
HAL Id: pastel-00006032
https://pastel.hal.science/pastel-00006032

Submitted on 19 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocation Distribuée de Requête dans les Réseaux de
Capteur Sans Fil

Bing Han

To cite this version:
Bing Han. Allocation Distribuée de Requête dans les Réseaux de Capteur Sans Fil. domain_other.
Télécom ParisTech, 2009. English. �NNT : �. �pastel-00006032�

https://pastel.hal.science/pastel-00006032
https://hal.archives-ouvertes.fr

École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

Thèse

présentée pour obtenir le grade de docteur

de l’Institut Télécom, TELECOM ParisTech

Spécialité : Informatique et Réseaux

Bing HAN

Allocation Distribuée de Requête
dans les Réseaux de Capteur Sans Fil

Soutenue le 07 septembre 2009 devant le jury composé de

Annie Gravey TELECOM Bretagne Président
Jean-Yves Le Boudec EPFL Rapporteurs
David Simplot-Ryl INRIA Lille - Nord Europe Rapporteurs
Marcelo Dias De Amorim CNRS LIP6 Examinateurs
Daniel Kofman TELECOM ParisTech Directeur de thèse
Gwendal Simon TELECOM Bretagne Directeur de thèse

École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

PhD Thesis

submitted in partial fulfillment of the requirement for
the degree of Doctor of Philosophy

in the Institut Télécom, TELECOM ParisTech

In: Computers and Networks

Bing HAN

Distributed Query Allocation in
Wireless Sensor Networks

Presented 07 September 2009 before the committee composed of

Annie Gravey TELECOM Bretagne President
Jean-Yves Le Boudec EPFL Reviewer
David Simplot-Ryl INRIA Lille - Nord Europe Reviewer
Marcelo Dias De Amorim CNRS LIP6 Examiner
Daniel Kofman TELECOM ParisTech Superviser
Gwendal Simon TELECOM Bretagne Superviser

To
my beloved parents

and
Emilie,

À
mes chères parents

et
Emilie,

iii

Acknowledgement

The work presented in this thesis has been carried out in both Paris and Brest,
where I met many brilliant scientists, colleagues and friends. I believe they deserve,
for their continuous supports which are indispensable in realizing this thesis, my
most profound gratitude.

I would like to thank first of all my supervisor Daniel Kofman, who offered me
the great opportunity to work in the Computer Science Department of TELECOM
ParisTech. He also introduced me to the Computer Engineering Department of
TELECOM Bretagne, where I met my supervisor Annie Gravey to whom I am
equally indebted for her warmly reception and insightful discussions and instructions
on the research works.

I would like to express my sincere appreciation to Gwendal Simon, who has
been instructing me on this thesis at both macro and micro levels. His eagerness
for excellence in the research works and his encouragements at difficult times both
have great influences on my research works. I will never forget the days we worked
intensively on the papers and the discussions we had that inspired me a lot of new
ideas. Many thanks to Jimmy Leblet and YiPing Chen, the collaboration with them
has has been pleasant and fruitful.

It is my honor that the jury members accepted the invitation and spent their
precious time helping me to improve this thesis. I wish equally to express my
gratitude to them.

My sincere appreciation to all members of both Computer Engineering Depart-
ment of TELECOM Bretagne and the Network and Computer Science Department
of TELECOM ParisTech, especially Myriam Morcel, Sophie Bérenger, Hélène Melke-
beke, Hayette Soussou and Armelle Lannuzel who perfectly take care of my frequent
demands on following the administrative procedures so that I have been able to
concentrate to the most extend on my research works.

I am also very much obliged to Jean-Yves Floch and Patrick Clément who pro-
vided their endless help on the working platforms, computers, networks, etc., to
Yannis Haralambous who, as an awful LaTex expert, gave me many instructions on
my first LaTex document, to Claude Chaudet and Maria Teresa Segarra, the dis-
cussions with them are always very interesting, to Lin Chen, Xiaoyun Xue, Lusheng
Wang, Yaning Liu, Stefano Secci, Erwing Sanchez Sanchez, Minh Thanh Ngo, Tuan
Dung N Guyen, An Phung-Khqc and Gabriela Athea Orez for the pleasant days
with them.

I am indebted to my parents Yuyou Han and Yahui Liu, who tried all their best
in ameliorating my living and studying conditions, gave me their full confidence
and encouraged me during the most difficult times. I am indebted to my wife Yun
(Emilie) Yang, whose endless patience and unconditional love pushes me forward. I
enjoyed very much many surprises she gave me and tasting her desserts is really a
fantastic experience.

Finally, I would like to thank Olivier Pothier, Catherine Lamy, Gregoire Pau and
unknown contributors to the “ENST these” LaTex template with which this thesis
is prepared.

iv

v

Résumé

Introduction Générale

Le réseau de capteurs sans-fil (Wireless Sensor Network, WSN) est un réseau sans-fil
composé des nœuds de capteurs distribuées charger de recueillir des informations sur
le monde physique. L’idée de WSN est de créer un système pour recueillir, traiter
et représenter l’information qui relie l’homme avec le monde physique. Beaucoup
d’efforts ont été faits au cours des dernières années à la fois sur les aspects théoriques
et applicatifs de WSNs et nous pouvons nous attendre à ce que le déploiement du
WSN à grande échelle soit possible dans un avenir proche. Cette thèse se concentre
sur le WSN à grande échelle qui peut potentiellement servir à de nombreux util-
isateurs dans une architecture ouverte, où chaque utilisateur dispose d’un contact
direct avec les capteurs. Nous allons nous référer à cette architecture de WSN avec
utilisateur mobile. WSN avec utilisateur mobile est une solution prometteuse pour
de nombreuses applications. Plusieurs utilisateurs du réseau peuvent agir comme
collecteurs de données travaillant ensemble pour un travail en commun ou ils peu-
vent également être les utilisateurs finaux qui n’ont pas de contact direct entre eux.
Dans les deux cas, l’équité parmi ces utilisateurs est une question importante.

Nous avons d’abord enquêté sur des questions d’équité avec un modèle de requête
simple. Dans ce modèle, plusieurs utilisateurs font une requête sur des capteurs
situés dans une région encerclée. La requête cercle est supposée avoir un diamètre
variable et centrée sur l’utilisateur. Un problème d’optimisation distribuée avec
des contraintes de congestion est formulée. Un algorithme heuristique est mis au
point pour rapprocher la solution optimale. Ensuite, un problème similaire avec un
modèle de requête discret est également étudié. Dans le modèle de requête discret, la
requête est mesurée par le nombre de sauts qu’elle est diffusée. Cette variation rend
le problème combinatoire et NP-difficile. Un problème sac à dos multidimensionnel
et avec de multiples choix est utilisé pour modéliser le problème. Le lexicographique
max-min d’équité et la couverture maximale de requêtes sont étudiés pour objectifs.
Des solutions distribuées sont proposées et leurs performances sont démontrées par
des simulations. Parce que la spécification ZigBee et la norme IEEE 802.15.4 sont
deux normes de fait des réseaux de capteurs sans fil, nous étudions les problèmes
d’un réseau de capteurs sans fil basé sur de telles technologies. Des propriétés
particulières de la structure arborescente ZigBee sont exploitées à garder l’algorithme
entièrement local ainsi qu’à limiter les communications dans le réseau. L’efficacité
des algorithmes est démontrée par simulations.

Alors que tous les sujets abordés à ce jour sont liés à la répartition de la
capacité dans les réseaux de capteurs sans fil avec de multiples utilisateurs, le
problème combinatoire derrière la version discrète, problème de sac à dos multi-
dimensionnel et à choix multiples, est très intéressant et mérite une attention parti-
culière. L’incohérence du temps pour obtenir la solution entre les problème avec des
paramètres similaires et du fort contraste entre les petits problèmes difficiles et des
grands problèmes faciles sont notre motivations pour de plus amples enquêtes sur
le problème lui-même. En premier, nous proposons des méthodes pour générer des

vi

WSN

Internet

Stockage Serveur

Nœud Puits

Utilisateur

Figure 1: Un réseau de capteurs sans fil avec un nœud-puits fixe.

problèmes avec différentes propriétés, nous essayons de résoudre plusieurs groupes de
cas, avec l’algorithme actuel/outils. Des propriétés particulières qui rendent difficiles
les cas ont été identifiées.

État d’art des Réseaux de Capteur

Le réseau de capteurs sans fil est considéré comme une méthode prometteuse pour de
nombreuses applications, y compris à la fois les applications militaires traditionnelles
et les nouveaux émergés dans les domaines scientifiques et civiles. Pour le premier,
il s’agit notamment de surveiller le champ de bataille, la frontière, les cibles mobiles,
etc. Pour la suite, surveillance de l’environnement, de volcan, des animaux sauvages
ou végétales sont des domaines d’application typiques dans l’étude scientifique, tan-
dis que d’autres applications pour la surveillance de sécurité d’architecture, mauvais
fonctionnement, de la santé des personnes et la circulation automobile, ou à faciliter
au cours de risque tels que les tremblements de terre, d’inondation ou d’incendie.
Évidemment, on est incapable d’énumérer toutes ces applications car elles sont en
pleine expansion dans de nombreuses régions où les (filaire) capteurs sont employés
à des fins de contrôle.

La conception de réseaux de capteurs sans fil dépend fortement de son appli-
cation. En fait, le choix des capteurs à bord, de la taille du nœud, le type de
nœud-puits, le mécanisme de communication, la structure du réseau et les logiciels
doivent être choisis avec soin pour répondre aux exigences particulières de la de-
mande. Nous allons nous concentrer uniquement sur l’aspect mise en réseau de
l’ensemble du système et d’identifier trois types d’architectures du réseau WSN. Si
les deux premiers ont trouvé leurs applications dans le monde réel, le troisième vient
juste d’émerger.

WSN avec nœud-puits fixe Dans certains WSN applications militaires et sci-
entifiques, les capteurs sont installés manuellement aux positions soigneusement
conçues pour former un réseau statique. Un nœud-puits est également installé à
une position fixe et des données sont envoyées à partir de capteurs au serveur cen-
tral par l’intermédiaire des nœud-puits. Nous appelons cela l’architecture de réseau
WSN avec nœud-puits fixe, comme le montre la Figure 1. Un problème évident de
WSN avec nœud-puits fixe est le goulot d’étranglement formé autour du nœud-puits,
à la suite de l’agrégation des données de tous les capteurs. Ce goulot d’étranglement
consume d’énergie sur les capteurs autour du nœud-puits beaucoup plus vite que

vii

CollecteurWSN

Internet

Stockage Serveur

Utilisateur

Figure 2: Un réseau de capteurs sans fil avec un nœud nœud-puits mobile.

Utilisateur

Utilisateur

WSN

Figure 3: Un réseau de capteurs sans fil avec des utilisateurs mobiles.

les autres capteurs et, enfin, quand ces capteurs sont épuisés, le reste du réseau est
séparé du nœud-puits. Installation de plusieurs nœud-puits dans le réseau permet
d’atténuer les goulots d’étranglement, cependant, cette façon de faire augmente à la
fois les investissements et la complexité du réseau. En WSN avec nœud-puits fixe,
le client ou l’utilisateur accède aux services fournis par le WSN à travers le back-end
serveur.

WSN avec nœud-puits mobile Dans certaines circonstances, il est impossible
ou inutile d’installer le capteur à une position exactement contrôlée et, parfois, les
capteurs ne peuvent pas former un réseau connecté au nœud-puits. Par exemple, une
densité faible de capteurs déployés est suffisant pour la tâche donc la distance entre
les capteurs est au-delà de leur distance de transmission maximum. En revanche, un
réseau est inutile et coûteux. Dans ce cas là, les chercheurs ont proposé d’utiliser cer-
tains dispositifs mobiles pour la collecte des données provenant des capteurs lorsque
les dispositifs se déplacent à l’intérieur de la gamme de transmission de capteurs.
Nous avons appelé ces appareils mobiles des nœud-puits mobiles et de l’architecture
de WSN avec nœud-puits mobile. Les nœud-puits mobiles sont également con-
nus comme les mulets de données ou les collecteurs de données dans la littérature.
Les données générées par les capteurs sont stockées temporairement avant qu’un
nœud-puits mobile se déplace à proximité, puis transféré au nœud-puits mobile, et
apporté au serveur pour le traitement et, enfin, fourni aux utilisateurs. Dans le
WSN avec nœud-puits mobile, le nœud-puits mobile est une partie du déploiement
de réseau, conçu, déployé et géré par l’opérateur du WSN. WSN avec nœud-puits
mobile atténue le goulot d’étranglement dans le WSN avec nœud-puits fixe. Figure 2
est une illustration brève de l’architecture WSN avec nœud-puits mobile.

WSN avec utilisateur mobile Dans les applications WSN au grand public, le
nombre d’utilisateurs potentiels du réseau sera très grand. Les architectures actuelles

viii

de réseau WSN avec les nœud-puits fixes ou les nœud-puits mobiles rencontrent des
difficultés d’évolutivité du service pour les utilisateurs via les back-end serveurs.
En outre, les utilisateurs de ce type de services sont généralement intéressés par
certaines informations sur leur environnement ambiant, c’est-à-dire les utilisateurs
sont intéressés par ce qui se passe à proximité. Ce type d’information comprend
la température, bruit, parking, intensité du trafic, la disponibilité de certains pro-
duits dans les supermarchés, etc. Dans ce cas là, un scénario plus efficaces de la
récupération de l’information pourrait être de laisser les utilisateurs communiquer
directement avec les capteurs collecter des informations avec les types de capteurs
qui l’entourent. Nous avons pour nom de cette architecture le WSN avec utilisa-
teur mobile, comme illustrée par la Figure 3. Nous soulignons également que le
WSN avec utilisateur mobile permet aux utilisateurs de profiter de plus de liberté
lors de l’interrogation des capteurs. Pour les requêtes portant sur une vaste zone
géographique, une transmission des données à la manière multi-saut est nécessaire.

WSN avec utilisateur mobile présente de nombreux avantages par rapport aux
deux architectures, notamment pour certains types de demandes. D’une part, de
nombreux types d’informations ont seulement valeur en temps réel et il n’est donc
pas nécessaire de les stocker pour un traitement ou pour des fins de vérification.
Par conséquent, les données peuvent être fournies aux utilisateurs par transmission
directe, sans l’aval du serveur au préalable. D’autre part, les capteurs dans ce
scénario ne peuvent être déclenchés que par une demande de l’utilisateur. S’il n’y
a pas de requête à traiter, les capteurs peuvent rester dans le mode consommation
minimisée. En outre, la communication se fait uniquement entre les utilisateurs
et les capteurs autour d’eux, les capteurs ne participent pas à la requête qui n’a
pas d’effet sur eux. En revanche, dans un WSN avec nœud-puits fixe, les capteurs
sans tâches de détection doivent aussi communiquer afin d’aider à la transmission
de données pour les autres, consommer de l’énergie.

WSN avec utilisateur mobile diffère de WSN avec nœud-puits fixe ou mobile dans
une manière très importante, c’est-à-dire que le WSN avec nœud-puits qu’il soit fixe
ou mobile n’est pas le consommateur final de l’information produite par les cap-
teurs. Ils agissent au nom de l’exploitant du WSN la collecte de données provenant
des capteurs, la transmission des données de back-end serveurs, les passerelles de
commandes à partir des serveurs de capteurs. Le dispositif utilisé est sélectionné à
la conception, leur scénario de requête est pré-programmée, leur position ou la tra-
jectoire est prévue, tous par l’opérateur. Par conséquent, le réseau est un système
fermé fournissant des services uniquement par certains back-end serveurs. En re-
vanche, l’architecture de WSN avec utilisateur mobile est plus ouverte pour les
utilisateurs d’une manière que les utilisateurs puissent recueillir directement des
données provenant des capteurs avec leurs appareils mobiles tels que des téléphones
portables ou les PDA. Toutefois, il convient de noter que le WSN avec utilisateur
mobile et les deux autres architectures ne sont pas mutuellement exclusives. Au
lieu de cela, les utilisateurs mobiles peuvent co-exister avec un nœud-puits fixe ou
mobile, ce qui donne une architecture hybride et plus flexible.

ix

Motivations et objectifs Cette thèse a été motivée par la collecte d’information
in-site appliquées à des applications du service public à grande échelle. Nous nous
sommes intéressés en particulier à l’architecture de WSN avec utilisateur mobile. Ces
applications présentent de plus en plus d’intérêts à la fois industriels et académiques.
Une architecture à plusieurs nœud-puits de mobile a été proposée dans [CM06]. Dans
cette architecture, les téléphones cellulaires sont équipés de plusieurs interfaces sans
fil: un réseau de base de communication mobile et l’autre pour communiquer avec
d’autres périphériques via les connexions sans fil courte distance, tels que Bluetooth
et ZigBee. Sur la base de ces téléphones cellulaires multi-radio, il est possible de
fournir des services de WSN utiles pour le grand public. Nous soulignons ici plusieurs
d’entre eux avec seulement leurs scénarios de base et les caractéristiques distinctes.

• Système d’information Omniprésent: Capteurs sans fil peuvent être déployés
le long des rues de la ville et les parkings afin que les pilotes puissent accéder
à l’information en temps réel sur le trafic à venir et les parkings disponibles
à proximité avec leurs téléphones cellulaires. Apparemment, on se soucie plus
généralement des informations de trafic sur une petite région, ou d’information
du parking autour de la destination.

• Système Contre-Émergence: Un autre domaine d’application pour un WSN
avec utilisateur mobile peut être le recueil d’information pendent des opérations
d’émergence. Nœuds de capteurs sans fil peuvent être déployées à l’intérieur
et autour d’un feu afin de faciliter l’opération. Avec certains dispositifs porta-
bles, les pompiers sont en mesure de recueillir diverses informations provenant
de capteurs qui les entourent, afin de prendre des bonnes actions afin qu’elles
puissent se tenir à l’écoute des explosions dangereuses, éviter d’être pris au
piège ou à localiser les victimes.

Nous insistons sur plusieurs caractéristiques de ces types d’applications et le
WSN avec utilisateur mobile ci-dessous:

• Le réseau de capteurs sans fil dans ce cas est plus orienté vers l’utilisateur
que les applications militaires ou scientifiques. Pour le système d’information
omniprésent mentionné ci-dessus, les utilisateurs ont accès aux services par un
contrat, devenant ainsi les clients du réseau. En conséquence, il est nécessaire
que les fournisseurs de services satisfont leurs clients. Pour les systèmes contre-
urgence, satisfaire les besoins fondamentaux de chaque agent est important
même s’il est plus probable qu’ils appartiennent à la même organisation.

• Les utilisateurs ne sont pas gérés par les opérateurs du réseau. S’il est vrai
que les appareils en service doivent répondre à certains besoins fonctionnels,
certains contrats entre les utilisateurs et l’opérateur sont nécessaires, les profils
utilisateur, tels que des mode d’accès, la position, etc. ne peuvent pas être
contrôlés par l’opérateur.

• Les utilisateurs sont autonomes et ils n’ont généralement pas de contact direct
les uns avec les autres. Au contraire, ils sont habituellement en concurrence
les uns avec les autres pour les ressources du réseau.

x

En vertu d’un tel environnement autonome, avec la contrainte de ressources
stricte, de multiples utilisateurs doivent partager les ressources communes de manière
satisfaisante en vue d’exploiter le réseau dans un état optimal en fonction de la pop-
ulation d’utilisateurs et de la répartition géographique. En particulier, on voudrait
empêcher que certains utilisateurs soient bloqués parce qu’ils entrent dans le réseau
après que les autres utilisateurs ont consommé toutes les ressources disponibles.
Cela exige d’enquêter sur une série de problèmes d’optimisation, qui sont au centre
des préoccupations de cette thèse.

Cette thèse vise les problèmes d’optimisation de réseau de l’origine du WSN
avec utilisateur mobile défini précédemment. Les problèmes seront élaborés avec la
programmation mathématique et résolues de manière analytique et algorithmique.
Deux objectifs d’optimisation seront étudiés, l’un est de maximiser la satisfaction de
tous les utilisateurs dans le réseau et l’autre est de donner à chaque utilisateur une
partie équitable du service fourni par le réseau. Les deux objectifs d’optimisation
soulignent davantage le côté utilisateur. Ce point de vue est considéré comme l’une
des nouveautés de cette thèse. Lorsque le WSN doit fournir les services à ses clients,
d’optimiser des paramètres au côté client, par exemple, leur gamme de requête,
est tout à fait logique. En conséquence, les paramètres au côté capteur qui sont
considérés comme critiques dans la littérature courante, comme l’efficacité de la
consommation d’énergie et de la durée de vie du réseau, sont d’importance sec-
ondaire dans cette thèse. Nous estimons que la limite des ressources sur le capteur
seulement comme des contraintes dans la formulation des problèmes d’optimisation.
La ressource en cours d’examen est la bande passante effective du capteur.

De toute évidence, pour une architecture de réseau, tels que le WSN avec util-
isateur mobile que nous étudions, toute solution doit être capable de s’adapter à la
dynamique de réseau. Par exemple, un utilisateur rejoint ou quitte, le changement
de sa position, la quantité d’information il requit, etc. Cela exige essentiellement une
solution distribuée qui permet la coopération entre les utilisateurs et les capteurs
à la réalisation de certains objectifs d’optimisation. Par conséquent, cette thèse se
concentrera principalement sur la formulation des problèmes d’optimisation et les
solutions distribuées.

En résumé, cette thèse a pour objectif de proposer des algorithmes distribués
pour les utilisateurs et les capteurs dans un WSN afin d’allouer un rayon optimal
de requête pour chaque utilisateur de façon adaptative et évolutive.

Allocation de Requête dans un WSN avec Utilisateur Mobile

Dans certains application contre-émergence, le réseau de capteur sans fil pour-
rait considérablement aider les équipes d’intervention par notification à certains
événements. Une application typique de ce réseau pourrait être un système de
surveillance avec des pompiers équipés de dispositifs portables qui collectent les
données à partir d’une zone de combustion afin de déterminer un périmètre de
sécurité, tandis que d’autres opèrent sur le foyer et sont en alerte en temps réel sur
les risques d’explosions à proximité. Les pompiers ont envoyé des demandes pour
recueillir des données provenant des capteurs à l’intérieur d’un domaine spécifique.

xi

Ainsi, ils pourraient être considérés comme les utilisateurs mobiles.
Ce système de surveillance doit être digne de confiance, afin que tous les événements

dans une zone contrôlée doivent être signalés à l’utilisateur d’interrogation, et de-
vraient être adaptables, puisqu’il y a des changements de nombre d’utilisateurs au
fil du temps. En outre, il est souhaité pour chaque utilisateur de contrôler la plus
grande zone possible pour assurer la sécurité individuelle. Toutefois, étant donné
que le nœud de capteur a une bande passante limitée, de multiples requêtes pour-
raient congestionner les capteurs dans certaines zones, en fonction de la position
des utilisateurs, la taille de la zone, etc. En outre, si les capteurs sont déjà saturés
par les requêtes, les utilisateurs récemment arrivés seront conservés dans un état
de faim et de l’impossibilité de récupérer les informations. Au contraire, si chaque
pompier accepte de diminuer la taille de sa zone de requête, cela peut permettre aux
nouveaux venus d’utiliser le réseau. Ainsi, l’équité entre les utilisateurs partageant
le réseau est préférable. En conséquence, les utilisateurs ont tendance à augmenter
leurs rayons de requête tant que des règles d’équité sont conservés. Nous supposons
que les utilisateurs ne sont pas coordonnés par les liens de communication directs.

Un Modèle de Requête Continu

Une requête émise par un utilisateur appartient à une zone supposée être un disque
de rayon variable centré sur l’utilisateur. Chaque capteur à l’intérieur de la zone
a demandé de générer certaines quantité de données par seconde en réponse à la
requête. Un capteur peut être couvert par plusieurs requêtes.

Le modèle de la charge de trafic que nous utiliserons a été proposé dans [GK04]
et étendu dans [LH05]. Avec ce modèle de trafic, nous sommes en mesure d’obtenir
une représentation analytique du trafic généré par un capteur de n’importe quelle
position dans le réseau. C’est une fonction de la position du nœud et de l’utilisateur
qui interroge le capteur, ainsi que d’autres paramètres, montré comme suit:

δ(dki) =


br2

(r∗)2 k ∈ r∗i
b+ 2br2

π(r∗)2 arcsin
(
r∗
dki

)
− 2bd2ki

π(r∗)2 arcsin
(
r∗
dki

)
k ∈ Qrib \ r∗i

0 otherwise

(1)

où r∗ signifie la distance maximum de transmission d’un capteur, r∗i signifie la disque
de rayon r∗ centrée au capteur i et Qrib signifie la région couverte par la requête de
rayon ri d’utilisateur i avec b comme le trafic demandé sur chaque capteur.

Configuration Équité Max-min: Une configuration est définie par un ensemble
de paire rayon-utilisateur: C = (ri|i ∈ S) et nous disons que C est une configuration
faisable s’il n’y a pas de congestion dans le réseau. Nous nous sommes intéressés à
l’équité max-min, c’est à dire que C possède des propriétés telles que les rayons plus
petits sont maximisés, les rayons deuxièmes plus petits sont maximisés et ainsi de
suite. Une règle de base est que l’augmentation d’une requête ne devrait pas dimin-
uer d’autres requêtes déjà plus petits. De toute évidence, la limite de la capacité
doit être maintenue. Notez que dans le contexte que nous examinons, le trafic b est
fixe et chaque utilisateur s’est intéressé à maximiser son rayon de requête afin de
maximiser la sécurité individuelle.

xii

Un Modèle de Requête Discrète

La requête est mesurée par le nombre de sauts tels qu’une requête de rayon j couvre
tous voisins de j sauts de l’utilisateur.

Nous avons supposé que tous les nœuds inclus dans la requête de l’utilisateur
doivent fournir une certaine quantité de ressources. Notez que si un nœud k est dans
une requête, alors tous les nœuds le long du chemin de transmission de données sont
dans la même requête et ils consomment des ressources en transmettant les données à
partir de k. Comme nous avons également assumé qu’un mécanisme de routage avec
les chemins plus courts est en cours d’utilisation, le montant de ressource des nœuds
le long de la route doit fournir, en raison de l’impact de l’utilisateur i, est égal ou
supérieur à ce que le nœud k doit fournir, si le flux de données est vers l’utilisateur.
A noter que nous supposons qu’il n’y a pas de compression ou d’agrégation des
données sur les chemins.

Chaque nœud k admet des ressources quantifiables comme ck qu’il est en mesure
de fournir à certains utilisateurs. Le montant de ressource sur le nœud k que
l’utilisateur i consomme lorsque son rayon de requête est fixé à j est désignée comme
wijk. Si le nœud i n’appartient pas à Vjib, nous avons wijk = 0.

Nous n’utilisons pas la fonction de trafic pour cette étude. Au lieu de cela, nous
allons mettre en place des mécanismes pour chaque nœud pour mesurer le trafic
réel.

Nous définissons l’allocation de requête avec équité max-min (MMF) de la même
manière que nous l’avons fait pour le modèle continu. Par ailleurs, nous définissons
également un autre objectif d’optimisation afin de maximiser la somme des rayons
de requêtes de tous les utilisateurs (MNU).

Nous modélisons le problème avec un problème sac à dos. Chaque requête
d’utilisateurs i correspond à un élément à être sélectionné et la valeur des éléments
pourrait être le nombre de saut de 0 au diamètre de G noté DG. Étant donné
que chaque utilisateur est autorisé à choisir une seule valeur pour sa requête à la
fois, les éléments peuvent être considérés comme regroupés en m classes et chaque
classe correspond à un utilisateur. Ainsi, nous avons la contrainte de choix mul-
tiples que exactement un élément doit être choisi au sein de chaque classe. Une
variable binaire xij est associée à la gamme de requête j de l’utilisateur i où xij = 1
indique que l’utilisateur i définit ses requête gamme j, et xij = 0 autrement. Le
montant des ressources fournies par un nœud k à un utilisateur i quand i prend
chacune de ses requêtes possible j ∈ (0, 1, . . . , DG) sera considéré comme un ensem-
ble (wi0k, wi1k, . . . , widGk), et chaque wijk pourrait être associé à la ième dimension
du poids d’un élément j de la classe i. Chaque nœud k forme une dimension de
contrainte avec ses ressources disponibles ck. Comme il y a beaucoup de nœuds
dans le système, nous avons enfin une contrainte multi-dimensionnelle, c’est-à-dire,
un MMKP. Le problème d’allocation de requête discret de maximiser la somme de
l’utilité de chaque utilisateur, est exactement le classique MMKP. Il pourrait être
résolu par des algorithmes MMKP. Cependant, tous ces algorithmes examinent la
résolution du problème dans un mode central. Étant donné la nature des problèmes
qui ont motivé ce travail, un algorithme distribué est préférable. Nous allons pro-

xiii

poser un tel algorithme. En outre, nous avons également formulé le problème MMKP
avec l’équité max-min. Cet objectif est nouveau et intéressant car il démontre la
possibilité de formuler différents objectifs d’optimisation dans un cadre de MMKP.

Solution du Modèle Continu

Calculer le rayon d’équité max-min. Si la requête prend une valeur continue,
nous sommes en mesure de le calculer en fonction de l’équité max-min dans un
réseau avec seulement deux utilisateurs. Nous considérons que deux utilisateurs de
i et i′ sont dans le réseau.

Dans un WSN avec des nœuds à la distribution Poisson et un paradigme con-
vergent de communication, le goulot est l’utilisateur lui-même [MDMLN03]. Nous
disons que la requête est globalement maximisée quand la bande passante de tous
les nœuds dans les ri est saturée par le trafic exclusivement dédié à i. Si on fait
abstraction de la bande passante consommée par le protocole, la requête est glob-
alement maximisée quand πriλ0b = W . Lorsque le débit de données demandé (b) et
la densité de capteurs (λ0) sont fixes, nous allons naturellement obtenir:

rmax =

√
W

πbλ0

(2)

Dans ce cas, le montant maximum de données qu’un utilisateur peut recevoir
est limité par sa bande passante et les deux requêtes pourraient être maximisées
avec la même rayon rmax. De toute évidence, la configuration C = (ri, ri′) avec
ri = ri′ = rmax est max-min équité. On peut obtenir les mêmes résultats pour les
cas suivants.

Deux utilisateurs pas si lointains: Dans ce cas là, deux utilisateurs peuvent fixer
les requêtes à rc et chaque utilisateur peut déterminer rc en communiquant avec un
capteur de sa requête. Ainsi, la configuration max-min pour ce cas est C = (ri, ri′)
où ri = ri′ = rc, et:

rc =

√√√√(W
π(r∗)2λ0

− b+ t1

)
t2

, (3)

où:

t1 =
2b(d− r∗)2

π(r∗)2
arcsin

(
r∗

d− r∗

)
(4)

t2 =
b

(r∗)2
+

2b

π(r∗)2
arcsin

(
r∗

d− r∗

)
(5)

Deux utilisateurs à proximité: La configuration max-min est C = (ri, ri′) avec

rc =

√
W

2πλ0b
. (6)

Ça complète l’analyse de la configuration max-min pour le cas de deux utilisateurs.

xiv

Un algorithme distribué L’algorithme se compose de deux phases. Le premier,
généralement appelé démarrage lent, est utilisée jusqu’à ce qu’une approximation
d’un rayon réalisable est obtenue. Le rayon commence à une valeur unitaire et
augmente selon une certaine stratégie jusqu’à ce que l’utilisateur soit prévenu par
un message <saturated>. La fonction initRadius gère l’augmentation initiale de
rayon. Le initRadius est fondé sur une croissance exponentielle, c’est-à-dire le
rayon de requête est initialisé à 1 et doublé à chaque fois qu’il est appelé. L’idée est
de détecter le plus rapidement possible le goulot d’étranglement de capteurs.

À la réception du premier message <saturated>, le rayon est fixé à une valeur
plus basse en fonction de certains critères. Le nouveau rayon est obtenu par resetRadius.
Le resetRadius emploie le résultat d’analyse pour les deux utilisateurs présentés
ci-dessus, et la fonction retourne un rayon proche de la solution optimale dans la
plupart des cas. Dans la deuxième phase, chaque utilisateur essaie d’augmenter
son rayon de requête périodiquement, afin d’explorer le rayon optimal. Ceci est
pris en charge par la fonction increaseRadius. Le increaseRadius fait une fonc-
tion croissante linéaire du rayon après chaque intervalle de temps prédéfini par une
étape de longueur prédéfinie. Finalement, l’utilisateur est prévenu par un message
<saturated>, puis il diminue à nouveau son rayon et entre dans un nouveau cycle.

Solution du Modèle Discrète

L’idée de base des algorithmes est de résoudre un problème localisé beaucoup plus
petit à chaque nœud. À cette fin, chaque nœud garde la trace de tout le trafic passant
par lui-même. Avec cette information, quand un nœud est saturé par plusieurs
requêtes d’utilisateurs, il est en mesure de formuler un MMKP locale avec seulement
les utilisateurs concernant et une unique contrainte. Ce problème est généralement
beaucoup plus petit et pourrait être résolu rapidement. Puis le nœud avertit les
utilisateurs en relation avec la solution. Éventuellement, l’utilisateur adopte une
des solutions multiples en tant que son nouveau rayon de requête. Dans le reste
de cette section, nous donnons d’abord des discussions détaillées sur les techniques
clés que nous emploierons, puis nous proposons un algorithme unifié pour les deux
objectifs d’optimisation MMF et MNU.

Solution du MCKP Local

Lorsque le nœud est saturé, il formule un petit problème MMKP avec ses mesures
du trafic local et une seule contrainte, ou de manière équivalente, un problème
MCKP. Ce MCKP doit être résolu d’une manière centralisée ainsi des algorithmes
exacts ou heuristiques peuvent être exploités. Divers algorithmes ont été proposés
pour résoudre un MCKP avec l’objectif de maximisation de la somme d’utilité de
tous les utilisateurs. Nous adoptons un outil GLPK pour résoudre ce problème
MCKP dans le cadre d’un algorithme distribué que nous allons proposer pour le
problème de MNU. En revanche, aucun algorithme n’a été proposé pour un MCKP
avec l’objectif MMF. Depuis que le MCKP est un cas particulier de MMKP, il
est possible d’appliquer directement l’algorithme exact que nous allons proposer à
résoudre ce MCKP. Toutefois, le coût de calcul augmente de façon exponentielle d’un

xv

Algorithm 1: Local MCKP-MMF

input : S ′ ⊆ S, U , M(k), ck
output: MCKP-MMF configuration C

for i ∈ S ′ do
C ← {Si = (ji ← 0, si ← active)}

end
for j ← 1 to |U | do

A← {Si : si = active}
if A = ∅ then break
sort (A, t·j)
for a← 1 to |A| do

C ′ ← C, j′a ← j
if feasible (C ′) then ja ← j
else

for a′ ← a to |A| do sa′ ← stop
break

end

end

end
Return C

algorithme exact, même si le nombre d’utilisateurs utilisant un nœud congestionné
est raisonnablement petit. Dans ce qui suit, nous proposons une heuristique d’un
tel problème MCKP. Cette heuristique sera intégrée dans l’algorithme distribué.

Adaptation Dynamique du Rayon de Requête

Après que le problème MCKP local est résolu, le nœud envoie le résultat à tous
les utilisateurs concernés afin de leur indiquer leurs nouveaux rayons de requêtes
qui sont censés se conformer à la contrainte sur ce nœud. Toutefois, un utilisateur
peut recevoir ces notifications multiples à partir de plusieurs nœud. Ainsi, afin de
satisfaire la contrainte la plus stricte, un utilisateur doit adapter son rayon de requête
en fonction de la valeur la plus petite dans toutes les notifications. L’effet secondaire
de cette politique est que la requête tend à diminuer sur le long terme et un utilisateur
peut ne pas être en mesure de connâıtre son rayon de requête optimal en raison
des informations incomplètes dont il dispose. Pour atténuer cet effet secondaire et
aider les utilisateurs à sauter d’un optima local affectés par l’algorithme 1, chaque
utilisateur devrait augmenter son rayon de requête périodiquement.

Un Algorithme Unifié

Maintenant que toutes les conditions préalables sont discutées, nous sommes en
mesure de donner les algorithmes principaux à la fois pour les problèmes de MNU
et MMF. Comme indiqué au début de la section, les deux algorithmes peuvent être
décrits dans un cadre générique, comme indiqué dans l’algorithme 2.

xvi

Algorithm 2: Distributed Heuristic

Sink Part : Run at user i
send < level, i, 1 >
while no < adjust-level > message do

level← initLevel()

send < level, i, level >
end
level← adjustLevel()

while true do
while no < adjust-level > message do

level← increaseLevel()

send < modify-level, i, level >
end
level← adjustLevel()

send < modify-level, i, level >
end

Sensor Part: Run at sensor k
while true do

if congested() then
C ← solveMCKP()

for ∀i : ji ∈ C do
send < adjust-level, ji > to i;

end

end

end

Le Problème Derrière: Instance Difficile du MMKP

Nous avons formulé la version discrète du problème d’allocation de requête pour
un WSN avec utilisateur mobile avec un problème sac à dos multidimensionnel aux
choix multiples. Nous nous concentrons maintenant sur ce problème combinatoire
lui-même.

MMKP a de nombreuses applications. Il a été utilisé pour modéliser le problème
de gestion de la qualité de service (QoS) dans les réseaux informatiques [LLRS99] et
les problèmes de contrôle adaptatif d’admission dans le systèmes multimédia [SIH05,
Kha98, KLMA02]. Divers autres problèmes d’allocation des ressources peuvent
également être directement représentés par le MMKP [KPP04, PHD05].

Nous étudions la relation entre les différents paramètres d’un MMKP telles que
le profit, le poids et la capacité afin d’identifier les facteurs clés qui rendent une
instance difficile. En outre, les cas où les éléments sont non corrélés, faiblement
corrélés et fortement corrélés au sein de chaque classe, entre les classes et à travers
de multiples dimensions sont examinés. À notre connaissance, aucun travail n’a été
signalé dans la littérature. Une méthode systématique pour générer les instances de
MMKP est proposée. Plusieurs groupes de cas obtenues avec cette méthode sont

xvii

évalués avec un algorithme exact et les outils GLPK [glp] et CPLEX [cpl]. Les
expériences montrent que de nombreux cas sont de plusieurs ordres de grandeur
plus difficiles que ceux traditionnellement utilisés en terme de temps de calcul. Ces
instances dures du MMKP ont généralement une capacité moyenne et une forte
corrélation entre le poids et le profit. Les expériences suggèrent également que les
cas avec les profits similaires entre les classes et avec une forte corrélation entre le
poids et le profit sont difficiles à résoudre.

Noter qu’il est très important de tester les algorithmes afin de connâıtre leurs
performances en pratique. Lorsque les algorithmes sont pour attaquer à un problème
particulier, les instances idéales pour l’évaluation des performances sont ceux de
traces du monde réel. Toutefois, comme les MMKPs proviennent habituellement des
contextes applicatifs diversifiés, les instances typiques à partir d’un certain domaine
ne peuvent guère être raisonnables pour les autres. En outre, il n’existe pas de
rapport systématique sur les instances de MMKP dans la littérature. En revanche,
les cas de test peuvent être générés pour couvrir les instances de type d’une gamme
beaucoup plus large. En conséquence, les instances générées jouent un rôle important
dans l’évaluation comparative des algorithmes et ont été utilisées dans les recherches
de KP et MMKP.

Les chercheurs ont proposé une librairie des instances de MMKP [OR-]. Bien que
ces instances ont été largement utilisées dans la littérature, nos résultats de calcul
montrent qu’ils ne sont pas suffisants pour démontrer les performances des algo-
rithmes. Table 1 présente le temps utilisé pour résoudre les six premières instances
dans la librairie avec CPLEX, GLPK et l’algorithme BBLP [Kha98, KLMA02]. Ici,
nous insistons sur le temps utilisé à travers les instances. Notamment, les instances
I3 et I4 prennent plus de temps que I5 et I6, malgré qu’ils soient plus petits que
les seconds. Cela implique effectivement que non seulement la taille d’une instance,
mais aussi la structure d’une instance joue un rôle très important dans le temps de
résolution.

Table 1: Temps (second) utilisé pour résoudre les instances dans “OR benchmark
library”.

Inst m n l CPLEX GLPK BBLP
I1 5 5 5 0.005 0.028 0.016
I2 10 5 5 0.006 0.029 0.033
I3 15 10 10 1.983 16.036 67.260
I4 20 10 10 31.045 1383.251 1532.059
I5 25 10 10 0.018 0.046 0.660
I6 30 10 10 0.204 0.190 2.369

xviii

Nouvelles Méthodes pour Générer les Instances de

MMKP

Générer les Profits

Afin de sélectionner les profits des éléments dans chaque classe i, nous avons d’abord
limité les profits avec deux paramètres pmin

i et pmax
i et choisi des valeurs dans cette

intervalle. Cela pourrait se faire de diverses manières et ici, nous définissons quelques
fonctions génératrices pour les profits.

Fonction Génératrice Uniforme Profits aléatoires sont naturelles dans de nom-
breux problèmes et sont largement utilisés dans la littérature. Dans une fonction
génératrice uniforme, nous tirons les profits de manière uniforme et aléatoire dans
un intervalle. On note la fonction génératrice uniforme:

pij = U
(
pmin
i , pmax

i

)
. (7)

Fonction Génératrice Linéaire Éléments avec les profits linéaires sont moins
étudiés dans la littérature. Toutefois, ce type de valeur est en fait assez com-
mun. Par exemple, dans le problème de QoS adaptative [AHHS05], les niveaux
de qualité de service sont habituellement représentés sur les profits d’éléments et
de valeurs entières consécutives. Aussi dans le problème d’allocation de requête
multi-sauts [HLS09], les rayons de requêtes sont mis en correspondance avec les
profits et se mesurent en nombre de sauts et ils prennent aussi des valeurs entières
consécutives.

Dans la fonction génératrice linéaire, nous assignons pij avec une fonction linéaire
de l’indice j, i.e.

pij =
j − 1

ni − 1

(
pmax
i − pmin

i

)
+ pmin

i . (8)

Pour plus de clarté, nous utilisons une notation courte pour cette fonction génératrice
linéaire comme suit:

pij = L
(
pmin
i , pmax

i

)
. (9)

Application des Fonctions Génératrices Les fonctions génératrices doivent
être appliquées sur chaque classe. Évidemment, on peut appliquer la même fonc-
tion pour toutes les classes ou modifier les fonctions de chaque classe. Pour une
fonction génératrice uniforme, même quand elle est appliquée à toutes les classes
avec les mêmes paramètres, la nature aléatoire de la fonction va donner différentes
valeurs pour les profits dans les différentes classes. Au contraire, lorsque la fonction
génératrice linéaire est appliquée à toutes les classes avec les mêmes paramètres,
toutes les classes auront le même vecteur de profit pour leurs éléments. Au lieu
d’appliquer la même fonction génératrice à toutes les classes, nous proposons en
outre deux façons d’utiliser les fonctions génératrices. La première est de repro-
duire le vecteur généré par une fonction génératrice uniforme sur toutes les classes.

xix

C’est typiquement le cas lorsque plusieurs utilisateurs (classes) peuvent accéder aux
mêmes ensembles d’objets (éléments) avec plus ou moins de qualité du service (prof-
its), mais le coût pour y accéder diffère (poids). On désigne explicitement les profits
générés par cette manière:

pij = R
(
U
(
pmin

1 , pmax
1

))
. (10)

Ici, R signifie Reproduire le premier vecteur de profit généré pour d’autres classes.
La deuxième façon d’appliquer les fonctions de production est de prendre en compte
l’indice de classe i au moment de décider de l’intervalle à partir de laquelle les valeurs
sont prises pour chaque classe, e.g. U(10(i−1), 10i) ou L(10(i−1), 10i). Lorsque la
fonction génératrice uniforme est appliquée de cette façon, les profits dans chaque
classe sont toujours choisis aléatoirement, mais les profits des différentes classes
sont dispersés dans différents intervalles. Bien que la fonction génératrice linéaire
est appliquée, les profits sont linéairement attribués à des intervalles différents. On
note cette application particulière des fonctions génératrices comme:

pij = C(F), (11)

où F est une fonction génératrice avec des paramètres différents pour différentes
classes et C signifie que la fonction est dépendante d’un classe.

Générer les Poids

Pour générer les poids, on peut appliquer une certaine corrélation sur la fonction
génératrice pour chaque dimension. En particulier, nous définissons les fonctions
génératrices suivantes.

Fonction Génératrice Non-Corrélée Dans une fonction génératrice non-corrélée,
nous attribuons simplement les poids de manière uniforme et aléatoire dans un in-
tervalle:

wijk = U
(
wmin
ik , wmax

ik

)
. (12)

Fonction Génératrice Faiblement Corrélée Cette fonction génératrice est mo-
tivée par des résultats sur les instances du KP [Pis05]. La motivation est de générer
les poids corrélés aux profits, mais toujours avec un degré de liberté pour chaque
dimension. Dans notre proposition, les poids sont attribuées en fonction de:

wijk = U
(

max

(
0, pij −

pmax
i

δ

)
, pij +

pmax
i

δ

)
. (13)

Nous allons utiliser la notation suivante:

wijk =W(δ). (14)

xx

Fonction Génératrice Fortement Corrélée Fonction génératrice fortement
corrélée est également motivée par les résultats précédents où la corrélation entre
les profits et les poids est forte:

wijk = pij +
pmax
i

δ
. (15)

Nous utilisons la notation suivante pour cette fonction:

wijk = S(δ). (16)

Fonction Génératrice Fortement Inversée Corrélée Pour une fonction génératrice
fortement inversée corrélée, les poids sont attribuées en fonction de:

wijk = pmax
i − pij

δ
, (17)

et sera dénommée:

wijk = I(δ). (18)

Notez que la fonction génératrice fortement inversée corrélée n’est pas intéressante
pour être utilisé seule. Les cas intéressants se produisent lorsque les deux fonctions,
fortement corrélée et fortement inversée corrélée coexistent sur les différentes dimen-
sions de poids. Intuitivement, ces cas sont difficiles à résoudre parce qu’un choix
attentif entre les poids à travers plusieurs dimensions doit être fait. Bien que nous
n’avons pas de connaissance de problèmes réalistes de ce type de MMKP, ils sont
encore intéressants d’un point de vue théorique.

Application des Fonctions Génératrices Similaires aux fonctions génératrices
pour les profits, on pourrait appliquer la même fonction génératrice avec les mêmes
paramètres à toutes les dimensions. Mais il est également possible d’appliquer la
même fonction avec des paramètres différents ou même des fonctions différentes pour
les dimensions. En plus d’appliquer simplement la même fonction génératrice avec
les mêmes paramètres sur toutes les dimensions, ici nous vous proposons deux façons
d’appliquer les fonctions génératrices pour les poids. Le premier est d’inclure l’indice
de dimension k comme un paramètre dans la fonction génératrice. Par exemple,
pour une fonction génératrice non-corrélée, les poids d’une dimension k peuvent
être choisis dans un intervalle qui dépend de k, ou pour une fonction faiblement,
fortement et fortement inversée corrélée, le paramètre δ peut être choisi en fonction
de k. Il est commode d’utiliser une notation comme suit:

wijk = D(F), (19)

où F peut être, par exemple, U(1, 10k) pour une fonction génératrice uniforme, ou
W(k + 5) et S(k + 5) pour une fonction génératrice faiblement corrélée et forte-
ment corrélée, respectivement. Ici, D, signifie que les fonctions génératrices sont
Dimension-dépendantes. Nous pourrions également appliquer différentes fonctions

xxi

génératrices pour différentes dimensions. Par exemple, nous allons générer des in-
stances avec la fonction génératrice fortement inversée corrélée pour quelques di-
mensions et la fonction génératrice fortement corrélée pour les autres. Dans ce cas,
on note:

wijk = D(F1F2 . . .), (20)

où F1, F2, . . . sont les fonctions génératrices que nous utilisons.

Générer les Capacités du Sac à dos

Enfin, les capacités du sac sont générées pour les classes et les dimensions. Nous
générons une série de S instances et l’instance h a une capacité chk pour dimension k,
où h = 1, 2, . . . , S. La capacité est dispersée à dans un intervalle à partir du poids
minimum et maximum:

chk =
h

S + 1

(
m∑
i=1

wmax
ik −

m∑
i=1

wmin
ik

)
+

m∑
i=1

wmin
ik . (21)

Le paramètre h sera également appelé le niveau de capacité des instances de la série.
Notez que tous les S instances n’ont pas besoin d’avoir les mêmes éléments (les
profits et les poids). Toutefois, afin d’enquêter sur l’impact du niveau de capacité
sur le temps de la solution, nous générons tous les S instances dans la même série
avec le même profit et les valeurs de poids. En conséquence, les instances dans une
série diffèrent les unes des autres que par leurs capacités.

Plusieurs catégories des instances de MMKP ont été produites pour montrer les
instances difficiles. Des expériences sur ces instances difficiles avec un algorithme
exact et les outils ont également révélé une structure particulière du problème.
Brièvement, l’instance est difficile à résoudre lorsque toutes les classes contiennent
le même profit et les poids sont corrélés avec les profits. D’ailleurs, une dimension
de poids fortement corrélée est en mesure de rendre les instances difficiles. Enfin,
certaines catégories des instances sont très difficiles pour l’algorithme BBLP et les
outils GLPK et CPLEX, même de nombreux algorithmes avancés de branchement
et coupe sont employés par les deux outils génériques. Les propriétés structurelles
spéciales des instances méritent une enquête plus approfondie.

Conclusion

Les réseaux de capteurs sans fil deviennent une réalité. Le déploiement à grande
échelle qui fournit l’information au site en temps réel pour les utilisateurs mobiles
pourrait être envisagé dans l’avenir proche. L’accès direct des utilisateurs mobiles
dans les nœuds de capteurs simplifie l’architecture du réseau et est capable de limiter
le trafic en local, c’est critique pour un réseau évolutif. L’équité et l’efficacité doivent
être simultanément pris en compte pour optimiser le fonctionnement de ces réseaux.
Alors que la plupart des études de littérature mettent l’accent sur les nœuds de cap-
teurs, notre vision est que l’équité des utilisateurs est particulièrement importante
lorsque les utilisateurs sont des clients du service fourni par le réseau. Suite à cette

xxii

vision, nous étudions des questions d’équité dans le réseau de capteurs sans fil du
point de vue d’un utilisateur.

Nous avons identifié et étudié le problème d’allocation équitable des requêtes
pour un WSN avec utilisateur mobile. Plusieurs questions connexes, i.e. la capacité
des réseaux sans fil ad-hoc et des réseaux de capteurs sans fil, la couche MAC et
la couche réseau pour les réseaux de capteurs sans fil, les caractères du problème
sac à dos multidimensionnel aux choix multiples et ses algorithmes et les définitions
de l’équité sont brièvement étudiés. Cette partie de l’étude sondage nous a fourni
une bonne connaissance sur la base de laquelle les aspects suivants du problème de
l’allocation de requête ont été étudiés.

(i) Le problème d’allocation de requête à l’équité Max-Min dans un WSN est
défini et discuté. L’analyse est basée sur un modèle de requête continue et un
modèle de trafic. En vertu de ces hypothèses, la région de requête d’un utilisa-
teur est limitée par la bande passante des capteurs et des utilisateurs. Ainsi, les
utilisateurs ont à coopérer avec les capteurs pour atteindre les résultats souhaités.
L’expression explicite de requête à l’équité max-min, pour le cas où seulement deux
utilisateurs existent dans le réseau, est dérivée. Et le problème au cas où plusieurs
utilisateurs sont dans le réseau est résolu avec un algorithme heuristique distribué.
Nos simulations montrent l’efficacité de l’algorithme proposé.

(ii) L’allocation équitable des requêtes entre les utilisateurs est également étudiée
avec un modèle discret. Dans ce cas, la valeur discrète du rayon de la requête ne
promet plus de l’existence d’une solution équitable max-min. Ainsi, l’équité max-
min lexicographique doit être exploitée. Nous avons également constaté qu’il est
commode de représenter le problème de l’équité max-min lexicographique sur le
MMKP. En outre, l’objectif traditionnel de l’optimisation, ce qui maximise la somme
de l’utilité de tous les éléments dans le sac, pourrait également être utilisé pour
maximiser la somme du rayon de requêtes des utilisateurs. Sur la base de ces obser-
vations, nous proposons une formulation unifiée pour les deux problèmes. Cette for-
mulation, d’une part, est en mesure de formuler différents problèmes d’optimisation
de l’origine d’un WSN avec utilisateur mobile, et d’autre part, implique la mise en
œuvre d’un algorithme uniforme et simple pour résoudre les deux problèmes. Les
simulations ont été menées pour évaluer la performance de l’algorithme. Différentes
propriétés entre les deux objectifs d’optimisation sont discutées.

(iii) Pour que l’étude ci-dessus soit pratiquement significative, nous étudions la
faisabilité de reformuler le problème et mettre en œuvre nos solutions dans un WSN
basé sur IEEE 802.15.4/ZigBee. Le mode d’arbre du ZigBee est envisagé en raison
de son efficacité. En outre, l’attribution des adresses et la routage utilisée par l’arbre
ZigBee nous permettent un calcul plein localisé. L’algorithme distribué que nous
avons proposé est efficace pour approcher de la solution optimale et pour contrôler
la congestion.

(iv) Le MMKP a été utilisé pour formuler le problème d’allocation de requête
pour un réseau de capteurs sans fil avec utilisateur mobile avec un modèle de requête
discrète. De nombreuses expériences ont montré des propriétés particulières des
instances du MMKP, i.e. le temps utilisé pour résoudre des instances peut varier
beaucoup tel que les instances plus petites prennent beaucoup plus de temps que

xxiii

les grandes. Dans la dernière partie de cette thèse, nous avons étudié cette question
par expériences. Une méthode systématique pour générer les instances MMKP est
proposée et plusieurs groupes d’instances qui représentent une variété de types de
corrélation entre les paramètres du problème sont générés. Ces instances sont testées
avec l’algorithme BBLP ainsi que deux outils d’optimisation, le GLPK et le CPLEX.
Les résultats montrent que les profits linéaires et la corrélation forte entre le poids
et le profit font des instances très difficiles pour l’algorithme BBLP et les outils,
même si certains mécanismes avancés de la programmation en nombre entier sont
intégrés dans les deux outils.

Limites et Perspectives

L’étude de cette thèse a été basée sur la vision que le WSN sera déployé à grande
échelle pour fournir des services en temps réel à de multiples utilisateurs mobiles qui
sont en mesure d’accéder directement aux nœuds de capteurs. Outre les problèmes
d’équité étudiés dans cette thèse, il existe plusieurs autres questions discutables de
cette architecture du réseau très particulière.

Applicabilité La première question est de savoir si oui ou non le WSN avec util-
isateur mobile est avéré utile et sera déployé. Depuis les expériences des appli-
cations déployées, de nombreux réseaux de capteurs sont d’une taille très limitée
en ce qui concerne le nombre de nœuds (e.g. une dizaine de nœuds) et la zone
géographique qu’ils couvrent (des centaines de mètres carrés). D’un point de vue
technique, les difficultés majeure pour un grand réseau de capteurs sont la connec-
tivité et l’évolutivité. Alors que de nombreux chercheurs sont occupés à résoudre ces
problèmes, d’autres remettent en question les besoins d’un grand réseau connecté en
permanence. L’argument c’est que de nombreux petits WSN indépendants réunis
ensemble seront suffisants pour des services omniprésentes. Avec ce débat à l’esprit,
nous trouvons que le WSN avec utilisateur mobile peut satisfaire les deux parties.
D’une part, il pourrait s’étendre à un réseau avec un grand nombre de nœuds cou-
vrant une zone géographique très vaste, tandis que d’autre part, il n’a pas besoin
d’être entièrement connecté comme les utilisateurs mobiles sont toujours en mesure
de récupérer des données de nœuds de capteurs qui sont suffisamment proches. En
conséquence, nous avons un fort sentiment que le WSN avec utilisateur mobile au
moins offre une voie prometteuse pour de futures applications omniprésentes de
détection.

Réseau ou Service? Une autre question intéressante est devrions-nous séparer ou
intégrer le réseau avec le service? Traditionnellement, les réseaux de capteurs sont
responsables de la collecte des données brutes (probablement avec un traitement
très limité dans le réseau), tandis que les données sont fournies aux utilisateurs via
un serveur back-end. En conséquence, la plupart des recherches sont de l’aspect
réseau sans tenir compte des utilisateurs. Nous avons étudié l’aspect d’utilisateurs
avec des limites du réseau comme des contraintes. Bien que l’architecture WSN avec
utilisateur mobile est originale et réalisable pour les applications où la signification

xxiv

des données recueillies ont une forte dépendance à l’égard spatial et temporel, i.e.
les données sont significatives pour une courte période de temps et fortement liée
à l’endroit où les données sont récupérées et elles ne doivent pas être stockés en
général, il est infaisable pour les scénarios où les données doivent être conservées.
Pour ce dernier cas, néanmoins, il est possible de soutenir les utilisateurs mobiles
avec une architecture traditionnelle.

Multicast et Traitement dans Réseaux Notre formulation du problème et
les algorithmes fonctionne avec un routage du plus court chemin ou un routage
avec arbre hiérarchique et nous ne considérons que le routage unicast avec aucun
traitement dans les réseaux. En réalité, beaucoup de routages ou protocoles de
collecte de données existent et certains ont un mécanisme inhérent de l’agrégation
de données afin de réduire le trafic. Pour les protocoles de routage multicast qui
envoient une seule copie de données vers des destinations multiples, ou des protocoles
de routage avec l’agrégation dans les réseaux, notre modèle n’est plus valide. En
conséquence, un nouveau modèle du trafic est nécessaire en vertu de cette situation
qui pourraient être intéressante pour les travaux futurs.

Bande Passante Variable Nous avons basé notre étude sur les résultats théoriques
de la capacité du WSN qui ont leurs propres limites. Notamment, les résultats sont
obtenus comme une valeur asymptotique lorsque le nombre de capteurs dans une
zone déterminée devient infini. En réalité, la bande passante effective entre chaque
paire d’émetteur et le récepteur dépend de nombreux facteurs, e.g. le régime de la
modulation, la puissance de transmission, l’état de transmission des paires de prox-
imité, le mécanisme d’accès au médium, etc. La formulation actuelle du problème
avec une bande passante constante partagée n’est pas capable de tenir compte de
ces facteurs. Alors que le modèle complexe est nécessaire pour gérer plus de détails,
les solutions actuelles pourraient être étendues, sans trop d’effort. La mesure pro-
posée dans cette thèse est capable de s’adapter à la dynamique de la bande passante.
Étudier la performance des algorithmes d’allocation dynamique de requête sous sit-
uation de la bande passante est une autre perspective sur laquelle le travail actuel
pourrait être prolongé.

Mobilité Même si nous avons beaucoup insisté sur les utilisateurs mobiles, nous
n’avons pas abordé les problèmes posés par la mobilité dans cette thèse, i.e. tous
les modèles, l’analyse, les algorithmes sont basés sur des capteurs et les utilisateurs
statiques. Cela empêche une application directe des mécanismes proposés à des
scénarios réels. Pour que cette étude soit plus pratique, nous allons étendre nos
propositions à un environnement utilisateur mobile, qui peut ne pas être trivial
lorsque la convergence des algorithmes distribués doit être mise en œuvre.

Sécurité L’accès direct des utilisateurs mobiles aux nœuds de capteurs peut soulever
des questions de sécurité. De toute évidence, un contrat de service doit être exécuté
entre les utilisateurs et l’opérateur du réseau. Une authentification simple protégée

xxv

par un mécanisme de cryptage léger doit être mise en œuvre à la fois pour les cap-
teurs et les utilisateurs.

Pourquoi MMKP est Dur? Enfin, compte tenu du problème MMKP lui-même,
l’étude empirique présentée dans cette thèse n’est qu’une première étape vers la
compréhension de ses propriétés structurelles. Nous avons montré que les profits
linéaires et corrélation forte entre les profits et les poids font une instance de MMKP
dure, des recherches plus approfondies sont nécessaires pour dire pourquoi. Bien
que l’algorithme exact BBLP et le GLPK et CPLEX sont des outils utilisés pour
montrer ces instances difficiles, des expériences supplémentaires de ces instances avec
les heuristiques existantes peuvent fournir plus d’indices à la question mentionnée
ci-dessus. Bien que certaines expériences ont déjà montré que certaines heuristiques
sont parfois très efficaces pour résoudre des instances difficiles avec des propriétés
spéciales, ce sujet mérite une étude en profondeur.

xxvi

xxvii

Abstract

A Wireless Sensor Network (WSN) is a wireless network consisting of spatially dis-
tributed sensor nodes to gather information from the physical world. The promising
idea of WSN is to build an information gathering, processing and representing sys-
tem that connects human with the physical world. Lots of efforts have been made
in recent years on both the theoretical and applicative aspects of WSNs and we can
expect that large scale WSN deployment will be possible in the near future. This
thesis focuses on the large scale WSN which may serve potentially many users in an
open architecture where each user has direct contact with the sensors. We will refer
to this architecture as the mobile user WSN. Large scale mobile user WSN provides
a promising solution to many applications. Multiple users in the network could
act as data collectors working together for a common task or they could also be
end users which have no direct contact between each other. In either case, fairness
among these users is an important issue in practice.

We first investigate the fairness issues with a simple query model. In this model,
multiple users query the sensors located within a circled area. The query circle
is assumed to have a continuous variable diameter and centered at the querying
user. Distributed optimization problem with congestion constraints is formulated
and heuristic algorithm is developed to approximate the optimal solution. Next,
a similar problem with a discrete query model is further investigated. In the dis-
crete query model, the query range is measured by hop numbers. This variation
makes the problem to be combinatorial and NP-hard. Multidimensional multiple
choice knapsack problem is used to model the problem with both lexicographical
max-min fairness and maximal query cover objectives. Distributed solutions are
proposed and their performance are demonstrated by simulations. Since the ZigBee
specification and IEEE 802.15.4 standard are two de facto standards of the wireless
sensor networks, we study our problems for a wireless sensor network based on such
technologies. Special properties of the ZigBee cluster tree structure are exploited to
keep the algorithm fully local thus only limited communications are involved in the
proposed distributed algorithms. Efficiency of the algorithms are demonstrated by
extensive simulations.

While all the subjects discussed so far are related with the fair capacity sharing
problem found in wireless sensor networks with multiple users, the combinatorial
problem behind the discrete version, namely the multidimensional multiple choice
knapsack problem, is very interesting and deserves special research efforts. The
inconsistency of the solution times of instances with similar parameters and the sharp
contrast between hard small problems and easy large problems motivated our further
investigation on the problem itself. By first proposing methods to generate problem
instances with different properties, we try to solve several groups of instances with
the current algorithm/solvers. Special properties that make the instances hard have
been identified.

xxviii

xxix

Contents

Acknowledgements iii

Résumé v

Abstract xxvii

Contents xxxi

List of Figures xxxiv

List of Tables xxxv

1 Introduction 1
1.1 A Brief History . 1
1.2 WSN Evolution . 2
1.3 Motivations and Objectives . 6
1.4 Contributions . 8
1.5 Thesis Organisation . 9

2 Background Knowledge 13
2.1 State-of-the-Art Researches on WSN 13

2.1.1 Supporting Mechanisms . 14
2.1.2 Communication Protocols . 16

2.1.2.1 Physical Layer . 16
2.1.2.2 The Medium Access Control Layer 17
2.1.2.3 The Network Layer 19
2.1.2.4 The Transport Layer 21

2.2 Capacity of Wireless Sensor Networks 23
2.3 The Knapsack Problems . 23

2.3.1 Exact Algorithms for MMKP 24
2.3.2 Heuristic Algorithms for MMKP 25

2.3.2.1 Moser’s Heuristic . 25
2.3.2.2 The HEU, M-HEU, I-HEU and MVRC Algorithms . 25
2.3.2.3 Parallel HEU and Multiprocessor M-HEU 26
2.3.2.4 The CP and CCP Algorithms 27
2.3.2.5 The Der Algo, RLS, MRLS and Other Variations . . 27

xxx CONTENTS

2.3.2.6 The HMMKP Algorithm 28

2.3.2.7 The C-HEU Algorithm 28

2.3.2.8 The CGBA Algorithm 29

2.3.3 Summary . 30

2.4 Fairness . 31

2.4.1 Max-min and Lexicographical Max-min Fairness 31

2.4.2 Proportional Fairness . 31

2.4.3 (p, α)−proportional Fairness 32

3 Continuous Query Model 33

3.1 Introduction . 33

3.2 Continuous Query Model . 34

3.3 Analysis of Two-user Case . 36

3.4 Distributed Algorithms . 38

3.4.1 Brute force algorithm . 38

3.4.2 Inspiration from two-user case 39

3.4.3 Distributed algorithm and protocol 41

3.5 Performance Evaluation . 43

3.6 Related Works . 48

3.7 Summary . 48

4 Reformulating The Problem: A Discrete Query Model 51

4.1 Model and Problem Formulation . 51

4.1.1 System Model . 52

4.1.2 MMKP Formulation of Problems 52

4.1.2.1 General MMKP formulation 52

4.1.2.2 MNU problem formulated as MMKP 53

4.1.2.3 MMF problem formulated as MMKP 53

4.2 NP-hardness Proof . 54

4.3 Algorithms . 56

4.3.1 An exact algorithm for MMF 57

4.3.2 Distributed algorithms for MNU and MMF 60

4.3.2.1 Local MCKP solution 60

4.3.2.2 Dynamic query range adaption 62

4.3.2.3 Unified algorithmic framework 62

4.4 Performance Evaluation . 64

4.4.1 Simulation setup . 64

4.4.2 Time complexity of the exact algorithm 65

4.4.3 Distributed heuristics in a large network 66

4.4.3.1 Quality of solutions 67

4.4.3.2 Congestion resolution capability 67

4.4.3.3 Comparative study on MNU and MMF 67

4.4.4 A dynamic network example 72

4.5 Summary . 75

xxxi

5 Extension To A Practical Context: ZigBee Based WSNs 77
5.1 The IEEE 802.15.4 and ZigBee Tree 77
5.2 Algorithms Adapted to the ZigBee Network 79

5.2.1 Traffic estimation with the ZigBee tree 79
5.3 Performance Evaluation . 81

5.3.1 Evaluation metrics . 81
5.3.2 Simulation setup . 81
5.3.3 Query data arrival ratio . 82
5.3.4 Query data throughput . 82
5.3.5 Control message overhead . 84
5.3.6 Query range and fairness index 84

5.4 Summary . 88

6 Hard MMKP Instances 89
6.1 Introduction . 89
6.2 Existing Methods to Generate Benchmark Instances 92

6.2.1 Generating KP instances . 92
6.2.2 Generating MMKP instances 93

6.3 New Methods to Generate MMKP Problem Instances 94
6.3.1 Generating the Profits . 94
6.3.2 Generating the Weights . 96
6.3.3 Generating the Knapsack Capacities 97
6.3.4 Summary of Instance Notations 97

6.4 Experiment Study . 98
6.4.1 Experiment Setup . 98
6.4.2 Average Solution Time . 99
6.4.3 Capacity Level and Solution Time 100
6.4.4 Non-trivial Infeasible Instances 102
6.4.5 The Critical Dimension . 103

6.5 Conclusion . 104

7 Epilogue 107
7.1 Conclusion . 107
7.2 Limitations and Perspectives . 108

Bibliography 117

Publications 119

Glossary 121

xxxii CONTENTS

xxxiii

List of Figures

1 Un réseau de capteurs sans fil avec un nœud-puits fixe. vi
2 Un réseau de capteurs sans fil avec un nœud nœud-puits mobile. . . . vii
3 Un réseau de capteurs sans fil avec des utilisateurs mobiles. vii

1.1 Sensor node components. 3
1.2 Fixed sink wireless sensor network. 4
1.3 Mobile sink wireless sensor network. 5
1.4 Mobile user wireless sensor network. 6

3.1 Traffic load model. 34
3.2 Traffic load for sensors along X axis. 37
3.3 Common maximum query radius. 39
3.4 A WSN shared by eight users. 40
3.5 Query radii of OPT and LOCAL algorithms. 41
3.6 Ratio of LOCAL radii to OPT radii. 42
3.7 Overall bandwidth utilization. 45
3.8 Query radii dynamics. 46
3.9 Evolution of query radii decided by DIS algorithm. 47

4.1 Construction of G from G′ . 56
4.2 The fixing procedure . 58
4.3 Part of the execution paths of Algorithm 4 in a three-user case. . . . 59
4.4 Traffic measurement on node k. 61
4.5 Time consumption of Algorithm 4. 66
4.6 Congestion rate of nodes. 68
4.7 Bandwidth utilization of nodes. 69
4.8 Perimeter level of users. 70
4.9 Distribution of users at each query range level. 71
4.10 Fairness index. 71
4.11 Node distribution on the number of impacting users. 72
4.12 Network topology with 10 users and the congested nodes. 73
4.13 Query level evolution of users. 74

5.1 Multi-user WSN based on ZigBee tree structure. 78
5.2 Two views of a ZigBee routing tree 79
5.3 Application data arrival ratio. 83
5.4 Aggregated application data throughput. 85

xxxiv LIST OF FIGURES

5.5 Protocol overhead. 86
5.6 Query radius evolution of users. 87

6.1 Solution times of G-U-∗ instances. 101
6.2 Solution times of G-L-∗ instances . 101
6.3 Solution times of G-R-∗ instances. 102
6.4 Solution times of G-R-D(∗) instances. 102
6.5 Solution time of G-L-D(∗) instances. 103
6.6 Nontrivial infeasible instances, G-C(U)-D(∗) as an example. 103
6.7 Solution times of single dimensional G-L-∗ instances. 104
6.8 Solution Time vs. Number of Dimensions for P (10, 5, ∗) instances. . . 105

xxxv

List of Tables

1 Temps (second) utilisé pour résoudre les instances dans “OR bench-
mark library”. xvii

3.1 Simulation parameters. 44

4.1 Simulation parameters. 64
4.2 Simulation scenarios. 65
4.3 Average query range level comparison. 66

5.1 Evaluation metrics. 81
5.2 Simulation parameters. 82

6.1 Solution time (second) of OR benchmark library instances I1 to I6. . 94
6.2 Generating Functions for Instances P (10, 5, 5) 98
6.3 Solution Time (second) of Instances. 100

xxxvi LIST OF TABLES

1

Chapter 1

Introduction

“ Histories make men wise; poems, witty; the mathematics, subtle;
natural philosophy, deep; moral, grave; logic and rhetoric, able to
contend. ”

– Francis Bacon

In this chapter, we first motivate our study by providing a brief retrospection on the
evolution of the wireless sensor networks, with special emphasis on their network
architecture driven by the application scenarios. Then the main objectives and
contributions of the thesis are introduced, followed by a brief outline of the thesis
organization at the end of this chapter.

1.1 A Brief History

Wireless Sensor Network has emerged from the traditional sensor network. The
first research on the sensor network originated during the cold war, when sensor
systems were developed and used for airspace and under water surveillance for hos-
tile aircrafts and submarines. At that time, the major techniques consist of radar
and sonar and the whole system consists of multiple sensory units (radar or sonar)
connected to a single central processing facility. From the 1980’s, sensor system has
found its way to evolve towards a distributed network system. A representative is
the Distributed Sensor Network (DSN) project sponsored by the Defense Advanced
Research Projects Agency (DARPA) of the U.S. This project has identified four key
technologies for the sensor network: the sensor technologies, communication tech-
nologies, processing algorithms and distributed software technologies. These key
technologies have defined the sensor network to be a multidisciplinary research field.
As sensor network has its deep root in the military applications and the Department
of Defense (DoD) of the U.S. realized its importance in the future battlefield, most
of the research works were sponsored by the DoD of the U.S. Only after the year

2 1. Introduction

2000, with the rapid advances of two key technologies: one is the Micro-Electro-
Mechanical System (MEMS) which has greatly reduced the size and price of sensors
of various sorts and the other is the wide application of the Very-Large-Scale Inte-
gration (VLSI) which has made smaller and more powerful processors and wireless
transceivers widely available, the sensor network paved its way to a fully networked
and autonomous system and finally gained its current name as the Wireless Sensor
Network (WSN).

A famous WSN project sponsored by the DARPA was the SensIT project and
many research agencies were funded under this huge framework. For example, the
PODS project of the University of Hawaii, the sensor network research group of the
University of Wisconsin-Madison and the Self-Organizing Sensor Networks project
from the University of Auburn, etc. The main objectives of the SensIT project are
the networking technologies and networked information processing technologies for
the wireless sensor networks. The former emphasizes more on the autonomous and
dynamic network formation while the latter aims on a more intelligent network with
information processing capability.

At the meanwhile, more academic oriented researches had been carried out and
the industrial partners started to join. The Center for Embedded Networked Sensing
(CENS) has been setup at the University of California, Los Angeles by the National
Science Foundation (NSF) of the U.S. The CENS not only carries out theoretical
works enabling better WSNs but also advocating civil applications of the WSN.
Besides these efforts, some companies such as Intel, Crossbow, Moteiv etc. started
producing their own WSN platform, which generally includes a set of sensor nodes,
a gateway node and software package facilitating the development. Their efforts
have greatly helped both the researchers from the academic point of view and the
developers from an industrial point of view.

1.2 WSN Evolution

Currently, the wireless sensor network is considered as a promising method for
many applications including both the traditional military applications and the newly
emerged scientific and civilian ones. For the former, these include battlefield surveil-
lance, country border monitor, mobile target tracking, etc. For the latter, environ-
ment monitor, volcano monitor and wild animal or plant study are typical scientific
application areas, while more applications such as to monitor architecture safety,
machine malfunction, health of people and the motor traffic, or to facilitate during
hazard such as earthquake, flooding or fire. Obviously, one is unable to enumerate
all these applications as they are expanding rapidly to many areas where traditional
(wired) sensors are employed for monitoring purposes.

This diversification of WSN applications has provided an evidence about how the
WSN is evolving and shed light on what future WSNs will look like. Actually, we
notice that the primal applications of the WSN in all of the three mentioned areas
are still limited to highly specialized domains. In such applications, the wireless
sensor network is demanded, designed, deployed, used and maintained all by spe-

3

Power Module

Se
ns

in
g

M
od

ul
e

C
om

m
un

ic
at

io
n

M
od

ul
e

Storage

Processing
Module

Figure 1.1: Sensor node components.

cialists. These WSNs are highly specialized by all aspects e.g. sensors are carefully
selected, functional modules of both hardware and software are tailored, devices
are manually deployed according to application requirements, wireless transmission
parameters are adjusted in combination of the deployed position to form a network.
However, an overview on all applications which are really deployed nowadays does
give us some signs that the WSN has already opened its way to a low cost, easy
to use network providing versatile services to the general public. In the vineyard
application [BBB04], the design and deployment phases are already made general
enough to support various situations and their experiences show that users without
any knowledge about the wireless sensor network are able to operate and make use
of such a network.

These observations recalled us the evolution of computers which has demon-
strated a very similar trend: from centralized to paralleled or networked processing,
and from specialized developer and users oriented to a standard office equipment
and a kind of consumer electronics used around the world. If this trend continues
for the WSN, it is possible that the WSN will be applied to almost all perspectives
of our society in the near future, providing us many useful information including not
only the basic parameters of the physical world we are living in, but also any event
and state that we are interested in. We believe this trend will continue and finally
lead to massively deployed interconnected networks of sensors and people will be
able to retrieve reliable information everywhere.

Generally speaking, wireless sensor network is a data gathering and processing
wireless network consisting of many sensor nodes and one or more sink nodes. The
sensor nodes should be able to carry out some basic functionalities such as sensing
the ambience environment, wireless transmission and reception, storing the sensed
data and computation. Several modules are generally needed to fulfill these tasks:
the sensing module, the processing module, the communication module, the storage
and finally the power module as illustrated in the Figure 1.1. On the other hand,
the sink node acts as a gateway connecting the networked sensors with the outside
world where the back-end application server is located. Data is sent to the server
for processing and then provided to the final users via the sink. While on the other
direction, commands towards the sensor nodes are also forwarded through the sinks.
These commands may include query, configuration and re-programming.

4 1. Introduction

WSN

Internet

Storage Server

Sink

User

Figure 1.2: Fixed sink wireless sensor network.

Wireless sensor network design depends heavily on its application. Actually, the
selection of on-board sensors, size of the sensor nodes, type of the sink nodes, the
communication mechanism, the network structure and the related software should
be carefully selected to meet the special requirements of the application. We will
focus only on the networking aspect of the whole system and identify three typical
WSN network architectures. While the first two have found their applications in
the real world, the third one is just emerging.

Fixed Sink WSN In some military and scientific WSN applications, the sensors
are installed manually at carefully designed positions to form a static network. A
sink node is also installed at a fixed position and data is sent from the sensors to
the center server through the sink. We call this network architecture the fixed sink
WSN, as demonstrated in Figure 1.2. An obvious problem of the fixed sink WSN
is the bottleneck formed around the sink, as a result of the aggregated data from
all sensors. This bottleneck effect will drain the energy on the sensors around the
sink much faster than other sensors and finally when these sensors die out of energy,
the rest part of the network is separated from the sink. Installing more sinks in the
network may alleviate the bottleneck effect, however, doing so increases both the
investment of the network and the complexity of the network. In fixed sink WSN,
the client or user access the services provided by the WSN through the back-end
server.

Mobile Sink WSN Under certain circumstances, it is impossible or unnecessary
to install each sensor node to an exactly controlled position and sometimes the
sensors may not be able to form a fully connected network towards the sink. For
example, sparsely deployed sensors are enough for the designed sensing task thus
the distance between sensors may be beyond their maximum transmission range.
In contrast, a connected network is unnecessary or highly expensive. Under this
case, researchers have proposed to use some mobile devices to collect the data from
the sensors when the devices move within the transmission range of the sensors.
We name these mobile devices the mobile sinks and the corresponding network
architecture the mobile sink WSN. The mobile sinks are also known as the data
mules or data collectors in the literature. The data generated by the sensors is
stored temporarily before a sink moves nearby, then transfered to the mobile sink,
brought to the server for processing and finally provided to the users. In the mobile
sink WSN, the mobile sink is a part of the network deployment, designed, deployed

5

CollectorWSN

Internet

Storage Server

User

Figure 1.3: Mobile sink wireless sensor network.

and managed by the WSN operator. Mobile sink WSN alleviated the bottleneck
effect found in the fixed sink WSN. Figure 1.3 serves as a brief illustration of the
mobile sink WSN architecture.

Mobile User WSN In the future WSN applications serving the general public,
the number of potential users of the network will be very large. Current network
architectures with the fixed sinks or the mobile sinks may encounter scalability
difficulties as the service is finally provided to the users via back-end servers. Fur-
thermore, the users of such kind of general public services usually are interested in
certain information about their ambient environment, i.e. the users are interested in
what is happening nearby. This kind of in-site information may include temperature,
noise, parking slot, traffic intensity, availability of certain product in the supermar-
ket, etc. Under this case, a more efficient information retrieval scenario could be
letting the users communicate directly with the surrounding sensor network and
gather information with only interested types from only the sensors around them.
We name this architecture as mobile user WSN, as illustrated in Figure 1.4. We
emphasize also that the mobile user WSN allows the users to enjoy more freedom
when querying the sensors and for the queries covering a large geographical area,
multi-hop data forwarding is necessary.

Mobile user WSN has many advantages especially for certain types of applica-
tions compared with the previous two architectures. On one hand, many types of
information only have real-time value thus there is no need to store them for further
processing or for auditing purpose. Therefore, the data can be provided to the users
directly without being forwarded to the back-end server first. On the other hand,
the sensors under this scenario could be triggered only by a request from the user.
If there is no query to process, the sensors would stay at low-power mode. Besides,
communication happens only between users and the sensors around them, sensors
not involved in the query are not affected. In contrast, fixed sink WSN sensors with
no sensing tasks may also have to communicate in order to help forwarding data or
command for others, unnecessarily consuming energy.

Mobile user WSN differs from the fixed sink or mobile sink WSNs in a very
important way, i.e. the sinks in either fixed sink WSN or mobile sink WSN are
not the final consumer of the information generated by the sensors. They act on
behalf of the operator of the WSN collecting data from the sensors, forwarding the
data to back-end servers, bridging commands from the servers to the sensors. The
device in use is selected at the design time, their query scenario is pre-programmed,
their position or trajectory is planned, all by the operator. Therefore, the resulting

6 1. Introduction

User

User

WSN

Figure 1.4: Mobile user wireless sensor network.

network is a closed system providing services only through some back-end servers.
In contrast, the mobile user WSN architecture is more open to the users in a way
that the users may gather data directly from the sensors with their handhold devices
such as cell phones or PDAs. However, it should be noticed that the mobile user
WSN and the other two architectures are not mutually exclusive. Instead, mobile
user can co-exist with either a fixed or mobile sinks, resulting in a hybrid and more
versatile architecture.

1.3 Motivations and Objectives

This thesis has been motivated by the large scale, general public service oriented,
in-site information gathering applications and the resulting mobile user WSN archi-
tecture. These applications are gaining more and more interests from both industrial
and academic organizations. An architecture with multiple mobile sinks has been
proposed in [CM06]. In this architecture, cell phones are equipped with multiple
wireless interfaces: one for basic mobile network communication and the other for
communicating with other devices via short distance wireless links such as Bluetooth
and ZigBee. Based on these multi-radio enabled cell phones, it is possible to provide
some useful services to the general public. We highlight several of them here with
only their basic scenarios and most distinct characteristics.

Pervasive Information System Wireless sensors could be deployed along the
city streets and the parking places so that the drivers may have access to real-time
information about the traffic ahead and the free parking slot nearby with their cell
phones. Apparently, one usually cares more about the traffic information about a
small region ahead towards his destination, or the parking information around the
destination.

Counter-emergency Facilitating System Another potential application do-
main for the mobile user WSN could be the emergency operations. Wireless sensor
nodes could be deployed within and around a fire site to facilitate the operation.
With handhold devices, the firemen are able to gather various information from
sensors around them in order to make wise actions so that they can keep themselves
from dangerous explosions, avoid being trapped or locate the victims.

7

We emphasize several characteristics of these kinds of applications and the re-
sulting mobile user WSN as follows:

- The wireless sensor network under these cases is more user-oriented than tradi-
tional military or scientific applications. For the pervasive information system
mentioned above, the users gain access to the services likely through a con-
tract, thus becoming clients of the network. As a result, it is necessary for the
service providers to satisfy their clients. For the counter-emergency facilitating
systems, to satisfy the basic needs of each single agent is important although
it is more likely that they belong to the same organization.

- The users are not managed by the network operators. While it is true that the
devices in use must meet some functional requirements and certain contract
between the users and the operator is needed, the detailed user profile such as
access pattern, position, etc. could not be controlled by the operator.

- The users are autonomous and they generally do not have direct contact with
each other. On the contrary, they usually compete with each other for the
network resources.

Under such an autonomous environment with strict resource constraints, multiple
users have to share the common resources in a satisfying way in order to operate
the network in an optimal state according to the user population and geographical
distribution. Especially, one would like to prevent certain users from being starved
only because they enter the network after other users have consumed all available
resources. This requires to investigate a series of optimization problems which are
the central concerns of this thesis.

This thesis aims at the optimization problems originated from the mobile user
wireless sensor network defined previously. The problems will be formulated with
mathematical programming and then solved analytically and algorithmically. Two
optimization objectives will be investigated, one is to maximize the satisfaction of
all users in the network and the other is to give each user a fair share of service pro-
vided by the network. Both optimization objectives emphasize more on the users’
side. This user centric point of view is considered one of the novelty of this thesis.
When the network is supposed to provide services to its clients, to optimize client
side parameters such as their query range makes sense. As a result, sensor side
parameters that are pervasively considered critical in the current literature, such as
the power efficiency and life time, are of subordinate importance in this thesis. We
consider the resource limitations on the sensor nodes only as constraints in formu-
lating the optimization problems and the particular resource under consideration is
the effective bandwidth of the sensor nodes.

Obviously, for an open network architecture such as the mobile user WSN we are
studying, any practical solution must be capable to adapt to the network dynamics,
e.g. user join or leave, position change, amount of information required, etc. This
demands basically a distributed solution that enables the cooperation between the
users and the sensors to achieve certain optimization objective. Therefore, this

8 1. Introduction

thesis will focus mainly on the distributed solutions of the optimization problems
formulated.

In summary, this thesis aims to propose distributed algorithms for the
users and sensors in a mobile user wireless sensor network to collabora-
tively allocate an optimal query range for each user in an adaptive and
scalable way.

1.4 Contributions

The major contribution of this thesis is that we identified, formulated and solved
the multi-user resource sharing problem in the emerging mobile user wireless sensor
networks. This consists of four aspects.

As the first step, the problem is formulated as a nonlinear optimization problem.
Max-min fairness is employed as the optimization objective. The formulation is
based on a disc-shaped query model where the sensors within a disc-shaped area
around a querying user are assumed to send data at a constant bit rate to the
user. As a direct result of this query model, the traffic load on the sensors could
be analyzed with the method proposed in [LH05]. This model allow us to obtain
an explicit expression of the max-min fair query range allocation for the simplest
network setting where only two users are considered. Based on the solution to the
two-user network, we developed a distributed algorithm to allocate max-min fair
query to multiple users in the network. The core idea of the distributed algorithm is
to let users which are competing for common resources calculate fair query allocation
between each pair of them. The calculation is based on the two-user results and is
able to provide a very good heuristic starting point for further exploring the optimal.
The merit of the algorithm is it adapts to a near optimal state very fast after any
query modification happens in the network.

Based on this first result, we further investigated another query scenario where
the query range is measured by the hop number that the query messages may travel.
This small modification in the query model actually turned out to be fundamental
in that the optimization problem has to cope with discrete parameters. An im-
mediate consequence is the max-min fairness for continuous parameters used in
previous model may not exist. Instead, lexicographical max-min fairness has to be
used under this case and the problem becomes combinatorial thus should be solved
as integer programming problems. The combinatorial formulation of this resource
sharing problem with discrete parameters is considered as a part of our second con-
tribution in this thesis and in particular, we consider two optimization objectives:
maximization of all queries and lexicographical max-min fair queries. The combi-
natorial problem behind is a member of the well known Knapsack Problem (KP)
family, namely the Multidimensional Multiple choice Knapsack Problem (MMKP).
Distributed algorithms are proposed for the MMKP for the two optimization objec-
tives. The central idea is when the sensors are queried by many users thus about to
experience congestion, they solve a local problem to obtain locally optimal solution
for the related users, then the users adapt to their new query ranges. Combined with

9

an adaptive exploration phase, the resulting distributed algorithm is demonstrated
to be very effective by computer simulations.

The third contribution of this thesis is that the problem formulation and pro-
posed solution are further extended to the de facto standards for wireless sensor
networks, namely, the ZigBee specification and the IEEE 802.15.4 standard. In par-
ticular, the synchronized tree mode specified by the ZigBee is investigated. This
tree mode is specially designed for energy limited scenarios thus is ideal for wire-
less sensor networks. The most important modification on the previously proposed
model, in order to adapt to the ZigBee tree based wireless sensor networks, is how
the congested sensor nodes solve their local problems. More precisely, the ZigBee
tree mode allows us to estimate the potential traffic load when a query grows larger,
thus further enables a sensor to solve the local problem efficiently. In contrast, our
previous model assumes a shortest path routing is in use and the solution relies on
each sensor to measure the traffic load it is handling.

The last contribution of this thesis focuses on the MMKP itself which has been
used in our previous problem formulations. MMKP is a very interesting problem
mainly due to two aspects. Firstly, it is a complex problem thus is inherently hard.
Actually, it has been proven to be NP-hard in general. Secondly, the MMKP has
many real world implications. For example, it has been wildly used to model the
adaptive QoS management problem [LLRS99]. Many heuristic and exact algorithms
have been proposed in the current literature and they achieved better and better
performance. While the performance achievement is quite promising, they are based
on numerical experiments with very limited benchmark problem instances. Further-
more, our experiences gained from solving our multi-user resource sharing problem
proposed previously suggest that the hardness of certain MMKP instance not only
depends on its size, i.e. the number of items, classes and dimensions, as widely
believed, but also depends heavily on the exact values of the problem parameters,
i.e. its structure. How the structural properties affect the hardness of the MMKP
instance remains unrevealed. Thus, the last part of this thesis intends to make a
first step towards showing what kind of structure makes the hard MMKP instances.
Two contributions are made in this part: We proposed a method to generate com-
prehensive benchmark MMKP instances which may facilitate future researches in
the area; Then we use it to generate several groups of instances with designed special
properties and we test current exact algorithms with these instances. Experiments
show instances with similar set of items for classes and with high correlation between
profits and weights are hard to solve. Constraint level also impact the hardness of
the instances greatly and the impact is shown quite irregular in general. Therefore,
a series of instances with constraint level covering the whole span of the solution
space should be used when benchmarking the algorithms.

1.5 Thesis Organisation

This thesis is composed of seven chapters organized into three parts.

Chapter 1 and 2 belong to the first part which aims to provide an overview and

10 1. Introduction

necessary background information on the thesis.

Chapter 1, “Introduction”, i.e. the current chapter, provides a broad description
on the context based on which the research is carried out. With a brief illustration
of the wireless sensor network history, we identify several major evolutionary steps
on the WSN architecture and motivate the thesis by advocating an emerging mobile
user WSN architecture which seems to be a better fit to the future applications.
Major contributions of this thesis are also highlighted very briefly.

Chapter 2, “Background Knowledge”, as indicated by the title, provides some
background knowledge which helps to understand how the main technical part is
developed and why certain selections and assumptions are made. The background
information mainly consists of four aspects. Firstly, a brief survey is given on the ad-
vances achieved in the wireless sensor network as a general research and engineering
field. Many of the technologies such as media access control, routing, deployment,
in-network data processing, etc. are related with the solutions that will be proposed
in this thesis. Secondly, we present current theoretical results on the capacity of
wireless ad-hoc networks, mainly because it is the bandwidth that we are sharing
among multiple users. The necessary background knowledge also consists of an in-
troduction to the knapsack problems, in particular its multidimensional multiple
choice variant and the related algorithms. Finally, as fairness is a central concern of
this thesis, we give a brief overview of some results related with this topic. Several
fairness notions are introduced with their applications.

In the second part of this thesis, we formulate the problems, develop the models
and propose the solutions.

Chapter 3, “Fair Query Allocation In WSN Under A Continuous Query Model”,
discusses the resource sharing problem formulation and the motivating application
scenario in detail. Continuous query model is employed in the non-linear program-
ming formulation. A simple network scenario is analysed for a max-min fair resource
sharing solution and the results are used as a building block of the distributed al-
gorithm.

Chapter 4, “Reformulating the Problem: A Discrete Query Model”, investigate
the discrete version of the same resource sharing problem. Instead of the max-min
fairness, it is necessary to employ the lexicographical max-min fairness as the opti-
mization objective. Besides this, a global maximization objective is also investigated.
Multidimensional multiple choice knapsack problem is used in the formulation and
distributed algorithm is proposed and evaluated.

Chapter 5, “Extension To A Practical Context: ZigBee Based WSNs”, intends to
make the problem formulation more specific such that the proposed methods adapt
better to a realistic wireless sensor network. ZigBee synchronized tree networking
layer and the related IEEE 802.15.4 MAC layer are investigated as they are designed
especially for energy constrained networks such as the WSN. While the general
problem formulation keeps almost intact, some ZigBee details should be considered
in the proposed algorithm. Special techniques enabled by the ZigBee are further
exploited. As a result, the algorithm has some nice properties with respect to
message complexity and locality.

The third part of this thesis focuses on the MMKP problem itself which is the

11

core problem behind our problem formulation.
Chapter 6, “The Problem Behind: Empirical Study On The Hard MMKP In-

stances”, offers an empirical study on the property of the MMKP instances, as a
reasonable extension from experiences gained in the previous chapters where algo-
rithms solving the MMKPs have been proposed and evaluated. Systematic method
to generate benchmark MMKP instances is proposed which provides a better way for
evaluating future algorithms. Numerical experiments reveal that there exist many
hard instances which should have been considered when benchmarking any algo-
rithm, however not. Experiments also imply that certain properties on the problem
parameters contribute to the hardness of the instances.

Chapter 7, “Epilogue”, summarizes the whole thesis. Pros and cons of the prob-
lem formulation, analysis, solutions and the verifications are discussed. Possible
directions on which this work may be extended are highlighted.

12 1. Introduction

13

Chapter 2

Background Knowledge

“ The mechanic, who wishes to do his work well, must first sharpen
his tools. ”

– Confucius

This chapter provides necessary background information which helps reading the
main technical parts. A brief survey of the wireless sensor network domain is pre-
sented in Section 2.1, followed by a discussion of theoretical capacity results on
wireless ad-hoc and sensor networks in Section 2.2. Detailed discussions on the al-
gorithms for the multidimensional multiple choice knapsack problem can be found
in Section 2.3. Finally, three fairness definitions widely used in the literature are
discussed in Section 2.4.

2.1 State-of-the-Art Researches on WSN

From a researcher’s point of view, although the WSN is a multidisciplinary research
field, an interesting fact is that most of the current research works have focused
on the energy efficiency of the sensor nodes. This is because most current sensor
nodes are powered by batteries and replace or recharge them for each node after
the network is deployed is considered to be impossible or very expensive. A natural
objective is to make the network usable as long as possible. This has been the
direction of almost all researches. On one hand, supporting hardwares, such as
ultra-low power sensors, processors, wireless transceivers and high power density
batteries, etc., that enable a sensor node working for months or even years are being
invented. On the other hand, software such as operating system, various layers
of communication protocols, data processing algorithms, etc. which control the
hardware in a more intelligent way to save power, are also a very fruitful research
field.

In this thesis, we only focus on the software aspect and give a brief survey of some
major achievements which have been made recently. We classify these achievements

14 2. Background Knowledge

into supporting techniques and communication protocols, mainly in order to give
more emphasis on the latter.

2.1.1 Supporting Mechanisms

Several mechanisms are generally needed to support a wireless sensor network. They
include topology control, coverage control, localization, time synchronization and
security.

Topology and coverage control These are two highly related problems. On
one hand, sensor nodes should be dense enough to cover the monitored area to carry
out their designed tasks and sparse enough to eliminate useless redundancy. While
redundancy of certain degree is needed for various reasons such as resiliency, thus
preserved. How to make the working sensors cover the target area according to
the application demand is the core challenge of the coverage problem and this may
consist of either a static design problem before the network deployment or a dynamic
and autonomous adjustment in an operating network. On the other hand, the sensor
nodes have to be interconnected to form a network to retrieve information from the
monitored area. Because it is often the case that the sensing range is smaller than the
wireless transmission range, the deployment of sensor nodes should first meet the
coverage requirement then form an efficient communication network with certain
topology control algorithms. The aims of the topology control algorithm include
adjusting the wireless transmission power of the nodes to minimize interference,
or scheduling redundant sensor nodes to low power mode and back to work when
nearby nodes fail. Both operations should always keep the connection requirement
of the network. More detailed discussions on the topology and coverage control
could be found in [LY06, CW04, CK07].

Localization The problem of localization consists of two different but related as-
pects. One is how to let each sensor node know its own position and the other is
how to know the position of certain event being monitored. Generally, the former is
the basis of the latter and emphasizes more on the WSN itself thus, is a fundamen-
tal problem frequently investigated. Here we give a brief discussion on this aspect
only. Two reasons make the position information important for WSN. Firstly, many
WSN applications require some knowledge of where the data is retrieved from. This
requires either the geographical position in the real world or a relative position the
node represents, e.g. node number 1 is mounted on certain position of a build-
ing. Secondly, the position information may be required by other protocols such as
routing, coverage control and in-network data processing. They sometimes employ
position information simplify the protocol design and implementation. However,
sensor node localization is a challenging topic. Static binding between nodes and
their positions is applicable under very limited situations where the number of nodes
is small and the exact position the node is deployed could be controlled. Otherwise,
we may need more adaptable and scalable mechanisms to decide for each sensor

15

node (or a group of sensors) its position. A comprehensive overview on the problem
could be found in [MFA07].

Time Synchronization Time or clock synchronization is always an important
problem for all distributed computer systems where a global time notion is gener-
ally needed to facilitate other protocols. In wireless sensor networks, the data is
meaningful only when one knows when it is generated. Besides, some in-network
data processing mechanisms require also some notions of time to merge multiple
events. One could use an absolute time to label the data and the GPS devices are
usually used for this purpose. However, as the GPS device is generally expensive,
for a WSN with large number of sensor nodes, it is less cost-effective to equip each
sensor node with a GPS. Therefore, many algorithms have been proposed to enable
most GPS-less nodes to synchronize their clocks with several GPS-equipped nodes.
Besides the absolute time, one has several other time notions such as the network
time and even only a sequence number providing very limited information about a
relative order of the data generation. Depending on the application requirement,
time synchronization could be done at coarse-grained or fine-grained granularities,
allowing a trade-off between protocol complexity, energy efficiency and synchroniza-
tion error. Survey papers of recent advancement in solving the problem could be
found in [SY04, YMG08].

Security Securing the wireless sensor networks has recently gained great emphasis
as a result of its expanding applications. In more and more of these applications,
security is not a plus any longer but becomes a basic requirement. A typical example
of such applications would be the health care WSN where a malicious attacker to
the system may cause death to the patient. Several standard security mechanisms
have been developed and applied to traditional wired or wireless networks. These
include encryption, authentication, intrusion detection etc. However, because the
computation and communication resources are very scarce on the sensor nodes,
current mechanisms can not be directly applied to the WSN. As a result, lightweight
protocols that consumes very few system resources are under pursuit. Several books
on WSN contain chapters on this topic, for example in [RSZ04, ZG04].

Relations to our study The above mentioned topics are related with the query
allocation problem which is the central concern of this thesis. We make the following
assumptions about these issues throughout this thesis:

- The sensors have necessary and sufficient coverage of the monitored field. This
implies also that the data from any single sensor node is necessary thus the
network must try its best to deliver the data when requested. We notice a more
realistic case is that the generated data has certain redundancy thus some of
the data could or should be dropped, or merged in the network. These cases
will not be investigated.

- The sensor nodes are assumed to be fully and densely connected to a single
network in Chapter 3. Although the dense network assumption allows a suc-

16 2. Background Knowledge

cinct analytical solution of the problem, it is not practical. Therefore, this
assumption is relaxed in the following chapters. As a result, it allows the pres-
ence of any topology control algorithm which generally makes the network as
sparse as possible in order to mitigate the interference, constrained only by
the network connectivity.

- We make no assumption about whether the sensor nodes know its position
or not. Actually, the shortest-path routing or tree based routing which will
be employed by our solutions could be position based or not. Our problem
formulation and solution do not require any time synchronization mechanism.

- We do not consider security issues in this thesis although the application sce-
narios that have motivated this research should be secured in a realistic de-
ployment.

2.1.2 Communication Protocols

Wireless communication is generally considered expensive with respect to its energy
consumption compared with other tasks such as sensing and computing on a sensor
node. Therefore, energy efficient communication protocols are critical to the life
time of the sensor node. In this section, general discussions are given to the wire-
less communication protocols for wireless sensor networks. Physical, media access
control, network and transport layers will be discussed.

2.1.2.1 Physical Layer

Physical layer is responsible for selecting the transmission medium and proper signal
modulation, transmission, detection and reception. Radio and infrared are two most
employed transmission media by the wireless sensor networks, while others such as
optical and acoustical media are occasionally used for special applications. We
consider only the radio based technologies in this thesis.

As the radio spectrum is a precious resource and should be shared by all com-
munication activities, its usage is strictly regulated by authorities such as the gov-
ernment. As a result, wireless sensor network, as a newly emerging wireless com-
munication participant, has to co-exist with other existing wireless communication
technologies. Currently, most wireless sensor devices employ a wireless transceiver
operating at the licence-free Industrial, Scientific and Medical (ISM) bands, within
which the two bands with center frequency at 915MHz and 2450MHz are frequently
used.

Although many advanced modulation techniques have been developed and prac-
tically used for various wireless communication systems, only the simplest ones have
been incorporated in transceivers for wireless sensor networks. This is mainly due to
the low-power, low-cost requirement of the sensor nodes. As a result, simple modu-
lations such as ASK, BPSK or QPSK, when accompanied by the low transmission
power and a low speed micro controller, offer only very moderate data transmission
rate.

17

In this thesis, we do not consider the exact modulation schemes in use.

2.1.2.2 The Medium Access Control Layer

Many medium access control schemes have been proposed for the wireless sensor
networks in the literature. Most of them are adapted from the wireless ad-hoc
networks and enhanced with energy awareness. Although almost all state-of-the-
art MAC protocols such as CDMA, FDMA, TDMA, CSMA have been reported in
use for wireless sensor networks, we consider CDMA and FDMA are generally too
heavy to fit in the sensor nodes as they require complex signal processing facilities
thus results in expensive hardware. In contrast, TDMA and CSMA are simpler to
implement thus have been used for many practical WSN applications.

In Chapter 3, we assume an ideal MAC layer that schedules the neighboring
nodes in a perfect way that achieves the link capacity. While in Chapter 4, our
problem formulation is based on a general MAC layer and the effective bandwidth
provided by this general MAC layer is used as constraints in the problem. Finally,
one more step to the reality, we build our model based on the IEEE 802.15.4 MAC
layer in Chapter 5. Therefore, we now give the IEEE 802.15.4 more detailed discus-
sions.

The IEEE 802.15.4 Standard The 802.15.4 is proposed by the IEEE as a stan-
dard for the Low Power Wireless Personal Area Networks (LP-WPAN) [80206].

It requires a physical layer supporting multiple data rate, more precisely defined
as follows: 250kbps at 915MHz with O-QPSK modulation and at 2450MHz with O-
QPSK modulation, and optionally at 868MHz with ASK modulation and at 915MHz
with ASK modulation. An optional 100kbps data rate could be used at 868MHz
band with O-QPSK modulation. A data rate of 40kbps should be supported at
915MHz with BPSK modulation and another 20kbps data rate is supported at
868MHz band with BPSK modulation. It defines 16 channels at 2450 MHz band,
30 channels at 915 MHz band and 3 channel at 868 MHz channel.

Star and Peer to peer network topologies are supported by the standard, both
requires a PAN Coordinator, which shall be a Full Functional Device (FFD). Other
nodes can be either FFD or a Reduced Functional Device (RFD). However, a RFD
can only talk with a FFD. The FFD could be a Coordinator when it carry out certain
coordination functions for the RFDs attached to itself. The standard makes use of
the standard 64bit MAC address, however, a network can use a short 16bit address
when provided by the coordinator, allowing more energy-efficient communications.

The basic MAC mechanism employed by the 802.15.4 is the CSMA-CA channel
access, while it supports also the optional Guaranteed Time Slots (GTS). Other
physical layer functionalities are also supported such as the low power mode, energy
detection and link quality indication, which maybe used by upper layers to facilitate
topology control, routing, etc.

The 802.15.4 devices should be able to operate in either the Beaconed or the
Beacon-less Mode. In the beaconed mode, the coordinator organizes the transmis-
sion/receive as super-frames. A super-frame begins with a beacon frame, followed

18 2. Background Knowledge

by an active period and then an optional inactive period. The inactive period is for
the coordinator to go sleep. Within the active period, the time is divided into 16
slots (the beacon itself uses the first slot). The slots can be allocated to a contention
access period (CAP) or an optionally Contention Free Period (CFP). The CFP, if
presents, goes after the CAP. Within the CFP, the slots are allocated to several
Guaranteed Time Slots (GTS), a GTS could use multiple slots. The GTS is mainly
designed for low latency applications. In the CAP, the nodes contend for the channel
using slotted CSMA-CA. The super-frame structure is defined by the coordinator,
and the structure information is sent to the nodes in the beacon frame. Under the
beaconed mode, any data communication begins with a beacon frame and the ACKs
are optional (on requirement of the initiator). In the beacon-less mode, there will be
no super frames, but the beacons still have to be used for network discovery. When
the node wants to send data to the coordinator, it sends directly using un-slotted
CSMA-CA.

The 802.15.4 devices communicate with each other in either one of the following
modes: the Direct Mode, Indirect Mode or Peer-to-peer Mode. The first two are
basic communication modes while the third one makes use of the two basic modes.
When the node wants to send data to the coordinator, it sends directly. When a
node wants to get data from the coordinator, it has to send a request first, then
the coordinator send the acknowledgement followed by the actual data transmission.
For this scenario, the ACKs are mandatory. In short, direct mode is used for data
from RFD to FFD or from FFD to FFD, while indirect mode is used for data from
FFD to RFD. As a result, receivers of RFDs will be able to go sleep while those of
the FFDs has to keep alive in order to receive the pushed data. For peer-to-peer
mode, the nodes can send to any other node within its transmission rage and in this
case, un-slotted CSMA-CA should be used.

The 802.15.4 standard defines a set of Primitives which could be generally sep-
arated into two categories: data service and management service primitives. The
execution of these primitives may trigger transmission of certain frames on the wire-
less channel, or trigger upper layer actions such as message reception, or simply
report certain status. The standard also defines four types of Frames, namely, Bea-
con, Data, Acknowledgement and MAC Command. The type of a frame in indicated
with the frame type field in the frame.

When the network is beacon enabled, the coordinators shall bound its channel
time using a Superframe structure separated by beacon frames. The network uses
the superframe by setting the BO value chosen from [0, 14] and setting the SO
value chosen from [0, BO]. The combinations of these two values define different
superframe length and beacon interval. Networks do not use the superframe shall
set BO = SO = 15. The BO and SO may be the most critical parameters affecting
the MAC performance.

All the coordinators in the same network should have the same BO values, so as
to the SO values. The coordinators have to synchronize their beacon transmission.
Actually, a coordinator can send his own beacon only during the inactive period of
its coordinator, as a result, synchronization can only be achieved when SO < BO.

CSMA-CA is the basic channel access method employed by the 802.15.4. De-

19

pending on the network is beacon enabled or non-beacon enable, the CSMA-CA
could be slotted or unslotted. The difference is in slotted CSMA-CA, all actions
should be aligned to the slot boundary while in unslotted case, the actions are
taken immediately. Furthermore, slotted CSMA-CA uses CW parameter to control
the number of CCA that should succeed before the channel access while unslotted
CSMA-CA transmit immediately once the CCA is asserted as clear. Finally, the
slotted version can support the battery life extension option.

The 802.15.4 defines several basic functions for the network maintenance. This
includes functions like channel scan, PAN ID assignment and PAN ID conflict res-
olution, MAC address assignment, superframe configuration and so on. A 802.15.4
network is initiated by the PAN coordinator. Devices wants to join an existing PAN
should send an association request command to a coordinator, then the coordinator
should send a response. If the association is successful, an MAC address will be
assigned. Disassociation is done through a similar command and could be initiated
by either coordinator or a device.

In conclusion, 802.15.4 defines a CSMA-CA based MAC layer to control the
operation of the PHY layer. The MAC layer is further controlled through a set of
primitives by the upper layer. 802.15.4 MAC supports both slotted CSMA-CA and
unslotted CSMA-CA.

2.1.2.3 The Network Layer

The network layer answers two basic questions: the address assignment and data
routing. There is a huge volume of research works on the issues concerning the
network layer of wireless sensor networks. Among all proposed mechanisms, we
emphasize a category of the shortest-path routing protocols due to their simplicity.
It is argued that simple solutions should be used if they have sufficed in practice, and
they are really found so [RC08]. The Chapter 3 of this thesis assumes a shortest path
routing protocol which has nice properties making the analytical model tractable.

Shortest-path routing could be combined with various addressing schemes. One
can make use of geographical position information of the sensor nodes then make
position-based shortest-path routing. Under this case, the geographical position is
used as addresses of nodes. If geographical position is required also by the appli-
cation, routing protocol can simply benefit from it without extra cost. For WSNs
where geographical position information is not available, shortest-path routing can
be realized by routing table managed by each node. This requires a proper address-
ing scheme to identify each single sensor node and routing messages are necessary.

In Chapter 4, we do not consider the specific routing protocol in use. As a
result, the formulation is more general and the solution relies only on the bandwidth
constraints and the measured traffic load. We propose a solution to the multi-user
resource sharing problem for the ZigBee based WSN in Chapter 5 since the ZigBee
is widely considered as a promising standard to be used for future short range
wireless communications. A tree based addressing scheme and the related routing
mechanism has been incorporated in the ZigBee specification [zig08] proposed by
the ZigBee alliance.

20 2. Background Knowledge

The ZigBee Specification ZigBee specifies most of the necessary functionalities
on top of the 802.15.4 MAC layer for the LR-WPAN applications, but we consider
only its networking related aspects, namely, the addressing and routing functional-
ities.

The ZigBee defines three network entities: the ZigBee Coordinators (ZC), the
ZigBee Routers (ZR) and the ZigBee End Devices (ZED), corresponding to the
PAN coordinator, coordinator (FFDs) and devices (RFDs or FFDs that are not
coordinators), respectively. The ZC is responsible for the initial setup of the network
and may participate in the routing.

Two address assignment mechanisms are specified in the ZigBee specification.
The default address assignment mechanism is the distributed address assignment
based on the tree structure. The basic idea is to let parent assign address or a
segment of addresses to its children according to the depth of associated with the
device (d), the maximum number of children a device can have (nwkMaxChildren
(Cm)), the maximum number of routers among these children (nwkMaxRouters
(Rm)). Note that the maximum number of children, maximum number of routers
and the maximum depth of the network (nwkMaxDepth (Lm))are defined by the
ZigBee coordinator at the network initiation phase. Then the address block that
a router can use to assign to its routing capable children is computed as follows,
suppose the router is in depth d.

Cskip(d) =

{
1 + Cm(Lm− d− 1), if Rm = 1
1+Cm−Rm−Cm×RmLm−d−1

1−Rm , otherwise

A device with Cskip(d) = 0 can not accept any child device and is the end device
itself. The Cskip(d) is used as an offset when assigning addresses to the children
devices. If the device is supposed to be an end device, its address is assigned as
follows:

An = Aparent + Cskip(d)×Rm+ n, (2.1)

where d is the depth of the parent, n starts from 1. If the children devices are
routing capable, the first child is assigned to an address 1 greater than the parent,
then the second is assigned to an address Cskip(d) greater than the first, and so on.

The assignment does not enforce any balancing, so the network may use up its
address before reaching the furthest devices, leaving them unable to join. One paper
deals with this problem and proposed an improvement [PT07].

The other address assignment scheme suggested in the ZigBee specification is
the stochastic address assignment. Under this case, the parent randomly chooses
an address that does not appear in its Network layer Information Base (NIB) and
assigns it to its child. The devices will keep an assigned address unless it is notified
to change it as a result of a possible address confliction.

The ZigBee network layer (NWK) supports star, tree and mesh topologies, this
conforms with the 802.15.4 standard. We emphasize on the tree and mesh network
structures which are considered scalable since we consider the WSN where there
are usually many devices participating in the network. In the tree network struc-
ture, devices are organized with a parent-child relationship, addresses are assigned

21

accordingly and a hierarchical routing is used. Under this case, it is possible to
employ the beacon enabled mode of 802.15.4 with a lower duty cycle in order for
energy saving. In the mesh network structure, as there is no inbuilt way to help
identifying the destination as in the tree structure, a table driven routing protocol
is specified based on the AODV protocol. Furthermore, under this topology, ZigBee
forbids the beacons, so the MAC employs the un-slotted CSMA-CA.

The tree structure is essential because during the network formation procedure,
the nodes are associated to a parent node and the addresses are assigned by this
parent node, this basically forms a tree. Furthermore, the routing algorithm uses
tree routing as its last resort if table based routing fails. The ZigBee routers shall
maintain a route table and a route discovery table. A device that does not have a
route table can still route its data by using hierarchical routing along the tree, if
permitted.

In hierarchical routing, the next hop could be decided by simple calculation
based on the destination address and the current node address. If the destination
is not a descendent of the current router, the router sends the data to the parent
and let it make the decision. Otherwise, the current router has to select one of its
children that contains the destination. With the hierarchical address assignment
scheme, this could be quite simple. To decide if a destination D is the descendent
of the current router which takes address A and at depth d of the tree, the router
tests if the following condition is satisfied:

A < D < A+ Cskip(d− 1)

If this is true, then the destination is one of his descendent, so the next hop could be
given by: N = D for ZigBee end devices where D > A+Rm · Cskip(d), otherwise:

N = A+ 1 +

⌊
D − (A+ 1)

Cskip(d)

⌋
× Cskip(d).

2.1.2.4 The Transport Layer

The central functionalities of a transport layer are congestion resolution and packet
loss recovery. Traditional transport protocols used in the wired or wireless networks
may not be applied to wireless sensor networks directly. This is either because they
do not provide special functions required or because they are less efficient under
wireless sensor network environment. For example in the UDP, no reliability or
congestion control is promised. And in the case of TCP, its connection overhead is
considered unacceptable for variable link qualities which is often the case considering
the harsh operating environment of the WSN. Other problems related with TCP
consist of the unfairness for faraway sensors, slow end-to-end response time and
most importantly, the energy inefficiency.

Congestion Resolution Congestion resolution consists of three parts: congestion
detection, congestion notification and rate adjustment.

Several congestion detection methods have been proposed in the current liter-
ature, e.g. timeout and duplicate ACK as in TCP; queue length has been used

22 2. Background Knowledge

in [HJB04, WEC03]; packet service time has been used in [EB04]; while a complex
measurement that combines both the packet service time over packet inter-arrival
time has been shown more effective in [WSL+06a]; finally, paper [WEC03] employs
the wireless channel load as an indicator of the congestion.

When a congestion state is detected, this information should be sent back to
the source, this process is known as congestion notification. Congestion notification
could be achieved through several methods proposed in the current literature. One
bit congestion state notification in packet header is used in [SOBAA03, HJB04,
WEC03]. Allowable data rate notification is used in the solution proposed by [EB04].
A new notion namely the congestion degree is proposed in [WSL+06a].

Rate adjustment can be either AIMD like if only congestion state is provided or
it can be accurate rate allocation if more information is available.

Packet Loss Recovery Packet loss recovery consists of three issues similar to
congestion resolution. One has to detect the possible packet loss, then notify the
sender and finally the sender retransmit the lost packet.

Most frequently used mechanism is to let the sender wait for an acknowledge-
ment message from the receiver. If the acknowledgement is not received before a
timer expiration, a packet loss is asserted. Hop by hop packet loss recovery could
be achieved in wireless networks by the sender overhearing the next hop node’s
transmission activity. Employing the broadcast nature of the wireless channel, if
the sender does not hear its neighbor node forwarding his packet within a period
of time, the packet is considered lost. Finally, packet loss could be detected on the
receiver by tracing the packet sequence number.

For the sender based packet loss detection mechanisms, there is no need for a
packet loss notification mechanism. For the receiver based detection mechanisms,
a special NACK message could be used to notify the sender. On noticing a packet
loss event, the sender decides if it is necessary to really carry out the retransmission.
Because under certain cases, retransmission may be energy inefficient. Under the
regime of wireless sensor networks where the wireless links are usually considered
less reliable, end-to-end packet loss recovery may be infeasible as a packet has a
large chance to be dropped during the multi-hop forwarding path. Therefore, how
to decide if a retransmission is necessary and where the retransmission should be
really carried out, i.e. where to cache the current packet so it can be retransmitted
later, become two challenging issues. By deciding to cache at the source or only
at some nodes on the path, we can make a trade-off between efficiency and storage
cost.

The main concern of this thesis is the bandwidth sharing between multiple users
in the wireless sensor networks. We formulate the problem with bandwidth limita-
tion of the sensors as constraints and these constraints actually require there is no
congestion on the sensor nodes. Therefore, our solutions belong to the congestion
resolution mechanisms. However, we tackle the problem from the user’s point of
view. The related works and novelties of our approach will be discussed in more
detail in the following chapters where each contribution is presented.

23

2.2 Capacity of Wireless Sensor Networks

Recent years have seen the burgeon of multi-hop wireless networks where devices
with wireless interfaces can be connected to each other in pure ad hoc fashion or
through infrastructures and communicate in a multi-hop fashion. As one of the most
basic concerns, the capacity of such networks have received much attention from the
researchers, especially after the pioneer works done by Gupta and Kumar [GK00].

The main concern of this thesis is to share the bandwidth capacity among the
users. Theoretical results show that under the optimal case, the per-node transport
capacity of ad hoc networks scales as O(1/

√
N) if independently and randomly

distributed traffic is assumed. However, in typical WSN applications, the data
traffic are usually directed to the same destination, making the traffic pattern in
WSN quite different from traditional ad hoc networks. In [MDMLN03], the per-
node throughput capacity was shown to scale as Θ(1/N). We adopt this result
as the basis of our derivation since it meets our assumptions of the network. We
make use of the per-node throughput capacity as our capacity notion and we assume
there is a perfect scheduling. As a result, the physical layer details such as path
loss and interference are totally transparent to our problem formulation, i.e. we
do not consider interference models. Instead, we build our model on top of the
network with certain known per-node throughput capacity. Apparently, the multi-
user wireless sensor network belongs to the hybrid network where two types of nodes
exist. However, a basic distinction of the multi-user WSN is that there is no direct
links between the users. Instead, the users here are logically individual entities.
Therefore, the traffic pattern in this network is an aggregated effect of multiple
many-to-one traffics. Throughout the thesis, we assume a static network although
mobile users are more realistic for the application scenarios motivated this study.
However, our problem formulation and solution have inbuilt mechanisms to handle
limited query dynamics, e.g. new query, modified query or a query is canceled. This
property provides a naive way to incorporate user mobility: query when the user is
in static state, stop the query and move, then start a new query. Full support of
user’s query when it is moving requires more efforts and is left for future work. A
dense network is assumed in Chapter 3 and this assumption is removed in Chapter 4
and 5 where only connectivity is required.

2.3 The Knapsack Problems

Knapsack Problem (KP) has been studied for a long time. Together with several
variations of its original form, they are successful in modeling problems from different
scientific and engineering fields. However, all of them are NP complete problems.
Comprehensive discussions on the general KP family could be found in [MT90,
KPP04].

MMKP is one of the most difficult variations of KP which could be seen as
adding the multiple choice constraint to the multidimensional knapsack problem
(MDKP). This problem has received more attention only recently. MMKP could be

24 2. Background Knowledge

described as follows. A number of items, each has a certain value, are to be selected
from a set of items grouped into several classes then put into several knapsacks with
each associated a certain capacity. Each item has a unique weight when put into a
certain knapsack. The goal is to select exactly one item from each class such that
the sum value is maximized and the sum weight in each knapsack is no more than
its capacity. Particularly, an MMKP with a single constraint degrades to a Multiple
Choice Knapsack Problem (MCKP). The distributed algorithm we will propose in
Chapter 4 and 5 basically relies on solving the MCKP locally.

In general, MMKP could be seen as a mixed integer programming (MIP) problem
which could be solved by applying the branch and bound strategy. Many algorithms
have been proposed to solve the MMKP and they could be divided into two classes:
exact algorithms and approximate algorithms.

Exact algorithms are designed to find the optimal solution but with a higher
cost of computation effort. The algorithms proposed in [Kha98] and [Sbi07] be-
long to this category. Due to its computation complexity, exact algorithms are
usually unable to solve problems with large number of variables. Under this case,
its linear programming relaxation could be used to obtain an upper bound of the
optimal solution. This method is useful in evaluating the approximate algorithms
as well as in developing faster algorithms. On the other hand, approximate al-
gorithms only find a sub-optimal solution but they are usually much faster than
exact algorithms thus suitable for online applications which demand real time deci-
sions. Thus, most literature deal with approximate algorithms, representative works
are [MJS97, Kha98, KLMA02, AMSK01, HMS04, HMS06, ARK+06] and [CH08].

Besides the algorithms specifically designed for MMKP, there are several off-the-
shelf MIP solvers available, e.g. the GLPK package[glp]. These solvers integrate
many complex optimization techniques used in general integer programming.

2.3.1 Exact Algorithms for MMKP

Only two exact algorithms have been proposed for the MMKP in the literature and
both of them are based on the branch-and-bound principle.

A straightforward extension of the branch-and-bound method for KP to MMKP
is the BBLP algorithm [Kha98, KLMA02]. BBLP starts from a state that all vari-
ables are undecided. At each round, all partial feasible solutions (some variables
have been decided while others are undecided) are examined and the best one with
the maximum upper bound is selected. The upper bound is obtained by solving
the LP relaxation of a sub-problem containing only the undecided variables. BBLP
then tries to assign all possible values to one of the undecided variables. This may
generate several feasible partial solutions while the unfeasible ones are dropped im-
mediately. If at a certain round, the best partial solution selected has all variables
fixed, an optimal solution is obtained.

Another exact algorithm is the EMKP algorithm [Sbi07]. EMKP initially sorts
the items in each class in descending order of their profits. A tie between items is
resolved by comparing the relative aggregated resource consumption of the items
which is obtained by summing up the weight-constraint ratios across all dimensions.

25

Then it starts the branch-and-bound procedure from the first item in the first class.
Based on the current node, two nodes are further developed if they exist: a son
node corresponding to selecting the first item of the next class and a brother node
corresponding to selecting the next item in the same class. The bounding procedure
employs an upper bound obtained with an auxiliary MCKP problem and a sup-
plementary KP. The auxiliary MCKP is formed with resources and constraints in
the original problem aggregated across multiple dimensions, and the supplementary
KP is formed with all items not selected and residual aggregated capacity. In order
to further trim the branches of the search tree, a feasible solution obtained by the
MRLS heuristic [HMS06] is used as a lower bound. A node with a solution upper
bound below the lower bound is dropped.

2.3.2 Heuristic Algorithms for MMKP

2.3.2.1 Moser’s Heuristic

The first heuristic algorithm for the MMKP has been proposed by [Mos96] and [MJS97]
based on the Lagrange Multiplier Method.

The algorithm starts from a preprocessing step that normalizes the weights by
the constraints. Then an initial solution is constructed with the most valuable item
in each class. The algorithm then calculates the sum weight on all dimensions for the
most valuable item in each class. If any constraint is violated in the initial solution,
the algorithm identifies the most violated constraint dimension, i.e. a dimension
that realizes the maximum sum weight. Based on the most violated dimension,
the increase of the Lagrange Multiplier when the most valuable item is substituted
by another item in the same class is computed. After the computation, the item
that realizes the minimum increment is selected to substitute the most valuable
item in the corresponding class. The Lagrange Multiplier and the sum weight is
updated according to the substitution. The substitution procedure continues until
no constraint is violated or no item can be used for the substitution. For the former
case, the current solution is feasible and an improvement phase is followed. For the
latter case, no feasible solution is found and the algorithm fails.

The improvement phase works as follows: for every class, the possible increment
by exchanging the current selected item with a not-yet-selected item is computed.
The item which realizes the largest increment is selected to substitute the current
selected item. This improvement procedure repeats until no item is available for the
substitution and the final solution is obtained.

Moser’s algorithm has the worst-case run time of O(ln2), where n =
∑m

i=1 ni
is the total number of items, m is the number of classes and l is the number of
dimensions.

2.3.2.2 The HEU, M-HEU, I-HEU and MVRC Algorithms

The heuristic HEU has been proposed by [Kha98] and then enhanced by [AMSK01]
and [KLMA02]. They are used to solve the QoS problem found in the adaptive
multimedia systems. We describe the basic ideas of the enhanced version, namely,

26 2. Background Knowledge

the M-HEU [AMSK01]. M-HEU algorithm is based on the idea of feasibility factor,
value-resource ratio, aggregate resource consumption, etc. proposed by [Toy75].

The basic idea of the M-HEU algorithm is to start with a minimum feasible
solution, then further explore better solutions by exchanging repeatedly current
selected items with other items. The objective of the exchange is to reduce the
resource consumption or, in case that this objective is unachievable, to maximize
the profit gain. The key problem is how an item is selected for the exchange. This
is achieved by applying the aggregate resource notions used by [Toy75].

As the first step of the M-HEU, the minimum feasible solution is constructed
by selecting the items with the least profit in each class. The resource usage vector
is computed for this initial solution. M-HEU then checks the feasibility of this
solution and if all dimensions of resource constraints are satisfied, the algorithm
proceeds with the iterative improvement phase. Otherwise, it finds an exchange
that realizes the maximum saving in aggregate resource. This step is repeated until
no exchange is possible. Whenever a feasible solution is found, the M-HEU then tries
to improve it by feasible exchanges. The objective of this phase is to first find an
exchange that is feasible and realizes the maximum saving in aggregate resource. In
case this objective is unachievable, it finds an exchange that is feasible and realizes
the maximum utility gain of per-unit-of-extra-resource.

A hybrid improvement procedure with both upgrade and downgrade operations
is applied to the results obtained by the previous phase. It begins with an upgrade
that finds an exchange that maximizes the utility gain per unit of total-per-unit-
resource. The obtained solution is further exchanged by a downgrade operation that
minimizes the utility gain per unit of total-per-unit-resource and increases the total
profit. If the exchange is possible and the resulted solution is feasible, then M-HEU
accepts it and enters the next iteration of improvement. If the exchange is possible
but the resulted solution is infeasible, M-HEU keeps to downgrade it. Finally, if the
exchange is impossible, the M-HEU exit with the current solution.

M-HEU has time complexity of O(m2(n − 1)2l) with m the number of classes,
n the number of items in each class and l the number of dimensions. Experiments
show that M-HEU finds solution within 96% of the optimal in average.

Based on the M-HEU, an incremental version of the algorithm, namely the I-
HEU algorithm, is also proposed by [AMSK01], which aims to be used for real-time
applications with large number of variables. The merit of I-HEU is that the results
from previous computations are used as basis of the current computation and only
new classes are added into the computation. The system needs only to adapt these
new users from previous state instead of recompute for all users.

Besides, the MVRC algorithm is proposed by [CA06], which is based on the HEU
and with only minor modifications.

2.3.2.3 Parallel HEU and Multiprocessor M-HEU

A parallel MMKP algorithm proposed by [SIH05] is also based on the idea used in
the M-HEU. The authors adapted the M-HEU to the Concurrent Read Concurrent
Write Parallel Random Access Machine (CRCW PRAM). The basic modification

27

is to assign one class of items for each processor. The calculations on necessary
parameters such as the saving in aggregate resource, etc. could be done in parallel.
The item is fixed according to the same criteria as in M-HEU but only with help of
parallel sort algorithms.

A multiprocessor algorithm based on M-HEU is proposed by [SARN08]. The

algorithm has time complexity of O
(
T
p

+ s(p)
)

, where T is the time required by

the algorithm using single processor, p is the number of processors and s(p) is the
synchronization overhead.

2.3.2.4 The CP and CCP Algorithms

How to find a good initial feasible solution seems to be important for the heuristic al-
gorithms. [HMS04] proposed a Constructive Procedure (CP) and a Complementary
Constructive Procedure (CCP) for this purpose.

In the CP algorithm, the pseudo-utility of each item is first computed. Then
it selects the item with the highest pseudo-utility in each class to be the initial
solution. If the solution is feasible, CP terminates with this solution. Otherwise,
CP tries to drop an item and add another repeatedly to get a feasible solution. The
most violated constraint is then decided and the item with the highest weight at the
corresponding dimension is dropped. At the add stage, another item in the same
class is selected trying to make the solution feasible, if there exists no such an item,
the item with the lowest weight at the most violated dimension is selected. Under
the latter case, another round of drop and add is needed as the current solution is
infeasible.

The CCP aims to improve the solution obtained form CP with simple operations.
It tries every class to substitute the current selected item with a not-yet-selected
one that generates a feasible solution with larger profit. If this swap operation turns
out to give more total profit, the CCP accepts it and enters the next iteration. The
number of iterations is controlled by a predefined condition.

The CP has run time complexity of O(max{nmaxl,m}), while the CCP has run
time complexity of O(nmax max{l,m}), where nmax denotes the maximum number
of item among all classes. Therefore, they could be used for obtaining an initial
solution.

2.3.2.5 The Der Algo, RLS, MRLS and Other Variations

Several heuristic algorithms have been proposed based on the CP and CCP, for
example, the Der Algo proposed by [HMS04] and the RLS and MRLS proposed by
[HMS06].

In Der Algo, the CP is first used to obtain an initial feasible solution. Then
at each iteration, a better solution is obtained by CCP. Based on this solution, a
penalize technique is applied to bring diversity into the searching process. The main
idea is to randomly decrease the profit of some items and then solve the new problem
with CCP. If a feasible solution is obtained, the items are restored with their original
profit values and this transformation keeps the feasibility of the solution since it does

28 2. Background Knowledge

not change the weights of the items. This penalize-normalize procedure is repeated
for several times and the best result is kept. The worst case time complexity of
Der Algo is O(n2

max max{l,m}).
The RLS and MRLS are two similar algorithms proposed by [HMS06]. Both

consist of an initial constructive procedure to get a feasible solution to the prob-
lem by using a constructive procedure CP and CCP [HMS04] and a degradation
procedure (which exchange the items within a certain class) trying to escape from
local optima. The RLS then applies a deblock procedure to provide diversity to
the searching process. While for the MRLS, the deblock procedure is replaced by
a memory list which remembers the visited solution. With this list, the searching
process is able to avoid revisit the solutions which give the same objective value.
The RLS and MRLS has the same worst cast complexity of O(mnmaxl

2).

Several heuristic algorithms are proposed by [Hir08]. However, there is no fun-
damental difference between the first two algorithms proposed and the CP and CCP
proposed by [HMS04]. The last heuristic algorithm proposed by [Hir08] is a meta-
heuristic which applies the tabu search. The resulted FLTS algorithm is very similar
to the MRLS proposed by [HMS06].

2.3.2.6 The HMMKP Algorithm

The HMMKP algorithm is proposed by [PHD05] where the MMKP is first relaxed
into a MDKP, then Lagrange Multipliers are calculated for the MDKP. The Lagrange
Multipliers are further used to determine the pseudo-utility of the items. The main
search process is then guided by pseudo-utility and the resource value coefficient.

The HMMKP starts with calculating the pseudo-utility and the resource value
coefficient. Based on these two sorted lists, the items are selected in a greedy way.
HMMKP checks all solutions obtained till now, if there are feasible solutions, the
one that realizes the best objective function is remembered. Otherwise, a greedy
solution construction process similar to the one above is used, but this time with
the resource value coefficient information.

Whenever a feasible solution is obtained in the steps described above, the solution
is further improved by iteratively applying a local feasible exchange twice: once with
the pseudo-utility and once with the profit directly.

The complexity of the HMMKP is O((mn)3.5t), assuming all classes contain the
same number n of items and t is a precision-time trade-off parameter introduce by
the interior-point algorithm employed when solving the LP relaxation.

2.3.2.7 The C-HEU Algorithm

C-HEU is proposed by [ARK+06]. The algorithm is based on constructing convex
hull on the items which are put in a resource-value coordination. This convex hull
approach is first proposed by [LLRS99] in solving resource allocation in QoS manage-
ment, which could be transformed into a MMKP. However, in Lee’s problem settings,
the profit is monotone to the resource consumption which makes their algorithm not
fit the general MMKP case. So [ARK+06] modified the Lee’s algorithm making it fit

29

for general MMKP problems where the value could be non-monotone to the resource
consumption. The C-HEU has a time complexity of O(nlm+ nl log l + nl log n).

The basic idea of both the C-HEU and Lee’s algorithm is to aggregate the mul-
tidimensional resource into one dimension then construct a convex hull for items in
each class by putting the items into a aggregate resource-profit coordinate. The first
step employs a different way than the aggregate resource consumption defined for
the HEU by [Kha98] and M-HEU by [AMSK01]. In C-HEU, the multidimensional
resource consumption of an item is first penalized with the resource consumption
of the current solution as the penalty vector on initialization of the algorithm. The
penalty vector is updated at each iteration according to the residual resource.

The second step is to construct convex hull based on the aggregate resource-
profit coordinate. Many convex hull algorithms could be used for this step. C-HEU
then sorts the line segments which define the convex hull by their gradients (used
by [LLRS99]) or by the angles they form with the positive direction of the resource
axis (by [ARK+06]). The advantage of using the angles is that it could be used
for non-monotone resource consumption cases. Finally, the items on the hull are
selected according to the order of the segments related with them.

Although C-HEU achieves very low time complexity, it is still insufficient to be
applied to run-time critical situations such as the multi-processor scheduling problem
studied by [YCNCC06]. Therefore, the authors proposed another MMKP algorithm
based on similar ideas of aggregate resource. A Pareto filtering pre-process is applied
by [YCNCC06] which keeps only the items that satisfies the Pareto condition. Based
on experiences, many items could be removed by this step for the popular problem
instances reported in [OR-]. Then the resource consumption is aggregated into one
dimension with a slightly different penalty vector as used in C-HEU. Then all items
in all classes are sorted by their profit-resource ratios in non-decreasing order. This
gives priority to the items with higher profit but consumes less resources. Then
a greedy selection procedure is applied for each item. The time complexity of the
resulted algorithm is O(l + 2mn+mn log(mn)).

2.3.2.8 The CGBA Algorithm

Recently, [CH08] investigated the feasibility to apply Column Generation in solving
the MMKP. The resulted CGBA algorithm combines the column generation with a
heuristic search.

Column Generation was first proposed by [GG61, GG63] for solving the cutting
stock problem which is a linear programming problem with several rows and a large
number of columns. The idea of column generation comes from the simplex method
for LP problems. In the simplex method, we look for a non-basic variable which
improves the solution and put it in the basis which consists of calculation for all
variables. This calculation can be prohibitive when the number of variables are
large. Instead of considering all the variables during the pricing procedure, column
generation works with only a subset of columns of variables. The problem composed
of this subset of columns is referred to as the restricted master problem. Solving
the LP of the restricted master problems produces a first solution. Then similar

30 2. Background Knowledge

to the simplex method, one looks for new variable that has negative reduced cost
(for minimization problem) and this step is usually referred to as solving the sub-
problem that minimizes the reduced cost. If no such variable can be found, the
LP of the master problem is optimized already, otherwise, the new variable enters
to the restricted master problem and column generation continues. For integer
programming problems, the column generation should be combined with a branch-
and-bound procedure.

The major steps of the CGBA could be described as follows:

• Construct an initial solution and restrict the master problem to variables ap-
pear in the initial solution. The initial solution is obtained with the CP or
CCP procedure proposed by [HMS04].

• Column generation is applied to the restricted master problem related with
each node in the search tree.

• A greedy rounding procedure is performed on one part of the variables resulted
from the column generation while a specialized solution procedure is performed
on the other part of the variables, in order to obtain an integer solution.

• Generate new branches and remove inspected and unpromising nodes. The
branching strategy could be one of the following as suggested in the paper:
(i) to branch on the most fractional variable or, (ii) simply split variables in
one class into two parts and let all variables in one part be zero and let one
in the other part be one. The split item could be the first fractional variable
or, (iii) branch only on the newly added variables by the column generation
procedure.

• Exit when no more node has to be inspected or stop condition is satisfied.

Experiments on the OR Library instances show that CGBA is very effective in
solving large instances.

2.3.3 Summary

In this thesis, we consider the problem of allocating query ranges for the users, which
is formulated into the MMKP in Section 4.1.2. As the users are geographically
distributed in the network of sensors, we would like to find a distributed algorithm
which enables the users and the sensor nodes to solve the problem in a collaborated
and dynamical way. However, most of the existing algorithms are supposed to run
in a centralized way with only the Parallel HEU and Multiprocessor M-HEU for as
exceptions. The Parallel HEU is designed for the CRCW PRAM which has no real-
world implementation, while the multiprocessor M-HEU is not efficient to handle
user join and leave. The I-HEU is designed to recalculate the MMKP solution after
user joins or leaves the multimedia system, however, it is a centralized algorithm.

31

2.4 Fairness

Several fairness notions, namely the max-min fairness, lexicographical max-min fair-
ness, proportional fairness and the (p, α)−proportional fairness, have been used
widely in the network flow related studies. We give each of them a very brief intro-
duction in this section.

2.4.1 Max-min and Lexicographical Max-min Fairness

Max-min fairness is defined as a special feasible state when sharing certain amount
of resources among multiple parties, such that any party can not increase its share
without decreasing that of the others which is already of less amount. Max-min
fairness gives absolute priority to the parties consuming less resources and it could
be achieved by simple water filling algorithm [RD]. However, implementing this
algorithm in packet switching networks, which is distributed in nature such that each
node has to schedule its packet transmission rate, requires global state information
and timing.

The above discussions are based on the assumption that the resources shared are
of continuous values. This is generally true for most problems such as the transmis-
sion rate allocation problem. However, under situations such that the resources to
be shared are of fixed sizes, we have to use the number of potions as a notation of the
resources obtained by each party, which is often an integer value. For example, in
the layered transmission scheme considered by [LMC04], the bandwidth is allocated
in discrete fashion. Under this case, the max-min fairness may not exist (as the
optimal may require fractional resource allocations to some party). In contrast, lex-
icographical max-min fairness exists under this case. The lexicographical max-min
fairness is defined as the following (feasible) state: the sorted allocation of resources
for each party (resources obtained by each party are sorted in increasing order),
is the largest among all possible allocations, where the “largest” is defined by the
lexicographical order. Because of the lexicographical order plays a fundamental role
in defining the optimal state, the lexicographical max-min fairness is also referred
to as, classically, the leximin maximality, i.e. a feasible state of resource allocation
is lexicographical max-min fair if and only if it is leximin maximal.

Although very similar to the (continuous) max-min fairness, the lexicographical
case is basically a combinatorial optimization problem which is NP-hard.

2.4.2 Proportional Fairness

Proportional fairness is proposed by [Kel97] as a compensate fairness definition that
give less aggressive priority to the parties that receive less resource as max-min
fairness does.

If an allocation of resources to each party i is denoted as xi, then a special
allocation x∗i is said to be proportionally fair if x∗i is feasible and the aggregated

32 2. Background Knowledge

proportional change is zero or negative, i.e.:∑
i

xi − x∗i
x∗i

≤ 0. (2.2)

Proportional fair allocation could be obtained by solving a constrained opti-
mization problem whose objective is to maximize the sum of the logarithm of each
allocation. Under the bandwidth allocation problem regimes, [KMT98] have shown
that simple rate control algorithms with additive increase, multiplicative decrease
converge to proportional fairness.

2.4.3 (p, α)−proportional Fairness

(p, α)−proportional fairness proposed by [MW00] is a generalization of the propor-
tional fairness such that the proportional change is augmented by positive parame-
ters p and α as follows: ∑

i

pi
xi − x∗i
x∗i

α ≤ 0. (2.3)

Obviously, (p, α)−proportional fairness reduces to proportional fairness when p1 =
p2 = · · · = 1 and α = 1.

Similarly to proportional fairness, (p, α)−proportional fairness could be obtained
by solving an optimization problem whose objective is to maximize the sum of a
special function of each allocation defined as follows:

fα(x) =

{
log x if α = 1,

1
1−αx

1−α otherwise.
(2.4)

The above objective function corresponds to proportional fairness when α = 1
and corresponds to max-min fairness otherwise. A formal proof of the latter case is
provided by [MW00].

33

Chapter 3

Fair Query Allocation In WSN
Under A Continuous Query Model

“ Anticipate the difficult by managing the easy. ”
– Lao Zi

This chapter is organized as follows. In Section 3.1, we first describe in more detail an
example application scenario for the counter-emergency facilitating system discussed
in Section 1.3. The problem is formally defined and the notations are introduced in
Section 3.2. Theoretical results when only two users share the network are derived
in Section 3.3. Then Section 3.4 describes a distributed algorithm which will be
analyzed extensively by simulations in Section 3.5. We review the related works in
Section 3.6 before drawing a conclusion in Section 3.7.

3.1 Introduction

In certain critical areas such as those regulated by the Seveso directive, the density
of sensors is expected to be high enough to build a self-organized multi-hop wireless
sensor network (WSN) [CES04]. During crisis, such networks could substantially
help the intervention teams by notifying selected events [LMFJ+04]. A typical
application of this network could be a monitoring system with some device-equipped
firemen gathering data from a burning area in order to determine a safe perimeter,
while others operating on the hearth are under real-time alert about risks of nearby
explosions. The firemen send requests to and collect data from the sensors within a
specific area in a multi-hop fashion. Thus they could be seen as mobile users.

This monitoring system should be trustworthy so that all events within a moni-
tored area must be reported to the querying user, and should be adaptable since the
number of users changes over time. Besides, it is desired for each user to monitor
the largest possible area to ensure individual security. However, since the sensor

34 3. Continuous Query Model

O
X

r r + d

d

r∗

r∗

r∗
i

S1

S2

r

i i′

k

k′

Figure 3.1: Traffic load model.

nodes have limited data transmission capability, multiple data requests could con-
gest sensors in certain area, depending on the position of the users, the size of the
requested area, etc. Furthermore, if the sensors are already saturated by current
queries, newly joined users will be kept in a starved state and unable to retrieve
information from those sensors until some of the existing users leave. On the con-
trary, if each fireman accepts to decrease the size of its query area, it may enable
newcomers to use the network as well. Thus, fairness among users when sharing the
network is preferred. As a result, the users tend to increase their queries as long as
some fairness rules are kept. We assume that users do not coordinate through direct
communication links because this will form a complex network structure which will
be studied in future work.

The contributions of this chapter are threefold. First, we introduce a simple
model for the capacity sharing problem. We give a formal definition of supported
users and feasible network configurations, then we describe immediate results ob-
tained from previous works. Second, we present a distributed algorithm allowing
users to determine their query radii with respect to nearby sensors and users. The
algorithm is designed to be adaptive to the number of users. Finally, some related
issues are illustrated and the validity of the algorithms proposed is justified with
simulations.

3.2 Continuous Query Model

In this section, we introduce our system model with the definitions and notations.
Some of them with geometrical meanings are presented in Figure 3.1.

Wireless sensor network: A WSN consists of a set V of l sensor nodes de-
ployed in a fixed area according to a Poisson distribution with density λ0 and a
set S of m user nodes. Each node is assumed to have an omnidirectional wireless

35

transceiver that is able to transmit or receive W bits of data per second to or from
a fixed maximum distance r∗ > 0. Nodes are unable to receive simultaneous mes-
sages. It is natural to assume the wireless transmission range is unable to cover the
whole network, thus for the communications between sensors and users, a multi-hop
routing protocol has to be employed. Furthermore, we assume the routing protocol
ensures shortest path and load balancing for packets. Finally, we do not consider
malicious behaviors in this study.

Query model: A query emitted by a user i ∈ S pertains to a sub-area assumed
to be a disk of radius ri centered at the user and will be referred to as Qrib, where
b denotes that each sensor within the queried area will generate b bits of data per
second in response to this query. We assume there is no aggregation or compression
when the data is collected and restrict each user always has one running query, thus
there are exactly m running queries in the network.

We say that a sensor is covered by a query if it generates data for the query.
The set of sensors covered by query Qrib is noted as Vrib ⊆ V . A sensor may be
covered by more than one queries and the set of queries sensor k has to process is
noted as Q(k). The circle with radius r∗ around the user i is noted as r∗i , as shown
in Figure 3.1, and will also be referred to as the critical region of i, since it is usually
the busiest region within the query. User i is a (ri, b)-supported user by the network
if for a query Qrib, all data emitted by sensors in Vrib arrive to i.

Obviously, the positions of sensors and users are necessary for this kind of area
based query model. However, GPS capability is not mandatory since several local-
ization protocols are available, e.g. [AS01], as a result of intensive studies on such
mechanisms.

Traffic load model: The traffic load model we will employ has been proposed
in [GK04] and extended in [LH05]. The authors of [GK04] observed that for two
sensors k, k′ and a user i such that k′ is outside the one-hop region r∗i of the user,
the data generated by k′ destined to i is forwarded by k if the distance from k to
the line k′i is less than r∗k and the projection of k on k′i lies between k′ and i.
Figure 3.1 is largely depicted from [LH05], where i and i′ are users and k and k′ are
two representative sensor nodes. Two cross marks denote the most loaded points.
When sensor k is outside r∗i , it is responsible for forwarding the data generated by all
sensors within the sector S1 behind it (gray shadowed sector of ring in Figure 3.1),
whose sides are the tangents from the user to the circle centered at sensor k with
radius r∗. Since we assumed that the underlying routing protocol would provide us
with shortest path and load balancing properties, a single sensor k is unlikely to
handle all the traffic from S1. Rather, the traffic load from both S1 and S2 regions
will be shared by all sensors within S2 region. Let dik denote the distance between
user i and node k, the region S2 is a sector of ring whose inner and outer radii are
dik − r∗ and dik, respectively, and whose sides are the same tangents as that of S1,
as shown by the area shadowed with horizontal line pattern in Figure 3.1. Thus,
the average traffic load of k is proportional to (S1 + S2)/S2. On the other hand,
sensors within the r∗i will share the traffic from all over the query region. Let δ(dki)
the traffic load of a sensor k at distance dki to a user i, we have:

36 3. Continuous Query Model

δ(dki) =


br2

(r∗)2 k ∈ r∗i
b+ 2br2

π(r∗)2 arcsin
(
r∗
dki

)
− 2bd2ki

π(r∗)2 arcsin
(
r∗
dki

)
k ∈ Qrib \ r∗i

0 otherwise

(3.1)

Max-min fair configuration: A configuration is defined by a set of radius-user
pairs: C = {ri|i ∈ S} and we say that C is a feasible configuration if ∀ri ∈ C, user
i is (ri, b)-supported. Although there exists many feasible configurations for a given
network topology, we are interested in the one with max-min fair properties such
that smallest radii are maximized, then the second smaller radii are maximized and
so on. A basic rule is that maximizing a query should not shrink other already
smaller queries. Obviously, the capacity constraint should be kept at the same time.
Note that in the context we are considering, the traffic b is fixed and each user is
interested in maximizing its query radius to maximize individual security.

3.3 Analysis of Two-user Case

Now we consider only two users i and i′ are in the network. This simple case provides
a good introduction to our capacity sharing problem. Intuitively, the max-min fair
radius for each user should take the same value. We distinguish three cases based on
the relative position of the two users: distant users, not-so-distant users and nearby
users. For each case, we shall analyze the traffic load and then derive the max-min
fair query radius for each user.

Distant users: In a WSN with Poisson node distribution and all-to-one com-
munication paradigm, the bottleneck is the user itself [MDMLN03]. We say that
a query Qrib is globally maximized when the bandwidth of all nodes within r∗i are
saturated by traffic exclusively dedicated to i. If we ignore the bandwidth consumed
by protocol overheads, query Qrib is globally maximized when πr2

i λ0b = W . When
the queried data rate b and the density of sensors λ0 are fixed, we naturally obtain:

rmax =

√
W

πbλ0

(3.2)

The users i and i′ are considered as distant when the critical region of one query
does not overlap with the other query. This happens when dii′ > rmax + r∗. In this
case, the maximum amount of data a user can receive is bounded by its bandwidth
and the two queries could be both globally maximized with the same radius rmax.
Obviously, the configuration C = {ri, ri′} with ri = ri′ = rmax is max-min fair.

Not-so-distant users: When 2r∗ < dii′ ≤ rmax + r∗, the critical region of one
query may be covered by the other query but r∗i and r∗i′ do not overlap. Under
this case, if either of the two queries is globally maximized, the other query has to
shrink accordingly. On the other hand, the two users may coordinate to achieve an
equilibrium state such that they have the same query radius. This state is exactly
the max-min fairness we want to achieve. Under this configuration, both users i and

37

 0

 200

 400

 600

 800

 1000

 1200

0 d r-r* r r+r* r+d 2r 2r+d

T
ra

ffi
c

Lo
ad

X

Figure 3.2: Traffic load for sensors along X axis.

i′ experience similar queries and sensor throughput. The total traffic handled by a
sensor k is δ(dki)+δ(dki′). Due to the bottleneck effect of the user, the total traffic of
the sensors within the critical region of either user should not exceed the bandwidth
of the user. Note that the traffic generated or forwarded by sensors in r∗i , whether it
is for i or i′, consumes the bandwidth of i because all sensors in r∗i share the wireless
medium with i. Thus, in order to avoid congestion within the critical region, the
sum traffic in this region should always be kept under W . The calculation of the sum
traffic within the critical region requires integration of the traffic load function (3.1)
within the region, which gives no explicit solution of the max-min fair query radius.
However, the characteristics of the traffic function produces two most loaded points
lying at the intersection of the line joining i and i′ and the two circles delimiting
r∗i and r∗i′ , as shown in Figure 3.1 with two cross marks. If we setup a coordinate
system with X axis and origin O as shown in Figure 3.1, the traffic load of sensors
on X could be plotted in Figure 3.2, where two users lie at x = r and x = r+ d and
we see two maximum at x = r + r∗ and x = r + d − r∗. Note that the traffic load
for other sensors not on X is always lighter than those on X. As a result, we could
limit the traffic of these two busiest sensors under the shared bandwidth of sensors
within the critical region to make sure that no congestion occurs.

The shared bandwidth of sensors within r∗i is W
π(r∗)2λ0

. Together with (3.1), the

total traffic T (k) handled by a sensor k, when maximized with max-min fairness,
should be:

T (k) = δ(r∗) + δ(dii′ − r∗) =
W

π(r∗)2λ0

(3.3)

Solving this equation for r, we obtain a common radius for both users, noted as

38 3. Continuous Query Model

rc:

rc =

√√√√(W
π(r∗)2λ0

− b+ t1

)
t2

, (3.4)

where:

t1 =
2b(d− r∗)2

π(r∗)2
arcsin

(
r∗

d− r∗

)
(3.5)

t2 =
b

(r∗)2
+

2b

π(r∗)2
arcsin

(
r∗

d− r∗

)
(3.6)

As a result, two users can be (rc, b)−supported and each user is able to determine
rc by communicating with a sensor within its query. Thus the max-min configuration
for the not-so-distant case is C = {ri, ri′} where ri = ri′ = rc.

Nearby users: In this final case, two users are even nearer, i.e. dii′ ≤ 2r∗,
meaning that the critical regions of i and i′ overlap. The reasoning is the same as
in previous cases, except that all sensors in the area r∗i ∩ r∗i′ are bottlenecks. Thus,
each sensor within this area should handle a total traffic load as:

T (k) =
2br2

(r∗)2
=

W

π(r∗)2λ0

. (3.7)

Solve the above equation for r which is actually the common radius rc for the two
users:

rc =

√
W

2πλ0b
. (3.8)

The max-min fair configuration is C = {ri, ri′}.
We should note here that in our firemen application scenario, due to the various

situations of the fire site, all of the three cases discussed above could exist. For
example, firemen could operate separately in the forest on fire, or form small groups
searching for survivors inside a building.

As a conclusion of this section, we present in Figure 3.3 the max-min radius for
both users with respect to the distance between them. The transmission range of
nodes is set to r∗ = 10m. We see that the query radius does not increase linearly
with the distance between two users, instead, when the distance is short, increasing
it by even a small value will substantially enlarge the common radius.

3.4 Distributed Algorithms

In this section, we develop algorithms and a protocol to solve the max-min fairness
problem under generic cases when more than two users are in the network.

3.4.1 Brute force algorithm

It is known that there exists a simply algorithm based on brute force to achieve
max-min fairness, which is as known as the water filling algorithm [Bou06]. This

39

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

0 2r* 50 100 150 200 250

M
ax

im
um

 Q
ue

ry
 R

ad
iu

s
(m

)

Distance Between Two Users (m)

Figure 3.3: Common maximum query radius.

algorithm, we note it as OPT, works as follows: all users are simultaneously switched
on, then increase their query radii with the same step length in a perfect synchronous
manner until a sensor is saturated (this sensor will be referred to as a bottleneck
sensor). When a sensor is saturated, the users querying this sensor stop increasing
their queries, while others keep increasing. The algorithm ends when no query can
increase. Although this algorithm is not realistic, it is helpful to understand the
behavior and evaluate the performance of other algorithms.

3.4.2 Inspiration from two-user case

From the discussions on the two-user case, we know that if both users want to
maximize their queries while keeping max-min fairness in mind, the resulting radii
must converge to a common value. Based on this observation, we can imagine that
when more than two users are in the network, each pair of users can agree on a
max-min fair radius between them. As a result, if there are m users in the network,
each user will have a maximum of m − 1 common radii with other users. If each
user set its radius to the minimum one of its common radii with others, no sensor
will be overloaded. Moreover, this mechanism also ensures that the minimum query
is maximized. However, we found this is not true for non-minimum radii.

This problem could be better explained with help of Figure 3.4, which illustrates
a typical WSN with eight users with numbers as their labels. The small circles
around the numbers denote critical regions of each user while the larger ones denote
the query boundaries and the crosses denote bottleneck sensors. Other sensors are
omitted in this figure. For user 2 and 3, the radii of their queries are bounded by
a bottleneck sensor between them, so the users adopt the same query radius with

40 3. Continuous Query Model

1

2
3

4

5

6

7
8

Figure 3.4: A WSN shared by eight users.

respect to the max-min fairness policy. Now let us consider user 1. The proximity
of user 1 with 2 let it assume a bottleneck between them which lies at one of the
intersections of the boarder of Q(1) and r∗2 in Figure 3.4. Thus, user 1 determines
a radius based on this bottleneck and thinks that 2 acts accordingly. But, user 2
does not because the bottleneck with user 3 is more constraining. Therefore, user 1
is unable to achieve its maximum query radius.

Let us associate a bottleneck node β(i) ∈ V ∪ S with each query Qrib. When a
user is (rmax, b)−supported, the bottleneck β(i) is i itself, otherwise, the bottleneck
is a certain sensor. As shown in Section 3.3, when there are only two users i and i′,
the two bottlenecks experience the same traffic with the same bandwidth sharing.
By notation abuse, we claim β(i) = β(i′). For example, in Figure 3.4, the users 5, 6,
7 and 8 have the same bottleneck sensor. The problem occurs when a user i adjusts
its radius without being informed that the radius of its buddy i′ does not depend
on β(i).

However, it is intuitively expected that the problem discussed above is infrequent
so an algorithm based on their own bottlenecks may be sufficient for each user. This
idea inspires an algorithm, which will be referred to as LOCAL and can be stated as
follows. A saturated sensor k considers itself as a potential bottleneck for all users in
Q(k). Therefore, it notifies these users with the following information: all the radii
of the queries in Q(k), the positions of each user in Q(k) as well as the position of
itself. When a user receives such a notification, it computes a common radius with
respect to all the users contained in the notification and adjusts its query radius to
the minimum one.

An experiment was carried out over a WSN with different number of users for
both LOCAL and OPT algorithms. The minimal, average and maximal query radii
over all users are plotted in Figure 3.5. As expected, the minimum radius are

41

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 R

ad
iu

s
(m

)

Number of Users

max
OPT: avg

min
max

LOCAL: avg
min

Figure 3.5: Query radii of OPT and LOCAL algorithms.

always the same for both algorithms, but average and maximum values of the LOCAL
algorithm are below those of the OPT algorithm.

Another observation is illustrated in Figure 3.6. For three distinct contexts: 30,
60 and 90 users, we sort the users by their OPT radii in ascendant order, so that
the users with smaller radius have a lower rank. Then for each user, we compute
the ratio between the LOCAL radii and OPT radii. On one hand, LOCAL algorithm
achieves max-min fair query for users with minimum radius but the performance gets
worse for users with larger radius. Under the worst cases, the ratio could be less than
0.8, indicating that the area covered by this user would have been 1.56 times larger
were OPT algorithm used instead. On the other hand, still shown in Figure 3.6, only
10% of queries are notably smaller (≤ 90%) than their OPT counterparts, implying
that searching for OPT values based on LOCAL algorithm could be efficient.

3.4.3 Distributed algorithm and protocol

Now we propose a distributed algorithm (DIS) and a protocol realizing it to achieve
max-min fairness for all queries in the network by combining the two algorithms
discussed in the previous section.

The idea of the algorithm is quite simple and widely known in congestion control
algorithms [WDM01]. The pseudo code is shown in Algorithm 3, where several mes-
sages carrying control information are defined: <query, i, ri> message, sent to the
sensors within circle (i, ri) by user i to start a query with radius ri; <modify-query,
i, rmod> message, sent by i to the sensors within a circle whose radius equals to
max{ri, rmod} to modify the query radius to rmod; <saturated> message, sent by a

42 3. Continuous Query Model

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90

R
ad

iu
s

LO
C

A
L

/ R
ad

iu
s

O
P

T

Rank of Query Radius

30 users
60 users
90 users

Figure 3.6: Ratio of LOCAL radii to OPT radii.

saturated sensor k to the users in Q(k) when:

T (k) =
∑
i∈Q(k)

δ(dki) >
W

π(r∗)2λ0

(3.9)

and it carries all the radii of the queries in Q(k), the positions of each user in Q(k)
as well as the position of itself.

The algorithm consists of two phases. The first one, usually called slow start,
is used until an approximation of the achievable radius is obtained. The radius
starts at a unit value and increases according to a certain strategy until the user is
alerted by a <saturated> message. The function initRadius manages the initial
radius increasing. On receiving the first <saturated> message, the radius is set to
a lower value according to some criteria, then the system enters the second phase.
In the second phase, each user tries to increase its query radius periodically, in
order to explore the OPT radius. This is handled by the increaseRadius function.
Eventually, the user is alerted by a <saturated> message, then it decreases its
radius again and resumes increasing. The new radius is obtained by resetRadius.

Various implementations of initRadius, increaseRadius and resetRadius

functions could be used. We propose one as follows. The initRadius is based
on exponential growth, i.e. the query radius is initialized to 1 and increased by
doubling its previous value each time it is called. The idea is to detect as quickly
as possible the bottleneck sensors. Then, the resetRadius employs the LOCAL al-
gorithm which returns a radius close to the optimal one in most of the cases as
previously discussed. Finally, the increaseRadius function makes a linear increas-
ing of the radius after every predefined time interval by a predefined step length.

43

Algorithm 3: Distributed Algorithm (User Part)

Data: radius

send <query, i, 1 >
while no <saturated> message do

radius =initRadius ()
send <query, i, radius >

end
radius =resetRadius ()
do

while no <saturated> message do
radius =increaseRadius ()
send <modify-query, i, radius >

end
radius =resetRadius ()
send <modify-query, i, radius >

loop

By choosing these implementations, the users see their query radii oscillate be-
tween the values of the LOCAL algorithm and the OPT algorithm. In fact, from the
observation of Figure 3.6, it is expected that a large part of users experience small
variations because these two values are very close. Meanwhile a small fraction of
the users, those with the largest radius, benefit from a larger area for most of the
time.

3.5 Performance Evaluation

In this section, we shall present several simulation results to further illustrate the
problems encountered when multiple users try to share the network capacity, and
analyze the ability of our algorithm in solving these problems.

First of all, we describe briefly our simulation implementation. We implemented
DIS algorithm in a simplified simulator, where a round based message passing mech-
anism with hop delay is provided. At each simulation round, events are scheduled
to be processed at each user and sensor and this procedure may generate new events
to be scheduled later. We did not implement the data traffic nor the lower MAC
layer. Instead, the bandwidth utilization is computed by the traffic load function
(3.1) and we assume a perfect scheduling mechanism is employed by the underlying
MAC layer which achieves the link capacity. All simulations follow a common set of
network settings depicted in Table 3.1.

Our first simulation studies the overall capacity utilization µ of the network
under a OPT configuration, where µ is defined as:

µ =

∑
k∈V

∑
i∈S δ(dki, ri)
lW

π(r∗)2λ0

(3.10)

44 3. Continuous Query Model

Table 3.1: Simulation parameters.

Network area 1000m× 1000m
Number of sensors (l) 3000
Number of users (m) Variable

Sensor distribution Poisson
User distribution Poisson

Wireless Tx/Rx bandwidth (W) 12.8kbps
Wireless Tx/Rx radius (r∗) 50m

Query data rate (b) 20bps
Query radius increase interval 10 simulation rounds

Query radius increase step 10m
Total simulation rounds 400

Note that the traffic load function δ defined in (3.1) becomes a function of both dki
and ri since the users may have different query radii.

In order to eliminate random effects, we run the simulation with a hundred
different topologies. Figure 3.7 shows the results. We see that the bandwidth utility
grows with the user number but at a decreasing rate. On the other hand, the utility
is quite low especially when less users are in the network. This is due to the query
model we have employed. Future works will have to consider different query models
in order to achieve a higher network utility.

The second simulation focuses on the distributed algorithm. We observe the
query radius during a simulation run and show how DIS algorithm copes with users
joining and leaving the network. So, 30 users are initially deployed and they start a
query at the beginning of the simulation. Then at simulation round 200, three users
join the network and start their queries. We record the radii of each user at each
simulation round and compare it with the OPT query radii under the same network
topology.

Figure 3.8(a) shows the OPT radius before and after three users are added in
the network. Gray plates denote queries not affected by user addition or removal.
Dotted and solid circles denote the affected optimal query radii before and after
topology change, respectively. Most of the affected queries shrink in order to share
the network capacity with the newcomers, for example query 1 and 8 are forced to
shrink by query 31. However, some affected queries enlarge. This may happen when
their neighboring queries are forced to shrink. Such behavior is expressed by user 26
since query 2 is further limited by a new query 32. Similar behaviour was observed
when users leave the network in Figure 3.8(b), where most of the impacted users
experience an enlarged query radius, while a few others have to shrink, e.g. user 21.

Now we analyze how the query radii evolve with time. In Figure 3.9(a), four
pairs of users are selected for demonstration: user 1 with 31, 9 with 30, 2 with 32
and 26 with 32. In each pair, the query of the first (original) user is affected by the
second (newly added) user. The OPT values are also plotted as references.

The two plots in Figure 3.9(a) show that the slow start procedure eventually
reaches the OPT value. After that, the distributed algorithm will determine an

45

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

O
ve

ra
ll

B
an

dw
id

th
 U

til
iz

at
io

n

Number of Users

Figure 3.7: Overall bandwidth utilization.

approximation to the OPT value with LOCAL algorithm. The approximation is good
since it coincides with the OPT value for most of the cases, e.g. for user 9 and 30.
Although the approximation is below the OPT value for user 1 and 31, the difference
between them is small. Thus, based on this approximation, the increaseRadius

procedure is able to achieve the OPT value very quickly. Besides, we could see
that query radius of the original users (user 1 and 9) begin to drop when the new
query grows large enough to produce an interaction between them. For user 1,
the interaction takes place when the new query 31 is above the OPT value. As
a result, they immediately find the bottleneck between them (also for user 8, as
shown in Figure 3.8(a)). However, the interaction happens quite early for users 9
and 30. This could be explained by the fact that different sensors emit <saturated>
messages at different time when the query is expanding until the actual bottleneck
is found. Once the first <saturated> message is received, user 30 quits the slow
start procedure and increases its query linearly, so the time required to achieve the
OPT value is significantly increased (from round 250 to 350).

The two plots in Figure 3.9(b) records the query radii of user 2, 26 and 32 in
Figure 3.8(a). The higher one shows the interaction between query 2 and 32. It is
shown in order to be compared with the lower one, which is more interesting. In
this plot user 26 and 32 have different OPT values because they are not sharing a
common bottleneck sensor, thus, not directly interacting with each other. However
we see that once the new user 32 achieves its OPT values, query 26 increases its
radius and adjusts it to its own OPT values, which is higher than its original OPT
value. This can happen because user 2 is forced to shrink its query, which eliminates
the bottleneck between user 2 and 26, as shown in Figure 3.8(a).

46 3. Continuous Query Model

1

2

8

9
16

26

30

31

32

(a) User 30, 31, 32 added.

0

79

10
16

2122

2426

27
28 29

(b) User 27, 28, 29 removed.

Figure 3.8: Query radii dynamics.

47

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

Q
ue

ry
 R

ad
iu

s
(m

)

Simulation Round

User 1: OPT
DIS

User 31: OPT
DIS

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

Q
ue

ry
 R

ad
iu

s
(m

)

Simulation Round

User 9: OPT
DIS

User 30: OPT
DIS

(a) User 1 and 9 with user 31 and 30 affecting them, respectively.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

Q
ue

ry
 R

ad
iu

s
(m

)

Simulation Round

User 2: OPT
DIS

User 32: OPT
DIS

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

Q
ue

ry
 R

ad
iu

s
(m

)

Simulation Round

User 26: OPT
DIS

User 32: OPT
DIS

(b) User 2 and 26 with user 32 affecting them.

Figure 3.9: Evolution of query radii decided by DIS algorithm.

48 3. Continuous Query Model

3.6 Related Works

A basic requirement of the query allocation problem is congestion control which has
been studied in WSN in recent years. Most proposed solutions have focused on the
transport layer [WSL+06b], and dealt with providing fairness for sources (sensors)
i.e. allocating for each sensor a fair amount of bandwidth [RGGP06]. In contrast, we
investigate both maximality and fairness objectives in favor of users, i.e. allocating
for each user a proper query range to achieve global optimality. We emphasize that
it is not necessary to cover every sensor with at least one query, instead, data from
sensors within a reasonable query range should not be dropped due to congestion.
As a consequence, some sensors far from any fireman do not have to generate data.
The idea behind this is obvious: only when a fireman is near to a certain position,
the data from this position is meaningful, under the considered application scenario.

Although we have employed a mechanism similar to the slow start procedure
in TCP, there exists an important difference. On detecting a potential congestion
state, our protocol shrinks the related queries to a theoretically safe value based on
the LOCAL algorithm to avoid the congestion, while TCP-like mechanisms set the
new contention window to an empirical value, for example, to the minimum value,
half of the current value or the slow start threshold.

Paper [MA06] also deals with the problem of sharing a WSN among multiple
users but it emphasizes more on the efficiency. Algorithms have been proposed to
merge the queries from different users to meet the bandwidth constraint of the WSN.
This work and ours are complementary since we have dealt with different aspects of
the same problem. In fact, it could be interesting to apply fairness constraints to a
WSN with merged queries.

Max-min fairness has been studied within different contexts such as in wireless
ad hoc networks [HB01] or wireless mesh networks [AB06]. Especially, it has been
studied for WSNs in [SK04], but at the MAC layer. Besides, network utilization
has been maximized with max-min fairness in [SK07]. This last paper is very close
to ours in that both achieve a maximum network utilization under bandwidth con-
strains and provide max-min fairness. However, fairness is based on traffic flows
on each sensor and only one user is considered in [SK07]. Fair capacity sharing
between multiple users has never been formalized and studied before, to the best of
our knowledge.

3.7 Summary

In this chapter, we have dealt with the problem that multiple users have to adjust
their query ranges according to max-min fair rules in order to meet the capacity
constraint of a WSN.

We have proposed a query model based on a disk centered at a user with variable
radius and derived analytically the max-min fair radius for each user for two-user
case. For general multi-user case, a distributed algorithm was proposed to enable
each user determining a near-optimal radius most of the time with information

49

provided by sensors under its query coverage.
Some future work is necessary to solve the problem thoroughly. First, simulations

show that the overall bandwidth is not fully utilized. The query model could be
modified to match better the capacity of a region. Besides, the relationship between
fairness and bandwidth utilization in WSN with multiple users deserves further
investigation. Research efforts are needed if user mobility is considered. Simulation
results show that the algorithm sometimes reacts slowly to topology changes, which
would hardly be acceptable in mobile user scenario.

50 3. Continuous Query Model

51

Chapter 4

Reformulating The Problem: A
Discrete Query Model

“ They must often change, who would be constant in happiness or
wisdom. ”

– Confucius

In previous chapters, the mobile user WSN and one of its most typical applications,
namely, the counter-emergency facilitating application, have been discussed. An
example fireman scenario has been given in Chapter 3. Max-min fair query allocation
problem has been formulated with a continuous query model and analytical results
and distributed algorithm have been given. In this chapter, we discuss a discrete
version of the same problem which is more complex than its continuous counterpart.

This chapter is organized as follows. The problem is reformulated with a hop-
based query model in Section 4.1. Then we present the hardness result and its proof
for one of the problems in Section 4.2. Distributed algorithms are presented and
evaluated in Section 4.3 and Section 4.4, respectively. We summarize this chapter
with Section 4.5.

4.1 Model and Problem Formulation

This section presents a model dedicated to mobile-user wireless sensor networks
where some users have a local query on the sensor nodes. We confine our study
with the following assumptions: (i) Each user tends to set its query range as large
as possible. The query range is measured by hop numbers such that a j hop query
range will cover all j hop neighbors of the user. As now the query range is discrete,
we use j instead of r in the previous chapter. (ii) Shortest path routing is assumed
and users do not forward data for sensors. (iii) The requested data reporting rate
should at least be equal to a predefined threshold in order to detect certain real time
events and no in-network data aggregation or compression is employed.

52 4. Reformulating The Problem: A Discrete Query Model

4.1.1 System Model

We consider a set V of l nodes and a set S of m users. A communication graph
G = (V ∪S,E) could be formed where there is a link between two elements of V ∪S
if the distance between them is less than a fixed value. Each node k admits a limited
and quantifiable amount of resources ck it is able to provide to some users.

The set of nodes providing resources to a user i is noted as Vjib. The amount of
resources on node k that user i consumes when its query range is set to j is denoted
as wijk. If the node i does not belong to Vjib, we have wijk = 0. We assumed that all
nodes at less than ji hops to user i have to provide a certain amount of resources.
Note that if a node k ∈ Vjib, then all nodes along the data forwarding path (k →G i)
are also in Vjib since they consume resources in forwarding the data from k. As we
also assume a shortest path routing mechanism is in use, the amount of resources
a node k has to spend, as a result of the impact of i, is equal or larger than its
upstream nodes along the route if the data flows towards the user. This holds as
long as we assume there is no compression or aggregation on the data along the
paths. This model could be seen as a special case of the traffic model proposed
in [LH05], which, together with another well-known result on the capacity of sensor
networks [MDMLN03], shows that the number of supported nodes is bounded by
the capacity of the user and its immediate neighbors.

Similarly to Chapter 3, a configuration is a set of query ranges chosen by all
users, noted as C = {ji|i ∈ S}. We say that a configuration is feasible if ∀ji ∈ C,
user i is (ji, b)-supported. This implies that the amount of bandwidth captured
by users on every node is less than the node capacity and could be expressed as
∀k ∈ V,

∑
i∈S wijk ≤ ck. The set of feasible configurations will be referred to as C.

4.1.2 MMKP Formulation of Problems

The discrete query allocation problem with maximizing the sum utility of each user,
as will be presented soon, is exactly the classical MMKP and could be solved by
existing MMKP algorithms. However, all of the these algorithms consider solving
the problem in a centralized fashion. Since the problems that motivated this work
are distributed in nature, a distributed algorithm is preferred. We shall propose
such an algorithm in this chapter. Besides, we also formulate the MMKP problem
with max-min fairness as its objective which is novel and interesting since it shows
the possibility of formulating different optimization objectives under a uniformed
MMKP framework.

4.1.2.1 General MMKP formulation

Let each possible query range of user i corresponds to an item to be selected and
the value of the items could be the hop-distances in G from 0 to the diameter of
G noted dG. Since each user is allowed to select only one query range at a time,
items could be seen as grouped into m classes and each class corresponding to a
certain user. Thus we actually have the multiple choice constraint that exactly one
item is to be selected within each class. A binary variable xij is associated with

53

query range j for user i where xij = 1 indicates that user i sets its query range to
j and xij = 0 otherwise. The amount of resources provided by a node k to a user
i when i takes each of its possible query range j ∈ {0, 1, . . . , dG} will be referred to
as a set {wi0k, wi1k, . . . , widGk} and each wijk could be mapped to the kth dimension
of weight of an item j in class i. Each node k forms a constraint dimension with
its available resource ck. As there are many nodes in the system, we finally have
multi-dimensional constraints of MMKP.

In general, we are interested in maximizing the query range of all users. However,
other optimization objectives are possible, such as achieving various kinds of fair
configurations among the users. Thus a generalized MMKP could be formulated
with a general objective:

Achieve: General Objective

Subject to:
∑
i∈S

dG∑
j=0

wijkxij ≤ ck, k ∈ V (4.1)

dG∑
j=0

xij = 1, i ∈ S (4.2)

xij ∈ {0, 1} (4.3)

We suggest in the following two special objectives dealing with different opti-
mization goals.

4.1.2.2 MNU problem formulated as MMKP

Maximizing the sum of users’ query range is our first optimization objective. The
query range reflects the utility a user could get from the network, so we define the
Maximal Network Utility (MNU) problem which find the feasible configuration
where

∑
i∈S ji is maximized. This problem is known to be NP-complete and could

be expressed as:

Achieve: MNU(C) (4.4)

Subject to: (4.1), (4.2), (4.3)

4.1.2.3 MMF problem formulated as MMKP

Another global objective deals with fairness since allowing a fair sharing of resources
is a constant concern of network designers against selfish behaviors. We are inter-
ested in max-min fairness. However, as already mentioned, the max-min fair solution
defined in [RB06] may not exist in a discrete feasible solution set [HB01]. The Lexi-
cographic Max-Min Fairness concept generalizes the above definition. The merit
of the lexicographic max-min fairness is that it is equivalent to the previous defini-
tion on convex solution sets and exists on general solution sets as well, although the
uniqueness of the solution is not ensured [ST00]. Since under our problem settings,
the parameter under consideration is the hop numbers which are discrete thus the

54 4. Reformulating The Problem: A Discrete Query Model

solution space is non-convex, we shall adopt the lexicographic max-min fairness as
our max-min fair notion. In the sequel, we shall use MMF for short of lexicographic
Max-Min Fairness.

The MMF has been employed in formulating various resource allocation problems
in the networking area and general MMF concepts and formal problem formulations,
algorithms as well as example design problems could be found in [NPar, OPT05].
Lexicographic max-min fairness is also used in [CFX07] as the fairness notion for
allocating bandwidth to the sensors and an iterative linear programming solution is
proposed. Unfortunately, none of their algorithms apply to non-convex problems,
which is the case in this chapter.

How to allocate discrete bandwidth shares to the users in a multicast network was
studied in [ST00]. However, as searching the MMF allocation is proved to be NP-
hard, a weaker form of max-min fairness, named as maximal fairness, was introduced.
The optimization problem so formed could be solved by a polynomial complexity
algorithm. The MMF problem was solved by a genetic algorithm in [LMC04] and
later through a dual-objective tabu search in [LC07]. Both algorithms obtain nice
approximate to the MMF allocation of discrete bandwidth layers in a multicast
network. Auxiliary linear variables and inequalities have been introduced in [OS06]
to reformulate the MMF problem so that it could be solved efficiently. Although
remarkable results have been obtained by the proposed algorithms, it could be very
difficult to implement them in a distributed way in a networking environment. Thus,
in the following, we shall formulate the MMF optimization problem within the
MMKP framework then propose a distributed algorithm to solve it.

Consider two feasible configurations C1, C2 ∈ C. Define now an ordering operator
〈·〉 on a configuration C that sorts the elements of C in ascending order. The
configuration C1 is lexicographically greater than C2, noted as C1 � C2, if there
exists an index i such that the ith element of C1 is greater than the ith element of
C2 and for all indexes j < i, the jth elements of both C1 and C2 are equal. We say
C1 is greater than or equal to C2 if C1 � C2 or C1 = C2, noted as C1 � C2. The
MMF optimization problem is to search for the configuration CMMF such that, for
all other configurations C ∈ C, we have CMMF � C. The MMKP formulation of
this problem is shown as follows:

Achieve: MMF(C) (4.5)

Subject to: (4.1), (4.2),(4.3)

Searching for MMF solutions in discrete solution spaces has been proved to be NP-
hard [ST00].

4.2 NP-hardness Proof

While searching for MMF solutions in discrete solution spaces has been proven to
be NP-hard [ST00], we will prove that MMKP-MNU is also NP-hard.

Note that the NP-hardness of MMKP-MNU seems straightforward as it is related
with MMKP. However this is misleading because, (i) the amount of bandwidth a

55

sensor k has to spend, as a result of the impact of i, is equal to or greater than its
upstream sensors along the data gathering path. This holds as long as we assume
there is no compression or aggregation is in use. (ii) for a given sensor, its bandwidth
consumption as a result of impact of i, is non-decreasing when the query range of i
increases, i.e. wijk ≥ wij′k if j ≥ j′. These unique characteristics make the resulted
MMKP a special case thus possibly easier to solve. Thus, a rigorous proof is needed.

Theorem 1. MMKP-MNU problem is NP-hard.

We prove Theorem 1 by proving the corresponding decision problem is NP-
complete.

For a graph G = (V,E) and a subset A ⊆ V , we denote by G[A] the subgraph
induced by A, i.e. G[A] = (A,E ∩ (A× A)).
MMKP-MNU Decision Problem
Instance: A graph G = (V ∪S,E) such that E ∩ (S ×S) = ∅, a capacity function
c : V −→ R+, for each sensor k ∈ V and for each sink i ∈ S a path k →Gi

i with
Gi = G[V ∪ {i}] of length dki and a positive integer K ∈ N.
Question: Is there an impact function j : S −→ N such that:

(i)
∑

i∈S j(i) ≥ K, i.e. the sum of impact is at least K,

(ii) for every k ∈ V we have that the number of data forwarding path which
go through the sensor k is lower or equal to the capacity of this sensor, i.e.
|{(k′, i) ∈ V × S : dk′i ≤ j(i) and k ∈ k′ →Gi

i}| ≤ c(k).

Independent Set Decision Problem
Instance: A graph G = (V,E) and a positive integer K ≤ l.
Question: Does G contain an independent set of size K or more, i.e. a subset
V1 ⊆ V such that |V1| ≥ K and such that no two vertices in V1 are joined by an
edge in E, or more formally E ∩ (V1 × V1) = ∅?

Proof. Given an instance of impact range allocation problem and an impact function
j, verifying the conditions (i) and (ii) is clearly polynomial in the size of the problem.
Hence, MMKP-MNU problem belongs to NP.

We now transform independent set problem to our problem. Without lost of
generality, we can assume that the graph from the independent set instance does
not have isolated vertex. Given a graph G′ = (V ′, E ′) and a positive integer K ≤ l,
we construct the incidence graph G from G′ by adding a vertex α connecting it to
every edge of G′ as follows.

- Let S = V ′, V = E ′ ∪ {α} and let G = (V ∪ S,E) where E = {{x, e} : x ∈
V ′, e ∈ E ′ : x ∈ e} ∪ {{e, α} : e ∈ E ′}, as shown in Figure 4.1. Notice that we
have E ∩ (S × S) = ∅.

- Define the capacity c as ck = 1 for k ∈ V ′.

- For any edge e ∈ E ′ and for any vertex u ∈ V ′, we define the path e →G

u = [e, u] if u ∈ e and otherwise we take any shortest path from e to u in
G[V ′ ∪ {u}]. Notice that we have α ∈ e→G u if and only if u /∈ e.

56 4. Reformulating The Problem: A Discrete Query Model

α

E′ V ′

Figure 4.1: Construction of G from G′. G′ is composed of solid nodes (V ′) and
dotted edges (E ′). E ′ is also used to denote auxiliary nodes (empty circles) since
each auxiliary node corresponds to an edge in G′.

- For any x ∈ V ′, we take an arbitrary e ∈ E ′ such that x ∈ e and we define
α→G x as [α, e, x].

Notice that by construction and as G has no isolated vertex, for any vertex v ∈ V
we have dαx = 2 and that, for any edge e ∈ E and for any vertex v ∈ V it holds
dev = 1 if and only if x ∈ e. Notice also that it is clear that the instance of query
range allocation problem can be constructed in polynomial time. We claim that
G has an independent set of size at least K if and only if there exists an impact
function j : S −→ N which fulfills the conditions (i) and (ii).

For the forward implication, let V1 ⊆ V an independent set of size at least K,
then we define the impact function j : V ′ −→ N such that jv = 1 if v ∈ V1 and
jv = 0 otherwise. As V1 is an independent set of size at least K, it follows that the
condition (i) is clearly fulfilled. On the other hand, for any e ∈ E ′ it holds |e∩V1| ≤ 1.
Thus, for any e ∈ E ′, we have that |{(x, i) ∈ V ×S : dxi ≤ ji and e ∈ x→G i}| ≤ 1.
As for any i ∈ S we have dαi = 2, we can conclude that condition (ii) is fulfilled.

For the backward implication, let j an impact function j : S −→ N which fulfills
the conditions (i) and (ii). First of all, we show that for any i ∈ S, we have
j(i) ∈ {0, 1}. Indeed, assume by contradiction that there exists i ∈ S such that
j(i) ≥ 2, thus we have dαi = 2 as we have no isolated vertex. As a result, there
exists e ∈ E ′ such that α →G i = [α, e, i]. But now as dei = 1, we have that
{(α, i), (e, i)} ⊆ {(x,m) ∈ V ×S : d(x,m) ≤ j(m) and e ∈ x→G m} which leads to
a contradiction with the fact that ce = 1. Now, we can conclude that the set V1 =
{x ∈ V ′ : j(x) = 1} is an independent set of size at least K. Indeed, assume that
V1 is not an independent set, then there exists x, y ∈ V1 such that e = {x, y} ∈ E ′,
which implies that {(e, x), (e, y)} ⊆ {(x,m) ∈ V ×S : dxm ≤ j(m) and e ∈ x→G m}
which leads to a contradiction with the fact that ce = 1. Now, as

∑
i∈S j(i) ≥ K

and as for any i ∈ S, we have j(i) ∈ {0, 1}, it is clear that |V1| ≥ K.

4.3 Algorithms

In this section, we propose several algorithms to solve the problems discussed in
Section 4.1. We are interested in developing distributed algorithms that run on
each user and node enabling the users to decide proper query ranges dynamically.

57

Algorithm 4: Exact Algorithm for MMKP-MMF
Input : V , S, dG, wijk (i ∈ S, j ∈ U), ck (k ∈ V)
Output: MMF configuration set CMMF

C0 ← {Si = (ji ← 0, si ← active)}, i ∈ S
CMMF ← {C0}
for j ← 1 to dG do
C′MMF ← ∅
for ∀C ∈ CMMF do

A← ∅
for ∀Si ∈ C and si = active do ji ← j
for ∀k ∈ V do

if ck <
∑

i wijik then
A← A ∪ {Si : wijik > 0, si = active}

end
end
for t← 1 to |A| do

for ∀A′ ∈ P(A) and |A′| = t do
C ′ ← C
for ∀a ∈ A′ do

ja ← ja − 1, sa ← stop
if feasible (C ′) then
C′MMF ← C′MMF ∪ {C ′}
feasiblefound← true

end
end

end
if feasiblefound then break

end
end
CMMF ← lexopt(CMMF ∪ C′MMF)
if ∀C ∈ CMMF , ∀Si ∈ C, si = stop then break

end

However, since the problems are NP-hard, approximate but fast algorithms are prac-
tically needed. Nevertheless, we shall also discuss the centralized exact algorithms
for demonstrating the quality of solutions obtained by the distributed approximate
algorithms.

4.3.1 An exact algorithm for MMF

In the MNU problem, the objective is to maximize the sum of the utility which
makes the problem exactly same as the traditional MMKP studied in previous works.
Different types of exact algorithms have been developed to solve this problem and off-
the-shelf general solvers could be used. While on the contrary, no effective algorithm
has been proposed for the MMF problem. We propose an algorithm which is able
to find all the exact solutions to this problem.

The proposed algorithm is based on the branch and bound idea and it operates
by obtaining feasible partial solutions at each round and selecting only the lexico-
graphically largest ones for the next round of branching. Each round is divided

58 4. Reformulating The Problem: A Discrete Query Model

6 6 6

5 6 6 6 5∗ 6 6 6 5∗

5 5 6 5 6 5 6 5 5

5 5 5

Level 0 (current)

Level 1

Level 2

Level 3 (previous)

Unvisited

Figure 4.2: The fixing procedure checks the solutions between the previous (feasible)
solution and the current (infeasible) one.

into two stages: a greedy lower bound discovering stages and a fixing stage. The
algorithm starts at a trivial solution where the query ranges are set to the lowest
levels and all users are marked as ‘active’. Each round begins with a discovering
stage where the algorithm simply increases the levels of all active users simultane-
ously. Then the current configuration is checked for its feasibility against all the
constraints. If any violation is found, the algorithm enters the second stage. At this
user, we know that (i) the previous solution is feasible but the current one is not
and it tries to fix the current configuration with the fixing stage. Since we assume
that the resource consumption is a non-decreasing function of the query range level,
the only way to fix the current solution is to decrease the query range level of one
or more users. (ii) We should decrease only one level for a particular user due to
the max-min fairness constraint. (iii) If a feasible solution could be derived from
the current one by decreasing only one user, we do not need to check further to see
if there are feasible solutions could be possibly derived from the current solution by
decreasing two or more users, since it is impossible to develop a better solution from
those already lexicographically smaller partial solutions. The fixing procedure is
shown in Figure 4.2. In the figure, the number in each cell denotes the query range
of the user and it has an asterisk if the user is ‘stopped’. The gray configurations
are feasible ones while others are infeasible. At level 1, the algorithm tries each user
to see if decreasing its query range level by one will generate a feasible solution. If
no feasible solution is found, the algorithm continues trying level 2, where all com-
binations of 2 users are examined to see if decreasing the levels of both will generate
a feasible solution. This procedure continues until all feasible solutions are found
at a certain level (since they are lexicographically identical) and higher levels are
no longer visited. The users whose query range levels are decreased at the current
round will be marked as ‘stopped’, meaning they will not be increased in the next
round because they have achieved their max-min fair query range levels.

After the fixing procedure, some partial solutions are obtained. Then the algo-
rithm enters the next round and tries to increase the levels of the active users. Then

59

5 5 5 Feasible

6 6 6 Infeasible

5 6 6
Discarded

6 5∗ 6
Selected

6 6 5∗
Selected

Round
k

Round
k + 1 7 5∗ 7

6 5 7
Discarded

7 5∗ 6∗
Selected

7 7 5∗

6∗ 7 5∗
Selected

7 6∗ 5∗
Selected

Round
k + 2 8 5∗ 6∗

7∗ 5∗ 6∗
Discarded

6∗ 8 5∗
Selected

8 6∗ 5∗
Selected

Figure 4.3: Part of the execution paths of Algorithm 4 in a three-user case.

the constraints are checked and if violated, the same selecting and decreasing steps
are followed. This procedure should be applied for each partial solution obtained in
the previous round. As a result, all the partially optimal solutions are found at each
round and the algorithm ends with all the optimal solutions. Figure 4.3 shows part
of the execution paths of the algorithm when applied to a problem with three users.
Solid arrows in the figure indicate a greedy exploration and dotted arrows indicate
a fix operation. The resulted algorithm is formally presented in Algorithm 4. Some
notations deserves more explanations. A structure is associated with a user i and
we denote it as Si = (ji, si), which keeps the query range level of i in ji and its
current state i.e. active or stopped, in si. A configuration of query ranges of all
users is noted as C. All active users that contributes to a congested node found at
a certain round are put into set A and P(A) denotes the power set of A. Finally, U
is the set of query range levels which is assumed identical for all users.

At the end of a certain round, all the solutions from the same branch are lex-
icographically identical, but this is not necessarily true for those solutions derived
from different branches. So only the lexicographically largest ones are selected to be
further developed. As at the round k + 2 in Figure 4.3, three feasible solutions are
derived from three branches, but only two of them are selected for the next round.
The solution (7, 5, 6) is lexicographically sub-optimal thus is discarded. Function
lexopt sorts all the configurations lexicographically and returns the largest ones.

60 4. Reformulating The Problem: A Discrete Query Model

4.3.2 Distributed algorithms for MNU and MMF

As stated in previous sections, fast and distributed algorithms are preferred if one
wants to solve the two optimization problems online. We propose two such algo-
rithms in this section. Both algorithms require only local information from nearby
nodes and can be formulated into one uniformed framework. The basic idea of the
algorithms is to solve a much smaller localized problem at each node. To this end,
each node keeps track of all the traffic passing through itself. With this informa-
tion, when a node is impacted by several users thus has to provide bandwidth more
than its capacity, it is able to formulate a local MMKP with only the related users
as parameters and a single bandwidth constraint. This problem is usually much
smaller and could be solved quickly. Then the node notifies the related users with
the solution. Finally, a user adopts one of the possibly multiple solutions as its new
query range. In the rest of this section, we first give detailed discussions on the key
techniques we shall employ, then we propose a unified algorithm for both MNU and
MMF problems.

4.3.2.1 Local MCKP solution

When the node is required to provide resources more than its capacity, it formu-
lates a smaller MMKP problem with its local traffic measurements and a single
constraint, or equivalently, an MCKP problem. This MCKP is to be solved in
a centralized fashion thus either exact algorithms or heuristics can be exploited.
Various algorithms have been proposed to solve an MCKP with sum utility maxi-
mization objective (MKP-MNU). We again adopt the GLPK mixed integer solver
to solve this MCKP-MNU problem as part of distributed algorithm to be proposed
for the MNU problem. On the other hand, no algorithm has been proposed for an
MCKP with MMF objective (MKP-MMF). Since the MCKP is a special case of
MMKP, it is possible to apply the exact algorithm we previously proposed directly
to solve this MCKP. However the exponentially growing computation cost of the
exact algorithm may be hardly supported by the nodes, even if the number of users
impacting a congested node is reasonable. In the following, we propose a heuristic
for such an MCKP problem. This heuristic will be integrated into the distributed
algorithm to be proposed.

The basic idea of the heuristic is to start at a trivial configuration C = (0, . . . , 0)
with all users marked as ‘active’. Then it discovers a partial feasible solution greed-
ily round by round. When a node examines the partial solutions, it relies on an
estimation of the traffic it should carry. Figure 4.4 illustrates an issue related with
this estimation. Suppose there are two users i = 1 and i = 2 having impact on the
node k with a current configuration C = {j1 = 4, j2 = 5}. The matrix Mk is the
traffic load measured by node k where the number of rows is the number of users
impacting k and the number of columns is the number of different query ranges
these users may choose. Each element tih of Mk denotes the bandwidth the node k
has to spend in forwarding traffic from all nodes at exactly h hops away of the user
i. In other words, for a user i with query range j, the total bandwidth consumption
of k may be expressed as

∑
h∈[0...j] tih. As illustrated in the Figure 4.4, the node k

61

1

j1 = 4

k 2

j2 = 5

M(k)
h 1 2 3 4 5 6

i = 1 0 10 20 10 10∗ 10∗
i = 2 0 0 0 10 10 10∗

Figure 4.4: Traffic measurement on node k.

does not have to spend bandwidth for user 2 for all values of h = 1, 2, 3 because it is
actually located at 4 hops away of user 2. The real issue occurs for t1,h=5, t1,h=6 and
t2,h=6. In fact, node k can only estimate the traffic for these ranges because it has
not experienced such configurations yet. In the current study, we suggest to use a
very basic estimation which is the traffic load for the last known hop number. But
we could also expect the number of nodes at h hops from a user and whose traffic
has to be carried by a node is growing with h. This traffic estimation seems to be
still an open problem.

The way to detect this approximate solution is based on the measurement of
the saving presented in [KLMA02]. The tih is equivalent to the saving but better
expressed as the extra cost when the query range j − 1 becomes j. Recall the
algorithm is round-based, and at each round, a query range level j is examined to
see if it is possible to generate a feasible solution with all or some users set to j.
The active users are sorted by their extra costs at the corresponding query range
in ascending order. Then the algorithm increases their query range levels by one,
one user after another, from the less costly user to the most costly one. If all users
are increased without violating the bandwidth constraint, the algorithm enters the
next round. Otherwise, the first user that violates the constraint and all users after
it are marked as ‘stopped’ before entering the next round. The whole algorithm
stops once all users are marked as ‘stopped’. Algorithm 5 formally describes this
heuristic.

The input S ′ of the algorithm is a subset of the users which have impact on the
node. Since the algorithm runs on each node k, it considers only one constraint ck.
The sort function in the algorithm sorts the active users in A in ascending order
with t·j as keys. Finally, the function feasible tests if the constraint ck is violated.

The algorithm is heuristic because at each round, only one possibility of query
range assignment is inspected, thus the procedure is prone to be trapped by a local
optima. The merit of the heuristic is its polynomial time complexity as compared
with an exact algorithm, which is critical for a distributed online algorithm. It is
userless for each node to spend too much efforts to reach an optimal local solution
because this solution is probably not globally optimal. Thus, we suggest to first
give a local solution quickly, which is not necessarily optimal but is expected to be

62 4. Reformulating The Problem: A Discrete Query Model

Algorithm 5: Local MCKP-MMF

input : S ′ ⊆ S, U , M(k), ck
output: MCKP-MMF configuration C

for i ∈ S ′ do
C ← {Si = (ji ← 0, si ← active)}

end
for j ← 1 to |U | do

A← {Si : si = active}
if A = ∅ then break
sort (A, t·j)
for a← 1 to |A| do

C ′ ← C, j′a ← j
if feasible (C ′) then ja ← j
else

for a′ ← a to |A| do sa′ ← stop
break

end

end

end
Return C

a fairly good approximation of the optimal solutions. Then, we further explore the
global optimal by applying a dynamic query range adaption procedure at each user,
as will be discussed soon.

4.3.2.2 Dynamic query range adaption

After the local MCKP problem is solved, the node sends the result to all related users
indicating them their new query range levels which are expected to conform with
the constraint on this node. However, a user may receive multiple such notifications
from multiple nodes. Thus, in order to make the most stringent constraint satisfied,
a user needs to adjust its query range level according to the smallest one of all
notifications. The side effect of this policy is the query range levels tend to decrease
in the long run and a user may not be able to know its optimal query range due to
the incomplete information it has. To mitigate this side effects and help the users
to jump out of a local optima assigned by Algorithm 5, each user should increase
its query range level periodically. Similar effects have been observed and the same
countermeasure has been employed in [HS07].

4.3.2.3 Unified algorithmic framework

Now that all the prerequisites are discussed, we are able to give the main algorithms
for both the MNU and MMF problems. As stated at the beginning of the this
section, the two algorithms could be described in one generic framework, as shown
in Algorithm 6.

63

Algorithm 6: Distributed Heuristic

Sink Part : Run at user i
send < level, i, 1 >
while no < adjust-level > message do

level← initLevel()

send < level, i, level >
end
level← adjustLevel()

while true do
while no < adjust-level > message do

level← increaseLevel()

send < modify-level, i, level >
end
level← adjustLevel()

send < modify-level, i, level >
end

Sensor Part: Run at sensor k
while true do

if congested() then
C ← solveMCKP()

for ∀i : ji ∈ C do
send < adjust-level, ji > to i;

end

end

end

In this algorithm, when a user wants to set its query range in the network, a query
range message < query range, i, j > will be sent. It notifies any node who receives
it that a user i has set its query range to level. The < modify-level, i, level >
message is used by i to modify its query range to level when needed. The <
adjust-level > message is sent by the congested nodes to the users associated
with them to notify the users their new query range levels.

At the user side, the algorithm consists of two phases. The first one is a well-
known slow start phase and it is used to initially discover a congested node. The
query range starts at the unit level and increases according to a certain strategy
until the user is alerted that one or more nodes covered by its impact is congested.
The function initLevel manages the initial query range increasing and it uses
an exponential growth strategy, i.e. the query range is initialized to level 1 and
increased by doubling its previous value each time it is called. On receiving the first
message indicating a congestion on the node, the user sets its query range to the
suggested level if it is smaller than the current one, then the system enters the second
phase. Function adjustRadius fulfills this operation by returning the smaller of the
current query range level and the one suggested by a congested node. In the second
phase, a user tries to increase its query range periodically, in order to explore the

64 4. Reformulating The Problem: A Discrete Query Model

Table 4.1: Simulation parameters.

Node distribution Uniform
User distribution Uniform

MAC layer 802.11
Wireless Tx/Rx radius 30m
Bandwidth constraint 2pkt/s

Requirement data rate 1/60pkt/s
Simulation time 800s

optimal levels. This is handled by the increaseLevel function and it increases the
query range linearly. Eventually, the user is alerted again by an overloaded node,
then it decreases its query range according to the level indicated in the message and
resumes increasing later.

At each node, the measureTraffic function makes the measurements for traffic
coming from nodes at a certain hops away to each user, as discussed in 4.3.2.1. The
function solveMKP is called when the node finds itself congested by all the users
having impact on it. Different algorithms should be used according to the objective
of the main algorithm, i.e. MNU or MMF. Besides, various algorithms could be
used for either objective. For example in this chapter, we use GLPK solver for the
MNU objective and Algorithm 5 for the MMF case.

4.4 Performance Evaluation

In this section, we evaluate the proposed algorithms by comprehensive simulations.
To this end, we need to implement the algorithms as well as some basic network-
ing functionalities on both the users and the nodes. Here we briefly recall how the
network works: the users send their query ranges by constrained flood to the net-
work. Routes to the corresponding users are built at the same time on each node
by recording the upstream nodes from which the query range message is received.
Then the nodes start to generate data at a certain rate and send it back to the users.
Meanwhile, the nodes measure the traffic and calculate the query range levels for
users according to the optimization objective. This procedure is implemented in the
ns-2 simulator [ns2].

4.4.1 Simulation setup

We consider a densely connected network with uniformly deployed nodes and users.
Thus, the network area, number of nodes and the wireless transmission range are
selected to create a densely connected network in a rather large region. Table 4.1
summarizes the common parameters. We shall examine the algorithms under several
network scenarios with different sizes, as listed in Table 4.2. The density of nodes
is fixed and we vary the number of users, number of nodes and the network area.

Please note that the bandwidth constraints are manually set as how many packets

65

Table 4.2: Simulation scenarios.

Scenario Number of Nodes Network Area
1 100 320m×200m
2 200 400m×320m
3 400 640m×400m
4 800 800m×640m
5 1000 800m×800m

a node can transmit per second. With this virtual bandwidth constraint, we no
longer need to consider the real bandwidth of the links, the collisions and other link
layer issues since we want to concentrate to the algorithmic aspect. Actually, we
set the real bandwidth to 1 Mbps which can effectively eliminate most collisions
and the overall packet loss is controlled under 5%. In order to demonstrate the
behavior of the algorithms, the constraint value should allow most users have a
reasonable dynamic range of query range levels, depending on the other parameters.
Obviously, if the constraint is too low, most of the users will be limited by the traffic
of themselves so that they choose almost the same levels. On the contrary, users are
free to choose the largest levels if the constraint is too high.

Finally, in order to eliminate random effects, average results are taken from 100
randomly generated topologies for each simulation and the error bars in the figures
show the ±1 Standard Error of the Mean (SEM) of the data set.

4.4.2 Time complexity of the exact algorithm

Our first simulation focuses on the time consumption of Algorithm 4. To do this,
we randomly generate 100 topologies for each of the scenarios 1, 2, 3, 4 in Table 4.2
and put 5, 10, 15, 20, 25 users in each scenario. Besides, each simulation is run with
maximum query range level set to 5, 10 or 15 in order to show how different param-
eters impact the time consumption of the algorithm. A personal computer with a
CPU at 3.2GHz and 1GB memory is dedicated for the simulations and Figure 4.5
shows the results with each sub-plot corresponding to a maximum query range level
setting. As expected, the time consumption grows exponentially with the number
of users. Besides, there is no significant difference in the time consumption of dif-
ferent network scenarios when the number of users keeps the same. Furthermore,
examine vertically through the sub-plots, we see no significant difference between
the time consumption when varying the maximum query range level, provided the
number of users is fixed. These results conform with the previous analysis. Finally,
the error bars are higher for larger number of users, indicating that the time con-
sumption could be very different and increasing the number of users increases this
diversity. Note that we are unable to solve the 25-user case in reasonable time thus
no corresponding results could be presented.

66 4. Reformulating The Problem: A Discrete Query Model

10-2

100

102

104

5 10 15 20

T
im

e
(s

ec
on

d)

Number of Users

sce: 1, dG=5
sce: 2, dG=5
sce: 3, dG=5
sce: 4, dG=5

10-2

100

102

104

5 10 15 20

T
im

e
(s

ec
on

d)

Number of Users

sce: 1, dG=10
sce: 2, dG=10
sce: 3, dG=10
sce: 4, dG=10

10-2

100

102

104

5 10 15 20

T
im

e
(s

ec
on

d)

Number of Users

sce: 1, dG=15
sce: 2, dG=15
sce: 3, dG=15
sce: 4, dG=15

Figure 4.5: Time consumption of Algorithm 4.

Table 4.3: Average query range level comparison.

m
MNU MMF

jDIS jOPT jUP jDIS jOPT jUP
5 12.27 12.22 12.89 11.29 11.97 12.84
10 11.47 11.93 12.46 10.44 11.4 12.37
20 10.55 11.81 12.10 9.44 10.52 11.73
30 9.76 − 11.78 8.75 − 11.24
40 9.47 − 11.52 8.38 − 10.90
50 8.67 − 11.21 7.96 − 10.59
60 8.48 − 11.07 7.75 − 10.45
70 8.31 − 10.94 7.55 − 10.28
80 8.03 − 10.71 7.39 − 10.22
90 7.88 − 10.59 7.23 − 10.14

4.4.3 Distributed heuristics in a large network

All the following simulations concern the distributed Algorithm 6. Besides showing
the effectiveness of the algorithm, we shall emphasize more on how the two opti-
mization objectives, MNU and MMF, impact on the behavior of the network. We
use scenario 5 for all the simulations below since the network is scaling free. The
number of users is chosen from the set {5, 10, 20, . . . , 90}.

67

4.4.3.1 Quality of solutions

First, we would like to demonstrate the quality of configurations obtained by the
distributed Algorithm 6 through comparing with those obtained by the exact al-
gorithms. To this end, we run two simulations with or without the distributed
algorithms turned on. For the latter case, the query range of users are set to the
maximal. The approximated solutions could be obtained directly by running the
simulation with the distributed algorithms. While on the other hand, the traffic
information obtained from the simulation without distributed algorithms is fed to
the exact algorithms and the results are considered as optimal solutions.

Average query range levels are shown in Table 4.3. The column m shows the
number of users and the column jDIS and jOPT denote the average query range
obtained by the distributed algorithm 6 and by the centralized exact algorithms,
respectively. Please recall that we use GLPK for the MNU problem and Algorithm 5
for the MMF one. We indicate that the algorithm is unable to finish within a
reasonable time for problems with a larger m, e.g. m > 20, under current simulation
settings. For these cases, a bar is put in the corresponding cells in the table and the
average query range levels obtained by solving the linear programming relaxation
of the original problems are shown in the column jUP . Although such relaxation
provides good upper bounds for the MNU problems, it gives very loose upper bound
to the MMF ones. Nevertheless, they give us some hints on the solution quality of
the distributed algorithm. As shown in Table 4.3, for a small size of user population
when the optimal solution could be obtained, i.e. m = 5, 10, 20, Algorithm 6 achieves
fairly good solutions.

4.4.3.2 Congestion resolution capability

Now we show the effectiveness of Algorithm 6 on eliminating congested nodes with
the two introduced optimization objectives. We run the simulations with or without
query range level control and the query range is set to its maximum on each user
for the latter case. The average number of congested nodes are calculated and the
results are shown in Figure 4.6. We clearly see that if the network runs uncontrolled,
there will be many congested nodes and the ratio of congested nodes increases as
more users come into the network. When the query range level is controlled by the
Algorithm 6, with either MMF or MNU objective, we see most of the congested
nodes are eliminated and the ratio of such nodes increases with the number of users
in the network, but now at a lower speed. It is interesting to observe that the MNU
algorithm gives a lower congested node ratio than MMF algorithm does and we will
discuss about this later.

4.4.3.3 Comparative study on MNU and MMF

In the following, we investigate in detail the differences between configurations ob-
tained by the MNU and MMF algorithm, by comparing the average bandwidth
utilization, average query range level, the distribution of users at each query range
level and finally, the distribution of nodes on the number of users impacting them.

68 4. Reformulating The Problem: A Discrete Query Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
on

ge
st

ed
 N

od
e

R
at

io

Number of Users

Uncontroled
MMF controled
MNU controled

Figure 4.6: Congestion rate of nodes.

Bandwidth utilization We compare the average bandwidth utilization of the
nodes when the network is optimized by the MNU and MMF objectives in this
paragraph. The average bandwidth utilization is defined as the average of the band-
width spent on each node for transmitting data to the users.

Figure 4.7 shows this result. We see similar trends as in Figure 4.6 for the three
curves. Here we emphasize on the difference between the MMF and MNU algorithm.
We see again that the curve of the MMF lies above that of the MNU, indicating
that the MMF algorithm results in a higher average bandwidth consumption than
the MNU does. This result appears to be paradoxical since we have named the algo-
rithm as MNU. However, it is actually correct because the MNU algorithm aims at
maximizing the sum of the query range levels. A maximum sum of query ranges does
not necessarily indicate a maximum traffic load, or bandwidth consumption, since
the traffic load on each node is a non-linear function of the query range level [LH05]
under the local traffic model. This could also explain the similar phenomenon on
the congested node ratio in Figure 4.6. Note that the MNU optimization objective
indeed gives larger average and maximum query range levels than the MMF one,
this could be verified by Figure 4.8.

Actually, we see again the trade-off between fairness and resource consump-
tion: MMF is fair but gives a generally lower network utility and consumes more
bandwidth while MNU achieves maximum network utility at a lower bandwidth
consumption but at the cost of serving the users unfairly.

It is noteworthy to mention that neither MMF algorithm nor MNU algorithm
promises a maximum overall bandwidth utilization and this could be used as an
optimization objective to formulate another problem similar to the MNU or MMF
problem.

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

Number of Users

Uncontroled
MMF controled
MNU controled

Figure 4.7: Bandwidth utilization of nodes.

Query levels The query range level indicates the utility of a user. We show the
differences between the networks optimized by the two objectives in this paragraph,
by studying the average and the maximum query range of the users. Figure 4.8
shows that the MNU optimization objective gives larger average and maximum
query range levels than the MMF does, as already mentioned. More interestingly,
we see different trends of the maximum and average query range level as the number
of users increases: the average is monotonically decreasing; the maximum is around
the maximum allowed level.

The monotonically decrement of the average query range level is a reasonable
effect of bandwidth sharing among multiple users: as more users are in the network,
each user has to shrink its impacted area. In general, the MMF policy requires
nearby users have similar query range levels and a user is able to have a remarkably
higher query range level only when it is geographically far from the others. As a
result, MMF objective generally gives users smaller chance to achieve maximum
allowed level than the MNU objective does. This explains why the former always
gives a maximal query range to the users lower than the latter.

Fairness among users More information about how the users are satisfied could
be provided by demonstrating how the users are distributed in the query range
level domain, as shown in Figure 4.9. Three cases with 10, 50 and 90 users are
investigated and the height of the bar in the figure represents the ratio of the users
that have the corresponding query range level. Results of the MMF algorithm and
the MNU algorithm are grouped for comparison. We can observe that the MMF
algorithm results in a more concentrate distribution than the MNU algorithm does
under all the three cases. Actually, the distribution could be used as an indicator of

70 4. Reformulating The Problem: A Discrete Query Model

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Q
ue

ry
 L

ev
el

 (
ho

p)

Number of Users

Max: MNU
Max: MMF
Avg: MNU
Avg: MMF

Figure 4.8: Perimeter level of users.

fairness: the more concentrate the distribution is, the fairer the configuration is.
To measure the fairness quantitatively, we employ the fairness index introduced

in [JCH98] as the following ratio f . If C = (x1, x2, . . . , xm) is a configuration of m
users, then:

f =
(
∑m

i=1 xi)
2

m
∑m

i=1 x
2
i

, (4.6)

and the configuration is 100% fair when f = 1.
Figure 4.10 shows this index for both MMF and MNU algorithms when they are

applied to networks with different users. We see that the MMF algorithm is fairer
than the MNU algorithm, verifying that the design goal of the MMF algorithm is
achieved.

Fairness among nodes It is also interesting to know how the nodes are utilized.
Figure 4.11 shows the distribution of nodes according to the number of users impact-
ing them. Three cases with 10, 50 and 90 users are demonstrated and a node may
have 0, 1, . . . ,m impacted users if there are m users. Our first observation is that
the difference between MMF algorithm and MNU algorithm becomes larger as the
number of users increases although it is insignificant under the 10 user case. More
interestingly, the distribution is now more concentrate for the MNU algorithm than
that for the MMF algorithm, which is indicated by higher and narrower curves for
the MNU than those for the MMF. Comparing with the distribution of users shown
in Figure 4.9, the following conclusion could be made. When the MMF optimiza-
tion objective is applied in favor of users, it gives fairness to each user but results in
unfair resource consumption on the nodes. On the contrary, if the MNU objective
is applied, it gives maximum overall network utility at the cost that the users may

71

 0
 0.1
 0.2
 0.3
 0.4
 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io

Query Level (hop)

MMF, 10 users
MNU, 10 users

 0
 0.1
 0.2
 0.3
 0.4
 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io

Query Level (hop)

MMF, 50 users
MNU, 50 users

 0
 0.1
 0.2
 0.3
 0.4
 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io

Query Level (hop)

MMF, 90 users
MNU, 90 users

Figure 4.9: Distribution of users at each query range level.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F
ai

rn
es

s
In

de
x

Number of Users

MMF
MNU

Figure 4.10: Fairness index.

72 4. Reformulating The Problem: A Discrete Query Model

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40

R
at

io
 o

f S
en

so
rs

Number of Querying Users

MNU 10 users
MMF 10 users
MNU 50 users
MMF 50 users
MNU 90 users
MMF 90 users

Figure 4.11: Node distribution on the number of impacting users.

be served unfairly, but the resulted configuration makes use of the resources on each
node more evenly. Thus, the MNU may be favorable in particular network designs.
For example, in some wireless sensor networks with multiple data collectors, the
energy consumption on each node should be well balanced in order to maximize the
network lifetime.

Another interesting observation on the Figure 4.11 is about the ratio of the nodes
with no user impacting them. Over 20% of nodes are not impacted by any user when
10 users are in the network while this ratio decreases quickly to about 5% for 50
users and 2% for 90 users. This observation may be valuable when the network
coverage is concerned. Suppose the users are the service providers as the access
points in a mesh network while the nodes are the users of such mesh networks. One
design concern is how to cover maximum number of the users within a certain region
with minimum number of randomly deployed access points. However, Figure 4.11
shows us that if a certain coverage is required, the number of access points must
achieve a certain threshold. It is impossible to cover the network only by enlarging
the coverage of a few access points.

4.4.4 A dynamic network example

In this final simulation, we try to show how the users cooperate according to Al-
gorithm 6 in order to achieve a certain global optimization objective, by a simple
example. We use the scenario 5 in Table 4.2 and a network topology with 10 users is
generated for it. The simulation runs for 5000 seconds, however, at the beginning of
the simulation, only 5 users start working while the rest stay idle until the simula-
tion time 1500s. The topologies after 1500s is shown in Figure 4.12(a) and 4.12(b),

73

0

1
2

3

4

5

6 7

8

9

(a) MMF

0

1
2

3

4

5

6 7

8

9

(b) MNU

Figure 4.12: Network topology with 10 users and the congested nodes.

for the MMF and MNU cases, respectively. The topologies before 1500s are trivial
thus not shown. The congested nodes and the users related with them are depicted
while other nodes are omitted for clarity.

The users are connected by a link with the congested nodes if their query range
levels are actually modified by the nodes. These users could be seen as the most
critical impacting users to the corresponding nodes. Other users around a congested
node may have impacts on it as well, but as their impacts could be so weak that
decreasing them will not generate a better solution, their query ranges are not
modified by the node. As user 7 to the congested node between user 2 and 6 in
Figure 4.12(a). It has impact on the node but its impact level is not modified
by the node. This phenomenon may be used in developing smarter distributed
heuristics. Besides, the number of the congested nodes shown in the figures is trivial
as compared to the total population of nodes which is set to 1000 in this example.
Together with the limited number of users related with each congested node, one
can expect a limited computation effort has to be spent on the nodes, as well as a
modest number of messages have to be generated by those nodes.

Finally, we present Figure 4.13(a) and 4.13(b) to show how the query range
levels of users evolve, under the MMF and MNU optimization objective, respectively.
A common observation is whenever a congestion is detected, the algorithm needs
some time to adjust the query range levels between users and then converges at
an approximate optimal configuration. Long term evolution of the MMF and the
MNU optimized users could be easily distinguished within each clique of users, e.g.
{0, 4, 8} and {2, 6}. In the MMF case, query range levels tend to converge to similar
values while they diverge in the MNU case.

74 4. Reformulating The Problem: A Discrete Query Model

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000

Q
ue

ry
 L

ev
el

 (
ho

p)

Simulation Time (second)

s0
s4
s8

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000

Q
ue

ry
 L

ev
el

 (
ho

p)

Simulation Time (second)

s2
s6
s7

(a) MMF

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000

Q
ue

ry
 L

ev
el

 (
ho

p)

Simulation Time (second)

s0
s4
s8

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000

Q
ue

ry
 L

ev
el

 (
ho

p)

Simulation Time (second)

s2
s6
s7

(b) MNU

Figure 4.13: Query level evolution of users.

75

4.5 Summary

MMF and MNU optimization objectives have been studied in the chapter. Both of
them conform with the MMKP formulation which takes the resources constraints
on each node into consideration. In consequence, the resulted algorithms are able to
prevent the nodes from being congested. Although we consider only bandwidth in
this study, it is possible to generalize to other types of resources e.g. energy, storage,
computation power, etc.

The average and maximal query range levels have been inspected and they pro-
vide precious indication which may help for dimensioning the wireless sensor net-
works. The comparative study on the bandwidth utilization of the two optimization
objectives has shown that although the MNU maximizes the network utility, the
average bandwidth consumption on the nodes are not necessarily maximized at the
same time. On the contrary, under all of our simulation scenarios, the bandwidth
consumption of the nodes in a network optimized for MNU is lower than in those
optimized for MMF. Furthermore, the distribution of query range levels are more
concentrate among users under the MMF objective than under the MNU objective,
indicating the former gives more fairness to the users. More interestingly, as the
number of users in the network grows, the distributions tend to concentrate first
instead of shifting leftwards and this holds for both MNU and MMF objectives al-
though it is more obvious for the latter case. This phenomenon implies that the
network under local traffic model tries to give more users a medium query range
when the number of users grows.

It will be interesting to cope with dynamic networks: transient users and mov-
ing nodes are the first challenges on the way to a realistic network. Finally, the
distributed heuristic could be improved by investigating new ways to estimate the
traffic in wireless sensor networks.

76 4. Reformulating The Problem: A Discrete Query Model

77

Chapter 5

Extension To A Practical Context:
ZigBee Based WSNs

“ He, who every morning plans the transactions of the day, and
follows that plan, carries a thread that will guide him through a
labyrinth of the most busy life. ”

– Victor Hugo

Query allocation problems have been formulated and studied with both continuous
and discrete query models for multi-user WSN in previous chapters. In this chapter,
we adapt the algorithms for the discrete version of the problem, namely the MMKP-
MNU and MMKP-MMF, to a ZigBee cluster tree based wireless sensor network.
The rest of the chapter is organized as follows: How to build mobile user WSNs
based on the IEEE 802.15.4 and ZigBee standards is discussed in Section 5.1. The
distributed algorithm (Algorithm 6) proposed in Section 4.3.2.3 is then adapted to
the ZigBee cluster tree structure, with special considerations on the addressing and
routing mechanisms which make the resulted algorithms more efficient with respect
to the amount of control messages involved. The adapted algorithms are evaluated
via simulation in Section 5.3 and we conclude this chapter in Section 5.4.

5.1 The IEEE 802.15.4 and ZigBee Tree

A general description on the IEEE 802.15.4 standard [80206] has been given in
Section 2.1.2.2. Specifically designed for low power devices, it allows devices to
sleep during the inactive period in a superframe bounded by the beacons. The
sleep mode, which is only available when the network works on a synchronized tree
structure, is appealing when energy saving is desired. On the contrary, if the network
works on a peer-to-peer mode, the lack of synchronization makes the devices keep
alive in order to receive from neighbors.

78 5. Extension To A Practical Context: ZigBee Based WSNs

Based on the 802.15.4, the ZigBee specification [zig08] defines addressing, net-
work maintenance and routing for unicast, multicast or broadcast packets at network
layer. We have discussed the basic functionalities provided by the ZigBee specifi-
cation in Section 2.1.2.3. Especially, the cluster tree routing does not employ any
routing discover packets thus it is more appealing for energy constrained networks
such as WSNs.

Building multi-user WSN based on ZigBee network is straightforward. However,
some choices have to be made to fit the special requirements of multi-user WSN.
In a WSN, the routers are usually at the same time the sensor nodes, thus are
supposed to be battery powered. This energy issue advocates for the tree operation
mode proposed by ZigBee. Network maintenance when multiple users join and leave
can be easily implemented in the ZigBee infrastructure with full conformance. For
example, a user may use the ZigBee join procedure to connect to the network and
follow the leave procedure when it moves outside the parent and later reconnect to
other nodes with the rejoin procedure.

Furthermore, a user may act as either end devices or routers in the ZigBee
network. If mobility is considered, the movement of the user router may result in
reconstruction of the subtree rooted at itself. In this study, we confine the users to
act only as end devices, thus the backbone of the cluster tree can be kept intact
even when the users move.

A user initiates a query in order to collect data from the sensors. Motivated by
the application scenarios introduced previously, we suppose the query is sent to all
sensor nodes within a certain number of hops to the user then all such sensors will
send data back to the user at the required rate repeatedly until modified by another
query. The queries are sent via hop-bounded flooding on the tree and data is sent
back via unicast cluster tree routing, both supported by the ZigBee specification.
Specifically, the former can be done by checking the query message header for the
radius field on the router, and rebroadcasting the message if radius is positive, to
its on-tree neighbors except the one from which the message is received. For the
latter, we assume sensors send a copy of the same data to each querying user rather
than using multicast. Figure 5.1 illustrates an example multi-user WSN with two
users and a query at radius of 3 hops.

ZigBee Coordinator

Users
ZigBee Router
ZigBee End Devices
Query

Data

Figure 5.1: Multi-user WSN based on ZigBee tree structure.

79

Lm− 1

d

(a)

Representative

EQ1

(h, hs) = (d, 0)

(d− 1, 1)

(d− 2, 2)

(1, d− 1)

(0, d)

(1, d + 1)

(d, 2)

(Lm− 1, Lm− d + 1)

(Lm− 1, Lm− d + 3)

(Lm− 1, Lm + d− 3)

(Lm− 1, Lm + d− 1)
Rm− 1

(b)

Figure 5.2: Two views of a ZigBee routing tree. (a) Tree T , rooted at the coordina-
tor, (b) Tree Ts, rooted at the user, labels assigned to devices.

5.2 Algorithms Adapted to the ZigBee Network

The distributed algorithms (the Algorithm 6) for both MMKP-MNU and MMKP-
MMF have been proposed in Chapter 4. The basic idea is to solve a MCKP at
each congested sensor and then feed the results back to the related querying users.
The adaptation of these algorithms to the ZigBee tree network consists of only a
new traffic estimation mechanism that exploits the special property offered by the
cluster tree addressing and routing mechanisms.

5.2.1 Traffic estimation with the ZigBee tree

When the sensor notices a congestion is about to happen, the traffic estimation is
employed to calculate optimal query allocation for the users querying it. Traffic
could be estimated through various ways and here we propose a local estimation
profiting the ZigBee address structure. The aim is to give an estimation about the
increment of the number of devices involved if the query range becomes one hop
larger. Intuitively, the additional traffic load comes from those devices.

Consider the ZigBee network which is a tree T rooted at the ZigBee coordinator,
as shown in Figure 5.2(a). For the querying user s, the whole network could be
seen as a tree Ts rooted at itself. Thus for a router, the additional traffic passing
through comes from the to-be-covered devices that are his descendent on Ts. A
logical structure of Ts is illustrated in Figure 5.2(b). We assign a label (h, hs) to
each device in the network, where h and hs denote the depth of the device on T and
Ts, respectively. Note that every device knows h on joining the network. On the
other hand, for a given device, hs is actually its hop distance to s, which could be
obtained simply by inspecting the received query message originated from s.

Then we divide the routers (including the ZigBee Coordinator) into several equiv-
alent classes according to their labels. Each equivalent class consists of a sub-tree
rooted at a router on the path from the user to the coordinator. Obviously, there

80 5. Extension To A Practical Context: ZigBee Based WSNs

∆n
R(i, hs, k) =

{
Rmk−hs+1, if hs − 1 ≤ k ≤ Lm− d+ 2i− 2
0, otherwise (5.4)

∆r
R(1, 1, k) =

 Rm∆n
R(1, 2, k) + ∆r

R(2, 2, k), if 0 < k ≤ Lm+ d− 2
1, if k = 0
0, otherwise

(5.5)

∆r
R(i, i, k) =

 (Rm− 1)∆n
R(i, i+ 1, k) + ∆r

R(i+ 1, i+ 1, k), if i− 1 < k ≤ Lm− d+ 2i− 2
1, if k = i− 1
0, otherwise

(5.6)

are d such equivalent classes. Let EQi be the ith equivalent class and we have:

EQi = {r|h− hs = d− 2i}, (1 ≤ i ≤ d). (5.1)

The router with hs = i is referred to as the representative router of the equivalent
class, noted as ri. For example the routers with label (d − 1, 1), (d, 2), . . . , (Lm −
1, Lm− d+ 1) belongs to EQ1 and (d− 1, 1) is the representative router. As shown
in Figure 5.2(b), the routers of EQ1 are grouped into a shadowed area.

Now consider a router in r ∈ EQi with label (h, hs), let ∆R(i, hs, k) be the
number of additional routers and ∆E(i, hs, k) the number of end devices that will
be handled by r when the query range increases from k to k + 1. If every device
send data at constant rate b, the additional traffic load ∆T (i, hs, k) should be:

∆T (i, hs, k) = b (∆R(i, hs, k) + ∆E(i, hs, k)) . (5.2)

Now we derive ∆R(i, hs, k), then ∆E(i, hs, k) could be obtained as the following:

∆E(i, hs, k) = ∆R(i, hs − 1, k − 1)(Cm−Rm). (5.3)

In order to calculate ∆R(i, hs, k), we further separate the non-representative
routers and the representative routers and denote the corresponding ∆R function as
∆n
R and ∆r

R.
Then we have (5.4) for a non-representative router, where 1 ≤ i ≤ d and i+ 1 ≤

hs ≤ Lm − d + 2i − 1. For a representative router, which implies hs = i, we have
(5.5) and (5.6) for i = 1 and i > 1 cases, respectively.

One remark about the estimation proposed above is that it obtains an upper
bound of the additional traffic and this upper bound is reached only when the
network address is fully used by the devices. However, this condition is hardly met
in practice, thus the estimation usually deviates from reality. As a countermeasure,
we propose to apply a scaling parameter to the estimated traffic to account for
address utilization. For example, routers may obtain such a scaling parameter from
the number of addresses allocated to its children and its available address block.

The new traffic estimation method could be applied directly by each node k to
calculate M(k). As a result, Algorithm 5 and 6 could be used with minor modifica-
tions.

81

Table 5.1: Evaluation metrics.
Parameter Definition

Tapp = Query data receive bit rate at users

γ = Tapp

Query data sent bit rate

Omac = MAC layer control message sent bit rate
Tapp

Oapp = Application layer control message sent bit rate
Tapp

I = sum of query level of users
number of users ,

at a certain simulation time.

I∗ same as I, obtained by an exact algorithm.

f = (Pm
i=1 xi)2

m
Pm

i=1 x2
i

,
m: number of queries,
xi: query radius of user i.

5.3 Performance Evaluation

In this section, we evaluate the proposed algorithms by comprehensive simulations.
We implemented the proposed algorithms and the basic functionalities of the Zig-
Bee network layer on top of IEEE 802.15.4 implementation [ZL] in the ns2 simula-
tor [ns2].

5.3.1 Evaluation metrics

We will evaluate the following metrics: query data throughput (Tapp), query data
arrival ratio (γ), MAC layer control message overhead (Omac), application layer
control message overhead (Oapp), query radius and fairness index (f). The definitions
are presented in Table 5.1.

5.3.2 Simulation setup

Table 5.2 summarizes the simulation parameters. We evaluate our algorithm in two
kinds of networks: a grid network and a network with uniformly deployed nodes.
The size of the network are chosen to cover a small network and a large network,
with 50 nodes in 100 by 100 meters square, 100 nodes in 140 by 140 meters square,
respectively.

We also select two representative values of the queried data rate: for a light load
network, each node on query send data at 100bps, which corresponds to sending a
28 bytes of data every 2.24 seconds; for a heavy load network, the query data rate
is 800bps or 28 bytes of data every 0.42 seconds. We use this fixed data message

82 5. Extension To A Practical Context: ZigBee Based WSNs

Table 5.2: Simulation parameters.

Topology 1: 50 nodes at 100m×100m, 2 users
2: 100 nodes at 140m×140m, 4 users

Node distribution Grid with 14m interval / Uniform
MAC layer IEEE 802.15.4, BO = SO = 6,

Lm = 10, Cm = 3, Rm = 3
MWK layer ZigBee cluster tree routing

Wireless Tx/Rx 15m transmission range,
two ray ground,
omniscient antenna model

Bandwidth 250kbps at 2.4GHz band
Query data rate Light load: 100bps, High load: 800bps
Simulation time Query start: 70s,

query stop 300s,
simulation stop: 350s

length in our simulation, following the default data length defined in TinyOS [Lev]
for CC2420 transceiver.

We start the nodes at the beginning of the simulation with random jitters and
the nodes will continue trying to join the network until it succeeds, except node 0
who will create the ZigBee network. The network formation takes about 60 seconds
thus we start the queries at 70 seconds. To let the simulation shut down gracefully,
we stop all the queries 50 seconds before the simulation stops.

5.3.3 Query data arrival ratio

Let us consider how well multiple queries are handled in the network controlled by
the distributed algorithms, by inspecting the query data arrival ratio. As compari-
son, we also run the network without control algorithm. The results are presented in
Figure 5.3. We see that the uncontrolled network delivers the queried data at a rela-
tively low ratio than the controlled network. The arrival ratio dropped very quickly
after the queries are diffused in the network. For a heavy load network (b = 800),
less of congestion control is generally detrimental: the arrival ratio could be as low as
0.3 for large grid network and around 0.4 for both large and small uniform networks.
This is unfavorable. On the contrary, a query radius control with either MNU or
MMF objective could prevent the network from congestion, thus resulted in higher
data arrival ratio. In a small network with light query load, the query control did
not gave noticeable improvement on the arrival ratio compared with uncontrolled
case. Actually, there is almost no congestion in the network under this case and the
effect of the query control is not obvious.

5.3.4 Query data throughput

The aggregated throughput of the query data provides more information about
the performance of the network. Figure 5.4 presents this result. Intuitively, the

83

 0

 0.2

 0.4

 0.6

 0.8

 1

γ small network, light load

MMF
MNU

uncontrolled

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250

γ

Time (second)

small network, heavy load

large network, light load

 100 150 200 250 300

Time (second)

large network, heavy load

(a) Grid

 0

 0.2

 0.4

 0.6

 0.8

 1

γ small network, light load

MMF
MNU

uncontrolled

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250

γ

Time (second)

small network, heavy load

large network, light load

 100 150 200 250 300

Time (second)

large network, heavy load

(b) Uniform

Figure 5.3: Application data arrival ratio.

84 5. Extension To A Practical Context: ZigBee Based WSNs

control algorithm will confine the query radii from going too large, so will limit the
total number of sensor nodes under query. This may result in a lower throughput.
However, if the network is congested, the throughput may be even lower than an
uncongested network with smaller queries. This phenomenon can be observed in the
large grid network under heavy load case (bottom right plot of Figure 5.4(a)).

5.3.5 Control message overhead

We are interested in how much it costs to achieve query control in the proposed query
scheme and the distributed algorithm. We shall investigate this issue by inspecting
both the MAC layer and the application layer control overhead. Note that the
network layer does not impose any overhead after the network formation thanks
for the cluster tree routing. Even during the network formation period, the network
layer requires only several message exchange for one device to join the network. This
overhead is negligible comparing with those in the normal operation period.

In MAC layer, the overhead comes from the beacon message, the acknowledg-
ment and the ARP packets, while in application layer, it comes from the query
message and the adjust-level message as described in Algorithm 6. Figure 5.5 shows
the overhead for both layers in different network settings. The values could be in-
terpreted as how many bits of control message is needed for successfully delivering
one bit of query data. At MAC layer, we observe a sharp decrement of the overhead
when the query load goes high, for both grid and uniform networks.

In application layer, the uncontrolled networks always have negligible overhead,
independent to the network size, the node distribution or the query load. In contrast,
the control overhead goes abruptly for networks with either MNU or MMF when
the query load is light. However, under heavy load case, the overhead could be kept
almost constant when the network size increases. Combined with Figure 5.3 and 5.4
previously discussed, the query control mechanisms are more efficient under heavy
load case than under light load case.

5.3.6 Query range and fairness index

The average query range of the 4 users in the large network, obtained by both the
distributed algorithms and an external problem solver is plotted in Figure 5.6. The
external problem solver obtains an optimal solution for both MNU and MMF with
the traffic information traced from the uncontrolled network. We see that for MMF
case, the approximation is quite near to the optimal. While for MNU in a light load
network, the optimal is further above what the distributed algorithm can achieve.
Furthermore, we can observe that the difference between optimal and simulation
values is larger under light load cases than heavy load cases, under MNU cases than
MMF cases. The explanation is as follows. Normally, the ‘select the minimum’
strategy used in Algorithm 6 gives a user more chances to follow a smaller query
range, especially when the users have more possibility to choose different query
range values. This is actually a cavity of the ‘select the minimum’ strategy. By
inspecting more carefully on the local solutions found on the congested sensors, we

85

 0

 1

 2

 3

T
ap

p
(1

0K
bp

s)

small network, light load

MMF
MNU

uncontrolled

 0

 1

 2

 3

 100 150 200 250

T
ap

p
(1

0K
bp

s)

Time (second)

small network, heavy load

large network, light load

 100 150 200 250 300

Time (second)

large network, heavy load

(a) Grid

 0

 1

 2

 3

T
ap

p
(1

0K
bp

s)

small network, light load

MMF
MNU

uncontrolled

 0

 1

 2

 3

 100 150 200 250

T
ap

p
(1

0K
bp

s)

Time (second)

small network, heavy load

large network, light load

 100 150 200 250 300

Time (second)

large network, heavy load

(b) Uniform

Figure 5.4: Aggregated application data throughput.

86 5. Extension To A Practical Context: ZigBee Based WSNs

 0

 1

 2

 3

 4

 5

 6

Ο
m

ac

light load
heavy load

 0

 1

 2

 3

 4

 5

uncontrolled MMF MNU

Ο
ap

p small network

uncontrolled MMF MNU

large network

(a) Grid

 0

 1

 2

 3

 4

 5

 6

Ο
m

ac

light load
heavy load

 0

 1

 2

 3

 4

 5

Uncontrolled MMF MNU

Ο
ap

p small network

Uncontrolled MMF MNU

large network

(b) Uniform

Figure 5.5: Protocol overhead.

87

 0

 4

 8

 12

Q
ue

ry
 L

ev
el

 (
ho

p)

MNU, light load

Ι∗ = 8.5

 0

 4

 8

 12

 100 150 200 250

Q
ue

ry
 L

ev
el

 (
ho

p)

Time (second)

MMF, light load

Ι∗ = 8.0
algorithm Ι

fairness index
optimal (Ι∗)

 0.8

 0.85

 0.9

 0.95

 1

F
airness Index

MNU, heavy load

Ι∗ = 4.5

 100 150 200 250
 0.8

 0.85

 0.9

 0.95

 1

F
airness Index

Time (second)

MMF, heavy load

Ι∗ = 4.5

(a) Grid

 0

 4

 8

 12

Q
ue

ry
 L

ev
el

 (
ho

p)

MNU, light load

Ι∗ = 8.0

 0

 4

 8

 12

 100 150 200 250

Q
ue

ry
 L

ev
el

 (
ho

p)

Time (second)

MMF, light load

Ι∗ = 7.5

algorithm (Ι)
fairness index

optimal (Ι∗)

 0.8

 0.85

 0.9

 0.95

 1

F
airness Index

MNU, heavy load

Ι∗ = 4.75

 100 150 200 250
 0.8

 0.85

 0.9

 0.95

 1

F
airness Index

Time (second)

MMF, heavy load

Ι∗ = 3.25

(b) Uniform

Figure 5.6: Query radius evolution of users.

88 5. Extension To A Practical Context: ZigBee Based WSNs

found that the obtained query ranges are quite dispersed sometimes. However the
average is near to the optimal value, e.g. at certain time in a simulation run, the
query range calculated on two sensors could be (6, 5, 10) and (5, 10, 6) for 3 users,
both resulting an average of 7. However, this diversity is eliminated at the users by
always choosing the minimal, e.g. users have to choose 5, 5, 6 as their final results.
This problem becomes less obvious when the local solution gives users similar query
ranges. Finally, one may wonder why the approximation over-performs the optimal
in the MMF heavy load case. This is actually due to the linear increment used
to further explore the potential larger feasible query range. If the local solution
suggested by the congested sensors is already very near the optimal, the exploration
procedure may generate transient congestion state in the network. We leave these
problems for future works.

Finally, fairness index of the 4 users in the network is plotted for MNU and MMF.
Since MMF generally gives similar query range to the users, its f values are higher
than those of MNU under the same network situation. This could be examined by
comparing the f plots in Figure 5.6 vertically, justifying the optimization objective
of MMKP-MMF.

5.4 Summary

Mobile user network structure hence the resulted direct interaction between users
and sensors can be implemented on IEEE 802.15.4 and ZigBee standards in this
chapter. Algorithms for MMF and MNU, proposed in Chapter 4, have been adapted
to the ZigBee cluster tree in this chapter. By exploiting the ZigBee cluster tree
structure, the computation was done fully locally. Simulation results have shown
that: firstly, the new algorithms do well in congestion control with little overhead
and they are especially efficient in large networks with heavy queries; secondly,
MMKP-MMF algorithm works better than MMKP-MNU in approximating their
optimal solutions on the ZigBee cluster tree.

89

Chapter 6

The Problem Behind: Empirical
Study On The Hard MMKP
Instances

“ Nothing in life is to be feared. It is only to be understood. ”
– Marie Curie

We have formulated the discrete version of the query allocation problem for the
mobile-user wireless sensor networks with the multidimensional multiple choice knap-
sack problem in Chapter 4. An overview on the KP and MMKP problems has been
given in Section 2.3. Exact and heuristic algorithms for MMKP proposed in previous
works have been discussed in Section 2.3.1 and Section 2.3.2, respectively.

In this chapter, we focus on this hard combinatorial problem itself. We develop
our idea in this chapter with the following sections: A brief introduction is given
in Section 6.1, mainly to motivate the empirical study presented in this chapter.
Then we give a brief survey of existing benchmarking methods in Section 6.2. Then
in Section 6.3, we propose new methods to generate MMKP benchmark instances.
Section 6.4 is dedicated to evaluating the difficulty of these instances using the exist-
ing exact algorithm and solvers. Finally, we draw conclusion and propose important
future works in Section 6.5.

6.1 Introduction

Multidimensional Multiple choice Knapsack Problem (MMKP) is one of the most
complex members of the Knapsack Problem (KP) family. It could be stated as
follows: We are given m classes with each class i containing ni items. The jth item
of class i has profit pij. Each item has l dimensions of weight, and the weight at
dimension k is denoted as wijk. The knapsack has capacity ck on each dimension k.
The goal is to select one item in each class to maximize the sum of their profits and

90 6. Hard MMKP Instances

to keep the total weight on each dimension no more than the corresponding capacity.
Formally, MMKP could be expressed with an integer programming model:

(MMKP) maximize
m∑
i=1

ni∑
j=1

pijxij (6.1)

subject to
m∑
i=1

ni∑
j=1

wijkxij ≤ ck, k = 1, . . . , l (6.2)

ni∑
j=1

xij = 1, i = 1, . . . ,m (6.3)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ni (6.4)

where the binary variable xij indicates the jth item of class i is selected or not.
For clarity, we assume all classes have the same number of items in this study, i.e.
n1 = · · · = nm = n.

MMKP has many applications. It has been used to model the Quality of Service
(QoS) management problem in computer networks [LLRS99] and the admission
control problem in the adaptive multimedia systems [SIH05, Kha98, KLMA02].
Various other resource allocation problems can also be mapped directly to MMKP,
please refer to [KPP04, PHD05] and the references wherein.

Most academic efforts related with MMKP have been put on finding heuristic
algorithms due to the NP-hard nature of the problem [KLMA02, MJS97, HMS06,
ARK+06]. However, computing exact MMKP solutions can also be of interest when
the computation time constraint is not critical, e.g. exact solution is the most
valuable benchmark for the heuristic algorithms. More important, when the exact
algorithms can solve most problem instances quickly and only fall into exponential
time in rare cases, they can be applied to some practical problems. Thus, for any
exact algorithm, it is important to know how often it falls into the trap.

Great efforts have been taken in analyzing the structure of many KP family mem-
bers, e.g. simple KP, Bounded KP (BKP), Multiple KP (MKP), Multiple Choice
KP (MCKP), Multidimensional KP (MDKP) etc. Comprehensive discussions on
these problems could be found in [HMS75, KPP04]. It has been demonstrated that
all of them are highly structured. Exploiting their special structural properties usu-
ally leads to efficient algorithms that are able to solve certain category of problem
instances in reasonable time, although the problems are NP-hard. Moreover, it ap-
pears that some instances are particularly hard to solve not because of the size of
the problem (number of input variables or the magnitude of the variable values),
but because of the special combination of variable values, i.e. even a small problem
instance can require a long time to solve. Generally, the relationship between the
profits and weights of the items plays a very important role in the solution time of
certain problem instances. Besides, a very important observation has been made on
simple KP that the relationship between the capacity and the weight also has great
impact on the hardness of the instances [Pis99].

91

In contrast, little work has been done on MMKP in analyzing its structure. To
the best of our knowledge, besides many proposed algorithms, the only theoretical
analysis is presented in [DW98]. The authors show that the proportion of the
dominated variables can be estimated as a probability function of the number of
dimensions and the number of items in each class. The results could be used to
reduce the problem size during the pre-process stage. However, it is still unclear how
the parameters such as profit, weight and capacity interact in making the problem
difficult. Furthermore, almost all MMKP algorithms proposed in the literature are
evaluated against very limited problem instances which may belong to special easy
cases.

In this chapter, we study the relationship between various parameters of the
MMKP such as profit, weight and capacity in order to identify the key factors that
make a hard instance. Furthermore, uncorrelated, weakly correlated and strongly
correlated cases for items within each class, between classes and across multiple di-
mensions are investigated. To the best of our knowledge, no such work has been
reported in the current literature. A systematic method to generate comprehen-
sive MMKP test instances is proposed. Several groups of instances generated with
the proposed methods are evaluated with the exact algorithm and solvers. The ex-
periments show that many instances are several orders of magnitude harder than
traditionally used ones in terms of the computing time. These hard MMKP instances
usually have medium knapsack capacity and high correlation between weights and
profits. The experiments also suggest that instances with similar set of profits across
classes and with strong correlations between weights and profits are hard to solve.

Two exact algorithms are currently available for solving the MMKP, namely the
BBLP algorithm [Kha98, KLMA02] and the EMKP algorithm [Sbi07], which have
been discussed in Section 2.3.1. Besides, two integer programming solvers, ILOG
CPLEX [cpl] and GLPK [glp] exist. However, we have identified some fundamental
problems of the EMKP algorithm [Sbi07]. First of all, the EMKP algorithm employs
basically a sequential search strategy, i.e. the development of a certain node depends
on its previous brother nodes. This prevents pruning the infeasible nodes effectively
as some feasible nodes may have to be developed from them. Secondly, the EMKP
algorithm selects the best node to develop at each round, but the paper does not
state how the selection is made. A common way is to select the node with the
highest upper bound. However, for the infeasible nodes which are kept in the search
tree, there is no natural way to calculate an upper bound. Finally, the sequential
search strategy implicitly requires generating the brother node for every node who
has a brother. This is true even for the unpromising nodes whose upper bound
is below the lower bound. However, EMKP tries to reduce the search space by
pruning these unpromising nodes (line 17 of the algorithm in [Sbi07]). This will
break the searching process and the algorithm will not be able to find the optimal
solution which have to be reached through the pruned node. Even worse, the better
the quality of the lower bound is (approaching the optimal from below), the more
often the improper prune may happen. As a result, we will consider only the BBLP
algorithm and two generic MIP solvers GLPK and CPLEX in this study.

92 6. Hard MMKP Instances

6.2 Existing Methods to Generate Benchmark In-

stances

It is very important to test the algorithms with problem instances in order to know
their performance in practice. When algorithms are tackling a particular problem,
ideal instances for performance evaluation are those from traces of the real world.
However, as MMKPs usually originate from a diverse applicative background, typi-
cal instances from a certain domain may hardly be reasonable for another. Moreover,
there is no systematic report on real world MMKP problem instances in the litera-
ture. In contrast, test instances can be generated to cover a much wider range of in-
stance types. As a result, generated instances play an important role in benchmark-
ing the algorithms and have been used in most KP and MMKP related researches.
In the following, we first describe how the KP instances are usually generated, then
we give a brief review on the current method to generate the MMKP instances. The
latter is basically a straightforward extension of the former.

6.2.1 Generating KP instances

In order to generate a KP instance with certain number of items, the idea is to first
assign values to both profit and weight of each item, then to set the capacity of the
knapsack. Several groups of instances have been identified for KP considering the
correlation between the profits and weights [Pis05].

- uncorrelated instances. For this category, the profit of an item is independent
to its weight. A commonly used method is to select profits (pj) and weights
(wj) randomly in a certain interval, e.g. [1, R]. These instances are generally
easy to solve.

- weakly correlated instances. In weakly correlated instances, the profit of an
item is related with its weight, e.g. to select wj randomly in [1, R] and pj in
[wj −R/10, wj +R/10] while ensuring pj ≥ 1.

- strongly correlated instances. For these instances, the profit of an item is a
linear function of its weight plus a certain shift, e.g. to select wj randomly in
[1, R], but let pj = wj + R/10. This category of KP instances are generally
hard to solve.

- sub-set sum instances. For this category of instances, the profit of an item is
a linear function of its weight. As a result, only weight need to be considered
when packing the knapsack.

Instances with other types of correlation can be defined similarly [Pis05].

Finally, the capacity of the knapsack is set to a certain percentage of the sum
weight. However, this has been shown to be inadequate as it generates the easiest
KP instances under certain situations [Pis99]. Thus the idea consists of generating

93

a series of S test instances with the capacity c of the hth instance selected as:

c =
h

S + 1

n∑
j=1

wj. (6.5)

6.2.2 Generating MMKP instances

To generate an MMKP instance with a given number of classes, a given number of
items in each class and a given number of dimensions, the problem is to assign a
profit value to each item, a weight value to each item at each dimension, and finally,
a capacity value to each dimension of the knapsack. This can be done in various
ways.

In [KLMA02], weights of items are uniformly selected in the interval [0, R] in-
different to the dimensions or which class the item belongs to, where R denotes
the maximum resource consumption by an item. Let P denote the maximum cost
of unit resource, then the value R × P could be considered as the maximum cost
(weight) of an item. Then uncorrelated instances are generated with profits assigned
according to the item index in the class:

pij = U
(

0, l × R

2
× P

2

)
× j + 1

ni
. (6.6)

For correlated instances, the profit is a linear function of the sum weight:

pij =
l∑

k=1

Pkwijk × U
(

0, l × 3× R

10
× P

10

)
, (6.7)

where Pk = U(0, P) is a uniform random number between 0 and P .
Finally, the capacity of dimension k is set to half of the maximum possible

resource consumption:

ck =
1

2
×m×R. (6.8)

The same set of instances have been used in [Kha98, PHD05, ARK+06, CA06].
Instances generated with the same principle have been used in [HMS04, HMS06,
CH08]. These instances are available at the OR Benchmark Library [OR-].

In [Sbi07], test instances are generated as follows: pij and wij are randomly
selected in intervals [0, 150] and [0, 50], respectively. Capacities are set as:

ck =
1

2

m∑
i=1

(
wmin
ik + wmax

ik

)
, (6.9)

where

wmin
ik = min

1≤j≤n
{wijk}, (6.10)

wmax
ik = max

1≤j≤n
{wijk}. (6.11)

94 6. Hard MMKP Instances

In [AHHS05], domain related values are considered in the test instances. The
number of classes, items in each class and dimensions are set according to a typical
Video on Demand (VoD) system. The variable values are also set with respect to
the typical values of a VoD system. For example, the weight of each item is set to
the typical resource consumption of a session. The value is then scaled by a random
number chosen from the interval [0.75, 1.25] to mimic system dynamics. Similarly,
the capacities are set to typical available resources scaled by a random value chosen
from the interval [0.95, 1.05].

Although these instances have been widely used in the literature, our computa-
tional results show that they are insufficient in demonstrating the performance of
the algorithms. Table 6.1 presents the time used to solve the first few instances in
the OR benchmark library with CPLEX, GLPK and the BBLP algorithm. Here we
emphasize on the relative solution time across the instances. Notably, instances I3
and I4 take much more time than I5 and I6, despite they are smaller than the latter.
This actually implies that not only the size of the instance, but also the structure
play very important role in the solution time.

Table 6.1: Solution time (second) of OR benchmark library instances I1 to I6.

Inst m n l CPLEX GLPK BBLP
I1 5 5 5 0.005 0.028 0.016
I2 10 5 5 0.006 0.029 0.033
I3 15 10 10 1.983 16.036 67.260
I4 20 10 10 31.045 1383.251 1532.059
I5 25 10 10 0.018 0.046 0.660
I6 30 10 10 0.204 0.190 2.369

6.3 New Methods to Generate MMKP Problem

Instances

Experiences from KP suggest that the correlation between profits and weights is
critical to the hardness of an instance. Extending this idea to MMKP, we need to
handle the correlation between the profits and multiple dimensions of weights. One
direct way is to select the profit for each item then select the weights according to
the profits. Given the number of classes (m), the number of items in each class (n,
assuming all classes have the same number of items), and the number of dimensions
(l), the MMKP is denoted as P (m,n, l). We will also refer to a mapping from a
class of n items to n values informally as a generating function.

6.3.1 Generating the Profits

In order to select the profits for items in each class i, we first bound the profits
with two parameters pmin

i and pmax
i and select profit values within the interval. This

could be done in various ways and here we define some generating functions for the
profits.

95

Uniform Generating Function Uniform random profits are natural in many
real world problems and are widely used in the literature. In uniform generating
function, we draw profit uniformly and randomly within the interval. We denote
the uniform generating function as:

pij = U
(
pmin
i , pmax

i

)
. (6.12)

Linear Generating Function Items with linear profits are less studied in the
literature. However, this kind of profit value assignment is actually quite common.
For example in the QoS adaption problem [AHHS05], the QoS levels are usually
mapped to the profit of items and their values are often consecutive integers. Also
in the multi-hop query allocation problem [HLS09], the query range is mapped to the
profit and is measured in hop numbers which take also consecutive integer values.

In the linear generating function, we assign pij with a linear function of the item
index j, i.e.

pij =
j − 1

ni − 1

(
pmax
i − pmin

i

)
+ pmin

i . (6.13)

For clarity, we use a short hand notation for this linear generating function as follows:

pij = L
(
pmin
i , pmax

i

)
. (6.14)

Applying the Profit Generating Functions The generating functions should
be applied on each single class to generate the profits. Obviously, one can apply the
same function to all classes or change the functions for each class. For the uniform
generating function, even when it is applied to all classes with the same parameters,
the random nature of the function will give different values for profits in different
classes. On the contrary, when the linear generating function is applied to all classes
with the same parameters, all classes will have the same profit vector for their items.
Therefore, besides applying the same generating function to all classes, we further
propose two ways to use the generating functions. The first one is to reproduce the
random profit vector generated by a uniform generating function on all classes. This
is typically the case when several users (classes) can access the same set of objects
(items) with varying quality of service (profits) but the cost of accessing them differs
(weights). We explicitly denote the profits generated via this way as:

pij = R
(
U
(
pmin

1 , pmax
1

))
. (6.15)

Here, R signifies Reproducing the first generated profit vector for other classes.
The second way to apply the generating functions is to take into account the class
index i when deciding the interval from which the values are taken for each class,
e.g. U(10(i − 1), 10i) or L(10(i − 1), 10i). When the uniform generating function
is applied this way, the resulted profits in each class is still randomly selected but
profits of different classes are dispersed into different intervals. While the linear
generating function is applied, the profits are linearly assigned in different intervals.
We denote this special application of generating functions as:

pij = C(F), (6.16)

96 6. Hard MMKP Instances

where F is a generating function with different parameters for different classes and
C signifies that the generating function is Class-dependent.

6.3.2 Generating the Weights

To generate the weights, we can apply a certain correlation on the generating func-
tion for each dimension. In particular, we define the following generating functions.

Uncorrelated Generating Function In uncorrelated generating function, we
simply assign weights with values uniformly and randomly selected within a certain
interval:

wijk = U
(
wmin
ik , wmax

ik

)
. (6.17)

Weakly Correlated Generating Function This generating function is moti-
vated by previous results on KP instances [Pis05]. The motivation is to slightly
associate profits to weights, but still with a degree of freedom for each dimension.
In our proposal, weights are assigned according to:

wijk = U
(

max

(
0, pij −

pmax
i

δ

)
, pij +

pmax
i

δ

)
. (6.18)

We will use the following shorthand notation:

wijk =W(δ). (6.19)

Strongly Correlated Generating Function Strongly correlated generating func-
tion is also motivated by previous results where the correlation between profits and
weights is strong:

wijk = pij +
pmax
i

δ
. (6.20)

We use the following short hand notation for this function:

wijk = S(δ). (6.21)

Inversed Strongly Correlated Generating Function For inversed strongly
correlated generating function, weights are assigned according to:

wijk = pmax
i − pij

δ
, (6.22)

and will be referred to as:
wijk = I(δ). (6.23)

Note that the inversed strongly correlated generating function is not interesting
to be used alone. Interesting cases occur when both strongly correlation and in-
versed strongly correlation coexist on different weight dimensions. Intuitively, these
instances are hard to solve because careful trade-off between weights across dimen-
sions has to be made. Although we are not aware of any realistic MMKP problems
of this type, they are still interesting from a theoretical point of view.

97

Applying the Weight Generating Functions Similar to the profit generating
functions, one could apply the same generating function with the same parameter to
all dimensions. But it is also possible to apply the same function with different pa-
rameters or even different generating functions for dimensions. In addition to simply
applying the same generating function with the same parameters on all dimensions,
here we propose two ways to apply the weight generating functions. The first one is
to include the dimension index k as a parameter of the generating function so that
the weight for a dimension k can be chosen in a range that depends on k for the
uniform generating function, or the parameter δ can be a function of k for weakly,
strongly and inversed strongly correlated generating functions. It is convenient to
use a shorthand as follows:

wijk = D(F), (6.24)

where F can be, for example, U(1, 10k) for the uniform generating function, or
W(k+5) and S(k+5) for weakly correlated and strongly correlated generating func-
tions, respectively. Here, D signifies that the generating functions are Dimension-
dependent. We could also apply different generating functions to different dimen-
sions, for example, we will generate instances with the inversed strongly correlated
generating functions on some dimensions and strongly correlated generating function
on others. Under this case, we denote:

wijk = D(F1F2 . . .), (6.25)

where F1, F2, . . . are the generating functions in used.

6.3.3 Generating the Knapsack Capacities

Finally, knapsack capacities are generated by extending (6.5) to multiple classes and
multiple dimensions. We generate a series of the S instances and the capacity of
the kth dimension of the hth generated instance (h = 1, 2, . . . , S), denoted as chk, is
dispersed from the minimum possible weight to the maximum possible weight:

chk =
h

S + 1

(
m∑
i=1

wmax
ik −

m∑
i=1

wmin
ik

)
+

m∑
i=1

wmin
ik . (6.26)

The parameter h will also be referred to as the capacity level of the instance in the
series. Note that all the S instances do not need to have the same items (profit
and weight assignment). However, in order to investigate the impact of the capacity
level on the solution time, we let all S instances in the same series have the same
profit and weight values. As a result, instances in a series differ from each other
only by their capacities.

6.3.4 Summary of Instance Notations

We denote G-x-y a group of instances. The parameter x indicates the gener-
ating function that is chosen to allocate the profits, so x should be picked in

98 6. Hard MMKP Instances

{U ,L,R, C(U), C(L)}. In the same idea, the parameter y indicates how the weights
are computed. The set of generating functions considered in this chapter is

{U ,W ,S,D(U),D(W),D(S),D(SU),D(SI),D(SUI)}.

And for the group names, we use the corresponding normal fonts instead of the
calligraphic fonts used for the generating functions. For example G-U-W stands for
the group of instances with profits generated with the uniform generating function
U and weights generated with the weakly generating function W . Among all com-
binations, we focus on the instances that either exhibit an interesting behavior, or
appear to be standard families of instances. This subset of instance families are de-
tailed in Table 6.2. Note in particular that we create two groups of instances using
the I generating function for some dimensions. These two combinations have been
chosen because, as we will show later, they exhibit especially interesting hardness
nature. Other combinations are obviously possible and hard instances other than
those discussed in this study must exist. Discover more such instances could be an
interesting future work.

Table 6.2: Generating Functions for Instances P (10, 5, 5)

Group Profits (pij) Weights (wijk)
Uncorr. Weakly Corr. Strongly Corr.

G-U-∗ U(1, 50) U(1, 10) W(10) S(10)G-L-∗ L(1, 50)
G-U-D(∗) U(1, 50) U(1, 10k) W(k + 5) S(k + 5)G-L-D(∗) L(1, 50)
G-C(U)-∗ U(10(i− 1), 10i) U(1, 10) W(10) S(10)G-C(L)-∗ L(10(i− 1), 10i)

G-C(U)-D(∗) U(10(i− 1), 10i) U(1, 10k) W(k + 5) S(k + 5)G-C(L)-D(∗) L(10(i− 1), 10i)
G-R-∗ R(U(1, 50)) U(1, 10) W(10) S(10)

G-R-D(SU) R(U(1, 50)) S(10),∀k = 1; U(1, 10),∀k ∈ {2, 3, 4, 5}
G-R-D(SI) R(U(1, 50)) S(10),∀k ∈ {1, 2}; I(10),∀k ∈ {3, 4, 5}
G-L-D(SU) L(1, 50) S(10),∀k = 1; U(1, 10),∀k ∈ {2, 3, 4, 5}
G-L-D(SI) L(1, 50) S(10),∀k ∈ {1, 2}; I(10),∀k ∈ {3, 4, 5}

G-L-D(SUI) L(1, 50) S(10),∀k ∈ {1, 2}; U(1, 10), k = 3; I(10),∀k ∈ {4, 5}

6.4 Experiment Study

6.4.1 Experiment Setup

We implemented the BBLP algorithm with C++ programming language and built
the binary with GNU g++ version 4.3.0. For the standard solvers, we employed the
ILOG CPLEX version 11.2.0 1 and GNU GLPK version 4.31. For both solvers, we
keep the default parameters related with the algorithms.

1The CPLEX is licensed to “AMPL Student Edition”, which is able to solve problems with up
to 300 variables and this is enough for our example problems.

99

All experiments have been carried out on the same computation platform, which
is a Fedora 7 running on an IBM Thinkpad with an Intel Pentium M processor at
1.86GHz and with 1GB memory and 1GB swap space on the hard disk.

We generate the instances described in Table 6.2 with the proposed method,
then we challenge the algorithms with these instances. In particular, we generate
instances for P (10, 5, 5), which are of the same size as I2 from the OR benchmark
library. We have similar results for P (5, 5, 5) and P (15, 10, 10) which correspond
to I1 and I3, respectively. However, the former is so easy that the differences are
too small, while for the latter, most instances we generated can not be solved in
reasonable time. Therefor, only results for P (10, 5, 5) are presented in this chap-
ter. Since both the number of input variables and the values that the variables
take have impact on the solution time of an instance, we select the variable values
within the same range as I2 so the effects of different variable values are mini-
mized. Notice also that some of the generating functions previously defined have
random factors. For groups using these generating functions, we generate 20 se-
ries for each group to account for the random effects. For the groups that contain
only the deterministic generating functions, e.g. linear profits with strongly cor-
related weights, the parameters of the generating functions determine the unique-
ness of the instance, so only one series is evaluated. For each series, we generate
100 instances, i.e. S = 100. The instance generating program, the configuration
files, the generated instances, their solutions and the solution time are available at
http://enstb.org/~gsimon/Resources/MMKP/.

Some generated instances may be infeasible while others may be too hard to be
solved to optimal in reasonable time. For the latter case, the execution time of the
algorithm is limited to 600 seconds 2. As a result, the solution time that will be
presented in the following part of this section could be the time for either obtaining
the optimal solution, or asserting infeasibility, or the time used when the algorithm
is aborted.

6.4.2 Average Solution Time

We first give an overview of the solution time of the generated instances to highlight
the existence of hard instances. In Table 6.3, both average and solution times
are presented where the average is taken across capacity levels and across multiple
series, and the maximum is taken from the average values across multiple series.
Comparing with the solution time of I2 presented in Table 6.1, we find that certain
groups of instances such as G-L-W, G-L-S, G-L-D(W) and G-L-D(S), etc. are much
harder.

We can roughly classify these instances into three categories as indicated in
the three separated parts in Table 6.3. From top to bottom, results for instances
generated with uncorrelated, weakly correlated and strongly correlated generating

2We implemented a timing mechanism in the BBLP algorithm. For CPLEX and GLPK, one can
specify a time limit by feed the program with a command line parameter. However, the CPLEX
and our BBLP implementation use the CPU time while the GLPK uses real time, thus the machine
is dedicated to the simulations and the difference is minimized.

http://enstb.org/~gsimon/Resources/MMKP/

100 6. Hard MMKP Instances

functions are listed and a clear trend of increasing solution time could be observed.
We conclude that high correlation between weights and profits generally makes

an instance harder. If the profits are chosen according to the linear generating
function, instances with weakly and strongly correlated weights become very hard
even for the advanced solvers such as CPLEX and GLPK.

Table 6.3: Solution Time (second) of Instances.

Group CPLEX GLPK BBLP
Avg. Max. Avg. Max. Avg. Max.

G-U-U 0.0051 0.0400 0.0124 0.0770 0.0168 0.2180
G-U-D(U) 0.0068 0.1190 0.0148 0.1820 0.0220 0.5179
G-C(U)-U 0.0047 0.0380 0.0130 0.0810 0.0180 0.3090
G-C(L)-U 0.0046 0.0430 0.0124 0.1470 0.0173 0.3210

G-C(U)-D(U) 0.0053 0.0580 0.0141 0.1140 0.0251 0.2690
G-C(L)-D(U) 0.0058 0.0700 0.0139 0.1040 0.0213 0.2620

G-R-U 0.0052 0.0410 0.0126 0.1130 0.0157 0.1930
G-L-U 0.0056 0.0500 0.0134 0.1020 0.0194 0.3350

G-L-D(U) 0.0070 0.0670 0.0143 0.1700 0.0241 0.6559
G-U-W 0.0243 0.2510 0.0789 0.5049 0.2277 1.6068

G-U-D(W) 0.0282 0.1940 0.0788 0.7339 0.2382 2.4456
G-C(U)-W 0.0105 0.0310 0.0269 0.1560 0.3069 4.6063

G-C(U)-D(W) 0.0101 0.0390 0.0242 0.1840 0.2420 2.6426
G-C(L)-W 0.0121 0.0460 0.0310 0.2150 0.3371 4.8203

G-C(L)-D(W) 0.0118 0.0420 0.0304 0.2270 0.3295 4.7473
G-R-W 0.0437 0.7389 0.1239 1.3708 0.2940 6.9169
G-L-W 0.6814 23.6984 20.5166 598.0341 3.8108 61.2037

G-L-D(W) 0.3460 10.9843 4.2153 587.2337 2.0304 35.4606
G-U-S 0.0051 0.0360 0.0203 0.1130 1.5901 63.4574

G-U-D(S) 0.0094 0.0710 0.0268 0.1470 0.9968 31.5992
G-C(U)-S 0.0025 0.0100 0.0112 0.0350 2.4810 49.7544

G-C(U)-D(S) 0.0042 0.0130 0.0130 0.0810 1.1158 84.2942
G-R-S 0.0252 0.2810 1.1301 51.5342 56.0733 184.0700

G-R-D(SU) 0.0086 0.1770 0.0418 0.8419 35.0805 161.3765
G-R-D(SI) 0.0036 0.0220 0.3080 29.4125 45.3696 169.8772

G-L-S 0.0963 0.6049 227.6951 600.0000 44.0825 186.1967
G-L-D(S) 0.0386 0.7069 300.3657 598.0401 50.9872 186.3017

G-L-D(SU) 7.1919 117.7880 113.2350 594.3146 13.5551 101.1256
G-L-D(SI) 0.0503 0.6669 80.9059 555.7105 14.1198 152.3548

G-L-D(SUI) 9.4867 235.9370 79.9511 592.1970 12.6077 137.0432
G-C(L)-S 35.7737 384.3760 154.1470 597.6111 68.4683 209.6621

G-C(L)-D(S) 25.6856 422.6000 158.5421 598.0471 60.3072 209.4772

6.4.3 Capacity Level and Solution Time

Now we show the relationship between capacity level and solution time of the in-
stances. Figure 6.1 presents the solution time of G-U-∗ instances according to the
capacity level. We can observe that for uncorrelated cases, instances with lower
capacity levels are generally very easy while hardest instances emerge at capacity
levels between 40 and 50. The easiest uncorrelated instances with lower capacity

101

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 6.1: Solution times of G-U-∗ instances.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 6.2: Solution times of G-L-∗ instances

level are due to their infeasibility while those with highest capacity level are triv-
ial. While on the other hand, for weakly and strongly correlated cases shown in the
middle and right most plots in Figure 6.1, respectively, the hardest instances usually
appear at the center of the capacity level. Similar observations could be made from
the G-L-∗ cases in Figure 6.2. However, when the linear generating function is used,
the weakly and strongly correlated instances become harder.

Figure 6.2 demonstrates also high variability of relative hardness within one se-
ries. This is especially obvious for the G-L-W/S instances. Some non-trivial strongly
correlated instance could be extremely easy for CPLEX, GLPK and sometimes also
for BBLP. The very special combination of capacity level, profit and weight admits
very efficient branch-and-bound operation. Furthermore, thanks to the special mech-
anisms employed by GLPK and CPLEX, these instances can be solved even faster.
These mechanisms consist of pre-process that may possibly reduce the number of
variables, various branching heuristics and various cutting algorithms. By applying
the default parameters of CPLEX and GLPK, these advanced algorithms are en-
abled and both solvers apply them dynamically during the search process. However,
it is quite surprising that BBLP is generally faster than GLPK on strongly corre-
lated instances, and it even achieves similar performance as CPLEX does on weakly
correlated instances. Both imply that the additional efforts taken by CPLEX or

102 6. Hard MMKP Instances

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 6.3: Solution times of G-R-∗ instances.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Capacity Level

G-R-D(SU)

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-R-D(SI)

Figure 6.4: Solution times of G-R-D(∗) instances.

GLPK do not help much in solving these instances.
The positions of hard instances are hard to predict when certain correlations

exist. Notably, the G-U-W/S, G-L-W/S and G-R-W/S (shown in Figure 6.3) gen-
erally have similar properties that the hardest instances appear at 50% capacity
and the advanced algorithms could solve certain instances very quickly. However
experiments on G-R-D(SI) and G-L-D(∗) (in Figure 6.4 and Figure 6.5, respectively)
show different properties. For example, the inversed strongly correlated dimension
gives a clear cut on the feasible instances, making the hardest ones appear at a
shifted position. The hardest instances of G-R-D(SU) and G-L-D(SU) appear also
at positions shifted to the higher capacity levels, as shown in the left most figures
of Figure 6.4 and Figure 6.5. Therefore, a rule of thumb is to use the whole series
to benchmark the algorithms, instead of with only a few samples.

6.4.4 Non-trivial Infeasible Instances

The instances may be infeasible and they appear often in uncorrelated cases. As
we show in Figure 6.6, if an instance is infeasible, it is generally easy for all the
three algorithms to detect this fact, partially due to the fact that the LP relaxation
for these instances are also infeasible. However, there exist infeasible instances that

103

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

G-L-D(SU)

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-L-D(SI)

 0 10 20 30 40 50 60 70 80 90 100

G-L-D(SUI)

Figure 6.5: Solution time of G-L-D(∗) instances.

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

d)

BBLP

 0 5 10 15 20 25 30 35

Constraint Level

GLPK

 0 5 10 15 20 25 30 35

CPLEX

Uncorrelated
Weakly correlated

Strongly correlated
I2

Figure 6.6: Nontrivial infeasible instances, G-C(U)-D(∗) as an example.

are non-trivial to detect. The same observation has also been claimed in [KPP04].
These hard infeasible instances usually appear at intermediate capacity levels at
which both infeasible and feasible instances exist.

6.4.5 The Critical Dimension

In Figure 6.8(a), we could see that the solution time increases linearly with the
number of dimensions for the considered P (10, 5, ∗) G-L-U instances. However, if
the dimensions have mixed correlation properties, the impact of strongly correlation
dimension may be dominant. Actually, one strongly correlated weight dimension is
enough to make the instance hard. On one hand, results for the G-L-∗ instances
with a single dimension are presented in Figure 6.7, which are very similar to their
multi-dimension counterparts presented in Figure 6.2, suggesting that instances with
a single strongly correlated dimension is already hard. On the other hand, in Fig-

104 6. Hard MMKP Instances

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

G-L-U

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-L-W

 0 10 20 30 40 50 60 70 80 90 100

G-L-S

Figure 6.7: Solution times of single dimensional G-L-∗ instances.

ure 6.8(b), solution time of instances with a single strongly correlated dimension and
several uncorrelated dimensions are presented. We find that the solution time gener-
ally decreases when more uncorrelated dimensions are added and finally, when there
exist many uncorrelated dimensions, the effects of a strongly correlated dimension
may be diminished.

6.5 Conclusion

We have proposed systematic methods to generate more comprehensive MMKP in-
stances for benchmarking the algorithms. Several categories of MMKP instances
have been produced to demonstrate that some MMKP instances are hard. Experi-
ments on these hard instances with present exact algorithm and solvers also revealed
some special structure of the problem. Briefly, the instance is hard to solve when all
classes contain the same profit vector and the weights are correlated with the profits.
Besides, one strongly correlated dimension of weight is able to render the resulted
instances hard to solve. Finally, certain categories of instances are very hard for all
considered algorithm and solvers: BBLP, GLPK and CPLEX, even many advanced
branching and cutting algorithms are employed by the two generic solvers. Special
structural properties of these instances deserve further investigation.

105

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

d)

Number of Dimensions

BBLP
GLPK

CPLEX

(a) G-L-U instances

 0
 100
 200
 300
 400
 500
 600

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

d)

Number of Dimensions

BBLP
GLPK

CPLEX

(b) G-L-D(SU) instances, with a single strongly correlated dimension.

Figure 6.8: Solution Time vs. Number of Dimensions for P (10, 5, ∗) instances.

106 6. Hard MMKP Instances

107

Chapter 7

Epilogue

“ The golden age is before us, not behind us. ”
– William Shakespeare

Wireless sensor networks are becoming a reality. Large scale deployment that pro-
vides real-time in-site information to mobile users could be envisioned in the near
future. Direct access of mobile users to the sensor nodes simplifies the overall net-
work architecture and is able to keep the traffic local, which is critical for a scalable
network. Fairness and efficiency should be simultaneously considered when opti-
mizing the operation of such networks. While most current literature studies these
issues with emphasis on the sensor nodes from a networking point of view, our vi-
sion is that the fairness of users is especially important when the users are clients
of a service providing network. Following this vision, we study the fairness issues in
wireless sensor network from a user’s point of view.

7.1 Conclusion

We have identified and studied the fair query allocation problem for the multi-user
wireless sensor networks. Several related issues, i.e. the capacity of general wireless
ad-hoc networks and wireless sensor networks, the medium access and networking
layer standards for wireless sensor networks, the multidimensional multiple choice
knapsack problem and its algorithms and the fairness definitions are briefly surveyed.
This part of survey study has provided us a sound knowledge based on which the
following aspects of the multi-user query allocation problem have been studied.

(i) Max-min fair query allocation problem in a WSN with densely deployed sensor
nodes is defined and discussed. The analysis is based on a disc-shaped continuous-
diameter query model and a stream based traffic model. Under these assumptions,
the query region of a user is limited by the bandwidth of both the sensors and
the users. Thus, user have to cooperate with the sensors in order to achieve the

108 7. Epilogue

desired results. Explicit expression of max-min fair query radius under two-user
case is derived and the problem under multi-user case is solved with a distributed
heuristic. Extensive simulations show the effectiveness of the proposed algorithms
and reveal some interesting new problems as well.

(ii) Fair query allocation among the users is also studied with a hop based query
model. Under this case, the discrete value of the query radius no longer promises the
existence of the max-min fair solution, thus lexicographical max-min fairness has to
be exploited instead. We also found it is convenient to model the lexicographical
max-min fairness problem as a Multi-dimensional Multiple choice Knapsack Prob-
lem. Furthermore, the traditional optimization objective, which maximizes the sum
utility of all items in the knapsack, could also be used to maximize the overall query
range of users in our case. Based on these observations, we propose a unified frame-
work for the problem description. This framework, firstly, is able to formulate dif-
ferent optimization problems originated in multi-user WSNs; and secondly, implies
simple implementation of a uniformed algorithm solving both problems. Extensive
simulations have been carried out to evaluate the performance of the algorithms.
Different properties between the two optimization objectives are discussed.

(iii) In order for the study above being practically meaningful, we investigate the
feasibility of reformulating the problem and implementing the proposed solutions in
a IEEE 802.15.4/ZigBee based wireless sensor network. The ZigBee cluster tree
mode is considered because of its energy efficiency. Besides, the cluster tree and
the related addressing and routing mechanisms allow a fully localized computation
when solving the query allocation problem. The proposed distributed algorithms
are shown to be effective in approaching the optimal solutions and in controlling the
congestion.

(iv) The multidimensional multiple choice knapsack problem has be used to
formulate the query allocation problem for a multi-user wireless sensor network
with hop-based queries. Many experiments have shown bizarre properties of the
MMKP instances, i.e. the time used in solving the instances may vary greatly
such that smaller instances takes much longer time than larger instances. In the
last part of this thesis, we investigated this issue by experiments. A systematic
method for generating MMKP instances is proposed and several groups of instances
which represent a variety of correlation types between the problem parameters are
generated. These instances are tested with the existing BBLP algorithm as well
as two optimization software tools, namely the GLPK and CPLEX. The results
show that linear profits and high correlation between weights and profits make the
instances specially hard to solve for all the three algorithm/solvers, even though
some advanced integer programming mechanisms are integrated in the two solvers.

7.2 Limitations and Perspectives

The whole study is based on the vision that large scale wireless sensor network is
to be deployed to provide real-time in-site services to multiple mobile users who are
able to access the sensor nodes directly. Besides the fairness issues studied in this

109

thesis, there are several other debatable issues considering this very special network
architecture.

Applicability The first question is whether or not the so-called mobile user WSN
will be proven useful and indeed get deployed. From current application deployment
experiences, many WSNs are of a very limited size with respect to the number of
nodes (e.g. a dozen of nodes) and the geographical area they are covering (hundreds
of square meters). From a technical point of view, the major difficulty for large
WSNs are connectivity and scalability. While many researchers are busy solving
such problems, other are questioning the needs for a large continuously connected
network. They argue that many independent small wireless sensor networks together
will be sufficient in providing pervasive services to users. With this debate in mind,
we find that the mobile user WSN may satisfy both sides. On one hand, it could
scale to large number of nodes covering vast geographical area, while on the other
hand, it does not need to be fully connected as the mobile users are always able to
retrieve data from sensor nodes which are sufficiently near. As a result, we have a
strong feeling that the mobile user WSN at least provides a promising way to future
pervasive sensing applications.

Networking or Service? Another interesting issue is should we separate or in-
tegrate the networking issues with the service issues? Traditionally, the WSNs are
responsible for gathering the raw data (probably with limited in-network process-
ing), while the data are provided to the users via a back-end server. As a result,
most researches study the networking aspect without considering the users. We have
studied the user aspect with networking limitations as constraints, thus effectively
mixed both issues into one problem formulation. While the proposed mobile user
WSN architecture is novel and feasible for applications where the significance of the
gathered data has strong spacial-temporal dependence, i.e. data is meaningful for
a short period of time and highly related to where the data is from and they do not
need to be stored in general, it is infeasible for scenarios where the data should be
saved for any reason. For the latter case, nevertheless, it is possible to support the
mobile users with the traditional sink based architecture.

Multicast and In-network Processing Our problem formulation and the pro-
posed algorithms work with either shortest path routing or cluster tree hierarchical
routing and we consider only unicast routing without in-network processing. In re-
ality, many routing or data gathering protocols exist and some have in-built data
aggregation mechanisms to reduce the data traffic. For routing protocols that multi-
cast same copy of data to multiple destinations, or routing protocols with in-network
aggregation, our model is no longer valid. As a result, new traffic model is needed
under such situations which could be an interesting direction for the future works.

Variable Bandwidth We have based our study on a theoretical capacity results
of wireless sensor networks, which have its own limitations. Notably, the results are

110 7. Epilogue

scaling laws obtained as an asymptotic value when the number of sensors in a fixed
area goes to infinity. In reality, the effective bandwidth between each pair of sender
and receiver depends on many factors, e.g. the modulation scheme, the transmission
power, the transmission state of nearby pairs, the medium access mechanism in
use, etc. The current problem formulation with a constant shared bandwidth as
constraints is not able to reflect these factors. While complex model is required
to handle more details, the current solutions could be extended without too much
effort. The measurement based approach proposed in this thesis is able to adapt to
the dynamics in the bandwidth. To investigate the performance of query allocation
algorithms under dynamic bandwidth situation is another perspective on which the
current work could be extended.

Mobility Although we have emphasized very much on the mobile users, we have
not tackled the issues posed by the mobility in this thesis, i.e. all the models,
analysis, algorithms are based on static sensors and users. This prevents a direct
application of the proposed mechanisms to a real scenarios. In order for this study
to be more practically significant, we shall extend our proposals to a mobile user
environment, which may not be trivial especially when the convergence of the dis-
tributed algorithms has to be enforced.

Security Let mobile users access the sensor nodes directly may raise security
issues. Obviously, certain service contract has to be enforced between the users and
the network operator. Simple authentication protected by lightweight encryption
mechanisms should be implemented on both the sensors and the users.

Why MMKP is Hard? Finally, considering the MMKP problem itself, the em-
pirical study presented in this thesis is only a first step towards understanding its
structural properties. We have shown that linear profits and strong correlation be-
tween profits and weights make a hard MMKP, however, more investigation is needed
to answer why. While the BBLP exact algorithm and the GLPK and CPLEX solvers
are used to show these hard instances, further testing these instances with existing
heuristics may provide more hints to the question mentioned above. Although some
experiences have already shown that certain heuristics are sometimes very efficient
in solving the hard instances with special properties, this topic may deserve in-depth
study.

111

Bibliography

[80206] IEEE 802.15.4 standard, September 2006.

[AB06] Bassam Aoun and Raouf Boutaba. Max-min fair capacity of wireless
mesh networks. In IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS), 2006.

[AHHS05] S. Alam, M. Hasan, M. Hossain, and A.S.M. Sohail. Heuristic solution
of mmkp in different distributed admission control and qos adaptation
architectures for video on demand service. Broadband Networks, 2005
2nd International Conference on, pages 896–903 Vol. 2, Oct. 2005.

[AMSK01] M. Mostofa Akbar, Eric G. Manning, Gholamali C. Shoja, and Shaha-
dat Khan. Heuristic solutions for the multiple-choice multi-dimension
knapsack problem. In ICCS ’01: Proceedings of the International Con-
ference on Computational Science-Part II, pages 659–668, London,
UK, 2001. Springer-Verlag.

[ARK+06] Md. Mostofa Akbar, M. Sohel Rahman, M. Kaykobad, E. G. Man-
ning, and G. C. Shoja. Solving the multidimensional multiple-choice
knapsack problem by constructing convex hulls. Comput. Oper. Res.,
33(5):1259–1273, 2006.

[AS01] Mani B. Strivastava Andreas Savvides, Chih-Chieh Han. Dynamic
fine-grained localization in ad-hoc networks of sensors. In ACM Mo-
bicom, 2001.

[BBB04] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: sen-
sor networks in agricultural production. Pervasive Computing, IEEE,
3(1):38–45, Jan.-March 2004.

[Bou06] J.-Y. Le Boudec. Rate adaptation, congestion control and fairness: a
tutorial. In Technical report., 2006.

[CA06] Maria Chantzara and Miltiades E. Anagnostou. Mvrc heuristic for
solving the multi-choice multi-constraint knapsack problem. In In-
ternational Conference on Computational Science (1), pages 579–587,
2006.

112 BIBLIOGRAPHY

[CES04] David Culler, Deborah Estrin, and Mani Srivastava. Overview of sen-
sor networks. IEEE Computer, 37(8):41–49, 2004.

[CFX07] Shigang Chen, Yuguang Fang, and Ye Xia. Lexicographic maxmin
fairness for data collection in wireless sensor networks. IEEE Trans.
on Mobile Computing, 6(7):762–776, 2007.

[CH08] N. Cherfi and M. Hifi. A column generation method for the multiple-
choice multi-dimensional knapsack problem. Comput. Optim. App.
online first, Springer Netherlands, 2008.

[CK07] Jie Chen and Xenofon Koutsoukos. Survey on coverage problems in
wireless ad hoc sensor networks. In the IEEE SouthEastCon Conf.,
March 2007.

[CM06] Canfeng Chen and Jian Ma. Mobile enabled large scale wireless sensor
networks. In International Conference on Advanced Communication
Technology (ICACT), 2006.

[cpl] http://www.ilog.com/products/cplex/.

[CW04] Mihaela Cardei and Jie Wu. Handbook of Sensor Networks. CRC
Press, Boca Raton, FL, USA, 2004.

[DW98] M. E. Dyer and J. Walker. Dominance in multi-dimensional multiple-
choice knapsack problems. Asia-Pacific Journal of Operational Re-
search, 15(2):159–168, 1998.

[EB04] Cheng Tien Ee and Ruzena Bajcsy. Congestion control and fairness for
many-to-one routing in sensor networks. In SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked sensor
systems, pages 148–161, New York, NY, USA, 2004. ACM.

[GG61] P. C. Gilmore and R. E. Gomory. A linear programming approach to
the cutting-stock problem. Operations Research, 9(6):849–859, 1961.

[GG63] P. C. Gilmore and R. E. Gomory. A linear programming approach to
the cutting stock problem-part ii. Operations Research, 11(6):863–888,
1963.

[GK00] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, 2000.

[GK04] Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks:
Single-path routing vs. multi-path routing. In IEEE INFOCOM, 2004.

[glp] http://www.gnu.org/software/glpk/.

http://www.ilog.com/products/cplex/
http://www.gnu.org/software/glpk/

113

[HB01] Xiao Long Huang and Brahim Bensaou. On max-min fairness and
scheduling in wireless ad-hoc networks: analytical framework and im-
plementation. In ACM MobiHoc, 2001.

[Hir08] Chaitr S. Hiremath. New Heuristic And Metaheuristic Approaches
Applied To The Multiple-choice Multidimensional Knapsack Problem.
PhD thesis, School of Graduate Studies, Wright State University, 2008.

[HJB04] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating conges-
tion in wireless sensor networks. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems,
pages 134–147, New York, NY, USA, 2004. ACM.

[HLS09] Bing Han, J. Leblet, and G. Simon. Query range problem in wireless
sensor networks. Communications Letters, IEEE, 13(1):55–57, Jan-
uary 2009.

[HMS75] Cornelis A. De Kluyver Harvey M. Salkin. The knapsack problem: A
survey. Naval Research Logistics Quarterly, 22(1):127–144, 1975.

[HMS04] M. Hifi, M. Michrafy, and A. Sbihi. Heuristic algorithms for the
multiple-choice multi-dimensional knapsack problem. J Operat Res
Soc, 55(12):1323–1332, 2004.

[HMS06] M. Hifi, M. Michrafy, and A. Sbihi. A reactive local search-based al-
gorithm for the multiple-choice multi-dimensional knapsack problem.
Computational Optimization and Applications, 33(2-3):271–285, 2006.

[HS07] Bing Han and Gwendal Simon. Fair capacity sharing among multiple
sinks in wireless sensor networks. In the IEEE MASS Conf., pages
1–9, Oct. 2007.

[JCH98] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
DEC Research Report TR-301, 1998.

[Kel97] Frank Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[Kha98] Shahadat Khan. Quality Adaptation in a Multisession Multimedia
System: Model, Algorithms and Architecture. PhD thesis, University
of Victoria, 1998.

[KLMA02] Shahadat Khan, Kin F. Li, Eric G. Manning, and Md. Mostofa Akbar.
Solving the knapsack problem for adaptive multimedia systems. Stud.
Inform. Univ., 2(1):157–178, 2002.

[KMT98] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. 49, 1998.

114 BIBLIOGRAPHY

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Prob-
lems. Springer, October 2004.

[LC07] Chae Y. Lee and Hee K. Cho. Discrete bandwidth allocation consider-
ing fairness and transmission load in multicast networks. Computers
and Operations Research, 34(3):884–899, 2007.

[Lev] Philip Levis. TEP 111: message t. http://www.tinyos.net/

tinyos-2.x/doc/pdf/tep111.pdf.

[LH05] Jun Luo and Jean-Pierre Hubaux. Joint mobility and routing for
lifetime elongation in wireless sensor networks. In IEEE INFOCOM,
2005.

[LLRS99] Chen Lee, John Lehoczky, Ragunathan (Raj) Rajkumar, and Dan
Siewiorek. On quality of service optimization with discrete qos options.
In RTAS’99: Proceedings of the Fifth IEEE Real-Time Technology
and Applications Symposium, page 276, Washington, DC, USA, 1999.
IEEE Computer Society.

[LMC04] Chae Y. Lee, Young P. Moon, and Young Joo Cho. A lexicographically
fair allocation of discrete bandwidth for multirate multicast traffics.
Computers and Operations Research, 31(14):2349–2363, 2004.

[LMFJ+04] Konrad Lorincz, David J. Malan, Thaddeus R. F. Fulford-Jones, Alan
Nawoj, Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt
Welsh, and Steve Moulton. Sensor networks for emergency response:
Challenges and opportunities. IEEE Pervasive Computing, 3(4):16–
23, 2004.

[LY06] Mo Li and Baijian Yang. A survey on topology issues in wireless
sensor networks. In the 2006 International Conf. on Wireless Networks
(ICWN), June 2006.

[MA06] Rene Muller and Gustavo Alonso. Efficient sharing of sensor networks.
In IEEE International Conference on Mobile Ad-hoc and Sensor Sys-
tems (MASS), 2006.

[MDMLN03] Daniel Marco, Enrique J. Duarte-Melo, Mingyan Liu, and David L.
Neuhoff. On the many-to-one transport capacity of a dense wireless
sensor network and the compressibility of its data. In IEEE/ACM
IPSN, 2003.

[MFA07] Guoqiang Mao, Barış Fidan, and Brian D. O. Anderson. Wireless
sensor network localization techniques. Comput. Netw., 51(10):2529–
2553, 2007.

http://www.tinyos.net/tinyos-2.x/doc/pdf/tep111.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tep111.pdf

115

[MJS97] Martin Moser, Dusan P Jokanović, and Norio Shiratori. An algorithm
for the multidimensional multiple-choice knapsack problem. IEICE
transactions on fundamentals of electronics, communications and com-
puter sciences, 80(3):582–589, 1997.

[Mos96] Martin Moser. Declarative scheduling for optimally graceful qos degra-
dation. In ICMCS ’96: Proceedings of the 1996 International Confer-
ence on Multimedia Computing and Systems (ICMCS ’96), page 0086,
Washington, DC, USA, 1996. IEEE Computer Society.

[MT90] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., New York, NY,
USA, 1990.

[MW00] Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based con-
gestion control. IEEE/ACM Trans. Netw., 8(5):556–567, 2000.

[NPar] D. Nace and M. Pioro. A tutorial on max-min fairness and its appli-
cations to routing and load-balancing in telecommunication networks.
IEEE Communications Surveys and Tutorials, to appear.

[ns2] http://www.isi.edu/nsnam/ns/.

[OPT05] Wlodzimierz Ogryczak, Michal Pioro, and Artur Tomaszewski.
Telecommunications network design and max-min optimization prob-
lem. Journal of Telecom. and Information Tech., 3:43–56, 2005.

[OR-] ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/

OR-Benchmark.html.

[OS06] Wlodzimierz Ogryczak and Tomasz Sliwinski. On direct methods for
lexicographic min-max optimization. In the ICCSA Conf., volume
3982 of LNCS, pages 802–811, May 2006.

[PHD05] R. Parra-Hernandez and N.J. Dimopoulos. A new heuristic for solving
the multichoice multidimensional knapsack problem. Systems, Man
and Cybernetics, Part A, IEEE Transactions on, 35(5):708–717, Sept.
2005.

[Pis99] David Pisinger. Core problems in knapsack algorithms. Oper. Res.,
47(4):570–575, 1999.

[Pis05] David Pisinger. Where are the hard knapsack problems? Comput.
Oper. Res., 32(9):2271–2284, 2005.

[PT07] Meng-Shiuan Pan and Yu-Chee Tseng. The orphan problem in zigbee-
based wireless sensor networks. In Proceedings of the 10th ACM Inter-
national Symposium on Modeling Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), pages 95–98, 2007.

http://www.isi.edu/nsnam/ns/
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/OR-Benchmark.html
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/OR-Benchmark.html

116 BIBLIOGRAPHY

[RB06] Bozidar Radunovic and Jean-Yves Le Boudec. A Unified Framework
for Max-Min and Min-Max Fairness with Applications. ACM/IEEE
Trans. on Networking, 15(5):1073–1083, 2006.

[RC08] Bhaskaran Raman and Kameswari Chebrolu. Censor networks: a cri-
tique of ”sensor networks” from a systems perspective. SIGCOMM
Comput. Commun. Rev., 38(3):75–78, 2008.

[RD] Gallager Robert and Bertsekas Dimitri. Data Networks. Prentice Hall,
2nd edition.

[RGGP06] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and
Konstantinos Psounis. Interference-aware fair rate control in wireless
sensor networks. In ACM SIGCOMM, 2006.

[RSZ04] Cauligi S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati,
editors. Wireless Sensor Networks. Springer, 2004.

[SARN08] Abu Zafar Shahriar, M. Mostofa Akbar, M. Sohel Rahman, and
Muhammad Abdul Newton. A multiprocessor based heuristic for
multi-dimensional multiple-choice knapsack problem. J. Supercom-
put., 43(3):257–280, 2008.

[Sbi07] Abdelkader Sbihi. A best first search exact algorithm for the multiple-
choice multidimensional knapsack problem. Journal of Combinatorial
Optimization, 13(4):337–351, 2007.

[SIH05] Md Waselul Haque Sadid, Md Rabiul Islam, and S M Kamrul Hasan. A
new strategy for solving multiple-choice multiple-dimension knapsack
problem in pram model. In Asian Applied Computing Conference,
2005.

[SK04] Avinash Sridharan and Bhaskar Krishnamachari. Max-min fair
collision-free scheduling for wireless sensor networks. In IEEE In-
ternational Performance Computing and Communications Conference
(IPCCC), 2004.

[SK07] Avinash Sridharan and Bhaskar Krishnamachari. Maximizing network
utilization with max-min fairness in wireless sensor networks. In In-
ternational Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt), 2007.

[SOBAA03] Yogesh Sankarasubramaniam, Özgür B. Akan, and Ian F. Akyildiz.
Esrt: event-to-sink reliable transport in wireless sensor networks. In
MobiHoc ’03: Proceedings of the 4th ACM international symposium
on Mobile ad hoc networking & computing, pages 177–188, New York,
NY, USA, 2003. ACM.

117

[ST00] Saswati Sarkar and Leandros Tassiulas. Fair allocation of discrete
bandwidth layers in multicast networks. In the IEEE INFOCOM
Conf., volume 3, pages 1491–1500, Mar. 2000.

[SY04] F. Sivrikaya and B. Yener. Time synchronization in sensor networks:
a survey. Network, IEEE, 18(4):45–50, July-Aug. 2004.

[Toy75] Yoshiaki Toyoda. A simplified algorithm for obtaining approximate
solutions to zero-one programming problems. Management Science,
21(12):1417–1427, 1975.

[WDM01] J. Widmer, R. Denda, and M. Mauve. A survey on TCP-friendly
congestion control. IEEE Network, 15(3):28–37, 2001.

[WEC03] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. Coda:
congestion detection and avoidance in sensor networks. In SenSys ’03:
Proceedings of the 1st international conference on Embedded networked
sensor systems, pages 266–279, New York, NY, USA, 2003. ACM.

[WSL+06a] Chonggang Wang, Kazem Sohraby, Victor Lawrence, Bo Li, and
Yueming Hu. Priority-based congestion control in wireless sensor net-
works. In SUTC ’06: Proceedings of the IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing
-Vol 1 (SUTC’06), pages 22–31, Washington, DC, USA, 2006. IEEE
Computer Society.

[WSL+06b] Chonggang Wang, Kazem Sohraby, Bo Li, Mahmoud Daneshmand,
and Yueming Hu. A survey of transport protocols for wireless sensor
networks. IEEE Network, 20(3):34–40, 2006.

[YCNCC06] Ch. Ykman-Couvreur, V. Nollet, Fr. Catthoor, and H. Corporaal. Fast
multi-dimension multi-choice knapsack heuristic for mp-soc run-time
management. In System-on-Chip, 2006. International Symposium on,
pages 1–4, Nov. 2006.

[YMG08] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless
sensor network survey. Computer Networks, 52(12):2292 – 2330, 2008.

[ZG04] Feng Zhao and Leonidas Guibas. Wireless Sensor Networks: An In-
formation Processing Approach. Morgan Kaufmann, 2004.

[zig08] ZigBee alliance document 053474r17: Zigbee specification, Jan. 2008.

[ZL] J. Zheng and J. Myung Lee. Low rate wireless personal area networks
- ns2 simulation platform. http://www-ee.ccny.cuny.edu/zheng/

pub/.

http://www-ee.ccny.cuny.edu/zheng/pub/
http://www-ee.ccny.cuny.edu/zheng/pub/

118 BIBLIOGRAPHY

119

Publications

International Journals

[1] Bing Han, Jimmy Leblet, Gwendal Simon, Hard Multidimensional Multiple
Choice Knapsack Problems, an Empirical Study, to appear in Computers & Op-
erations Research.

[2] Bing Han, Jimmy Leblet, Gwendal Simon, Query Range Problem in Wireless
Sensor Networks, in IEEE Communications Letters, Vol. 13, No. 1, pp. 55-57,
January 2009.

International Conferences

[3] Yiping Chen, Bing Han, Jimmy Leblet, Gwendal Simon, Gilles Straub, Network-
Friendly Box-Powered Video Delivery System, to appear in the 21st International
Teletraffic Congress (ITC 21).

[4] Bing Han, Gwendal Simon, Optimizing Multi-hop Queries in ZigBee Based Multi-
sink Sensor Networks, in the 10th International Conference on Distributed Comput-
ing and Networking (ICDCN’09), Hyderabad, India, January 3-6, 2009. (Regular
paper, acceptance rate: 24/176)

[5] Bing Han, Gwendal Simon, Fair Capacity Sharing Among Multiple Sinks in
Wireless Sensor Networks, in the Fourth IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS’07), Pisa, Italy. October 8-11, 2007. (accep-
tance rate: 67/265)

[6] Bing Han, Dongliang Xie, Le Tian, Biao Ren, Shiduan Cheng, An Adaptive Lo-
cation Service for Wireless Sensor Networks with Mobile Sinks, in the International
Conference on Wireless and Mobile Communications, (ICWMC’06), Bucharest, Ro-
mania, July 29-31, 2006.

Internal Workshops

[7] Bing Han, Jimmy Leblet, Gwendal Simon, On Sharing the Capacity of Hybrid
Ad-Hoc Networks, in the Autonomous and Spontaneous Networks Symposium, Tele-
com ParisTech, Paris, November 20-21, 2008. (poster)

120 Publications

[8] Bing Han, Gwendal Simon, On the Optimality of Max-min Fair Query in Multi-
Sink Wireless Sensor Networks, in the Internal Workshop of Programme Initiative
of GET, on Réseaux Spontanés, Paris, Octobre 30-31, 2007.

Working Papers

[9] A Box-Powered Video Delivery Network Paying Attention to Network Operators,
with Yiping Chen, Jimmy Leblet and Gwendal Simon.

[10] Optimal Distribution of Media Descriptions in Large Networks, with Jacob
Chakareski, Pascal Frossard, Jimmy Leblet and Gwendal Simon.

121

Glossary

–A–
ACK ACKnowledgement
AIMD Additive Increase/Multiplicative Decrease
AODV Ad hoc On-Demand Distance Vector Routing
ARP Address Resolution Protocol
ASK Amplitude-Shift Keying

–B–
BBLP Branch and Bound with Linear Programming

(algorithm for MMKP)
BKP Bounded Knapsack Problem
BPSK Binary Phase-Shift Keying

–C–
CAP Contention Access Period
CCA Clear Channel Assessment
CCP Complementary Constructive Procedure

(Hifi’s MMKP Algorithm)
CENS Center for Embedded Networked Sensing
CDMA Code Division Multiple Access
CFP Contention Free Period
CGBA Column Generation Based Algorithm (Sbihi’s MMKP Algorithm)
CH1 Hiremath’s Heuristic for MMKP, version 1
CH2 Hiremath’s Heuristic for MMKP, version 2
C-HEU Convex-hull based HEU (Akbar’s MMKP Algorithm)
CP Constructive Procedure (Hifi’s MMKP Algorithm)
CPU Central Processing Unit
CRCW-PRAM Concurrent Read Concurrent Write Parallel Access Machine
CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

–D–
DARPA Defense Advanced Research Projects Agency

122 Glossary

Der Algo Derived Algorithm (Hifi’s MMKP Algorithm)
DIS the DIStributed algorithm for max-min fairness
DoD Department of Defense
DSN Distributed Sensor Network

–E–
EMKP Exact algorithm for MMKP (Sbihi’s Algorithm)

–F–
FDMA Frequency-Division Multiple Access
FFD Full Functional Device
FLTS First Level Tabu Search (Hiremath’s MMKP Algorithm)

–G–
GLPK GNU Linear Programming Kit
GLS Geographic Location Service
GPS Global Positioning System
GTS Guaranteed Time Slot

–H–
HEU HEUristic Algorithm for MMKP (Khan’s Algorithm)
HMMKP Heuristic for MMKP (Parra-Hernández’s Algorithm)

–I–
IEEE Institute of Electrical and Electronics Engineers
I-HEU Incremental HEU (Akabar’s MMKP Algorithm)
ISM Industrial, Scientific and Medical

–K–
KP Knapsack Problem

–L–
LOCAL the LOCAL algorithm for max-min fairness
LP Linear Programming
LP-WPAN Low Power Wireless Personal Area Network

–M–
MAC Media Access Control
MEMS Micro-Electro-Mechanical System
MCKP Multiple Choice Knapsack Problem
MDKP Multiple Dimension Knapsack Problem
M-HEU Modified HEU algorithm (Akabar’s MMKP Algorithm)
MIP Mixed Integer Programming
MKP Multiple Knapsack Problem
MMF Max min Fairness

123

MMKP Knapsack Problem
MNU Max Network Utility
MRLS Modified Reactive Local Search (Hifi’s MMKP Algorithm)
MSE Mean Squared Error
MVRC Maximizing Value per Resource Consumption heuristic

(Chantzara’s MMKP Algorithm)

–N–
NACK Negative ACKnowledgement
NIB Network Information Base
NP Non-deterministic Polynomial
NSF National Science Foundation
NWK NetWorK (layer)

–O–
OPT the OPTimal algorithm for max-min fairness
OR Operations Research

–P–
PAN Personal Area Network
PDA Personal Digital Assistant
PHY PHYsical (layer)

–Q–
QoS Quality of Service
QPSK Quadrature Phase-Shift Keying

–R–
RFD Reduced Functional Device
RLS Reactive Local Search (Hifi’s MMKP Algorithm)

–S–
SEM Standard Error of the Mean

–T–
TCP Transmission Control Protocol
TDMA Time-Division Multiple Access
TTDD Two-Tier Data Dissemination

–U–

–V–
VLSI Very-Large-Scale Integration
VoD Video on Demand

124 Glossary

–W–
WSN Wireless Sensor Networks

–Z–
ZC ZigBee Controller
ZED ZigBee End Device
ZR ZigBee Router

	Acknowledgements
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	A Brief History
	WSN Evolution
	Motivations and Objectives
	Contributions
	Thesis Organisation

	Background Knowledge
	State-of-the-Art Researches on WSN
	Supporting Mechanisms
	Communication Protocols
	Physical Layer
	The Medium Access Control Layer
	The Network Layer
	The Transport Layer

	Capacity of Wireless Sensor Networks
	The Knapsack Problems
	Exact Algorithms for MMKP
	Heuristic Algorithms for MMKP
	Moser's Heuristic
	The HEU, M-HEU, I-HEU and MVRC Algorithms
	Parallel HEU and Multiprocessor M-HEU
	The CP and CCP Algorithms
	The Der_Algo, RLS, MRLS and Other Variations
	The HMMKP Algorithm
	The C-HEU Algorithm
	The CGBA Algorithm

	Summary

	Fairness
	Max-min and Lexicographical Max-min Fairness
	Proportional Fairness
	(p,)-proportional Fairness

	Continuous Query Model
	Introduction
	Continuous Query Model
	Analysis of Two-user Case
	Distributed Algorithms
	Brute force algorithm
	Inspiration from two-user case
	Distributed algorithm and protocol

	Performance Evaluation
	Related Works
	Summary

	Reformulating The Problem: A Discrete Query Model
	Model and Problem Formulation
	System Model
	MMKP Formulation of Problems
	General MMKP formulation
	MNU problem formulated as MMKP
	MMF problem formulated as MMKP

	NP-hardness Proof
	Algorithms
	An exact algorithm for MMF
	Distributed algorithms for MNU and MMF
	Local MCKP solution
	Dynamic query range adaption
	Unified algorithmic framework

	Performance Evaluation
	Simulation setup
	Time complexity of the exact algorithm
	Distributed heuristics in a large network
	Quality of solutions
	Congestion resolution capability
	Comparative study on MNU and MMF

	A dynamic network example

	Summary

	Extension To A Practical Context: ZigBee Based WSNs
	The IEEE 802.15.4 and ZigBee Tree
	Algorithms Adapted to the ZigBee Network
	Traffic estimation with the ZigBee tree

	Performance Evaluation
	Evaluation metrics
	Simulation setup
	Query data arrival ratio
	Query data throughput
	Control message overhead
	Query range and fairness index

	Summary

	Hard MMKP Instances
	Introduction
	Existing Methods to Generate Benchmark Instances
	Generating KP instances
	Generating MMKP instances

	New Methods to Generate MMKP Problem Instances
	Generating the Profits
	Generating the Weights
	Generating the Knapsack Capacities
	Summary of Instance Notations

	Experiment Study
	Experiment Setup
	Average Solution Time
	Capacity Level and Solution Time
	Non-trivial Infeasible Instances
	The Critical Dimension

	Conclusion

	Epilogue
	Conclusion
	Limitations and Perspectives

	Bibliography
	Publications
	Glossary

