.. Décomposition-des-nitrobenzènes-substitués, 156 3.1-Décomposition du nitrobenzène 156 3.2-Influence des substituants en position para 158 3.3-Influence des substituants en position méta, p.164

.. Décomposition-des-o-nitrotoluènes-substitués, 166 4.1-Décomposition de l'o-nitrotoluène, p.176

C. Agrawal, P. V. Khadikar, H. Gao, J. A. Katzenellenbogen, R. Garg et al., 178 BIBLIOGRAPHIE Parlement Européen et du Conseil du 18 décembre 2006 concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), instituant une agence européenne des produits chimiques, modifiant la directive, CE et abrogeant le règlement (CEE) n° 793/93 du Conseil et le règlement (CE) n° 1488/94 de la Commission ainsi que la directive 76/769/CEE du Conseil et les directives 91CE de la Commission. [18] N. Margossian, Le règlement REACH -La règlementation européenne sur les produits chimiques19] Institut National de Recherche et de Sécurité (INRS). www.inrs.fr24] Règlement (CE) n° 1272 du Parlement Européen et du Conseil du 16 Décembre 2008 relatif à la classification, à l'étiquetage et l'emballage des substances et des mélangesCE et modifiant le règlement CE25] Globally Harmonized System of Classification and Labelling of Chemicals (GHS), pp.435-437, 1907.

]. F. Pedersen, J. De-bruijn, S. J. Munn, K. Van-leeuwen31, ]. A. Lewis et al., [27] European Center for the Validation of Alternative Methods (ECVAM) [29] Final Report of the OECD Workshop on Harmonization of Validation and Acceptance Criteria for Alternative Toxicological Test Methods, Organisation de Coopération et de Développement Economique [30] Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure-Activity Relationship Models, Organisation de Coopération et de Développement Economique [34] S. Mannan, Lee's Loss Prevention in Process Industries: Hazard Identification The chemistry of exposives Chemistry of pyrotechnics -Basic principles and theory, 36] L. Medard, Les explosifs occasionnels40] Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria41] Institut National de l'Environnement Industriel et des Risques (INERIS). www.ineris.fr] [42] C. Michot, Revue générale de sécurité du Parlement européen et du Conseil concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), pp.592-602, 1907.

W. C. Lothrop, G. R. Handrick-federoff, O. E. Sheffield, G. D. Clift, E. F. Reese et al., Encyclopedia of Explosives and related items Miller, Burning-Rate Models and their successors, a personal perspective, dans: Overviews of recent research on energetic materials, Picatinny Arsenal Applications of theoretical chemistry in assessing energetic materials for performance or sensitivity, dans: Overviews of recent research on energetic materials, R, pp.419-445, 1949.

T. B. Shaw, D. L. Brill, L. E. Thompson, M. R. Fried, J. P. Manaa et al., Modeling the reactions of energetic materials in the condensed phase, dans: Overviews of recent research on energetic materials, pp.335-368, 2005.

D. L. Brill, D. L. Thompson, R. Thompson, T. B. Shaw, D. L. Brill et al., Gas Phase Decomposition of Energetic Molecules, dans: Overviews of recent research on energetic materials, Keshavarz, M. Jaafari, Propel. Explos. Pyrotechn. J. Chem. Inf. Comput. Sci, vol.31, issue.36, pp.275-302, 1996.

B. M. Rice, J. J. Hare, J. Phys, P. Politzer, S. Boyd et al., Prédiction de la sensibilité au choc des substances explosives ou non : Approches statistiques et neuronales Introduction to Quantum Mechanics with Applications to Chemistry Modern Quantum Chemistry -Introduction to Advanced Electronic Structure Theory Density Functional Theory of Atoms and Molecules Elements de chimie quantique à l'usage des chimistes, CNRS Editions [64] D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real- World Problems Essentials of Computational Chemistry -Theories and Models Holthausen, A Chemist's Guide to Density Functional Theory, S129-S135. [76] S136-S151. [77] Proc. Natl. Acad. Sci. USA, pp.1770-1783, 1397.

A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, An introduction to decision tree modeling, Journal of Chemometrics, vol.2, issue.6, pp.275-285, 2004.
DOI : 10.1002/cem.873

A. F. Duprat, T. Huynh, and G. Dreyfus, Toward a Principled Methodology for Neural Network Design and Performance Evaluation in QSAR. Application to the Prediction of LogP, Journal of Chemical Information and Computer Sciences, vol.38, issue.4, pp.586-594, 1998.
DOI : 10.1021/ci980042v

I. V. Tetko, A. E. Villa, and D. J. Livingstone, Neural Network Studies. 2. Variable Selection, Journal of Chemical Information and Computer Sciences, vol.36, issue.4, pp.794-803, 1996.
DOI : 10.1021/ci950204c

J. Gasteiger and J. Zupan, Neural Networks in Chemistry, Angewandte Chemie International Edition in English, vol.32, issue.4, pp.503-527, 1993.
DOI : 10.1002/anie.199305031

M. Karelson, Molecular Descriptors in QSAR, 2000.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 2000.
DOI : 10.1002/9783527613106

M. Karelson, V. S. Lobanov, and A. R. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chemical Reviews, vol.96, issue.3, pp.1027-1044, 1996.
DOI : 10.1021/cr950202r

S. W. Benson and J. H. Buss, Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties, The Journal of Chemical Physics, vol.29, issue.3, pp.546-572, 1958.
DOI : 10.1063/1.1744539

H. Wiener, Structural Determination of Paraffin Boiling Points, Journal of the American Chemical Society, vol.69, issue.1, pp.17-20, 2002.
DOI : 10.1021/ja01193a005

M. Randic, Characterization of molecular branching, Journal of the American Chemical Society, vol.97, issue.23, pp.6609-6615, 2002.
DOI : 10.1021/ja00856a001

L. B. Kier and L. H. Hall, Derivation and Significance of Valence Molecular Connectivity, Journal of Pharmaceutical Sciences, vol.70, issue.6, pp.583-589, 1981.
DOI : 10.1002/jps.2600700602

A. T. Balaban, Highly discriminating distance-based topological index, Chemical Physics Letters, vol.89, issue.5, pp.399-404, 1982.
DOI : 10.1016/0009-2614(82)80009-2

S. C. Basak, D. K. Harriss, and V. R. Magnuson, Comparative Study of Lipophilicity versus Topological Molecular Descriptors in Biological Correlations, Journal of Pharmaceutical Sciences, vol.73, issue.4, pp.429-437, 1984.
DOI : 10.1002/jps.2600730403

G. Fayet, P. Raybaud, H. Toulhoat, and T. De-bruin, Iron bis(arylimino)pyridine precursors activated to catalyze ethylene oligomerization as studied by DFT and QSAR approaches, Journal of Molecular Structure: THEOCHEM, vol.903, issue.1-3, pp.100-107, 2009.
DOI : 10.1016/j.theochem.2008.10.048

P. Geerlings, F. De-proft, and W. Langenaeker, Conceptual Density Functional Theory, Chemical Reviews, vol.103, issue.5, pp.1793-1874, 2003.
DOI : 10.1021/cr990029p

URL : https://hal.archives-ouvertes.fr/hal-01187515

H. Chermette, Chemical reactivity indexes in density functional theory, Journal of Computational Chemistry, vol.120, issue.1, pp.129-154, 1999.
DOI : 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

URL : https://hal.archives-ouvertes.fr/hal-00006867

C. A. Caro, J. H. Zagal, F. Bedioui, C. Adamo, and G. I. Cardenas-jiron, Solvent Effect on Density Functional Reactivity Indexes Applied to Substituted Nickel Phthalocyanines, The Journal of Physical Chemistry A, vol.108, issue.28, pp.6045-6051, 2004.
DOI : 10.1021/jp049530y

G. I. Cardenas-jiron, S. Gutierrez-oliva, J. Melin, and A. Toro-labbe, Relations between Potential Energy, Electronic Chemical Potential, and Hardness Profiles, The Journal of Physical Chemistry A, vol.101, issue.25, pp.4621-4627, 1997.
DOI : 10.1021/jp9638705

P. K. Chattaraj, P. Perez, J. Zevallos, and A. Toro-labbe, Ab Initio SCF and DFT Studies on Solvent Effects on Intramolecular Rearrangement Reactions, The Journal of Physical Chemistry A, vol.105, issue.17, pp.4272-4283, 2001.
DOI : 10.1021/jp0021345

R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, Electronegativity: The density functional viewpoint, The Journal of Chemical Physics, vol.68, issue.8, pp.3801-3807, 1978.
DOI : 10.1063/1.436185

R. S. Mulliken, A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities, The Journal of Chemical Physics, vol.2, issue.11, pp.782-793, 1934.
DOI : 10.1063/1.1749394

R. T. Sanderson, An Interpretation of Bond Lengths and a Classification of Bonds, Science, vol.114, issue.2973, pp.670-672, 1951.
DOI : 10.1126/science.114.2973.670

R. G. Parr and R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society, vol.105, issue.26, pp.7512-7516, 1983.
DOI : 10.1021/ja00364a005

W. Yang and R. G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis., Proceedings of the National Academy of Sciences, vol.82, issue.20, pp.6723-6726, 1985.
DOI : 10.1073/pnas.82.20.6723

R. G. Parr, L. V. Szentpaly, and S. Liu, Electrophilicity Index, Journal of the American Chemical Society, vol.121, issue.9, pp.1922-1924, 1999.
DOI : 10.1021/ja983494x

R. G. Parr and W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity, Journal of the American Chemical Society, vol.106, issue.14, pp.4049-4050, 1984.
DOI : 10.1021/ja00326a036

J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity???a rapid access to atomic charges, Tetrahedron, vol.36, issue.22, pp.3219-3228, 1980.
DOI : 10.1016/0040-4020(80)80168-2

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.23, issue.10, pp.1833-1840, 1955.
DOI : 10.1063/1.1740588

A. E. Reed and F. Weinhold, Natural localized molecular orbitals, The Journal of Chemical Physics, vol.83, issue.4, pp.1736-1740, 1985.
DOI : 10.1063/1.449360

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews, vol.88, issue.6, pp.899-926, 1988.
DOI : 10.1021/cr00088a005

M. Lejeune, Statistiques : la théorie et ses applications, 2004.
DOI : 10.1007/978-2-8178-0157-5

A. Boulesteix and K. Strimmer, Partial least squares: a versatile tool for the analysis of high-dimensional genomic data, Briefings in Bioinformatics, vol.8, issue.1, pp.32-44, 2006.
DOI : 10.1093/bib/bbl016

D. P. Mesquita, O. Dias, A. M. Dias, A. L. Amaral, and E. C. Ferreira, Correlation between sludge settling ability and image analysis information using partial least squares, Analytica Chimica Acta, vol.642, issue.1-2, pp.94-101, 2009.
DOI : 10.1016/j.aca.2009.03.023

M. J. Crawley, Statistics : an introduction using R, 2005.
DOI : 10.1002/9781119941750

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2005.
DOI : 10.1145/507338.507355

A. Golbraikh and A. Tropsha, Beware of q2!, Journal of Molecular Graphics and Modelling, vol.20, issue.4, pp.269-276, 2002.
DOI : 10.1016/S1093-3263(01)00123-1

A. Tropsha, P. Gramatica, and K. V. Gombar, The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models, QSAR & Combinatorial Science, vol.38, issue.1, pp.69-77, 2003.
DOI : 10.1002/qsar.200390007

J. Tunkel, K. Mayo, C. Austin, A. Hickerson, and P. Howard, Practical Considerations on the Use of Predictive Models for Regulatory Purposes, Environmental Science & Technology, vol.39, issue.7, pp.2188-2199, 2005.
DOI : 10.1021/es049220t

A. Bender and R. C. Glen, Molecular similarity: a key technique in molecular informatics, Organic & Biomolecular Chemistry, vol.2, issue.22, pp.3204-3218, 2004.
DOI : 10.1039/b409813g

N. Nikolova and J. Jaworska, Approaches to Measure Chemical Similarity??? a Review, QSAR & Combinatorial Science, vol.22, issue.910, pp.1006-1026, 2003.
DOI : 10.1002/qsar.200330831

D. E. Jones and R. A. Augsten, Evaluation of systems for use in DSC measurements on energetic materials, Thermochimica Acta, vol.286, issue.2, pp.355-373, 1996.
DOI : 10.1016/0040-6031(96)02927-9

T. Ando, Y. Fujimoto, and S. Morisaki, Analysis of differential scanning calorimetric data for reactive chemicals, Journal of Hazardous Materials, vol.28, issue.3, pp.251-280, 1991.
DOI : 10.1016/0304-3894(91)87079-H

Y. S. Duh, C. Lee, C. C. Hsu, D. R. Hwang, and C. S. Kao, Chemical incompatibility of nitrocompounds, Journal of Hazardous Materials, vol.53, issue.1-3, pp.183-194, 1997.
DOI : 10.1016/S0304-3894(96)01829-8

L. J. Figueiredo and F. M. Garrido, Chemometric analysis of nonlinear optical chromophores structure and thermal stability, Journal of Molecular Structure: THEOCHEM, vol.539, issue.1-3, pp.75-81, 2001.
DOI : 10.1016/S0166-1280(00)00774-0

X. Yu, Z. Xie, B. Yi, X. Wang, and F. Liu, Prediction of the thermal decomposition property of polymers using quantum chemical descriptors, European Polymer Journal, vol.43, issue.3, pp.818-823, 2007.
DOI : 10.1016/j.eurpolymj.2006.12.031

M. C. Kroon, W. Buijs, C. J. Peters, and G. Witkamp, Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochimica Acta, vol.465, issue.1-2, pp.40-47, 2007.
DOI : 10.1016/j.tca.2007.09.003

E. Theerlynck, D. Mathieu, and P. Simonetti, Towards improved models to rationalize and estimate the decomposition temperatures of nitroalkanes, nitramines and nitric esters, Thermochimica Acta, vol.426, issue.1-2, pp.123-129, 2005.
DOI : 10.1016/j.tca.2004.07.012

S. R. Saraf, W. J. Rogers, and M. S. Mannan, Application of Transition State Theory for Thermal Stability Prediction, Industrial & Engineering Chemistry Research, vol.42, issue.7, pp.1341-1346, 2003.
DOI : 10.1021/ie020568b

M. H. Keshavarz, H. R. Pouretedal, A. Shokrolahi, A. Zali, and A. Semnani, Predicting activation energy of thermolysis of polynitro arenes through molecular structure, Journal of Hazardous Materials, vol.160, issue.1, pp.142-147, 2008.
DOI : 10.1016/j.jhazmat.2008.02.095

M. H. Keshavarz, Simple method for prediction of activation energies of the thermal decomposition of nitramines, Journal of Hazardous Materials, vol.162, issue.2-3, pp.1557-1562, 2009.
DOI : 10.1016/j.jhazmat.2008.06.049

B. M. Rice, S. Sahu, and F. J. Owens, Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules, Journal of Molecular Structure: THEOCHEM, vol.583, issue.1-3, pp.69-72, 2002.
DOI : 10.1016/S0166-1280(01)00782-5

R. Vijayaraj, V. Subramanian, and P. K. Chattaraj, Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective, Journal of Chemical Theory and Computation, vol.5, issue.10, pp.2744-2753, 2009.
DOI : 10.1021/ct900347f

P. Sarmah and R. Deka, DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect, Journal of Computer-Aided Molecular Design, vol.34, issue.6, pp.343-354, 2009.
DOI : 10.1007/s10822-009-9265-4

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes, The Journal of Physical Chemistry A, vol.112, issue.17, pp.4054-4059, 2008.
DOI : 10.1021/jp800043x

URL : https://hal.archives-ouvertes.fr/ineris-00963113

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, -Nitrotoluenes, The Journal of Physical Chemistry A, vol.113, issue.48, pp.13621-13627, 2009.
DOI : 10.1021/jp905979w

URL : https://hal.archives-ouvertes.fr/jpa-00210158

J. S. Murray, P. Lane, P. Politzer, and P. R. Bolduc, A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C???NO2 bonds in nitroaromatics, Chemical Physics Letters, vol.168, issue.2, pp.135-139, 1990.
DOI : 10.1016/0009-2614(90)85118-V

T. Grewer, Thermal Hazards of Chemical Reactions, 1994.

A. R. Katritzky, R. Petrukhin, R. Jain, and M. Karelson, QSPR Analysis of Flash Points, Journal of Chemical Information and Computer Sciences, vol.41, issue.6, pp.1521-1530, 2001.
DOI : 10.1021/ci010043e

A. R. Katritzky, I. B. Stoyanova-slavova, D. A. Dobchev, and M. Karelson, QSPR modeling of flash points: An update, Journal of Molecular Graphics and Modelling, vol.26, issue.2, pp.529-536, 2007.
DOI : 10.1016/j.jmgm.2007.03.006

M. H. Fatemi and M. Haghdadi, Quantitative structure???property relationship prediction of permeability coefficients for some organic compounds through polyethylene membrane, Journal of Molecular Structure, vol.886, issue.1-3, pp.43-50, 2008.
DOI : 10.1016/j.molstruc.2007.10.038

T. Puzyn and J. Falandysz, QSPR Modeling of Partition Coefficients and Henry???s Law Constants for 75 Chloronaphthalene Congeners by Means of Six Chemometric Approaches???A Comparative Study, Journal of Physical and Chemical Reference Data, vol.36, issue.1, pp.203-214, 2007.
DOI : 10.1063/1.2432888

W. Zhou, Z. Zhai, Z. Wang, and L. Wang, Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by density functional theory, Journal of Molecular Structure: THEOCHEM, vol.755, issue.1-3, pp.137-145, 2005.
DOI : 10.1016/j.theochem.2005.08.020

G. Y. Yang, J. Yu, Z. Y. Wang, X. L. Zeng, and X. H. Ju, QSPR Study on the Aqueous Solubility (???lgSw) andn-Octanol/Water Partition Coefficients (lgKow) of Polychlorinated Dibenzo-p-dioxins (PCDDs), QSAR & Combinatorial Science, vol.43, issue.3, pp.352-357, 2007.
DOI : 10.1002/qsar.200610008

G. Yang, X. Zhang, Z. Wang, H. Liu, and X. Ju, Estimation of the aqueous solubility (???lgSw) of all polychlorinated dibenzo-furans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) congeners by density functional theory, Journal of Molecular Structure: THEOCHEM, vol.766, issue.1, pp.25-33, 2006.
DOI : 10.1016/j.theochem.2006.03.027

T. Puzyn, N. Suzuki, M. Haranczyk, and J. Rak, Calculation of Quantum-Mechanical Descriptors for QSPR at the DFT Level: Is It Necessary?, Journal of Chemical Information and Modeling, vol.48, issue.6, pp.1174-1180, 2008.
DOI : 10.1021/ci800021p

D. Young, T. Martin, R. Venkatapathy, and P. Harten, Are the Chemical Structures in Your QSAR Correct?, QSAR & Combinatorial Science, vol.111, issue.11-12, pp.1337-1345, 2008.
DOI : 10.1002/qsar.200810084

C. P. Storm and J. R. Stine, Sensitivity Relationships in Energetic Materials, dans, Chemistry and Physics of Energetic Materials, S.N. Bulusu, pp.605-630, 1990.

T. E. Larson, P. Dimas, and C. E. Hannaford, Electrostatic Sensitivity Testing of Explosives at Los Alamos, Inst. Phys. Conf. Ser. (Electrostatics '91), pp.107-117, 1991.

M. Roux, A. Trevino, M. Auzanneau, and C. Brassy, Sensibilité des substances explosives : Etude de la sensibillité électro-statique d'explosifs polynitrés aromatiques, Proc. of the 16th Annual Conf. ICT, 1985.

F. Hosoya, K. Shiino, and K. Itabashi, Electric-spark sensitivity of Heat-Resistant Polynitroaromatic Compounds, Propellants, Explosives, Pyrotechnics, vol.48, issue.3, pp.119-122, 1991.
DOI : 10.1002/prep.19910160306

M. Roux, M. Auzanneau, and C. Brassy, Electric spark and esd sensitivity of reactive solids (primary or secondary explosive, propellant, pyrotechnics) part one: Experimental results and reflection factors for sensitivity test optimization, Propellants, Explosives, Pyrotechnics, vol.30, issue.6, pp.317-324, 1993.
DOI : 10.1002/prep.19930180603

M. Auzanneau and M. Roux, Electric Spark and ESD Sensitivity of Reactive Solids (primary or secondary explosive, propellant, pyrotechnics). Part II: Energy transfer mechanisms and comprehensive study on E50, Propellants, Explosives, Pyrotechnics, vol.24, issue.2, pp.96-101, 1995.
DOI : 10.1002/prep.19950200211

D. Skinner and D. O. Block-bolten, Electrostatic Discharge Ignition of Energetic Materials, Propellants, Explosives, Pyrotechnics, vol.23, issue.1, pp.34-42, 1998.
DOI : 10.1002/(SICI)1521-4087(199802)23:1<34::AID-PREP34>3.0.CO;2-V

M. M. Chaudry, F. A. Al-ramadhan, and I. U. Haq, Dielectric breakdown and its influence on ignition, Defense Technical Information Center, 1993.

S. Zeman, A study of chemical micro-mechanisms of initiation of organic polynitro compounds, dans: Energetic Materials, Part, vol.2

M. H. Keshavarz, H. R. Pouretedal, and A. Semnani, Reliable prediction of electric spark sensitivity of nitramines: A general correlation with detonation pressure, Journal of Hazardous Materials, vol.167, issue.1-3, pp.461-466, 2009.
DOI : 10.1016/j.jhazmat.2009.01.009

L. Türker, Contemplation on spark sensitivity of certain nitramine type explosives, Journal of Hazardous Materials, vol.169, issue.1-3, pp.454-459, 2009.
DOI : 10.1016/j.jhazmat.2009.03.117

M. H. Keshavarz, Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure, Journal of Hazardous Materials, vol.153, issue.1-2, pp.201-206, 2008.
DOI : 10.1016/j.jhazmat.2007.08.036

M. H. Keshavarz, M. H. Moghadas, and M. K. Terani, Relationship Between the Electrostatic Sensitivity of Nitramines and Their Molecular Structure, Propellants, Explosives, Pyrotechnics, vol.143, issue.2, pp.136-141, 2009.
DOI : 10.1002/prep.200700264

J. J. Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive, Applied Physics Letters, vol.44, issue.9, pp.859-861, 1984.
DOI : 10.1063/1.94951

K. L. Mcnesby and C. S. Coffey, Spectroscopic Determination of Impact Sensitivities of Explosives, The Journal of Physical Chemistry B, vol.101, issue.16, pp.3097-3104, 1997.
DOI : 10.1021/jp961771l

S. Zeman, New Aspects of the Impact Reactivity of Nitramines, Propellants, Explosives, Pyrotechnics, vol.25, issue.2, pp.66-74, 2000.
DOI : 10.1002/(SICI)1521-4087(200004)25:2<66::AID-PREP66>3.0.CO;2-Q

S. Zeman and M. Krupka, New Aspects of Impact Reactivity of Polynitro Compounds, Part???II. Impact Sensitivity as???the First Reaction??? of Polynitro Arenes, Propellants, Explosives, Pyrotechnics, vol.28, issue.5, pp.249-255, 2003.
DOI : 10.1002/prep.200300012

S. Zeman and M. Krupka, New Aspects of Impact Reactivity of Polynitro Compounds, Part III. Impact Sensitivity as a Function of the Imtermolecular Interactions, Propellants, Explosives, Pyrotechnics, vol.28, issue.6, pp.301-307, 2003.
DOI : 10.1002/prep.200300018

S. Zeman, New Aspects of Impact Reactivity of Polynitro Compounds. Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Propellants, Explosives, Pyrotechnics, vol.28, issue.6, pp.308-313, 2003.
DOI : 10.1002/prep.200300021

M. J. Kamlet and H. G. Adolph, The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives, Propellants, Explosives, Pyrotechnics, vol.20, issue.2, pp.30-34, 1979.
DOI : 10.1002/prep.19790040204

C. Brassy, M. Roux, and M. Auzanneau, R??flexions sur la sensibilit?? des explosifs polynitr??s aromatiques, Propellants, Explosives, Pyrotechnics, vol.80, issue.21, pp.53-59, 1987.
DOI : 10.1002/prep.19870120205

C. Cao and S. Gao, Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, The Journal of Physical Chemistry B, vol.111, issue.43, pp.12399-12402, 2007.
DOI : 10.1021/jp074078e

M. Vaullerin, A. Espagnacq, and L. Morin-allory, Prediction of Explosives Impact Sensitivity, Propellants, Explosives, Pyrotechnics, vol.23, issue.5, pp.237-239, 1998.
DOI : 10.1002/(SICI)1521-4087(199811)<237::AID-PREP237>3.0.CO;2-#

J. Sharma, B. C. Beard, and M. Chaykovsky, Correlation of impact sensitivity with electronic levels and structure of molecules, The Journal of Physical Chemistry, vol.95, issue.3, pp.1209-1213, 1991.
DOI : 10.1021/j100156a032

Y. Kohno, K. Maekawa, T. Tsuchioka, T. Hashizume, and A. Imamura, A molecular orbital study on the effects of electron correlation on the unique N???N bond in nitramines, Chemical Physics Letters, vol.214, issue.6, pp.603-608, 1993.
DOI : 10.1016/0009-2614(93)85690-P

X. Xu, W. Zhu, and H. Xiao, DFT Studies on the Four Polymorphs of Crystalline CL-20 and the Influences of Hydrostatic Pressure on ??-CL-20 Crystal, The Journal of Physical Chemistry B, vol.111, issue.8, pp.2090-2097, 2007.
DOI : 10.1021/jp066833e

F. J. Owens, Relationship between impact induced reactivity of trinitroaromatic molecules and their molecular structure, Journal of Molecular Structure: THEOCHEM, vol.121, pp.213-220, 1985.
DOI : 10.1016/0166-1280(85)80061-0

F. Jianfen and X. Heming, Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) Nitro derivatives of benzene, Journal of Molecular Structure: THEOCHEM, vol.365, issue.2-3, pp.225-229, 1996.
DOI : 10.1016/0166-1280(96)04481-8

C. Meredith, T. P. Russell, R. C. Mowrey, and J. R. Mcdonald, -1,2,4-triazol-3-one (NTO):?? Energetics Associated with Several Proposed Initiation Routes, The Journal of Physical Chemistry A, vol.102, issue.2, pp.471-477, 1998.
DOI : 10.1021/jp972602j

URL : https://hal.archives-ouvertes.fr/halshs-01011360

X. J. Xu, H. M. Xiao, X. D. Gong, X. H. Ju, and Z. X. Chen, Theoretical Studies on the Vibrational Spectra, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms for Polynitroadamantanes, The Journal of Physical Chemistry A, vol.109, issue.49, pp.11268-11274, 2005.
DOI : 10.1021/jp040472q

A. Delpuech and J. Cherville, Relation entre La Structure Electronique et la Sensibilit?? au Choc des Explosifs Secondaires Nitr??s. III. Influence de l'environnement cristallin, Propellants, Explosives, Pyrotechnics, vol.24, issue.6, pp.61-65, 1979.
DOI : 10.1002/prep.19790040306

A. Delpuech and J. Cherville, Relation entre La Structure Electronique et la Sensibilit?? au Choc des Explosifs Secondaires Nitr??s. Crit??re Mol??culaire de Sensibilit?? II. Cas des esters nitriques, Propellants, Explosives, Pyrotechnics, vol.338, issue.7, pp.121-128, 1979.
DOI : 10.1002/prep.19790040603

J. Edwards, C. Eybl, and B. Johnson, Correlation between sensitivity and approximated heats of detonation of several nitroamines using quantum mechanical methods, International Journal of Quantum Chemistry, vol.37, issue.5, pp.713-719, 2004.
DOI : 10.1002/qua.20235

C. Zhang, Y. Shu, Y. Huang, X. Zhao, and H. Dong, Investigation of Correlation between Impact Sensitivities and Nitro Group Charges in Nitro Compounds, The Journal of Physical Chemistry B, vol.109, issue.18, pp.8978-8982, 2005.
DOI : 10.1021/jp0512309

N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, and M. S. Mannan, Predicting the Impact Sensitivities of Polynitro Compounds Using Quantum Chemical Descriptors, Journal of Energetic Materials, vol.71, issue.1, pp.17-33, 2006.
DOI : 10.1002/jcc.540100208

M. H. Keshavarz and H. R. , Simple empirical method for prediction of impact sensitivity of selected class of explosives, Journal of Hazardous Materials, vol.124, issue.1-3, pp.27-33, 2005.
DOI : 10.1016/j.jhazmat.2005.05.009

M. H. Keshavarz, H. R. Pouretedal, and A. Semnani, Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules, Journal of Hazardous Materials, vol.141, issue.3, pp.803-807, 2007.
DOI : 10.1016/j.jhazmat.2006.07.046

M. H. Keshavarz, Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives, Journal of Hazardous Materials, vol.148, issue.3, pp.648-652, 2007.
DOI : 10.1016/j.jhazmat.2007.03.022

R. Wang, J. Jiang, Y. Pan, H. Cao, and Y. Cui, Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices, Journal of Hazardous Materials, vol.166, issue.1, pp.155-186, 2009.
DOI : 10.1016/j.jhazmat.2008.11.005

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, Mechanism of Thermal Unimolecular Decomposition of TNT (2,4,6-Trinitrotoluene):?? A DFT Study, The Journal of Physical Chemistry A, vol.111, issue.43, pp.11074-11083, 2007.
DOI : 10.1021/jp072121s

J. L. Gustin, Runaway Reaction Hazards in Processing Organic Nitro Compounds, Organic Process Research & Development, vol.2, issue.1, pp.27-33, 1998.
DOI : 10.1021/op970035s

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, -Nitrotoluene, The Journal of Physical Chemistry A, vol.110, issue.33, pp.10130-10134, 2006.
DOI : 10.1021/jp0623591

URL : https://hal.archives-ouvertes.fr/hal-00109057

A. Gindulyte, L. Massa, L. Huang, and J. Karle, Ab Initio Study of Unimolecular Decomposition of Nitroethylene, The Journal of Physical Chemistry A, vol.103, issue.50, pp.11040-11044, 1999.
DOI : 10.1021/jp991793i

A. Gindulyte, L. Massa, L. Huang, and J. Karle, Proposed Mechanism of 1,1-Diamino-Dinitroethylene Decomposition:?? A Density Functional Theory Study, The Journal of Physical Chemistry A, vol.103, issue.50, pp.11045-11051, 1999.
DOI : 10.1021/jp991794a

M. Liu and C. C. Hong, Theoretical study of the unimolecular decomposition mechanisms of energetic TNAD and TNAZ explosives, International Journal of Quantum Chemistry, vol.101, issue.4, pp.398-408, 2005.
DOI : 10.1002/qua.20284

F. J. Owens, Calculation of energy barriers for bond rupture in some energetic molecules, Journal of Molecular Structure: THEOCHEM, vol.370, issue.1, pp.11-16, 1996.
DOI : 10.1016/S0166-1280(96)04673-8

R. J. Kersten, M. N. Boers, M. M. Stork, and C. Visser, Results of a Round-Robin with di-tertiary-butyl peroxide in various adiabatic equipment for assessment of runaway reaction hazards, Journal of Loss Prevention in the Process Industries, vol.18, issue.3, pp.145-151, 2005.
DOI : 10.1016/j.jlp.2005.03.003

G. Tanaka and C. Weatherford, Decomposition mechanisms of dinitrotoluene, International Journal of Quantum Chemistry, vol.17, issue.15, pp.2924-2934, 2008.
DOI : 10.1002/qua.21849

V. Korolev, T. Petukhova, T. Pivina, A. Porollo, A. Sheremetev et al., Thermal decomposition mechanisms of nitro-1,2,4-triazoles: A theoretical study, Russian Chemical Bulletin, vol.33, issue.8, pp.1388-1410, 2006.
DOI : 10.1007/s11172-006-0430-9

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility, Chemical Physics Letters, vol.467, issue.4-6, pp.407-411, 2009.
DOI : 10.1016/j.cplett.2008.11.033

URL : https://hal.archives-ouvertes.fr/ineris-00963161

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations, Journal of Hazardous Materials, vol.171, issue.1-3, pp.845-850, 2009.
DOI : 10.1016/j.jhazmat.2009.06.088

URL : https://hal.archives-ouvertes.fr/ineris-00961948

A. C. Gonzalez, C. W. Larson, D. F. Mcmillen, and D. M. Golden, Mechanism of decomposition of nitroaromatics. Laser-powered homogeneous pyrolysis of substituted nitrobenzenes, The Journal of Physical Chemistry, vol.89, issue.22, pp.4809-4814, 1985.
DOI : 10.1021/j100268a030

W. Tsang, D. Robaugh, and W. G. Mallard, Single-pulse shock-tube studies on C-NO2 bond cleavage during the decomposition of some nitro aromatic compounds, The Journal of Physical Chemistry, vol.90, issue.22, pp.5968-5973, 1986.
DOI : 10.1021/j100280a101

D. B. Galloway, J. A. Bartz, L. G. Huey, and F. F. Crim, Pathways and kinetic energy disposal in the photodissociation of nitrobenzene, The Journal of Chemical Physics, vol.98, issue.3, pp.2107-2114, 1993.
DOI : 10.1063/1.464188

D. B. Galloway, T. Glenewinkelmeyer, J. A. Bartz, L. G. Huey, and F. F. Crim, The kinetic and internal energy of NO from the photodissociation of nitrobenzene, The Journal of Chemical Physics, vol.100, issue.3, pp.1946-1952, 1994.
DOI : 10.1063/1.466547

C. Kosmidis, K. W. Ledingham, H. S. Kilic, T. Mccanny, R. P. Singhal et al., On the Fragmentation of Nitrobenzene and Nitrotoluenes Induced by a Femtosecond Laser at 375 nm, The Journal of Physical Chemistry A, vol.101, issue.12, pp.2264-2270, 1997.
DOI : 10.1021/jp963187i

Y. Li, J. Sun, H. Yin, K. Han, and G. He, Photodissociation of nitrobenzene at 266 nm: Experimental and theoretical approach, The Journal of Chemical Physics, vol.118, issue.14, pp.6244-6249, 2003.
DOI : 10.1063/1.1557932

E. Mccarthy and K. O-'brien, Pyrolysis of nitrobenzene, The Journal of Organic Chemistry, vol.45, issue.11, pp.2086-2088, 1980.
DOI : 10.1021/jo01299a010

J. Shao, X. Cheng, and X. Yang, The C???NO2 bond dissociation energies of some nitroaromatic compounds: DFT study, Structural Chemistry, vol.755, issue.5, pp.547-550, 2006.
DOI : 10.1007/s11224-006-9106-1

T. B. Brill, K. J. James, R. Chawla, G. Nicol, A. Shukla et al., Influence of the substituent on the major decomposition channels of the NO2 group inpara-substituted nitrobenzenes: a tandem mass spectrometric study, Journal of Physical Organic Chemistry, vol.97, issue.11, pp.819-826, 1999.
DOI : 10.1002/(SICI)1099-1395(199911)12:11<819::AID-POC192>3.0.CO;2-R

E. Fields and S. Meyerson, Arylation by Aromatic Nitro Compounds at High Temperatures. II. Nitrobenzene Alone and With Benzene and Benzene-d6, Journal of the American Chemical Society, vol.89, issue.13, pp.3224-3228, 1967.
DOI : 10.1021/ja00989a600

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition, Journal of the American Chemical Society, vol.110, issue.12, pp.3754-3759, 1988.
DOI : 10.1021/ja00220a006

J. Shao and T. Baer, The dissociation dynamics of energy selected o-nitrotoluene ions, International Journal of Mass Spectrometry and Ion Processes, vol.86, pp.357-367, 1988.
DOI : 10.1016/0168-1176(88)80078-8

P. Politzer, J. M. Seminario, and P. R. Bolduc, A proposed interpretation of the destabilizing effect of hydroxyl groups on nitroaromatic molecules, Chemical Physics Letters, vol.158, issue.5, pp.463-469, 1989.
DOI : 10.1016/0009-2614(89)87371-3

R. Saxon and M. Yoshimine, Theoretical study of nitro-nitrite rearrangement of nitramide, The Journal of Physical Chemistry, vol.93, issue.8, pp.3130-3135, 1989.
DOI : 10.1021/j100345a050

T. Glenewinkel-meyer and F. F. Crim, The isomerization of nitrobenzene to phenylnitrite, Journal of Molecular Structure: THEOCHEM, vol.337, issue.3, pp.209-224, 1995.
DOI : 10.1016/0166-1280(94)04087-9

J. X. Luo, Handbook of bond dissociation energies in organic compounds, 2003.
DOI : 10.1201/9781420039863

F. Berho, F. Caralp, M. Rayez, and R. Lesclaux, Kinetics and Thermochemistry of the Reversible Combination Reaction of the Phenoxy Radical with NO, The Journal of Physical Chemistry A, vol.102, issue.1, pp.1-8, 1998.
DOI : 10.1021/jp972576p

D. Jacquemin, B. Champagne, and J. André, Electronic first hyperpolarizability of polymethineimine chains with donor and acceptor groups, Synthetic Metals, vol.80, issue.2, pp.205-210, 1996.
DOI : 10.1016/S0379-6779(96)03704-6

P. Perez, Y. Simon-manso, A. Aizman, P. Fuentealba, and R. Contreras, Empirical Energy???Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity, Journal of the American Chemical Society, vol.122, issue.19, pp.4756-4762, 2000.
DOI : 10.1021/ja994108u

K. J. Palat, S. Böhm, G. Braunerova, K. Waisser, and O. Exner, Reaction series not obeying the Hammett equation: conformational equilibria of substituted thiobenzanilides, New Journal of Chemistry, vol.26, issue.7, pp.861-866, 2002.
DOI : 10.1039/b111156f

G. Fayet, L. Joubert, P. Rotureau, and C. , Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes, The Journal of Physical Chemistry A, vol.112, issue.17, pp.4054-4059, 2008.
DOI : 10.1021/jp800043x

URL : https://hal.archives-ouvertes.fr/ineris-00963113

G. Fayet, L. Joubert, P. Rotureau, and C. , Adamo On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility Chemical Physics Letter, pp.407-411, 2009.

G. Fayet, P. Rotureau, L. Joubert, and C. , On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations, Journal of Hazardous Materials, vol.171, issue.1-3, pp.845-850, 2009.
DOI : 10.1016/j.jhazmat.2009.06.088

URL : https://hal.archives-ouvertes.fr/ineris-00961948

G. Fayet, P. Rotureau, L. Joubert, and C. , -Nitrotoluenes, The Journal of Physical Chemistry A, vol.113, issue.48, pp.13621-13627, 2009.
DOI : 10.1021/jp905979w

URL : https://hal.archives-ouvertes.fr/jpa-00210158

P. Rotureau, G. Fayet, G. Marlair, C. Michot, L. Joubert et al., Adamo Evaluer les risques d'explosion des substances chimiques ? Des approches expérimentales classiques à la prédiction par la chimie quantique et les méthodes statistiques QSPR Actualité Chimique, pp.51-58, 2010.

G. Fayet, P. Rotureau, L. Joubert, and C. , Adamo QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs, AM1 calculated descriptors Journal of Molecular Modelling

G. Fayet, P. Rotureau, L. Joubert, and C. , Adamo Predicting explosibility properties of chemicals from quantitative structure-property relationships Process Safety Progress

G. Fayet, P. Rotureau, L. Joubert, and C. , Adamo Development of QSPR models on thermal stability of nitroaromatic compounds considering their decomposition mechanisms Manuscrit en préparation