
HAL Id: pastel-00006121
https://pastel.hal.science/pastel-00006121

Submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L’alignement de graphes : applications en
bioinformatique et vision par ordinateur

Mikhail Zaslavskiy

To cite this version:
Mikhail Zaslavskiy. L’alignement de graphes : applications en bioinformatique et vision par ordinateur.
Mathématiques [math]. École Nationale Supérieure des Mines de Paris, 2010. Français. �NNT : �.
�pastel-00006121�

https://pastel.hal.science/pastel-00006121
https://hal.archives-ouvertes.fr

T

H

È

S

E

INSTITUT DES SCIENCES ET TECHNOLOGIES

École doctorale nO431 : Information, Communication, Modélisation et Simulation

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

l’École nationale supérieure des mines de Paris

Spécialité ”Bioinformatique”

présentée et soutenue publiquement par

Mikhail Zaslavskiy

le 11 Janvier 2010

Graph matching and its application in computer
vision and bioinformatics

Directeurs de thèse: Francis BACH and Jean-Philippe VERT

Jury:

Colin DE LA HIGUERA Président

Martial HEBERT rapporteur

Benno SCHWIKOWSKI rapporteur

Nicola CANCEDDA examinateur

Francis BACH examinateur

Jean-Philippe VERT examinateur

MINES ParisTech

CBIO & CMM

35 rue Saint-Honoré, Fontainebleau

Résumé

Le problème d’alignement de graphes, qui joue un rôle central dans différents domaines

de la reconnaissance de formes, est l’un des plus grands défis dans le traitement de

graphes. Nous proposons une méthode approximative pour l’alignement de graphes

étiquetés et pondérés, basée sur la programmation convexe concave. Une applica-

tion importante du problème d’alignement de graphes est l’alignement de réseaux

d’interactions de protéines, qui joue un rôle central pour la recherche de voies de

signalisation conservées dans l’évolution, de complexes protéiques conservés entre

les espèces, et pour l’identification d’orthologues fonctionnels. Nous reformulons le

problème d’alignement de réseaux d’interactions comme un problème d’alignement

de graphes, et étudions comment les algorithmes existants d’alignement de graphes

peuvent être utilisés pour le résoudre.

Dans la formulation classique de problème d’alignement de graphes, seules les

correspondances bijectives entre les noeuds de deux graphes sont considérées. Dans

beaucoup d’applications, cependant, il est plus intéressant de considérer les corre-

spondances entre des ensembles de noeuds. Nous proposons une nouvelle formulation

de ce problème comme un problème d’optimisation discret, ainsi qu’un algorithme

approximatif basé sur une relaxation continue.

Nous présentons également deux résultats indépendents dans les domaines de la

traduction automatique statistique et de la bio-informatique. Nous montrons d’une

part comment le problème de la traduction statistique basé sur les phrases peut être

reformulé comme un problème du voyageur de commerce. Nous proposons d’autre

part une nouvelle mesure de similarité entre les sites de fixation de protéines, basée

sur la comparaison 3D de nuages atomiques.

2

Abstract

The graph matching problem is among the most important challenges of graph pro-

cessing, and plays a central role in various fields of pattern recognition. We propose

an approximate method for labeled weighted graph matching, based on a convex-

concave programming approach which can be applied to the matching of large sized

graphs. This method allows to easily integrate information on graph label similari-

ties into the optimization problem, and therefore to perform labeled weighted graph

matching. One of the interesting applications of the graph matching problem is the

alignment of protein-protein interaction networks. This problem is important when

investigating evolutionary conserved pathways or protein complexes across species,

and to help in the identification of functional orthologs through the detection of con-

served interactions. We reformulate PPI alignment as a graph matching problem, and

study how state-of-the-art graph matching algorithms can be used for this purpose.

In the classical formulation of graph matching, only one-to-one correspondences

are considered, which is not always appropriate. In many applications, it is more

interesting to consider many-to-many correspondences between graph vertices. We

propose a reformulation of the many-to-many graph matching problem as a discrete

optimization problem and we propose an approximate algorithm based on a contin-

uous relaxation.

In this thesis, we also present two interesting results in statistical machine trans-

lation and bioinformatics. We show how the phrase-based statistical machine trans-

lation decoding problem can be reformulated as a Traveling Salesman Problem. We

also propose a new protein binding pocket similarity measure based on a comparison

of 3D atom clouds.

3

Acknowledgments

First of all, I would like to thank my scientific advisors Jean-Philippe Vert and Francis

Bach. I think that it was a great piece of luck that I met them four years ago. I

admire their way of guiding Phd students, they somehow manage to keep an optimal

ratio between student research freedom and the value of their research, making sure

that students spend their time usefully. It was always very easy for me to get their

advice and meet them in person, when I needed it. At the same time, they always

kept an eye on me, directing my research efforts in the right direction and encouraging

my work. I have very happy memories of the exchange of emails the nights before

deadlines, of long discussions with Jean-Philippe, when he asked me sequences of

questions and helped me to answer them in order to make me solve yet another

problem “by myself”, of brainstormings with Francis in front of a blackboard where

he guided me in the construction of more and more interesting convex relaxations.

Thank you very much for all you have done for me !

I would also like to express my gratitude to all other members (former and

current) of the Center for Computational Biology, Pierre, Martial, Laurent, Brice,

Veronique, Fantine, Christian, Yoshi, Kevin, Isabelle, Nathalie, Anne-Claire, Franck,

Toby, Philippe for their help, for many interesting discussions and a lot of happy

times (“le cbio c’est bien !”).

I spent most of the time during my Phd at the campus of Mines ParisTech in

Fontainbleau where I met a lot of good friends with whom I shared a lot of happy

moments playing volleyball, football and waiting for the school bus, and I would like

to thank them for this.

I would also like thank my colleagues from the laboratory U900 (Insitut Curie)

4

5

and from the Willow-team (ENS-INRIA) for many valuable discussions and their

willingness to help me in my work.

During my Phd, I had the chance to spend three months at Xerox Research Center

Europe in Grenoble, and I am profoundly grateful to Marc and Nicola for inviting me

there and working with me. In spite of the very short time, we did an excellent job

together. Many thanks to all other members of XRCE for a warm welcome, hiking

in mountains and teaching me climbing.

My Phd defense would not be possible without my jury: Martial Hebert, Benno

Schwikowski, Nicola Cancedda and Colin De La Higuera, thank you very much for

being there and for your comments on my work.

Finally, I would like to thank my family for supporting me all these years, and

especially Tanya for her tolerance towards my endless deadlines and keeping me always

ready to do the research. The day before my Phd defense, she told me ”I am so

happy that you will finally get you Phd” (by the way, it reminds me some stories

from phdcomics.org). Now, I have it.

Contents

Résumé 2

Abstract 3

Acknowledgments 4

Introduction 13

1 The graph matching problem . 13

1.1 Contribution & Perspectives 17

2 Phrase-based statistical machine translation 20

2.1 Contribution & Perspectives 22

3 Comparison of protein binding pockets 23

3.1 Contribution & Perspectives 23

4 Publications . 25

I Graph matching 27

1 Introduction 28

1.1 Basic definitions and notations . 28

1.2 Formulation of the graph matching problem 29

1.3 Alternative formulations of graph matching 32

1.3.1 Vertex labels . 33

1.3.2 Quadratic assignment problem 34

1.3.3 Matching graphs of different sizes 35

6

CONTENTS 7

1.3.4 l1 and other alternatives to the l2 norm in the GM problem . . 37

1.3.5 Graph edit distance . 38

1.3.6 Complexity of the graph matching problem 40

1.4 Early history of graph matching . 40

1.4.1 Recent developments in graph matching 46

1.5 Applications of graph matching algorithms 47

1.6 GM, kernels and graph invariants . 48

2 A path following algorithm for GM 50

2.1 Introduction . 52

2.2 Problem description . 54

2.2.1 Permutation matrices . 55

2.2.2 Approximate methods: existing works 56

2.3 Convex-concave relaxation . 59

2.3.1 Convex relaxation . 60

2.3.2 Concave relaxation . 60

2.3.3 PATH algorithm . 63

2.3.4 Numerical continuation method interpretation 66

2.3.5 Some implementation details 68

2.3.6 Algorithm complexity . 72

2.3.7 Vertex pairwise similarities . 73

2.4 Simulations . 74

2.4.1 Synthetic examples . 74

2.4.2 Results . 75

2.5 QAP benchmark library . 79

2.6 Image processing . 81

2.6.1 Alignment of vessel images . 81

2.6.2 Recognition of handwritten chinese characters 84

2.7 Conclusion . 86

2.A A toy example . 86

2.B Kronecker product . 88

8 CONTENTS

3 Global alignment of PPI by GM methods 89

3.1 Introduction . 90

3.2 Constrained and balanced GNA problems 92

3.3 Methods . 96

3.3.1 Algorithms for the balanced GNA problem 96

3.3.2 Algorithms for the constrained GNA problem 98

3.4 Data . 102

3.5 Results . 103

3.5.1 Disambiguation of functional orthologs within Inp. clusters . . 104

3.5.2 Disambiguation of Inp. clusters with second-order interactions 109

3.5.3 Global PPI network alignment 111

3.6 Discussion . 113

4 Many-to-Many graph matching 116

4.1 Introduction . 116

4.2 Many-to-many graph matching as an optimization problem 119

4.3 Continuous relaxations of the many-to-many GM problem 122

4.3.1 Method 1: Gradient descent 122

4.3.2 Method 2: SDP relaxation . 123

4.4 Related methods . 125

4.5 Experiments . 126

4.5.1 Synthetic examples . 126

4.5.2 Chinese characters . 128

4.5.3 Identification of object composite parts 129

4.6 Conclusion . 131

II Other applications 133

5 PBSMT as a Traveling Salesman Problem 134

1 Introduction . 135

2 Related work . 137

CONTENTS 9

3 The Traveling Salesman Problem and its variants 138

3.1 Reductions AGTSP→ATSP→STSP 139

3.2 TSP algorithms . 140

4 Phrase-based Decoding as TSP . 141

4.1 From Bigram to N-gram LM 143

5 Experiments . 146

5.1 Monolingual word re-ordering 146

5.2 Translation experiments with a bigram language model 147

6 Future Work . 151

7 Conclusion . 152

6 A new binding pocket similarity measure 154

1 Introduction . 155

2 Methods . 156

2.1 Convolution kernel between atom clouds 156

2.2 Related methods . 160

2.3 Performance criteria . 162

2.4 Docking . 164

3 Datasets . 165

4 Results . 166

4.1 Kahraman Dataset . 167

4.2 Homogeneous dataset (HD) 171

5 Discussion . 172

List of Tables

2.1 Experiment results for QAPLIB benchmark datasets. 80

2.2 Alignment of vessel images, algorithm performance 82

2.3 Classification of chinese characters. 86

3.1 Performance for constrained GNA. 105

3.2 HomoloGene orthologs found by the MP method and not by MRF. . 109

3.3 Performance for constrained GNA. 110

4.1 Classification results . 129

4.2 Identification of object composite parts. 131

6.1 Kahraman Dataset. 167

6.2 Homogeneous dataset. 171

10

List of Figures

1 Examples of graph-based representations 14

2 Fly PPI network . 17

3 An example of PB-SMT . 21

4 ATP binding pocket. 24

1.1 Examples of induced and non-induced subgraphs. 30

1.2 The maximum common subgraph as a result of graph alignment. . . . 31

1.3 Matching of graphs with different number of vertices. 37

1.4 The graph edit path. 39

1.5 An example of Crum Brown’s drawing. 41

1.6 Examples of chemical isomers: propan-1-ol and propan-2-ol 42

2.1 Permutation and doubly stochastic matrices 56

2.2 Schema of the PATH algorithm . 64

2.3 Illustration for path optimization approach. 65

2.4 Matching error as a function of noise. 75

2.5 Matching error as a function of noise II. 76

2.6 Matching error as a function of noise III. 77

2.7 Characteristics of the PATH algorithm 78

2.8 Timing of U,LP,QCV and PATH algorithms as a function of graph size. 79

2.9 Eye photos (top) and vessel contour extraction (bottom). 82

2.10 Comparison of alignment based on shape context and PATH. 83

2.11 Chinese characters from the ETL9B dataset. 84

2.12 Classification error. 85

11

12 LIST OF FIGURES

2.13 Coordinates of global minimum . 88

3.1 Inparanoid cluster network. 100

3.2 Inparanoid cluster network: generalized interactions. 106

3.3 Illustration of difference between MRF and MP alignment. 107

3.4 Algorithm performance comparison. 112

4.1 MtM matching as two MtOs. 120

4.2 Performance of many-to-many GM algorithms. 127

4.3 Example of “Grad” matching. 128

4.4 Examples of user defined segmentation. 130

5.1 AGTSP→ATSP. 140

5.2 Transition graph. 143

5.3 A GTSP tour. 144

5.4 Compiling-out of biphrase i: (est,is). 145

5.5 LM and BLEU scores. 148

5.6 Europarl corpus. 150

6.1 AUC score versus classification error. 164

6.2 Projection of ext-KD. 170

6.3 Homogeneous database. 173

6.4 ATP binding pockets. 174

Introduction

This thesis consists of three independent parts. In the first (main) part, we present

our principal results related to the graph matching problem. The second part contains

a new result in the field of statistical machine translation. Finally, in the third and

last part, we present a new method for comparing protein binding pockets which can

be used for ligand prediction. In this section, we provide a short introduction to the

topics discussed in this thesis as well as a brief description of the results that have

been obtained.

1 The graph matching problem

Nowadays, the application of graph-based representation techniques to pattern recog-

nition and machine learning is becoming more and more popular. When we need to

classify objects with complex internal structures, it is not always possible to construct

feature vectors that capture important discriminative information between object

classes. These difficulties lead to the use of more complex techniques, in particular,

graph-based representation methods, where graphs are used to encode object features

and structural relationships between them. Graphs provide a universal and flexible

tool which may be used to describe objects in many application areas: computer

vision, bioinformatics, chemoinformatics, etc.

The question of efficient graph-based representation is a problem in itself. De-

pending on the area of application, different principles are used. In some cases, for

example in chemoinformatics, it is very easy to construct a graph-based representa-

tion of molecules. In other cases, for example in computer vision, this is more tricky,

13

14 LIST OF FIGURES

Figure 1: Examples of graph-based representations in computer vision and chemoin-
formatics.

there are several ways to represent the same image: we can use segmentation graphs,

shock graphs, contour graphs or their combination. Here, we do not consider how

objects can be represented by graphs, we suppose that a particular graph-based rep-

resentation method has already been chosen and we are interested in what happens

afterwards.

Once a graph representation has been constructed, a central question arising in

the context of pattern recognition is the question of graph (dis-)similarity measure.

To be able to classify or cluster objects on the basis of their graph-based repre-

sentations, we need to know how to compare graphs. A natural method for graph

comparison is based on graph alignment with further evaluation of alignment qual-

ity, the better the constructed alignment, the more similar the graphs. Construction

of graph alignment is the subject of the graph matching problem where we seek

a mapping between vertices of two graphs which optimally aligns the graph struc-

tures. The graph matching problem is among the most important challenges of graph

processing, and plays a central role in various fields of pattern recognition. Usu-

ally, the optimality refers to the alignment of graph structures and, when available,

1. THE GRAPH MATCHING PROBLEM 15

of vertex labels, although other criteria are also possible. A non-exhaustive list of

graph matching applications includes document processing tasks like optical charac-

ter recognition [Lee and Liu, 1999; Filatov et al., 1995], image analysis (2D and 3D)

[Wang and Hancock, 2006; Luo and Hancock, 2000; Carcassoni and Hancock, 2003;

Schellewald and Schnorr, 2005], and bioinformatics [Singh et al., 2008; Wang et al.,

2004; Taylor, 2002]. Figure 1 gives some examples where graph matching can be

used to compare graph-based representations of different objects such as images and

molecules.

We formulate the graph matching problem as a least square optimization problem

on the set of permutation matrices

F (P) = ||AG − PAHP
T ||2F

P ∈ P,
(1)

where AG denotes the adjacency matrix of graph G, AH denotes the adjacency matrix

of graph H, and P denotes a permutation matrix. Here, for simplicity, we suppose

that the graphs have the same number of vertices, the general case of graphs of

different sizes is considered in Section 1.3.3. Adjacency matrices are square binary

(or real-valued) matrices. The set of permutation matrices P is defined as a set of

square binary matrices with only one non-zero element in each row and each column

P = {P ∈ {0, 1}N × N : P1N = 1N , P
T 1N = 1N}. We use permutation matrices

to encode matchings between graphs, Pij equals one if vertex i of graph G is aligned

with vertex j of graph H. Function F (P) in (1) represents the discrepancy between

the graphs after matching P . If graphs G and H are simple unweighted graphs (with

binary adjacency matrices), then F (P) corresponds to the number of edges which

are present in one graph but not in the other. In the case of weighted graphs, F (P)

represents the total difference between all overlapping edges.

Problem (1) is a difficult combinatorial problem (NP-hard in the general case).

While some methods based on incomplete enumeration may be applied to search for

an exact optimal solution in the case of small or sparse graphs, only approximate

algorithms that usually find non-optimal solutions but are more scalable can be used

16 LIST OF FIGURES

for large non-sparse graph matching. Many such approximate algorithms have been

proposed, see e.g., the review by Conte et al. [2004]. Roughly speaking, there are

three main categories of approximate algorithms.

The first group consists of approximate tree search algorithms [Bunke, 1983]. The

general idea of these algorithms is quite simple, we construct the global mapping

iteratively. First, we match the first vertex of graph G to a vertex of graph H, then

at each step we match a new pair of vertices in order to maximize the current number

of overlapping edges.

The second category represents spectral methods [Umeyama, 1988; Caelli and Kosinov,

2004; Leordeanu and Hebert, 2005; Cour et al., 2006; Leordeanu et al., 2007]. For ex-

ample, Umeyama [1988]; Caelli and Kosinov [2004] use the spectral decomposition of

graph adjacency matrices

AG = VGΛGV
T
G , AH = VHΛHV

T
H .

Rows of VG and VH can be seen as spectral coordinates of graph vertices, therefore

to construct a matching between G and H, we match vertices with similar spectral

coordinates.

The third category includes methods based on a relaxation of the optimization

problem (1) [Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996].

Defining a similarity measure for graphs is not the only application where graph

matching algorithms may be of great use. In classification or clustering problems

we use graph matching as a similarity measure between objects of interest i.e the

value of function F (P), but we never use the optimal mapping itself. In some bioin-

formatics applications, the situation is quite the opposite, we are interested in the

matrix P rather than in F (P). An important example of such an application is the

alignment of biological networks. For example, when we consider protein-protein in-

teraction networks (see Figure 2), our objective is to find a mapping between proteins

of two species which maximizes the number of conserved interactions. This problem

is an instance of the graph matching problem where proteins correspond to graph

1. THE GRAPH MATCHING PROBLEM 17

Figure 2: Fly protein-protein interaction network. Vertices (nodes) represent proteins
and edges correspond to protein-protein interactions.

vertices, and protein-protein interactions correspond to graph edges. Once an align-

ment between protein-protein interaction networks is constructed, the matched pairs

of proteins can be seen as “equivalent” proteins playing similar functional roles.

An important drawback of the existing formulation (1) is that it is based on a

one-to-one correspondence between graphs. In many applications, it seems more nat-

ural to consider many-to-many mappings. For example, in computer vision, in some

situations the same object may have different graph-based representations depending

on noise, point of view and other factors. In such a case, we may need to match

several vertices to one vertex, or groups of vertices to groups of vertices.

1.1 Contribution & Perspectives

In the present work, we propose a new graph matching algorithm based on convex-

concave programming. The convex-concave programming formulation is obtained by

rewriting the weighted graph matching problem as a least square problem on the set

of permutation matrices and relaxing it to two different optimization problems: a

quadratic convex and a quadratic concave optimization problem on the set of doubly

18 LIST OF FIGURES

stochastic matrices. The concave relaxation has the same global minimum as the

initial graph matching problem, but the search for its global minimum is still a hard

combinatorial problem. We therefore construct an approximation of the concave

problem solution by following a solution path of a convex-concave problem obtained

by linear interpolation of the convex and concave formulations, starting from the

convex relaxation. This method allows to easily integrate the information on graph

label similarities into the optimization problem, and therefore to perform labeled

weighted graph matching. A detailed description of this method is presented in

Chapter 2.

The alignment of protein-protein interaction networks is the subject of several

research papers. Bandyopadhyay et al. [2006] proposed to use a Markov random

fields model, and Singh et al. [2008] introduced the IsoRank method inspired by the

PageRank algorithm. In Chapter 3 we reformulate PPI alignment as a graph match-

ing problem, and investigate how state-of-the-art graph matching algorithms can be

used for that purpose. We differentiate between two alignment problems, depending

on whether strict constraints on protein matches are given, based on sequence simi-

larity, or whether the goal is instead to find an optimal compromise between sequence

similarity and interaction conservation during alignment. We propose new methods

for both cases, and assess their performance on the alignment of the yeast and fly

PPI networks. The new methods consistently outperform state-of-the-art algorithms,

retrieving in particular 78% more conserved interactions than IsoRank for a given

level of sequence similarity.

To deal with the many-to-many graph matching problem, we can use several

alternative approaches. Tree search algorithms can be easily generalized to the case

of many-to-many matching. In the many-to-many case, the size of the optimization set

is much larger, so when we match a new pair of vertices, one of them may be already

matched to another vertex. Nevertheless, the core of the tree search algorithm for

many-to-many matching is the same as in the one-to-one case. Spectral methods also

have a natural generalization to the many-to-many case. Now, instead of matching

pairs of vertices having similar spectral coordinates, we cluster all vertices on the basis

of their spectral representations, then vertices from the same cluster are matched to

1. THE GRAPH MATCHING PROBLEM 19

each other.

In Chapter 4 we show how the many-to-many graph matching problem can be

reformulated as a least square optimization problem. To the best of our knowledge,

this is the first attempt to give a compact formulation of the many-to-many graph

matching problem and one of the advantages of this formulation is that it leads to a

natural approximate algorithm based on a continuous relaxation. The new algorithm

works significantly better than existing approaches based on tree search and spectral

decomposition.

Concerning future perspectives, there are a lot of interesting things to be done.

The PATH algorithm probably can be further improved by construction of tighter

convex and concave relaxations. The current procedure for processing directed graphs

is based on a transformation of directed graph matching to undirected graph matching

by doubling the number of vertices, but it would be better to run the PATH algorithm

directly on directed graphs.

Since graph matching methods show good performance in the alignment of protein-

protein interaction networks, it would be worth testing them on other types of bio-

logical networks such as gene co-expression networks. Another interesting direction

is the so called multi-matching problem where we seek a simultaneous alignment of

several networks. In this case, the problem is formulated as follows. We have three

or more graphs, for instance, G, H and B and our objective is to find an alignment

of the graphs which minimize the total discrepancy between all triples of overlapping

edges (gij, hij and bij)

discrepancy = (gij − hij)
2 + (gij − bij)2 + (bij − hij)

2.

Finally, we can formulate the three-graph multi-matching problem in the following

way

min
PH ,PB

||G− PHHP
T
H ||2F + ||G− PBHP

T
B ||2F + ||PBHP

T
B − PHHP

T
H ||2F

subject to PB, PH ∈ P
(2)

20 LIST OF FIGURES

or in the general case with n graphs G1,. . . ,Gn

min
P1,P2,...,Pn

∑

i,j

||PiGiP
T
i − PjGjP

T
j ||2F

subject to P1 = I, P2, . . . , Pn ∈ P.
(3)

The majority of graph matching algorithms can be generalized to the multi-

matching case, and it seems that this generalization may be quite useful is such fields

of application as bioinformatics (synchronized alignment of biological networks corre-

sponding to several species like Human-Mouse-Fly) or computer vision (synchronized

alignment of graphs representing the same object).

2 Phrase-based statistical machine translation

One of the most famous challenges in natural language processing (NLP) is how to

teach computers to translate texts. The objective is to construct a computer algo-

rithm which can translate sentences from a source language (for example, French)

to a target language (for example, English). There are two major groups of meth-

ods for machine translation: rule-based systems and statistical machine translation

(SMT) methods. Rule-based systems use linguistic rules defined by a human expert.

SMT methods learn a translation model by themselves from a parallel bilingual text

corpora (set of sentences in the source language and their translations in the target

language). Also, there exist so called hybrid translation models where one tries to

combine the best features of rule-based systems with the best of SMT models.

Ones of the most successful SMT systems are so-called Phrase-Based SMT mod-

els. They use aligned sequences of words, called biphrases, as building blocks for

translations. Figure 3 presents an illustration of PB-SMT. Roughly speaking, first,

we segment the source sentence into blocks, then we translate them and finally the

translated blocks are aligned in order to construct a correct sentence according to

the target language. Note that in practice, “segmentation”, “phrase translation” and

“alignment” are performed simultaneously and not step by step.

Pairs of phrases such as (est un, is a) and (problème combinatoire, combinatorial

2. PHRASE-BASED STATISTICAL MACHINE TRANSLATION 21

la traduction automatique statistique est un problème combinatoire difficile

↓phrase segmentation

la traduction automatique statistique est un probleme combinatoir difficile

↓phrase translation

machine translation statistical is a combinatorial problem hard

↓phrase alignment

statistical machine translation is a hard combinatorial problem

Figure 3: An example of phrase-based statistical machine translation process. Source
and target parts of the same biphrases are highlighted by the same color.

problem) are called biphrases, so the translation process can be seen as a procedure

where, first, we cover the source sentence by a set of biphrases and then we permute

the selected biphrases in order to construct a plausible translation.

The entire translation, consisting of selected biphrases and a biphrase permutation

is usually called alignment a. PB-SMT models score alternative candidate translations

for the same source sentence based on a log-linear model of the conditional probability

of translation given the source sentence

p(T, a|S) =
1

ZS

exp
∑

k

λkhk(S, a, T) , (4)

where the hk’s are features, that is, functions of the source string S, of the target

string T , and of the alignment a (a already contains T but to emphasize that our

objective is to construct T , we write (T, a) instead of just a). The λk’s are weights and

ZS is a normalization factor that guarantees that p is a proper conditional probability

distribution over the pairs (T, a). During the training phase, we estimate all model

parameters λ and construct a dictionary of biphrases, then to translate a new sentence

S (inference phase) we have to solve the following optimization problem

(T ∗, a∗) = arg max
T,a

P (T, a|S). (5)

22 LIST OF FIGURES

Problem (5) is called the Decoding problem.

The majority of PB-SMT models use the following list of features (si and ti denote

the source and target components of biphrases)

Local features Non-local features

Forward probabilities p(t̃i|s̃i) Language model p(t̃i|t̃i−1, . . . , t̃i−n)

Reverse probabilities p(s̃i|t̃i) Distortion |pos(s̃i)− pos(s̃i−1)|
Phrase lengths length(t̃i)

Local features depend only on individual biphrases, this means that they influence

only the choice of biphrases, not their permutation. Non-local features depend on

consecutive biphrases, they control both the permutation and choice of biphrases. If

we use only local features in our translation model, then the decoding problem can

be solved exactly in polynomial time, otherwise if we use non-local features such as

the language model, then the decoding problem becomes NP-hard.

2.1 Contribution & Perspectives

Since, in the general case, the decoding problem is too hard to be solved exactly,

approximate methods are normally used. The most used strategy for the decoding

problem is the so-called beam-search algorithm which is a variant of the tree search

strategy. In our joint work with Marc Dymetman and Nicola Cancedda from Xerox

Research Center Europe (XRCE) we proposed an alternative decoding algorithm. We

showed that the decoding problem is equivalent to the traveling salesman problem

(TSP), a well known problem in operational research.

Given a non-directed graph G on N vertices, where the edges carry real-valued

costs, the TSP problem consists in finding a tour of minimal total cost, where a tour

(also called Hamiltonian Circuit) is a “circular” sequence of vertices visiting each

vertex of the graph exactly once.

In Chapter 5, we propose a procedure which transforms any decoding problem into

a traveling salesman problem. Given a new sentence S, this procedure constructs a

graph where the optimal TSP tour corresponds to the solution of the decoding prob-

lem. Besides the general interest in this transformation for understanding decoding,

3. COMPARISON OF PROTEIN BINDING POCKETS 23

it also opens the door to the direct application of a variety of existing TSP algorithms

to SMT. Our experiments on synthetic and real data show that fast TSP algorithms

can handle selection and reordering in SMT comparably or better than the state-of-

the-art beam-search strategy, converging on solutions a higher objective function in

a shorter time.

For the moment, we use classical TSP algorithms, and one of the interesting future

directions is to further improve the optimization strategy by taking into account the

special structure of the decoding graph.

3 Comparison of protein binding pockets

One of the main goals of structural biology is to predict, from the 3D fold of a

protein, its interacting partners, which in turn is related to its molecular function.

Understanding this structure-function relationship is still an open question, and no

reliable tool is available to make such a prediction. Current efforts concentrate on

local 3D approaches, focusing on identification and comparison of binding pockets, in

order to predict the natural ligand for a protein, with the underlying idea that proteins

sharing similar binding sites are expected to bind similar ligands. The same strategy

also applies to the problem of identifying new drug precursors for a therapeutic target

protein.

Binding pockets may be seen as 3D cavities on the protein surface (see Figure 4),

we are interested in a method which will be able to detect pockets binding the same

ligand on the basis of their 3D structure. Given such a method, we will be able to

predict binding ligands for new, previously, unseen proteins.

3.1 Contribution & Perspectives

In Chapter 6, we propose an approach in which binding pockets are represented by

clouds of atoms in 3D space potentially baring additional labels such as partial charge

or atom type. The new similarity measure is based on the alignment of protein pockets

with the further use of a convolution kernel between 3D point clouds.

24 LIST OF FIGURES

Figure 4: An illustration of an ATP binding pocket with the ATP ligand inside.

Let P = (xi, li)
N
i=1 denote a binding pocket consisting of N atoms, where xi ∈ R

3

is a 3D vector representing atom coordinates, and li is a label (discrete or real valued)

that may be used to bare additional information on the atoms (for example, atom

type, atom partial charge, or amino acid type).

A classical approach for pocket comparison consists in iterative pocket align-

ment and further counting of overlapping atoms, usually within a tolerance of 1Å

[Willett et al., 1986]. The alignment is made to maximize the number of overlapping

atoms, which is generally a good indicator of pocket similarity.

However, atoms may have different positions but play equivalent roles in ligand

binding, and the role of one atom in one pocket may be played by a group of atoms in

another pocket. These observations lead us to the idea of an alternative smooth score

which does not count the number of overlapping atoms, but rather uses a weighted

number of atoms having closed positions. Given two pockets P1 and P2 the similarity

measure K(P1, P2) is defined as follows

K(P1, P2) =
∑

xi∈P1

∑

yj∈P2

e
−||xi−yj ||

2

2σ2 . (6)

4. PUBLICATIONS 25

This similarity measure represents a positive definite kernel, σ characterizes the sen-

sitivity of the similarity measure (6) to the relative displacements of atoms.

In practice, formula (6) is not fully appropriate, because the proposed measure is

not invariant under rotations and translations of the binding pockets. Therefore, we

define a similarity measure sup-CK as the maximum of (6) over all possible rotations

and translations of one of the two pockets:

sup-CK(P1, P2) = max
R,yt

∑

xi∈P1,yj∈P2

e
||xi−(Ryj+yt)||

2

2σ2 , (7)

This approach has shown good performance on several benchmark datasets in com-

parison with such methods as the Tanimoto index [Willett et al., 1986], the SitesBase

algorithm [Gold and Jackson, 2006], the MultiBind algorithm [Shulman-Peleg et al.,

2008] and a method based on real spherical harmonic expansion coefficients [Morris et al.,

2005].

Regarding future research directions, it would be interesting to couple the pro-

posed similarity measure with some similarity measure between ligands in order to

further improve the prediction performance. Then such a combination may be a

good basis for the development of a public web server for protein-ligand interaction

prediction.

4 Publications

The results presented in this thesis were published in the following papers.

� Chapter 2: M. Zaslavskiy, F. Bach, J-P. Vert A Path Following Algorithm

for the Graph Matching Problem, “IEEE Transactions on Pattern Analysis

and Machine Intelligence”, Dec. 2009.

� Chapter 3: M. Zaslavskiy, F. Bach, J-P. Vert Global alignment of pro-

tein–protein interaction networks by graph matching methods “Bioin-

formatics Oxford” (presented at ISMB-ECCB 2009).

26 LIST OF FIGURES

� Chapter 5: M. Zaslavskiy, M. Dymetman, N. Cancedda Phrase-Based Sta-

tistical Machine Translation as a Traveling Salesman Problem “Pro-

ceedings of the 47th Annual Meeting of the Association for Computational

Linguistics (ACL-IJCNLP 2009)”, Jul. 2009.

� Chapter 6: B. Hoffmann, M. Zaslavskiy , J-P. Vert, V. Stoven A new protein

binding pocket similarity measure based on comparison of 3D atom

clouds: application to ligand prediction, conditionally accepted to BMC

Bioinformatics, 2009

Part I

Graph matching

27

Chapter 1

Introduction and history of the

graph matching problem

The goal of this chapter is to introduce the graph matching problem. We compare

alternative formulations of graph matching and trace the evolution of ideas related

to graph comparison.

1.1 Basic definitions and notations

� A graph G = (V,E) of size N is defined by a finite set of vertices V =

{1, . . . , N} and a set of edges E ⊂ V × V . Each graph can be represented

by a square adjacency matrix A of size |V | × |V |, where Aij is equal to one

if there is an edge between vertex i and vertex j, and zero otherwise.

� In weighted graphs, edges have associated labels(weights). Weights are usu-

ally real numbers. Unweighted graphs are described by binary adjacency ma-

trices.

� G is called an undirected graph if and only if AG
ij = AG

ji.

� G′ = (V ′, E ′) is a subgraph of graph G, if V ′ ⊂ V and E ′ ⊆ V ′ × V ′ ∩ E. G′

is called an induced subgraph of G if E ′ = V ′ × V ′ ∩ E. G′.

28

1.2. FORMULATION OF THE GRAPH MATCHING PROBLEM 29

� A matching or an alignment of two graphs is a mapping between the vertices

of two graphs

f : V G → V H .

If graphs have the same number of vertices N and f is a bijection, then such

a matching is called one-to-one. A one-to-one matching can be encoded by a

permutation matrix. The set of permutation matrices is defined as follows

P = {P ∈ {0, 1}N×N : P1N = 1N , P
T 1N = 1N}, (1.1)

where 1N is a column vector with N ones.

� Two graph G and H are called isomorphic if and only if there exists a one-to-

one mapping f : G→ H such that (i, j) ∈ EG ↔ (f(i), f(j)) ∈ EH

1.2 Formulation of the graph matching problem

The first formulation of the graph matching problem was proposed by Tsai and Fu

[1979]. Graph matching was introduced as a noisy version of the graph isomorphism

problem. Such a definition is quite natural for understanding the graph matching

problem. Checking for graph isomorphism, we can only verify whether two graphs

are the same or not, but in many applications, this is not enough. Sometimes even if

graphs are different, we need to know how different they are, in other words, instead

of a binary Yes/No answer for the graph isomorphism problem, we need a graph

(dis-)similarity measure with more gradations. A possible solution is to use the size

of the maximum common subgraph (MCS) as a measure of graph similarity, or its

normalized version

Sim(G,H) =
|MCS(G,H)|
max(|G|, |H|) , (1.2)

where |G| denotes the number of edges in G. The classical definition of the maximum

common subgraph is based on the notion of induced subgraphs. Figure 1.1 illustrates

the difference between induced and simple subgraphs. Subgraph G′ of graph G is

called an induced subgraph if together with the selected vertices, it contains all edges

30 CHAPTER 1. INTRODUCTION

(a) graph G (b) induced subgraph (c) non-induced subgraph

Figure 1.1: Examples of induced and non-induced subgraphs.

connecting these vertices.

Usually, the maximum common subgraph is defined as the maximum induced

common subgraph, but in our case, to measure similarity (1.2) between graphs, we

can use both versions: induced and non-induced.

However, this approach is appropriate only in the case of simple unweighted

graphs. If graph edges have associated weights (which is often the case in real appli-

cations) then it becomes difficult to use the notion of maximum common subgraph.

For instance, it is unreasonable to seek a common subgraph with exactly the same

edge weights if these weights are real numbers. Of course, one can always discretize

weights and follow the MCS approach, but this may lead to information loss.

To understand what would be a better alternative to the discretization schema, let

us look at the maximum common subgraph problem from a different point of view.

Let us suppose, that we do not consider only induced subgraphs, but all kinds of

subgraphs. And let us suppose, for simplicity, that graphs G and H have the same

number of vertices N . Then the extraction of the MCS may be seen as a procedure

where we seek an alignment of two graphs which provides the maximum number of

overlapping edges. This idea is illustrated in Figure 1.2.

The optimal alignment may be defined as an alignment maximizing the number

of overlapping edges (solid lines) or minimizing the number of non-overlapping edges

(dotted lines). Alignment of two graphs may be encoded by the permutation matrix

1.2. FORMULATION OF THE GRAPH MATCHING PROBLEM 31

(a) graph G (b) MCS(G,H) (c) graph H

Figure 1.2: The maximum common subgraph (solid edges) as a result of graph align-
ment.

P where Pij = 1 if vertex i of graph G is matched to vertex j of graph H and zero

otherwise. Let G and H also denote the adjacency matrices of corresponding graphs,

then the number of non-overlapping edges under matching P can be expressed as

follows

F (P) =
1

2
||G− PHP T ||2F (1.3)

where || ||F denotes the Frobenius norm ||A||2F =
∑
A2

ij. Function F (P) expresses the

number of non-overlapping edges, and therefore the problem of MCS identification

may be rewritten as the following optimization problem

min
P
F (P)

subject to

P ∈ {0, 1}N×N , P1N = 1N , P
T 1N = 1N

(1.4)

The choice of the Frobenius norm is quite arbitrary, it can be replaced by any matrix

norm, for instance, lp (1 ≤ p ≤ ∞). The optimization set in (1.4) is exactly the set of

permutation matrices. Now, given (1.3,1.4), the generalization to the case of weighted

graphs is straightforward. The introduction of edge weights corresponds to replacing

binary elements of matrices G and H by real numbers. Optimization problem (1.4)

in the case of weighted graphs means that we seek a matching which minimize the

32 CHAPTER 1. INTRODUCTION

total difference between all aligned edges. Note, that if we consider weighted graphs,

there is no longer any difference between induced and non-induced subgraphs, the

absence of an edge between two vertices may be considered to be an edge with zero

weight.

The formulation of graph matching in the form of (1.4) was given in [Umeyama,

1988], where Umeyama rewrote the idea of inexact graph isomorphism [Tsai and Fu,

1979] in the form of an optimization problem. We use this formulation, however there

exist alternative formulations of the graph matching problem such as the graph edit

distance. In the next section, we briefly discuss the relation between formulation (1.4)

and other existing definitions of the graph matching problem.

1.3 Alternative formulations of the graph match-

ing problem

In the general case, the graph matching problem is formulated as follows. Given

two graphs, find the correspondence between their vertices which provides the best

alignment of graph structures. This definition is informal since the notion of best

alignment is not uniquely defined. Depending on how we define it, we get different

formulations of the graph matching problem.

1. Exact Matching

� Graph isomorphism: check whether two graphs are the same.

� Subgraph isomorphism: check whether the smallest graph is a subgraph of

the biggest one.

2. Inexact Matching

� MCS: the maximum common subgraph problem.

� Least square formulation: minimize (1.4).

� Graph edit distance.

1.3. ALTERNATIVE FORMULATIONS OF GRAPH MATCHING 33

The variants of exact matching may be seen as particular cases of the least square

formulation. If graphs G and H are of the same size, then they are isomorphic if and

only if minP F (P) = 0. Similarly, if G is smaller than H, then G is a subgraph of H

if and only if minP F (P) = |H| − |G|.
In the case of inexact matching, along with the least square formulation, another

popular approach is based on the graph edit distance. The graph edit distance was

proposed by Tsai and Fu [1979]; Bunke [1983]. It was defined as the minimum amount

of distortion that we need to transform one graph into another. Graph transformation

is performed via insertions, deletions and substitutions of graph vertices and edges.

Each operation has an associated cost, and the transformation distortion is defined

as the total cost of all operations employed. Interestingly, in many cases, the graph

edit distance may be rewritten in terms of the least square formulation, we will show

how this can be done in Section 1.3.5, but first we consider how the least square

formulation may be further generalized to include information on vertex labels, how

the graph matching problem may be rewritten in the form of a quadratic assignment

problem and what can be done if graphs have a different number of vertices.

1.3.1 Vertex labels

An interesting instance of the graph matching problem is the matching of labeled

graphs. In that case, graph vertices have associated labels, which may be numbers,

categorical variables, etc... The important point is that there is also a similarity mea-

sure between these labels. Therefore, when we search for the optimal correspondence

between vertices, we search a correspondence which matches not only the structures

of the graphs but also vertices with similar labels. Some widely used approaches for

this case only use the information about similarities between graph labels. In vision,

one such algorithm is the shape context algorithm proposed by Belongie et al. [2002],

which involves an efficient algorithm of node label construction. Another example

is the BLAST-based algorithms in bioinformatics such as the Inparanoid algorithm

[Brein et al., 2005], where correspondence between different protein networks is estab-

lished on the basis of BLAST scores between pairs of proteins. The main advantages

34 CHAPTER 1. INTRODUCTION

of all these methods are their speed and simplicity. However, these methods do not

take into account information about the graph structure. Some graph matching meth-

ods try to combine information on graph structures and vertex similarities, examples

of such method are presented in [Schellewald et al., 2001; Singh et al., 2008].

The least square formulation may be easily adjusted to include information on

the vertex labels. Let gi and hj denote vertex labels in graphs G and H correspond-

ingly. The optimal alignment of two graphs should not only match edges with similar

weights, but also put into correspondence vertices having similar labels. The new

objective function is the following modification of (1.3)

Fα(P) = (1− α)||G− PHP T ||2F + αtrCP T , (1.5)

where C ∈ RN×N encodes pairwise dissimilarities between vertex labels of two graphs

Cij = dissim(gi, hj), and α controls the trade-off between edge and vertex alignment

components, the greater parameter α, the more attention we pay to alignment of

vertices with similar labels.

1.3.2 Quadratic assignment problem

An interesting fact about the least square formulation is that it can be seen as an

instance of the quadratic assignment problem. The quadratic assignment problem is

formulated as follows

max
P

trAP TBP

subject to

P ∈ {0, 1}N×N , P1N = 1N , P
T 1N = 1N ,

(1.6)

where A and B are N ×N real valued matrices.

The transformation of (1.4) to (1.6) is quite simple, the optimization set is exactly

the same (the set of permutation matrices) and we only need to rewrite the objective

1.3. ALTERNATIVE FORMULATIONS OF GRAPH MATCHING 35

function

||G− PHP T ||2F = ||GP − PHP ||2F
=trP TGTGP − 2trP TGTPH + trHTP TPH

= trGTG− 2trGTPHP T + trHTH

now since trGTG and trHTH do not depend on P

min
P
||G− PHP T ||2F ⇔ max

P
trGTPHP T .

The information on vertex pairwise similarities (see the previous section) may be

also included in the QAP formulation, it corresponds to adding a linear term to the

QAP objective function. This extended formulation of QAP is usually called the

generalized quadratic assignment problem.

1.3.3 Matching graphs of different sizes

Often in practice we have to match graphs of different sizes NG and NH (NG < NH).

In this case we have to match all vertices of graph G to a subset of vertices of graph

H. In the usual case when NG = NH , the error (1.3) corresponds to the number of

mismatched edges (edges which exist in one graph and do not exist in the other one).

When we match graphs of different sizes the situation is a bit more complicated. Let

V +
H ⊂ VH denote the set of vertices of graph H that are selected for matching to

vertices of graph G, let V −
H = VH \ V +

H denote all the rest. Therefore all edges of

the graph H are divided into four parts EH = E++
H ∪E+−

H ∪E−+
H ∪E−−

H , where E++
H

are edges between vertices from V +
H , E−−

H are edges between vertices from V −
H , E+−

H

and E+−
H are edges from V +

H to V −
H and from V −

H to V +
H respectively. For undirected

graphs the sets E+−
H and E+−

H are the same (but, for directed graphs they would

be different). The edges from E−−
H , E+−

H and E−+
H are always mismatched and a

question is whether we have to take them into account in the objective function or

not. According to the answer we have three types of matching error (four for directed

graphs) with interesting interpretations.

36 CHAPTER 1. INTRODUCTION

1. We count only the number of mismatched edges between G and the chosen

subgraph H+ ⊂ H. It corresponds to the case when the matrix P from (1.3) is

a matrix of size NG ×NH and NH −NG columns of P contain only zeros.

2. We count the number of mismatched edges between G and the chosen subgraph

H+ ⊂ H. And we also count all edges from E−−
H , E+−

H and E−+
H . In this case

P from (2.1) is a matrix of size NH ×NH . And we transform AG into a matrix

of size NH × NH by adding NH − NG zero rows and zero columns. It means

that we add dummy isolated vertices to the smallest graph, and then we match

graphs of the same size.

3. We count the number of mismatched edges between G and chosen subgraph

H+ ⊂ H. And we also count all edges from E+−
H (or E−+

H). It means that

we count matching error between G and H+ and we count also the number of

edges which connect H+ and H−. In other words we are looking for subgraph

H+ which is similar to G and which is maximally isolated in the graph H.

Figure 1.3.3 illustrates different types of matching error described above.

Each type of error may be useful according to the context and interpretation, but

a priori, it seems that the best choice is the second one where we add dummy nodes

to the smallest graph. The main reason is the following. Suppose that graph G is

quite sparse, and suppose that graph H has two candidate subgraphs H+
s (also quite

sparse) and H+
d (dense). The upper bound for the matching error between G and

H+
s is #VG + #VH+

s
, the lower bound for the matching error between G and H+

d is

#VH+
d
− #VG. So if #VG + #VH+

s
< #VH+

d
− #VG then we will always choose the

graph H+
s with the first strategy, even if it is not similar at all to the graph G. The

main explanation of this effect lies in the fact that the algorithm tries to minimize

the number of mismatched edges, and not to maximize the number of well matched

edges. In contrast, when we use dummy nodes, we do not have this problem because

if we take a very sparse subgraph H+ it increases the number of edges in H−(the

common number of edges in H+ and H− is constant and is equal to the number of

edges in H) and finally it decreases the quality of matching.

1.3. ALTERNATIVE FORMULATIONS OF GRAPH MATCHING 37

Figure 1.3: Matching of graphs with different number of vertices. On the left graph
G is drawn in red, edge set E++

H is drawn in black (matched edges) and green (mis-
matched edges), E+−

H in blue and E−−
H in brown. On the right, the same edge sets

are represented in terms of the adjacency matrices: green area corresponds to E++
H ,

blue area to E+−
H and brown area to E−−

H

1.3.4 l1 and other alternatives to the l2 norm in the graph

matching problem

To solve the graph matching problem, we seek a mapping between the vertices of two

graphs which minimizes the difference between the adjacency matrix of one graph and

the permuted adjacency matrix of the second graph. In the least square formulation,

the difference is measured by the l2 norm, but, of course, any other matrix norm may

be used. For example, the LP based approach [Almohamad and Duffuaa, 1993] uses

the l1 norm, other choices like lp norms with different p are possible as well. Note,

if we consider only unweighted graphs (with binary adjacency matrices), then all lp

norms (power p) are equivalent

||A||1 = ||A||22 = ||A||pp ∀ 1 ≤ p <∞

38 CHAPTER 1. INTRODUCTION

1.3.5 Graph edit distance

The graph edit distance, which has already been defined above, is based on the no-

tion of an optimal transformation of one graph into another. The graph edit distance

may be seen as a generalization of the string edit distance. In the case of strings,

the set of editing operations consists of deletion, insertion and substitution of char-

acters, and in the case of graphs, we consider deletion, insertion and substitution of

vertices and edges. Below we cite the definition of the graph edit distance used in

[Neuhaus and Bunke, 2007]

Definition 1 Given two graphs G and H, the graph edit distance between G and H

is defined by

ged(G,H) = min
(e1,...,ek)∈P (G,H)

k∑

1

c(ei) , (1.7)

where P (G,H) defines the set of all possible transformations G → H, and c(e1)

denotes the costs of editing operations: deletion, insertion and substitution of graph

vertices and edges.

Each edit operation has an associated cost. Usually, these costs are defined as func-

tions of edge and vertex labels. A natural hypothesis about edit operations is that

a simple operation is always preferable to a sequence. For instance, substitution of

vertex g by vertex h may be done via “substitution” or via “deletion+insertion”, and

a reasonable assumption is that the “substitution” cost should be smaller than the

total “deletion+insertion” cost. Under this hypothesis, the notion of optimal edit

path loses the idea of an ordered set of edit operations, all edit transformations may

be applied simultaneously. Now it becomes clear how the graph edit distance may be

related to formulation (1.5). Substitution of vertex g by vertex h means that these

two vertices are matched to each other, the same is true for edges. When we insert

a new vertex(edge) in graph G and match it to an existing vertex (edge) in graph

H, it is somehow equivalent to deletion of vertices (edges) in graph H. Finally, the

graph edit distance transformation may be seen as a matching of vertices (edges)

which are chosen to be substituted, and then deletion of all unmatched elements in

both graphs. Deletions in both graphs may be seen as matching of deleted vertices

1.3. ALTERNATIVE FORMULATIONS OF GRAPH MATCHING 39

Figure 1.4: The graph edit path as simultaneous matching of all graph vertices and
edges. Substitution operations correspond to matching of vertices and edges, vertex
deletions correspond to alignment with dummy vertices (blue), edge deletion corre-
sponds to alignment with nothing.

to dummy vertices. Figure 1.3.5 gives an illustration of this schema.

To finish the reformulation we have to clarify what happens with insertion, deletion

and substitution costs when we reformulate (1.7) as (1.5). Usually, edit operation

costs are defined as functions of vertex and edge labels. Vertex operation costs may

be encoded directly in the matrix C (see (1.5)), the situation with edges is a bit more

complicated. If edge labels are real valued weights, and substitution and deletion

costs are defined as

subst(gi, hj) = (gi − hj)
2, del(gi) = g2

i , del(hi) = h2
i ,

then the objective function defined in (1.5) equals the total cost of the edit path

transformation. If, for instance, the costs of edit operations are defined as (see

[Ambauen et al., 2003])

subst(gi, hj) = |gi − hj|, del(gi) = |gi|, del(hi) = |hi| ,

40 CHAPTER 1. INTRODUCTION

then we have to replace the Frobenius norm in (1.5) by the l1 norm (see Section 1.3.4).

A similar adaptation of the objective function (1.5) should be made in the case of

alternative edit operation costs.

1.3.6 Complexity of the graph matching problem

In some special cases, for example, when we restrict graph matching to graph isomor-

phism, it is difficult to say what the complexity of the corresponding problem is. For

the moment, there is no known polynomial algorithm for graph isomorphism, and at

the same time we do not know whether this problem is NP-hard or not. However in

the general case, the graph matching problem is NP-hard, this fact follows naturally

from the equivalency of the quadratic assignment problem and graph matching of

weighted directed graphs.

1.4 Early history of graph matching

In this section we try to trace the evolution of the ideas related to the problem of

graph matching. This objective is rather ambiguous and vague, but we believe it may

be interesting to trace back how people came to the idea of graph comparison.

The commonly accepted view is that the first paper related to graph theory was the

paper on the Seven Bridges of Königsberg written by Leonard Euler in 1735. At that

time, the term “graph” had not been introduced, but the problem discussed in this

paper is an example of a graph related problem. The term “graph” was introduced

much later by James Sylvester in his article “Chemistry and algebra”, Nature, 1895.

Interestingly, the roots of graph theory are closely related to what we see now as an

application area for graph-based methods.

As mentioned in the previous section, the current formulation of the graph match-

ing problem was given by Tsai and Fu [1979]. But from a more general point of view,

the graph matching problem represents an approach to graph comparison, a problem

which was known long before [Tsai and Fu, 1979]. In the previous section, we have

shown that the graph isomorphism problem, the subgraph isomorphism problem and

1.4. EARLY HISTORY OF GRAPH MATCHING 41

Figure 1.5: An example of Crum Brown’s drawing: ammonic carbonate structure.

the problem of the maximum common subgraph may be seen as particular cases of

the graph matching problem. These problems are related to different aspects of graph

comparison such as whether two graphs have the same structure, whether one graph

is a subgraph of another and so on. The graph isomorphism problem seems to be

the most studied variant of all graph comparison formulations. The number of pub-

lications (sometimes containing wrong conclusions) on this topic is so big, that the

graph isomorphism problem was called a graph isomorphism disease similarly to the

four-colour problem [Read and Corneil, 1977].

It is hard to say when the graph isomorphism problem was formulated for the first

time. By all appearances, the question about graph isomorphism arose at the same

time that the term “graph” was introduced by J. Sylvester, and again it was closely

related to existing problems in chemistry. In 1864 Alexander Crum Brown published

a paper proposing a new system for the diagramic representation of molecules. His

system is still popular and it corresponds exactly to how we draw graphs today (see

Figure 1.5).

At this time several alternative representation systems were proposed by Couper,

Loschmidt and Kekule, but the one by Crum Brown was the most successful. One

of the reasons for this success is due to the fact that Crum Brown’s system provides

an explanation of the phenomena of molecular isomerism. Isomers are chemical com-

pounds having the same chemical composition but different physico-chemical proper-

ties. For instance, Figure 1.6 shows two isomers: propan-1-ol and propan-2-ol known

42 CHAPTER 1. INTRODUCTION

(a) propylic alcohol (b) Friedel’s alcohol

Figure 1.6: Examples of chemical isomers: propan-1-ol and propan-2-ol

at the time of Crum Brown as Friedel’s alcohol and propylic alcohol.

Obviously, the question of chemical isomerism is equivalent to the graph iso-

morphism problem. Two substances with the same chemical composition represent

different isomers if and only if their graphical notations correspond to non-isomorphic

graphs.

The question of molecular isomers gave rise to graph enumeration theory. Roughly

speaking, in the context of graph enumeration theory, we are interested in counting

graphs with a particular property. The first works on this topic were done by Cayley

[1874, 1859, 1875, 1877] where he proposed a method for counting different rooted

trees with N vertices (Cayley used the term knot). So here, “different” means “non-

isomorphic”, Cayley applied his method to count the number of isomers CnH2n+2.

Much later, Pòyla further developed this theory and proposed a basis for the general

enumeration theory, a new branch in algebra.

About the same time that G.Polyà worked on his enumeration theory, Hassler

Withney published a paper called “Congruent graphs and connectivity of graphs”,

1932, where among other results he showed that two connected graphs are isomorphic

if and only if their line graphs are isomorphic 1. This paper is considered to be one

of the first papers establishing a theoretical fact about graph isomorphism. Withney

did not propose an algorithm for the graph isomorphism problem, but nevertheless

his result is quite important for us, since it provides a better understanding of graph

1 The only exception is K3 and K1,3 graphs

1.4. EARLY HISTORY OF GRAPH MATCHING 43

isomorphism, and actually addresses the graph isomorphism problem in the form as

it is known today.

The next important steps in the development of graph isomorphism algorithms

are related to the evolution of computing hardware. In 1954 Gotusso and Santolini

wrote the article “A Fortran IV quasi-decision algorithm for the P-equivalence of two

matrices”. Two matrices G and H are P-equivalent if there exists a permutation

matrix P such that

G = PHP T .

While they did not consider the graph isomorphism problem directly, we know that the

P-equivalence of graph adjacency matrices means that the corresponding graphs are

isomorphic. Starting in the 1950s, a lot of papers were published proposing different

algorithms for the graph isomorphism problem, we will not discuss them here, a

good review of existing work on graph isomorphism was written by Read and Corneil

[1977] and then completed by Gati [1979] and in a more recent technical report by

Fortin [1996]. We would just like to mention two papers, one by Ray and Kirsch

“Finding Chemical Records by Digital Computers”, 1957 which is considered to be

one of the first papers in modern chemoinformatics, and another one by Sussenguth

“A graph theoretic algorithm for matching chemical structures”, 1963 where he further

developed the ideas of Ray and Kerisch and proposed to use (sub)-graph isomorphism

methods for comparing chemical structures.

In the table below we cite key works which we believe had a significant impact

on the understanding of the graph comparison problem. Further information on

the historical development of graph theory and related concepts can be found in

Biggs et al. [1976]; Diestel [2000]; Godsil and Royle [2000]; Bondy and Murty [1976].

Year Authors Paper & Comments

1735 L. Euler The first publication on a graph related problem: “Seven

Bridges of Königsberg”.

1864 A. Crum Brum New graphic notation for chemical compounds (see Fig-

ure 1.5), understanding the phenomena of chemical iso-

merism.

44 CHAPTER 1. INTRODUCTION

Year Authors Paper & Comments

1875 J. Sylvester His paper “Chemistry and Algebra” is about the similar-

ity between the algebraic theory of binary quantics and

the existing graphic representation of molecules. Intro-

duction of the term graph.

1875 W. Clifford His work was mainly concentrated on the invariants of

binary quantics (“Note on invariants of alternate num-

bers, used as a mean for determining the invariants and

covariants of quantics in general”, “Binary forms of

alternate variables”), W. Clifford proposed the graph-

based notation in this field.

1875-

1877

A. Cayley “On the analytical forms called trees with application

to the theory of chemical combinations”, 1875, “On the

number of univalent radicals CnH2n−1”,1877. Cayley

was interested in how to count trees with a given num-

ber of vertices (knots) and the potential application of

such methods to the enumeration of molecular isomers

1927 J. Redfield His paper “The theory of group-reduced distributions”

was one of the first papers in graph enumeration theory.

While this paper is not well known, it forestalls to some

extent a lot of ideas from G. Polyà’s paper on graph

enumeration.

1929 A. Lunn and J.

Senior

In their paper “Isomerism and Configurations”, they

discuss how the theory of permutation groups may be

used to enumerate molecular isomers.

1930-

1935

G. Polyà In his paper “A general combinatorial problem on groups

of permutations and the calculation of the number of

isomers of organic compounds”, he builds the basis of

modern graph enumeration theory.

1.4. EARLY HISTORY OF GRAPH MATCHING 45

Year Authors Paper & Comments

1930-

1932

H. Whitney Two papers of H. Whitney “Non-separable and planar

graphs”, 1930 and “Congruent graphs and the connectiv-

ity of graphs”, 1932 address the problem of graph iso-

morphism as a pure mathematical problem and study

different properties of isomorphic graphs.

1957 L. Ray, R.

Kirsch

Their paper “Finding chemical records by digital com-

puters” is considered as one of the first papers in

chemoinformatics. They propose an information-

retrieval process for the analysis of the dataset of known

chemical compounds. While they paper is mainly con-

ceptual, it includes some ideas about graph-based com-

parison of molecules.

1957 L. Gatusso, A.

Santolini

Formally speaking, their work “A Fortran IV quasi de-

cision algorithm for the P-equivalence of two matrices”

is not a graph theoretical paper, but since graph isomor-

phism is equivalent to the P-equivalence of two matrices,

this paper may be seen as one of the first papers provid-

ing an algorithm for the graph isomorphism problem.

1963 E. Sussenguth E. Sussenguth further developed the ideas of L. Ray

and R. Kirsch. His paper “A graph theoretic algorithm

for matching chemical structures” is about how graph

isomorphism algorithms may be used to detect similar

chemical compounds.

46 CHAPTER 1. INTRODUCTION

Year Authors Paper & Comments

1950s-

now

see Read and Corneil [1977]; Gati [1979] for the review

of papers on the graph isomorphism problem. Papers

on the application of graph comparison algorithms in

chemistry may be found in [Willett, 2008]. Finally, a

review of various graph matching algorithms proposed

during the last thirty years was recently published by

Conte et al. [2004].

1.4.1 Recent developments in graph matching

As mentioned in the previous section, a good review of existing graph matching meth-

ods may be found in Conte et al. [2004]. In addition to this paper, a review of graph

isomorphism algorithms (and ideas related to graph comparison) published between

1950s and 1979 was proposed by Read and Corneil [1977] and further completed by

Gati [1979].

We would like to mention here some papers to give a general idea about the main

streams in the development of graph matching algorithms. Roughly speaking, there

are three principal groups of algorithms for graph matching (they are all approxi-

mate since this problem is NP-hard in the general case). The first group consists of

branch-and-bounds discrete optimization algorithms, examples are [Cordella et al.,

1996, 2001; Tsai and Fu, 1979]. The second group represents various spectral ap-

proaches. The first spectral method for graph matching was proposed by Umeyama

[1988], then similar approaches were developed by [Carcassoni and Hancock, 2003;

Caelli and Kosinov, 2004; Xu and King, 1994]. A slightly different spectral approach

is used by Leordeanu and Hebert [2005]; Cour et al. [2006]; Leordeanu et al. [2007].

The third group are methods based on different continuous relaxation of the orig-

inal integer programming problem (1.4). Examples are [Gold and Rangarajan, 1996;

Rangarajan and Mjolsness, 1996; Schellewald and Schnorr, 2005; Schellewald et al.,

2001], in Chapter 2 we propose a new method based on a convex-concave continuous

relaxation.

1.5. APPLICATIONS OF GRAPH MATCHING ALGORITHMS 47

A more detailed description of the mentioned algorithms can be found in Sections

2.2.2 and 4.4

1.5 Applications of graph matching algorithms

In the previous sections, we have already seen that chemistry was a fertile ground for

the development of graph theory and ideas related to graph comparison. In 1950s

with the active use of computers in scientific computations, there was born a new

branch of chemistry called chemoinformatics. And already at this time, some of the

pioneering works in this area were dedicated to the application of different graph

comparison algorithms, see, for example, [Sussenguth, 1963].

Another popular application area for graph comparison algorithms is computer

vision including 2D and 3D analysis, image databank searches, video analysis, bio-

metric identification and many other real-life problems. In computer vision, graphs

are used as a universal tool for the representation of images of different kinds.

Recently, graph comparison algorithms have drawn a lot of interest in bioinfor-

matics. Currently, with development of new technologies, we get more and more data

on protein-protein interactions, gene co-expression and gene regulation. Such kinds

of information may be naturally represented in the form of huge networks with nodes

representing proteins or genes and edges representing their interactions. Compari-

son of such networks may be important for answering various questions about the

functional roles of proteins, their interactions and to gain a better understanding of

biological principles.

Other applications of graph matching algorithms include document processing

where graph matching algorithms are used in OCR and electronic design automation

verification software where graph matching algorithms are used for comparison of

electronic circuits.

48 CHAPTER 1. INTRODUCTION

1.6 Graph matching, kernel methods and graph

invariants: alternative approaches to graph com-

parison

An important class of graph comparison algorithms are kernels for graphs. This

relatively new field studies the question of how to construct a positive-semidefinite

similarity measure between graphs. The first paper proposing a kernel for graphs was

written by Gärtner et al. [2002]. Random walk kernels were proposed by Gathner a

year later. Marginalized kernels were generalized to graphs by Kashima et al. [2003]

and further extended by Mahé et al. [2004].

The main difference between kernel methods and graph matching algorithms is

that kernel methods do not produce an alignment between graphs. Roughly speak-

ing, graph matching methods first search for an alignment between graphs and then

measure the quality of the alignment produced, while kernel methods measure the

similarity between graphs by “counting” the number of common small subgraphs.

Therefore, kernels methods may be used in classification and clusterization tasks,

but not in problems where we need to know which vertices (parts) of one graphs

were matched to given vertices (parts) of another graph. At the same time, the

graph matching distance (1.3) provides a true distance (or measure) on graphs, but

this distance does not define directly a positive-definite similarity measure. Formally

speaking, we can not use (1.3) in methods like SVM without additional tricks such

as projection onto the set of positive-definite matrices.

We do not give a detailed description of kernel methods, a good review of ex-

isting works as well as a new unified framework for graph kernels may be found in

[Vishwanathan et al., 2008]. Another interesting source of information is the recently

published book of Neuhaus and Bunke [2007]. In this work, the authors discuss ex-

isting kernels for graphs and how new (or existing) kernels can be constructed on the

basis of the graph edit distance.

Graph matching algorithms and kernel methods may be seen as two principal

1.6. GM, KERNELS AND GRAPH INVARIANTS 49

groups of approaches to graph comparison. However, the most natural method con-

sists in the construction of graph features which are invariant up to a permutation

of graph vertices. This approach is often considered to be a particular case of the

kernel-based approach since one usually uses the resulting feature vector as a part of a

kernel-based algorithm. At the same time, in the context of graph invariant features,

the main emphasis is on the construction of the invariants themselves, not on the

development of sophisticated kernels. That is why we believe that graph invariants

may be seen as a separate group of approaches. Simple examples of graph invari-

ants are the number of graph vertices (edges), eigenvalues of the graph Laplacian

matrix, graph diameter etc. More sophisticated features were proposed recently by

Kondor and Borgwardt [2008]; Kondor et al. [2009] where the authors used elements

of harmonic analysis on permutation groups to construct graph invariants.

Chapter 2

A path following algorithm for the

graph matching problem

Preface

We propose a new graph matching algorithm based on convex-concave programming.

The convex-concave programming formulation is obtained by rewriting the weighted

graph matching problem as a least-square problem on the set of permutation matri-

ces and relaxing it to two different optimization problems: a quadratic convex and

a quadratic concave optimization problem on the set of doubly stochastic matrices.

The concave relaxation has the same global minimum as the initial graph matching

problem, but the search for its global minimum is also a hard combinatorial problem.

We therefore construct an approximation of the concave problem solution by following

a solution path of a convex-concave problem obtained by linear interpolation of the

convex and concave formulations, starting from the convex relaxation. This method

allows to easily integrate the information on graph label similarities into the opti-

mization problem, and therefore to perform labeled weighted graph matching. The

algorithm is compared with some of the best performing graph matching methods

on four datasets: simulated graphs, QAPLib, retina vessel images and handwritten

chinese characters. In all cases, the results are competitive with the state-of-the-art.

This chapter is a slightly modified version of [Zaslavskiy et al., 2008c].

50

51

Our initial motivation was to create an efficient algorithm for graph comparison

based on graph alignment. We started with ideas similar to the spectral approach

of Umeyama [1988], but very soon realized that this approach had several major

drawbacks: the graph spectral representation is not unique since eigenvectors are

always defined up to a sign, and if there are close eigenvalues, then the corresponding

eigenvectors are defined up to a rotation. So we decided to develop an alternative

approach based on a continuous relaxation of the integer programming problem.

Originally, the new method was proposed for matching of undirected weighted

labeled graphs. The symmetry of the graph adjacency matrix is crucial since the pro-

posed concave relaxation can not be constructed for directed graphs with asymmetric

adjacency matrices. Processing of directed graphs was an open question when the

article was finished.

A possible way to run the proposed algorithm on directed graphs is to use the

following transformation procedure which reduces the graph matching problem on

N×N directed graphs to a graph matching problem on 2N×2N undirected graphs1.

Let G and H denote two weighted2 directed graphs to be matched. First, we split

each vertex gi in graph G into two vertices gin
i and gout

i , then we keep edges which are

going into gi as incident edges to vertex gin
i (making them undirected) and edges which

are coming out gi as incident edges to gout
i (and make them undirected). Finally we

connect gin
i and gour

i by an edge with weight M = 2(
∑

i,j Gij +
∑

i,j Hij)+maxi,j Gij +

maxi,j Hij. The new graph G′ is an undirected graph with 2N vertices. The same

transformation is performed on graph H. Now, the optimal graph matching between

G′ and H ′ under constraints that in vertices can be matched only to in vertices and
out only to out is equivalent to the optimal matching of G and H.

It is easy to show that in the optimal alignment of G′ and H ′ if gin
i is matched to

hin
j then gout

i is matched to hout
j and vice versa (this means that M -edges are always

aligned with each other). Indeed, if all M -edges are aligned only with M -edges then

function FG′,H′(P) may be upper bounded by 2(
∑

ij Gij +
∑

ij Hij). At the same time

1Similar ideas are used in the traveling salesman problem to reduce asymmetric TSP to symmetric
TSP, but we are not aware of any published transformation procedures for graph matching.

2 We suppose that all edges have non-negative weights, otherwise we can add a positive constant
to all edge weights to make them positive.

52 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

if at least one M -edge of graph G′ is matched to an ordinary edge of H ′, then function

FG′,H′(P) may be lower bounded byM−maxHij = 2(
∑

i,j Gij+
∑

i,j Hij)+maxi,j Gij.

Now, when gin,out
i are matched to hin,out

j , it corresponds to matching gi ∼ hj in the

original graphs and

2F opt
G,H = F opt

G′,H′ .

2.1 Introduction

During the last decades, many different algorithms for graph matching have been

proposed. Because of the combinatorial nature of this problem, it is very hard to solve

it exactly for large graphs, however some methods based on incomplete enumeration

may be applied to search for an exact optimal solution in the case of small or sparse

graphs. Some examples of such algorithms may be found in [Schmidt and Druffel,

1976; Ullmann, 1976; Cordella et al., 1999].

Another group of methods includes approximate algorithms which are supposed

to be more scalable. The price to pay for the scalability is that the solution found is

usually only an approximation of the optimal matching. Approximate methods may

be divided into two groups of algorithms. The first group is composed of methods

which use spectral representations of adjacency matrices, or equivalently embed the

vertices into a Euclidean space where linear or nonlinear matching algorithms can

be deployed. This approach was pioneered by Umeyama [1988], while further differ-

ent methods based on spectral representations were proposed in [Shapiro and Brady,

1992; Carcassoni and Hancock, 2003; Luo and Hancock, 2000; Wang and Hancock,

2006; Caelli and Kosinov, 2004]. The second group of approximate algorithms is

composed of algorithms which work directly with graph adjacency matrices, and typ-

ically involve a relaxation of the discrete optimization problem. The most effective

algorithms were proposed in [Almohamad and Duffuaa, 1993; Gold and Rangarajan,

1996; Schellewald et al., 2001; Schellewald and Schnorr, 2005].

In this article we propose an approximate method for labeled weighted graph

matching, based on a convex-concave programming approach which can be applied

for matching of graphs of large sizes. Our method is based on a formulation of the

2.1. INTRODUCTION 53

labeled weighted graph matching problem as a quadratic assignment problem (QAP)

over the set of permutation matrices, where the quadratic term encodes the struc-

tural compatibility and the linear term encodes local compatibilities. We propose

two relaxations of this problem, resulting in one quadratic convex and one quadratic

concave minimization problem on the set of doubly stochastic matrices. While the

concave relaxation has the same global minimum as the initial QAP, solving it is

also a hard combinatorial problem. We find a local minimum of this problem by

following a solution path of a family of convex-concave minimization problems, ob-

tained by linearly interpolating between the convex and concave relaxations. Starting

from the convex formulation with a unique local (and global) minimum, the solution

path leads to a local optimum of the concave relaxation. We refer to this proce-

dure as the PATH algorithm3. We perform an extensive comparison of this PATH

algorithm with several state-of-the-art matching methods on small simulated graphs

and various QAP benchmarks, and show that it consistently provides state-of-the-art

performances while scaling to graphs of up to a few thousands vertices on a modern

desktop computer. We further illustrate the use of the algorithm on two applications

in image processing, namely the matching of retina images based on vessel organiza-

tion, and the matching of handwritten chinese characters.

The rest of the chapter is organized as follows: Section 2.2 presents the math-

ematical formulation of the graph matching problem. In Section 2.3, we present

our new approach. Then, in Section 2.4, we present the comparison of our method

with Umeyama’s algorithm [Umeyama, 1988] and the linear programming approach

[Almohamad and Duffuaa, 1993] on the example of artificially simulated graphs. In

Section 2.5, we test our algorithm on the QAP benchmark library, and we compare

obtained results with the results published by Schellewald et al. [2001] for the QBP

algorithm and graduated assignment algorithms. Finally, in Section 2.6 we present

two examples of applications to real-world image processing tasks.

3The PATH algorithm as well as other referenced approximate methods are implemented in the
software GraphM available at http://cbio.ensmp.fr/graphm

54 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

2.2 Problem description

A graph G = (V,E) of size N is defined by a finite set of vertices V = {1, . . . , N}
and a set of edges E ⊂ V ×V . We consider only undirected graphs with no self-loop,

i.e., such that (i, j) ∈ E =⇒ (j, i) ∈ E and (i, i) /∈ E for any vertices i, j ∈ V .

Each such graph can be equivalently represented by a symmetric adjacency matrix A

of size |V | × |V |, where AIa is equal to one if there is an edge between vertex i and

vertex j, and zero otherwise. An interesting generalization is a weighted graph which

is defined by association of nonnegative real values wij (weights) to all edges of graph

G. Such graphs are represented by real valued adjacency matrices A with Aij = wij.

This generalization is important because in many applications the graphs of interest

have associated weights for all their edges, and taking into account these weights may

be crucial in construction of efficient methods. In the following, when we talk about

“adjacency matrix” we mean a real-valued “weighted” adjacency matrix.

Given two graphs G and H with the same number of vertices N , the problem of

matching G and H consists in finding a correspondence between vertices of G and

vertices of H which aligns G and H in some optimal way. We will consider in Section

1.3.3 an extension of the problem to graphs of different sizes. For graphs with the

same size N , the correspondence between vertices is a permutation of N vertices,

which can be defined by a permutation matrix P , i.e., a {0, 1}-valued N ×N matrix

with exactly one entry 1 in each column and each row. The matrix P entirely defines

the mapping between vertices of G and vertices of H, Pij being equal to 1 if the i-th

vertex of G is matched to the j-th vertex of H, and 0 otherwise. After applying the

permutation defined by P to the vertices of H we obtain a new graph isomorphic to

H which we denote by P (H). The adjacency matrix of the permuted graph, AP (H),

is simply obtained from AH by the equality AP (H) = PAHP
T .

In order to assess whether a permutation P defines a good matching between the

vertices of G and those of H, a quality criterion must be defined. Although other

choices are possible, we focus in this chapter on measuring the discrepancy between

the graphs after matching, by the number of edges (in the case of weighted graphs,

it will be the total weight of edges) which are present in one graph and not in the

2.2. PROBLEM DESCRIPTION 55

other. In terms of adjacency matrices, this number can be computed as:

F0(P) = ||AG − AP (H)||2F = ||AG − PAHP
T ||2F , (2.1)

where ||.||F is the Frobenius matrix norm defined by ‖A‖2F = trATA = (
∑

i

∑
j A

2
ij).

A popular alternative to the Frobenius norm formulation (2.1) is the 1-norm formu-

lation obtained by replacing the Frobenius norm by the 1-norm ‖A‖1 =
∑

i

∑
j |Aij|,

which is equal to the square of the Frobenius norm ‖A‖2F when comparing {0, 1}-
valued matrices, but may differ in the case of general matrices.

Therefore, the problem of graph matching can be reformulated as the prob-

lem of minimizing F0(P) over the set of permutation matrices. This problem has

a combinatorial nature and there is no known polynomial algorithm to solve it

[Garey and Johnson, 1979]. It is therefore very hard to solve it in the case of large

graphs, and numerous approximate methods have been developed.

2.2.1 Permutation matrices

Before describing how we propose to solve (2.1) and (1.5), we first introduce some

notations and bring to notice some important characteristics of these optimization

problems. They are defined on the set of permutation matrices, which we denoted by

P . The set P is a set of extreme points of the set of doubly stochastic matrices, that

is, matrices with nonnegative entries and with row sums and column sums equal to

one: D = {A : A1N = 1N , A
T 1N = 1N , A ≥ 0}, where 1N denotes the N -dimensional

vector of all ones [Borwein and Lewis, 2000]. This shows that when a linear function

is minimized over the set of doubly stochastic matrices D, a solution can always be

found in the set of permutation matrices. Consequently, minimizing a linear function

over P is in fact equivalent to a linear program and can thus be solved in polynomial

time by, e.g., interior point methods [Boyd and Vandenberghe, 2004]. In fact, one of

the most efficient methods to solve this problem is the Hungarian algorithm, which

uses a specific primal-dual strategy to solve this problem in O(N3) [McGinnis, 1983].

Note that the Hungarian algorithm allows to avoid the generic O(N7) complexity

associated with a linear program with N2 variables.

56 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

At the same time P may be considered as a subset of orthonormal matrices O =

{A : ATA = I} of D and in fact P = D∩O. An (idealized) illustration of these sets is

presented in Figure 2.1: the discrete set P of permutation matrices is the intersection

of the convex set D of doubly stochastic matrices and the manifold O of orthogonal

matrices.

Figure 2.1: Relation between three matrix sets. O—set of orthogonal matrices, D —
set of doubly stochastic matrices, P = D ∩O—set of permutation matrices.

2.2.2 Approximate methods: existing works

A good review of graph matching algorithms may be found in [Conte et al., 2004].

Here, we only present a brief description of some approximate methods which il-

lustrate well ideas behind two subgroups of these algorithms. As mentioned in the

introduction, one popular approach to find approximate solutions to the graph match-

ing problem is based on the spectral decomposition of the adjacency matrices of the

graphs to be matched. In this approach, the singular value decompositions of the

graph adjacency matrices are used:

AG = UGΛGU
T
G , AH = UHΛHU

T
H ,

where the columns of the orthogonal matrices UG and UH consist of eigenvectors of

AG and AH respectively, and ΛG and ΛH are diagonal matrices of eigenvalues.

2.2. PROBLEM DESCRIPTION 57

If we consider the rows of eigenvector matrices UG and UH as graph node coordi-

nates in eigenspaces, then we can match the vertices with similar coordinates through

a variety of methods [Umeyama, 1988; Carcassoni and Hancock, 2003; Caelli and Kosinov,

2004]. However, these methods suffer from the fact that the spectral embedding of

graph vertices is not uniquely defined. First, the unit norm eigenvectors are at most

defined up to a sign flip and we have to choose their signs synchronously. Although

it is possible to use some normalization convention, such as choosing the sign of each

eigenvector in such a way that the biggest component is always positive, this usually

does not guarantee a perfect sign synchronization, in particular in the presence of

noise. Second, if the adjacency matrix has multiple eigenvalues, then the choice of

eigenvectors becomes arbitrary within the corresponding eigen-subspace, as they are

defined only up to rotations [Golub and Loan, 1996].

One of the first spectral approximate algorithms was presented by Umeyama

[1988]. To avoid the ambiguity of eigenvector selection, Umeyama proposed to con-

sider the absolute values of eigenvectors. According to this approach, the correspon-

dence between graph nodes is established by matching the rows of |UG| and |UH |
(which are defined as matrices of absolute values). The criterion of optimal matching

is the total distance between matched rows, leading to the optimization problem:

min
P∈P

‖ |UG| − P |UH | ‖F ,

or equivalently:

max
P∈P

tr(|UH ||UG|TP) . (2.2)

The optimization problem (2.2) is a linear program on the set of permutation matrices

which can be solved by the Hungarian algorithm in O(N3) [McGinnis, 1983; Kuhn,

1955].

Recently Leordeanu and Hebert [2005]; Cour et al. [2006]; Leordeanu et al. [2007]

proposed an alternative spectral approach. They reformulated the graph matching

58 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

problem as a quadratic assignment problem

max
x

xTMx

subject to Sx = 1, x ∈ {0, 1}N2

,
(2.3)

where M is the square matrix representing pairwise similarties between graph edges

M(i,j),(i′,j′) = sim(Gij, Hij) and x encodes a consistent assignment between graph

edges xi+jN = 1 if vertex i of graphG is matched to vertex j of graphH (x corresponds

to vec(P) and S controls that x is consistent). If sim is the simple scalar product

between edge weights i.e. M = AG⊗AH , then (2.3) is eqiuvalent to the classical for-

mulation of graph matching. Leordeanu and Hebert [2005] proposed a relaxation of

(2.3), where optimization constraints are replaced by ||x||2 = 1, x ∈ [0, 1]N
2
. The op-

timal solution of the resulting continious optimization problem is the first eigenvector

of M (Raleigh’s ratio theorem and Perron-Frobenius theorem). Finally, to construct

the optimal assignment we can project x on the set of permutation matrices. Again if

sim is the simple scalar product, then xopt can be expressed as the tensor product of

the first eigenvector of AH and the first eigenvector of AG, otherwise, in the general

case, we can compute the first eigenvector of M in O((N2)3/2).

The second group of approximate methods consists of algorithms which work

directly with the objective function in (2.1), and typically involve various relaxations

to optimizations problems that can be efficiently solved. An example of such an

approach is the linear programming method proposed by Almohamad and Duffuaa

[1993]. They considered the 1-norm as the matching criterion for a permutation

matrix P ∈ P:

F ′
0(P) = ||AG − PAHP

T ||1 = ||AGP − PAH ||1.

The linear program relaxation is obtained by optimizing F ′
0(P) on the set of doubly

stochastic matrices D instead of P :

min
P∈D

F ′
0(P) , (2.4)

2.3. CONVEX-CONCAVE RELAXATION 59

where the 1-norm of a matrix is defined as the sum of the absolute values of all the

elements of a matrix. A priori the solution of (2.4) is an arbitrary doubly stochastic

matrixX ∈ D, so the final step is a projection ofX on the set of permutation matrices

(we let denote ΠPX the projection of X onto P) :

P ∗ = ΠPX = arg min
P∈P

||P −X||2F ,

or equivalently:

P ∗ = arg max
P∈P

XTP . (2.5)

The projection (2.5) can be performed with the Hungarian algorithm, with a com-

plexity cubic in the dimension of the problem. The main disadvantage of this method

is that the dimensionality (i.e., number of variables and number of constraints) of the

linear program (2.5) is O(N2), and therefore it is quite hard to process graphs of size

more than one hundred nodes.

Other convex relaxations of (2.1) can be found in [Schellewald et al., 2001] and

[Gold and Rangarajan, 1996]. In the next section we describe our new algorithm

which is based on the technique of convex-concave relaxations of the initial problems

(2.1) and (1.5).

2.3 Convex-concave relaxation

Let us start the description of our algorithm for unlabeled weighted graphs. The

generalization to labeled weighted graphs is presented in Section 2.3.7. The graph

matching criterion we consider for unlabeled graphs is the square of the Frobenius

norm of the difference between adjacency matrices (2.1). Since permutation matrices

are also orthogonal matrices (i.e., PP T = I and P TP = I), we can rewrite F0(P) on

P as follows:

F0(P) = ‖AG − PAHP
T‖2F = ‖(AG − PAHP

T)P‖2F
= ‖AGP − PAH‖2F .

60 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

The graph matching problem is then the problem of minimizing F0(P) over P , which

we call GM:

GM: min
P∈P

F0(P) . (2.6)

2.3.1 Convex relaxation

A first relaxation of GM is obtained by expanding the convex quadratic function

F0(P) on the set of doubly stochastic matrices D:

QCV: min
P∈D

F0(P) . (2.7)

The QCV problem is a convex quadratic program that can be solved in polynomial

time, e.g., by the Frank-Wolfe algorithm [Frank and Wolfe, 1956] (see Section 2.3.5

for more details). However, the optimal value is usually not an extreme points of D,

and therefore not a permutation matrix. If we want to use only QCV for the graph

matching problem, we therefore have to project its solution on the set of permutation

matrices, and to make, e.g., the following approximation:

arg min
P

F0(P) ≈ ΠP arg min
D

F0(P) . (2.8)

Although the projection ΠP can be made efficiently in O(N3) by the Hungarian

algorithm, the difficulty with this approach is that if arg minD F0(P) is far from P
then the quality of the approximation (2.8) may be poor: in other words, the work

performed to optimize F0(P) is partly lost by the projection step which is independent

of the cost function. The PATH algorithm that we present later can be thought of as

a improved projection step that takes into account the cost function in the projection.

2.3.2 Concave relaxation

We now present a second relaxation of GM, which results in a concave minimization

problem. For that purpose, let us introduce the diagonal degree matrix D of an adja-

cency matrix A, which is the diagonal matrix with entries Dii = d(i) =
∑N

i=1Aij for

i = 1, . . . , N , as well as the Laplacian matrix L = D−A. A having only nonnegative

2.3. CONVEX-CONCAVE RELAXATION 61

entries, it is well-known that the Laplacian matrix is positive semidefinite [Chung,

1997]. We can now rewrite F0(P) as follows:

F0(P) =||AGP − PAH ||2F
=||(DGP − PDH)− (LGP − PLH)||2F
=||DGP − PDH ||2F
− 2tr[(DGP − PDH)T (LGP − PLH)]

+ ||LGP − PLH ||2F .

(2.9)

Let us now consider more precisely the second term in this last expression:

tr[(DGP − PDH)T (LGP − PLH)]

= trPP TDT
GLG︸ ︷︷ ︸

P

d2
G

(i)

+ trLHD
T
HP

TP︸ ︷︷ ︸
P

d2
H

(i)

− trP TDT
GPLH︸ ︷︷ ︸

P

dG(i)dP (H)(i)

− trDT
HP

TLGP︸ ︷︷ ︸
P

dP (H)(i)dG(i)

=
∑

(dG(i)− dP (H)(i))
2 = ‖DG −DP (H)‖2F

= ‖DGP − PDH‖2F .

(2.10)

Plugging (2.10) into (2.9) we obtain

F0(P) = ‖DGP − PDH‖2F − 2‖DGP − PDH‖2F
+ ‖LGP − PLH‖2F
= −‖DGP − PDH‖2F + ‖LGP − PLH‖2F
= −

∑

i,j

Pij(DG(j)−DH(i))2 + tr(PP T
︸ ︷︷ ︸

I

LT
GLG)

+ tr(LT
H P

TP︸ ︷︷ ︸
I

LH)− 2 tr(P TLT
GPLH)︸ ︷︷ ︸

vec(P)T (LT
H
⊗LT

G
)vec(P)

= −tr(∆P) + tr(L2
G) + tr(L2

H)

− 2vec(P)T (LT
H ⊗ LT

G)vec(P) ,

(2.11)

62 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

where we introduced the matrix ∆i,j = (DH(j, j)−DG(i, i))2 and we used ⊗ to denote

the Kronecker product of two matrices (definition of the Kronecker product and some

important properties may be found in the appendix 2.B).

Let us denote F1(P) the part of (2.11) which depends on P :

F1(P) = −tr(∆P)− 2vec(P)T (LT
H ⊗ LT

G)vec(P).

From (2.11) we see that the permutation matrix which minimizes F1 over P is the

solution of the graph matching problem. Now, minimizing F1(P) over D gives us a

relaxation of (2.6) on the set of doubly stochastic matrices. Since graph Laplacian ma-

trices are positive semi-definite, the matrix LH ⊗LG is also positive semidefinite as a

Kronecker product of two symmetric positive semi-definite matrices [Golub and Loan,

1996]. Therefore the function F1(P) is concave on D, and we obtain a concave relax-

ation of the graph matching problem:

QCC: min
P∈D

F1(P). (2.12)

Interestingly, the global minimum of a concave function is necessarily located at a

boundary of the convex set where it is minimized [Rockafeller, 1970], so the minimium

of F1(P) on D is in fact in P .

At this point, we have obtained two relaxations of GM as nonlinear optimization

problems on D: the first one is the convex minimization problem QCV (2.7), which

can be solved efficiently but leads to a solution in D that must then be projected

onto P , and the other is the concave minimization problem QCC (2.12) which does

not have an efficient (polynomial) optimization algorithm but has the same solution

as the initial problem GM. We note that these convex and concave relaxation of the

graph matching problem can be more generally derived for any quadratic assignment

problems [Anstreicher and Brixius, 2001].

2.3. CONVEX-CONCAVE RELAXATION 63

2.3.3 PATH algorithm

We propose to approximately solve QCC by tracking a path of local minima over D
of a series of functions that linearly interpolate between F0(P) and F1(P), namely:

Fλ(P) = (1− λ)F0(P) + λF1(P) ,

for 0 ≤ λ ≤ 1. For all λ ∈ [0, 1], Fλ is a quadratic function (which is in general neither

convex nor concave for λ away from zero or one). We recover the convex function F0

for λ = 0, and the concave function F1 for λ = 1. Our method searches sequentially

local minima of Fλ, where λ moves from 0 to 1. More precisely, we start at λ = 0, and

find the unique local minimum of F0 (which is in this case its unique global minimum)

by any classical QP solver. Then, iteratively, we find a local minimum of Fλ+dλ given

a local minimum of Fλ by performing a local optimization of Fλ+dλ starting from

the local minimum of Fλ, using for example the Frank-Wolfe algorithm. Repeating

this iterative process for dλ small enough we obtain a path of solutions P ∗(λ), where

P ∗(0) = arg minP∈D F0(P) and P ∗(λ) is a local minimum of Fλ for all λ ∈ [0, 1].

Noting that any local minimum of the concave function F1 on D is in P , we finally

output P ∗(1) ∈ P as an approximate solution of GM.

Our approach is similar to graduated non-convexity [Blake and Zisserman, 1987]:

this approach is often used to approximate the global minimum of a non-convex ob-

jective function. This function consists of two part, the convex component, and non-

convex component, and the graduated non-convexity framework proposes to track the

linear combination of the convex and non-convex parts (from the convex relaxation to

the true objective function) to approximate the minimum of the non-convex function.

The PATH algorithm may indeed be considered as an example of such an approach.

However, the main difference is the construction of the objective function. Unlike

Blake and Zisserman [1987], we construct two relaxations of the initial optimization

problem, which lead to the same value on the set of interest (P), the goal being to

choose convex/concave relaxations which approximate in the best way the objective

function on the set of permutation matrices.

64 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

The pseudo-code for the PATH algorithm is presented in Figure 2.2. The ratio-

nale behind it is that among the local minima of F1(P) on D, we expect the one

connected to the global minimum of F0 through a path of local minima to be a good

approximation of the global minima. Such a situation is for example shown in Figure

2.3, where in 1 dimension the global minimum of a concave quadratic function on an

interval (among two candidate points) can be found by following the path of local

minima connected to the unique global minimum of a convex function.

1. Initialization:

(a) λ := 0

(b) P ∗(0) = arg minF0 — convex optimization problem, global minimum is
found by Frank-Wolfe algorithm.

2. Cycle over λ:
while λ < 1

(a) λnew := λ+ dλ

(b) if |Fλnew
(P ∗(λ))− Fλ(P

∗(λ))| < ǫλ then
λ = λnew

else P ∗(λnew) = arg minFλnew
is found

by Frank-Wolfe starting from P ∗(λ)
λ = λnew

3. Output: P out := P ∗(1)

Figure 2.2: Schema of the PATH algorithm

More precisely, and although we do not have any formal result about the optimality

of the PATH optimization method (beyond the lack of global optimality, see Appendix

2.A), we can mention a few interesting properties of this method:

� We know from (2.11) that for P ∈ P, F1(P) = F0(P)− κ, where κ = tr(L2
G) +

tr(L2
H) is a constant independent of P . As a result, it holds for all λ ∈ [0, 1]

that, for P ∈ P:

Fλ(P) = F0(P)− λκ .

2.3. CONVEX-CONCAVE RELAXATION 65

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

λ=1

λ=0.75

λ=0.3
λ=0.2

λ=0.1
λ=0

Figure 2.3: Illustration for path optimization approach. F0 (λ = 0) — initial convex
function, F1 (λ = 1) — initial concave function, bold black line — path of function
minima P ∗(λ) (λ = 0 . . . 0.1 . . . 0.2 . . . 0.3 . . . 0.75 . . . 1)

This shows that if for some λ the global minimum of Fλ(P) over D lies in P ,

then this minimum is also the global minimum of F0(P) over P and therefore

the optimal solution of the initial problem. Hence, if for example the global

minimum of Fλ is found on P by the PATH algorithm (for instance, if Fλ is

still convex), then the PATH algorithm leads to the global optimum of F1. This

situation can be seen in the toy example in Figure 2.3 where, for λ = 0.3, Fλ

has its unique minimum at the boundary of the domain.

� The sub-optimality of the PATH algorithm comes from the fact that, when λ

increases, the number of local minima of Fλ may increase and the sequence

of local minima tracked by PATH may not be global minima. However we

can expect the local minima followed by the PATH algorithm to be interesting

approximations for the following reason. First observe that if P1 and P2 are

two local minima of Fλ for some λ ∈ [0, 1], then the restriction of Fλ to (P1, P2)

being a quadratic function it has to be concave and P1 and P2 must be on

the boundary of D. Now, let λ1 be the smallest λ such that Fλ has several

local minima on D. If P1 denotes the local minima followed by the PATH

algorithm, and P2 denotes the “new” local minimum of Fλ1 , then necessarily

66 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

the restriction of Fλ1 to (P1, P2) must be concave and have a vanishing derivative

in P2 (otherwise, by continuity of Fλ in λ, there would be a local minimum of

Fλ near P2 for λ slightly smaller than λ1). Consequently we necessarily have

Fλ1(P1) < Fλ1(P2). This situation is illustrated in Figure 2.3 where, when the

second local minimum appears for λ = 0.75, it is worse than the one tracked by

the PATH algorithm. More generally, when “new” local minima appear, they

are strictly worse than the one tracked by the PATH algorithm. Of course, they

may become better than the PATH solution when λ continues to increase.

Of course, in spite of these justifications, the PATH algorithm only gives an ap-

proximation of the global minimum in the general case. In Appendix 2.A, we provide

two simple examples when the PATH algorithm respectively succeeds and fails to find

the global minimum of the graph matching problem.

2.3.4 Numerical continuation method interpretation

Our path following algorithm may be considered as a particular case of numerical con-

tinuation methods (sometimes called path following methods) [Allgower and K.Georg,

1990]. These allow to estimate curves given in the following implicit form:

T (u) = 0 where T is a mapping T : RK+1 → RK . (2.13)

In fact, our PATH algorithm corresponds to a particular implementation of the so-

called Generic Predictor Corrector Approach [Allgower and K.Georg, 1990] widely

used in numerical continuation methods.

In our case, we have a set of problems minP∈D (1− λ)F0(P) + λF1(P) parametrized

by λ ∈ [0, 1]. In other words for each λ we have to solve the following system of

Karush-Kuhn-Tucker (KKT) equations:

(1− λ)∇PF0(P) + λ∇PF1(P) +BTν + µS = 0 ,

BP− 12N = 0 ,

PS = 0 ,

2.3. CONVEX-CONCAVE RELAXATION 67

where S is a set of active constraints, i.e., of pairs of indices (i, j) that satisfy Pij = 0,

BP − 12N = 0 codes the conditions
∑

j Pij = 1 ∀i and
∑

i Pij = 1 ∀j, ν and µS are

dual variables. We have to solve this system for all possible sets of active constraints

S on the open set of matrices P that satisfy Pi,j > 0 for (i, j) /∈ S, in order to define

the set of stationary points of the functions Fλ. Now if we let T (P, ν, µ, λ) denote

the left-hand part of the KKT equation system then we have exactly (2.13) with

K = N2 + 2N + #S. From the implicit function theorem [Milnor, 1969], we know

that for each set of constraints S,

WS ={(P, ν, µS, λ) : T (P, ν, µS, λ) = 0 and

T ′(P, ν, µS, λ) has the maximal possible rank}

is a smooth 1-dimensional curve or the empty set and can be parametrized by λ.

In term of the objective function Fλ(P), the condition on T ′(P, ν, µS, λ) may be

interpreted as a prohibition for the projection of Fλ(P) on any feasible direction

to be a constant. Therefore the whole set of stationary points of Fλ(P) when λ is

varying from 0 to 1 may be represented as a union W (λ) = ∪SWS(λ) where each

WS(λ) is homotopic to a 1-dimensional segment. The set W (λ) may have quite

complicated form. Some of WS(λ) may intersect each other, in this case we observe

a bifurcation point, some of WS(λ) may connect each other, in this case we have a

transformation point of one path into another, some of WS(λ) may appear only for

λ > 0 and/or disappear before λ reaches 1. At the beginning the PATH algorithm

starts from W∅(0), then it follows W∅(λ) until the border of D (or a bifurcation

point). If such an event occurs before λ = 1 then PATH moves to another segment of

solutions corresponding to different constraints S, and keeps moving along segments

and sometimes jumping between segments until λ = 1. As we said in the previous

section one of the interesting properties of PATH algorithm is the fact that if W ∗
S(λ)

appears only when λ = λ1 and W ∗
S(λ1) is a local minimum then the value of the

objective function Fλ1 in W ∗
S(λ1) is greater than in the point traced by the PATH

algorithm.

68 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

2.3.5 Some implementation details

In this section we provide a few details relevant for the efficient implementation of

the PATH algorithms.

Frank-Wolfe Among the different optimization techniques for the optimization of

Fλ(P) starting from the current local minimum tracked by the PATH algorithm,

we use in our experiments the Frank-Wolfe algorithm which is particularly suited

to optimization over doubly stochastic matrices [Bertsekas, 1999]. The idea of the

this algorithm is to sequentially minimize linear approximations of F0(P). Each step

includes three operations:

1. estimation of the gradient ∇Fλ(Pn),

2. resolution of the linear program P ∗
n = arg minP∈D〈∇Fλ(Pn), P 〉,

3. line search: finding the minimum of Fλ(P) on the segment [Pn P
∗
n].

An important property of this method is that the second operation can be done

efficiently by the Hungarian algorithm, in O(N3).

Efficient gradient computations Another essential point is that we do not need

to store matrices of size N2×N2 for the computation of ∇F1(P), because the tensor

product in ∇F1(P) = −vec(∆T) − 2(LT
H ⊗ LT

G)vec(P) can be expressed in terms of

N ×N matrix multiplication:

∇F1(P) = −vec(∆T)− 2(LT
H ⊗ LT

G)vec(P)

= −vec(∆T)− 2vec(LT
GPLH).

The same thing may be done for the gradient of the convex component

∇F0(P) = ∇[vec(P)TQvec(P)]

where Q = (I ⊗ AG − AT
H ⊗ I)T (I ⊗ AG − AT

H ⊗ I)
∇F0(P) = 2Qvec(P)

= 2vec(A2
GP − AT

GPA
T
H − AGPAH + PA2

H)

2.3. CONVEX-CONCAVE RELAXATION 69

Initialization The proposed algorithm can be accelerated by the application of

Newton algorithm as the first step of QCV (minimization of F0(P)). First, let us

rewrite the QCV problem as follows:

min
P∈D

‖AGP − PAH‖2F ⇔

min
P∈D

vec(P)TQvec(P)⇔





minP vec(P)TQvec(P)

such that

Bvec(P) = 12N

vec(P) ≥ 0N2

(2.14)

where B is the matrix which codes the conditions
∑

j

Pi,j = 1 and
∑

i

Pi,j = 1. The

Lagrangian has the following form

L(P, ν, λ) =vec(P)TQvec(P) + νT (Bvec(P)

− 12N) + µT vec(P),

where ν and µ are Lagrange multipliers. Now we would like to use Newton method

for constrained optimization [Bertsekas, 1999] to solve (2.14). Let µa denote the set of

variables associated to the set of active constraints vec(P) = 0 at the current points,

then the Newton step consist in solving the following system of equations:




2Q BT Ia

B 0 0

Ia 0 0







vec(P)

ν

µa


 =




0

1

0




N2 elements,

2N elements,

of act. ineq. cons.

(2.15)

More precisely we have to solve (2.15) for P . The problem is that in general situa-

tions this problem is computationally demanding because it involves the inversion of

matrices of size O(N2)×O(N2). In some particular cases, however, the Newton step

becomes feasible. Typically, if none of the constraints vec(P) ≥ 0 are active, then

70 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

(2.15) takes the following form4:

[
2Q BT

B 0

][
vec(P)

ν

]
=

[
0

1

]
N2 elements ,

2N elements .
(2.16)

The solution is then obtained as follows:

vec(P)KKT =
1

2
Q−1BT (BQ−1BT)−112N . (2.17)

Because of the particular form of matrices Q and B, the expression (2.17) may be

computed very simply with the help of Kronecker product properties in O(N3) instead

of O(N6). More precisely, the first step is the calculation of M = BQ−1BT where

Q = (I ⊗ AG − AT
H ⊗ I)2. The matrix Q−1 may be represented as follows:

Q−1 = (UH ⊗ UG)(I ⊗ ΛG − ΛH ⊗ I)−2(UH ⊗ UG)T . (2.18)

Therefore the (i, j)-th element of M is the following product:

BiQ
−1BT

j = vec(UT
HB̃i

T
UG)T)(ΛG − ΛH)−2

× vec(UT
GB̃j

T
UH) ,

(2.19)

where Bi is the i-th row of B and B̃i is Bi reshaped into a N×N matrix. The second

step is an inversion of the 2N×2N matrixM , and a sum over columnsM s = M−112N .

The last step is a multiplication of Q−1 by BTM s, which can be done with the same

tricks as the first step. The result is the value of matrix PKKT . We then have two

possible scenarios:

1. If PKKT ∈ D, then we have found the solution of (2.14).

2. Otherwise we take the point of intersection of the line (P0, PKKT) and the border

∂D as the next point and we continue with Frank-Wolfe algorithm. Unfortu-

nately we can do the Newton step only once, then some of P ≥ 0 constraints

4It is true if we start our algorithm, for example, from the constant matrix P0 = 1

N
1N1T

N .

2.3. CONVEX-CONCAVE RELAXATION 71

become active and efficient calculations are not feasible anymore. But even in

this case the Newton step is generally very useful because it decreases a lot the

value of the objective function.

dλ-adaptation strategy In practice, we found it useful to have the parameter dλ in

the algorithm of Figure 2.2 vary between iterations. Intuitively, dλ should depend on

the form of the objective function as follows: if F λ
α (P) is smooth and if increasing the

parameter λ does not change a lot the form of the function, then we can afford large

steps, in contrast, we should do a lot of small steps in the situation where the objective

function is very sensitive to changes in the parameter λ. The adaptive scheme we

propose is the following. First, we fix a constant dλmin = 10−5, which represents the

lower limit for dλ. When the PATH algorithm starts, dλ is set to dλmin. If we see

after an update λnew = λ+ dλ that |Fλnew
(P ∗(λ))− Fλ(P

∗(λ))| ≤ ǫλ then we double

dλ and keep multiplying dλ by 2 as long as |Fλnew
(P ∗(λ)) − Fλ(P

∗(λ))| ≤ ǫλ. On

the contrary, if dλ is too large in the sense that |Fλnew
(P ∗(λ)) − Fλ(P

∗(λ))| > ǫλ,

then we divide dλ by 2 until the criterion |Fλnew
(P ∗(λ))− Fλ(P

∗(λ))| ≤ ǫλ is met, or

dλ = dλmin. Once the update on dλ is done, we run the optimization (Frank-Wolfe)

for the new value λ+dλ. The idea behind this simple adaptation schema is to choose

dλ which keeps |Fλnew
(P ∗(λ))− Fλ(P

∗(λ))| just below ǫλ.

Stopping criterion The choice of the update criterion |Fλnew
(P ∗(λ))−Fλ(P

∗(λ))|
is not unique. Here we check whether the function value has been changed a lot at

the given point. But in fact it may be more interesting to trace the minimum of the

objective function. To compare the new minimum with the current one, we need to

check the distance between these minima and the difference between function values.

It means that we use the following condition as the stopping criterion

|Fλnew
(P ∗(λnew))− Fλ(P

∗(λ))| < ǫFλ and

||P ∗(λnew)− P ∗(λ)|| < ǫPλ

Although this approach takes a little bit more computations (we need to run

Frank-Wolfe on each update of dλ), it is quite efficient if we use the adaptation

72 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

schema for dλ.

To fix the values ǫFλ and ǫPλ we use a parameter M which defines a ratio between

these parameters and the parameters of the stopping criterion used in the Frank-

Wolfe algorithm: ǫFFW (limit value of function decrement) and ǫPFW (limit value of

argument changing): ǫFλ = MǫFFW and ǫPλ = MǫPFW . The parameter M represents an

authorized level of stopping criterion relaxation when we increment λ. In practice, it

means that when we start to increment λ we may move away from the local minima

and the extent of this move is defined by the parameter M . The larger the value of

M , the further we can move away and the larger dλ may be used. In other words, the

parameter M controls the width of the tube around the path of optimal solutions.

2.3.6 Algorithm complexity

Here we present the complexity of the algorithms discussed in the paper.

� Umeyama’s algorithm has three components: matrix multiplication, calculation

of eigenvectors and application of the Hungarian algorithm for (2.2). Complex-

ity of each component is equal to O(N3). Thus Umeyama’s algorithm has

complexity O(N3).

� LP approach (2.4) has complexity O(N7) (worst case) because it may be rewrit-

ten as an linear optimization problem with 3N2 variables [Boyd and Vandenberghe,

2004].

In the PATH algorithm, there are three principal parameters which have a big

impact on the algorithm complexity. These parameters are ǫFFW , ǫPFW , M and N .

The first parameter ǫFW defines the precision of the Frank-Wolfe algorithm, in some

cases its speed may be sublinear [Bertsekas, 1999], however it should work much

better when the optimization polytope has a “smooth” border [Bertsekas, 1999].

The influence of the ratio parameter M is more complicated. In practice, in order

to ensure that the objective function takes values between 0 and 1, we usually use

2.3. CONVEX-CONCAVE RELAXATION 73

the normalized version of the objective function:

Fnorm(P) =
||AGP − PAH ||2F
||AG||2F + ||AH ||2F

In this case if we use the simple stopping criterion based on the value of the objective

function then the number of iteration over λ (number of Frank-Wolfe algorithm runs)

is at least equal to C
MǫF

FW

where C = min
P
Fnorm −min

D
Fnorm.

The most important thing is how the algorithm complexity depends on the graph

size N . In general the number of iterations of the Frank-Wolfe algorithm scales as

O
(

κ
ǫF
FW

)
where κ is the conditional number of the Hessian matrix describing the

objective function near a local minima [Bertsekas, 1999]. It means that in terms of

numbers of iterations, the parameter N is not crucial. N defines the dimensionality

of the minimization problem, while κ may be close to zero or one depending on the

graph structures, not explicitly on their size. On the other hand, N has a big influence

on the cost of one iteration. Indeed, in each iteration step we need to calculate the

gradient and to minimize a linear function over the polytope of doubly stochastic

matrices. The gradient estimation and the minimization may be done in O(N3).

In Section 2.4.2 we present the empirical results on how algorithm complexity and

optimization precision depend on M (Figure 2.7b) and N (Figure 2.8).

2.3.7 Vertex pairwise similarities

If we match two labeled graphs, then we may increase the performance of our method

by using information on pairwise similarities between their nodes. In fact one method

of image matching uses only this type of information, namely shape context matching

[Belongie et al., 2002]. To integrate the information on vertex similarities we use the

approach proposed in (1.5), but in our case we use Fλ(P) instead of F0(P)

min
P

Fα
λ (P) = min

P
(1− α)Fλ(P) + αtr(CTP), . (2.20)

The advantage of the last formulation is that Fα
λ (P) is just Fλ(P) with an additional

linear term. Therefore we can use the same algorithm for the minimization of Fα
λ (P)

74 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

as the one we presented for the minimization of Fλ(P).

2.4 Simulations

2.4.1 Synthetic examples

In this section we compare the proposed algorithm with some classical methods

on artificially generated graphs. Our choice of random graph types is based on

[Newman et al., 2001] where authors discuss different types of random graphs which

are the most frequently observed in various real world applications (world wide web,

collaborations networks, social networks, etc...). Each type of random graphs is de-

fined by the distribution function of node degree Prob(node degree = k) = V D(k).

The vector of node degrees of each graph is supposed to be an i.i.d sample from

V D(k). In our experiments we have used the following types of random graphs:

Binomial law V D(k) = Ck
Np

k(1− p)1−k

Geometric law V D(k) = (1− e−µ)eµk

Power law V D(k) = Cτk
−τ

The schema of graph generation is the following

1. generate a sample d = (d1, . . . , dN) from V D(k)

2. if
∑

i di is odd then goto step 1

3. while
∑

i di > 0

(a) choose randomly two non-zero elements from d: dn1 and dn2

(b) add edge (n1, n2) to the graph

(c) dn1 ← dn1 − 1 dn2 ← dn2 − 1

If we are interested in isomorphic graph matching then we compare just the initial

graph and its randomly permuted copy. To test the matching of non-isomorphic

graphs, we add randomly σNE edges to the initial graph and to its permitted copy,

where NE is the number of edges in the original graph, and σ is the noise level.

2.4. SIMULATIONS 75

2.4.2 Results

The first series of experiments are experiments on small size graphs (N=8), here we are

interested in comparison of the PATH algorithm (see Figure 2.2), the QCV approach

(2.7), Umeyama spectral algorithm (2.2), the linear programming approach (2.4) and

exhaustive search which is feasible for the small size graphs. The algorithms were

tested on the three types of random graphs (binomial, exponential and power). The

results are presented in Figure 2.4. The same experiment was repeated for middle-

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP
OPT

(a) bin

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP
OPT

(b) exp

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP
OPT

(c) pow

Figure 2.4: Matching error (mean value over sample of size 100) as a function of noise.
Graph size N=8. U — Umeyama’s algorithm, LP — linear programming algorithm,
QCV — convex optimization, PATH — path minimization algorithm,OPT — an
exhaustive search (the global minimum). The range of error bars is the standard
deviation of matching errors

sized graphs (N = 20, Figure 2.5) and for large graphs (N = 100, Figure 2.6).

In all cases, the PATH algorithm works much better than all other approximate

algorithms. There are some important things to note here. First, the choice of norm

in (2.1) is not very important — results of QCV and LP are about the same. Second,

76 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP

(a) bin

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP

(b) exp

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV
LP

(c) pow

Figure 2.5: Matching error (mean value over sample of size 100) as a function of noise.
Graph size N=20. U — Umeyama’s algorithm, LP — linear programming algorithm,
QCV — convex optimization, PATH — path minimization algorithm.

2.4. SIMULATIONS 77

0 0.5 1
0

100

200

300

400

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV

(a) bin

0 0.5 1
0

200

400

600

800

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV

(b) exp

0 0.5 1
0

500

1000

noise level

m
at

ch
in

g
er

ro
r

U
PATH
QCV

(c) pow

Figure 2.6: Matching error (mean value over sample of size 100) as a function of
noise. Graph size N=100. U — Umeyama’s algorithm, QCV — convex optimization,
PATH — path minimization algorithm.

78 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

following the solution paths is very useful compared to just minimizing the convex

relaxation and projecting the solution on the set of permutation matrices (PATH

algorithms works much better than QCV). Another noteworthy observation is that

the performance of PATH is very close to the optimal solution when the later can be

evaluated.

We note that sometimes the matching error decreases as the noise level increases

(e.g., in Figures 2.6c,2.5c), which can be explained as follows. The matching error

is upper bounded by the minimum of the total number of zeros in the adjacency

matrices AG and AH , so in general this upper bound deacreases when the edge density

increases. When the noise level increases, it makes graphs denser, and consequently

the upper bound of matching error decreases. The general behavior of graph matching

algorithms as functions of the graph density is presented in Figure 2.7a). Here again

the matching error decreases when the graph density becomes very large.

The parameter M (see section 2.3.5) defines how precisely the PATH algorithm

tries to follow the path of local minimas. The larger M , the faster the PATH algo-

rithm. At the extreme, when M is close to 1/ǫFW , we jump directly from the convex

function (λ = 0) to the concave one (λ = 1). Figure 2.7b) shows in more details how

algorithm speed and precision depend on M .

0 20 40 60
0

500

1000

1500

mean node degree

M
at

ch
in

g
er

ro
r

U
QCV
PATH

(a)

0 2 6 8
0

200

400

M
at

ch
in

g
er

ro
r

log(M)
0

200

0

T
im

e
(s

ec
)

(b)

Figure 2.7: (a) Algorithm performance as a function of graph density. (b) Precision
and speed of the PATH algorithm as a function of M , the relaxation constant used
in the PATH algorithm (see section 2.3.5). In both cases, graph size N=100, noise
level σ=0.3, sample size is equal to 30. Error bars represent standard deviation of
the matching error (not averaged)

2.5. QAP BENCHMARK LIBRARY 79

Another important aspect to compare the different algorithms is their run-time

complexity as a function of N . Figure 2.8 shows the time needed to obtain the

matching between two graphs as a function of the number of verticesN (forN between

10 and 100), for the different methods. These curves are coherent with theoretical

values of algorithm complexities summarized in Section 2.3.6. In particular we observe

that Umeyama’s algorithm is the fastest method, but that QCV and PATH have the

same complexity in N . The LP method is competitive with QCV and PATH for small

graphs, but has a worse complexity in N .

1 1.5 2
−4

−2

0

2

log10(N)

lo
g1

0(
se

c)

LP
QCV
PATH
U

(a) bin

1 1.5 2
−4

−2

0

2

log10(N)

lo
g1

0(
se

c)

LP
QCV
PATH
U

(b) exp

1 1.5 2
−4

−2

0

2

4

log10(N)

lo
g1

0(
se

c)

LP
QCV
PATH
U

(c) pow

Figure 2.8: Timing of U,LP,QCV and PATH algorithms as a function of graph size,
for the different random graph models. LP slope ≈ 6.7, U, QCV and PATH slope ≈
3.4

2.5 QAP benchmark library

The problem of graph matching may be considered as a particular case of the quadratic

assignment problem (QAP). The minimization of the loss function (2.1) is equivalent

80 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

Table 2.1: Experiment results for QAPLIB benchmark datasets.
QAP MIN PATH QPB GRAD U

chr12c 11156 18048 20306 19014 40370
chr15a 9896 19086 26132 30370 60986
chr15c 9504 16206 29862 23686 76318
chr20b 2298 5560 6674 6290 10022
chr22b 6194 8500 9942 9658 13118
esc16b 292 300 296 298 306
rou12 235528 256320 278834 273438 295752
rou15 354210 391270 381016 457908 480352
rou20 725522 778284 804676 840120 905246
tai10a 135028 152534 165364 168096 189852
tai15a 388214 419224 455778 451164 483596
tai17a 491812 530978 550852 589814 620964
tai20a 703482 753712 799790 871480 915144
tai30a 1818146 1903872 1996442 2077958 2213846
tai35a 2422002 2555110 2720986 2803456 2925390
tai40a 3139370 3281830 3529402 3668044 3727478

to the maximization of the following function:

max
P

tr(P TAT
GPAH) .

Therefore it is interesting to compare our method with other approximate meth-

ods proposed for QAP. Schellewald et al. [2001] proposed the QPB algorithm for

that purpose and tested it on matrices from the QAP benchmark library [Cela,

2007], QPB results were compared to the results of graduated assignment algorithm

GRAD[Gold and Rangarajan, 1996] and Umeyama’s algorithm. Results of PATH ap-

plication to the same matrices are presented in Table 2.1, scores for QPB and gradu-

ated assignment algorithm are taken directly from the publication [Schellewald et al.,

2001]. We observe that on 14 out of 16 benchmark, PATH is the best optimization

method among the methods tested.

2.6. IMAGE PROCESSING 81

2.6 Image processing

In this section, we present two applications in image processing. The first one (Sec-

tion 2.6.1) illustrates how taking into account information on graph structure may

increase image alignment quality. The second one (Section 2.6.2) shows that the

structure of contour graphs may be very important in classification tasks. In both ex-

amples we compare the performance of our method with the shape context approach

[Belongie et al., 2002], a state-of-the-art method for image matching.

2.6.1 Alignment of vessel images

The first example is dedicated to the problem of image alignment. We consider two

photos of vessels in human eyes. The original photos and the images of extracted vessel

contours (obtained from the method of Walter et al. [2003]) are presented in Figure

2.9. To align the vessel images, the shape context algorithm uses the context radial

histograms of contour points [Belongie et al., 2002]. In other words, according to the

shape context algorithm one aligns points which have similar context histograms. The

PATH algorithm uses also information about the graph structure. When we use the

PATH algorithm we have to tune the parameter α (2.20), we tested several possible

values and we took the one which produced the best result. To construct graph we

use all points of vessel contours as graph nodes and we connect all nodes within a

circle of radius r (in our case we use r = 50). Finally, to each edge (i, j) we associate

the weight wi,j = exp(−|xi − yj|).
A graph matching algorithm produces an alignment of image contours, then to

align two images we have to expand this alignment to the rest of image. For this

purpose, we use a smooth spline-based transformation [Bookstein, 1989]. In other

words, we estimate parameters of the spline transformation from the known alignment

of contour points and then we apply this transformation to the whole image. Results

of image matching based on shape context algorithm and on PATH algorithm are

presented in Figure 2.10, where black lines designate connections between associated

points. We observe that the context shape method creates many unwanted matching,

while PATH produces a matching that visually corresponds to a correct alignment

82 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

Figure 2.9: Eye photos (top) and vessel contour extraction (bottom).

of the structure of vessels. The main reason why graph matching works better than

shape context matching is the fact that shape context does not take into account

the relational positions of matched points and may lead to totally incoherent graph

structures. In contrast, graph matching tries to match pairs of nearest points in one

image to pairs of nearest points in another one.

Among graph matching methods, different results are obtained with different op-

timization algorithms. Table 2.2 shows the matching errors produced by different

algorithms on this vessel alignment problem. The PATH algorithm has the smallest

matching error, with the alignment shown on Figure 2.10. QCV comes next, with

an alignment that is also visually correct. On the other hand, the Umeyama algo-

rithm has a much larger matching error, and visually fails to find a correct alignment,

similar to the shape context method.

Table 2.2: Alignment of vessel images, algorithm performance
Method Shape context Umeyama QCV PATH

matching error 870.61 764.83 654.42 625.75

2.6. IMAGE PROCESSING 83

Figure 2.10: Comparison of alignment based on shape context (top) and alignment
based on the PATH optimization algorithm (bottom). For each algorithm we present
two alignments: image ’1’ on image ’2’ and the inverse. Each alignment is a spline-
based transformation (see text).

84 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

character 1 character 2 character 3

Figure 2.11: Chinese characters from the ETL9B dataset.

2.6.2 Recognition of handwritten chinese characters

Another example that we consider in this chapter is the problem of chinese character

recognition from the Saito1985ETL9b dataset [Saito et al., 1985]. The main idea is

to use a score of optimal matching as a similarity measure between two images of

characters. This similarity measure can be used then in machine learning algorithms,

K-nearest neighbors (KNN) for instance, for character classification. Here we compare

the performance of four methods: linear support vector machine (SVM), SVM with

gaussian kernel, KNN based on score of shape context matching and KNN based on

scores from graph matching which combines structural and shape context information.

As a score, we use just the value of the objective function (2.20) at the (locally)

optimal point. We have selected three chinese characters known to be difficult to

distinguish by automatic methods. Examples of these characters as well as examples

of extracted graphs (obtained by thinning and uniformly subsampling the images)

are presented in Figure 2.11. For SVM based algorithms, we use directly the values

of image pixels (so each image is represented by a binary vector), in graph matching

algorithm we use binary adjacency matrices of extracted graphs and shape context

matrices [Belongie et al., 2002].

2.6. IMAGE PROCESSING 85

Our data set consist of 50 exemples (images) of each class. Each image is represented

by 63 × 64 binary matrix. To compare different methods we use the cross valida-

tion error (five folds). The dependency of classification error from two algorithm

parameters (α — coefficient of linear combination (2.20) and k — number of nearest

neighbors used in KNN)) is shown in Figure 2.12.

0 0.5 1
0.2

0.4

0.6

α

cl
as

si
fic

at
io

n
er

ro
r k=3

k=4
k=9

(a) (b)

Figure 2.12: (a) Classification error as a function of α. (b) Classification error as a
function of k. Classification error is estimated as cross validation error (five folds, 50
repetition), the range of the error bars is the standard deviation of test error over one
fold (not averaged over folds and repetition)

Two extreme choices α = 1 and α = 0 correspond respectively to pure shape

context matching, i.e., when only node labels information is used, and pure unlabeled

graph matching. It is worth observing here that KNN based just on the score of un-

labeled graph matching does not work very well, the classification error being about

60%. An explanation of this phenomenon is the fact that learning patterns have very

unstable graph structure within one class. The pure shape context method has a

classification error of about 39%. The combination of shape context and graph struc-

ture informations allows to decrease the classification error down to 25%. Beside the

PATH algorithm, we tested also the QCV algorithm and the Umeyama algorithm,the

Umeyama algorithm almost does not decrease the classification error. The QCV al-

gorithm works better than then Umeyama algorithm, but still worse than the PATH

algorithm. Complete results can be found in Table 2.3.

86 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

Table 2.3: Classification of chinese characters. (CV , STD)—mean and standard
deviation of test error over cross-validation runs (five folds, 50 repetitions)

Method CV STD

Linear SVM 0.377 ± 0.090
SVM with gaussian kernel 0.359 ± 0.076
KNN (PATH) (α=1): shape context 0.399 ± 0.081
KNN (PATH) (α=0.4) 0.248 ± 0.075
KNN (PATH) (α=0): pure graph matching 0.607 ± 0.072
KNN (U) (α=0.9): α best choice 0.382 ± 0.077
KNN (QCV) (α=0.3): α best choice 0.295 ± 0.061

2.7 Conclusion

We have presented the PATH algorithm, a new technique for graph matching based

on convex-concave relaxations of the initial integer programming problem. PATH

allows to integrate the alignment of graph structural elements with the matching of

vertices with similar labels. Its results are competitive with state-of-the-art methods

in several graph matching and QAP benchmark experiments. Moreover, PATH has

a theoretical and empirical complexity competitive with the fastest available graph

matching algorithms.

Two points can be mentioned as interesting directions for further research. First,

the quality of the convex-concave approximation is defined by the choice of convex

and concave relaxation functions. Better performances may be achieved by more

appropriate choices of these functions. Second, another interesting point concerns the

construction of a good concave relaxation for the problem of directed graph matching5,

i.e., for asymmetric adjacency matrix. Such generalizations would be interesting also

as possible polynomial-time approximate solutions for the general QAP problem.

2.A A toy example

The PATH algorithm does not generally find the global optimum of the NP-complete

optimization problem. In this appendix we illustrate with two examples how the set

5A possible solution is to use the transformation procedure described in Preface.

2.A. A TOY EXAMPLE 87

of local optima tracked by PATH may or may not lead to the global optimum.

More precisely, we consider two simple graphs with the following adjacency ma-

trices:

G =




0 1 1

1 0 0

1 0 0


 and H =




0 1 0

1 0 0

0 0 0


.

Let C denote the cost matrix of vertex association

C =




0.1691 0.0364 1.0509

0.6288 0.5879 0.8231

0.8826 0.5483 0.6100


 .

Let us suppose that we have fixed the tradeoff α = 0.5, and that our objective is then

to find the global minimum of the following function:

F0(P) = 0.5||GP − PH||2F + 0.5tr(C ′P), P ∈ P. (2.21)

As explained earlier, the main idea underlying the PATH algorithm is to try to follow

the path of global minima of Fα
λ (P) (2.20). This may be possible if all global minima

P ∗
λ form a continuous path, which is not true in general. In the case of small graphs

we can find the exact global minimum of Fα
λ (P) for all λ. The trace of global minima

as functions of λ is presented in Figure 2.13(a) (i.e., we plot the values of the nine

parameters of the doubly stochastic matrix, which are, as expected, all equal to zero

or one when λ = 1). When λ is near 0.2 there is a jump of global minimum from one

face to another. However if we change the linear term C to

C′ =




0.4376 0.3827 0.1798

0.3979 0.3520 0.2500

0.1645 0.2653 0.5702


 ,

then the trace becomes smooth (see Figure 2.13(b)) and the PATH algorithm then

finds the globally optimum point. Characterizing cases where the path is indeed

smooth is the subject of ongoing research.

88 CHAPTER 2. A PATH FOLLOWING ALGORITHM FOR GM

0 0.5 1
0

0.5

1

λ
(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
(b)

Figure 2.13: Nine coordinates of global minimum of Fα
λ as a function of λ

2.B Kronecker product

The Kronecker product of two matrices A⊗B is defined as follows:

A⊗B =




Ba11 · · · Ba1n

...
. . .

...

Bam1 · · · Bamn


 .

Two important properties of Kronecker product that we use in this chapter are:

(AT ⊗B)vec(X) = vec(BXA),

and tr(XTAXBT) = vec(X)T (B ⊗ A)vec(X) .

Chapter 3

Global alignment of protein-protein

interaction networks by graph

matching methods

Preface

Aligning protein-protein interaction (PPI) networks of different species has drawn a

considerable interest recently. This problem is important to investigate evolutionary

conserved pathways or protein complexes across species, and to help in the identi-

fication of functional orthologs through the detection of conserved interactions. It

is however a difficult combinatorial problem, for which only heuristic methods have

been proposed so far.

We reformulate the PPI alignment as a graph matching problem, and investigate

how state-of-the-art graph matching algorithms can be used for that purpose. We dif-

ferentiate between two alignment problems, depending on whether strict constraints

on protein matches are given, based on sequence similarity, or whether the goal is

instead to find an optimal compromise between sequence similarity and interaction

conservation in the alignment. We propose new methods for both cases, and assess

their performance on the alignment of the yeast and fly PPI networks. The new

methods consistently outperform state-of-the-art algorithms, retrieving in particular

89

90 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

78% more conserved interactions than IsoRank for a given level of sequence similarity.

This chapter is a slightly modified version of [Zaslavskiyi et al., 2009].

3.1 Introduction

PPIs play a central role in most biological processes. Recent years have witnessed

impressive progress towards the elucidation of large-scale PPI networks in various

organisms, thanks in particular to the development of high-throughput experimental

techniques such as yeast two-hybrid [Fields and Song, 1989] or coimmunoprecipitation

followed by mass-spectrometry [Aebersold and Mann, 2003]. As the amount of PPI

network data increases, computational methods to analyze and compare them are

also being developed at a fast pace. In particular, comparative PPI network analysis

across species has already provided insightful views of similarities and differences

between species at the systemic level [Sharan et al., 2005; Suthram et al., 2005] and

helped in the identification of functional orthologs [Bandyopadhyay et al., 2006].

Comparing PPI networks usually involves some form of network alignment, i.e.,

the identification of pairs of homologous proteins from two different organisms, such

that PPIs are conserved between matched pairs. The rationale behind this notion

is that a protein and its functional orthologs are likely to interact with proteins in

their respective network that are themselves functional orthologs. Hence, while direct

sequence homology alone is often not sufficient to identify functional orthologs within

paralogous families [Sjölander, 2004], the use of PPI information can help in the dis-

ambiguation of functional orthologs within clusters of homologous sequences, such

as those produced by the Inparanoid algorithm [Remm et al., 2001]. This approach

has been investigated in particular by Bandyopadhyay et al. [2006]. Conversely, net-

work alignment can also be a valuable approach to validate PPI conserved across

multiple species and detect evolutionary conserved pathways or protein complexes

[Sharan et al., 2005; Kelley et al., 2003].

Several methods have been proposed to perform local network alignment (LNA)

of PPI networks, i.e., to identify subsets of matching pairs of proteins with con-

served subgraphs of interactions. These methods include PathBLAST [Kelley et al.,

3.1. INTRODUCTION 91

2003, 2004] and NetworkBLAST [Sharan et al., 2005], which adapt the ideas of the

BLAST algorithm to the search for local alignments between graphs, the method

of Koyutürk et al. [2006], inspired by biological models of deletion and duplication,

Graemlin [Flannick et al., 2006], which uses networks of modules to infer the align-

ment, or the Bayesian approach of Berg and Lässig [2006]. Less attention has been

paid to the problem of global network alignment (GNA), i.e., the search for a global

correspondence between most or all vertices of two networks which again matches

similar proteins and leads to conserved interactions. Notable exceptions include the

Markov random field (MRF) based method of Bandyopadhyay et al. [2006] and the

IsoRank algorithm [Singh et al., 2008] which formulates the problem as an eigenvalue

problem.

While LNA procedures can detect multiple, unrelated matched regions between

networks, and can in particular match a given protein of a network to several proteins

of the other network in different local matchings, GNA seeks the best consistent

matching across all nodes simultaneously. This can be a desirable property for many

applications, such as functional ortholog identification. On the other hand, from a

computational point of view, GNA is arguably more difficult than LNA since it must

find a solution among all possible global matchings. In fact, as we explain below,

it is natural to reformulate GNA as weighted graph matching problem, a problem

for which no polynomial-time algorithm is known. Solving the general GNA problem

therefore must involve some sort of approximate or heuristic method, such as IsoRank.

Following this line of thought, we propose here to formulate explicitly GNA as a

graph matching problem, and investigate the use of modern state-of-the-art exact and

approximate methods to solve it. While no exact solution of the graph matching op-

timization problem can be found in general, we show that in certain cases, if “enough

constraints” are put on the possible protein associations, and if the PPI networks

are “not too dense” (these notions being rigorously defined in Section 3.3.2), then

an exact solution can be found efficiently by a new message-passing algorithm. In-

terestingly, this case arises in particular in the functional ortholog detection problem

between yeast and fly investigated by Bandyopadhyay et al. [2006], where matching

pairs are constrained to belong to clusters of proteins produced by the Inparanoid

92 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

algorithm and the PPI networks of both species are not too dense. On these data,

we are therefore able to find a matching which conserves more interactions than the

solutions found by MRF [Bandyopadhyay et al., 2006] as well as a version of IsoRank

adapted to this situation [Singh et al., 2008], and we are in fact certain that our solu-

tion is optimal in the sense that it produces the largest possible number of conserved

interactions. Interestingly, the resulting alignment retrieves 13% more HomoloGene

pairs than the alignments of MRF and 5% more than that of IsoRank, suggesting

that maximizing the number of conserved interactions indeed improves functional or-

thology disambiguation. When the GNA is more complex, e.g., matched pairs are

not limited to belong to the same Inparanoid clusters, or the PPI networks have more

edges, then our message-passing algorithm can not be used and the optimal match-

ing can not be found in reasonable time anymore. In that case we propose to use

a recent state-of-the-art approximate methods for graph matching [Zaslavskiy et al.,

2008b], which tracks a path of solutions for a family of relaxed problems, as well as

a new, faster and more direct gradient-based method, which bears similarities with

the IsoRank method. Like IsoRank, these methods have a free parameter to balance

the trade-off between matching similar proteins, on the one hand, and producing an

alignment with many conserved interactions, on the other hand. We test them on

the global unconstrained alignment of the fly and yeast networks, and show that for

a given level of mean sequence similarity between matched proteins, our new method

retrieves 78% more conserved interactions than IsoRank.

3.2 Constrained and balanced GNA problems

In this section we set the notations and formalize two variants of the GNA problems.

We represent a PPI network describing the interactions among N proteins of an

organism as an undirected simple graph G = (VG, EG), where VG = (v1, . . . , vN) is

a finite set of N vertices representing the N proteins, and EG ⊂ VG × VG is the set

of edges representing the pairs of interacting proteins. Each such graph (or network)

can equivalently be represented by a symmetric N × N adjacency matrix AG where

[AG]ij = [AG]ji = 1 if protein vi interacts with protein vj and 0 otherwise.

3.2. CONSTRAINED AND BALANCED GNA PROBLEMS 93

Given two graphs G and H representing the PPI networks of two species, the

GNA problem is, roughly speaking, to find a correspondence between the vertices

of G and the vertices of H which matches similar proteins and enforces as much as

possible the conservation of interactions between matched pairs in the two graphs.

To formalize this, let us assume that G and H have the same number N of vertices,

and that we are looking for a bijection between the vertices of G and the vertices

of H. Although this may sound at first sight a strong assumption, given that PPI

networks usually do not have the same size, and that we may not want to match all

proteins of each network, both limitations can be addressed by adding dummy nodes

(with no connection) to each graph in order to ensure that they finally have the same

size. In a complete matching of such graphs with dummy nodes, matching a protein

to a dummy node simply means that in the GNA the protein is not matched. G and

H being assumed to have the same number of vertices, a matching of their vertices

is now simply a permutation π of {1, . . . , N} which associates the i-th vertex of H

with the π(i)-th vertex of G. Equivalently, the permutation π can be represented by

a N × N permutation matrix P , i.e., a binary matrix whose (i, j)-th entry is equal

to 1 if and only if π(i) = j (that is, when the i-th vertex of H is matched to the j-th

vertex of G). We denote by P = {P ∈ {0, 1}N×N : P1N = 1N , P
T 1N = 1N} the set

of permutation matrices, where 1N is the N -dimensional vectors whose entries are all

equal to 1.

The number of interactions conserved by a permutation π is the number of pairs

(i, j) which are connected in H, and such that their corresponding vertices π(i) and

π(j) are also connected in G. Let us denote by J(P) the number of such interactions

conserved by the permutation encoded in the permutation matrix P . In order to

express J(P), we can observe that if we apply the permutation encoded by P to the

vertices of H, we obtain a new graph isomorphic to H which we denote by P (H).

It is easy to see that the adjacency matrix of the permuted graph, AP (H), is simply

obtained from AH by the equality AP (H) = PAHP
T [Umeyama, 1988]. As a result,

J(P) is simply obtained as half the number of entries which are simultaneously equal

to 1 in both binary matrices AG and PAHP
T (each conserved interaction results in

two identical entries, by symmetry of the adjacency matrices). Hence we obtain the

94 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

following expression for J(P):

J(P) =
1

2

N∑

i,j=1

[AG]ij[PAHP
T]ij =

1

2
tr(AT

GPAHP
T) . (3.1)

Besides the number of conserved interactions, a good GNA should match proteins

with similar sequences. We consider here two possible formulations of this objective.

� Constrained GNA. Here we assume that a pre-processing of the protein se-

quences has produced a set of candidate matched pairs A ⊂ VH × VG, and

we simply wish to disambiguate the matching using PPI information, if some

proteins have several candidate matchings. This is for example the formulation

proposed by Bandyopadhyay et al. [2006], where a first clustering of all proteins

sequences is performed to define a collection of protein clusters with the Inpara-

noid algorithm, and the pairs matched between the yeast and fly proteome are

constrained to belong to the same cluster. Such constraints can be directly

encoded as constraints over the permutation matrix P , by imposing Pij = 0 if

the i-th vertex of the first graph and the j-th vertex of the second graph are

not allowed to match. We are then looking for a solution in the set of matrices

PA = {P ∈ P : ∀(i, j) ∈ [1, N]2\A, Pij = 0}, and it is then natural to look for

the permutation compatible with the constraints with the largest number of

conserved interactions, i.e., to solve:

max
P∈PA

J(P) . (3.2)

� Balanced GNA. A interesting property of constrained GNA is that, by reducing

the search space to PA, it can result in a tractable optimization problem (as

shown for example in Section 3.3.2). On the other hand, in some cases one

may want to accept matching between less similar vertices if it leads to an im-

portant increase in the number of conserved interactions. In other words, one

would like to be able to automatically balance the matching of similar vertices

with the conservation of interactions, as advocated by Singh et al. [2008] and

3.2. CONSTRAINED AND BALANCED GNA PROBLEMS 95

implemented by IsoRank. This can be formalized by assuming that a N × N
matrix of similarities between vertices C is given (e.g., derived from pairwise

sequence similarity scores), and by trying to maximize the total similarity be-

tween matched pair. Cij denoting the similarity between the i-th vertex of

G and the j-th vertex of H, the total similarity between pairs matched by a

permutation matrix π is simply

S(P) =
N∑

i=1

Cπ(i),i = tr (PC) . (3.3)

In order to find a balance between matching similar pairs (large S(P)) and

having many conserved interactions (large J(P)), we propose to consider the

following optimization problem:

max
P∈P

λJ(P) + (1− λ)S(P) , (3.4)

where λ ∈ [0, 1] controls the trade-off between both objectives. λ = 1 cor-

responds to the maximization of J(P) only, i.e., to find a good topological

matching of the graphs independently of the similarity between matched pairs,

while λ = 0 amounts to focus only on the similarity between proteins and find-

ing a matching which maximized the mean sequence similarity, without using

PPI information.

When λ > 0, the balanced GNA problem (3.4) is equivalent to a general graph

matching problem, discussed in Section 3.3.1, which is known to be computationally

intractable in general. The constrained GNA (3.2) can be seen as a particular case of

the balanced GNA, by taking the similarity function equal to 0 between two vertices

allowed to match and −∞ for two vertices not allowed to match. Indeed, in that

case (3.4) is equivalent to minimizing J(P) over the set of matrices P for which S(P)

is finite, that is exactly the set PA of (3.2). While indeed general graph matching

methods to solve (3.4) can be applied to solve (3.2), we show in the next Section that

in some cases there exists a simple polynomial-time algorithm to solve (3.2) directly

even for large non-sparse graphs.

96 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

3.3 Methods

In this section we present methods to solve both the constrained GNA problem (3.2)

and the balanced GNA problem (3.4). Since any algorithm to solve the balanced GNA

problem can also solve the constrained GNA, as explained in the previous section, we

start by describing methods to solve the balanced GNA problem.

3.3.1 Algorithms for the balanced GNA problem

The balanced GNA problem (3.4) is a general graph matching problem, which is

known to be a difficult combinatorial problem. While some methods based on in-

complete enumeration may be applied to search for an exact optimal solution in the

case of small or sparse graphs, only approximate algorithms that usually find non-

optimal solutions but are more scalable can be used for large non-sparse graph match-

ing. Many such approximate algorithms have been proposed, see e.g., the review of

Conte et al. [2004]. They include in particular spectral methods [Umeyama, 1988;

Caelli and Kosinov, 2004; Singh et al., 2008], or methods based on a relaxation of the

optimization problem (3.4) [Almohamad and Duffuaa, 1993; Gold and Rangarajan,

1996]. They differ mainly on their scalability, and on the accuracy of the solution

found. For example, a comparison of several such methods was carried out recently

in [Zaslavskiy et al., 2008c,b].

Based on these observation, we propose here to use state-of-the-art graph match-

ing methods to balanced GNA for PPI networks. In particular we focus on the

PATH algorithm [Zaslavskiy et al., 2008b], which was shown to provide state-of-the-

art performance in various graph matching benchmark. We also propose a new and

simpler gradient ascent method, similar in spirit to the Graduated Assignment (GA)

algorithm [Gold and Rangarajan, 1996]. As a benchmark, we consider the IsoRank

method, which can be thought of as a particular spectral method for graph alignment,

and which is currently the method of choice for balanced GNA of PPI networks. We

now briefly describe these methods.

� PATH method. The PATH algorithm is based on two relaxations of (3.4), one

concave and one convex, over the set of doubly stochastic matrices [Zaslavskiy et al.,

3.3. METHODS 97

2008b]. The method starts by solving the convex relaxation, and then iteratively

solves a linear combination of the convex and concave relaxations by gradually

increasing the weight of the concave relaxation and following the path of solu-

tions thus created. It finishes when the a solution reaches a corner of the set of

doubly stochastic matrices, i.e., when the solution is a permutation matrix in

P . On several benchmarks, the PATH method was shown to be state-of-the-art

in accuracy, and can easily process graphs with a few thousands vertices in a

few hours on a modern desktop computer.

� GA method. We propose a new, simple gradient method based on a relaxation

of (3.4) over the set of doubly stochastic matrices. Although the function to be

maximized is not concave (because of the term J(P)), we simply start from an

initial solution and iteratively choose a new permutation matrix in the direction

of the gradient of the objective function. This approach may be relevant if we

can start from a “good” initial solution, i.e., if we solve a constrained GNA (3.2)

where the constraints are strong enough. The gradient of S(P) in (3.3) is equal

to S, the gradient of J(P) in (3.1) at a matrix Pn is equal to AT
GPnAH . Hence we

propose to iteratively update the permutation matrix following the rule Pn+1 ←
arg maxP∈P tr

(
[λAT

GPnAH + (1− λ)C]P
)
, which can be found efficiently by the

Hungarian algorithm [Kuhn, 1955].

� IsoRank method. The idea of the IsoRank algorithm is to use the following

recursive formula [Singh et al., 2008]

R(i, j) =
∑

v∈N(i)

∑

u∈N(j)

1

|N(u)||N(v)|R(u, v), i ∈ VG, j ∈ VH , (3.5)

where N(i) denotes the set of neighbors of i, VG denotes the set of vertices

of graph G and element R(i, j) represents the similarity between vertex i of

graph G and vertex j of graph H. In the case of PPI networks it represents

the “likelihood” that proteins i and j are functional orthologs. The recursive

formula says that the more i and j have similar neighbors, the greater is the

similarity measure between i and j. To estimate R, Singh et al. [2008] propose

98 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

to use the power method to iteratively update R according to:

R← AR/||AR|| , (3.6)

where A is the N2 ×N2 matrix defined as:

A(i, j)(u, v) =
1

|N(u)||N(v)| .

To take into account the information on protein sequence similarities encoded

by matrix C, the following modification of (3.5) is used

R = λAR + (1− λ)C, (3.7)

where λ has the same interpretation as in (3.4).

3.3.2 Algorithms for the constrained GNA problem

As explained in Section 3.2, all methods for solving the balanced GNA problem (3.4)

can also be used to solve the constrained GNA problem (3.2), by using a particular

similarity function to enforce the constraints. Hence a first series of methods to solve

(3.2) are the constrained version of IsoRank, GA and PATH, described in the previous

section. In addition to these three methods, we consider two additional approaches

specifically dedicated to the constrained GNA problem: the Markov random field

(MRF) method of Bandyopadhyay et al. [2006], and a new method based on message

passing (MP) which we propose to find the global optimum of (3.2) when the graphs

are not too dense.

� MRF method. To solve ambiguous assignments in Inparanoid clusters with more

than two proteins, Bandyopadhyay et al. [2006] propose to use the information

on protein interactions, by choosing the assignments which maximize the num-

ber of conserved interactions between two species. For that purpose they use

the following probabilistic model. They associate a binary variable zij to each

3.3. METHODS 99

possible protein ortholog pair (fi, yj) (here fi and yj denote Fly and Yeast pro-

teins from the same Inparanoid cluster), where zij = 1 means that fi and yj

are functional orthologs. Two variables zij and zkt are connected if at least one

pair of proteins (fi, fk) or (yj, yt) is connected in its PPI network, and the other

one has a common neighbor (or is also connected).Let N(ij) denote the set of

indices connected to zij. Then the probability law of zij is modeled by:

P (zij|zN(ij)) =
1

1 + exp{−α− β
∑

kt∈N(ij) zkt}
. (3.8)

The interpretation of this formula is that zij has more chances to be equal

to one when the number of neighbors equal to one is large. When there are

only two proteins in cluster fi and yj then by definition zij = 1. If fi and yj

are from different clusters then also by definition zij = 0. The parameters α

and β are estimated on the basis of training data, then a Gibbs sampling is

performed to define the value of unknown variables z on the test set. We refer

to [Bandyopadhyay et al., 2006] for more details on this method.

� MP method for exact optimization. Although intractable in general, we now

show that constrained GNA problem (3.2) can be solved exactly and efficiently

in some cases, and propose a new, efficient algorithm based on message passing

for that purpose. More precisely, we consider the situation where the set of

proteins have been clustered into a finite set of L groups c1, . . . , cL, which form

a partition of VG ∪ VH , and where only proteins within the same group can

be matched1. This situation, illustrated in Figure 3.1, represents for example

the problem investigated by Bandyopadhyay et al. [2006], where proteins of

two organisms are first clustered by the Inparanoid algorithm, and functional

orthologs are searched within clusters. Let us now consider the L clusters as

vertices of a graph, and connect two clusters ci and cj if they contain proteins of

both organisms that interact in their respective PPI network. For example, in

Figure 3.1, c1 and c2 are connected because c1 contains f1 from the first organism

1Technically, we add dummy nodes in each cluster to obtain the same number of proteins of each
species in each cluster.

100 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

Figure 3.1: Inparanoid cluster network. Two clusters are connected if there exist at
least one pair of proteins in one cluster, and one pair of proteins in the other cluster,
which may produce a conserved interaction.

and y1 from the second organism, which interact with f5 and y3 respectively,

both in c2. The reason why we introduce this graph of clusters is that it allows

to decompose the choice of a global matching P into local matchings within

each cluster, the dependency between the local choices being described by the

edges of the graph. For example, if a cluster is isolated, then the choice of the

matching within this cluster has no influence over the total number of conserved

interactions apart from interactions within this cluster. In other words, the

local matching within an isolated cluster can be optimized independently from

the others. On the other hand, if a cluster is connected to other clusters,

then changing the matching within this cluster can affect the total number of

interactions between proteins of different clusters, and the matchings between

connected clusters must be chosen synchronously to optimize the total number

of conserved interactions.

More formally, if we denote by P1, . . . , PL the permutation P restricted to the

L clusters, then an important property is that the total number of interactions

3.3. METHODS 101

conserved by P decomposes as:

J(P) =
L∑

i=1

J1(Pi) +
∑

i∼j

J2(Pi, Pj) , (3.9)

where J1(Pi) denotes the number of conserved interactions within ci, J2(Pi, Pj)

denotes the number of conserved interactions between ci and cj, and i ∼ j

means that ci is connected to cj.

While maximizing (3.9) remains a challenging optimization problem in general,

it may be optimized efficiently if the graph of clusters has a particular structure,

e.g., if many nodes are isolated or if it contains no loop. For example, Figure

3.2(a) shows the graph of clusters for the problem of fly/yeast protein alignment

investigated by Bandyopadhyay et al. [2006]. Interestingly, this graph has no

loop. In this case, we can maximize (3.9) by a particular Message Passing (MP)

algorithm [Jordan, 2001]. The idea of the MP algorithm is similar to the Viterbi

algorithm [Viterbi, 1973] widely used to optimize functions over linear graphs,

such as finding the most likely set of hidden states in a hidden Markov model

[Durbin et al., 1998]. Here we describe how to apply MP on a graph without

loop to optimize (3.9). First, we note that each of the permutations involving

proteins within a connected component of the graph can be optimized inde-

pendently from each other, so we just consider a single connected component

without loop, i.e., a tree T of clusters. We choose a vertex of T that we call root,

which allows to define the directions up (towards the root) or down (away from

the root) when moving on edges of the graph. Each cluster ci except the root

has a unique parent cluster, namely, the connected cluster in the direction of the

root. The clusters connected to a cluster c which are not its parent are called

its children and are denoted ch(c). To each node c of T , we associate a vector

uc ∈ R
Pc , where Pc is the set of possible local matchings within c, i.e., the set

of possible Pc’s. The MP algorithm to solve (3.9) is then a recursive algorithm,

which starts from the leaves up to the root in a first phase (the “forward” step)

to find the optimal value of the functional, and then downwards from the root

102 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

to leaves (the “backward” step) to find the solution which achieves the optimal

value. The forward step at node c solves, for any Pc ∈ Pc:

uc(Pc) = J1(Pc) +
∑

c′∈ch(c)

max
Pc′∈Pc′

[uc′(Pc′) + J2(Pc, Pc′)] . (3.10)

At the end of the forward step, the maximum value of the vector u at the root is

equal to the maximal value of J(P), and the local permutation which achieves

this maximum is the optimal local permutation. In the backward step, the

optimal local matching of the children of a cluster are obtained by recovering

the local permutations Pc′ which achieved the optimal value in (3.10) for the

optimal permutation of the parent cluster.

We note that it is also possible to use the MP algorithm on graphs that are

not trees, but which have a small tree-width value [Jordan, 2001]. Roughly

speaking it means that the graph of clusters is not a tree, we may transform it

into a tree by grouping together clusters. If the size of these cluster groups is

not very large, then the exact optimization may still be feasible.

3.4 Data

In order to compare the performance of the different graph matching methods, we per-

formed several experiments aiming at aligning the PPI networks of the yeast S. cere-

visiae and of the fly D. melanogaster, as already investigated by Bandyopadhyay et al.

[2006] and Singh et al. [2008]. We downloaded all necessary data from the supple-

mentary materials of Bandyopadhyay et al. [2006]2. The yeast PPI network contains

4,389 proteins and 14,319 pairwise interactions, while the fly network contains 7,038

proteins and 20,720 interactions. In addition we also retrieved the set of Inparanoid

clusters used by Bandyopadhyay et al. [2006], consisting in 2,244 cluster covering

2,834 yeast proteins and 3,881 fly proteins. The majority of these clusters (1,552)

contains only two proteins (one from fly, one from yeast), while the remaining 692

2http://www.cellcircuits.org/Bandyopadhyay2006http://www.cellcircuits.org/Bandyopadhyay2006

3.5. RESULTS 103

cluster contain at least two proteins from the same species and one from the other

species. Those 692 clusters are called ambiguous in [Bandyopadhyay et al., 2006],

since they do not allow to associate a single protein from the fly to a single protein

from the yeast as functional orthologs.

3.5 Results

We wish to investigate two different questions: (i) compare the ability of the dif-

ferent methods to find alignment with many conserved interactions, and (ii) assess

whether conserving more interactions really helps in retrieving more functional or-

thologs. While the first question can be answered without ambiguity by counting the

number of conserved interactions found by the different methods in different settings,

the second one, as we will see, remains difficult to answer due to the lack of large-scale

and curated ground truth.

We performed three sets of experiments, in order to compare the different methods

in different settings and to test different formulations of the GNA problem. In the

first set of experiments, we reproduce the problem studied by Bandyopadhyay et al.

[2006], where the goal is to disambiguate functional orthologs within Inparanoid

clusters using PPI information. This is a particular instance of the constrained

GNA problem which turns out to be amenable to exact optimization by the MP

method. In the second set of experiments, we generalize the benchmark problem of

Bandyopadhyay et al. [2006] by adding second-order interactions between proteins in

order to account for possible noise in the interaction data or protein duplications.

In that case we are again confronted with a constrained GNA problem, but the in-

creased number of interactions makes its exact minimization intractable and only

approximate methods for constrained GNA can be applied. Finally, in a third set of

experiments, we discard the knowledge of Inparanoid clusters and directly search a

global alignment which balances the similarity between aligned proteins and the num-

ber of conserved interactions. This is then an instance of the balanced GNA problem.

In all cases, we assess the number of conserved interactions captured by the different

methods, as an indicator of how well they solve the GNA problem. Furthermore,

104 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

since the final objective of PPI network alignment is to match functional orthologs,

we assess for each method how many matched pairs are present in the HomoloGene

database, a set of curated functional orthologous pairs based on the comparison of

the protein as well as the DNA sequence which we consider here as a ”gold standard”

for disambiguation purpose.

3.5.1 Disambiguation of functional orthologs within Inpara-

noid clusters

The goal of this experiment is to use PPI GNA to select functional orthologs between

the yeast and the fly for proteins with several homologs. More precisely, all proteins

sequences are first clustered into groups by the Inparanoid algorithm [Brein et al.,

2005], and only proteins from the same cluster can be considered as protein functional

orthologs. Then each GNA algorithm tries to find an association of protein functional

orthologs which maximizes the total number of conserved interactions. In other words,

we try to solve the constrained GNA (3.2), where the constraints are provided by the

Inparanoid clusters. A priori, the most natural definition of “conserved interaction”

for the alignment (f1 − y1) and (f2 − y2) (where f1 and f2 are fly’s proteins, and y1

and y2 are yeast’s proteins) is the following:

1. f1 interacts with f2, and y1 interacts with y2 in their respective PPI networks.

However, this strict notion of conserved interaction leads to a very small number of po-

tentially conserved interactions. To have more potential interactions, Bandyopadhyay et al.

[2006] generalized this definition by adding the following two cases, which additionally

allow to account for possible duplication or fusion events in the two proteomes:

2. f1 interacts with f2 in the fly PPI network, and y1 has a common neighbor with

y2 in the yeast PPI networks;

3. f1 has a common neighbor with f2 in the fly PPI network, and y1 interacts with

y2 in the yeast PPI networks.

3.5. RESULTS 105

Table 3.1: Performance of the different methods for constrained GNA on the bench-
mark of Bandyopadhyay et al. [2006]. Each algorithm is evaluated by the number
of conserved interactions, number of recovered HomoloGene pairs and the running
time. The number of recovered HomoloGene pairs is counted only in 121 ambiguous
Inparanoid clusters where PPI data may be used.

Algorithm MP MRF IsoRank GA PATH
Number of conserved interactions 238 233 228 238 238

Number of HomoloGene pairs (121 cl.) 41 36 39 41 41
Timing(sec) 1-2 10 1-2 1-2 80-100

To be able to compare the results of different algorithms, we use this exact definition

of conserved interactions (cases 1-3). Figure 3.2(a) presents the network of Inpara-

noid clusters (as explained in Figure 3.1) used in [Bandyopadhyay et al., 2006], where

only non-isolated ambiguous clusters are shown. As can be easily seen, this network

which contains 121 ambiguous clusters has no loop, which implies that we can use

the MP method to find the optimal alignment with the largest number of conserved

interactions. Although we know how to solve the problem exactly in this case with

the MP method, it is instructive to compare also the results of the different approx-

imate algorithms for constrained GNA, namely, MRF and the constrained versions

of IsoRank, GA and PATH. To construct the alignment made by the MRF method

[Bandyopadhyay et al., 2006], we downloaded the result file3 with probabilities for

all possible protein association, and we extracted the one-to-one alignment by taking

the most probable pairs. The results of the PATH, GA and IsoRank algorithms were

obtained with the GraphM package [Zaslavskiy et al., 2008a].

Table 3.1 presents the results of all algorithms on this benchmark, in terms of

conserved interactions, number of HomoloGene pairs, and running time. We know

that the MP algorithm produces the maximal possible value (238 in this case), and an

interesting observation is that the GA and the PATH algorithms reach this maximum,

while the MRF (233) and the IsoRank (228) algorithms do not. All methods are

comparable in terms of CPU time, except for MRF which is one order of magnitude

slower on this dataset. Although the differences in number are slight, with only 2%

3http://www.cellcircuits.org/Bandyopadhyay2006/data/Bandyopadhyay results.xls

106 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

(a)

(b)

Figure 3.2: Inparanoid cluster networks. (a) The case of the benchmark data used in
[Bandyopadhyay et al., 2006]. (b) The case of generalized interactions (1-4), see text.

3.5. RESULTS 107

more conserved interactions for MP/GA/PATH than for MRF, and 4% more than

for IsoRank, this nevertheless confirms that even on this relatively easy optimization

problem neither MRF nor IsoRank finds the optimal solution, which can be found by

other methods at no additional computational cost.

(a)

(b)

Figure 3.3: Illustration of difference between MRF and MP alignment. Each box
represents an Inparanoid cluster, white unfilled boxes represent clusters where MP
and MRF assignments are the same. Red solid lines represent interactions conserved
by MP alignment and not by MRF, black dotted lines represent interactions conserved
by MRF and not by MP.

Figures 3.3(a) and 3.3(b) show some examples where the MRF assignment and

the assignment made by the MP, PATH and GA algorithms are different, and illus-

trate how these differences influence the total number of conserved interactions. For

108 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

instance, in the Inparanoid cluster 1113, the MRF algorithm associate the fly protein

skpA to the yeast protein skp1, while the MP algorithm prefers the assignment skpF

to skp1. In the later case we lose one conserved interaction with pair ago-cdc4, but we

gain two new conserved interactions with (vha36,vm28) and (ef2b,eft2). In another

example, shown in Figure 3.3(b), the MP algorithm proposes a different association

for the yeast protein act1 in the 94-th Inparanoid cluster. This assignment results in

two lost and three gained conserved interactions. From a biological point of view, the

assignment of the fly protein act87e to act1 proposed by the MRF algorithm seems to

be worse that the assignment (act5c,act1) proposed by the MP algorithm. Indeed, al-

though proteins act5c and act87e are very similar (being both from the actine family),

it is known that act1 and act5c participate together to the INO80 protein complex

(which exhibits chromatin remodeling activity and 3’ to 5’ DNA helicase activity),

while act87e does not.

In order to assess more systematically and quantitatively whether differences in the

number of conserved interactions lead to significant differences in number of correctly

assigned functional orthologous pairs, we counted how many pairs in each alignment

is reported as functional orthologous in the HomoloGene database, considered here as

a ”gold standard”. As shown in Table 3.1, the number of HomoloGene pairs in each

alignment also differs between the different methods, ranging from 36 for MRF to 39

for IsoRank and 41 for MP/GA/PATH. Interestingly, we observe that the method MP,

GA and PATH, which retrieve the largest number of conserved interaction, also result

in the largest number HomoloGene pairs (41), which represents a relative increase

of 13% compared to MRF (36), and of 5% compared to IsoRank. To illustrate the

differences between the methods, Table 3.2 lists the HomoloGene pairs found by MRF

and not MP/GA/PATH, and vice versa. Interestingly, a new method for PPI network

alignment was published recently [Yosef et al., 2008], which detects 37 HomoloGene

orthologs on the same set of proteins. This puts its between MRF and IsoRank

according to this criterion.

The validity of taking HomoloGene as a ”gold standard” for assessing the number

of correctly assigned homologous pairs remains, however, subject to discussion. In-

deed, although HomoloGene clusters are defined using a variety of evidences, they are

3.5. RESULTS 109

Table 3.2: HomoloGene orthologs found by the MP method and not by MRF and
vice versa.

MP MRF
(TfIIA-S, TOA2) (RPL23, RPL23A) (Pros35, PRE5)
(CG13890, ECI1) (Gapdh1, TDH1) (Rab11, Ypt31)

(TfIIS, DST1) (Rpt4, Rpt4) (Rps26, Rps26A)
(Ef1gamma, TEF4) (act5c, act1) (CG6523, YDR098C)
(Glut1, YBR241C) (Sir2, hst1) (CG8690, YBR299W)

mainly driven by sequence similarity. To illustrate this, we assessed the performance

of a simple alignment method which matches pairs within an ambiguous cluster by

maximizing the total sequence similarity over matched pairs. This method does not

use any PPI information for the matching. The resulting alignment has only 184

conserved interaction, which is not surprisingly much worse than all methods which

take PPI into account. However, the resulting matched pairs contain 43 HomoloGene

pairs, which is more than all methods taking into account PPI. This shows that the

number of HomoloGene pairs as an indicator should be taken with caution, since it

favors methods which focus on matching proteins based on sequence similarity only.

3.5.2 Disambiguation of Inparanoid clusters with second-order

interactions

The idea of Bandyopadhyay et al. [2006] to expand the natural notion of conserved

interaction (case 1) to cases 2 and 3, aims to take into account second-order interac-

tions, that is, when two proteins do not interact directly to each other have a common

neighbor. Another natural generalization of the notion of conserved interaction is then

the following case:

4. f1 has a common neighbor with f2, and y1 has a common neighbor with y2, in

their respective PPI networks.

Adding interactions according to this rule makes the problem computationally more

difficult, since ambiguous clusters become more connected. Indeed, while we were

able to solve the original problem exactly with the MP algorithm, the network of

110 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

Table 3.3: Performance of the different methods for constrained GNA on the bench-
mark of Bandyopadhyay et al. [2006] with second-order interactions added. The num-
ber of recovered HomoloGene pairs is counting on the 121 Inparanoid clusters from
the previous section as well as on the new 602 ambiguous Inparanoid clusters have
second-order interaction with other Inparanoid clusters

Algorithm MRF IsoRank GA PATH
Number of conserved interactions 1,112 1,101 1,140 1,143

Number of HomoloGene pairs (121 cl.) 39 38 41 40
Number of HomoloGene pairs (602 cl.) 172 167 172 166

Timing(sec) 623 31 372 1,542

Inparanoid clusters when cases 1-4 are included takes the form presented in Figure

3.2(b). Contrary to the previous network (cases 1-3 in Figure 3.2(a)), the new network

has loops and is not amenable to exact optimization with the MP procedure. Only

approximate algorithms can be applied in this case.

In order to compare all methods (except MP) in this new setting, we re-implemented

the MRF algorithm with the new data. The estimated values of the model parame-

ters (see details in [Bandyopadhyay et al., 2006]) are (α = 0.51, β = −6.87). We used

the same training and test data as those used used in [Bandyopadhyay et al., 2006]

to estimate them. Then we estimated the probabilities of being protein orthologs for

potential pairs of proteins by Gibbs sampling, and obtained a one-to-one alignment

based on the most probable associations.

Table 3.3 shows the results obtained by the different graph matching algorithms.

Although we do not know the maximum number of interactions that can be conserved

in this case, we observe again that PATH and GA find solutions with 3 − 4% more

interactions conserved than MRF and IsoRank. There is no clear difference in the

number of HomoloGene pairs between the different methods, and the addition of

second-order interactions has no obvious effects on this indicator neither: it leads to

a gain of 3 pairs for MRF, but to a loss of one pair for IsoRank and PATH, and to

no change for GA.

3.5. RESULTS 111

3.5.3 Global PPI network alignment by balancing sequence

and interaction conservation

In this last series of experiments, we consider the problem proposed by Singh et al.

[2008], for which IsoRank reflects the state-of-the-art: find a global PPI alignment by

balancing the sequence similarity in matched pairs with the total number of conserved

interactions, allowing in particular matches between proteins in different Inparanoid

clusters if they allow an increased number of conserved interactions. For this appli-

cation we can only compare the three methods for balanced GNA, namely, IsoRank,

GA and PATH. The trade-off between matching proteins with similar sequences and

matching with a lot of conserved interactions is controlled by the parameter λ in (3.4)

and (3.7). The greater λ, the more attention we pay to the sequence similarity and

the less to the number of conserved interactions. For each method, by varying λ, we

therefore obtain a family of alignments with different compromise found between the

number of conserved interactions J(P) (3.4) and the summary sequence similarity

score S(P) (3.4).

Figure 3.4 shows the different trade-offs which are found by the different methods.

For a given level of average sequence similarity, we wish to have the largest possible

number of conserved pairs. We observe that over all the range of average sequence

similarity, the GA algorithms clearly outperforms PATH, which itself outperforms

IsoRank. For example, for the trade-off parameter choice advocated by Singh et al.

[2008] for IsoRank (λ = 0.6), IsoRank finds an alignment with 566 conserved interac-

tions, corresponding to an average sequence similarity score in the matched pairs of

15.26. At this level of average sequence similarity, PATH and GA find alignments with

respectively 678 and 1, 006 interactions, which corresponds to relative improvements

of respectively 20% and 78%.

Again, there is still only limited objective evidence that optimizing the number

of conserved interactions leads to better matching in terms of functional orthology

detection. As an attempt to test this fact, we first counted, for each alignment,

the number of HomoloGene pairs in the alignment. However, we observed that, for

each method, this number increases monotonically when more weight is given to

112 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

14 14.5 15 15.5 16 16.5
0

200

400

600

800

1000

1200

Sequence similarity

N
um

be
r

of
 c

on
se

rv
ed

 in
te

ra
ct

io
ns

GA
PATH
IsoRank

Figure 3.4: Algorithm performance comparison. Number of conserved interaction
J(P) versus sequence similarity S(P).

3.6. DISCUSSION 113

sequence similarity as opposed to interaction conservation. This again highlights the

limitation of this criterion, which is optimized by construction when sequences are

optimally matched in terms of similarity. We then attempted to compare the different

alignments in terms of mean similarity between gene ontology (GO) annotations of

matched pairs. In order to compare GO annotations of two proteins we tested the

method presented by Singh et al. [2008] to compute the functional coherence of a

pair. However, we were not able to observe any clear difference between the methods,

or between the different parameter choice for each individual method. The maximum

mean functional coherence over the choice of the trade-off parameter is respectively

0.519, 0.509 and 0.522 for IsoRank, GA and PATH. However the fluctuations of

this score when the parameters change are so large that these maximum values are

not significantly different. This is due to the fact that the number of annotated

proteins remains limited, and that they are rarely annotated with such precision

that it is possible to clearly differentiate true functional orthologs from spurious ones

[Bandyopadhyay et al., 2006]. For example, when we estimate the functional score of

a given alignment, there is rarely more than 15− 20% of pairs with GO annotations.

3.6 Discussion

We presented two general formulations for the GNA problem. The constrained GNA

formulation corresponds to a situation where we have a strong a priori about which

pairs can be matched. In the balanced GNA problem, we replace the binary con-

straints on which pairs are allowed by a more global objective function which bal-

ances the matching of similar proteins with the conservation of interactions, with a

parameter to smoothly control the trade-off between these two contradictory goals.

While MRF and IsoRank are popular methods for these two formulations, we pro-

posed in this chapter new methods which lead to significantly better alignments, when

we assess the quality of an alignment in terms how many conserved interactions are

retrieved. In particular, the MP method, when it is applicable, finds the optimal

solution of a constrained GNA problem, and the GA method provides consistently

good results in both cases. The question of which formulation is the best for a given

114 CHAPTER 3. GLOBAL ALIGNMENT OF PPI BY GM METHODS

application and dataset, between the constrained and balanced GNA, remains largely

open and worth further systematic investigations. Regarding the relative performance

of the different methods in terms of how many conserved interactions they find, we

observed that the MP/GA/PATH methods outperform MRF and IsoRank in both

situations. This is not so surprising given that, once the problem is explicitly stated

as a graph matching problems, it makes sense to use methods borrowing ideas and

techniques from state-of-the-art graph matching approaches. The impressive perfor-

mance of GA compared to PATH in the balanced GNA experiment (Figure 3.4) is

more surprising, given the good performance of PATH on a number of other bench-

marks [Zaslavskiy et al., 2008c]. We believe this weakness of PATH is due to the

large difference in the number of nodes between the two networks. Indeed, the result-

ing large number of dummy nodes that must be added generate singularities in the

convex relaxation in the PATH algorithm.

The GNA problems we studied have several extensions. First, it may be inter-

esting to consider alignment of weighted PPI networks with weights representing, for

instance, experimental evidence of interaction existence. Interestingly, the PATH,

GA and IsoRank algorithm can be applied directly to a weighted network, by just

replacing the binary graph adjacency matrix by a real-valued matrix. Another rel-

evant extension is the alignment of multiple PPI networks, corresponding to more

than two species, via pairwise comparisons as it was presented by Singh et al. [2008].

Finally, it may be relevant in some cases to match one protein of one species with

several proteins of the other species, to account for possible duplications or fusion

events. An interesting property of the PATH algorithm is the fact that estimate a

permutation matrix by first solving a relaxed problem. The solution of the relaxed

problem is a doubly stochastic matrix whose entries can be interpreted as probabil-

ities for proteins to be functional orthologs [Zaslavskiy et al., 2008c] . Therefore, in

order to allow many-to-many assignments of proteins, we could use the solution of

the convex relaxation.

Finally, although progresses in graph alignment algorithms can be monitored by

objective quantitative measures such as the number of conserved interactions, their

biological relevance remains difficult to assess. In particular, for the detection of

3.6. DISCUSSION 115

functional orthologs, it is apparent that current GO annotations or curated databases

of functional orthologs are either biased by construction (e.g., HomoloGene), or not

precise enough and too scarce for systematic evaluation (e.g., GO annotations). We

believe we are reaching a point where more experimental validations are needed. On

the other hand, there are many other possible applications for efficient graph matching

algorithms scaling to large biological networks, such as phylogenetic comparison of

sets of networks, detection of new conserved pathways, or curation of PPI data.

We expect the methods proposed in this chapter to have a direct impact in these

applications.

Chapter 4

Many-to-Many graph matching

Preface

Graphs provide a very efficient tool for object representation in various machine learn-

ing applications. Once graph-based representations are constructed, the important

question of graph comparisons arises. This problem is often formulated as a graph

matching problem where one seeks a mapping between vertices of two graphs which

optimally aligns their structure. In the classical formulation of graph matching, only

one-to-one correspondences are considered, which is not always appropriate, and in

many applications it is more interesting to consider many-to-many correspondences

between graph vertices: clusters of vertices in one graphs are matched to clusters

of vertices in the other graph. In this chapter, we reformulate the many-to-many

graph matching problem as a discrete optimization problem and we propose an ap-

proximate algorithm based on a continuous relaxation. We compare our method with

other existing methods on several benchmark datasets.

4.1 Introduction

The necessity to process data with complex structures has triggered the wide use

of graph-based representation techniques in various applications domains. Graphs

116

4.1. INTRODUCTION 117

provide a flexible and efficient tools for data representation in computer vision (seg-

mentation, contour and shock graphs), computational biology (biological networks),

or chemoinformatics (representation of chemical compounds), to name just a few.

A fundamental question when data are represented as graphs is to be able to com-

pare graphs. In particular, it is important in many applications to be able to assess

quantitatively the similarity between graphs (e.g., for applications in supervised or

unsupervised classification), and to detect similar parts between graphs (e.g., for

identification of interesting patterns in data).

Graph matching is one approach to perform these tasks. In graph matching,

one tries to ”align” two graphs by matching their vertices in such a way that most

edges are conserved across matched vertices. Graph matching is useful both to assess

the similarity between graphs (e.g., by checking how much the graphs differ after

alignment), and to capture similar parts between graphs (e.g., by extracting connected

sets of matched vertices).

Classically, only one-to-one mappings are considered, that is, each vertex of the

first graph can be matched to only one vertex of the second graph, and vice-versa. This

problem can be formulated as a discrete optimization problem, where one wishes to

find a one-to-one matching which maximizes the number of conserved edges between

matched pair. This problem is NP-hard for general graphs, and remains impossible

to solve in practice for graphs with more than 30 vertices or so. Therefore much effort

has been devoted to the development of approximate methods which are able to find

a “good” solution in a reasonable time. These methods can roughly be divided into

two large classes. The first group consists of various local optimization algorithms

on the set of permutation matrices, including A∗-Beam-search [Neuhaus et al., 2006],

genetic algorithms, GRASP [Pardalos et al., 1995] in different modifications. The

second group consists in solving a continuous relaxation of the discrete optimization

problem, such as the L1 relaxation [Almohamad and Duffuaa, 1993], the Path al-

gorithm [Zaslavskiy et al., 2008c], and various spectral relaxations [Umeyama, 1988;

Caelli and Kosinov, 2004; Carcassoni and Hancock, 2003; Cour et al., 2006].

In practice, we are sometimes confronted with situations where the notion of one-

to-one mapping is too restrictive, and where we would like to allow the possibility to

118 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

match groups of vertices of the first graph to groups of vertices of the second graph.

We call such a mapping many-to-many. For instance, in image processing, the same

parts of the same object may be represented by different numbers of vertices depend-

ing on the noise in the image or on the choice of object view, and it could be relevant

to match together groups of vertices that represent the same part. From an algorith-

mic point of view, this problem has been much less investigated than the one-to-one

matching problem. Some one-to-one matching methods based on local optimization

over the set of permutation matrices have been extended to many-to-many matching,

e.g., by considering the possibility to merge vertices and edges in the course of op-

timization [Berretti et al., 2004; Ambauen et al., 2003]. Spectral methods have also

been extended to deal with many-to-many matching by combining the idea of spectral

decomposition of graph adjacency matrices with clustering methods [Keselman et al.,

2003; Caelli and Kosinov, 2004]. However, while the spectral approach for one-to-one

matching can be interpreted as a particular continuous relaxation of the discrete

optimization problem [Umeyama, 1988], this interpretation is lost in the extension

to many-to-many matching. In fact, we are not aware of a proper formulation of

the many-to-many graph matching problem as an optimization problem solved by

relaxation techniques.

Our main contribution is to propose such a formulation of many-to-many graph

matching problem as a discrete optimization problem which generalizes (4.1), and to

present an approximate methods based on a continuous relaxations of the problem.

The relaxed problem is not convex, and we solve it approximately with a conditional

gradient method. We also study different ways to map back the continuous solution

of the relaxed problem into a many-to-many matching. We present experimental

evidence, both on simulated and real data, the this formulation provides a significant

advantage over other one-to-one or many-to-many matching approaches.

4.2. MANY-TO-MANY GRAPH MATCHING AS AN OPTIMIZATION PROBLEM119

4.2 Many-to-many graph matching as an optimiza-

tion problem

In this section we derive a formulation of the many-to-many graph matching problem

as a discrete optimization problem. We start by recalling the classical expression of

the one-to-one matching problem as an optimization problem. We then show how

the one-to-one formulation may be extended to the case of one-to-many matchings.

Finally we describe how we can define many-to-many matchings via two many-to-one

mappings.

One-to-one graph matching Let G and H be two graphs with N vertices. We

also denote by G and H their respective adjacency matrices. A one-to-one matching

between G and H can formally be represented by a N × N permutation matrix P ,

where Pij = 1 if the i-th vertex of graph G is matched to the j-th vertex of graph H,

and Pij = 0 otherwise. Denoting by ‖ . . . ‖F the Frobenius norm of matrices, defined

as ‖A‖2F = trATA = (
∑

i

∑
j A

2
ij), we note that ‖G − PHP T‖2F is twice the number

of edges which are not conserved in the matching defined by the permutation P . The

one-to-one graph matching problem is therefore classically expressed as the following

discrete optimization problem:

min
P∈P
||G− PHP T ||2F

subject to P ∈ POdo = {P ∈ {0, 1}N×N : P1N = 1N , P
T 1N = 1N} .

(4.1)

We note that Poto simply represents the set of permutation matrices.

From one-to-one to one-to-many Suppose now that G has less vertices than H,

and that our goal is to find a matching that associate each vertex of G with one or

more vertices of H in such a way that all vertices of H are matched to a vertex of

G. We call such a matching one-to-many (or many-to-one). The problem of finding

an optimal one-to-many can be formulated as minimizing the same criterion as (4.1)

120 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

but modifying the optimization set as follows:

Potm = {P ∈ {0, 1}NG×NH : P1NH
≤ kmax1NG

, P1NH
≥ 1NG

, P T 1NG
= 1NH

} ,
(4.2)

where NG denotes size of graph G, NH denotes size of graph H, and kmax denotes an

optional upper bound on the number of vertices that can be matched to a single vertex.

In the context of one-to-many graph matching when g is matched to h1, . . . , hn, we

can see it as merging h ← h1 + h2 + · · · + hn with further matching g to h, where

meta-vertex h inherits all neighborhood connections (edges) from all h1, . . . , hn i.e.

w(h, h′) =
∑n

i=1w(hi, h
′).

The majority of existing continuous relaxation techniques may be adopted for one-

to-many matching. For example, Cour et al. [2006] describes how spectral relaxation

methods may be used in the case of one-to-many matching, other techniques like

convex relaxation [Zaslavskiy et al., 2008c] may be used as well since Potm is a convex

set.

From one-to-many to many-to-many Now to match two graphs G and H un-

der many-to-many constraints we proceed as if we matched these two graphs to a

virtual graph S under many-to-one constraints, minimizing the difference between

transformed graph G and transformed graph H. The idea of many-to-many match-

ing as a double one-to-many matching is illustrated in Figure 4.1. Graph S represents

Figure 4.1: Many-to-Many matching between G and H via many-to-one matching of
both graphs to a virtual graph S

the graph of matched vertex clusters. Each vertex of S corresponds to a group of

4.2. MANY-TO-MANY GRAPH MATCHING AS AN OPTIMIZATION PROBLEM121

vertices of G and a group of vertices of H matched to each other. Let P1 denote

a many-to-one matching G → S, and P2 a many-to one matching H → S, then

the many-to-many graph matching problem may be formulated as an optimization

problem where we seek S, P1 and P2 which minimize the difference between S and

P1GP
T
1 and between S and P2HP

T
2 . The intermediate graph S may be squeezed out

by considering directly the difference between P1GP
T
1 and P2HP

T
2 . We end up with

the following objective function for the many-to-many GM problem:

F (P1, P2) = ||P1G
T
1 P

T
1 − P2HP

T
2 ||2F , (4.3)

where P1 ∈ Pmto and P2 ∈ Pmto denote two many-to-one mappings. The objective

function (4.3) is quite similar to the objective function in the one-to-one case. In

(4.1) we seek a permutation which makes the second graph H as similar as possible

to G. And here in the many-to-many case we seek combinations of merging and

permutations which makes G and H similar to each other. The only difference is that

in the many-to-many case we add the merging operation.

There are two slightly different ways of defining the optimization set. We can

fix in advance the number of matching clusters L which corresponds to the size of

S, then the optimization set will be P1 ∈ Pmto(L,NG) and P2 ∈ Pmto(L,NH). An

alternative way is to remove the constraint P1NH
≥ 1NG

from the definition of Pmto,

in this case the method estimates itself the number of matching clusters (number of

rows with non-zero sum).

Finally, the many-to-many graph matching problem is formulated as follows

min
P1,P2

||P1G
T
1 P

T
1 − P2HP

T
2 ||2F subject to

P1 ∈ {0, 1}NK×NG , P11NG
≤ kmax1NK

, P ′
11NK

= 1NG
,

P2 ∈ {0, 1}NK×NH , P21NH
≤ kmax1NK

, P ′
21NK

= 1NH
,

(4.4)

where NK = min(NG, NH) represent the maximal number of matching clusters.

This formulation is valid for all kinds of graphs, graphs may be directed (with

asymmetric adjacency matrices), have real-valued edge weights and self-loops. We

122 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

also describe in Section 4.3 how this formulation may be modified to include infor-

mation on vertex labels.

4.3 Continuous relaxations of the many-to-many

GM problem

The many-to-many graph matching problem (4.4) is a hard discrete optimization

problem and therefore an approximate method is needed. Here we propose an algo-

rithm based on a continuous relaxation of (4.4)

4.3.1 Method 1: Gradient descent

In this method we replace the binary constraints P1 ∈ {0, 1}NK×NG , P2 ∈ {0, 1}NK×NH

by continuous constraints P1 ∈ [0, 1]NK×NG , P2 ∈ [0, 1]NK×NH . Then, we run the

following optimization algorithm (which is a version of the Frank-Wolfe or the con-

ditional gradient method [Bertsekas, 1999])

� Input: initial values P 0
1 and P 0

2

� while NOT(stop criterion)

1. compute ∇F (P1, P2)

2. find the minimum ∇F (P1, P2)P w.r.t. P ; this problem may be seen as

a version of a linear semi-assigned problem and reduced to the classical

linear assignment problem by adding dummy nodes. Finally we have to

solve a linear assignment problem for kmax(NG +NH)×NH matrix which

can be done very efficiently by the Hungarian algorithm [Kuhn, 1955].

3. do the line search in the direction of the optimum find in Step 2. Since

the objective function is a polynomial of the fourth order, there exists a

closed form expression for the minima of F (P1, P2) in any given direction.

4. set stop criterion to true if |∆F |+ ||∆P1||F + ||∆P2||F < ǫ

4.3. CONTINUOUS RELAXATIONS OF THE MANY-TO-MANY GM PROBLEM123

� Output P1, P2.

Since the objective function is not convex, it is very important to have a good initial-

ization. In our experiments the method is working well with the “uniform” initializa-

tion, where we initialize P1 by 1
NK

1NG
1T

NH
and P2 by the identity matrix I. Another

option is to use a convex relaxation of one-to-one matching [Zaslavskiy et al., 2008c]

Projection The last step consists in the projections of P1 and P2 onto P . Here,

we have several alternatives. Columns of matrices P1 and P2 may be used to define a

similarity measure between vertices of two graphs. The more similar the correspond-

ing columns of two vertices, the more likely these vertices are to be matched (if they

are from different graphs) or merged (if they are from the same graph). Therefore a

possible strategy is to run a clustering algorithm (K-means, spectral clustering,. . .)

on column vectors of matrix P and then use resulting clustering to construct the final

many-to-many graph matching.

An alternative to clustering is an incremental projection or forward selection pro-

jection. Once P1 and P2 are constructed we take the pair of vertices g and h having

the most similar column vectors and we fix it as a matched pair. To fix a pair of ver-

tices as matched pair, we set P (:, g) ← P (:, h) ← eq. If g (or h) is already matched

to another vertex h′, then we set P (:, h)← P (:, g) producing a one-to-two matching

g ∼ (h, h1). Then we add the new constraints P (:, g) = P (:, h) = eq to the optimiza-

tion problem and we adjust the minima. We repeat this operation until the moment

when all vertices are matched.

In our experiments the second approach produced better results mainly due to the

fact that when we just run a clustering algorithm we do not use the objective function,

while when we use incremental projection we adapt column vectors of unmatched

vertices according to earlier established matchings.

4.3.2 Method 2: SDP relaxation

The second method consists in relaxation of (4.4) to a quadratic SDP problem.

124 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

First, we rewrite the objective function of (4.3) in an alternative form

||P1G
T
1 P

T
1 − P2HP

T
2 ||2F =

trP1G
T P T

1 P1︸ ︷︷ ︸
M1

GP T
1 + trP2H

T P T
2 P2︸ ︷︷ ︸
M2

HP T
2 − 2trP1G

T P T
1 P2︸ ︷︷ ︸
M12

HP T
2 =

trM1G
TM1G+ trM2H

TM2H − 2trM21G
TM12H =

tr




(
M1 M12

M21 M2

)

︸ ︷︷ ︸
M

(
GT 0

0 −HT

)

︸ ︷︷ ︸
AT

(
M1 M12

M21 M2

)(
G 0

0 −H

)



=

trMATMA = vec(M)(AT ⊗ A)vec(M) =: F (M)

(4.5)

We have to minimize a quadratic function over discrete set M of binary matrices

having special structure. Since matrix M is a positive-semidefinite matrix, we can

relax the optimization problem minM∈M F (M) to the minimization of a quadratic

function over the convex set of positive-semidefinite matrices

min
M�0

F (M). (4.6)

Therefore the second method consists in running of the Frank-Wolfe algorithm with

an SDP solver (SeDuMe, for instance) to compute conditional gradient and further

projection of the produced solution onM.

Here again we can run a clustering algorithm using matrix Msdp as a similarity

matrix between vertices of two graphs, or use the incremental projection strategy

fixing on each step the most probable matching and adjusting the optimum given the

new constraints.

Neighbor merging Depending on the particular application, it may be interesting

to favorite merging of neighbor vertices, then it may be useful to consider the following

modification

F (P1, P2) = F (P1, P2)− trGTP T
1 P1 − trHTP T

2 P2. (4.7)

4.4. RELATED METHODS 125

Local similarities Like the one-to-one formulation, the many-to-many graph match-

ing may be easily modified to include information on vertex pairwise similarities by

modifying the objective function as follows

Fλ(P1, P2) = (1− λ)||P1G
T
1 P

T
1 − P2HP

T
2 ||2F + λtrCTP T

1 P2 , (4.8)

where matrix C ∈ R
NG×NH encodes the matrix of local dissimilarities between graph

vertices, and parameter λ controls the relative impact of information on graph ver-

tices and information on graph structures. The new objective function is again a

polynomial of the fourth order, so our algorithm may still be used directly without

any additional modifications.

4.4 Related methods

There are two major groups of methods which may be used for many-to-many graph

matching. The first one consists of local search algorithms generally used in the

context of the graph edit distance. The second group are different variations of

spectral approach. Below we present a brief description of these two groups.

Local search algorithms Examples of this kind of approach are given in [Berretti et al.,

2004] and [Ambauen et al., 2003]. In the classical formulation of the graph edit dis-

tance, the set of graph edit operations consists of deletion, insertion and substitution

of vertices and edges. Each operation has an associated cost, and the objective is

to find a sequence of operations with the lowest total cost transforming one graph

into another. In the case of many-to-many graph matching this set of operations is

completed by merging (and splitting if necessary) operations.

Since the estimation of the optimal sequence is a hard combinatorial problem,

usually approximate methods such as beam search [Neuhaus et al., 2006] as well as

other examples of best-first, breadth-first and depth-first searches are used.

Spectral approach Caelli and Kosinov [2004] discuss how spectral matching may

be used for many-to-many graph matching. Their algorithm is similar to the Umeyama

126 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

method but instead of one-to-one correspondences as it was done in [Umeyama, 1988],

they search a many-to-many mapping by running a clustering algorithm. One the

first step, the spectral decomposition of graph adjacency matrices is considered

G = VGΛGV
T
G , H = VHΛHV

T
H . (4.9)

Rows of eigenvector matrices VG and VH may be interpreted as spectral coordinates

of graph vertices. Then vertices having similar spectral coordinates are clustered to-

gether by a clustering algorithm where vertices regrouped in the same cluster are

considered to be matched. Another example of spectral approach is given in

[Keselman et al., 2003] where, roughly speaking, the adjacency matrix is replaced by

the matrix of shortest path distances, and then spectral decomposition with further

clustering are used.

4.5 Experiments

In this section we compare new methods proposed in this chapter with other ex-

isting techniques (beam-search and spectral approach). We test three competitive

approaches: beam-search “Beam” (A*-beam search from [Neuhaus et al., 2006]), the

spectral approach “Spec” [Caelli and Kosinov, 2004] and gradient descent “Grad”

(Section 4.3).

4.5.1 Synthetic examples

In this section we compare three many-to-many graph matching algorithms on pairs

of randomly generated graphs with similar structures. In our experiments we gener-

ated graphs according to the following procedure:

1. Generate a random graph G of size N : P (a pair of vertices is connected) = p.

2. Let H be a randomly permuted copy of G.

3. Random splitting of vertices in G (and in H): take a random vertex in G (and in

H) and split it into two vertices. Repeat this operation M times.

4.5. EXPERIMENTS 127

(a)
20 40 60 80
0

50

100

150

200

N

F
(P

1,P
2)

Grad

Spec

Beam

(b)
0 0.1 0.2 0.3 0.4

100

200

300

400

σ

F
(P

1,P
2)

Grad
Spec
Beam

(c)
1.4 1.6 1.8 2

−2

−1

0

1

2

Log10(N)

Lo
g1

0(
R

un
ni

ng
 ti

m
e) Grad

Spec

Beam

Figure 4.2: (a) F (P1, P2) (mean value over 30 repetitions) as a function of graph
size N , simulation parameters: p = 0.1, σ = 0.05,M = 3. (b) F (P1, P2) (mean
value over 30 repetitions) as a function of noise parameter σ, simulation parameters:
N = 30, p = 0.1,M = 3. (c) Algorithm running time (mean value over 30 repetitions)
as a function of N (log-log scale), other parameters are the same as in (a).

4. Noise introduction. Add/delete σ × p×N2 random edges in both graphs.

As already mentioned before, our principal interest here is to understand the be-

havior of graph matching algorithms depending on graph size N and their ability to

resist to structural noise (in practice we never have identical graphs and it is impor-

tant to have a robust algorithm which is able to deal with noise in graph structures).

The objective function F (P1, P2) in (4.4) represents the quality of graph matching,

so to compare different graph matching algorithms we trace F (P1, P2) as a function

of N (see Figure 4.2a), and F (P1, P2) as a function of σ (Figure 4.2b) for three algo-

rithms of interest. In both cases, we observe that “Grad” significantly outperforms

both “Beam” and “Spec” algorithms. “Beam” was run with B = 3 which represent

a good trade-off between quality and complexity, “Spec” was run with projection on

the first two eigenvectors (variants with three and more eigenvectors were also tested,

but two eigenvectors produce almost the same matching quality and it works faster)

with the normalization presented in [Caelli and Kosinov, 2004]. The last Figure 4.2c

shows how algorithms scale with increasing N . The “Spec” algorithm is the fastest

one, but “Grad” has the same complexity order as “Spec” (corresponding curves are

almost parallel lines in log-log scale, so both functions are polynomials with the same

degree and different multiplication constants). “Beam” algorithm is much slower, and

it also has worse complexity order.

128 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

4.5.2 Chinese characters

In this section we compare many-to-many graph matching algorithms as parts of

a classification framework. There, graph matching algorithms are used to compute

similarity/distance between objects of interest on the basis of their graph-based rep-

resentations. As the classification problem, we chose the ETL9B dataset of Chinese

characters. This dataset is well suited for our purposes, since Chinese characters may

be naturally represented by graphs with variable non-trivial structures.

Figure 4.3 illustrates how “Grad” works on graphs representing Chinese charac-

ters. We see that our algorithm produces a good matching (not a perfect one however)

providing a correspondence between “crucial” vertices. The characters represented in

1
2

3

4

1

6
7
4

9

10

11

12

13
14

15

12

17

18

19

18

10

15

23

24

25

26

27

28

29

30

31

32

33

32

35
36

37

38

29

40

41

42

43

44

44

46

41

48

49

50

51 52

2

0

1

6

7

0

4

11

3

9 17

14

12

19

18

13

15

10

23

24

27

25

26

28

37
0

35

36

31

32

30

29

33

41

42

38

43

50

49

40

48

44

51

46

52

Figure 4.3: Matching of graphs representing Chinese characters made by “Grad”.
Vertices having the same id’s are matched to each other.

Figure 4.3 are too simple for a classification problem, and the most of the classifica-

tion algorithms shows good performance, for example, “Grad” produce classification

error less than 0, 002. To test graph matching algorithms we chose “hard to classify”

Chinese characters and we run k-nearest neighbor with graph matching algorithms

used as distance measures. The dataset consists of 600 images (200 images of each

class).

Table 4.1 shows classification results for three many-to-many graph matching algo-

rithms, in addition, we also report results for SVM classifier with linear and Gaussian

kernels, one-to-one matching with the Path algorithm (taken from [Zaslavskiy et al.,

2008c]) and two versions of shape context method [Belongie et al., 2002]. One version

(just “shape context”) consists in computing polar histograms with further bipartite

4.5. EXPERIMENTS 129

graph matching. To run the “shape context+tps” method we have used the code

published1 by S.Belongie.

Graph matching algorithms are run using information on vertex coordinates (4.3),

elements of matrix C are defined as Cij = e−(xi−xj)
2−(yi−yj)

2
. Parameter λ in (4.3)

as well as k (number of neighbors in KNN classifier) are learned via cross-validation.

We see that the “Grad” algorithm shows the best performance outperforming other

many-to-many graph matching algorithms as well as other competitive approaches.

Table 4.1: On the left, Chinese characters representing three class classification
problem. On the right, characters classification results. (CV , STD)—mean and
standard deviation of test error over cross-validation runs (five folds, 50 repetitions)

Method CV STD

Linear SVM 0.377 ± 0.090
SVM with Gaussian kernel 0.359 ± 0.076
KNN (one-to-one, Path) 0.248 ± 0.075
KNN (shape context) 0.399 ± 0.081
KNN (shape context+tps) 0.435 ± 0.092
KNN (Grad) 0.191 ± 0.063
KNN (Spec) 0.254 ± 0.071
KNN (Beam) 0.283 ± 0.079

4.5.3 Identification of object composite parts

While the pattern recognition framework is something interesting and important for

the comparison of different graph matching algorithms, it evaluates only one aspect

of graph matching algorithms, i.e., their ability to detect similar graphs. But in this

case we are completely missing the aspect of how well graphs are aligned. To test the

second aspect, we have performed the following series of experiments. We have chosen

ten camel images from the MPEG7 dataset and we divided each images into 6 parts

(see Figure 4.4: head, neck, legs, back, tail and body). This image segmentation

automatically defines a partitioning of the corresponding graph: all graph vertices

are labeled according to the image part which they represent. Figures 4.4 gives two

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/

130 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

illustrations of how this procedure works. A good graph matching algorithm should

map vertices from corresponding image parts to each other, i.e., heads to heads, legs

to legs and so on. Therefore to evaluate the matching quality of mapping, we use the

following score. First, we match two graphs and then we try to predict vertex labels

of one graph given the vertex labels of the second one. For instance, if vertex g1 of

the first image is matched to vertices h1 and h2 representing the head of the second

image, then we predict that g1 is of class “head”. The better the graph matching,

the smaller the prediction error and vice-versa.

(a) (b) (c) (d)

Figure 4.4: (a) Original images. (b) Manual segmentation (c) Graph-based represen-
tation with induced vertex labels (d) Prediction of vertex labels on the basis of graph
matching made by “Grad”.

Here we see an interesting application of graph matching algorithms. It shows how

graph matching may be used for a “user defined segmentation”. Usually segmenta-

tion algorithms extract image parts on the basis of different characteristics such as

changing of color, narrowing of object form, etc. With our graph matching algorithm,

we can extract segments which does not have a specific appearance, but have only a

semantic interpretation defined by a user.

Table 4.2 presents mean prediction error over 45 pairs of camel images (we exclude

comparison of identical images). Each pair has two associated scores: prediction error

of the first image given the second one and vice versa. We have thus 90 scores for

each algorithm which are used to compute means and standard deviations. Like in

4.6. CONCLUSION 131

the previous sections, graph matching algorithms are run using information on vertex

coordinates (using Eq. (4.3)), with Cij = e−(xi−xj)
2−(yi−yj)

2
. Parameter λ in (4.3) as

well as k (number of neighbors in KNN classifier) are learned via cross-validation.

Here, again we observe the the “Grad” algorithm works better than other methods.

Table 4.2: Identification of object composite parts. (IE, STD)—mean and standard
deviation of prediction error, for more explanations see text. Note, STD is not divided
by the square root of the sample size.

Grad Spec Beam One-to-one
IE 0.303 0.351 0.432 0.342
STD 0.135 0.095 0.092 0.094

4.6 Conclusion

The main contribution of this chapter is the new formulation of the many-to-many

graph matching problem as a discrete optimization problem (4.4) and the approximate

algorithm “Grad” based on continious relaxation of (4.4) (Section 4.3). The success

of the proposed method compared to other competitive approaches may be explained

by two reasons. Methods based on continuous relaxations of discrete optimization

problems often show a better perfomance than local search algorithm due to their

ability to better explore the optimization set. At the same time the existing spectral

approach for the many-to-many case [Caelli and Kosinov, 2004] is a formal extension

of the one-to-one spectral method. This extension is “intuitive” but it does not have

an optimization background as the one-to-one spectral algorithm [Umeyama, 1988],

while the “Grad” algorithm aims to optimize a clear objective function naturally

representing the quality of graph matching.

Besides a natural application of graph matching as a similarity measure between

objects with complex structure, graph matching may be also used for object align-

ment. The second aspect is much less studied but we believe it may have interesting

applications. For instance, in Section 4.5.3 we show how graph matching may be

used for semantic segmentation based not on image morphology but on user-defined

concepts.

132 CHAPTER 4. MANY-TO-MANY GRAPH MATCHING

In future work, we plan to complete the used datset of camel images by other

images from the MPEG7 database, this work involves manual segmentation of all

images and it is time consuming but it will be very interesting to test all methods on

a larger dataset with more varied objects.

Part II

Other applications

133

Chapter 5

Phrase-Based Statistical Machine

Translation as a Traveling

Salesman Problem

Abstract

An efficient decoding algorithm is a crucial element of any statistical machine transla-

tion system. Some researchers have noted certain similarities between SMT decoding

and the famous Traveling Salesman Problem; in particular Knight [1999] has shown

that any TSP instance can be mapped to a sub-case of a word-based SMT model,

demonstrating NP-hardness of the decoding task. In this chapter, we focus on the re-

verse mapping, showing that any phrase-based SMT decoding problem can be directly

reformulated as a TSP. The transformation is very natural, deepens our understand-

ing of the decoding problem, and allows direct use of any of the powerful existing TSP

solvers for SMT decoding. We test our approach on three datasets, and compare a

TSP-based decoder to the popular beam-search algorithm. In all cases, our method

provides competitive or better performance.

This work was conducted during my internship at Xerox Research Center Europe

with Marc Dymetman and Nicola Cancedda. This chapter is a slightly modified

version of [Zaslavskiy et al., 2009].

134

1. INTRODUCTION 135

In the very beginning we were interested in the application of graph matching to

machine translation, but after several weeks of research it became clear that graph

matching algorithms are too general for this purpose. It is possible to reformulate the

machine translation problem as a graph matching problem, but this reformulation

is rather artificial since it uses the TSP (traveling salesman problem) formulation as

an intermediate step. The traveling salesman problem can be reduced to the graph

matching problem (tsp corresponds to the alignment of a linear graph with the TSP

graph), but, obviously, algorithms designed for TSP are more efficient for TSP than

general graph matching algorithms. So we decided to keep the TSP formulation.

1 Introduction

Phrase-based systems [Koehn et al., 2003] are probably the most widespread class

of Statistical Machine Translation systems, and arguably one of the most successful.

They use aligned sequences of words, called biphrases, as building blocks for trans-

lations, and score alternative candidate translations for the same source sentence

based on a log-linear model of the conditional probability of target sentences given

the source sentence:

p(T, a|S) =
1

ZS

exp
∑

k

λkhk(S, a, T) (5.1)

where the hk are features, that is, functions of the source string S, of the target string

T , and of the alignment a, where the alignment is a representation of the sequence of

biphrases that where used in order to build T from S; The λk’s are weights and ZS is

a normalization factor that guarantees that p is a proper conditional probability dis-

tribution over the pairs (T,A). Some features are local, i.e. decompose over biphrases

and can be precomputed and stored in advance. These typically include forward and

reverse phrase conditional probability features log p(t̃|s̃) as well as log p(s̃|t̃), where

s̃ is the source side of the biphrase and t̃ the target side, and the so-called “phrase

penalty” and “word penalty” features, which count the number of phrases and words

in the alignment. Other features are non-local, i.e. depend on the order in which

136 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

biphrases appear in the alignment. Typical non-local features include one or more

n-gram language models as well as a distortion feature, measuring by how much the

order of biphrases in the candidate translation deviates from their order in the source

sentence.

Given such a model, where the λi’s have been tuned on a development set in

order to minimize some error rate (see e.g. [Lopez, 2008]), together with a library of

biphrases extracted from some large training corpus, a decoder implements the actual

search among alternative translations:

(a∗, T ∗) = arg max
(a,T)

P (T, a|S). (5.2)

The decoding problem (5.2) is a discrete optimization problem. Usually, it is very

hard to find the exact optimum and, therefore, an approximate solution is used.

Currently, most decoders are based on some variant of a heuristic left-to-right search,

that is, they attempt to build a candidate translation (a, T) incrementally, from left

to right, extending the current partial translation at each step with a new biphrase,

and computing a score composed of two contributions: one for the known elements

of the partial translation so far, and one a heuristic estimate of the remaining cost

for completing the translation. The variant which is mostly used is a form of beam-

search, where several partial candidates are maintained in parallel, and candidates

for which the current score is too low are pruned in favor of candidates that are more

promising.

We will see in the next section that some characteristics of beam-search make it a

suboptimal choice for phrase-based decoding, and we will propose an alternative. This

alternative is based on the observation that phrase-based decoding can be very natu-

rally cast as a Traveling Salesman Problem (TSP), one of the best studied problems in

combinatorial optimization. We will show that this formulation is not only a powerful

conceptual device for reasoning on decoding, but is also practically convenient: in the

same amount of time, off-the-shelf TSP solvers can find higher scoring solutions than

the state-of-the art beam-search decoder implemented in Moses [Hoang and Koehn,

2008].

2. RELATED WORK 137

2 Related work

Beam-search decoding

In beam-search decoding, candidate translation prefixes are iteratively extended with

new phrases. In its most widespread variant, stack decoding, prefixes obtained by

consuming the same number of source words, no matter which, are grouped together

in the same stack1 and compete against one another. Threshold and histogram pruning

are applied: the former consists in dropping all prefixes having a score lesser than

the best score by more than some fixed amount (a parameter of the algorithm), the

latter consists in dropping all prefixes below a certain rank.

While quite successful in practice, stack decoding presents some shortcomings.

A first one is that prefixes obtained by translating different subsets of source words

compete against one another. In one early formulation of stack decoding for SMT

[Germann et al., 2001], the authors indeed proposed to lazily create one stack for each

subset of source words, but acknowledged issues with the potential combinatorial ex-

plosion in the number of stacks. This problem is reduced by the use of heuristics for

estimating the cost of translating the remaining part of the source sentence. How-

ever, this solution is only partially satisfactory. On the one hand, heuristics should

be computationally light, much lighter than computing the actual best score itself,

while, on the other hand, the heuristics should be tight, as otherwise pruning errors

will ensue. There is no clear criterion to guide in this trade-off. Even when good

heuristics are available, the decoder will show a bias towards putting at the begin-

ning the translation of a certain portion of the source, either because this portion is

less ambiguous (i.e. its translation has larger conditional probability) or because the

associated heuristics is less tight, hence more optimistic. Finally, since the translation

is built left-to-right the decoder cannot optimize the search by taking advantage of

highly unambiguous and informative portions that should be best translated far from

the beginning. All these reasons motivate considering alternative decoding strategies.

Word-based SMT and the TSP

1While commonly adopted in the speech and SMT communities, this is a bit of a misnomer, since
the used data structures are priority queues, not stacks.

138 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

As already mentioned, the similarity between SMT decoding and TSP was recognized

in [Knight, 1999], who focussed on showing that any TSP can be reformulated as a

sub-class of the SMT decoding problem, proving that SMT decoding is NP-hard.

Following this work, the existence of many efficient TSP algorithms then inspired

certain adaptations of the underlying techniques to SMT decoding for word-based

models. Thus, Germann et al. [2001] adapt a TSP subtour elimination strategy to

an IBM-4 model, using generic Integer Programming techniques. The chapter comes

close to a TSP formulation of decoding with IBM-4 models, but does not pursue this

route to the end, stating that “It is difficult to convert decoding into straight TSP,

but a wide range of combinatorial optimization problems (including TSP) can be ex-

pressed in the more general framework of linear integer programming”. By employing

generic IP techniques, it is however impossible to rely on the variety of more effi-

cient both exact and approximate approaches which have been designed specifically

for the TSP. In [Tillmann and Ney, 2003] and [Tillmann, 2006], the authors mod-

ify a certain Dynamic Programming technique used for TSP for use with an IBM-4

word-based model and a phrase-based model respectively. However, to our knowl-

edge, none of these works has proposed a direct reformulation of these SMT models

as TSP instances. We believe we are the first to do so, working in our case with the

mainstream phrase-based SMT models, and therefore making it possible to directly

apply existing TSP solvers to SMT.

3 The Traveling Salesman Problem and its vari-

ants

In this paper the Traveling Salesman Problem appears in four variants:

STSP. The most standard, and most studied, variant is the Symmetric TSP: we

are given a non-directed graph G on N nodes, where the edges carry real-valued costs.

The STSP problem consists in finding a tour of minimal total cost, where a tour (also

called Hamiltonian Circuit) is a “circular” sequence of nodes visiting each node of

the graph exactly once;

3. THE TRAVELING SALESMAN PROBLEM AND ITS VARIANTS 139

ATSP. The Asymmetric TSP, or ATSP, is a variant where the underlying graph

G is directed and where, for i and j two nodes of the graph, the edges (i,j) and (j,i)

may carry different costs.

SGTSP. The Symmetric Generalized TSP, or SGTSP: given a non-oriented graph

G of |G| nodes with edges carrying real-valued costs, given a partition of these |G|
nodes into m non-empty, disjoint, subsets (called clusters), find a circular sequence

of m nodes of minimal total cost, where each cluster is visited exactly once.

AGTSP. The Asymmetric Generalized TSP, or AGTSP: similar to the SGTSP,

but G is now a directed graph.

The STSP is often simply denoted TSP in the literature, and is known to be NP-

hard [Applegate et al., 2007]; however there has been enormous interest in developing

efficient solvers for it, both exact and approximate.

Most of existing algorithms are designed for STSP, but ATSP, SGTSP and AGTSP

may be reduced to STSP, and therefore solved by STSP algorithms.

3.1 Reductions AGTSP→ATSP→STSP

The transformation of the AGTSP into the ATSP, introduced by Noon and Bean

[1993]), is illustrated in Figure (5.1). In this diagram, we assume that Y1, . . . , YK are

the nodes of a given cluster, while X and Z are arbitrary nodes belonging to other

clusters. In the transformed graph, we introduce edges between the Yi’s in order to

form a cycle as shown in the figure, where each edge has a large negative cost −K.

We leave alone the incoming edge to Yi from X, but the outgoing edge from Yi to X

has its origin changed to Yi−1. A feasible tour in the original AGTSP problem passing

through X,Yi, Z will then be “encoded” as a tour of the transformed graph that first

traverses X , then traverses Yi, . . . , YK , . . . , Yi−1, then traverses Z (this encoding will

have the same cost as the original cost, minus (k − 1)K). Crucially, if K is large

enough, then the solver for the transformed ATSP graph will tend to traverse as

many K edges as possible, meaning that it will traverse exactly k − 1 such edges in

the cluster, that is, it will produce an encoding of some feasible tour of the AGTSP

problem.

140 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

Figure 5.1: AGTSP→ATSP.

As for the transformation ATSP→STSP, several variants are described in the

literature, e.g. [Applegate et al., 2007, p. 126]; the one we use is from [Wikipedia,

2009] (not illustrated here for lack of space).

3.2 TSP algorithms

TSP is one of the most studied problems in combinatorial optimization, and even a

brief review of existing approaches would take too much place. Interested readers

may consult [Applegate et al., 2007; Gutin, 2003] for good introductions.

One of the best existing TSP solvers is implemented in the open source Concorde

package [Applegate et al., 2005]. Concorde includes the fastest exact algorithm and

one of the most efficient implementations of the Lin-Kernighan (LK) heuristic for

finding an approximate solution. LK works by generating an initial random feasible

solution for the TSP problem, and then repeatedly identifying an ordered subset of

k edges in the current tour and an ordered subset of k edges not included in the

4. PHRASE-BASED DECODING AS TSP 141

tour such that when they are swapped the objective function is improved. This is

somewhat reminiscent of the Greedy decoding of Germann et al. [2001], but in LK

several transformations can be applied simultaneously, so that the risk of being stuck

in a local optimum is reduced [Applegate et al., 2007, chapter 15].

As will be shown in the next section, phrase-based SMT decoding can be directly

reformulated as an AGTSP. Here we use Concorde through first transforming AGTSP

into STSP, but it might also be interesting in the future to use algorithms specifically

designed for AGTSP, which could improve efficiency further (see Conclusion).

4 Phrase-based Decoding as TSP

In this section we reformulate the SMT decoding problem as an AGTSP. We will

illustrate the approach through a simple example: translating the French sentence

“cette traduction automatique est curieuse” into English. We assume that the relevant

biphrases for translating the sentence are as follows:

ID source target

h cette this

t traduction translation

ht cette traduction this translation

mt traduction automatique machine translation

a automatique automatic

m automatique machine

i est is

s curieuse strange

c curieuse curious

Under this model, we can produce, among others, the following translations:

h ·mt · i · s this machine translation is strange

h · c · t · i · a this curious translation is automatic

ht · s · i · a this translation strange is automatic

142 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

where we have indicated on the left the ordered sequence of biphrases that leads to

each translation.

We now formulate decoding as an AGTSP, in the following way. The graph nodes

are all the possible pairs (w, b), where w is a source word in the source sentence s and

b is a biphrase containing this source word. The graph clusters are the subsets of the

graph nodes that share a common source word w.

The costs of a transition between nodes M and N of the graph are defined as

follows:

(a) If M is of the form (w, b) and N of the form (w′, b), in which b is a single biphrase,

and w and w′ are consecutive words in b, then the transition cost is 0: once we commit

to using the first word of b, there is no additional cost for traversing the other source

words covered by b.

(b) If M = (w, b), where w is the rightmost source word in the biphrase b, and

N = (w′, b′), where w′ 6= w is the leftmost source word in b′, then the transition cost

corresponds to the cost of selecting b′ just after b; this will correspond to “consuming”

the source side of b′ after having consumed the source side of b (whatever their relative

positions in the source sentence), and to producing the target side of b′ directly after

the target side of b; the transition cost is then the addition of several contributions

(weighted by their respective λ (not shown), as in equation 5.1):

� The cost associated with the features local to b in the biphrase library;

� The “distortion” cost of consuming the source word w′ just after the source

word w: |pos(w′)− pos(w)− 1|, where pos(w) and pos(w′) are the positions of

w and w′ in the source sentence.

� The language model cost of producing the target words of b′ right after the

target words of b; with a bigram language model, this cost can be precomputed

directly from b and b′. This restriction to bigram models will be removed in

Section 4.1.

(c) In all other cases, the transition cost is infinite, or, in other words, there is no

edge in the graph between M and N .

4. PHRASE-BASED DECODING AS TSP 143

Figure 5.2: Transition graph for the source sentence cette traduction automatique est
curieuse. Only edges entering or exiting the node traduction − mt are shown. The
only successor to [traduction − mt] is [automatique − mt], and [cette − ht] is not a
predecessor of [traduction−mt].

A special cluster containing a single node (denoted by $-$$ in the figures), and

corresponding to special beginning-of-sentence symbols must also be included: the

corresponding edges and weights can be worked out easily. Figures 5.2 and 5.3 give

some illustrations of what we have just described.

4.1 From Bigram to N-gram LM

Successful phrase-based systems typically employ language models of order higher

than two. However, our models so far have the following important “Markovian”

property: the cost of a path is additive relative to the costs of transitions. For

example, in the example of Figure 5.3, the cost of this · machine translation · is ·
strange, can only take into account the conditional probability of the word strange

relative to the word is, but not relative to the words translation and is. If we want to

extend the power of the model to general n-gram language models, and in particular

to the 3-gram case (on which we concentrate here, but the techniques can be easily

extended to the general case), the following approach can be applied.

144 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

Figure 5.3: A GTSP tour is illustrated, corresponding to the displayed output.

Compiling Out for Trigram models

This approach consists in “compiling out” all biphrases with a target side of only

one word. We replace each biphrase b with single-word target side by “extended”

biphrases b1, . . . , br, which are “concatenations” of b and some other biphrase b′ in

the library.2 To give an example, consider that we: (1) remove from the biphrase

library the biphrase i, which has a single word target, and (2) add to the library the

extended biphrases mti, ti, si, . . ., that is, all the extended biphrases consisting of the

concatenation of a biphrase in the library with i, then it is clear that these extended

biphrases will provide enough context to compute a trigram probability for the target

word produced immediately next (in the examples, for the words strange, automatic

and automatic respectively). If we do that exhaustively for all biphrases (relevant for

the source sentence at hand) that, like i, have a single-word target, we will obtain a

representation that allows a trigram language model to be computed at each point.

2In the figures, such “concatenations” are denoted by [b′·b] ; they are interpreted as encapsulations
of first consuming the source side of b

′, whether or not this source side precedes the source side of b

in the source sentence, producing the target side of b
′, consuming the source side of b, and producing

the target side of b immediately after that of b
′.

4. PHRASE-BASED DECODING AS TSP 145

Figure 5.4: Compiling-out of biphrase i: (est,is).

The situation becomes clearer by looking at Figure 5.4, where we have only elim-

inated the biphrase i, and only shown some of the extended biphrases that now

encapsulate i, and where we show one valid circuit. Note that we are now able to

associate with the edge connecting the two nodes (est,mti) and (curieuse, s) a trigram

cost because mti provides a large enough target context.

While this exhaustive “compiling out” method works in principle, it has a serious

defect: if for the sentence to be translated, there are m relevant biphrases, among

which k have single-word targets, then we will create on the order of km extended

biphrases, which may represent a significant overhead for the TSP solver, as soon as

k is large relative to m, which is typically the case. The problem becomes even worse

if we extend the compiling-out method to n-gram language models with n > 3. In

the Future Work section below, we describe a powerful approach for circumventing

this problem, but with which we have not experimented yet.

146 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

5 Experiments

5.1 Monolingual word re-ordering

In the first series of experiments we consider the artificial task of reconstructing the

original word order of a given English sentence. First, we randomly permute words

in the sentence, and then we try to reconstruct the original order by maximizing the

LM score over all possible permutations. The reconstruction procedure may be seen

as a translation problem from “Bad English” to “Good English”. Usually the LM

score is used as one component of a more complex decoder score which also includes

biphrase and distortion scores. But in this particular “translation task” from bad to

good English, we consider that all “biphrases” are of the form e − e, where e is an

English word, and we do not take into account any distortion: we only consider the

quality of the permutation as it is measured by the LM component. Since for each

“source word” e, there is exactly one possible “biphrase” e − e each cluster of the

Generalized TSP representation of the decoding problem contains exactly one node;

in other terms, the Generalized TSP in this situation is simply a standard TSP. Since

the decoding phase is then equivalent to a word reordering, the LM score may be

used to compare the performance of different decoding algorithms. Here, we compare

three different algorithms: classical beam-search (Moses); a decoder based on an

exact TSP solver (Concorde); a decoder based on an approximate TSP solver (Lin-

Kernighan as implemented in the Concorde solver) 3. In the Beam-search and the

LK-based TSP solver we can control the trade-off between approximation quality and

running time. To measure re-ordering quality, we use two scores. The first one is just

the “internal” LM score; since all three algorithms attempt to maximize this score, a

natural evaluation procedure is to plot its value versus the elapsed time. The second

score is BLEU [Papineni et al., 2001], computed between the reconstructed and the

original sentences, which allows us to check how well the quality of reconstruction

correlates with the internal score. The training dataset for learning the LM consists

of 50000 sentences from NewsCommentary corpus [Callison-Burch et al., 2008], the

3Both TSP decoders may be used with/or without a distortion limit; in our experiments we do
not use this parameter.

5. EXPERIMENTS 147

test dataset for word reordering consists of 170 sentences, the average length of test

sentences is equal to 17 words.

Bigram based reordering. First we consider a bigram Language Model and

the algorithms try to find the re-ordering that maximizes the LM score. The TSP

solver used here is exact, that is, it actually finds the optimal tour. Figures 5.5(a,b)

present the performance of the TSP and Beam-search based methods.

Trigram based reordering. Then we consider a trigram based Language

Model and the algorithms again try to maximize the LM score. The trigram model

used is a variant of the exhaustive compiling-out procedure described in Section 4.1.

Again, we use an exact TSP solver.

Looking at Figure 5.5a, we see a somewhat surprising fact: the cross and some star

points have positive y coordinates! This means that, when using a bigram language

model, it is often possible to reorder the words of a randomly permuted reference

sentence in such a way that the LM score of the reordered sentence is larger than

the LM of the reference. A second notable point is that the increase in the LM-score

of the beam-search with time is steady but very slow, and never reaches the level

of performance obtained with the exact-TSP procedure, even when increasing the

time by several orders of magnitude. Also to be noted is that the solution obtained

by the exact-TSP is provably the optimum, which is almost never the case of the

beam-search procedure. In Figure 5.5b, we report the BLEU score of the reordered

sentences in the test set relative to the original reference sentences. Here we see that

the exact-TSP outputs are closer to the references in terms of BLEU than the beam-

search solutions. Although the TSP output does not recover the reference sentences

(it produces sentences with a slightly higher LM score than the references), it does

reconstruct the references better than the beam-search. The experiments with trigram

language models (Figures 5.5(c,d)) show similar trends to those with bigrams.

5.2 Translation experiments with a bigram language model

In this section we consider two real translation tasks, namely, translation from English

to French, trained on Europarl [Koehn et al., 2003] and translation from German to

148 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

10
0

10
2

10
4−0.8

−0.6

−0.4

−0.2

0

0.2

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP

(a) (b)

10
0

10
2

10
4−0.4

−0.3

−0.2

−0.1

0

0.1

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP

(c) (d)

Figure 5.5: (a), (b): LM and BLEU scores as functions of time for a bigram LM; (c),
(d): the same for a trigram LM. The x axis corresponds to the cumulative time for
processing the test set; for (a) and (c), the y axis corresponds to the mean difference
(over all sentences) between the lm score of the output and the lm score of the
reference normalized by the sentence length N: (LM(ref)-LM(true))/N. The solid line
with star marks corresponds to using beam-search with different pruning thresholds,
which result in different processing times and performances. The cross corresponds
to using the exact-TSP decoder (in this case the time to the optimal solution is not
under the user’s control).

5. EXPERIMENTS 149

Spanish training on the NewsCommentary corpus. For Europarl, the training set

includes 2.81 million sentences, and the test set 500. For NewsCommentary the

training set is smaller: around 63k sentences, with a test set of 500 sentences. Figure

5.6 presents Decoder and Bleu scores as functions of time for the two corpuses.

Since in the real translation task, the size of the TSP graph is much larger than in

the artificial reordering task (in our experiments the median size of the TSP graph was

around 400 nodes, sometimes growing up to 2000 nodes), directly applying the exact

TSP solver would take too long; instead we use the approximate LK algorithm and

compare it to Beam-Search. The efficiency of the LK algorithm can be significantly

increased by using a good initialization. To compare the quality of the LK and

Beam-Search methods we take a rough initial solution produced by the Beam-Search

algorithm using a small value for the stack size and then use it as initial point, both

for the LK algorithm and for further Beam-Search optimization (where as before we

vary the Beam-Search thresholds in order to trade quality for time).

In the case of the Europarl corpus, we observe that LK outperforms Beam-Search

in terms of the Decoder score as well as in terms of the BLEU score. Note that

the difference between the two algorithms increases steeply at the beginning, which

means that we can significantly increase the quality of the Beam-Search solution by

using the LK algorithm at a very small price. In addition, it is important to note

that the BLEU scores obtained in these experiments correspond to feature weights,

in the log-linear model (5.1), that have been optimized for the Moses decoder, but

not for the TSP decoder: optimizing these parameters relatively to the TSP decoder

could improve its BLEU scores still further.

On the News corpus, again, LK outperforms Beam-Search in terms of the Decoder

score. The situation with the BLEU score is more confuse. Both algorithms do not

show any clear score improvement with increasing running time which suggests that

the decoder’s objective function is not very well correlated with the BLEU score on

this corpus.

150 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

10
3

10
4

10
5−273

−272.5

−272

−271.5

−271

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP (LK)

10
3

10
4

10
50.18

0.185

0.19

Time (sec)

B
LE

U
 s

co
re

BEAM−SEARCH
TSP (LK)

(a) (b)

10
3

10
4−414

−413.8

−413.6

−413.4

−413.2

−413

Time (sec)

D
ec

od
er

 s
co

re

TSP (LK)
BEAM−SEARCH

10
3

10
40.242

0.243

0.244

0.245

Time (sec)

B
LE

U
 s

co
re

TSP (LK)
BEAM−SEARCH

(c) (d)

Figure 5.6: (a), (b): Europarl corpus, translation from English to French; (c),(d):
NewsCommentary corpus, translation from German to Spanish. Average value of the
decoder and the BLEU scores (over 500 test sentences) as a function of time. The
trade-off quality/time in the case of LK is controlled by the number of iterations,
and each point corresponds to a particular number of iterations, in our experiments
LK was run with a number of iterations varying between 2k and 170k. The same
trade-off in the case of Beam-Search is controlled by varying the beam thresholds.

6. FUTURE WORK 151

6 Future Work

In section 4.1, we described a general “compiling out” method for extending our

TSP representation to handling trigram and N-gram language models, but we noted

that the method may lead to combinatorial explosion of the TSP graph. While this

problem was manageable for the artificial monolingual word re-ordering (which had

only one possible translation for each source word), it becomes unwieldy for the real

translation experiments, which is why in this chapter we only considered bigram LMs

for these experiments. However, we know how to handle this problem in principle,

and we now describe a method that we plan to experiment with in the future.

To avoid the large number of artificial biphrases as in 4.1, we perform an adaptive

selection. Let us suppose that (w, b) is a SMT decoding graph node, where b is

a biphrase containing only one word on the target side. On the first step, when

we evaluate the traveling cost from (w, b) to (w′, b′), we take the language model

component equal to

min
b′′ 6=b′,b

− log p(b′.v|b.e, b′′.e),

where b′.v represents the first word of the b′ target side, b.e is the only word of

the b target side, and b′′.e is the last word of the b′′ target size. This procedure

underestimates the total cost of tour passing through biphrases that have a single-

word target. Therefore if the optimal tour passes only through biphrases with more

than one word on their target side, then we are sure that this tour is also optimal in

terms of the tri-gram language model. Otherwise, if the optimal tour passes through

(w, b), where b is a biphrase having a single-word target, we add only the extended

biphrases related to b as we described in section 4.1, and then we recompute the

optimal tour. Iterating this procedure provably converges to an optimal solution.

This powerful method, which was proposed in [Kam and Kopec, 1996; Popat et al.,

2001] in the context of a finite-state model (but not of TSP), can be easily extended

to N-gram situations, and typically converges in a small number of iterations.

152 CHAPTER 5. PBSMT AS A TRAVELING SALESMAN PROBLEM

7 Conclusion

The main contribution of this chapter has been to propose a transformation for an

arbitrary phrase-based SMT decoding instance into a TSP instance. While certain

similarities of SMT decoding and TSP were already pointed out in [Knight, 1999],

where it was shown that any Traveling Salesman Problem may be reformulated as

an instance of a (simplistic) SMT decoding task, and while certain techniques used

for TSP were then adapted to word-based SMT decoding [Germann et al., 2001;

Tillmann and Ney, 2003; Tillmann, 2006], we are not aware of any previous work

that shows that SMT decoding can be directly reformulated as a TSP. Beside the

general interest of this transformation for understanding decoding, it also opens the

door to direct application of the variety of existing TSP algorithms to SMT. Our

experiments on synthetic and real data show that fast TSP algorithms can handle

selection and reordering in SMT comparably or better than the state-of-the-art beam-

search strategy, converging on solutions with higher objective function in a shorter

time.

The proposed method proceeds by first constructing an AGTSP instance from the

decoding problem, and then converting this instance first into ATSP and finally into

STSP. At this point, a direct application of the well known STSP solver Concorde

(with Lin-Kernighan heuristic) already gives good results. We believe however that

there might exist even more efficient alternatives. Instead of converting the AGTSP

instance into a STSP instance, it might prove better to use directly algorithms ex-

pressly designed for ATSP or AGTSP. For instance, some of the algorithms tested

in the context of the DIMACS implementation challenge for ATSP [Johnson et al.,

2002] might well prove superior. There is also active research around AGTSP algo-

rithms. Recently new effective methods based on a “memetic” strategy [Buriol et al.,

2004; Gutin et al., 2008] have been put forward. These methods combined with our

proposed formulation provide ready-to-use SMT decoders, which it will be interesting

to compare.

7. CONCLUSION 153

Acknowledgments

Thanks to Vassilina Nikoulina for her advice about running Moses on the test datasets.

Chapter 6

A new protein binding pocket

similarity measure based on

comparison of 3D atom clouds:

application to ligand prediction

Abstract

Prediction of ligands for proteins of known 3D structure is important to understand

structure-function relationship, predict molecular function, or design new drugs. We

explore a new approach for ligand prediction in which binding pockets are represented

by atom clouds. Each target pocket is compared to an ensemble of pockets of known

ligands. Pockets are aligned in 3D space with further use of convolution kernels

between clouds of points. Performance of the new method for ligand prediction is

compared to those of other available measures and to docking programs. We discuss

two criteria to compare the quality of similarity measures: area under ROC curve

(AUC) and classification based scores. We show that the latter is better suited

to evaluate the methods with respect to ligand prediction. Our results on existing

and new benchmarks indicate that the new method outperforms other approaches,

including docking.

154

1. INTRODUCTION 155

This project was done in collaboration with Brice Hoffmann and Veronique Stoven

for the Center for Computantional Biology, Mines-ParisTech.

1 Introduction

One of the main goals of structural biology is to predict, from the 3D fold of a protein,

its interacting partners, which in turn is related to its molecular function. However,

understanding this structure-function relationship is still today an open question, and

no reliable tool is available to permit such a prediction. Current efforts concentrate on

local 3D approaches, focusing on identification and comparison of binding pockets, in

order to predict the natural ligand for a protein, with the underlying idea that proteins

sharing similar binding sites are expected to bind similar ligands. The same strategy

also applies to the problem of identifying new drug precursors for a therapeutic target

protein.

The comparison of 3D binding pockets is an active field of research, and dur-

ing the last decade, many new methods were proposed. Morris et al. [2005] con-

sidered a method based on using real spherical harmonic expansion coefficients,

Gold and Jackson [2006] used a specialized geometric hashing procedure as the core

of the SitesBase web server, Shulman-Peleg et al. [2008] used multiple common point

set detection method. An approach proposed by Schalon et al. [2008] is based on a

triangle-discretized sphere representation of binding pockets. Weskamp et al. [2007]

and Najmanovich et al. [2008] considered graph-based representations of binding pock-

ets and applied graph matching algorithms.

In this chapter, we explore the potential of a new approach in which binding

pockets are represented by clouds of atoms in 3D space potentially baring additional

labels such as partial charge or atom type. The new similarity measure is based on

the alignment of protein pockets with further use of convolution kernel between 3D

point clouds. We study how the proposed method may be used to predict a ligand

for a given pocket by comparing it to a set of pockets with known ligand.

Here, we do not discuss the problem of pocket detection. In our experiments, we

extracted pockets on the basis of known protein-ligand crystal structures as it was

156 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

done by Kahraman et al. [2007]. In cases where the binding site is unknown, various

programs have been developed to locate depressions on protein surfaces and could be

used to identify putative binding sites [Glaser et al., 2006].

An important question in this chapter is the evaluation of pocket similarity mea-

sures. We discuss two criteria to compare the quality of similarity measures on the

basis of their ability to detect pockets binding the same ligand: area under ROC

curve (AUC) and classification based scores. We compare our method with some

existing state of the art algorithms on different benchmark datasets. Since we eval-

uate methods for binding pocket comparison according to their ability to predict

ligands, we also report the performance of docking methods, on the same benchmark

datasets. Finally, we also discuss possible extensions of the proposed method to other

applications such as protein function prediction or ligand comparison.

2 Methods

2.1 Convolution kernel between atom clouds

In our model, a binding pocket is described by a set of atoms in 3D space. Our

objective is to construct a similarity measure between pockets, which may be used to

identify pockets binding the same ligand.

Let P = (xi, li)
N
i=1 denote a binding pocket consisting of N atoms, where xi ∈ R

3

is a 3D vector representing atom coordinates, and li is a label (discrete or real valued)

that may be used to bare additional information on the atoms (for example, atom

type, atom partial charge, or amino acid type).

A classical approach for pocket comparison consists in iterative alignment of two

pockets and further counting of overlapping atoms, usually within a tolerance of

1Å. Different implementations of this principle may be found in such methods as

Tanimoto index [Willett et al., 1986], the SitesBase algorithm (Poisson index), or

the MultiBind algorithm [Shulman-Peleg et al., 2008]. The alignment is made to

maximize the number of overlapping atoms, which is generally a good indicator of

pocket similarity.

2. METHODS 157

However, atoms may have different positions but play equivalent roles in ligand

binding, and the role of one atom in one pocket may be played by a group of atoms

in another one. These observations lead us to the idea of an alternative smooth score

which does not count the number of overlapping atoms, but rather uses a weighted

number of atoms having closed positions. We first consider the case where labels

are ignored, and only atom coordinates are used to measure the similarity between

pockets, and then explain how the information on atom labels may be introduced in

the new similarity measure.

Given two pockets P1 and P2 the similarity measure K(P1, P2) is defined as follows

K(P1, P2) =
∑

xi∈P1

∑

yj∈P2

e
−||xi−yj ||

2

2σ2 . (6.1)

This similarity measure defines in fact a positive definite kernel, i.e. it may be

considered as a true scalar product on the set of atom clouds representing bind-

ing pockets [Schölkopf et al., 2004]. Implicitly, it defines a distance between pockets:

D(P1, P2) = K(P1, P1) +K(P2, P2)− 2K(P1, P2) which has all standard properties of

a true metric (non-negativity, identity of indiscernibles, symmetry, triangular inequal-

ity). The parameter σ characterizes the sensitivity of the similarity measure (6.1) to

points relative displacements. When σ is small, only atoms of two pockets which are

very close to each other significantly contribute to K(P1, P2). On the contrary, when

σ is large, almost all pairs of atoms contribute to K(P1, P2).

The kernel (6.1) is an example of a convolution kernel [Haussler, 1999; Gärtner et al.,

2002] between point sets. Alternative kernels may be constructed by substituting the

Gaussian kernel e
−||xi−yj ||

2

2σ2 by any other kernel between 3D vectors xi and yj.

Interestingly, the kernel (6.1) may be seen as a particular case of kernel between

point sets defined as a kernel between distribution function estimated from point sets

[Kondor and Jebara, 2003]. More precisely, let us represent each binding pocket Pi

by a distribution of masses defined as the sum of Gaussian with bandwidth σ/
√

2

158 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

functions centered on the pocket atoms, namely:

fPi
(x) =

∑

xi∈Pi

e−
||x−xi||

2

σ2 .

Then kernel (6.1) between pockets P1 and P2 can be recovered, up to a scaling con-

stant, as the scalar product in L2(R
3) between the associated distributions because:

〈fP1 , fP2〉L2(R3) =

∫

R3

∑

xi∈Pi

e−
||x−xi||

2

σ2

∑

yi∈Pj

e−
||x−yj ||

2

σ2 dx

=
∑

xi∈P1
yj∈P2

∫

R3

e−
||x−xi||

2

σ2 e−
||x−yj ||

2

σ2 dx = C
∑

xi∈P1
yj∈P2

e−
−||xi−yj ||

2

2σ2

= CK(P1, P2) ,

where C is a positive constant.

However, formula (6.1) is not fully appropriate in practice, because the proposed

measure is not invariant upon rotations and translations of the binding pockets.

Therefore, we define a similarity measure sup-CK as the maximum of (6.1) over all

possible rotations and translations of one of the two pockets:

sup-CK(P1, P2) = max
R,yt

∑

xi∈P1,yj∈P2

e
||xi−(Ryj+yt)||

2

2σ2 , (6.2)

where R is an orthonormal rotation matrix and yt is a translation vector. Sup-CK is

not a positive definite measure anymore, but it can still be used as a similarity score.

Furthermore, to evaluate sup-CK, we now need to maximize a non-concave function

over the set of rotations and translations, which may have many local maxima. Exact

maximization of this non-concave function is a hard optimization problem and we

propose to estimate an approximate solution by running a gradient ascent algorithm,

starting from many different initial points, and taking the best local maximum. The

optimization algorithm may be significantly accelerated by choosing an initial point

close to the global optimum. In the case of binding pockets, a good approximation of

the optimal translation vector yt is the vector which translates the geometric center of

2. METHODS 159

P2 into the geometric center of P1, yt = 1
N1

∑
xi∈P1

xi− 1
N2

∑
yi∈P2

yi. The approximated

rotation matrix R superposes the first principal axis of P2 with the first principal axis

of P1, the second one with the second one, and the third one with the third one. Since

principal vectors are defined up to a sign, the two signs for all principal vectors of one

of the binding pockets have to be tested (there are 23 combinations). If some of the

pocket axes have close lengths, then it may be also interesting to consider rotations

which superpose the first principal axis of one pocket with the second principal axis

of the other one.

Gradient ascent method requires to calculate the gradient of the function in (6.2)

with respect to R and yt. Calculation of the gradient components related to yt is

straightforward:

∇yt
=

1

σ2

∑

xi∈P1,yj∈P2

(xi − (Ryj + yt))e
||xi−(Ryj+yt)||

2

2σ2 .

Since the set of rotation matrices is a 3D manifold embedded in 9D space, we

cannot take derivatives with respect to each element of matrix R. Instead, we use

the Euler representation of the rotation matrix:

R = RXRYRZ =




1 0 0

0 cosφ sinφ

0 − sinφ cosφ


×




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ







cosψ sinψ 0

− sinψ cosψ 0

0 0 1


 ,

(6.3)

where R is expressed as a function of (φ, θ, ψ) ∈ [0; 2π)3. The derivatives of the

maximand in (6.2) are now calculated with respect to (φ, θ, ψ), for instance,

∇θ =
1

σ2

∑

xi∈P1
yj∈P2

e
||xi−(Ryj+yt)||

2

2σ2 (xi − (Ryj + yt))
T×

(RX
∂RY

∂θ
RZyj) .

160 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

As mentioned above, it may be interesting to use additional information on binding

pocket atoms (such as atom type or charge). Let us suppose that this information is

represented by labels li (which may be discrete or real variables, or multidimensional

vectors) with an associated similarity measure. For example, to measure the similarity

between categorical labels like atom types, the Dirac function 1li=lj may be used. In

our experiments, we use atom partial charges as atom labels, with a Gaussian kernel

KL(li, lj) = e−
(li−lj)2

λ . Of course, other similarity measures may be used as well.

Finally, atom labels are used to re-weight the contribution of two atoms xi and yj

by KL(li, lj) in (6.2):

sup-CKL(P1, P2) = max
R,yt

∑

xi∈P1
yj∈P2

e−
(li−lj)2

λ e
||xi−(Ryj+yt)||

2

2σ2 , (6.4)

where parameter λ controls the sensitivity of our measure to atom labels, for example

to partial charges. When λ is large, impact of labels is negligible, which corresponds

to a purely geometrical approach. When λ is close to zero, only pairs of atoms

which have exactly the same partial charge contribute to our measure. In general,

the smaller λ, the greater the contribution of the atom labels to the binding pocket

similarity measure. Since the function KL does not depend on R and yt in (6.4), the

same optimization procedure can be used to optimize (6.4) or (6.2).

Finally, it is important to notice that the sup-CK measure of similarity can be

used to compare any set of atoms in 3D. While the primary goal of this research is

to use it for comparison of binding pockets, we can also use it to compare, e.g., 3D

conformations of ligands. This possibility is investigated in the experiments below.

2.2 Related methods

In this section we briefly review some of the existing methods for pocket comparison,

which we compare to sup-CK in our experiments.

Spherical harmonic decomposition (SHD). Morris et al. [2005] proposed to

model pockets by star-shapes built using the SURFNET program. The star-shape rep-

resentation is defined by a function f(θ, φ), representing the distance from the pocket

2. METHODS 161

center to the pocket surface for a given (θ,φ). To measure the similarity of binding

pockets P1 and P2, the corresponding functions f1 and f2 are first decomposed into

spherical harmonics, and the pocket similarity is then computed as the standard Eu-

clidean metric between vectors of decomposition coefficients. Kahraman et al. [2007]

presented three different variants of SHD, using only the shapes of binding pockets,

the sizes of the binding pockets (keeping only the zero-th order in the spherical har-

monics expansion), and their combination. We only present the results of the latter

in section 4, because it provided the best performance.

Poisson index (sup-PI). As we already mentioned in Section 2.1, many binding

pockets similarity measures are based on pocket alignment with further counting of

overlapping atoms. In particular this kind of approach is used in the Poisson index

model [Davies et al., 2007]. More precisely the Poisson index model is based on

normalized number of overlapping atoms PI(P1, P2) = L
#P1+#P2−L

where L is the

number of overlapping atoms, and #P1 and #P2 are the respective numbers of atoms

in the two pockets. The PI score may be computed for any pocket superposition

method.While Davies et al. [2007] used the geometric hashing algorithm, we use in our

experiments the superposition made by sup-CK method, with further superposition

refining to maximize the number of overlapping atoms.

Multibind. Shulman-Peleg et al. [2008] represent pockets by pseudo-atoms labeled

with physico-chemical properties. Pockets are aligned using a geometric hashing

technique. This algorithm was mainly designed for multiple alignment of binding

sites, but it may be used for pairwise alignment of pockets, as was performed in this

study.

Other simple methods. We also consider two simple methods based on the compar-

ison of simple binding pockets characteristics. These methods represent each pocket

by an ellipsoid constructed on the basis of pocket principal axis. The first method,

referred to as Vol, estimates the similarity between pockets P1 and P2 by the ab-

solute value of the difference between the volumes of their corresponding ellipsoids:

V ol(P1, P2) = |V ol(P1)− V ol(P2)|. The second method, called Princ-Axis, estimates

the similarity score between pockets by
∑3

i=1(λ
P1
i − λP2

i)2, where λP1
i and λP2

i are the

lengths of the three principle axis of pockets P1 and P2, respectively.

162 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

Combination of sup-CK and Vol. Since volume information was found to be

important by Kahraman et al. [2007], we also test a linear combination of the sup-

CK and Vol methods, called sup-CK-Vol, where the coefficient of linear combination is

learned as other model parameters in the double cross validation scheme. This linear

combination takes advantage of the Vol method to separate very different pockets like

PO4 and NAD, and of the sup-CK algorithm to allow finer discrimination.

2.3 Performance criteria

There are various ways to measure the similarity between binding pockets, some

of them were discussed in the previous section. To evaluate the quality of a given

similarity measure, one may compare it to some ”ideal” similarity measure between

binding pockets, but the problem is that such measure does not exist. As an example,

given two alternative measures SM1 and SM2 applied to two pockets P1 and P2 such

that SM1(P1,P2)= 0.3 and SM2(P1,P2)= 0.4, there is no way to decide which one is

the best because we do not have any absolute reference. The choice of the optimal

measure, thus, may depend on a particular problem of interest. In the context of

ligand prediction, the quality of a similarity measure can be evaluated according to

its ability to regroup together pockets binding the same ligand, which can be used

to predict ligands for previously unseen binding pockets. To evaluate the regrouping

quality of the similarity measures, we use two different scores.

AUC score. Kahraman et al. [2007] use the AUC score which is computed as follows.

Let us consider a set of pockets (P1, . . . , PN) and a similarity measure SM . To

estimate the AUC score of a given pocket P∗, we rank all other pockets according to

their similarity to P∗, SM(Pi, P∗) (descending order), and we plot the ROC curve,

i.e., the number of pockets binding the same ligand versus the number of pockets

binding a different ligand among the top n pockets, when n varies from 0 to N . The

ranking quality of SM is measured by the surface of area under the ROC curve,

which defines the AUC score. An ”ideal” SM function will rank all pockets binding

the same ligand as P∗ on the top of the list, leading to an AUC score equal to 1.0.

On the contrary, if these pockets have random positions in the ranked list, the AUC

2. METHODS 163

score will be equal to 0.5 (worst possible case). Finally, to evaluate the overall AUC

score of a method, we consider its mean value over all pockets.

While the AUC score represents an intuitive and natural way to evaluate the

quality of similarities measures, in some situations it may fail. Consider the case of

a dataset containing two types of pockets L1 and L2 (i.e. they bind two different

ligands), and a similarity measure that correctly clusters pockets according to their

type. If clusters are close to each other (see clusters A and C in Figure 6.1), the

AUC score of pockets situated near the border (pockets p1 and p2 in Figure 6.1) will

be low. The situation becomes even worse, if pockets binding ligand L1 form several

clusters, as shown in Figure 6.1, leading to low AUC scores for almost all pockets

binding ligand L1. This similarity measure will have an overall poor AUC score,

although it produces perfect separation of pocket types.This happens, for example,

when the database contains proteins that underwent convergent evolution and bind

the same ligand under highly different conformations. Therefore, a poor AUC score

does not necessarily correspond to a poor pocket separation, and AUC scores may

not be suited to evaluate the quality of similarity measures.

Classification error. These remarks lead us to employ another quality score based

on classification error. To evaluate the quality of the similarity measure SM we try

to predict a ligand (class) for each pocket from that of its neighbors. The smaller the

classification error (proportion of bad predictions), the better the similarity measure.

In this work, we use a K nearest neighbors (KNN) classifier. To evaluate the

classification error, we applied a leave-one-out double cross validation methodology.

Namely, each pocket from the dataset is considered one by one, and all other pockets

are used as the training set. Parameters of the model (k — number of neighbors, σ if

we consider sup-SM method) are estimated on the training data via cross-validation

technique, and the class (i.e. the ligand) of the pocket under consideration is predicted

using the training data and the estimated parameters of the model.

164 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

L1L1

L2

p
2

p
1

Figure 6.1: AUC score versus classification error as an evaluation of binding pocket
similarity measure. Red circles represents pockets fixing ligand L1, blue squares
represents pockets fixing ligand L2. The AUC score does not reflect the fact of good
pocket clusterization, while the classification error does.

2.4 Docking

Since docking programs may also predict ligands, we used the Fred [Nicholls, 2005]

and FlexX [Rarey et al., 1996] programs. We chose these two programs because they

are well referenced, and represent different strategies for ligand placement in the

binding site. In all docking experiments, the active sites were the same as those

used by the sup-CK methods. Fred performs rigid docking of molecules. Flexibility

of ligands is taken into account by using pre-calculated conformers of a molecule.

These conformers are ranked according to their estimated interaction energy with the

protein, which defines the docking score [Mcgann et al., 2003]. For each pocket, the

predicted ligand was the most frequent molecule observed among the K first ranked

molecules (K was optimized for each dataset).

FlexX performs flexible docking of molecules by fragmentation and incremental

rebuilding inside the binding site. Therefore, only one ligand conformation is required

3. DATASETS 165

as input, and the docking results are expected to be independent from that conforma-

tion. To predict a ligand for a given pocket, we choose the molecule of best docking

score. In all cases, FlexX was run using standard parameters, with formal charges,

and multiple conformations for rings were computed with Corina [Gasteiger et al.,

1996].

To evaluate the performance of docking programs we can use only classification

error score. Fred and Flex may be used to predict binding ligands, but they do not

measure similarity between binding pockets, so we can not compute the AUC score.

3 Datasets

For all protein structures, the binding pockets were extracted as follows: protein

atoms situated at less than RÅ of one of the ligand atoms were selected, where

R is considered as a model parameter and is learned in the double cross-validation

scheme. In our experiments, in most cases the optimal value of R was equal to 5.3

Å, this distance cutoff is in the range of that above which most interaction energy

terms between a protein and a ligand usually become negligible. Finally, pockets are

represented by 3D atom clouds with atom labeled by their partial charge, but other

labels representing chemical properties such as amino-acid type could be included.

Atom partial charges were attributed according to the GROMACS (FFG43a1) force

field [Scott et al., 1999].

We consider several benchmark datasets. The first one, referred to as the Kahra-

man dataset, comprises the crystal structures of 100 proteins in complex with one of

ten ligands (AMP, ATP, PO4, GLC, FAD, HEM, FMN, EST, AND, NAD). It was

proposed by Kahraman et al. [2007] and is described in the Supplementary Materials.

We built an extended version of the Kahraman dataset (called extended Kahraman

Dataset below), also described in the Supplementary Materials, in which we added

protein structures in complex with one of the same ten ligands, leading to a total of

972 crystal structures. The added proteins present pairwise sequence identities less

or equal to 30%, to avoid potential bias by inclusion of close homologs.

166 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

The Kahraman dataset contains only holo protein structures. However, apo struc-

tures may differ from holo structures when the latter undergo structural rearrange-

ment upon ligand binding, a phenomenon called induced fit of the protein in order

to adjust to the ligand [Bosshard, 2001]. We tested a few examples of predictions for

eight apo structures to evaluate the robustness of our method with respect to atom

positions variability. We considered 8 apo structures corresponding to proteins able

to bind one ligand from the Kahraman database: 1ADE for AMP, 1B8P for NAD,

1E4F for ATP, 1OMP for GLC, 1WS9 for FAD, 2RG7 for HEM, 1X56 for PO4 and

1N05 for FMN. These proteins share less than 30% sequence identity with any of the

proteins of the extended Kahraman dataset, and had an holo structure available. The

LigASite website 1 was used for this selection. The holo and apo structures of these

proteins were superposed, and the coordinates of the ligand in the holo structure were

used to extract the pocket in the apo structure.

The Kaharaman dataset comprises ligands of very different sizes and chemical

natures. However, the real challenge is to test methods on pockets that bind ligands

of similar size. Therefore, we created a third dataset comprising 100 structures of

proteins in complex with ten ligands of similar size (ten pockets per ligand). This

dataset will be referred to as the Homogeneous Dataset (HD), and is described in

Supplementary Materials.

4 Results

The methods were tested on two datasets (Section 3 and Supplementary Materials).

The performance of all methods is evaluated on the basis of the AUC score and the

classification error (Section 2.3). The sup-CK method is compared to sup-PI, SHD,

Vol, Princ-Axis and MultiBind algorithms (Section 2.2). Among the pocket extraction

methods used in the SHD approach, we considered the results corresponding to the

Interact Cleft Model, which is similar to our pocket extraction method. Results

provided by the docking programs are called Fred and FlexX.

Pocket representation is subject to extraction noise. To estimate the method

1http://www.bigre.ulb.ac.be/Users/benoit/LigASite/

4. RESULTS 167

performance on unnoisy systems, algorithms for pockets comparison were also em-

ployed to compare ligands (except for the MultiBind method which is designed to be

employed only on proteins).

4.1 Kahraman Dataset

Results of all methods on the Kahraman Dataset are presented in Table 6.1. According

Table 6.1: Performances for all algorithms evaluated by the mean AUC scores and the
mean classification errors (CE), over all pockets. We report only classification error
for the Fred and Flex docking programs, because they can not be used to evaluate
similarity between binding pockets. Column “Pockets” reports AUC and CE scores
based on comparison of binding pockets. Column “Ligands” represents the same
thing, but on the basis of ligands, for more explanations see text.

Method
Pockets Ligands

AUC CE AUC CE
sup-CK 0.858±0.14 0.36 0.964±0.006 0.04
sup-CKL 0.861±0.13 0.27 — —
sup-CK-Vol 0.889±0.14 0.34 0.985±0.06 0.03
sup-CKL-Vol 0.895±0.12 0.26 — —
Vol 0.875±0.14 0.39 0.897±0.13 0.30
Princ-Axis 0.853±0.13 0.35 0.938±0.10 0.16
sup-PI 0.815±0.13 0.42 0.927±0.09 0.05
SHD∗ 0.770 0.39 0.920 0.07
MultiBind 0.715 ±0.17 0.42 — —
Fred — 0.47 — —
Flexx — 0.62 — —

∗AUC scores are taken directly from [Kahraman et al., 2007], CE scores are estimated from data

provided by authors

to the AUC score, simple methods like Vol and Princ-Axis give surprisingly good re-

sults. The same effect was observed by Kahraman et al. [2007] when they used simple

measure based on comparison of pocket sizes. The AUC scores of all the new methods

(sup-CK, sup-CK-Vol, with or without use of partial charges) are higher than those

of ICM, MultiBind, and sup-PI, and are in the same range than those of Vol and

Princ-Axis. The best results are obtained by the sup-CK-Vol algorithm, which seems

to benefit from the association of volume information and of more subtle geometric

168 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

details provided by the sup-CK algorithm. Another observation, is that information

on atom partial charges only leads to modest improvement of the sup-CK methods.

To evaluate the classification error, we tried to predict a ligand (a class) for each

pocket using a K Nearest Neighbors classifier (see Section 2.3). Note that in a ten

class (10 ligands) classification problem, a random classifier would have an error of

0.9, which represents baseline performance for all classifiers.

Table 6.1 shows that methods with higher AUC scores tend to have smaller classi-

fication errors, but this correlation is not strict. This indicates that the AUC score is

not appropriate to compare similarity measures with respect to the problem of ligand

identification, and underlines the interest of the classification approach.

The sup-CK and sup-CK-Vol algorithms have lower classification errors than other

methods, which means that they are well suited to the problem of ligand prediction.

Interestingly, atom partial charges information significantly reduces classification er-

rors of both methods, which was not the case for AUC scores. Addition of more

information for the description of pockets may improve the quality of ligand pre-

diction. The SHD and MultiBind methods provide reasonable prediction quality,

although they do not perform as well as sup-CK. The only difference between the

sup-PI and sup-CK methods is the similarity measure used after superposition. The

sup-PI method requires to determine the number of overlapping atoms. On the con-

trary, the sup-CK measure is based on a weighted number of atoms having close

positions score taking into account, which probably leads to better results.

Docking is now widely used for ligand prediction [Leach et al., 2006], and it is

therefore interesting to compare its performances to those of pocket comparison meth-

ods. Table 6.1 shows that, on this benchmark, both docking programs do not perform

as well as the sup-CK method, although Fred has better results than FlexX. Com-

parison of docking programs performances is beyond the scope of this work, but it

has been widely discussed that relative performances of docking programs strongly

depend on the datasets [Warren et al., 2006]. They were here overall modest, but

both docking programs better classified pockets associated to large ligands like FAD

(flavin-adenine dinucleotide) or FMN (flavin mononucleotide), and poorly those that

bind smaller ligands. These results are consistent with the fact that small ligands

4. RESULTS 169

make few interactions, leading to low docking scores.

Since sup-CK method relies on 3D atom cloud representation of protein pockets,

we applied it to compare ligands using their coordinates in the protein-ligand complex

structures. We also recall the performances of the SHD algorithm for ligands of this

dataset. No method reaches an AUC score of 1.0, or perfectly classifies the ligands (i.e.

perfectly assign the correct ligand type). This indicates that ligands adopt different

conformations in this dataset. However, performances of all algorithms are better for

ligands than for pockets. Pockets have to be extracted from the protein structure,

which introduces some noise that is absent in the case of ligands. This may explain

better results, and represent the best expected performances for each method. In the

case of ligand comparison, the best results are obtained with the sup-CK algorithms,

although those of SHD and sup-PI are very good. The Vol and Princ-Axis methods

have significantly lower results in terms of ligand classification than other methods,

although their AUC scores were in the same range. Similarly, the SHD and sup-PI

AUC scores are close to that of Princ-Axis, but they both perform much better in

ligand classification than the latter.

Extension of Kahraman dataset.

To evaluate the ability of the sup-CK method to improve its performance when trained

on a larger dataset, we consider an extension of Kahraman dataset consisting of 972

pockets that bind one of the 10 ligands of the original dataset (see Section 3). Pocket

comparison and ligand prediction was performed with the sup-CK method including

atom partial charges. The mean AUC score and classification error were equal to

0.87 and 0.18. In particular, 79% of the binding pockets of the original Kahraman

dataset were correctly classified, compared to 73% on the original dataset (see Table

6.1). The results of the new method improve when trained on a larger dataset, which

shows its ability to learn. The quality of predictions might again improve by including

more structures available at the PDB.

It is also interesting to study the structure of the dataset according to the metric

associated to the sup-CK method. We performed kernel principal component analysis

[Schölkopf et al., 1999] on the pockets similarity matrix of the sup-CK method (this

matrix is not positive definite, but we can extract principal components associated to

170 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

the largest positive eigenvalues). Figure 6.2(a) represents the projection of 972 bind-

ing pockets on the first two principal components. Overall, we observe a clustering of

−3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

KPC 1

K
P

C
 2

AMP
ATP
PO4
GLC
FAD
HEM
FMN
AND
NAD
EST

Figure 6.2: Projection of ext-KD on the two first kernel principal components.

binding pockets according to their ligands, which illustrates the good performances

of this method for ligand prediction. Looking into more details, we notice that the

clusters of pockets that bind ATP, AMP or PO4 overlap. Indeed, proteins that binds

ATP usually also bind AMP or PO4, although with different affinities. Furthermore,

some pockets (for example pockets that bind glucose GLC or FAD) are found far from

their main cluster, or form secondary clusters, which illustrates that pockets having

different geometrical characteristics may bind the same ligand. In the classification

approach employed here, prediction of a ligand for a given pocket uses the classes

of its neighbors, which allows to handle the case of pockets belonging to secondary

clusters.

Prediction on apo structures.

4. RESULTS 171

The Kahraman dataset includes protein structures in complex with a ligand which was

removed, and then predicted in a ”leave-one-out” procedure. However, in practice,

the relevant problem will be to predict ligand for apo structures. Apo structures may

differ from holo structures due to the induced fit phenomenon. Therefore we tested

the performance of our method on eight apo structures (Section 3). The ligands for

the eight considered apo pockets were predicted by the sup-CK algorithm, and the

only misclassified pocket was that of 2RG7, a protein which binds HEM.

4.2 Homogeneous dataset (HD)

The Kahraman dataset contains ligands of very different sizes. It is important to test

methods on a benchmark containing pockets binding ligands of similar sizes. For this

reason, we built the Homogeneous dataset. Table 6.2 presents the performances of

different algorithm on this dataset.

Table 6.2: Performances for all algorithms evaluated by the mean AUC scores and
the mean classification errors, over all pockets.

Method
Pockets Ligands

AUC CE AUC CE
sup-CK 0.710±0.19 0.47 0.892±0.14 0.12
sup-CKL 0.752±0.16 0.38 — —

sup-CK-Vol 0.722±0.18 0.46 0.909±0.17 0.12
sup-CKL-Vol 0.766±0.17 0.38 — —

Vol 0.648±0.15 0.89 0.812±0.15 0.54
Princ-Axis 0.650±0.18 0.71 0.830±0.20 0.28

sup-PI 0.702±0.19 0.47 0.880±0.14 0.12
MultiBind 0.69± 0.14 0.48 — —

Fred — 0.54 — —
Flex — 0.85 — —

Table 6.2 shows that the performance of all algorithms are lower than on the

Kahraman dataset, which illustrates that the Homogeneous dataset is a more difficult

benchmark. The Vol and Princ-Axis display stronger degradation of performances,

with AUC scores equal to 0.65, and classification errors of 89% and 71%, respectively.

This is due to the fact that the size information is less discriminative on this dataset.

172 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

In terms of AUC scores, the best performance is obtained by the sup-CK and sup-

CK-Vol algorithms, but volume information only provides a slight improvement of

1%, compared to 3% on the Kahraman dataset. On the contrary, partial charges

information leads to a significant improvement of 4% for the sup-CK and sup-CK-

Vol algorithms. This shows that addition of physico-chemical information is critical

for discriminating pockets of similar sizes. In terms of classification error, volume

information is useless, but the use of information on partial charge leads to significant

improvement of 9%.

The same conclusions also hold for ligands comparison: performances are lower

than on the Kaharaman dataset, for all methods, and degradation of the classification

errors is much stronger for the Vol and Princ-Axis methods. On this dataset, the

docking programs did not perform as well as methods based on pocket comparison in

terms of classification errors.

5 Discussion

An important characteristic of the sup-CK algorithm is its ability to adapt to the

pocket variability. Parameter σ of the sup-CK method controls the sensitivity of

the similarity measure to atom relative displacements. The larger the variability of

pockets binding the same ligand, the greater should be the value of σ. Figure 6.3a

shows how the AUC score and classification error vary with σ on the Homogeneous

dataset. In both cases, the optimum is reached when σ is equal to one. Note that,

in our experiments (section 4), we did not use the same value of σ estimated from

all pockets. For each pocket, the optimal value was estimated on the basis of the

99 training pockets to avoid overfitting to the data. However, we observed that, in

most cases (90%), σ = 1 was chosen. Similarly, when information on atom partial

charges is used, parameter λ (6.4) conditions the sensitivity of the method to relative

values of atom charges. Figures 6.3b and 6.3c present the variation of AUC scores and

classification error as functions of σ and λ. We observe that for the AUC score, the

optimum is reached when σ equals to 2 and λ equals to 0.25, while for the classification

error optimal σ is equal to 4.

5. DISCUSSION 173

−4 −2 0 2 4 6 8
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

C
la

ss
ifi

ca
tio

n
er

ro
r

−4 −2 0 2 4 6 8
0.54
0.56
0.58
0.6
0.62
0.64
0.66
0.68
0.7
0.72

log2(σ)

A
U

C
 s

co
re

Cl. error

AUC

lo
g2

(σ
)

log2(λ)
−6 −4 −2 0 2

−2

0

2

4

6

8

0.55

0.6

0.65

0.7

(a) (b)

log2(λ)

lo
g2

(σ
)

−6 −4 −2 0 2

−2

0

2

4

6

8

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 6.3: Homogeneous database. (a) AUC score and prediction error as functions
of σ in the sup-CK method (pure geometrical version,λ =∞), (b) AUC score and (c)
classification error as functions of σ and λ when information on atom partial charges
is used.

174 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

Figures 6.4b and 6.4c illustrate the optimal alignment found for two ATP binding

pockets. While this alignment was estimated on the basis of pocket atom coordinates,

the bound ligands are found well aligned, which suggests a good quality of pocket

alignment. Note, that sup-CK does not try to superpose individual atoms, but rather

superposes atom sets.

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

KPC 1

K
P

C
 2

TRANSFERASE
LIGASE

(a) (b)

(c)

Figure 6.4: (a) Projection of ATP binding pockets on the two first kernel principal
components of sup-CK. (b,c) Alignment of two ATP pockets made by sup-CK, atoms
of different pockets are represented by black and red points in (b) and by black and
red surfaces in (c), two ATP ligands are traced in licorice.

The running time of the sup-CK method depends on the value of stopping criterion

used in the gradient ascent method and on the number of atoms. In our experiments,

the algorithm running time varied between 0.2 and 1.3 seconds (2.5 GHz CPU) per

pocket pair. This running time is already quite reasonable to process large protein

5. DISCUSSION 175

databanks, however a pre-filtering on the basis of simple pocket descriptors (like

volume or size) may be quite useful in the further acceleration of the sup-CK method.

We defined pockets as the set of all protein atoms within 5Å of a bound ligand. Similar

approaches were used by Kahraman et al. [2007] (Interacted Cleft Model), and similar

pockets may also be retrieved by methods like Q-SiteFinder [Laurie and Jackson,

2005] without any information on ligand coordinates.

In our experiments, docking programs (FlexX and Fred) did not perform as well

for ligand prediction as most methods based on pockets similarity measure. Docking

programs have many parameters that can be tuned to particular protein-ligand sys-

tems [Andersson et al., 2007]. Fine preparation of the active site, such as assignment

of amino acid protonation states, is also critical. Such tuning for each pocket is hardly

automatized in large scale datasets (up to almost 1000 proteins in this study), and

therefore, the performance of docking programs is underestimated.

An important topic is the relation between methods for binding pockets com-

parison and algorithms in field of computer vision for comparison of 3D shapes. A

complete review of 3D shape comparison methods is out of scope of this article, and

interested readers may consult [Iyer et al., 2005] for a detailed review. Interestingly,

most of existing methods for binding pocket comparison have an analogue in the

domain of computer vision. For example, methods based on real spherical harmonic

expansion used in [Morris et al., 2005] for binding pocket comparison are also dis-

cussed by Papadakis et al. [2007]; Saupe and Vranic [2001] in the context of general

3D shape matching. Principles used in another popular method for matching and

comparison of 3D forms, called Iterative Closest Point algorithm [Zhang, 1992], and

its variants are used in Poisson index and MultiBind algorithms. Examples of ap-

proaches based on graph representation of 3D forms and graph matching methods

may be found in [Weskamp et al., 2007] for binding pockets comparison, as well as

in [Biasotti et al., 2004] for 3D shapes comparison. Nevertheless, binding pockets are

not continuous shapes but discrete clouds of points. They can be transformed into 3D

shapes [Morris et al., 2005; Kahraman et al., 2007], but this transformation may be

a source of noise. Moreover, a similarity measure between binding pockets should be

rotationally and translationally invariant, which is not always the case in computer

176 CHAPTER 6. A NEW BINDING POCKET SIMILARITY MEASURE

vision methods. However, we believe that the adaptation of appropriate methods

may be very fruitful for the recognition of binding pockets.

The prediction of protein ligands is related to the problem of predicting the pro-

tein molecular function. We analyzed the repartition of the ATP binding pockets

generated by this similarity measure on the extended Kahraman dataset. Figure 6.4a

presents the projection of ATP pockets annotated as transferases or ligases, on the

first two principal components of the sup-CK similarity matrix. We observed that

these two families of enzymes are essentially separated. Although these are very pre-

liminary results, they show that sup-CK method may be useful in the prediction of

protein molecular functions.

The sup-CK algorithm showed a good performance in ligand prediction for apo

structures. This is an important preliminary result, in order to apply the method to

real case studies, or to proteins with no known experimental structure but for which

a homology model can be constructed [Launay and Simonson, 2008].

Bibliography

R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature, 422(6928):

198–207, Mar 2003.

E.L. Allgower and K.Georg. Numerical continuation methods. Springer, 1990. ISBN

3-540-12760-7.

H.A. Almohamad and S.O. Duffuaa. A linear programming approach for the weighted

graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):522–525,

May 1993.

R. Ambauen, S. Fischer, and H. Bunke. Graph edit distance with node splitting

and merging, and its application to diatom idenfication. In GbRPR, pages 95–106,

2003.

C. D. Andersson, E. Thysell, A. Lindström, M. Bylesjö, F. Raubacher, and A. Linus-

son. A multivariate approach to investigate docking parameters’ effects on docking

performance. J. Chem. Inform. Model., 47(4):1673–1687, 2007.

K. M. Anstreicher and N. W. Brixius. A new bound for the quadratic assignment

problem based on convex quadratic programming. Math. Program., 89(3):341–357,

2001.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. Concorde tsp solver.

http://www.tsp.gatech.edu/concorde.html, 2005.

177

http://www.tsp.gatech.edu/concorde.html

178 BIBLIOGRAPHY

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Sales-

man Problem: A Computational Study (Princeton Series in Applied Mathematics).

Princeton University Press, January 2007. ISBN 0691129932.

S. Bandyopadhyay, R. Sharan, and T. Ideker. Systematic identification of functional

orthologs based on protein network comparison. Genome Res., 16(3):428–435, Mar

2006.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522, 2002.

J. Berg and M. Lässig. Cross-species analysis of biological networks by bayesian

alignment. Proc. Natl. Acad. Sci. USA, 103(29):10967–10972, Jul 2006.

S. Berretti, A. Del Bimbo, and P. Pala. A graph edit distance based on node merging.

In Proc. of ACM International Conference on Image and Video Retrieval (CIVR),

pages 464–472, Dublin, Ireland, July 2004.

D. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

S. Biasotti, S. Marini, M. Mortara, G. Patane, M. Spagnuolo, and B. Falcidieno. 3d

shape matching through topological structures. In Discrete Geometry for Computer

Imagery, pages 194–203. Springer Berlin / Heidelberg, 2004.

N. L. Biggs, E.K. Lloyd, and R. J. Wilson. Graph theory 1736-1936. Oxford University

Press, 1976.

A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan Press

Ltd., 1976.

F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of defor-

mations. IEEE T. Pattern. Anal., 11(6):567–585, 1989.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization.

Springer-Verlag, New York, 2000.

BIBLIOGRAPHY 179

H. R. Bosshard. Molecular recognition by induced fit: how fit is the concept? News

Physiol Sci, 16:171–173, Aug 2001.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

New York, NY, USA, 2004. ISBN 0521833787.

K. Brein, M. Remm, and E. Sonnhammer. Inparanoid: a comprehensive database of

eukaryothic orthologs. Nucleic Acids Res., 33, 2005.

H. Bunke. Inexact graph matching for structural pattern recognition. Pattern Recogn.

Lett., 1(4):245–253, May 1983. ISSN 01678655.

L. Buriol, P. M. França, and P. Moscato. A new memetic algorithm for the asymmetric

traveling salesman problem. Journal of Heuristics, 10(5):483–506, 2004. ISSN 1381-

1231.

T. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact

graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 26(4):515–519, April

2004.

C. Callison-Burch, P. Koehn, C. Monz, J. Schroeder, and C. S. Fordyce, editors.

Proceedings of the Third Workshop on SMT. ACL, Columbus, Ohio, June 2008.

M. Carcassoni and E. Hancock. Spectral correspondence for point pattern matching.

Pattern Recogn., 36(1):193–204, January 2003. ISSN 00313203.

A. Cayley. On the theory of the analytical forms called threes. Philos. Mag., 37(18):

374–378, 1859.

A. Cayley. On the mathematical theory of isomers. Philos. Mag., 10(47):444–446,

1874.

A. Cayley. On the theory of the analytical forms called threes, with application to

the theory of chemical combinations. Rep. Brit. Assoc. Sci., 4(45):257–305, 1875.

A. Cayley. On the number of univalent radicals cnh2n+1. Philos. Mag., 18(3):34–35,

1877.

180 BIBLIOGRAPHY

E. Cela. Qaudratuc assignment problem library, 2007. URL

www.opt.math.tu-graz.ac.at/qaplib/.

F. R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference

Series. American Mathematical Society, Providence, 1997.

W. K. Clifford. Binary forms of alternate variables. Proc. London Math. Soc., 10(9):

277–286, 1878a.

W. K. Clifford. Note on quantics of alternate numbers, used as a means for deter-

mining the invariants and covariants of quantics in general. Proc. London Math.

Soc., 10(9):258–265, 1878b.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in

pattern recognition. Int. J. Pattern. Recogn. Artif. Intell., 18(3):265–298, 2004.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An efficient algorithm for the

inexact matching of arg graphs using a contextual transformational model. Pattern

Recognition, International Conference on, 3:180, 1996. ISSN 1051-4651.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the

vf graph matching algorithm. In ICIAP ’99: Proceedings of the 10th International

Conference on Image Analysis and Processing, page 1172, Washington, DC, USA,

1999. IEEE Computer Society. ISBN 0-7695-0040-4.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In In: 3rd IAPR-TC15 Workshop on Graph-based Repre-

sentations in Pattern Recognition, Cuen, pages 149–159, 2001.

T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In Advanced in Neural

Information Processing Systems, 2006.

J.R. Davies, R.M. Jackson, K.V. Mardia, and C.C. Taylor. The poisson index: a new

probabilistic model for protein ligand binding site similarity. Bioinformatics, 23

(22):3001–3008, Nov 2007.

www.opt.math.tu-graz.ac.at/qaplib/

BIBLIOGRAPHY 181

R. Diestel. Graph theory. Springer-Verlag, 2000.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,

1998.

S. Fields and O. Song. A novel genetic system to detect protein-protein interactions.

Nature, 340(6230):245–246, Jul 1989.

A. Filatov, A. Gitis, and I. Kil. Graph-based handwritten digit string recognition.

In ICDAR ’95: Proceedings of the Third International Conference on Document

Analysis and Recognition (Volume 2), page 845, Washington, DC, USA, 1995. IEEE

Computer Society. ISBN 0-8186-7128-9.

J. Flannick, A. Novak, B.S. Srinivasan, H.H. McAdams, and S. Batzoglou. Graemlin:

general and robust alignment of multiple large interaction networks. Genome Res.,

16(9):1169–1181, Sep 2006.

S. Fortin. The graph isomorphism problem. Technical report, MIT, 1996.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research

Logistics Quarterly, 3:95–110, 1956.

M. R. Garey and D. S. Johnson. Computer and intractability: A guide to the theory

of NP-completeness. San Francisco, CA: W. H. Freeman, 1979.

T. Gärtner, P.A. Flach, A. Kowalczyk, and A.J. Smola. Multi-Instance Kernels. In

C. Sammut and A. Hoffmann, editors, Proceedings of the Nineteenth International

Conference on Machine Learning, pages 179–186. Morgan Kaufmann, 2002.

J. Gasteiger, J. Sadowski, J. Schuur, P. Selzer, L. Steinhauer, and V. Steinhauer.

Chemical information in 3d space. J. Chem. Inform. Comput. Sci., 36(5):1030–

1037, 1996.

G. Gati. Further annotated bibliography on the isomorphism disease. J. Graph

Theor., 3:95–109, 1979. ISSN 0364-9024.

182 BIBLIOGRAPHY

U. Germann, M. Jahr, K. Knight, and D. Marcu. Fast decoding and optimal decoding

for machine translation. In In Proceedings of ACL 39, pages 228–235, 2001.

F. Glaser, R. J. Morris, R. J. Najmanovich, R. A. Laskowski, and J. M. Thornton.

A method for localizing ligand binding pockets in protein structures. Proteins, 62

(2):479–488, February 2006. ISSN 1097-0134.

C. Godsil and G. Royle. Algebraic graph theory. Springer-Verlag, 2000.

N.D. Gold and R.M. Jackson. Sitesbase: a database for structure-based protein-ligand

binding site comparisons. Nucleic Acids Res., 34:D231–D234, Jan 2006.

S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching.

IEEE Trans. Pattern Anal. Mach. Intell., 18(4):377–388, April 1996.

G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins

University Press, Baltimore, MD, USA, 1996. ISBN 0-8018-5414-8.

L. Gotusso and A. T. Santolini. A fortran iv quasi decision algorithm for the p-

equivalence of two matrices. Calcolo, 5:17–35, 1957.

G. Gutin. Travelling salesman and related problems. In Handbook of Graph Theory,

2003.

G. Gutin, D. Karapetyan, and N. Krasnogor. Memetic algorithm for the generalized

asymmetric traveling salesman problem. In NICSO 2007, pages 199–210. Springer

Berlin, 2008.

T. Gärtner, K. Driessens, and J. Ramon. Exponential and geometric kernels for

graphs. In Mach. Learn., pages 146–163. Springer, 2002.

D. Haussler. Convolution Kernels on Discrete Structures. Technical Report UCSC-

CRL-99-10, UC Santa Cruz, 1999.

H. Hoang and P. Koehn. Design of the Moses decoder for statistical machine trans-

lation. In ACL 2008 Software workshop, pages 58–65, Columbus, Ohio, June 2008.

ACL.

BIBLIOGRAPHY 183

N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. Three-dimensional

shape searching: state-of-the-art review and future trends. Computer-Aided Design,

37(5):509–530, April 2005.

D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, W. Zhang, and A. Zverovich. Ex-

perimental analysis of heuristics for the atsp. In The Travelling Salesman Problem

and Its Variations, pages 445–487, 2002.

M. Jordan, editor. Learning in Graphical Models. The MIT Press, 2001.

A. Kahraman, R. J. Morris, R. A. Laskowski, and J. M. Thornton. Shape variation

in protein binding pockets and their ligands. J. Mol. Biol., 368(1):283–301, Apr

2007.

A. C. Kam and G. E. Kopec. Document image decoding by heuristic search. IEEE

Trans. Pattern Anal. Mach. Intell., 18:945–950, 1996.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized Kernels between Labeled

Graphs. In T. Faucett and N. Mishra, editors, Proceedings of the Twentieth Inter-

national Conference on Machine Learning, pages 321–328, New York, NY, USA,

2003. AAAI Press.

B.P. Kelley, R. Sharan, R.M. Karp, T. Sittler, D.E. Root, B.R. Stockwell, and

T. Ideker. Conserved pathways within bacteria and yeast as revealed by global

protein network alignment. Proc. Natl. Acad. Sci. USA, 100(20):11394–11399, Sep

2003.

B.P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, and T. Ideker. Path-

BLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res.,

32(Web Server issue):W83–W88, Jul 2004.

Y. Keselman, A. Shokoufandeh, M. F. Demirci, and S. Dickinson. Many-to-many

graph matching via metric embedding. In CVPR, pages 850–857, 2003.

K. Knight. Decoding complexity in word-replacement translation models. Computa-

tional Linguistics, 25:607–615, 1999.

184 BIBLIOGRAPHY

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In NAACL

2003, pages 48–54, Morristown, NJ, USA, 2003. Association for Computational

Linguistics.

R. Kondor and K. M. Borgwardt. The skew spectrum of graphs. In ICML ’08:

Proceedings of the 25th international conference on Machine learning, pages 496–

503, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.

R. Kondor and T. Jebara. A kernel between sets of vectors. In In International

Conference on Machine Learning (ICML), 2003.

R. Kondor, N. Shervashidze, and K. M. Borgwardt. The graphlet spectrum. In ICML

’09: Proceedings of the 26th Annual International Conference on Machine Learning,

pages 529–536, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.

M. Koyutürk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and A. Grama.

Pairwise alignment of protein interaction networks. J. Comput. Biol., 13(2):182–

199, Mar 2006.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research,

2:83–97, 1955.

G. Launay and T. Simonson. Homology modelling of protein-protein complexes: a

simple method and its possibilities and limitations. BMC Bioinformatics, 9:427,

2008.

A. T. R. Laurie and R. M. Jackson. Q-sitefinder: an energy-based method for the

prediction of protein–ligand binding sites. Bioinformatics, 21(9):1908–1916, 2005.

ISSN 1367-4803.

A. R. Leach, B. K. Shoichet, and C. E. Peishoff. Prediction of protein-ligand interac-

tions. docking and scoring: successes and gaps. J. Med. Chem., 49(20):5851–5855,

Oct 2006.

R. S. T. Lee and J. N. K. Liu. An oscillatory elastic graph matching model for

recognition of offline handwritten chinese characters. In KES, pages 284–287, 1999.

BIBLIOGRAPHY 185

M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using

pairwise constraints. In International Conference of Computer Vision (ICCV),

volume 2, pages 1482 – 1489, October 2005.

M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category

recognition from pairwise interactions of simple features. In Proceedings of CVPR,

June 2007.

A. Lopez. Statistical machine translation. ACM Comput. Surv., 40(3):1–49, 2008.

ISSN 0360-0300.

A. C. Lunn and J. K. Senior. Isomerism and configuration. J. Phys. Chem., 33:

1027–1079, 1929.

B. Luo and E. R. Hancock. Alignment and correspondence using singular value

decomposition. In Proceedings of the Joint IAPR International Workshops on Ad-

vances in Pattern Recognition, pages 226–235, London, UK, 2000. Springer-Verlag.

ISBN 3-540-67946-4.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginal-

ized graph kernels. In R. Greiner and D. Schuurmans, editors, Proceedings of the

Twenty-First International Conference on Machine Learning (ICML 2004), pages

552–559. ACM Press, 2004.

M. R. Mcgann, H. R. Almond, A. Nicholls, A. J. Grant, and F. K. Brown. Gaussian

docking functions. Biopolymers, 68(1):76–90, 2003.

L. F. McGinnis. Implementation and testing of a primal-dual algorithm for the as-

signment problem. Operations Research, 31(2):277–291, 1983.

J.W. Milnor. Topology from the Differentiable Viewpoint. Univ. Press of Virginia,

1969. ISBN 978-0-691-04833-8.

R. J. Morris, R.J. Najmanovich, A. Kahraman, and J.M. Thornton. Real spherical

harmonic expansion coefficients as 3d shape descriptors for protein binding pocket

and ligand comparisons. Bioinformatics, 21(10):2347–2355, May 2005.

186 BIBLIOGRAPHY

R. Najmanovich, N. Kurbatova, and J. Thornton. Detection of 3d atomic similar-

ities and their use in the discrimination of small molecule protein-binding sites.

Bioinformatics, 24(16):i105–i111, Aug 2008.

M. Neuhaus and H. Bunke. Bridging the Gap Between Graph Edit Distance and

Kernel Machines. World Scientific, September 2007.

M. Neuhaus, K. Riesen, and H. Bunke. Fast suboptimal algorithms for the compu-

tation of graph edit distance. In Dit-Yan Yeung, James T. Kwok, Ana L. N. Fred,

Fabio Roli, and Dick de Ridder, editors, SSPR/SPR, volume 4109 of Lecture Notes

in Computer Science, pages 163–172. Springer, 2006. ISBN 3-540-37236-9.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary

degree distributions and their applications. Phys. Rev. E, 64:26118, 2001.

A. Nicholls. Oechem, version 1.3.4, openeye scientific software. website, 2005.

C. Noon and J.C. Bean. An efficient transformation of the generalized traveling

salesman problem. INFOR, pages 39–44, 1993.

P. Papadakis, I. Pratikakis, S. Perantonis, and T. Theoharis. Efficient 3d shape

matching and retrieval using a concrete radialized spherical projection representa-

tion. Pattern Recogn., 40(9):2437–2452, 2007. ISSN 0031-3203.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. BLEU: a Method for Automatic

Evaluation of Machine Translation. IBM Research Report, RC22176, 2001.

P.M. Pardalos, L. S. Pitsoulis, and M. G. C. Resende. A parallel grasp implementa-

tion for the quadratic assignment problem. In Parallel Algorithms for Irregularly

Structured Problems, pages 111–130. Kluwer Academic Publishers, 1995.

G. Pólya. Algebraische berechnung der anzhal der isomeren einiger organischer

verbindungen. Z. Kristal., 93:415–443, 1936.

K. Popat, D. H. Greene, J. K. Romberg, and D. S. Bloomberg. Adding linguistic

constraints to document image decoding: Comparing the iterated complete path

and stack algorithms, 2001.

BIBLIOGRAPHY 187

A. Rangarajan and E. Mjolsness. A lagrangian relaxation network for graph matching.

In IEEE Trans. Neural Networks, pages 4629–4634. IEEE Press, 1996.

M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. A fast flexible docking method

using an incremental construction algorithm. J. Mol. Biol., 261(3):470–489, Aug

1996.

L. C. Ray and R. A. Kirsch. Finding chemical records by digital computers. Science,

126:814, 1957.

R. C. Read and D. G. Corneil. The graph isomorphism disease. J. Graph Theor., 1

(4):339–363, 1977.

J. H. Redfield. The theory of group-reduced distributions. Amer. J. Math., 49:

433–455, 1927.

M. Remm, C.E. Storm, and E.L. Sonnhammer. Automatic clustering of orthologs and

in-paralogs from pairwise species comparisons. J. Mol. Biol., 314(5):1041–1052, Dec

2001.

R. Rockafeller. Convex Analysis. Princeton Univ. Press, 1970.

T. Saito, H. Yamada, and K. Yamamoto. On the data base etl9b of handprinted

characters in jis chinese characters and its analysis. IEICE Trans, 68, 1985.

D. Saupe and D. V. Vranic. 3d model retrieval with spherical harmonics and moments.

In Proceedings of the 23rd DAGM-Symposium on Pattern Recognition, pages 392–

397, London, UK, 2001. Springer-Verlag. ISBN 3-540-42596-9.

C. Schalon, J-S. Surgand, E. Kellenberger, and D. Rognan. A simple and fuzzy

method to align and compare druggable ligand-binding sites. Proteins, 71(4):1755–

1778, Jun 2008.

C. Schellewald and C. Schnorr. Probabilistic subgraph matching based on convex

relaxation. In EMMCVPR05, pages 171–186, 2005.

188 BIBLIOGRAPHY

C. Schellewald, S. Roth, and C. Schnörr. Evaluation of convex optimization techniques

for the weighted graph-matching problem in computer vision. In Proceedings of

the 23rd DAGM-Symposium on Pattern Recognition, pages 361–368, London, UK,

2001. Springer-Verlag. ISBN 3-540-42596-9.

D. C. Schmidt and L. E. Druffel. A fast backtracking algorithm to test directed

graphs for isomorphism using distance matrices. J. ACM, 23(3):433–445, 1976.

ISSN 0004-5411.

B. Schölkopf, A.J. Smola, and K.-R. Müller. Kernel principal component analysis.

In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods -

Support Vector Learning, pages 327–352. MIT Press, 1999.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology.

MIT Press, The MIT Press, Cambridge, Massachussetts, 2004.

W. R. P. Scott, I. G. Tironi, A. E. Mark, S. R. Billeter, J. F., A. E. Torda, T. Huber,

and P. Kruger. The gromos biomolecular simulation program package. J. Phys.

Chem. A, 103:3596–3607, 1999.

L. S. Shapiro and M. Brady. Feature-based correspondence: an eigenvector approach.

Image Vision Comput., 10(5):283–288, 1992.

R. Sharan, S. Suthram, R.M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R.M.

Karp, and T. Ideker. Conserved patterns of protein interaction in multiple species.

Proc. Natl. Acad. Sci. USA, 102(6):1974–1979, Feb 2005.

A. Shulman-Peleg, M. Shatsky, R. Nussinov, and H. J. J. Wolfson. Multibind and

mappis: webservers for multiple alignment of protein 3d-binding sites and their

interactions. Nucleic Acids Res., 36:260–264, May 2008. ISSN 1362-4962.

R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction

networks with application to functional orthology detection. Proc. Natl. Acad. Sci.

USA, 105(35):12763–12768, Sep 2008.

BIBLIOGRAPHY 189

K. Sjölander. Phylogenomic inference of protein molecular function: advances and

challenges. Bioinformatics, 20(2):170–179, Jan 2004.

E. H. Sussenguth. A graph-theoretic algorithm for matching chemical structures. J.

Chem. Doc., 5(1):36–43, 1963.

S. Suthram, T. Sittler, and T. Ideker. The plasmodium protein network diverges from

those of other eukaryotes. Nature, 438(7064):108–112, Nov 2005.

J. J. Sylvester. Chemistry and algebra. Nature, 17(432), 1878.

W. R. Taylor. Protein structure comparison using bipartite graph matching and its

application to protein structure classification. Mol. Cell. Proteomics, 1(4):334–339,

April 2002. ISSN 1535-9476.

C. Tillmann. Efficient Dynamic Programming Search Algorithms For Phrase-Based

SMT. In Workshop On Computationally Hard Problems And Joint Inference In

Speech And Language Processing, 2006.

C. Tillmann and H. Ney. Word reordering and a dynamic programming beam search

algorithm for statistical machine translation. Comput. Linguist., 29(1):97–133,

2003. ISSN 0891-2017.

W.H. Tsai and K.S. Fu. Error-correcting isomorphisms of attributed relational graphs

for pattern analysis. SMC, 9(12):757–768, December 1979.

J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

ISSN 0004-5411.

S. Umeyama. An eigendecomposition approach to weighted graph matching problems.

IEEE Trans. Pattern Anal. Mach. Intell., 10(5):695–703, Sept. 1988.

S. V. N. Vishwanathan, K. M. Borgwardt, R. I. Kondor, and N. N. Schraudolph.

Graph kernels. CoRR, abs/0807.0093, 2008.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Inform. Theory, 13(2):260–269, 1973.

190 BIBLIOGRAPHY

T. Walter, J.-C. Klein, P. Massin, and A. Erignay. Detection of the median axis of

vessels in retinal images. European Journal of Ophthalmology, 13(2), 2003.

H. F. Wang and E. R. Hancock. Correspondence matching using kernel principal

components analysis and label consistency constraints. Pattern Recogn., 39(6):

1012–1025, 2006. ISSN 0031-3203.

Y. Wang, F. Makedon, and J. Ford. A bipartite graph matching framework for finding

correspondences between structural elements in two proteins. In Proceedings of the

26th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, 2004.

G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert,

M. Lindvall, N. Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven,

C.E. Peishoff, and M.S. Head. A critical assessment of docking programs and

scoring functions. J. Med. Chem., 49(20):5912–5931, Oct 2006.

N. Weskamp, E. Hullermeier, D. Kuhn, and G. Klebe. Multiple graph alignment for

the structural analysis of protein active sites. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 4(2):310–320, 2007. ISSN 1545-5963.

H. Whitney. Non-separable and planar graphs. Proc. Natl. Acad. Sci., 93:415–443,

1930.

H. Whitney. Congruent graphs and the connectivity of graphs. Amer. J. Math., 54:

150–168, 1932.

Wikipedia. Travelling Salesman Problem — Wikipedia, The Free Encyclopedia, 2009.

[Online; accessed 5-May-2009].

P. Willett. From chemical documentation to chemoinformatics: 50 years of chemical

information science. J. Inf. Sci., 34(4):477–499, 2008. ISSN 0165-5515.

P. Willett, V. Winterman, and D. Bawden. Implementation of nearest-neighbor

searching in an online chemical structure search system. J. Chem. Inform. Comput.

Sci., 26(1):36–41, 1986.

BIBLIOGRAPHY 191

L. Xu and I. King. A pca approach for fast retrieval of structural patterns in attributed

graphs. In Humboldt University Berlin, 1994.

N. Yosef, R. Sharan, and W. S. Noble. Improved network-based identification of

protein orthologs. Bioinformatics, 24(16):i200–i206, Aug 2008.

M. Zaslavskiy, F. Bach, and J. P. Vert. GRAPHM: Graph matching package, 2008a.

Available at http://cbio.ensmp.fr/graphm.

M. Zaslavskiy, F. Bach, and J. P. Vert. A path following algorithm for graph matching.

In A. Elmoataz, O. Lezoray, F. Nouboud, and D. Mammass, editors, Image and

Signal Processing, Proceedings of the 3rd International Conference, ICISP 2008,

volume 5099 of LNCS, pages 329–337. Springer Berlin / Heidelberg, 2008b.

M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for the graph

matching problem. Technical Report 00232851, HAL, 2008c. To appear in IEEE

Trans. Pattern Anal. Mach. Intell.

M. Zaslavskiy, M. Dymetman, and N. Cancedda. Phrase-based statistical machine

translation as a traveling salesman problem. In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP, pages 333–341, Suntec, Singapore,

August 2009. Association for Computational Linguistics.

M. Zaslavskiyi, F. Bach, and J-P. Vert. Global alignment of protein-protein interac-

tion networks by graph matching methods. Bioinformatics, 25(12), 2009.

Z. Zhang. Iterative point matching for registration of free-form curves. Technical

report, Institut National de Recherche en Informatique et en Automatique (INRIA),

1992.

	Résumé
	Abstract
	Acknowledgments
	Introduction
	The graph matching problem
	Contribution & Perspectives

	Phrase-based statistical machine translation
	Contribution & Perspectives

	Comparison of protein binding pockets
	Contribution & Perspectives

	Publications

	I Graph matching
	Introduction
	Basic definitions and notations
	Formulation of the graph matching problem
	Alternative formulations of graph matching
	Vertex labels
	Quadratic assignment problem
	Matching graphs of different sizes
	l1 and other alternatives to the l2 norm in the GM problem
	Graph edit distance
	Complexity of the graph matching problem

	Early history of graph matching
	Recent developments in graph matching

	Applications of graph matching algorithms
	GM, kernels and graph invariants

	A path following algorithm for GM
	Introduction
	Problem description
	Permutation matrices
	Approximate methods: existing works

	Convex-concave relaxation
	Convex relaxation
	Concave relaxation
	PATH algorithm
	Numerical continuation method interpretation
	Some implementation details
	Algorithm complexity
	Vertex pairwise similarities

	Simulations
	Synthetic examples
	Results

	QAP benchmark library
	Image processing
	Alignment of vessel images
	Recognition of handwritten chinese characters

	Conclusion
	A toy example
	Kronecker product

	Global alignment of PPI by GM methods
	Introduction
	Constrained and balanced GNA problems
	Methods
	Algorithms for the balanced GNA problem
	Algorithms for the constrained GNA problem

	Data
	Results
	Disambiguation of functional orthologs within Inp. clusters
	Disambiguation of Inp. clusters with second-order interactions
	Global PPI network alignment

	Discussion

	Many-to-Many graph matching
	Introduction
	Many-to-many graph matching as an optimization problem
	Continuous relaxations of the many-to-many GM problem
	Method 1: Gradient descent
	Method 2: SDP relaxation

	Related methods
	Experiments
	Synthetic examples
	Chinese characters
	Identification of object composite parts

	Conclusion

	II Other applications
	PBSMT as a Traveling Salesman Problem
	Introduction
	Related work
	The Traveling Salesman Problem and its variants
	Reductions AGTSPATSPSTSP
	TSP algorithms

	Phrase-based Decoding as TSP
	From Bigram to N-gram LM

	Experiments
	Monolingual word re-ordering
	Translation experiments with a bigram language model

	Future Work
	Conclusion

	A new binding pocket similarity measure
	Introduction
	Methods
	Convolution kernel between atom clouds
	Related methods
	Performance criteria
	Docking

	Datasets
	Results
	Kahraman Dataset
	Homogeneous dataset (HD)

	Discussion

