σt))

+τUσ(H1 cos(σt)−H2 sin(σt))− hU2(Z1 cos(σt)− Z2 sin(σt))
)

Ż1 =
sin(σt)

σ

(
((ωU)2 − σ2 −mU2g)(Z1 cos(σt)− Z2 sin(σt))

−εUσ(Z1 sin(σt) + Z2 cos(σt))((Z1 cos(σt)− Z2 sin(σt))2

−1) + a(Ω2(H1 sin(σt) + H2 cos(σt))
+τUa(H1 cos(σt)−H2 sin(σt))) )

Ż2 =
cos(σt)

σ

(
((ωU)2 − σ2 −mU2g)(Z1 cos(σt)− Z2 sin(σt))

−εUσ(Z1 sin(σt) + Z2 cos(σt))((Z1 cos(σt)− Z2 sin(σt))2

−1) + a(Ω2(H1 sin(σt) + H2 cos(σt))
+τUσ(H1 cos(σt)−H2 sin(σt))) )

(A.4)

Using the average method, the "slow" dynamic of equation (A.4) can be
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de�ned as follows:




Ḣ1 =
1

2σ

(−(Ω2 − σ2)H2 − τUσH1 + hU2Z1

)

Ḣ2 =
1

2σ

(
(Ω2 − σ2)H1 − τUσH2 + hU2Z2

)

Ż1 =
1

2σ
(−((ωU)2 − σ2 − hU2g)Z2 − εUσZ1

(
Z2

1 + Z2
2

4
− 1

)

+a(Ω2H1 − τUσH2)
)

Ż2 =
1

2σ
(((ωU)2 − σ2 − hU2g)Z1 − εUσZ2

(
Z2

1 + Z2
2

4
− 1

)

+a(Ω2H2 + τUσH1)
)

(A.5)

Using a new system of coordinates de�ned as




R2
H = H2

1 + H2
2

R2
Z = Z2

1 + Z2
2

sin θH = H1/RH

sin θZ = Z1/RZ

(A.6)

we can rewrite the system (A.5) in the following way:




ṘH =
U

2σ
(−τσRH + hURZ(sin θH sin θZ + cos θH cos θZ))

ṘZ =
1

2σ

(
−εUσ(

R2
U

4
− 1)RU + aRH(Ω2(sin θH sin θZ

+cosθH cos θZ)− τUσ(sin θZ cos θH − cos θZ sin θH)))

θ̇H =
1

2σRH cos θH

(−(Ω2 − σ2)RH cos θH

+hU2RZ(sin θZ − sin θH(sin θH sin θZ + cos θH cos θZ))

θ̇Z =
1

2σRZ cos θZ

(−((ωU)2 − σ2 − hU2a)RZ cos θZ

+aRH(Ω2 sin θH − τUσ cos θH − sin θZ(Ω2(sin θH sin θZ

+ sin θH sin θZ) −τUσ(sin θZ cos θH − cos θZ sin θH))))

(A.7)

It is possible to transform the products of the trigonometric functions into
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sums and rewrite equation (A.7) as




ṘH =
U

2σ
(−τσRH + hURZ cos(θZ − θH))

ṘZ =
1

2σ

(
−εUσ(

R2
Z

4
− 1)RZ + aRH(Ω2cos(θZ − θH)

−τUσ sin(θZ − θH)))

θ̇H =
1

2σ

(−Ω2 + σ2 + hU2 sin(θZ − θH)RZ/RH

)

θ̇Z =
1

2σ

(−(ωU)2 + σ2 + hU2a + a(−Ω2 sin(θZ − θH)

−τUσ cos(θZ − θH) )RH/RZ)

(A.8)

The system can be represented with only three variables. So we propose to
replace θZ by β de�ned by β = θZ − θH . The fact that this reduction is
possible means that the system has one degree of freedom.





ṘH =
U

2σ
(−τσRH + hURZ cos β)

ṘZ =
1

2σ

(
−εUσ(

R2
Z

4
− 1)RZ + aRH(Ω2cosβ − τUσ sin β)

)

θ̇H =
1

2σ

(−Ω2 + σ2 + hU2 sin βRZ/RH

)

β̇ =
1

2σ

(
−(ωU)2 + Ω2 + hU2a− sin β(hU2 RZ

RH

+ aΩ2RH

RZ

)

−aτUσ cos β
RH

RZ

)

(A.9)

The numerical solutions of the equilibrium point show that for values of
ωU ' Ω, there is a stable equilibrium point for system represented by equa-
tion (A.9). These equilibrium points correspond in frequency and amplitude
to the limit cycles described in 6.2 and observed in non dimensional numerical
simulations, with this parameter set.
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