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1
Introduction

1.1 Motivations

`I am an old man now, and when I die and go to heaven there are two
matters on which I hope for enlightenment. One is quantum electrodynamics,
and the other is the turbulent motion of �uids. And about the former I am
rather optimistic.'
- Horace Lamb -

As Sir Horace Lamb had foreseen in 1932, transition to turbulence is still an open problem,
especially concerning spatially developing boundary-layer �ows (Schmid and Henningson,
2001). Transition in such kind of �ows is crucial, since they are fundamental in several
�elds, for example in engineering and meteorology, as well as in physiology and biology. In
fact, when a �uid moves over a solid surface, a thin region, the boundary layer, is created.
In such regions the �ow is decelerated from the freestream velocity to zero velocity at the
wall. Boundary layers could be either laminar or turbulent. In the former case, the �uid
motion is smooth and regular, whereas the latter case is characterized by an unsteady
random behaviour in both time and space.
In many aerodynamic and industrial applications, as in airplane wings and gas turbine
blades, the boundary layer is required to be laminar. For instance, on commercial air-
craft about 50%of the total drag is due to the turbulent skin-friction associated with the
boundary layers, and about90%for submarines (Marusic (2009)).
In many cases, it could be crucial to predict time and location of boundary-layer transi-
tion. As an example, for the design of a spacecraft entering in the atmosphere, a detailed
prediction of the transition of the hypersonic boundary layers bordering the aircraft is
needed, since turbulence induces an higher drag and heat-transfer.
In other cases, a rapid transition to turbulence is required. Examples are combustion
engines, where an optimal mixing is needed, and golf balls, where the goal is to delay
separation and reduce the consequent pressure drag.

Transient energy growth: the optimal perturbations It is well�known that tran-
sition is triggered by exogeneous disturbances, namely wall roughness, acoustic waves,
or freestream turbulence, but the understanding of the transition mechanism is still an
open problem. For small amplitude disturbances, the linear stability analysis predicts the
slow transition process due to the generation, ampli�cation and secondary instability of
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Tollmien�Schlichting (TS) waves. Recently, the small perturbation analysis has improved
mainly due to the development of global modes concepts (Briggs (1964), Bers (1983)); it
is now recognized that the impulse response of a boundary-layer �ow is a wave packet
which may either decay, grow algebraically or exponentially (depending on the Reynolds
number) while travelling downstream at the group velocity. Even if the regime is subcrit-
ical (i.e. all eigenmodes are damped), there exist some disturbances which could induce
a transient ampli�cation. Transient growth arises from the constructive interference of
damped non-orthogonal eigenmodes and results in a spatial ampli�cation of the distur-
bances (Schmid and Henningson (2001)). If growth is su�cient, such ampli�ed structures
could induce secondary instability and breakdown, leading to aby-passtransition (see
Schoppa and Hussain (2002), Brandt et al. (2004)).
The concept of "optimal perturbation" was introduced in the eighties (Landahl (1980,
1990)), generating much hope to �ll the gap in the understanding of bypass transition.
Since than, many works have focused on looking for an �optimal perturbation� charac-
terized by a single wavenumber in the streamwise and spanwise direction (Farrell, 1988,
Butler and Farrell, 1992, Luchini, 2000, Schmid, 2000, Corbett and Bottaro, 2000). In
such studies, either a temporal or spatial optimization has been performed, under the
hypothesis of a parallel or non-parallel �ow, respectively. In both cases, the optimal per-
turbation in a boundary layer has been found to be characterized by a counter-rotating
vortex pair without any modulation in the streamwise direction, and resulting at �nite
time in a pair of streamwise velocity streaks.
The results of such an analysis are very promising, since they bring into play some of the
main ingredients present in transitional �ow �elds, namely streaks and vortices. Neverthe-
less, single-wavenumber optimal perturbations do not always induce transition e�ciently
(Biau et al. (2008)). Indeed, the drawbacks of such 'local' methods are that they focus
onto a single wavenumber/frequency at a time and that they neglect non-linear and non-
parallel e�ects.

Convective non-parallel ampli�cation: the separated boundary layer In the
past few years, a new light has been shed on the fundamental role in the transition
process of the convective ampli�cation due to the non-parallelism of the �ows. The tran-
sient ampli�cation of the disturbance energy, which is the primary cause of the by-pass
transition, is due to the non-orthogonality of the eigenvectors associated with both the
wall-normal and streamwise eigendirections of the linearized Navier-Stokes operator. If
the former � the one responsible for inducing the 'lift-up' e�ect � is recovered in parallel
and non-parallel �ows, the latter is mostly promoted by the non-parallelism of the �ow.
Even though an attached boundary-layer �ow could be supposed nearly non-parallel, in
the case of a separated �ow such an hypothesis is not adequate.
In many engineering applications the boundary layer could undergo separation and reat-
tachment, thus forming recirculation bubbles whose stability and control may be crucial
for the performance of the considered device. This may happen, for example, over the
surface of turbomachinery blades or of airplane wings. Separation may be triggered by
the geometry of the body or by the adverse pressure gradient. In both cases the aero-
dynamic load may be strongly a�ected by the behavior of the bubble which changes its
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characteristics depending on the operating conditions.
Often, the presence of a bubble is associated with a laminar-turbulent transition of the
boundary layer since �ow separation occurs in the laminar part of the bubble and, af-
ter transition, the �ow reattaches. Such a transition is governed by the ampli�cation of
�ow perturbations which may be due to a linear process based on transient growth or to
a non-linear one in the presence of high free-stream disturbance levels (see Schmid and
Henningson (2001), Schmid (2007)). In Rist and Maucher (1994), a thorough analysis is
provided of the di�erent transition mechanisms with respect to two and three-dimensional
initial perturbations, showing that several transition scenarios are possible and that, when
small amplitudes perturbation are considered, two-dimensional disturbances are the most
ampli�ed ones.
For a separation induced by the wall geometry, such as a step (Barkley et al., 2002,
Beaudoin et al., 2004, Blackburn et al., 2008, Marino and Luchini, 2009) or a bump (Mar-
quillie and Ehrenstein, 2003, Gallaire et al., 2007, Ehrenstein and Gallaire, 2008), it has
been established that the evolution of the perturbations leads to the formation of three-
dimensional �ow patterns (see also Williams and Baker (1997)) characterized by global
steady and weakly growing eigenmodes. Such three-dimensional steady modes have been
originally discovered by Theo�lis et al. (2000) for a laminar separation bubble induced
by an adverse pressure gradient. On the other hand, laminar separation bubbles show a
strong two-dimensional instability mechanism known as ��apping� (Cherry et al., 1984,
Pauley et al., 1990, Gallaire et al., 2007, Ehrenstein and Gallaire, 2008) and a high sen-
sitivity to external noise (Marquet et al., 2008) whose basic features are still not fully
understood. In particular, the role of all of these instability mechanisms in the transition
process is still an open question.

1.2 Aims

The aim of this thesis is to describe the linear and non-linear dynamics of both attached
and separated boundary-layer �ows at low Reynolds numbers, focusing on the e�ects
of non-normality of the di�erential Navier�Stokes (NS) operator. The linear dynamics,
driven by the interactions among the non-orthogonal eigenvectors, is studied using two
di�erent approaches for the global stability analysis of the linearized NS equations: the
global eigenvalue analysis and the direct-adjoint optimization. If in a 'local' eigenvalue
analysis (Farrell, 1988, Butler and Farrell, 1992, Luchini, 2000, Schmid, 2000, Corbett
and Bottaro, 2000) the perturbation is supposed sinusoidal in the streamwise and span-
wise directions, in the global eigenvalue analysis no spatial structure is imposed to the
perturbation in both the streamwise and wall-normal directions. Thus, the advantage
is twofold: i) to take into account the convective e�ects due to the non-parallelism of
the �ow, which is crucial in the case of a separation bubble; ii) to allow the perturba-
tion to be not single-wavenumber in such directions, which could be important for a real
boundary-layer �ow of �nite streamwise extent. In the direct-adjoint optimization, a fully
three-dimensional perturbation has been considered, so that the perturbation could be
characterized by more than one frequency also in the spanwise direction, allowing one to
compute spanwise-localized perturbations.
For the case of the adverse-pressure-induced separated boundary layer �ows, the aim is
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to clarify the role of the following features in the onset of unsteadiness: i) the strong
two-dimensional convective ampli�cation; ii) the non-normal e�ects such as the '�apping'
phenomenon; iii) the high sensitivity to external forcing; iv) the asymptotically unstable
global mode triggering three-dimensional patterns into the �ow. Indeed, even if the �ow
presents an unstable weakly-growing three-dimensional mode, the �ow could by-pass the
asymptotical mechanism and transition may occur via the transient ampli�cation of dis-
turbances impulsively injected in the �ow or induced by the numerical noise. The global
eigenvalue analysis has been used in a two-dimensional and three-dimensional framework
to compute the global eigenmodes, the global optimal perturbations, and the maximum
response to an external forcing.
Concerning the attached boundary layer, the aim is to identify localized optimal pertur-
bations, characterized by more than one frequency in the streamwise direction, inducing
a strong energy ampli�cation. In fact, since in most practical cases boundary layers un-
dergo transition by receptively selecting and amplifying external disturbances, such as
those arising from the presence of localized roughness elements or gaps on the wall, it
makes sense to inquire on the spatially localized �ow patterns which most easily amplify
and cause breakdown. Thus, the global eigenvalue analysis has been performed to identify
localized optimal perturbations, together with a direct-adjoint approach which allows to
perform a truly three-dimensional optimization of the perturbations. Indeed, even if the
considered problem is homogeneous in the spanwise direction, so that the result of the
optimization should always be characterized by a single wavenumber on that direction,
real perturbations are often localized and characterized by more than a wavenumber in
all the directions. Thus, a partially optimized localizednear-optimal perturbation has
been looked for by means of the direct-adjoint optimization.
In order to assess the e�ects of non-linearity on the instability mechanisms identi�ed by
the global linear stability analysis, direct numerical simulations (DNS) have been per-
formed in a two- and three-dimensional framework for both the attached and separated
boundary layers. Perturbations of di�erent shapes, frequencies and amplitudes have been
superposed to the considered base �ows with the aim of identi�ng which kind of per-
turbation most easily brings the �ows on the verge of turbulence. Di�erent scenarios of
transition have been observed, and the mechanisms leading the �ow to turbulence have
been analyzed in detail.

1.3 Main contributions

The transient and asymptotical dynamics of attached and separated boundary-layer �ows
over a �at plate have been studied in order to investigate the role of non-normality and
non-linearity of the di�erential operator in the stability of such �ows. In the following the
main contributions of this thesis are described.
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1.3.1 The two-dimensional separated boundary layer

Transient ampli�cation of small amplitude perturbations: the convective Kelv-
in�Helmoltz (KH) mechanism Both linear eigenvalue analysis and numerical sim-
ulations with small amplitude perturbations, have shown that the non-normality of the
convective modes of the NS operator allows the bubble to act as a strong ampli�er of
small disturbances, due to the Kelvin�Helmholtz-like convective instability acting over
the separation streamline. Indeed, the front part of the bubble has been found to show
a high sensitivity to external noise, as observed in simulations with white noise distur-
bances superposed upon the whole base �ow or upon the in�ow Blasius pro�le. The most
responsive disturbance takes the form of Kelvin-Helmholtz-like vortices, which roll up
and amplify themselves along the shear layer, until being advected and die away in the
attached boundary layer.

Sensitivity to external forcing: the optimal forcing and response An analysis
of the evolution of the optimal response to external forcing in function of the Reynolds
number and the pressure gradient has clari�ed the strong in�uence of the shear layer on
the maximum response. Once veri�ed that such a separated �ow acts as a strong selective
noise ampli�er, it has been investigated whether a connection exists between the global
optimal response of the �ow and the unsteadiness observed in experiments and direct
numerical simulations. It has been shown that the selected frequencies recovered by a
Fourier transform of the velocity signal recovered by a continuously perturbed DNS in
the asymptotic regime are in agreement with the most ampli�ed frequencies derived from
the optimal response analysis. The most ampli�ed frequency has been then compared
with the shedding frequencies measured by many authors, and the Strouhal number re-
covered by such authors has been found consistent with the dimensionless most ampli�ed
frequency of the global optimal response, thus establishing a connection between the sen-
sitivity response and the vortex shedding phenomenon.

Finite amplitude perturbations: non-linear e�ects For �nite amplitude initial
perturbations, due to nonlinear interactions between modes, a wave packet cycle has been
observed within the bubble, similar to the one occurring at supercritical Reynolds num-
bers. It has been found that non-linear interactions contribute also to the excitation of
a convectively unstable mode in the attached-�ow region due to the high sensitivity of
the boundary layer. This induces a further transient ampli�cation of the �nite amplitude
perturbations as well as an asymptotical instability at slightly subcritical Reynolds num-
bers.

Supercritical Reynolds number: the �apping frequency In a two-dimensional
framework, it has been observed that at supercritical Reynolds numbers the separated
�ow shows topological �ow changes, supporting the hypothesis of some authors that the
unsteadiness of separated �ows could be due to structural changes within the bubble.
Furthermore, non-normality e�ects have shown to play an active role also at large times.
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In fact, due to the superposition of convective non-normal modes, a low-frequency oscilla-
tion known as '�apping' frequency appears. Close to transition, when topological changes
occur in the �ow, a secondary �apping frequency appears as well. A possible explanation
of such a behavior has been provided, in which it is assumed that the oscillations are due
to the interaction of the main wave packet with the perturbations carried upstream by
the back�ow inside the bubble. A scaling law based on the previous assumption has been
derived, which is able to predict accurately the dependence of the �apping frequency on
the Reynolds number and the onset of the secondary frequency close to transition.

1.3.2 The three-dimensional separated boundary layer

Centrifugal modes and their role in the onset of unsteadiness In a three-
dimensional framework, a steady, weakly-growing unstable mode has been found to grow
asymptotically, once the transient ampli�er phase has been passed (for two-dimensionally
subcritical �ows). By means of a Rayleigh instability analysis, it has been shown that
such a mode is due to a centrifugal instability of the closed streamlines within the bubble.
A homologous of such a mode has been recovered among the stable three-dimensional
ones, which is characterized by a streamwise elongated structures amplifying themselves
downstream due to a Gortler mechanism, as assessed by a Gortler analysis. Both modes
have been observed during the slow energy growth phase following the early transient.
Although for large amplitude perturbations the �ow presents a K-type transition due to
the secondary instability of TS modes, the centrifugal three-dimensional modes have a role
on the onset of unsteadiness induced at two-dimensionally subcritical Reynolds numbers
by small amplitude perturbations. In such a case, the �ow has been observed to tran-
sition via secondary varicose instability of the Gortler vortices, due to the wall-normal
interaction of high- and low-momentum streamwise streaks, inducing the formation of a
series of hairpin vortices in streamwise succession.

1.3.3 The three-dimensional attached boundary layer

Localized optimal and near-optimal perturbations For an attached boundary
layer, the spatially localized disturbances capable to e�ectively provoke breakdown to tur-
bulence have been computed. The optimal initial perturbation is characterized by a pair
of streamwise-modulated counter-rotating vortices, tilted upstream, resulting at optimal
time in streak-like structures alternated in the streamwise direction. This indicates that
perturbations with non-zero streamwise wavenumber have a role in the transient dynam-
ics of a boundary layer; such a result is in contrast with the local theory, which predicts
that the optimal dynamics of a boundary-layer �ow is dominated by zero-streamwise-
wavenumber waves. A scaling law is provided describing the variation of the streamwise
modulation of the optimal initial perturbation with the streamwise domain length and
the Reynolds number. For su�ciently large domains, a near-optimal spanwise-localized
perturbation characterized by a large spectrum of frequencies has been extracted during
the optimization process, resulting in a wave packet of elongated disturbances modulated
in the spanwise and streamwise direction. This near-optimal initial disturbance attains a
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gain which is less than1% smaller than the true optimal disturbance.

Transition via optimal and near-optimal perturbations: hairpin vortices and
turbulent spots The capability of the localized optimal perturbations to induce tran-
sition has been investigated by means of direct numerical simulations. It is shown that
the global optimal disturbance is able to induce transition for lower levels of the initial
energy than local optimal and suboptimal perturbations. Simulations are also carried out
for the non-linear evolution of the near-optimal wave packet, which is found to evolve in
a turbulent spotspreading out in the boundary layer. It has been shown that transition is
initiated in a region of the �ow close to the center of the packet, by means of a mechanism
including features of both quasi-sinuous and quasi-varicose breakdown. A hairpin vortex
has been observed in the region of interaction of the streaks prior to transition, generated
by the inclined shear layer resulting from the front interaction of a low and a high-speed
streak, and inducing secondary hairpins. The transition scenario presented here appears
to connect two di�erent views of transition, that based on transient growth and secondary
instability of the streaks (Schoppa and Hussain (2002), Brandt et al. (2004)), and that
which describes breakdown via the continuous regeneration of vortices (Adrian (2007),
Wu and Moin (2009)).

1.4 Thesis organization

Chapter 2: Background The chapter provides a review of the main concepts used
to study the linear instability of open �ows. The local and global approaches to the
instability analysis are presented and compared. A discussion of the modal and non-
modal ampli�cation of the perturbation is then provided. Finally, some results published
in the literature about instability and transition of attached and separated boundary layer
�ows are brie�y presented.

Chapter 3: Computational approach Chapter 3 describes the numerical tools and
the methods employed to achieve the results discussed in the following sections. In par-
ticular, the problem formulation and the governing equations are provided; then, the nu-
merical details of the direct numerical simulations are discussed. The Newton procedure,
which has been used to compute the base �ow at supercritical Reynolds numbers, and the
direct-adjoint optimization are presented; both are derived from the existing DNS algo-
rithm. The global eigenvalue analysis and the consequent optimization via global modes
are then discussed. Finally, the sensitivity and optimal response analysis are provided.

Chapter 4: Non-normal dynamics of a two-dimensional separated boundary
layer The chapter presents the results about the two-dimensional dynamics of sepa-
rated gradient-pressure-induced boundary-layer �ows. In particular, for subcritical and
supercritical Reynolds numbers, the linear dynamic is investigated by means of the global
eigenvalue analysis. The results about the global optimal perturbation are generalized by
means of a DNS for small amplitude perturbations. The non-linear e�ects are investigated
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by superposing large amplitude perturbations on the base �ows. In supercritical condi-
tions, a scaling law is provided for the onset of a low-frequency beating characterizing the
separated �ow.

Chapter 5: The response to a harmonic forcing of a two-dimensional sepa-
rated boundary layer In Chapter 5 the sensitivity of the �ow to an external forcing
is investigated. A pseudospectrum is computed, assessing the high sensitivity of the �ow.
An optimal response analysis is performed, which allows to identify the most sensitive fre-
quencies. Such frequencies are then compared to the ones obtained asymptotically by a
DNS continuously forced by a random noise at the inlet points. A Strouhal number is thus
computed and compared to the one recovered by many authors in DNS and experiments.

Chapter 6: The onset of three-dimensional centrifugal global modes in a sep-
arated boundary layer Chapter 6 presents the three-dimensional dynamics of the
separated boundary-layer �ow. The global eigenvalue analysis is employed in order to
identify the most ampli�ed three-dimensional modes. A Rayleigh and a Gortler analysis
are used in order to shed light on the centrifugal mechanisms characterized the family
of the steady modes. By means of DNS the small and large amplitude perturbation dy-
namics is studied, and many of the modes recovered by global eigenvalue analysis are
identi�ed. Finally, the late stages of unsteadiness are analyzed in detail, in order to assess
the role of such modes in the destabilization of the �ow.

Chapter 7: Three-dimensional optimal localized perturbations in an attached
boundary layer In this chapter the three-dimensional optimal and near-optimal dy-
namics of an attached boundary layer of �nite streamwise extent are investigated. Lo-
calized optimal perturbations are computed by means of both global eigenvalue analysis
and direct-adjoint optimization. A scaling law is derived which describes the streamwise
modulation of the optimal perturbations with respect to the Reynolds number and the
streamwise extent of the considered domain. Near-optimal perturbations, which are lo-
calized also in the spanwise direction, are computed for domains of large spanwise extent.
DNS are performed by superposing the optimal and near-optimal disturbances to the base
�ow, in order to assess their e�ectiveness in inducing transition. Finally, the late stages
of transition, characterized by the generation of hairpin vortices and turbulent spots, are
analyzed in detail.

Chapter 8: Conclusions and outlook In Chapter 8, conclusions are drawn, and a
discussion of the results presented in the previous sections is provided. Finally, the future
works are presented.

1.5 Conferences and journal articles

The content of this thesis has been published, or proposed for publication, in the following
journals or conferences (in chronological order):
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2
Background

2.1 Linear stability concepts

2.1.1 Asymptotical instability

Linear stability analysis in hydrodynamics aims at studing the evolution of an in�nitesimal
perturbation, u, of a steady solution of the Navier�Stokes equations, the base �owU.
Since perturbations are supposed in�nitesimal, their evolution is governed by the Navier�
Stokes equations linearized aboutU. Following Joseph (1976), one could consider the
kinetic energy of the perturbations in a volumeV,

Ev =
1
2

Z

V
ui ui dV;

�
�

�
�2.1

where ui is the i th component of the perturbation velocity and the Einstein summation
has been used. The base �owU could be de�ned linearly stable, if the perturbation
energy satis�es:

lim
t!1

Ev(t)
Ev(0)

! 0:
�
�

�
�2.2

Generally speaking, if in�nitesimal perturbations grow in time, the base �ow is said to be
linearly unstable.

The inviscid and viscous local stability problems The beginning of modern hy-
drodynamic stability is attributed to the �rst controlled scienti�c experiment of Reynolds
(1883), in which the Reynolds number,Re, was introduced as a critical nondimensional
parameter distinguishing stable from unstable �ows. From the theoretical point of view,
the seminal work of Rayleigh (1880) had set the ground of inviscid theory. The inviscid
Rayleigh's criterion related the presence of an unstable mode to the occurrence of an
in�ection point on the base �ow pro�le.
A number of theoretical e�orts followed such work in the past century, including the tem-
poral formulation of the viscous stability problem for parallel shear �ows (Orr (1907),
Sommerfeld (1908)). These works are based on the hypothesis that the base �ow evolves
on the streamwise direction very slowly with respect to the wall-normal direction. Such
hypothesis ofweakly non-parallelismof the �ow leads to a local approach to the insta-
bility problem: the instability problem is solved locally, at each streamwise location, by
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supposing that the base �ow is parallel for each streamwise point.
In the work by Orr (1907) and Sommerfeld (1908), the linearized NS equation were thus
taken into account for the parallel base �owU = (U; 0;0); wavelike solutions were intro-
duced such as

q (x; y; z; t) = q̂ (y) exp (i (�x + �z � !t )) ;
�
�

�
�2.3

where q = ( u; v; w; p)T is the perturbation vector (u, v, and w being the streamwise,
wall-normal, and spanwise components of the velocity perturbation vector, andp is the
pressure disturbance),� the streamwise wavenumber,� the spanwise wavenumber and!
the temporal pulsation. By introducing the normal vorticity:

� =
@u
@z

�
@w
@x

and eliminating the pressure, this results in the pair of equations:
"

(�i! + i�U )
�

@2

@y2
� k2

�
� i�

@2U
@y2

�
1

Re

�
@2

@y2
� k2

� 2
#

v̂ = 0
�
�

�
�2.4

�
(�i! + i� U) �

1
Re

�
@2

@y2
� k2

��
�̂ = �i�

@U
@y

v̂;
�
�

�
�2.5

with k2 = � 2 + � 2. These equations are called the Orr-Sommerfeld and Squire equations,
after the authors who �rst derived them. Such an eigenvalue problem is used to determine
the temporal instability of boundary layer �ows.

The energy equation Some fundamental concepts about hydrodynamic stability are
due to Prandtl (1935), who derived from the NS equations an expression for the kinetic
energy transfer in two directions in space,

dEv

dt
=

Z

V
ui uj

@Ui

@xj
dV �

1
Re

Z

V

@ui

@xj

@ui

@xj
dV;

�
�

�
�2.6

where the subscriptsi and j represents the streamwise and wall-normal directions. From
such equation the author concluded that the growth or damping of the perturbations en-
ergy depends on the balance between the two right-hand-side terms, namely, the exchange
of energy with the base �ow and the energy dissipation due to viscous e�ects, respectively.
By means of a decomposition on a basis of normal modes,

ui (y) = ûi exp(i� (x � ct));
�
�

�
�2.7

where c is the phase velocity equal to!=� , he derived an expression for the Reynolds
tensor,

ui uj = cos(� i � � j )j ûi jj ûj j exp(=(c)t);
�
�

�
�2.8

where � are the phasis of thei and j components of the velocity vector and=(c) is the
imaginary part of the phase velocity. On the basis of such equation, he concluded that the
viscosity could have a destabilizing role due to a phase shift between the velocity compo-
nentsui and uj , inducing an energy transfert between the base �ow and the perturbation,
via the Reynolds tensor.
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The Tollmien-Schlichting waves The work of Prandtl (1935) has put the basis for
the theoretical prediction (Schlichting (1933), Tollmien (1929)) and experimental obser-
vation of Tollmien-Schlichting (TS) waves (Schubauer and Skramstad (1948)), a class of
eigenmodes which may grow exponentially due to viscous e�ects. Such modes are the
most unstable ones for a boundary layer, when the spectrum is obtained by solving a
local eigenvalue problem, as the Orr-Sommerfeld and Squire equations (see equations 2.4
and 2.5). The �rst experimental measures of TS waves induced by a vibrating ribbon
(Schubauer and Skramstad (1948)) were in agreement with the theoretical predictions,
once taken into account the spatial development of such waves. Since the theoretical stud-
ies of Schlichting (1933) were based on a temporal appoach, Schubauer and Skramstad
(1948) traced a neutral curve by using a transformation relating the amplitude of the
perturbation at a series of streamwise positions with the temporal pulsation,! .

The spatial instability problem and the non-parallel corrections A mathemat-
ical framework for spatially growing disturbances was given by Gaster (1965), who solved
the instability eigenvalue problem with respect to the spatial wavenumber,� , permitting
a direct comparison with the experiments, and predicting a critical Reynolds number
equal to 520. Nevertheless, the comparison with experiments showed that the critical
Reynolds number was overestimated in the Gaster's work, due to the hypothesis of par-
allelism of the �ow. Thus, a series of spatial instability studies were published in the
seventies, based on the hypothesis that the envelope of the perturbation is characterized
by a streamwise variation which is slower than the one associated with its oscillatory part.
For instance, Gaster (1974) de�ned a slow spatial variable,X = "x (with " � 1), a�ecting
the amplitude of the velocity and pressure perturbations through the ansatz:

q = q̂ (X; y ) exp(�( x; t)):
�
�

�
�2.9

Developing the NS equations at the �rst order in", the author was able to estimate more
accurately the critical Reynolds number.
Other methods were used to take into account the non-parallel e�ects. One of the most
known is the one by Herbert (1997), who derived the parabolized stability equations
(PSE). Such equations are derived by allowing the �ow to grow mildly in the streamwise
direction. Thus, at every speci�c streamwise location, the perturbation is supposed to be
on the form:

q(x; y; z; t ) = q̂ (x; y) expi(
Z x

x0

� (d� )d� + �z � !t ):
�
�

�
�2.10

Such ansatz is based on the WKB-type assumption of the existence of two scales on
which the instability problem is studied, a slow one related to the base �ow, and a fast
one on which the instability problem is considered. In particular,� (x) is supposed to vary
slowly in the streamwise direction, in order to capture every streamwise variations of the
disturbance on the fast scale. These parabolized equations could be solved by a simple
space-marching algorithm, thus avoiding the solution of a large eigenvalue problem.
In the same period the development of the computational power allowed the comparison
of such theoretical results with the ones of the �rst direct numerical simulations. Fasel
(1976) was able to reproduce by means of DNS the results of the work by Gaster (1974),
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simulating a vibrating ribbon within the boundary layer.

Secondary instability of Tollmien-Schlichting waves and the K-type transition
According to the Squire's theorem (Squire (1933)), two-dimensional TS waves are less
stable than three-dimensional ones. However, when the amplitude of the TS waves reaches
a large enough value, they could experience secondary instability (Herbert (1988)) and
turn to three-dimensional disturbances. The concept of secondary instability can be
described as follows: when a disturbance grow up to a �nite amplitudes, it could saturate
to a steady state and establish a new mean �ow which could become unstable. In the
experiments by Klebano� et al. (1962), it was observed that the initially two-dimensional
Tollmien-Schlichting waves become three-dimensional when reaching an amplitude of the
order of 1% of freestream velocity. The authors de�ned the three-dimensional pattern as
peaksand valleys. Such a transition scenario, which is called K-type secondary instability
(K for Klebano�), would be described in more detail in section 2.5.1, together with the
others scenarios such as the H-type, O-type and by-pass transition.

2.2 Absolute and convective instabilities

As it has been previously de�ned, whenever in�nitesimal perturbations grow in time, the
base �ow is de�ned linearly unstable. However, di�erent kind of instabilities could be
de�ned. In the work by Huerre and Monkewitz (1985), a fundamental distintion between
absoluteand convectiveinstability has been made.
The impulse response of a parallel shear �ow is considered in a linear framework: if the
in�nitesimal perturbation generated by the impulse, initially localized in space, grows
at that �xed spatial location, spreading both upstream and downstream of the location
where it is originated, then the �ow is de�nedabsolutely unstable. An example of absolute
instability is illustrated in Figure 2.1 (a) on a x � t diagram. If on the other hand, the
perturbation grows in magnitude but is convected by the base �ow away from the point
where it has been generated, so that at any streamwise location the perturbation ulti-
mately decays to zero, then the �ow isconvectively unstable. Such concept is illustrated
in Figure 2.1 (b).

Absolute instability for non-parallel �ows By means of a WKB development,
Chomaz et al. (1991) had demonstrated that in a weakly non-parallel �ow the existence
of a zone of absolute instability within the �ow is a necessary but not su�cient condi-
tion for the global instability of the �ow. For global instability one means an intrinsic
behaviour of regeneration of the perturbations impulsively injected into the �ow, leading
to the formation of coherent structure at a certain frequency. The global eigenvector is
written as:

q = q̂ (X; y )exp(i! Gt)
�
�

�
�2.11

where X is the slow streamwise scale de�ned in the previous subsection, the real part of
! G is the pulsation of the perturbation and its imaginary part is the ampli�cation rate.
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Figure 2.1: Schematic of absolute and convective instabilities and caption taken from
Blackburn et al. (2008). An in�nitesimal perturbation, localized in space, can grow at a
�xed location leading to an absolute instability (a) or decay at a �xed points leading to a
convective instability (b). In inhomogeneous, complex geometry �ow we can also observe
local regions of convective instability surrounded by regions of stable �ow (c).
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If we de�ne ! 0(X ) as the local absolutely unstable mode (at each streamwise location),
it is possible to obtain! G as:

! G � ! 0(X s) + O(");
�
�

�
�2.12

whereX S is the saddle point on the complex plane(X r ; X i ), such that

d! G

dX

�
�
�
�
X s

= 0:
�
�

�
�2.13

Such analysis, which have been extended to a non linear regime (Couairon and Chomaz
(1997)), have been able to explain the onset of the Karman vortex street after a cylinder
(Pier (2002)). Nevertheless, in such work, the strong hypothesis about the weakly non-
parallelism of the �ow does not allow accurate predictions for non-parallel �ows such as
boundary layers.

Resonator and ampli�er dynamics The concept of absolute and convective insta-
bility could be related to a classi�cation of the open �ows carried out by Huerre and
Monkewitz (1990) which characterizes the �ows asresonators or ampli�ers with respect
to their dynamics.
For instance, a resonator dynamics could be recovered in a �ow past a cylinder. For
values of the Reynolds number larger than the critical one, the �ow shows oscillations at
a given frequency. Such a frequency is independent of the external noise and forcing, so
that a Fourier spectrum of the perturbation signal within the �ow always shows a well
de�ned peak on such frequency. Often, a resonator dynamics is recovered in a �ow due to
the onset of an absolute instablity; in other cases, the resonator dynamics could be due to
some intristic characteristics of the �ow, namely a strong non-parallelism. Indeed, in such
cases the hypothesis of weakly non-parallelism made by Chomaz et al. (1991) is ill-posed,
so that absolute instability is no more a necessary condition for the global instability of
the �ow.
On the other hand, anampli�er is a �ow which presents a convective instability mech-
anism inducing a strong spatial ampli�cation of the disturbances, such as a shear layer.
Due to convective ampli�cation, such �ows are very sensitive to external noise and forc-
ing, even of weak amplitude. They present a wide spectrum, although the most sensitive
frequencies are more ampli�ed than the others. When the �ow is forced at a certain
frequency, the structures developing into the �ow are strongly dependent on the forcing
frequency.
In some cases, for inhomogeneous �ow geometries, the �ow is characterized by zones
of convective instability surrounded upstream and downstream by regions of stability.
An example could be found in Figure 2.1 (c) for the �ow past a backward-facing step.
Thus, an impulsively injected perturbation initially grows and then decays, due to the
local features of the �ow. The ampli�cation or damping of the perturbation at a certain
streamwise location is directly linked to the presence of a convective instability. Local
convective modes could be computed by a spatial instability analysis at di�erent stream-
wise positions within the �ow, in order to predict whether the perturbation would grow
or decay in space. Nevertheless, the presence of a local spatially unstable mode is not the
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only reason for the occurring of a spatial ampli�cation of the perturbations. A spatial
growth of disturbances could also be due to the high non-normality of stable eigenmodes.

2.3 Non-normality and local optimal perturbations

The classical instability analysis brie�y described in the previous subsections rely on the
solution of an eigenvalue problem for the NS equations linearized about a steady state.
For some �ows, the predictions of the local eigenvalue analysis have been able to match the
experimental �ndings, as for Rayleigh-Benard and Taylor-Couette �ows. In other cases,
the local eigenvalue analysis has been found to fail. For instance, the critical Reynolds
number predicted by eigenvalue analysis for Poiseuille �ow is approximatelyRe = 5772
(Orszag, 1971), but it has been experimentally observed that transition occurs earlier, at
Re � 1000(Patel and Head, 1969). Similarly, in the case of the Couette �ow, eigenvalue
analysis computations predict a critical Reynolds number tending to in�nity, whereas, in
an experimental framework, transition is observed forRe � 350(Tillmark and Alfredsson,
1992). Discrepancies are also found for boundary layer �ows, for which transition could
be abrupt, not following the slow process of asymptotical growth of TS waves.

Non-normality and transient growth Farrell (1988) was the �rst author suggest-
ing that the excitation of non-modal perturbations strongly ampli�ed in the �ow could
facilitate transition from laminar to turbulent �ows. The author computed by means a
variational method based on the local Orr-Sommerfeld and Squire equations, the per-
turbation that attains the highest energy gain in a given time period, calledoptimal
perturbations, for a plane channel �ow. Such perturbations are able to reach, in a �nite
time, an energy ampli�cation much larger than the one reached by the eigenvalues of the
NS operator. In fact, as concluded by Butler and Farrell (1992):

"What makes the initial-value problem for viscous shear �ow interesting is
that the set of operators involved is not self-adjoint in the norms of physical
interest [...] The eigenfuctions resulting from a non-self-adjoint system are
not orthogonal. As a result, a perturbation may consist of modes that initially
destructively interfere, then separate in time to reveal considerable growth in
integral energy or rms amplitude before decay and the eventual domination of
the least-damped mode set in."

In the years following such works, other authors (Gustavsson, 1991, Reddy and Henning-
son, 1993, Trefethen et al., 1993) drew similar conclusions about the fact that even if
all the eigenmodes associated with a particular �ow are stable, some perturbations could
be strongly ampli�ed if the associated eigenvectors are non-orthogonal. Such mechanism
of transient growth of perturbations induced by non-normality is sketched in Figure 2.2:
the vector f represents the initial perturbation, whereas the vectors� 1 and � 2 represent
the eigenvectors of the linear NS operator. The initial perturbation can be decomposed
on the basis of the eigenvectors, which in the case under consideration are stable and
non-orthogonal, as shown in Figure 2.2. Even if� 1 and � 2 decrease asymptotically, since
their are associated with stable eigenmodes, their di�erence, which is here equal tof ,
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Figure 2.2: Schematic of non-normal transient growth and caption taken from Schmid
(2007). Vector example of transient growth. Starting on the left, the vectorf is de�ned as
the di�erence between the nearly collinear vectors� 1 and � 2. During iteration (proceeding
to the right of the �gure), the vector � 1 decreases in length by20% whereas vector� 2

shrinks by50%. The vector f gradually turns into the direction of � 1 (sketch on the right),
but increases substantially in length, before decaying to zero. Thus, the superposition of
decaying nonorthogonal eigenfunctions can produce, in the short term, growth in the
norm of a perturbation. The same scenario with orthogonal vectors� 1 and � 2 would
have resulted in monotonic decay of the norm off .
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increases transiently. This transient growth is clearly shown by the red line in Figure 2.2,
and is due to the non-orthogonality of the eigenvectors� 1 and � 2, but also to the initial
perturbation chosen. For instance, an initial vectorf parallel to � 1 or � 2 would have
descreased monotonically.
For boundary-layer �ows, theoptimal perturbationswere �rst computed by Luchini (2000),
Schmid (2000), Corbett and Bottaro (2000), Andersson et al. (1999). In particular, Schmid
(2000) used an eigenfunction expansion in discrete and (discretized) continuous modes.
Corbett and Bottaro (2000) used a technique based on the direct and adjoint initial value
problem in a temporal framework which avoids any modal representation. Luchini (2000)
and Andersson et al. (1999) used a similar technique in a spatial framework. The results
of their direct-adjoint space-marching technique showed a very good comparison with the
results of the experiments by Westin et al. (1994), which were conducted on a boundary
layer excited with grid-generated turbulence.
In all of these works the authors showed that, in a local framework, transient growth of
optimal perturbations is essentially due to two ampli�cation mechanisms: theOrr and
the lift-up mechanism.

The Orr mechanism The inviscid Orr mechanism was �rst described by Orr (1907).
The author observed that in a two-dimensional inviscid �ow, having a constant shear in
the planex� y, the spanwise vorticity should be constant. When the vorticity perturbation
is initially tilted opposing to the streamwise direction, the conservation of the vorticity
induces a transient growth of the velocity components in thex � y plane. Thus, the energy
of the perturbation grows transiently as an e�ect of the non-normality of the operator.
The optimal perturbations computed for shear �ows is thus characterized by �ow patterns
that oppose the mean shear.

The lift-up mechanism Ellingsen and Palm (1975) and Landahl (1980) were the �rst
authors to identify the so-calledlift-up mechanism inducing a growth on the perturba-
tions in a boundary-layer �ow. By superposing a longitudinal vortex to a boundary layer
having zero velocity components on the spanwise direction, low-momentum �uid islifted
up from the wall, whereas high-momentum �uid is deplaced down towards the wall. The
physical mechanism inducing such a behaviour could be easily inferred by the structure
of the boundary layer. Since the characteristic length of such �ow in the streamwise
direction is O(Re1=2) times larger than its thickness, the initial spanwise component of
the initial longitudinal vortex would induce a streamwise velocity perturbationO(Re1=2)
times larger.
The mechanism described is basically inviscid, but its viscous extention is the one induc-
ing the transient growth of the perturbations discussed in the previous paragraph (Farrell
(1988), Butler and Farrell (1992), Gustavsson (1991), Reddy and Henningson (1993),
Trefethen et al. (1993)). In other words, such an ampli�cation process, called thelift-up
process (Landahl (1980)), is based on the generation ofstreamwise streaks, namely elon-
gated regions of high and low perturbation velocity alternated in the spanwise direction,
from streamwise vortices, namely regions of high vorticity on the cross�ow plane.
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The universality of optimal perturbations Streamwise streaks have been observed
in experiments since the work of Klebano� (1971). The author investigated the e�ect
of freestream turbulence on the onset of transition, showing that low frequency (with
respect with the higher-frequency TS�waves) �uctuations begins to grow at the plate
leading edge and attained an amplitude of5% the freestream velocity. They result in
a spanwise oscillation of the layer inducing an alternating thickening or thinning of the
layer. Kendall (1985) named such a disturbance Klebano� mode, which is now known
to be the result of the lift-up mechanism. Streamwise streaks are a fundamental feature
of the boundary layer, cause they are responsible for theby-passtransition (Morkovin
(1984)), so called because the slow transition scenario via TS-waves is by-passed by such
a faster mechanism. They are also believed to be responsible for the energy transfer from
the mean �ow to the vortical structure present in developed turbulence (Hamilton et al.,
1995).
Notably, even if streamwise streaks are the result of optimal initial perturbations, they
are able to arise in the �ow even when it is perturbed with freestream turbulence, or
other exogeneous disturbances. Such a behaviour could be explained by the concept of
pseudo-resonance, which was introduced by Trefethen et al. (1993). A �ow is said to be
capable ofpseudo-resonancewhen it strongly ampli�es time-dependent perturbations at
various real frequencies forced in the �ow. A self-adjoint (normal) operator is subjected
to pseudo-resonanceonly when the forcing frequency is very close to one of the modes of
the operator. For a non-normal operator, such a strong energy ampli�cation occurs also
for frequencies which are not close to an eigenmode of the considered operator.
As discussed in Luchini (2000), the universality of the output velocity pro�le no matter
which perturbation is imposed, could also have an origin on the singular-value spectrum of
the input-output transfer NS operator. Provided that the optimal perturbation is the �rst
singular value of the perturbation, the separation between the �rst and the other singular
values is an important feature of the �ow; in fact, a random initial disturbance could be
decomposed on the singular values basis, which is an ortho-normal basis (whereas the
eigenmodes basis is non-orthogonal). When the �rst singular value is much larger than
the others, the output of such initial perturbation would always consist almost entirely of
the �rst singular vector, since the energies of the singular vectors are additive in an ortho-
normal basis. This explains the observation of streamwise streaks in boundary layers in
both experimental and numerical frameworks, and the consequent bypass transition.

2.4 Global instability analysis

In the two previous sections some fundamental concepts about open �ows instability have
been brie�y described, in particular the concepts ofconvective instability and transient
growth. Both mechanisms could be in part identi�ed by means of a local eigenvalue anal-
ysis, by using a spatial analysis and a singular value analysis, respectively. Nevertheless,
local methods do not allow an accurate prediction of the amount of integral energy in the
�ow at a certain time due to both the mechanisms of ampli�cation, since the analysis per-
formed at successive streamwise locations does not take into account the upstream e�ects
or downstream propagation phenomena. Moreover, non-parallel e�ects are neglected by
a local analysis, although they could contribute to a large part of the energy growth.
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The convective instability due to the non-parallelism of the �ow is a consequence of the
non-normality of the operator in the streamwise direction, whereas the Orr and lift-up
mechanism are induced by the so-called wall-normal non-normality of the NS operator.
Convective non-parallel ampli�cation could be large, and could cohexist with the Orr and
lift-up mechanisms resulting in a large spatial growth in a limited part of the �ow (see
Figure 2.1 (c)).
A global eigenvalue analysis is able to accurately capture all of these mechanism, since
it considers the real base �ow, without any parallelism hypothesis. The �rst analysis of
this kind was carried out by Pierrehumbert (1986), who reported the discovery of short-
wavelength elliptic instability in inviscid vortex �ows. Jackson (1987) and Zebib (1987)
were the �rst authors proposing such a global approach in a viscous framework, for the
case of the �ow after a blu� body. Tatsumi and Yoshimura (1990) used such method some
years later to study the �ow in a rectangular duct driven by a constant pressure gradi-
ent, but a real development of the global approach has been seen only in the last decade,
where it has been applied to several non-parallel �ows (see Barkley and Henderson (1996),
Theo�lis et al. (2000), Ehrenstein and Gallaire (2005), for instance). Such a development
is certainly due to the computing hardware improvements of the last years, as well as
to the recent advances in algorithms for the numerical solution of large nonsymmetric
generalized eigenvalue problems.
A two or three-dimensional base �ow,U(x; y; x ), is taken under consideration, and the
global stability analysis is performed with respect to two or three-dimensional pertur-
bations, q(x; y; z; t ). Other than the initial linearization, no further approximation is
required, whereas in the local instability analysis the perturbation is supposed sinusoidal
in the streamwise and spanwise directions. Often, in spanwise homogeneous �ows, the
perturbation is supposed sinusoidal in the spanwise direction, and the problem is solved
in a two-dimensional framework. In both cases, strong streamwise variations of the �ow
could be taken into account, di�erently from the local approaches with non-parallel cor-
rections, like the PSE.
The perturbation is supposed to be of the following form:

q(x; y; z; t ) = q̂ (x; y; z) exp(!t );
�
�

�
�2.14

or q(x; y; z; t) = q̂ (x; y) exp(i�z + !t ) if the problem is homogeneous in the spanwise
direction. Then, a large scale eigenvalue problem is solved for the global modal! . In
some cases, the eigenvalue problem is solved by means of eigenvalue algorithms (Theo�lis,
2003). The classic QZ algorithm, which returns the full eigenvalue spectrum, was initially
used to solve eigenvalue problems. However, the shortcoming of such an algorithm is that
it requires the storage of four matrices having the dimension of the number of grid points
used to discretize the two (or three) spatial directions. Thus, for most applications, the
size of each of the four matrices would be of severalGb, and the required CPU time would
scale with the cube of the matrices dimension, making this algorithm inappropriate for
global instability analysis.
The development of the global approach was due, in the second half of the nineties, to
the employement of the more e�cient Krylov subspace iteration, which allows to recover
only the most unstable part of the spectrum. The �rst authors adopting such a method
were Ehrenstein (1996), Lin and Malik (1996) and Theo�lis (1997), all of them using
an Arnoldi's method together with a 'shift and invert' strategy. Instead of computing

21



CHAPTER 2. BACKGROUND

the eigenvalues of the sparse matrixA, Arnoldi iteration computes the eigenvalues of the
orthogonal projection of A onto a Krylov subspace. This projection is represented by
an Hessenberg matrix which is of modest size, so that its eigenvalues can be computed
e�ciently.
Methods also exist which avoid storage of the matrix, as proposed in Barkley and Hender-
son (1996) and Tuckerman and Barkley (2000), which rely of the successive application of
the operator A to an initial guess vector. Iterative matrix-free approaches are often used
in order to compute the integral energy gain, without computing the eigenvalues of the op-
erator. An example could be the so-calleddirect optimal growth method by Barkley et al.
(2008), which evaluate the leading eigenmode of the operatorAA + (where + identi�es
the adjoint), by the successive application of such an operator to an initial guess vector.
Other methods are based on a Lagrange multipliers technique, leading to direct-adjoint
iterations, as the one used in Corbett and Bottaro (2000) in a local framework.
However, global instability analysis has not been applied yet to �at plate boundary layer
�ows, either attached or separated. In the next section the state of the art on the insta-
bility dynamics and transition of attached and separated boundary layers is described.

2.5 State of the art

2.5.1 The attached boundary layer

As already discussed in section 2.1, the �rst authors proposing the existence of two-
dimensional unstable waves in the Blasius boundary layer were Tollmien (1929) and
Schlichting (1933). TS waves are the �rst modes becoming unstable as recovered by
a local eigenvalue analysis based on the Orr-Sommerfeld and Squire equations. An exper-
imental proof of their existence was found some years later by Schubauer and Skramstad
(1948).
The stability of TS waves depends on their frequency in space and time, and on the
Reynolds number, which for a boundary-layer �ow is usually de�ned asRe = U1 � � =� ,
where U1 is the freestream velocity,� � is the boundary-layer thickness, and� is the
viscosity. Since the boundary-layer thickness increases in the streamwise direction, the
growth rate of the TS waves depends on the streamwise position along the �at plate.
However, since the Orr-Sommerfeld and Squire equations are based on the hypothesis of
parallel �ow, the streamwise evolution of the boundary layer could be taken into account
by performing the local eigenvalue analysis at di�erent Reynolds numbers. A validation
of such a local approach for low amplitude perturbations have been provided by DNS by
Fasel and Konzelmann (1990), although di�erent studies have aimed at including non-
parallel e�ects into the instability analysis (see the discussion in section 2.1).

Natural transition The classical scenario of transition in a boundary layer involves
the growth and secondary instability of TS waves. When a TS wave ampli�es into the
�ow up to 1% of the freestream velocity, the �ow could experience secondary instability
(Herbert (1988)) and turn to three-dimensional disturbances.
Klebano� et al. (1962) observed the ampli�cation of three-dimensional waves, character-
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ized by regions of spanwise alternating perturbations. The authors de�ned such pattern
as peaks and valleys. The spanwise wavelength of such three-dimensional waves is of
the same order of the streamwise one of the two-dimensional TS waves, so that such a
transition scenario has been also calledfundamental transition. In both peak and valley
regions, the instantaneous velocity pro�les have been found to show in�ectional points,
which could lead to inviscid instability. In the �nal phase of breakdown, when non-linear
e�ects become important, rows of�-vortices aligned in the streamwise direction have been
observed.�-vortices consists of pairs of streamwise counter-rotating vortices inducing the
�ow to lift-up towards the point in which they are connected. As a results, high ampli-
tude peaks in theu velocity with a short duration in time are observed in the peak region
prior to breakdown, which have been calledspikesby the authors. The authors pointed
out that the formation of spikes and�-vortices during the breakdown phase occurs on a
smaller time scale than the one associated with the slow growth of TS waves.
Experimental and numerical validations of the Klebano�'s results were found by Kachanov
and Levchenko (1984) and Rist and Fasel (1995), respectively. In the experiments by
Kachanov and Levchenko (1984), TS waves were generated by a vibrating ribbon and
three-dimensionality was introduced by a scotch tape, whereas in the simulations two-
and three-dimensional perturbations were forced by blowing and suction at the wall. The
results of such authors showed a good agreement, validating such a transition scenario.

A similar scenario of transition exists, which is calledH-type, after Herbert, who per-
formed a theoretical study of the secondary instability of TS waves. By a Floquet analysis,
he found that TS waves are most likely to experience subharmonic secondary instability,
since subharmonic modes has a larger growth rate than fundamendal ones. In theH-type
transition, also calledsubharmonicscenario, the wavenumber of the secondary instability
wave is half the streamwise wavenumber of the two-dimensional TS waves. The� vortices
are observed also in this case, similarly to the previous case, but they present a staggered
arrangement. In experiments, however, fundamental transition is observed more easily
than subharmonic one, even if the latter is theoretically favored. In fact, low-amplitude
streamwise vorticity perturbation in the mean �ow are often present in an experimental
framework, inducing the growth of fundamental modes. Indeed, H-type transition was
�rst observed experimentally by Kachanov et al. (1977), �fteen years after the �rst obser-
vation of the K-type scenario. Some authors refers also to such a transition scenario as
N-type, cause the experiments by Kachanov et al. (1977), were performed in Novosibirsk.
Both K-type and H-type transitions are originating from the exponential growth of TS
modes and their secondary instability. This is callednatural transition, and is observed
when the freestream turbulence is low, up to1% the freestream velocity. For higher val-
ues of such parameter, instead, di�erent mechanisms can set in, bypassing thenatural
transition scenario.

By-pass transition As already mentioned in section 2.3, in many �ows transition oc-
curs at Reynolds numbers lower than the critical one (the one for which the �ow becomes
asymptotically unstable). Such a behaviour is due to the non-normality of the NS opera-
tor, which induces a transient ampli�cation of the perturbations. Farrell (1988) was the
�rst author suggesting that the excitation of non-modal perturbations strongly ampli�ed
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in the �ow could facilitate transition from laminar to turbulent �ows. Thus, he computed
the optimal perturbations, namely the perturbations inducing the maximal ampli�cation
of the energy, for a channel �ow. For boundary layer �ows, theoptimal perturbationswere
�rst computed by Luchini (2000), Schmid (2000), Corbett and Bottaro (2000), Andersson
et al. (1999). In all of these works the authors showed that, in a local framework, transient
growth of optimal perturbations is mostly due to thelift-up mechanism. Ellingsen and
Palm (1975) and Landahl (1980) were the �rst authors to propose that, by superposing
a longitudinal vortex to a two-dimensional boundary layer, low-momentum �uid islifted
up from the wall, whereas high-momentum �uid is deplaced down towards the wall. As a
result, streamwise streaks, namely elongated regions of high and low perturbation veloc-
ity alternated in the spanwise direction, are generated fromstreamwise vortices, namely
regions of high vorticity on the cross�ow plane.
Streamwise streaks could be observed in boundary layers when the freestream turbulence
is higher than1%the freestream velocity. Under such conditions, they have been observed
in experiments since the work of Klebano� (1971). Streaks are responsible for theby-pass
transition (Morkovin (1984)), so called because the slow transition scenario via TS-waves
is by-passed by such a faster mechanism. Indeed, growing downstream due to the lift-up
mechanism, such elongated structures could experience secondary instability and break-
down, due to the in�ection of the velocity pro�les in their interaction zones (see Schoppa
and Hussain (2002), Brandt et al. (2004)). In particular, Schoppa and Hussain (2002) per-
formed an analysis of streaks extracted from fully developed near-wall turbulence showing
that only about 20%of the streaks exceed the threshold for developing sinuous secondary
instability. Brandt et al. (2004) showed that the most ampli�ed secondary instability
over a steady streak is an antisymmetric mode which induces spanwise oscillations on the
low-speed streak. Such a scenario is called sinuous transition, and it has been observed in
DNS more frequently than the varicose scenario, in which the secondary instability mode
is symmetric.
The generation and breakdown of the streaks could be induced by the freestream tur-
bulence. The investigations of Klebano� (1971) and Kendall (1985), performed at low
freestream turbulence levels, showed that streaky disturbances are the main features of
the �ow as the freestream turbulence level increases. Breakdown into turbulent spots
occurs in regions where the streaks reach an high amplitude, and is often characterized
by a wavy motion of the streak associated with the sinuous secondary instability. Sim-
ilar results have been reported by Westin et al. (1994) in their study of boundary layer
receptivity to localized freestream disturbances. Jacobs and Henningson (1999) observed
that above the boundary layer the intensity of the turbulence slowly decays downstream,
whereas inside the boundary layer it is highly damped, and the low-frequency distur-
bances, namely the streaks, appears.
Streaks could be induced in a boundary layer in other ways than by freestream turbulence.
For instance, Klingmann (1992) generated streaks by means of a point-like disturbance.
Acarlar and Smith (1987) forced a boundary-layer �ow by a strong steady blowing in a
streamwise oriented slit at the wall. They observed that the low-speed streaks developed
a three-dimensional shear layer instability, due to a varicose secondary instability mode,
which resulted in a periodic shedding of hairpin vortices. Singer and Joslin (1994) used
blowing and suction to induce streamwise streaks and to excite a turbulent spot: hair-
pin vortices have also been observed when streaks are created with large blowing at the
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boundary, whereas a smaller forcing is associated with a sinuous instability.
Another way for generating growing streaky structures in a boundary layer is the intro-
duction of two �nite-amplitude oblique waves having the same streamwise wavenumbers
and spanwise wavenumber, but symmetric in the spanwise direction. The Fourier spec-
trum is thus dominated by the mode (1,1), where the digits refers to the streamwise and
spanwise wavenumbers, respectively. The oblique waves experience transient growth while
generating streamwise vortices due to the transfert of energy from the Fourier mode (1,1)
to the (0, 2) one. Such streamwise vortices generate streaks by the lift-up e�ect. While
the streaks are growing, the initial oblique waves decay until the �ow �eld is dominated
by the streaks. From this point on, the development is similar to the streak breakdown, as
a fundamental secondary instability develops on the streak, inducing sinuous oscillations.
This is called theoblique transition scenario. Such scenario was �rst proposed by Schmid
and Henningson (1992) and veri�ed experimentally by Elofsson and Alfredsson (1998)
in plane Poiseuille �ow and by DNS by Lundbladh and Henningson (1994) in Blasius
boundary layer.

Turbulent spots For both by-passand obliquetransition, at large enough values of the
Reynolds number, non-linear e�ects might kick in, and an impulse perturbation of su�-
ciently large amplitude could typically induce bypass transition by generating a turbulent
spot. Such regions of randomized �ow present a leading edge travelling at a velocity
close to90% the freestream velocity, and a trailing edge travelling at about50% such
velocity. As a result, the spot grows in size while travelling downstream. The lateral
spreading is at a half-angle of about10� , which is larger by an order of magnitude com-
pared to the growth rate in the wall-normal direction which is about1� (for a review, see
Mathew and Das (2000)). If other spots are present, they could eventually merge one
another leading the �ow to a turbulent state. Since the early observations by Emmons
(1951), many studies have been dedicated to the interior structure of turbulent spots,
their shapes, spreading rates, and the mechanism of their rapid growth (Wygnanski et al.
(1976), Perry et al. (1981), Gad-el Hak et al. (1981), Chambers and Thomas (1983),
Barrow et al. (1984), Henningson et al. (1987), Sankaran et al. (1988), Lundbladh and
Johansson (1991), Bakchinov et al. (1992), Henningson et al. (1993), Singer (1996), Mat-
subara and Alfredsson (2001)).
Turbulent spots are sustained by the self-regeneration character of the coherent structures
present in wall bounded turbulent �ows (Panton, 2001). Wale�e (1995) have described
a simple cycle of events resulting in self-sustained turbulence in a turbulent boundary
layer. The process consists of: (i) spanwise modulation of the streamwise velocity by
the streamwise counter-rotating vortices, (ii) breakdown of the spanwise modulated �ow
from an in�ectional wavelike instability; (iii) regeneration of the streamwise vortices from
the nonlinear self-interaction of the growing instability. A possible mechanism for the
regeneration of streamwise vortices from streaks, conjectured by Jimenez (1994), could be
the following: the spanwise variation of the mean streamwise velocity, due to the streaks,
induces a large wall-normal vorticity which is tilted into the streamwise direction by the
normal shear of the streamwise velocity. As a result, streamwise vortices are formed
again. Similarly, Schoppa and Hussain (2002) proposed that the streamwise vortices are
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generated from the streaks which are not about to breakdown.

Hairp in vortices generation Recently, a new scenario of transition has emerged,
based on vortex generation in wall bounded �ows (Marusic (2009)). The relevance of
hairpin vortices in the sustainment of wall turbulence has been proved in the past decades
by a number of experimental (Head and Bandyopadhyay (1981)) and numerical (Adrian
(2007)) studies. Before the �rst observations of hairpin vortices, Theodorsen (1952) con-
jectured its existence. He hypothized a vortex �lament oriented spanwise to the mean
�ow, and perturbed by a wall-normal perturbation. The part of the �lament away from
the wall (the head of the structure) would experience higher mean �ow velocity and be
convected downstream faster than its lower part. Consequently, the legs of the vortex
would be stretched, inducing the vortex to lift away from the wall and experience an
higher mean velocity, resulting in a larger stretching. Such structures, inclined at45� to
the mean �ow direction, are able to pump low-momentum �uid from the wall to the outer
region of the boundary layer, inducing a low-speed streak, and to eject �uid outwards
from the arch to the unperturbed �ow. This ejection resembles thebursting phenomenon
observed in turbulent boundary layer.
Swearingen and Blackwelder (1987) carried out experiments on Gortler counter-rotating
streamwise vortices inducing streamwise streaks. They observed a scenario of transition
inducing the generation of an hairpin vortex street, related with a varicose secondary in-
stability. A di�erent scenario is related to the spanwise oscillations induced by the sinous
mode. They observed that the high frequency oscillations associated with the in�ectional
type inviscid instability are related with the velocity gradient in the spanwise direction
rather than with the normal velocity gradient. Asai et al. (2002) experimentally investi-
gated the secondary instability of low-speed streaks with respect to sinous and varicose
modes, concluding that the latter leads to a train of hairpin vortices. Skote et al. (2002)
conjectured that the generation of hairpin vortices in a turbulent boundary layer is related
to a normal in�ectional instability of the streaks.
On the other hand, some researchers proposed a di�erent scenario for the occurrence of
hairpin vortices. In Panton (1997) it is concluded that low-speed streaks are just the
kinematic consequence of the passage of a hairpin vortex, since the spanwise spacing be-
tween streaks (100 viscous wall units) matches the one of the hairpin vortex legs. Similar
conclusions are drawn by Adrian (2007). He studied the generation process of hairpin
vortices in streamwise succession, observing that upstream and downstream hairpins are
generated from a primary one, inducing a long low-speed region between the legs of the
hairpins in the near-wall region. A clear evidence of the preponderance of hairpin vor-
tices in the late stages of transition in a laminar boundary layer �ow has been provided
conclusively by Wu and Moin (2009). By means of a direct numerical simulation, they
observed the onset of hairpin structures emerging from�-shaped vortices excited by the
free-stream turbulence. They also concluded that low-speed streaks are just a kinematic
feature induced by the passage of hairpin structures.
As it has been discussed, two di�erent views of boundary layer transition could be identi-
�ed, which are highlighted in the review by Panton (2001). Two schools could be identi�ed,
one based on instability and transient growth mechanisms (Schoppa and Hussain (2002)),
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and the other based on vortex regeneration mechanisms (Adrian (2007)). However, a
complete model for the generation and self-sustainement of such coherent structures in
turbulent �ows could be still not recovered in literature. Thus, an analysis of the insta-
bility dynamics and consequent transition in boundary layer �ows is of interest.

2.5.2 The separated boundary layer

When a laminar boundary layer encounters a su�ciently large adverse pressure gradi-
ent, a laminar separation bubble (referenced as LSB hereafter) occurs. Many engineering
applications such as low Reynolds number aerodynamics con�gurations of airfoils and
turbomachineries involve typical structures of LSB. Since the �rst observations of Jones
(1934), �ow separation has been extensively studied, experimentally as well as numeri-
cally. Some of these researches deals with its steady structure, such as the experimental
work of Gaster (1969), the �rst numerical attempt of Briley (1971) and the method of
matched asymptotic expansions provided by the triple deck theory (Sychev et al., 2005).
The �rst experimental and theoretical works by Gaster (1969) aimed at classifying sepa-
ration bubbles over airfoils inshort and long ones. The formers, characterized by a weak
recirculation with a turbulent reattachment, show a slight step in the pressure distribu-
tion produced by the recirculation, which has a negligible e�ect on the forces acting on
the aerofoil. However, a short bubble can enlarge, due to an increasing angle of incidence
of the airfoil or a decreasing freestream velocity, becoming a long one. The pressure dis-
tribution associated with a long bubble is quite di�erent from that of inviscid �ow, and
the forces acting on the aerofoil are therefore modi�ed by the change in the reattachment
point. Such a phenomenon has been calledbursting by Gaster (1969), and it has been
found to induce an increase in drag, a fall in lift and eventually a stall.
In order to de�ne a criterion for bursting, the same author de�ned a non-dimensional
pressure gradient parameter describing the pressure distribution in the region of the bub-
ble, P = (� 2

s=� )(�U=�x) where �U is the rise in velocity over the length of the bubble
�x, � s is the momentum thickness at the separation point and� is the kinematic viscos-
ity. Experimental data have showed that the critical bursting Reynolds numbers correlate
with the Gaster's pressure-gradient parameter. In particular, in a series of experiments
in which the �ow is excited by means of acoustic waves, the same author recovered a
di�erent dynamics for short and long bubbles.
Short bubbles seem to transition via the ampli�cation of two-dimensional waves due to
an inviscid KH instability induced by the presence of an in�ection point on the velocity
pro�les along the separation streamline. Instability is thus associated with the local fea-
tures of the �ow, so that it could be in part studied by the classical instability analysis.
Rist and Maucher (2002) and Dovgal et al. (1994) both found a con�rmation of such a
behaviour by means of DNS and experiments, respectively.
On the other hand, long bubbles have shown to transition in a di�erent way. In particular,
Gaster (1969) observed the onset of a low-frequency oscillation, thebursting, charactering
the bubble, which is not recovered by a local eigenvalue analysis. Several studies aimed
at understanding the origin of such low-frequency oscillations. For instance, Pauley et al.
(1990) found that bursting occurs under the same conditions as periodic shedding, sug-
gesting that it is actually periodic shedding which has been time-averaged. The authors
found a parameter, the Strouhal number based on the shedding frequency, the local free-
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stream velocity, and the boundary-layer momentum thickness at separation which was
independent of the Reynolds number and the pressure gradient, establishing a criterion
for the onset of shedding.

Resonator dynamics A typical feature of LSB is its very unstable nature and its high
sensitivity to background disturbances, even at low Reynolds numbers. This property is
often synonymous of loss of aerodynamic performances such as increase of the drag or
loss of lift on airfoils at angle of attack close to static stall values. As a consequence,
many investigations have been carried out on the onset of unsteadiness in several con�g-
urations; for instance, the �at plate separated boundary layer has been studied by means
of DNS (Rist and Maucher, 1994, 2002) and experiments (Dovgal et al., 1994), as well
as the backward-facing-step �ow (see Armaly et al. (1983) and Kaiktsis et al. (1996) for
instance).
In particular, the self-sustained oscillatory behavior as well as the role of topological
changes in the separated �ows has received a lot of attention during the last two decades.
More speci�cally, some analysis have been based on the theoretical results obtained in a
weakly non-parallel framework by Huerre and Monkewitz (1985), stating that the onset of
global instabilities observed in absence of external forcing is related to the existence of a
local absolute instability. In particular, Hammond and Redekopp (1998) have studied the
local instability of a model �ow based on the Falkner-Skan velocity pro�les, identifying
a global instability arising as a result of a local absolute one. A criterion for absolute
instability was derived, stating that the global mode associated with the in�ection point
at the separation streamline becomes unstable when the maximum back�ow velocity ap-
proaches about30% the freestream one. The dependence of such a threshold on the
Reynolds number has been adjusted by considering an analytical velocity pro�le by Alam
and Sandham (1999). Rist and Maucher (2002) analyzed the parameters which in�uence
the onset of such an absolute instability, such as the maximum height of the separated
region. Moreover, the non-linear selection criteria based on the local properties of the �ow
used by Marquillie and Ehrenstein (2003) has allowed to explain the global high frequency
unsteadiness of a recirculation bubble con�ned between two bumps.
However, the connection between the dynamics of a long bubble and an absolute insta-
bility has not been demonstrated yet. Dallmann et al. (1995) have pointed out the role
of topological changes on the instability of the �ow. Some years later, such an hypothesis
was corroborated by Theo�lis et al. (2000). By means of a global eigenvalue analysis,
the authors were able to recover an unstable global mode, which was not due to an ab-
solute instability, but to the topological features of the separated �ow. Such global mode
was steady and three-dimensional; by superposing it to the base �ow, a bifurcation was
observed turning the two-dimensional �ow into a three-dimensional one, in which the sep-
aration line remained una�ected while the reattachment line became three-dimensional.
Such results con�rmed the results of several experimental observations (Dovgal et al.,
1994).
This global instability mechanism can thus be characterized by a resonator dynamics
similar to the one observed in many open shear �ows, for instance the self-sustained os-
cillations occurring in the wake of a cylinder (Pier, 2002). In such cases, the instability
dynamics of the �ow is due to the existence of an unstable global mode. A resonator
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dynamics driven by a three-dimensional mechanism has been observed in a �at-plate sep-
arated �ow by Theo�lis et al. (2000), in a �ow over a backward facing step by Barkley
et al. (2002) or behind a bump by Gallaire et al. (2007). The same authors have identi�ed
a slowly ampli�ed, steady and unstable global mode, not revealed by a local instability
analysis.

Ampli�er dynamics However, some authors has recently conjectured that the occur-
rence of self-sustained oscillations in separated �ows observed numerically or experimen-
tally may be attributed not only to a resonator dynamics, but should also take into
account the in�uence of external forcing, such as discretization errors in numerical simu-
lations or environment noise occuring in experiments. For instance, Kaiktsis et al. (1996)
have reported discrepancies among various numerical simulations of the time asymptotic
state of a two-dimensional �ow over a backward facing step. Typically, the onset of global
unsteadiness appears to be closely dependent on the numerical method and the grid res-
olution and well below the emergence of an unstable global mode as reported by Barkley
et al. (2002). The response of the convective modes to the level of background noise
due to the discretization errors is thus proposed by Kaiktsis et al. (1996) to explain such
discrepancies in the asymptotic regime. A similar convective mechanism sustained by the
presence of numerical noise is proposed by Wasistho et al. (1997) as an explanation of
the onset of unsteadiness in a �at-plate separated �ow. All these studies suggest that
an inherent random background noise may generate unsteadiness in a separated �ow.
Therefore, the ampli�er character of the �ow which is due to the presence of a convec-
tively unstable region may play a major role in the capability of the �ow to self-sustain
perturbations.
Since the seminal work of Cossu and Chomaz (1997) on the space-time dynamics of open
�ows, and the review of Chomaz (2005), it is well known that a global ampli�er dynamics
could derive from the convective instabilities due to the non-orthogonality of the set of
global eigenmodes associated with the considered �ow. Since then, this topic has received
the attention of several researchers, turning into a vivid research �eld. In particular, in
the previous works of Ehrenstein and Gallaire (2005), Alizard and Robinet (2007) and
Åkervik et al. (2008) on a �at plate boundary layer, a large transient growth has been
observed due to the optimal non-modal ampli�cation of a localized perturbation. An
appropriate superposition of global eigenmodes has shown that the optimal perturbation
takes the form of a wave packet travelling along the �at plate and amplifying itself, lead-
ing to an increase of the kinetic energy of the perturbation.
Furthermore, similar global stability analysis have been performed in various con�gura-
tions as a falling liquid curtain by Schmid& Henningson Schmid and Henningson (2002),
an open cavity �ow by Åkervik et al. (2007) and Henningson and Åkervik (2008) or a
�ow behind a bump by Ehrenstein and Gallaire (2008) and have pointed out new physical
understandings on the low-frequency global unsteadiness of open-�ows as the �apping
e�ect occurring in separation bubbles (Dovgal et al., 1994), which has been explained in
terms of an interaction of modes.
Furthermore, Blackburn et al. (2008) and Marquet et al. (2008) have studied the con-
vective instability mechanism emerging in separated �ow over a step by means of an
optimization strategy involving the integration in time of the direct and adjoint linearized
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Navier-Stokes equations. The results obtained by such a method have con�rmed the large
transient growth resulting from the convective ampli�cation of a wave packet localized in
space. Such studies have thus provided an attempt to relate the unsteadiness observed in
numerical simulation and laboratory experiments in the considered �ows with the noise
ampli�er dynamics derived from the optimal transient behaviour.
However, it is still not clear which instability mechanisms among the modal, non-modal
and pseudo-resonance one, is selected by the separated �ows and under which conditions
such �ows experience transition. Thus, a detailed study of the transient and asymp-
totical dynamics of optimal or random perturbation, which are impulsively injected or
continuously forced in a separated boundary layer, is of interest.

2.6 A global approach to the boundary-layer �ow prob-
lem

Global instability analysis has been applied to attached (Åkervik et al. (2008), Alizard and
Robinet (2007)) and separated (Åkervik et al. (2007), Blackburn et al. (2008), Marquet
et al. (2008)) boundary layer �ows. A strong ampli�er dynamics due to KH/TS waves
has been recovered in both cases.
However, a fully three-dimensional global approach has still not been applied to the case
of the attached boundary layer. Indeed, the spanwise dynamics in a boundary layer is
crucial, since transition occurs often by means of a three-dimensional mechanism by-
passing the TS waves ampli�cation, as it has been previously discussed. Even if a local
eigenvalue analysis is capable of recovering the transient ampli�cation due to the lift-up
phenomenon, it only take into account single-wavenumber perturbations in the stream-
wise direction. In other words, since in most practical cases boundary layers undergo
transition by receptively selecting and amplifying exogenous disturbances, such as those
arising from the presence of localized roughness elements or gaps on the wall, it makes
sense to inquire on the initial spatially localized �ow patterns which most easily amplify
and cause breakdown. In fact, although the transition mechanism based on the local
optimal perturbation concept brings into play some of the main ingredients present in
transitional �ow �elds, namely streaks and vortices, it has the limitation of focusing onto
a single wavenumber/frequency at a time, plus that of neglecting non-linear e�ects. When
a direct simulation is performed to assess the e�ectiveness of linear optimal perturbations
in triggering transition, the outcome is rather disappointing (Biau et al. (2008)), and
suboptimal disturbances are found to be much more e�cient than optimals. Indeed, in
this thesis the optimal three-dimensional dynamics of an attached boundary layer would
be studied by means of global eigenvalue analysis, direct-adjoint iterations and direct
numerical simulations, in order to identify the initial, localized states which most easily
bring the �ow on the verge of turbulent transition via the formation of a spot.
Concerning the separated �ow, several geometry-induced separation bubbles have been
already studied by a global approach, as it has been discussed in the previous section.
However, an adverse-pressure induced con�guration has still not been analysed in detail,
except for the seminal work of Theo�lis et al. (2000), in which only the modal dynamics
was studied. In particular, the following issues still need to be investigated in detail (i) the
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role of the convective Kelvin�Helmholtz instability of the shear layer along the separation
streamline with respect to the �apping phenomenon (ii) the in�uence of topological �ow
changes on the destabilization of the �ow (iii) the connection of the high sensitivity of the
�ow to external forcing with the onset of unsteadiness (iv) the mechanism of transition
from convective to global instability (v) the role of centrifugal steady modes on the tran-
sition to turbulence. A detailed study of the aforementioned issues could be performed
by means of global eigenvalue analysis, together with direct numerical simulation in order
to take into account non-linear e�ects.
In the present thesis such issues would be analysed in detail. In particular, in Chap-
ter 4, the two-dimensional dynamics of a separated boundary layer would be analyzed
with respect to the �apping phenomenon, the ampli�er dynamics and the presence of
topological changes in the �ow. In Chapter 5, the sensitivity to external forcing and its
role on the vortex shedding phenomenon would be discussed. In Chapter 6, the three-
dimensional dynamics of the separated �ow would be studied, and the role on transition
of three-dimensional centrifugal stable and unstable modes would be clari�ed. Finally, in
Chapter 7 the optimal localized perturbations leading an attached boundary layer �ow to
turbulence would be analyzed.

31





3
Computational approach

3.1 Governing equation and boundary conditions

The behaviour of a three-dimensional incompressible �ow is governed by the Navier�Stokes
equations,

�u t + ( �u � 5) �u = � 5 �p +
1

Re
5 2 �u;

�
�

�
�3.1

5 � �u = 0;
�
�

�
�3.2

where �u = (�u; �v; �w)T is the velocity vector and �p is the pressure. Dimensionless variables
are de�ned with respect to the in�ow displacement thickness,� � , and to the freestream
velocity, U1 , so that the Reynolds number is equal toRe = U1 � � =� , where � is the
kinematic viscosity coe�cient. A rectangular computational domain is employed,x, y
and z being the streamwise, wall-normal and spanwise directions, respectively.

3.2 Direct numerical simulation (DNS)

The Navier�Stokes equations are integrated by a fractional step method using a staggered
grid (see Verzicco and Orlandi (1996)). The viscous terms are discretized in time using an
implicit Crank�Nicholson scheme, whereas an explicit third-order-accurate Runge�Kutta
scheme is employed for the non-linear terms. The inversion of sparse matrices, typical
of implicit numerical schemes, is avoided by means of a factorization which allows to
reduce the problem to the inversion of three tri-diagonal matrices, one for every spatial
direction. The fractional step method has been applied to the Navier-Stokes equations in
a velocity-pression formulation, which have been integrated in the following form:

�u � � �u n

4t
+

�
3
2

H (�un ) �
1
2

H
�
�un�1

�
�

= � 5 �pn +
1

2Re
5 2 (�u � + �u n )

�
�

�
�3.3

where the Adams-Bashfort scheme has been reported as an example of the time discretiza-
tion of non-linear terms for the sake of simplicity, and the nonsolenoidal velocity�u � does
not satisfy the continuity equation (3.2). The following correction is thus applied:

�u n+1 = �u � � 4t 5 �
�
�

�
�3.4

where� is the pressure correction computed from the continuity equation. We thus obtain:

5 2� =
1

4t
5 ��u � ;

�
�

�
�3.5
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representing a Poisson equation, which is solved by means of the�shpack routine for
the solution of elliptics equations discretized with a second-order-accurate centered space
discretization. Using the pressure correction obtained from equation (3.5), the value of
the pressure is updated through the equation:

�pn+1 = �pn + � �
4t
2Re

5 2 � ;
�
�

�
�3.6

the momentum equation (3.3) become:

(I � �t
1

2Re
5 2)( �u � � �u n ) =

��t
�

3
2

H (�un ) �
1
2

H
�
�un�1

�
�

� �t 5 �pn + (
�t
Re

5 2)�un
�
�

�
�3.7

where the left hand side is known. This equation is solved using the factorization:

�
I � a5 2

�
(�u � � �u n ) =

�
I � a

@2

@x2

� �
I � a

@2

@y2

� �
I � a

@2

@z2

�
(�u � � �u n )

�
�

�
�3.8

where x; y; z are the spatial directions anda = �t 1
2Re. Such a factorization introduces a

third order error in time, making the algorithm second-order accurate, but allows a fast
integration of the Navier�Stokes equations, being the inversion of a sparse matrix reduced
to the integration of three tridiagonal matrices.
A second-order-accurate centered space discretization has been used for the linear terms.
For the two-dimensional computations, a sixth-order-accurate space discretization has
been implemented for the non-linear terms, based on a combined compact scheme for
non-uniform grids (Chu and Fan (1999)). The basic idea of such a method is to relate
the values of the unknown and of its �rst and second derivatives at three neighbouring
grid points according to the following procedure. Consider the unknown,�u i , and its �rst
and second derivative,�u 0

i �u 00
i at any internal grid point with abscissax i , together with the

corresponding values at the pointsi � 1 and i + 1. The scheme is based on the Hermite
formula

1X

k=�1

(� k �u i+k + � k �u 0
i+k +  k �u 00

i+k ) = 0 :
�
�

�
�3.9

In order to �nd the coe�cients � k , � k and  k , the local Hermite polynomial is de�ned in
the interval [x i�1 ; x i+1 ],

H i (x) = �u i + ( �u i�1 � �u i )� 1(� ) + ( �u i+1 � �u i )� 2(� ) +

+ �u 0
i�1 hi � 3(� ) + �u 0

i+1 hi � 4(� ) +
�
�

�
�3.10

+ �u00
i�1 h2

i � 5(� ) + �u 00
i+1 h2

i � 6(� );

wherehi = x i � x i�1 , � = ( x � x i )=hi and

� j (� ) = aj � + bj � 2 + cj � 3 + dj � 4 + ej � 5 + gj � 6;
�
�

�
�3.11

j = 1; 2; ::::;6:
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Imposing the following boundary conditions:

� 1(�1) = 1; � j (�1) = 0 ; j = 2; 3;4;5;6;

� 2(
hi+1

hi
) = 1; � j (

h i+1

h i
) = 0; j = 1; 3;4;5;6;

� 0
3(�1) = 1 ; � 0

j (�1) = 0 ; j = 1; 2;4;5;6;
�
�

�
�3.12

� 0
4(

hi+1

hi
) = 1; � 0

j (
h i+1

h i
) = 0; j = 1; 2;3;5;6;

� 00
5(�1) = 1 ; � 00

j (�1) = 0 ; j = 1; 2;3;4;6;

� 00
6(

hi+1

hi
) = 1; � 00

j ( h i+1

h i
) = 0; j = 1; 2;3;4;5;

and taking �u 0
i = H 0

i (x i ) and �u 00
i = H 00

i (x i ), the coe�cients in equation (3.9) are deter-
mined. Therefore, by solving a block-tridiagonal algebraic system the �rst and second
derivatives are computed. The above procedure is employed along the horizontal and
vertical directions to compute the derivatives of�u and �v, respectively, at the cell faces.
Moreover, since the Navier�Stokes equations are integrated on a staggered grid, a three-
point sixth-order-accurate interpolation formula has also been employed to compute the
values of the unknowns at the cell centers. The interpolation formula is obtained applying
a procedure similar to the previous one by taking�u i = H i (x i ), �u i indicating the value
of the unknown to be interpolated at the cell center, whereas�u i+1 , �u i�1 ,�u 0

i+1 , �u 0
i�1 , �u 00

i+1 ,
�u 00

i�1 are evaluated at the faces of the cell. For the three-dimensional computations a
second-order-accurate centered space discretization has been used also for the non-linear
terms, in order to limit the computational cost.

3.3 Newton procedure for the base �ow

The above DNS method has been used to perform all the non-linear simulations, and to
compute the base �ow for the global stability analysis at subcritical Reynolds number.
However, using the DNS, the residual cannot be reduced to machine zero when computing
the base �ow at supercritical as well as at slightly subcritical Reynolds numbers since some
frequencies present in the numerical noise are highly ampli�ed. In these cases, several
approaches may be employed to compute the base �ow, based on �ltering techniques (see
Åkervik et al. (2006)) or on continuation methods. Here, a time-stepping continuation
method has been employed. Therefore, following the procedure proposed by Tuckerman
and Barkley (2000), the DNS method has been combined with a Newton steady-state
solver. The steady-state Navier�Stokes equations are written as:

N (�q ) + L( �q ) = 0 :
�
�

�
�3.13

where �q = ( �u; �p) and

L( �q ) =
1

Re
5 2 �u; N (�q ) = �( �u � 5) �u � 5 �p

�
�

�
�3.14

are the linear and non-linear operators, respectively. In order to �nd the solution of
equation (3.13), Newton's method is used. Starting from an initial solution,�q 0, the
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variable �q is iteratively updated by means of an increment,� �q , computed by solving the
following equation:

(Nq + L)(� �q ) = (N + L)( �q );
�
�

�
�3.15

where Nq is the linearized operatorN . By choosing the operator4t
�

I �
4tL

2

� �1

as a

preconditioner of the equation (3.15), one obtains the following equation:

" �
I �

4tL
2

� �1

(I + 4tN q +
4tL

2
) � I

#

(� �q) =

=

" �
I �

4tL
2

� �1

(I + 4tN +
4tL

2
) � I

#

(�q):
�
�

�
�3.16

It is noteworthy that the solution of equation (3.16) can be iteratively computed using
the existing DNS algorithm with minor modi�cations since the fractional step operator,
obtained by considering the implicit time discretization of the termL( �q ), and the explicit
discretization of N (�q ),

�q n+1 =
�

I �
4tL

2

� �1 �
I + 4tN + 4t

L
2

�
�qn ;

�
�

�
�3.17

has been formally recovered.

3.4 Three-dimensional direct-adjoint optimization

The linear behaviour of a perturbationq = (u; v; w; p)T evolving in a laminar incom-
pressible �ow past a �at plate is studied by employing the governing equations linearized
around the two-dimensional steady stateQ = ( U; V;0; P)T :

ux + vy + wz = 0

ut + (uU )x + Uyv + V uy + px �
uxx

Re
�

uyy

Re
�

uzz

Re
= 0

vt + Uvx + (vV )y + uVx + py �
vxx

Re
�

vyy

Re
�

vzz

Re
= 0

wt + Uwx + V wy + pz �
wxx

Re
�

wyy

Re
�

wzz

Re
= 0:

9
>>>>>>>>=

>>>>>>>>;

�
�

�
�3.18

In order to close the system, a zero perturbation condition is chosen for the three velocity
components at thex and y boundaries, whereas periodicity of the perturbation is imposed
on the spanwise direction. The outlet zero perturbation condition is enforced by means
of a fringe region, which lets the perturbation at the exit boundary vanish smoothly. The
fringe region, of lengthL f , is implemented by adding onto the equations a forcing term
in a limited region with x > x out . The forcing function applied in the fringe region is
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de�ned as:

f =

8
>>>>><

>>>>>:

A

1 + e( x 1 �x out
x�x out

� x 1 �x out
x 1 �x )

f or xout < x < x 1

A for x 1 < x < x 2
A

1 + e
(

x out +L f �x 2
x�x 2

�
x out +L f �x 2
x out +L f �x )

f or x2 < x < x out + L f

�
�

�
�3.19

where x1 and x2 are placed at the abscissaexout + L f =3 and xout + 2L f =3, respectively,
and A = 100.
In order to identify the perturbation at t = 0 which is able to produce the largest distur-
bance growth at any givenT, a Lagrange multiplier technique is used. Let us de�ne the
disturbance energy density as:

E(t) =
Z Z

�Z

Z L y

o

Z xout

x in

�
u2 + v2 + w2

�
dxdydz;

�
�

�
�3.20

where the limits of integrations are the boundaries of the computational box, and would be
de�ned in the next sections for the physical domains under consideration. The objective
function of the procedure,=, is the energy of perturbations at timet = T , i.e. E(T ). The
Lagrange multiplier technique consists in seeking extrema of the augmented functionalL
with respect to every independent variable. Such a functional is written as:

L = = +
Z Z

�Z

Z L y

o

Z xout

x in

Z T

0
a(ux + vy + wz) dtdxdydz

+
Z Z

�Z

Z L y

o

Z xout

x in

Z T

0
b

�
ut + (uU )x + Uyv + V uy + px �

uxx + uyy + uzz

Re

�
dtdxdydz

+
Z Z

�Z

Z L y

o

Z xout

x in

Z T

0
c

�
vt + Uvx + (vV )y + uVx + py �

vxx + vyy + vzz

Re

�
dtdxdydz

+
Z Z

�Z

Z L y

o

Z xout

x in

Z T

0
d

�
wt + Uwx + V wy + pz �

wxx + wyy + wzz

Re

�
dtdxdydz

+� 0 [E(0) � E0] ; �
�

�
�3.21

where the linearized Navier-Stokes equations (3.18) and the value of the energy att = 0,
E0 , have been imposed as constraints, anda; b; c; dand � 0 are the Lagrange multipliers.
Integrating by parts and setting to zero the �rst variation of L with respect to u; v; w; p
allows us recover the adjoint equations:

bt + bxU + (bV )y � cVx + ax +
bxx

Re
+

byy

Re
+

bzz

Re
= 0;

ct + (cU )x + cyV � bUy + ay +
cxx

Re
+

cyy

Re
+

czz

Re
= 0;

dt + (dU )x + (dV )y + az +
dxx

Re
+

dyy

Re
+

dzz

Re
= 0;

bx + cy + dz = 0;

9
>>>>>>>>>=

>>>>>>>>>;

�
�

�
�3.22
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where qy = (a; b; c; d)T is now identi�ed as the adjoint vector. By using the boundary
conditions of the direct problem, one obtains:

b= 0 ; c = 0 ; d = 0 ; for y = 0 and y = L y;
b= 0 ; c = 0 ; d = 0 ; for x = x in and x = xout ;

�
�

�
�3.23

and the optimality and compatibility conditions (see Corbett and Bottaro (2000)), re-
spectively:

�b + 2� 0u = 0 ; �c + 2� 0v = 0 ; �d + 2� 0w = 0 ; for t = 0;
�
�

�
�3.24

b+ 2u = 0 ; c+ 2v = 0 ; d + 2w = 0 ; for t = T:
�
�

�
�3.25

The direct and adjoint equations are parabolic in the forward and backward time
direction, respectively, so that they can be solved by a coupled iterative approach. The
optimization procedure for a chosen objective timeT can be summarized as follows:

1. An initial guess is taken for the initial stateq0 at t = 0, with an associated initial
energyE0.

2. The direct problem (3.18) is integrated fromt = 0 to t = T.

3. At t = T the initial state for the adjoint problem is provided by the compatibility
condition (3.25).

4. The adjoint problem (3.22) is integrated backward in time fromt = T to t = 0,
starting from the initial state of step (c).

5. At t = 0 the optimality condition (3.24) determines the new initial stateq0 for
the direct problem and the Lagrange multiplier� 0 is chosen in order to satisfy the
constraint E(0) = E0.

6. The objective function, =, is evaluated, in order to assess if its variation between
two consecutive iterations is smaller than a chosen threshold. In such a case the
loop is stopped, otherwise the procedure is restarted from step(b).

3.5 Global eigenvalue analysis

Once the base �ows have been computed for several values of the Reynolds number, their
global stability is studied by means of a perturbative technique, namely, by considering
the instantaneous variables as a superposition of the base �ow and of the perturbationq.
Such a perturbation is decomposed in temporal modes as:

q(x; y; t ) =
NX

k=1

� 0
k q̂k(x; y) exp(�i! k t) ;

�
�

�
�3.26

where N is the total number of modes,q̂k are the eigenvectors,! k are the eigenmodes
(complex frequencies), and� 0

k represents the initial energy of each mode. A substitution
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of such a decomposition in equations (3.1,3.2) and a successive linearization lead to the
following eigenvalue problem

(A � i! kB) q̂k = 0; k = 1; : : : ; Nt :
�
�

�
�3.27

where the operatorsA and B are de�ned as follows:

B =

0

B
B
B
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

C
C
C
A

;
�
�

�
�3.28

A =

0

B
B
B
B
B
B
B
@

C1 � C2 +
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@x
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@y

0
@

@x
@V
@x

C1 � C2 +
@V
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0
@
@y

0 0 C1 � C 2 i�
@
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i� 0

1

C
C
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�
�

�
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with the term C1 = U@=@x+ V @=@ywhich represents the e�ect of the advection of the
perturbation by the base �ow and C2 =

�
@2=@x2 + @2=@y2 � � 2

�
=Re which models the

viscous di�usion e�ects.
With the aim of simplifying the notation, the eigenvalue problem:CX = �X is consid-
ered, where� is the eigenvalue andX is the eigenvector. The matrixC has sizen. Let us
chose a Krylov sub spaceK having sizek, generated by the vectors

�
X 0; CX 0; :::;CkX 0

�
,

with X 0 an initial guess vector. A Gram Schmidt orthonormal projection is carried out.
On the orthonormal basisV k , one has:

CV k = V kH k + f ket
k

�
�

�
�3.30

where H k is the upper Hessenberg matrix,f ket
k the residual, andek is the kth column

vector of the identity matrix of size n, namely I. The iterative process aims at nullify
the residual f ket

k . Moreover, the matrix H k is able to give a good approximation of the
leading eigenvalues.
The numerical algorithm is based on the ARPACK library (Lehoucq et al., 1997), using an
"Implicitly Restarded Arnoldi" method, based on a careful choise of the initial guess vector
X 0. In order to focus the computation on the frequencies of the dominant eigenvalues,
the Arnoldi method is combined to a "shift and inverse" transformation. The eigenvalue
problem is transformed as follows. Let us de�ne� the shift parameter, the problem
CX = �X could be written as:

CX = ( � � �) X + �X:
�
�

�
�3.31

Thus, the problem to be solved become:

1
(C � �I)

=
1

� � �
X :

�
�

�
�3.32
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By means of the Arnoldi method, which is able to compute the dominant eigenvalues, one
could obtain the spectrum in proximity of the chosen target.
The problem (3.27) is discretized with a Chebyshev/Chebyshev collocation spectral method
employing up to N = 1500 modes (for more details on the discretization method, see
Alizard (2007)).

3.5.1 Energy optimization via eigenvalue analysis

In order to optimize, by means of the global eigenvalue analysis, the disturbance energy
density de�ned in equation 3.20, for a given initial value of the same, we de�ne the
maximum energy gain obtainable at the generic timet over all possible initial conditions
u0 as

G (t) = max
u 06=0

E (t)
E (0)

:
�
�

�
�3.33

By decomposing the perturbation into the basis of the eigenmodes, it is possible to rewrite
equation (3.33) in the following form:

G(t) = jjF exp(�it�)F �1 jj 2
2;

�
�

�
�3.34

where� is the diagonal matrix of the eigenvalues! k , and F is the Cholesky factor of the
energy matrix M of components

M ij =
Z L y

o

Z xout

x in

(û�
i ûj + v̂�

i v̂j + ŵ�
i ŵj ) dxdy; i; j = 1; : : : ; N;

�
�

�
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where the superscript �� � denotes complex-conjugate. Finally, the maximum ampli�cation
at time t and the corresponding optimal initial condition,u0, are computed by a singular
value decomposition of the matrixF exp(�it�)F �1 (Schmid and Henningson (2001)).

3.5.2 Sensitivity and optimal forcing

The global asymptotic response of a perturbation to a harmonic forcingF (x) = f e�i� f t

, � f being a real frequency, can be formulated as a summation of temporal modes as in
equation (7.2) (see Åkervik et al. (2008), Schmid and Henningson (2001)). The forcing
term is expanded in a similar way:

f (x; y) =
X

k

f kbqf k (x; y);
�
�

�
�3.36

The sensitivity of the �ow has been thus studied by adding the forcing term̂qf e�i� f t to
the linear evolution equation (3.27) (Trefethen and Embree (2005)). The solution of the
problem is:

q̂ = q̂0e�t � q̂f e�i� f t=(i� f B � A );
�
�

�
�3.37

whereq̂0 is the initial condition and � is the diagonal matrix, � k;l = �i� k;l ! k . When the
�ow is globally stable, the solution for long times is governed by the term� q̂f e�i� f t=(i� f B�
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A ). Moreover, since the in�uence of an exterior real harmonic forcing is determined for
long times by q̂f , it is possible to compute the sensitivity to a real exterior frequency
through the analysis of the normk(i� f B � A) �1 k (Trefethen and Embree (2005)). Such
an analysis is performed through the evaluation of the pseudospectrum of the global linear
operator, de�ned as

� " =
�

� 2 C;

 (i� f B � A) �1


 � " �1

	
:

�
�

�
�3.38

The pseudospectrum is thus represented plotting the contours of" on a (! r ; ! i ) plane.
At each point on the real axis (!i = 0), the contour value represents the sensitivity of the
�ow to external forcing with the corresponding pulsation! r .
The pseudospectrum is able to give some insights on the sensitivity of the global modes
to an harmonic forcing at large times. Moreover, the optimal response at small times to
the same forcing could also be investigated. We introduce now the resolventR (� f ) which
characterizes the maximum response of the separated �ow to a forcing:

R (� f ) = max
F

kqkE

kFkE

�
�

�
�3.39

where the energy based normk�kE is derived from the scalar product

< q; q > E =
Z L x

0

Z L y

0
(u� u + v� v) dx dy

�
�

�
�3.40

where only the two-dimensional case is considered. Under the assumption that all the
temporal modes are damped temporally, in the asymptotic regime the �ow's response to
F reduces to:

q(x; y; t ) =
X

k

if k

(� f � ! k)
bqk(x; y)e�i� f t ;

�
�

�
�3.41

where the global modes decompositions of the forcing term in equation (3.36) has been
used. In order to evaluate (3.39) we introduce the two-dimensional scalar product matrix
M whose coe�cients are de�ned by:

M i;j =
Z L x

0

Z L y

0
(bu�

i buj + bv�
i bvj ) dx dy

�
�

�
�3.42

It is thus more convenient to compute (3.39) as:

R (� f ) =

 FD f F �1




2

�
�

�
�3.43

with D f (l ;p) = � l;p
i

(� f � ! l )
and M = F tF the Cholesky decomposition ofM.

Finally, (3.43) can be computed for each� f by determining the largest singular value sv1:

R (� f ) = sv1
�
FD f F �1

� �
�

�
�3.44

The expression of the most responsive disturbance is represented in the temporal modes
expansion by the vectorK res which is equal to the right singular vector ofFD f F �1

associated with the largest singular value sv1. The components of the forcing termK f =
(f 1; f 2; ::::; f N )t leading to such a response can thus be recovered by a simple matrix
product K f = F �1 K res .
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4
Non-normal dynamics of a two-dimensional

separatedboundary layer

In this chapter, the two-dimensional dynamics of a separated adverse-pressure-induced
boundary-layer �ow is analyzed, with respect to the e�ects of non-normality of the asso-
ciated NS operator. As discussed in section 2, laminar separation bubbles show a high
ampli�cation of external disturbances (Marquet et al., 2008, Blackburn et al., 2008), and
a strong two-dimensional instability mechanism known as�apping (Cherry et al., 1984,
Pauley et al., 1990, Ehrenstein and Gallaire, 2008), whose basic features are still not fully
understood. In particular, the following issues need to be investigated: (i) the role of the
convective Kelvin�Helmholtz instability of the shear layer along the separation streamline
with respect to the �apping phenomenon; (ii) the mechanism of transition from convec-
tive to global instability; (iii) the in�uence of topological �ow changes on the stability
behavior; (iv) the in�uence of non-linearity on the dynamics of the �ow.
This chapter provides a detailed analysis of the previous issues for �ve recirculation bub-
bles induced by suction-and-blowing wall-normal velocity pro�les of di�erent intensity.
The global eigenvalue analysis described in the previous section has been carried out for
all of the considered separated �ows at low (subcritical or supercritical) Reynolds number.
By means of the global mode decomposition, the energy optimization has been performed
with the aim of identifying the e�ects of the non-orthogonality of the eigenvectors of the
di�erential operator on the �ow dynamics. Two-dimensional direct numerical simulations
are employed as a complementary tool for validating the results obtained by the eigen-
value analysis in the linear case and for studying the nonlinear dynamics of separated
�ows. By means of the global eigenvalue analysis and DNS, the ampli�er dynamics of
the considered �ows has been analyzed for optimal and random perturbations, at small
and large amplitudes; the roles of topological changes, non-linear e�ects, KH waves and
low-frequency oscillations on the destabilization of the �ow have been clari�ed.
This part of the thesis has been published on Physics of Fluids Volume 22, Issue 01, pp.
014102, (2010).

4.1 Problem formulation

A rectangular computational domain with dimensionsL x = 420, L y = 30 is employed,
the inlet being placed atx in = 65 displacement thickness units from the leading edge of
the bottom wall. For the base �ow computations, as well as the DNS, at inlet points a
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Figure 4.1: Suction-and-blowing pro�les imposed at the upper boundary for thev-
component of the velocity.

Blasius boundary-layer pro�le is imposed for both the streamwise,u, and wall-normal,
v, components of the velocity vector, whereas, at outlet points, a standard convective
condition is employed. At the bottom wall, the no-slip boundary condition is prescribed.
Finally, at the upper-boundary points, a suction-and-blowing pro�le for thev-component
of the velocity (Na and Moin, 1998) is imposed, and the vorticity is set to zero. Five
pro�les with di�erent magnitude have been considered, see Figure 4.1, the one having
the largest magnitude being imposed for obtaining the base �ow 1 (BF1), the ones with
smaller magnitude being associated with base �ows BF2, BF3, BF4, BF5, respectively.
Such base �ows have been obtained forRe = 200. All numerical simulations have been
performed discretizing the computational domain by a501� 150Cartesian grid stretched
in the wall-normal direction, the height of the �rst cell close to the wall being equal to
0:1. A numerical grid-convergence study is also provided.
The Newton method discussed in the previous section has been used for the computation
of the base �ows at supercritical Reynolds numbers and at slightly subcritical ones (Re�
207). In the subcritical case, the residual has been reduced to10�12 in three up to ten
Newton's iterations, whereas, in the supercritical case, the iterations have been stopped
when a residual level of10�10 has been achieved, due to a slower convergence of the
algorithm.
Concerning the global model, at upper and inlet boundaries, a zero perturbation condition
is imposed. A Robin condition based on the approximation of the local dispersion relation
is prescribed at the out�ow (Ehrenstein and Gallaire, 2005, Alizard and Robinet, 2007),
being the �ow locally unstable. For the subcritical �ow computations the modes are
discretized usingNx = 250 collocation points in the x-direction and Ny = 48 collocation
points in the y-direction; a numerical study for the grid-sensitivity of the solution is
provided. For supercritical �ow simulations, a slightly �ner grid with Nx = 270 and Ny =
50 has been chosen, due to the reduction of the boundary-layer displacement thickness.
For energy gain computation,N = 600 have been used; a numerical study of the sensitivity
of the energy gain curve with respect to the number of modes is also provided.
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4.1. PROBLEM FORMULATION

Figure 4.2: Streamwise velocity contours of the base �ow BF1 at Reynolds numberRe =
200. The black line is the separation streamline, whereas the dashed line represents the
u = 0 contour.

Figure 4.3: Separation streamlines (solid lines) and streamwise zero-velocity contour
(dashed lines) of the base �ows (from top to bottom) BF1, BF2, BF3, BF4, and BF5 at
Reynolds numberRe = 200.
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4.2 Asymptotically stable dynamics: transient growth
and convective instabilities

4.2.1 Linear dynamics

Figure 6.1 shows the streamwise velocity contours of the base �ow 1 (BF1) at Reynolds
number Re = 200, which has been obtained by imposing at the upper boundary the
suction-and-blowing velocity pro�le, Vtop , with maximum magnitude shown in Figure
4.1. Base �ows BF2, BF3, BF4, and BF5 have been obtained by scaling such a pro�le
by factors 0:9;0:8;0:7;0:6, respectively. A blow-up of the separated zone is provided in
Figure 4.3 for all of the base �ows, showing the decrease of the bubble size for decreasing
values of thev velocity imposed at the upper boundary.
For such base �ows the global eigenvalue analysis has been performed. Figure 4.4 shows
the spectra for BF1, BF3, and BF5. All the spectra are found to be stable, although
it can be noticed that for an increasing bubble size the eigenmodes rise up towards the
! i = 0 axis. By inspecting the spectra, three families of temporal modes, referenced as
F1, F2 and F3 and described brie�y hereafter, could be recovered.
The asymptotic behavior of the �ows is driven by the family of the most unstable modes,
F1, represented by diamonds in Figure 4.5 for the base �ow BF1. The eigenvalues of
the two most unstable modes, labelled! 1 and ! 2, located on the upper branch of the
spectrum, are shown in Figures 4.6 (a) and (b). They are reminiscent of classical KH
waves along the shear layer, and relax to TS waves predicted by a local approach (Schmid
and Henningson, 2001) on the attached boundary layer. This is in agreement with pre-
vious results obtained by a global analysis for an attached laminar boundary-layer �ow
(Ehrenstein and Gallaire, 2005, Alizard and Robinet, 2007, Åkervik et al., 2008), and for
a cavity-induced separated boundary-layer �ow (Åkervik et al., 2007).
A second family referenced as F2 and represented by squares in Figure 4.5 is character-
ized by modes having a spatial distribution reaching the out�ow boundary as depicted
in Figures 4.6 (c) and (d) which show the modes labelled! 49 and ! 55 in Figure 4.5 (the
modes are ordered by their ampli�cation rate, so that for instance! 49 is the 49th less
stable mode).
Finally, the highly damped modes represented by circles in Figure 4.5 are classi�ed into
F3. These modes are reminiscent of the so-called continuous branch obtained by a local
analysis (Schmid and Henningson, 2001). Indeed, a part of the energy of the correspond-
ing eigenvectors is concentrated at high values ofy. Furthermore, one may observe that
KH waves are present on the shear layer as shown in Figures 4.6 (e) and (f), providing
the modes! 202 and ! 204, respectively.
Looking at Figure 4.6, one can notice the strong similarity in terms of spatial structure
of the eigenmodes of the same family, characterized by comparable frequencies. Such
a property reveals the strong non-orthogonality of the eigenvectors associated with the
considered �ow, which seems to be a typical feature of open �ows and in particular of
separated �ows (Åkervik et al., 2007, Ehrenstein and Gallaire, 2008). In the following we
would investigate how the non-normality of the temporal modes could a�ect the linear
transient dynamics of the �ow as well as its asymptotic instability, when it is subject to
a harmonic forcing.
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Figure 4.4: Eigenvalue spectrum for the �ows BF1 (diamonds), BF3 (squares), and BF5
(circles) at Re = 200. The modes labelled! 1 and ! 2 are the most unstable ones.

Figure 4.5: Eigenvalue spectrum for the �ow BF1 atRe = 200. The three families of
modes are identi�ed by diamonds (F1), squares (F2) and circles (F3).
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.6: Streamwise velocity components of the real part of the eigenvectors corre-
sponding to the eigenvalues labelled! 1 (a) ! 2 (b), ! 49, (c) ! 55 (d), ! 202 (e), ! 204 (f) in
Figure 4.4. The black line is the separation streamline.
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Figure 4.7: Global spectrum obtained for BF1 atRe = 200 with a (200� 40) grid (squares),
and a (250� 48) grid (diamonds).

In order to validate the global model results, the spectrum has been computed also with a
coarser grid. Figure 4.7 shows the spectra obtained for the separated �ow BF1 atRe = 200
using two grids with 200� 40 and 250� 48 collocation points, respectively (computations
with a considerably �ner grid are not possible due to memory requirements). The shape of
the spectra computed with the two grids does not show remarkable di�erences, although
the modes are found to slightly change their position. Nevertheless, it is well known that a
pointwise convergence of the global spectra with respect to grid resolution for highly non
parallel �ows cannot be reached due to the high non-normality of the operator (Trefethen
and Embree, 2005), see, for instance, the sensitivity study provided by Ehrenstein and
Gallaire (2008).

Although all of the modes have been found asymptotically stable, they are likely to inter-
act leading to a transient ampli�cation of the perturbations, due to the non-orthogonality
of the corresponding eigenvectors. Figure 4.8 provides the maximum energy gain,G(t),
obtained for BF1, BF2, BF3, BF4, and BF5 by choosingN = 600 modes for the global
eigenvalue analysis. The sensitivity of the optimal energy gain,G(t), with respect to the
number of modes chosen for its evaluation (see equation (3.35)) has been investigated for
BF1. Figure 4.9 shows the optimal energy gain curves obtained by choosingN = 300
(dashed-dotted line),N = 500 (dashed line), andN = 600 modes for the global eigenvalue
analysis. The solution shows a clear tendency towards convergence.
The energy gain curves for the �ve base �ows here considered show a similar shape (see
Figure 4.8), although the maximum value of the energy gain,Gmax , as well as the time at
which such a value is achieved,tmax , increase with the bubble size. Figure 4.10 provides
the variation of Gmax with respect to three features of the base �ows, namely: the maxi-
mum value of the suction velocity at the upper boundary,vmax ; the maximum value of the
shape factorH = � � =� (where � is the momentum thickness of the boundary layer); and
the aspect ratio of the bubble, which is de�ned as the ratio between the maximum height
of the separated region,h, (measured at the zero-streamwise-velocity line) and the length
of the bubble. Figure 4.10 shows an approximatively linear increase of theGmax with
respect to all of the three parameters. It is noteworthy that the aspect ratio of the small-
est bubble is close to the ones experimentally measured for laminar separation bubbles
on the suction surface of aerofoils at a large angle of attack (Watmu�, 1999, Haggmark
et al., 2000); whereas, the largest bubble has a shape factor which is comparable to the
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Figure 4.8: Optimal energy gain curves atRe = 200 computed by the global eigenvalue
analysis for the base �ows BF1 (solid line), BF2 (dashed line), BF3 (dashed-dotted line),
BF4 (long-dashed line), and BF5 (dashed-dotted-dotted line).

one analyzed in Rist and Maucher (1994) and Marxen et al. (2003).
The dashed line in Figure 4.11 shows the linear transient time evolution of the energy
gain, E(t)=E (0), obtained by global eigenvalue analysis using the initial perturbation,
u0

max , which provides the maximum peak value atRe = 200 for BF1. Such a curve is
almost coincident with the G(t) one, shown by the solid line in Figure 4.11 for the same
number of modes,N = 600. Both curves reach a maximum value of order of magnitude
109 at t = 410, meaning that the linearized operator related to the considered �ow has a
high degree of non normality.

In order to get some insight into the ampli�cation mechanism, the evolution of such
an optimal perturbation in time is analyzed. Figure 4.12(a) shows that at timet = 0 the
energy of the optimal perturbation is concentrated in the upstream part of the bubble.
At t = 200 (Figure 4.12(b)), the disturbance has been convected downstream by the
base �ow along the separation streamline through a Kelvin-Helmholtz mechanism, and
it has been ampli�ed before reaching the reattachment point. Such an ampli�cation is
due to the local convective instability of the velocity pro�les within the bubble, which
leads to a global growth of the perturbations, as theoretically demonstrated in Cossu and
Chomaz (1997) using the Ginzburg-Landau equation for non-parallel �ows. After the
reattachment point (Figure 4.12(c)), the perturbation is convected through the attached
boundary layer, where it is damped. The same convective mechanism has been recovered
for base �ows BF2, BF3, BF4, and BF5, explaining the linear increase ofGmax and of the
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Figure 4.9: Optimal energy gain curve for BF1 atRe = 200 computed with N = 600
modes (solid line, reference case),N = 500 modes (dashed line), andN = 300 modes
(dashed-dotted line).

time at which it is reached for an increase of the bubble size.
It is worth to notice that the energy gain values recovered by the global eigenvalue analysis
are quite high. Nevertheless, one has to consider that these are optimal values, therefore
the ampli�cation for a real perturbation could be much lower. It is anticipated that,
for small bubbles, the ampli�cation of the disturbances could be too low to induce non-
linear e�ects. For this reason, an investigation will be performed of the ampli�cation of
a random white-noise disturbance, forced at the inlet or in the whole domain.
Due to the similarities recovered in the transient behaviour of the di�erent base �ows, the
following analysis will be carried out only for the separated �ow BF1.

4.2.2 Weakly non-linear dynamics

In order to validate the results of the linear stability analysis and to study the weakly non-
linear behavior of the considered separated �ow, the DNS has been performed initializing
the simulation by superposing the optimal perturbation upon the base �ow. In order to
satisfy the hypothesis of small perturbations, thus allowing a comparison with the results
of the global eigenvalue analysis, the optimal disturbance,u0

max , has been scaled by a
factor A0 = 10�8 , which is 4 orders of magnitude greater than the residual noise. The
energy of the disturbance, de�ned in equation (3.20), normalized by the value att = 0,
has been computed at each time step and is reported in Figure 4.13 using the dashed line.
In order to verify that a perturbation of order of magnitude A0 = 10�8 is small enough
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(a)

(b)

(c)

Figure 4.10: Maximum value of the optimal energy gain computed by the global eigenvalue
analysis at Re = 200 versus the maximum suction velocity at the upper boundary (a),
the shape factor (b) and the aspect ratio (c) for the base �ows BF1, BF2, BF3, BF4, and
BF5 (from right to left).
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Figure 4.11: Optimal energy gain curve (solid line) and evolution of the normalized energy
corresponding to the initial perturbation giving the optimal energy peak (dashed line) at
Re = 200, both computed by the global eigenvalue analysis for BF1.

to allow a meaningful comparison with the linear model, a linearized DNS has been
performed as well, whose result, shown by the dotted line in Figure 4.13, has been found
identical to the one obtained by the DNS. Indeed, by injecting an initial perturbation with
order of magnitude10�8 , which corresponds to an initial energy of order of magnitude
10�16 , such a perturbation ampli�es itself up to a factor 109, reaching an energy level
about equal to10�7 , which is low enough for non-linear e�ects to be negligible. Moreover,
Figure 4.13 shows that the optimal perturbation energy growth curve obtained with the
global eigenvalue analysis, provided by the solid line, is very close to the one computed by
the DNS (dashed line), validating the capability of the global model to predict the linear
transient mechanism.
A grid convergence study for the DNS has been performed by computing the energy
growth of the optimal perturbation for the separated �ow at Re = 200 using three grids
with 251� 75, 501� 150, and 1001� 300cells, respectively. As shown in Figure 4.14, the
results obtained using the second and the third grids are very close each other, so that
the 501� 150 grid, which has been used in all of the computations, can be considered
adequate to capture the energy growth of the disturbances accurately.
Although the DNS has con�rmed the convective ampli�er character of the considered
separated �ow for an optimal initial perturbation, there is no evidence that such a �ow
would behave similarly in a real case. For this reason, simulations have been performed in
which the base �ow is perturbed using a time-varying pseudo-random zero-mean Gaussian
white-noise disturbance. The �ow has been perturbed in two di�erent ways. In the �rst
case (A), a disturbance �eld is impulsively injected in the whole domain. In the second
case (B), the perturbation is superposed upon the inlet velocity pro�le, as it may happen
in real experiments, where the inlet �ow may be a�ected by some noise. In both cases a
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(a)

(b)

(c)

Figure 4.12: Streamwise velocity contours of the optimal perturbation obtained by the
global eigenvalue analysis for BF1 at timet = 0 (a), t = 200 (b) and t = 400 (c). The
streamwise perturbation has been normalized by its maximum value.
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Figure 4.13: Time evolution of the energy gain of the optimal initial perturbation obtained
by the global eigenvalue analysis (solid line), by the DNS (dashed line), and by the
linearized DNS (dotted line).

Figure 4.14: Energy gain curves obtained by DNS by a (251� 75) grid (dashed line), a
(501� 150) grid (solid line) and a (1001� 300) grid (dashed-dotted line).
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strong energy gain has been observed, which is approximatively two order of magnitude
lower than the optimal one. As shown in Figure 4.15, the shape of the ampli�cation
curves is not far from the optimal one, although some di�erences can be noticed. In
particular, the algebraic growth phase is delayed with respect to the optimal case. This
is due to the fact that the perturbation is damped until it is convected by the base �ow
along the separation streamline, where it begins to be ampli�ed. Due to such an initial
delay, the time instant at which the ampli�cation peak occurs (tmax A = 460, for case
A, and at tmax B = 490, for case B) is greater with respect to the optimal case. It is
noteworthy that, for case B in which the in�ow perturbation is continuously injected into
the �ow, the normalized energy does not decay fort < 150 and t > 1100, but assumes a
value slightly greater than one. Indeed, fort > 1100, after the �rst wave packet has been
advected through the separated zone, a statistically steady state is established, so that
the continuously injected perturbations do not experience more transient ampli�cation.
Nevertheless, some highly sensitive frequencies are excited by the random forcing at the
inlet (Kaiktsis et al., 1996), and are slightly ampli�ed also after the transient has passed, so
that the energy gain maintains asymptotically a value close to one. Therefore, it is possible
to conclude that, even though the base �ow is continuously perturbed, its response to a
small amplitude perturbation is comparable to the response to an impulsive perturbation,
which could mean that the strong transient ampli�cation of the perturbations is a robust
feature of separated �ows. Such results are in agreement with previous ones obtained for
a �ow over a backward-facing step perturbed by an in�ow random disturbance (Kaiktsis
et al., 1996, Blackburn et al., 2008).
Finally, in order to understand the role of the separated region on such a dynamics, several
DNS have been performed in which the perturbation is respectively placed upstream
(70 < x < 100), downstream (280 < x < 340) and within the bubble, in its �rst half
(120 < x < 180) or in its second half (200< x < 260). Figure 4.16 shows that a
perturbation placed upstream or within the bubble is ampli�ed, whereas a disturbance
initially located downstream of the bubble is damped. In particular, the dynamics of a
perturbation placed in the �rst half of the bubble is comparable to the dynamics of case A,
whereas a perturbation placed in the second half of the bubble is only weakly ampli�ed,
con�rming that the ampli�cation mechanism is based on the convection of perturbations
along the separation streamline.

4.2.3 Non-linear dynamics

In order to study the role of non-linear e�ects in the dynamics of a separated �ow, non-
linear simulations have been performed increasing the amplitude of the initial perturba-
tion, u0

max . Figure 4.17 provides the energy gain curves obtained scaling the optimal
perturbation by a factor A0 equal to 10�8 , 10�6 , 10�5 , and 10�4 , respectively. All of the
curves initially follow the algebraic growth phase, but, for amplitudes greater than10�6

they show a reduced peak value with respect to the linear case. ForA0 = 10�4 , a satu-
ration plateau starts immediately after the initial algebraic growth phase around a value
about equal to107. For all cases, the perturbations eventually decay. It is worth to notice
that, for A0 � 10�6 , the decaying rate is lower than the linear one, due to the capability
of the non-linear terms to transfer the energy back in the upstream part of the bubble. It
is possible to visualize such a mechanism by inspecting, at a �xed wall normal position,
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Figure 4.15: Time evolution of the energy gain computed by the DNS for an optimal
initial perturbation (solid line); for a disturbance �eld injected in the whole domain (case
A, dashed line); and for a time-varying disturbance superposed upon the inlet velocity
pro�le (case B, dashed-dotted line).

Figure 4.16: Time evolution of the energy gain computed by the DNS for an initial
perturbation placed upstream (solid line), downstream (dashed-dotted line) or within the
bubble in its �rst half (short-dashed line) or in its second half (long-dashed line).
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Figure 4.17: Time evolution of the energy gain computed by the DNS for an optimal initial
perturbation with order of magnitude A0 = 10�4 (solid line), A0 = 10�5 (short-dashed
line), A0 = 10�6 (long-dashed line), andA0 = 10�8 (dashed-dotted line).

the evolution in time of the perturbation that propagates along the streamwise direction.
Indeed, comparing the evolution of the linear and non-linear wave packets shown in Figure
4.18, one can see that, in the second case (Figure 4.18 (b)), part of the perturbation is
driven back in the separated region, where it interacts with the main part of the wave
packet (WpI) which is being convected downstream. As a result, a second wave packet
(WpII) appears in the bubble, which is convected in the attached-�ow region. Looking at
Figure 4.19, which shows the evolution in time of the vorticity perturbation,! z, at wall
at a �xed streamwise position (x = 400), it is possible to notice that the amplitude of
the two wave packets convected downstream is comparable, meaning that a wave packet
cycle starts to be established within the bubble, but it is eventually damped.

In order to study the development of the wave packet downstream of the bubble, a
longer computational domain has been considered,L x1 = 5 L x . As shown in Figure 4.20,
for A0 = 10�4 and 1000< t < 4000, the perturbation is ampli�ed, whereas, forA0 = 10�8

and t>1000, it is damped, when the same domain length is used. Looking at the evolu-
tion of the wave packet in time, provided in Figure 4.21, it is possible to notice that the
perturbation is ampli�ed while it is convected through the attached-�ow region, causing
a further transient global growth of the energy until it leaves the domain. Such a result
indicates that the �ow downstream of the bubble isconvectively non-linearly unstable
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(a)

(b)

Figure 4.18: Evolution in time and in the streamwise direction of the vorticity pertur-
bation at wall, ! z, computed by DNS for an optimal initial perturbation normalized by
a factor A0 = 10�8 (a) and A0 = 10�4 (b). The black lines indicate the separation and
reattachment points of the base �ow, whereas, the arrows point at the two wave packets
shed by the bubble (WpI and WpII).
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Figure 4.19: Evolution in time of the vorticity perturbation at wall computed by DNS
for an optimal initial perturbation with order of magnitude A0 = 10�4 at the streamwise
location x = 400.

though linearly globally stable. In order to understand the mechanism inducing such an
ampli�cation, the Fourier transform in time of the streamwise-velocity �uctuation at two
di�erent abscissae,x = 380 and x = 455, has been computed. Figure 4.22 shows that,
immediately downstream of the bubble, the leading mode corresponds to the less stable
eigenvalue of the global spectrum, labelled! 1 in Figure 4.4, whose real part is! r � 0:08.
Thus, at such a location the behavior of the �ow is driven by the global dynamics. How-
ever, for increasing abscissae, the dynamics is driven by a di�erent mode whose real part
is close to! r � 0:045. A local spatial stability analysis, which solves the Orr-Sommerfeld
and Squire eigenvalue problem with respect to a streamwise wavenumber� , has been
performed on the velocity base �ow pro�les at the above streamwise locations. Such an
analysis indicates that such a mode lies in the range of the local spatially unstable fre-
quencies forx = 455, as shown in Figure 4.23. The same analysis has been performed at
several streamwise locations downstream of the bubble con�rming such a result. Thus,
one can infer that the wave packet is spatially ampli�ed while it is convected downstream
as a consequence of the excitation of a locally unstable mode. In order to �nd the �crit-
ical perturbation� triggering such a mode, several simulations have been performed with
increasing initial perturbation amplitudes. The streamwise velocity perturbations have
been extracted as they have passed beyond the locationx = 455, at two time instants,
t = 900 and t = 1000. As shown in Figure 4.24, a spatial ampli�cation begins to be no-
ticed for amplitudes equal to10�6 . Such a strong in�uence of the perturbation amplitude
on the behaviour of the �ow could be due to a high sensitivity to real forcing. Indeed,
although the �ow is not directly forced with a speci�c mode, di�erent frequencies are
present in the perturbed �ow due to the initial impulsive forcing, which could eventually
be damped or not depending on the sensitivity of the �ow.

The sensitivity of the �ow has been studied by following the method described in
Section 3.5.2. The forcing term̂qf e�i� f t , has been added to the linear evolution equation
(3.27), � f being a real frequency. This leads to recover a pseudospectrum, de�ned as in
equation (3.38), provided for BF1 in Figure 4.25, represented plotting the contours of
�log 10("). At each point on the real axis (! i = 0), the contour value represents the sen-
sitivity of the �ow to external forcing with the corresponding pulsation ! r . The response
to a real frequency is dominated by the global KH/TS-like modes, the most sensitive
one corresponding to the most unstable one. Concerning the locally unstable mode with
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Figure 4.20: Time evolution of the energy gain computed by the DNS for an initial optimal
perturbation with order of magnitude A0 = 10�4 with domain length L = L x (dashed-
dotted line) and L = 5 L x (solid line); and for an initial optimal perturbation with order
of magnitudeA0 = 10�8 , and domain lengthL x1 = 5 L x (dashed line)
.
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(a)

(b)

(c)

Figure 4.21: Contours of the streamwise velocity perturbation,u, computed by the DNS
at three time instants, t = 2200, t = 2600 and t = 3000. The line on the left indicates the
separation streamline.

Figure 4.22: Fourier spectrum in time of the streamwise velocity perturbation at the �rst
grid point in the wall normal direction computed by the DNS for two streamwise locations,
x = 380 (solid line) and x = 455 (dashed line).
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Figure 4.23: Spatial ampli�cation rate, �� i , versus the real pulsation,! r , computed by
local instability analysis at two streamwise locations,x = 380 (solid line) and x = 455
(dashed line).

(a) (b)

Figure 4.24: Evolution in the streamwise direction of the streamwise perturbation velocity,
u, computed by the DNS at a �xed wall normal position,y = 1:49, for two time values,
t = 900 (dashed line) andt = 1000 (solid line), for initial perturbations scaled by a factor
A0 = 10�7 (a) and A0 = 10�6 (b), respectively.
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Figure 4.25: Pseudospectrum contours for BF1, represented using a logarithmic scale,
�l og10("). The vertical solid line indicates the most sensitive pulsation (! r � 0:085),
whereas the vertical dashed line indicates the sensitivity value to a forcing of pulsation
! r � 0:045.

Figure 4.26: Time evolution of the energy gain computed by the DNS of an initial optimal
perturbation of order of magnitudeA0 = 10�4 at Re = 223.
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! r � 0:045, it lies in the range of the highly sensitive modes. As shown in Figure 4.25,
the minimal perturbation amplitude triggering the real frequencies around! r � 0:045
is approximatively 10�6 , which matches the value previously found by DNS (see Figure
4.24).
Finally, in order to investigate if such a mechanism linking sensitivity and convective
instability may be found also in other �ow con�gurations, several DNS with increasing
Reynolds number have been performed. AtRe = 223, an asymptotically unstable dynam-
ics is recovered by superposing upon the base �ow a perturbation of order of magnitude
A0 = 10�4 , while asymptotic stability is obtained with a smaller perturbation. As shown
in Figure 4.26, the normalized energy saturates at a value of109 which is maintained
asymptotically, leading to a periodic self-sustained state. Since the period of the oscilla-
tions is about T � 110, it is possible to identify the locally unstable pulsation! � 0:055,
which is very close to the one previously found forRe = 200. Therefore, it is likely that
the generation of such a self-sustained state is due to the high sensitivity of the �ow to
that locally unstable frequency, which leads the �ow to a subcritical transition. Such
results show that the convective modes are a relevant feature of a separated boundary
layer �ow, being able to arise from di�erent mechanisms (such as non-normality and sen-
sitivity) in both a linear and a non-linear framework, and are able to play an active role
in subcritical transition.

4.3 Asymptotically unstable dynamics: the origin of
unsteadiness and the �apping frequency.

4.3.1 Linear dynamics

The supercritical dynamics of the �ow has been investigated by performing the global
eigenvalue analysis with increasing Reynolds numbers. Transition has been found to oc-
cur at Re = 225; Figure 4.27 shows the corresponding streamwise velocity contours of the
base �ow. The structure of the spectrum at such a Reynolds number, provided in Figure
4.28, is quite similar to the one atRe = 200. The spectrum is marginally unstable, since
there are seven slightly unstable modes placed on the convective branch, their eigenvectors
being reminiscent of the TS waves. Comparing Figure 4.27 with Figure 6.1, it is possible
to notice that, for increasing Reynolds numbers, not only the bubble size (de�ned as the
length of the separation region at the wall) increases, but some topological changes occur
in the base �ow. Looking at the separation streamline, one can observe a smoother reat-
tachment and, most importantly, the presence of a secondary separation zone within the
primary one, which is identi�ed by a change of sign of the skin friction coe�cient within
the primary bubble. Such observations support the hypothesis of Dallmann et al. (1995)
and Theo�lis et al. (2000) that topological changes in the base �ow could be at the origin
of the onset of the unsteadiness in separation bubbles. As suggested in Marquillie and
Ehrenstein (2003), it is likely that the primary instability of the considered bubble would
be of structural type, meaning that for a supercritical Reynolds number the �ow cannot
exhibit any single-bubble state, instead it is characterized by a multiple separation which
induces the vortex formation and shedding, leading to asymptotical instability.
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Figure 4.27: Streamwise velocity contours of the base �ow BF1 at Reynolds number
Re = 225. The solid line is the separation streamline, whereas the dashed line represents
the u = 0 contour.

Figure 4.28: Eigenvalue spectrum for the �ow BF1 atRe = 225 with Nx = 270 and
Ny = 50 grid points. The modes labelled! 1, ! 2 and ! 3 are the most unstable ones.
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Figure 4.29: Optimal energy gain curves obtained by the global eigenvalue analysis with
N = 400modes for increasing Reynolds numbers: from the bottom curve to the top one,
Re = 190; 200; 207; 213; 219; 225, respectively.

The linear energy growth has been studied using the global eigenvalue analysis for increas-
ing Reynolds numbers. The behavior of the corresponding energy-gain curves, reported
in Figure 4.29, shows that: i) the �rst peak value increases linearly with respect to Re;
ii) the time at which the �rst peak occurs increases linearly with respect to Re. Recalling
that the transient energy growth in the considered case is due to the Kelvin-Helmholtz
ampli�cation along the separation streamline, one can assume that the increase ofG(t) is
due to the increase of the size of the bubble with the Reynolds number. Indeed, plotting
the bubble size versus the Reynolds number, a linear dependence is recovered as shown
in Figure 4.30.

In the slightly unstable case (Re = 225), a linear energy gain equal about to1012 has
been found, as shown by the top curve in Figure 4.29, which is a very high ampli�cation
with respect to the data available in the literature for other �ow con�gurations. For
instance, in Ehrenstein and Gallaire (2008), for a separated �ow over a bump the authors
found a peak value about equal to109 for the critical ReynoldsRe = 590, whereas here a
growth of order of magnitude1012 is observed forRe = 225. Such a di�erence is clearly
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Figure 4.30: Dimensional bubble sizeLb� � versusRe.

dependent on the bubble size and could also be due to the absence of solid boundaries
bordering the bubble which allows the perturbation to amplify itself along the separation
streamline from the separation point to the reattachment one.
In order to further investigate the linear unstable dynamics of an initial perturbation, the
evolution of the optimal perturbation at Re = 225 has been studied. As shown in Figure
4.31, the perturbation is initially convected downstream by the mean �ow as a localized
wave packet. However, unlike the stable case previously analyzed, a second wave packet
is generated due to the ampli�cation of the disturbances carried back by the recirculation
bubble. Such a disturbance shedding cycle is not due to an absolute instability of the
velocity pro�les within the bubble, as assessed by a local eigenvalue analysis, but to the
global characteristics of the �ow. It is worth to notice that the subcritical transient growth
mechanism in a non-linear framework analyzed in Section 4.2.3 seems to be not far from
the asymptotically unstable mechanism shown here. In the subcritical case, the non-linear
terms being able to transfer energy among di�erent modes, a wave packet cycle begins to
be established until it decays due to the asymptotical damping of the perturbation. Thus,
the generation of wave packets by the cyclic transfer of energy from the upstream part to
the downstream part of the bubble and vice-versa seems to be a feature of the stability
dynamics of such a separated �ow.
Focusing now on the asymptotic behavior of the �ow at di�erent Reynolds numbers,
one can observe in Figure 4.29 that each energy gain curve is a�ected by a modulation.
Such a modulation, also named beating or �apping frequency, is a well-known feature of
separated �ows (Åkervik et al., 2007, Ehrenstein and Gallaire, 2008), although it has been
found for the �rst time in a falling curtain �ow by Schmid and Henningson (2002). Such
a phenomenon is due to the interaction of the most unstable modes of the spectrum. In
Figure 4.4 (Re= 200), one can observe two modes, labelled! 1 and ! 2, having comparable
ampli�cation rate. Since such modes are associated to similar eigenvectors, they are able
to interact resulting in the low frequency modulation observed for the energy gain curve
at Re = 200. In fact, since the real parts of these eigenmodes di�er of about�! r = 0:006,
their interaction results in a wave packet of periodT = 2�=�! r � 1000, which corresponds
to the modulation shown in Figure 4.32 by the energy gain curve forRe = 200 (dashed
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(a)

(b)

(c)

(d)

(e)

Figure 4.31: Streamwise perturbation velocity contours of the optimal perturbation ob-
tained by the global eigenvalue analysis forRe = 225 at t = 0, t = 450, t = 650, t = 850,
t = 1050. Solid-line contours indicate positive velocities; dashed-line ones are associated
with negative velocities.
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Figure 4.32: Optimal energy gain curves obtained by the global eigenvalue analysis with
N = 600modes forRe = 225 (solid line) and Re = 200 (dashed line).
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Figure 4.33: Spectra obtained atRe = 225 for three domain lengths,L1 = 430 (diamonds),
L2 = 480 (squares),L3 = 530 (circles).

Figure 4.34: Sensibility of the value of the �apping frequencies I (white squares) and
II (black squares) to the grid resolution:Nx = 260, Ny = 48 (point 1); reference case,
Nx = 270, Ny = 50 (point 2); Nx = 300, Ny = 56 (point 3).

line). Moreover, it appears from Figure 4.29 that two frequencies can be identi�ed for each
energy gain curve withRe � 213. For instance, atRe = 225, the �rst frequency (labeled
as I) corresponds to the low-frequency beating found in the previous case, having a period
of about T � 850 (see the solid line in Figure 4.32). The second frequency (labeled as
II) is slightly higher than the �rst one, having a period of about T � 300. Indeed, by
looking at the spectrum at Re = 225, provided in Figure 4.28, one can notice that the
three most unstable modes have very similar ampli�cation rate, leading to cancellation
as in the stable case. Since their real parts di�er of about�! r I = ! r 3 � ! r 1 � 0:0075,
and �! r II = ! r 2 � ! r 3 � 0:02, they result respectively in two wave packets of period
TI = 2�=�! r I � 850 and TII = 2�=�! r II � 300. It is worth to notice that, due to the
linearity of the global eigenvalue analysis, for large values oft the beating induced by the
two most unstable modes (frequency II) dominates the other one, as reported in Figure
4.32.

The sensitivity of the computed �apping frequencies with respect to the grid resolution
and the domain length has been studied. It is noteworthy that, although the spectra
corresponding to di�erent domain lengths do present some di�erences, as shown in Figure
4.33, due to the di�erent streamwise extention of the modes, the global model is able
to accurately predict the overall stability features of the �ow. In fact, the computations
demonstrate that the same two distinct frequencies are always recovered for di�erent grid
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Figure 4.35: Sensibility of the value of the �apping frequencies I (white squares) and II
(black squares) to the domain length:Nx = 270, Ny = 50, L x = 430 (point 1); reference
case,Nx = 270, Ny = 50, L x = 480 (point 2); Nx = 270, Ny = 50, L x = 530 (point 3),
Nx = 300, Ny = 50, L x = 580 (point 4).

resolutions (see Figure 4.34) and domain lengths (see Figure 4.35), the in�uence of such
parameters on�! r I and �! r II being negligible.

4.3.2 Non-linear dynamics

The physical mechanism governing the beating phenomenon has been studied by perform-
ing several numerical simulations with increasing Reynolds numbers. DNS predicts tran-
sition for BF1 at Re = 230, which is close but not exactly equal to the critical Reynolds
number obtained by the linear analysis, namelyRe = 225. Such a discrepancy might be
due to a stabilizing e�ect of the convective out�ow boundary conditions, as conjectured in
Ehrenstein and Gallaire (2008), or to an imperfect convergence of the convective branch
of the eigenvalue spectrum, which is very sensitive to numerical parameters, or to the
di�erent numerical discretizations used in the global eigenvalue analysis and DNS. Super-
posing the optimal perturbation obtained by the transient growth analysis upon the base
�ow at Re = 225, the time evolution of the energy gain has been computed by DNS. In
Figure 4.36 it is possible to observe that two modulations a�ect the energy gain curve
after the transient has passed, with periodsTI � 1200and TII � 350. Such results are in
good agreement with the ones found by using the global eigenvalue analysis.
It is worth to notice that the linear peak value of the energy gain,1012 (see Figure 4.32),
is not reached in the non-linear case shown in Figure 4.36, the predicted optimal growth
being so high that the energy saturates before. In the considered case, by injecting an ini-
tial perturbation with order of magnitude 10�6 , which corresponds to an initial energy of
order of magnitude10�12 , such a perturbation ampli�es itself up to a factor1011, reaching
amplitudes about equal to10�1 , so that the non-linear e�ects are not negligible. However,
as the amplitudes of the perturbations begin to decrease due to asymptotic stability, a
linear dynamics is eventually recovered.
At supercritical Reynolds numbers, saturation occurs earlier due to the interactions of

exponentially growing wave packets and it is maintained asymptotically. The �ow shows
an unsteady, randomized behaviour within the separation region, which results in a con-
tinuous shedding of wave packets in the attached zone, as shown in a space-time diagram
in Figure 4.37. In order to assess if the two �apping frequencies are a feature of the con-
sidered �ow also at supercritical conditions, the power spectrum in time of the evolving
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Figure 4.36: Time evolution of the energy gain of an initial optimal perturbation of order
of magnitude A0 = 10�6 computed by the DNS atRe = 225.

perturbation, u, at a point within the bubble (x = 339, y = 1:4) has been computed for
Re = 230. Figure 4.38 shows the power density spectrum ofu obtained by the Welch
periodogram/FFT method on a sampling period ofT = 40000 divided in eight partially
overlapped windows. A Hamming window-function has been used on each data segment.
Two frequency ranges where the energy is mostly located are found. The higher fre-
quency range corresponds to TS waves, since the pulsations in the range0:06< ! r < 0:12
correspond to the globally unstable modes of Figure 4.28. Moreover, in the low-frequency
region it is possible to recover three leading pulsations which are close to the �apping
frequencies I and II and to their di�erence, respectively (! I � 0:005, ! II � 0:014and
! III = ! II � ! I � 0:009). It is worth to notice that, unlike the linear model predictions,
there is not a dominant frequency, due to the non-linear e�ects.
In order to shed light on the onset of the beating phenomenon, the dependence of
such modulations on the Reynolds number has been investigated. The primary �ap-
ping frequencies have been computed by means of the global eigenvalue analysis at sev-
eral Reynolds numbers lying in the range150 � Re � 225. In order to eliminate the
dependence of the frequencies on� � , a Reynolds number based on the reference length
L = 0:05m, ReL = U1 L=� , has been employed, the corresponding dimensionless fre-
quency beingF = L=� � f . Plotting the frequency values versusReL , as shown in Figure
4.39, it appears that F � 1 for ReL � 33000(Re � 207), whereas, forReL � 35000
(Re � 213), that is the threshold for the onset of the secondary �apping frequency, the
frequencyF slightly increases. A possible explanation of such a behavior is here provided,
which concerns the physical mechanism governing the onset of the �apping frequencies in
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Figure 4.37: Space-time diagram of the perturbation vorticity at the wall forRe = 230
and an initial perturbation of amplitude A0 = 10�4 . The solid lines identify the separation
and reattachment points.

Figure 4.38: Power density spectrum in time of the evolving streamwise perturbation
velocity, u, obtained by a Welch method on a sampling period ofT = 40000 divided in
eight partially overlapped windows forRe = 230 at x = 339, y = 1:4.
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Figure 4.39: Values of the dimensionless �apping frequencies,F , versusReL . The value
of Re at the black square points are: 152, 160, 168, 176, 182, 191, 200, 207,213, 220, 225,
respectively.

separated �ows over a �at plate.
Recalling that the beating is due to the interaction of two modes presenting similar eigen-
vectors, and that such an interaction has been observed in several separated �ows, such
as cavity-induced and bump-induced separation (Åkervik et al., 2007, Ehrenstein and
Gallaire, 2008), it can be argued that a separated region, which is able to carry back the
perturbation, could play an active role in the generation of the interaction between modes.
In fact, a part of the perturbation located in the separated region could be convected up-
stream within the bubble, where it is likely to interact with the main part of the wave
packet which is being convected downstream along the separation streamline. Therefore,
one may assume that the beating frequency would be proportional to1=tb, wheretb is the
time needed by the mean �ow to carry back such a wave packet from the reattachment
point to the separation streamline:

F / 1=tb / Ub=Lb;
�
�

�
�4.1

whereLb is the size of the bubble andUb the velocity of the base �ow within the bubble.
By measuring the variation of the bubble size and of the velocity of the �ow at two
points within the bubble at di�erent Reynolds numbers, it appears that bothLb and Ub

vary linearly with respect to ReL when ReL < 35000(Re < 213, see Figures 4.30 and
4.40, respectively). Such a linear dependence is broken whenReL � 35000, due to some
topological changes of the base �ow. Thus, as long asReL < 35000, the ratio between
two frequenciesF1 and F2 at two Reynolds numbersReL 1 and ReL 2 could be written as:

F2

F1
=

tL 1

tL 2

=
Ub2

Ub1

Lb1

Lb2

=
ReL 2

ReL 1

ReL 1

ReL 2

= 1;
�
�

�
�4.2

meaning that the �apping frequency F remains constant when the Reynolds number
varies, con�rming the results shown in Figure 4.39 forReL < 35000.
Concerning the dynamics atReL = 35000 (Re = 213), looking at the corresponding base
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Figure 4.40: Values of the maximum back�ow velocity within the bubble versusReL .
The value of Re at the black square points are: 152, 160, 168, 176, 182, 191, 200, 207,
respectively; whereas at the empty square pointsRe = 213; 220; 225, respectively.

�ow in Figure 4.41(a), one can see an in�ection of the streamlines within the bubble,
which is not observed for smaller values of the Reynolds number (see Figure 4.41(b) cor-
responding to Re = 207). The DNS shows that when the �ow is perturbed or when
the Reynolds number is increased, such a topological change originate a small separation
which splits the bubble in two smaller ones, labeled as part A and part B in Figure 4.42.
It is possible to assume that the onset of the �apping frequency II at such a Reynolds
number is a consequence of the splitting of the bubble in two smaller ones, which could
carry back the perturbations at two di�erent rates generating two distinct modulations
of the energy gain curve. Indeed, one can notice that the ratio of the size of bubble A
with respect to the size of the bubble B (LB =LA � 2:5) is very close to the ratio of the
two �apping frequencies (! II =! I � 2:8), supporting such an assumption. Moreover, the
bubble splitting would also explain why a higher value of the �apping frequency I is re-
covered forReL � 35000. Indeed, assuming that the beating I is generated by the part B
of the bubble (while the beating II is generated by the part A), one can argue that such a
bubble, which is smaller than the original one, would be able to carry back disturbances
in a smaller time, originating a higher primary beating frequency.
In order to validate such a model for the case of smaller bubbles, the onset of the �apping
frequency has been investigated for the base �ows BF2, BF3, BF4, BF5. Figure 4.43
provides the energy gain curves computed by the global eigenvalue analysis for BF1, BF2,
BF3, BF4, and BF5 (from top to bottom), showing that a low-frequency modulation is
recovered for all of the considered separated �ows. The dependence of the �apping fre-
quency,F , on the ratio Ub=Lb has been investigated, whereUb, representing the upstream
convection velocity of the base �ow, has been measured within the bubble at the �rst grid
point from the wall where the maximum back�ow is recovered. Figure 4.44 shows thatF
has approximatively a linear variation versus the ratioUb=Lb, validating the conjecture
of equation 4.1. Finally, it should be noticed that the onset of the �apping modulation
in the energy gain curve for BF5 (see the bottom curve in Figure 4.43) is associated with
very low levels of the normalized energy, namely, of order10�5 . Therefore, it is likely
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(a) (b)

Figure 4.41: Streamlines within the separated region for two base �ows, atRe = 213 (a)
and Re = 207 (b). Within the panel, the in�ections of the streamlines for Re = 213 are
shown.

that the beating could not be observed in an experimental framework for small size bub-
bles. Moreover, it has been veri�ed that for a smaller bubble, having an aspect ratio of
about h=L � 0:01, the �apping phenomenon is inhibited, probably due to the very narrow
shape of the separated zone. For larger bubbles the �apping phenomenon is associated
with higher levels of the energy, in some cases a�ecting the dynamics of the separated
�ow also in the presence of non-linear e�ects, and becoming observable in experimental
measurements (Dovgal and Sorokin, 2009).

4.4 Discussion of the results

The transient and asymptotical dynamics of a large separation bubble over a �at plate
has been studied in a two-dimensional framework in order to investigate the role of non-
normality and non-linearity of the di�erential operator in the stability of such a �ow.
Linear eigenvalue analysis as well as numerical simulations with weakly non-linear per-
turbations have shown that the non-normality of convective modes of the Navier�Stokes
operator allows the bubble to act as a strong ampli�er of small disturbances, due to a
Kelvin-Helmholtz mechanism acting over the separation streamline. Indeed, the front
part of the bubble shows a high sensitivity to perturbations, as observed in simulations
with white noise disturbances superposed upon the whole base �ow or upon the in�ow
Blasius pro�le.
For �nite amplitude initial perturbations, the strong linear transient ampli�cation sat-
urates, due to non-linear interactions between modes. Furthermore, such an energy ex-
change between modes induces the bubble to establish a wave packet cycle, characterized
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Figure 4.42: Streamlines within the separated region for the base �ow atRe = 230.
The presence of a secondary bubble within the �rst one divides the bubble in two parts,
labelled A and B.
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Figure 4.43: Energy gain curves computed by the global eigenvalue analysis for base �ows
BF1, BF2, BF3, BF4, and BF5 (from top to bottom).

Figure 4.44: Value of the �apping frequency, F, versus the ratioUb=Lb, computed by the
global eigenvalue analysis for base �ows BF1, BF2, BF3, BF4, and BF5 (from right to
left).
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by the shedding of two wave packets of comparable amplitude. Such a cycle is similar to
the one occurring at supercritical Reynolds numbers, but it is eventually damped when
the �ow is asymptotically stable. Non-linear interactions contribute also to the excitation
of a convectively unstable mode in the attached-�ow region due to the high sensitivity of
the boundary layer, inducing a further transient ampli�cation of �nite amplitude pertur-
bations as well as an asymptotical instability at slightly subcritical Reynolds numbers.
Topological �ow changes on the base �ow have been found to occur close to transition,
supporting the hypothesis of some authors (Dallmann et al., 1995, Theo�lis et al., 2000)
that the unsteadiness of separated �ows could be due to structural changes within the
bubble. Furthermore, non-normality e�ects have shown to play an active role also at
large times. In fact, due to the superposition of two convective non-normal modes, a low-
frequency oscillation, known as �apping frequency, appears. Close to transition, when
topological changes occur in the �ow, a secondary �apping frequency appears as well. A
possible explanation of such a behavior has been provided, in which it is assumed that
the oscillations are due to the interaction of the main wave packet with the perturbations
carried upstream by the back�ow inside the bubble. A scaling law based on the previous
assumption is able to predict accurately the dependence of the �apping frequency on the
Reynolds number and the onset of the secondary frequency close to transition.
Thus, in this part of the thesis the e�ects of non-normality and non-linearity on the insta-
bility dynamics of a separated boundary layer �ow have been studied; the mechanisms of
strong ampli�cation of localized two-dimensional perturbations, the low-frequency oscil-
lations known as �apping, as well as the role of topological changes in the onset of global
instability have been clari�ed and explained in detail.
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5
The response to a harmonic forcing of a

two-dimensional separated boundary layer

In the previous chapter it has been shown that �at-plate two-dimensional separated
boundary-layer �ows are a�ected by strong non-normality e�ects at both small and large
times, such as the high ampli�cation of disturbances and the �apping phenomenon. Such
features suggest that, due to the high non-normality of the NS operator, such a �ow may
also act as a selective noise ampli�er (Trefethen and Embree (2005)). In fact, the response
of the �ow to forcing at a certain frequency is driven by the pseudo-resonance of the tem-
poral modes, which is due to the non-normality of the underlying linearized evolution
operator. Although many authors have studied the ampli�er dynamics of separated �ows
by means of a global approach, (for instance, see Blackburn et al. (2008) and Marquet
et al. (2008)), an investigation of the global response to external forcing of a separated
�ow is still not available in the literature.
In order to investigate whether and how the �ow may select and amplify certain fre-
quencies from a background or induced noise, the sensitivity of the �ow and its optimal
response to an external forcing are studied by means of the sensitivity analsys discussed
in Section 3.5.2. The study of the resolvent is performed for di�erent base �ows, obtained
for di�erent Re or suction-and-blowing velocity pro�les, in order to identify the most re-
sponsive disturbance and the underlying ampli�cation mechanism. The connection of the
optimal response to the onset of self-excited vortices observed in literature is investigated.
For that purpose, direct numerical simulations perturbed with a small level of random
noise, are also performed. The results of the DNS are then compared with the ones of the
sensitivity analysis, and with the ones obtained in the literature about the most ampli�ed
frequencies in separated boundary-layer �ows.
This part of the thesis has been developed in cooperation with Dr. F. Alizard (Arts et
Métiers ParisTech, France), and it has been published on Physics of Fluids, Volume 21,
Issue 6, pp. 064108 (2009).

5.1 Problem formulation

Five separated �ows are computed, by imposing di�erent suction-and blowing velocity
pro�les or Reynolds numbers. The base �ows bf1, bf2 and bf3 are computed at a Reynolds
number Re = 200 for the three suction pro�les provided in Figure 5.1. The separated
�ows bf4 and bf5 are obtained by using the same upper boundary velocity distribution
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Figure 5.1: Suction pro�les prescribed for base �ows bf1 (short-dashed line), bf2 (long-
dashed line), bf3, bf4 and bf5 (solid line).

as bf3, for the Reynolds numbersRe = 215 and Re = 220, respectively. It is noteworthy
that the separated �ows bf3 corresponds to one denoted as BF1 in the previous chapter.
The Reynolds numberRe varies from 200 to 220, which is below the critical Reynolds
number for convective instabilities, as shown in the previous chapter. For the DNS, the
boundary conditions are identical to the ones used in the previous chapter. The dimension
of the computational box areL x = 450 and L y = 30, discretized by a(501� 150) grid,
which has been found adequate for the present computations, as it has been shown in the
previous chapter.
For the global model computations, a(270� 55) grid and N = 1300 modes have been
chosen. The boundary conditions are identical to the ones used in the previous chapter.
The lengths of the computational domains have proved to be large enough to not in�uence
the stability results.

5.2 Response to a localized harmonic forcing: a selec-
tive noise ampli�er.

The �ve considered separated �ows, bf1, bf2, bf3, bf4 and bf5, are depicted in Figures 5.2
(a), (b), (c), (d), (e), respectively. One may observe the in�uence of the Reynolds number
and the suction-and blowing velocity pro�le on the resulting base �ows. An increasing
intensity of the suction implies a larger separated zone as well as a displacement of the
center of the bubble near the reattachment point. A slight increase of the Reynolds number
induces an increase of the bubble size and of the recirculation close to the reattachment
point. Moreover, under the same adverse pressure gradient, the location of the separation
point is only slightly a�ected by the increasing ofRe (Table 5.1).

5.2.1 Asymptotical sensitivity analysis

In this section, the sensitivity of the linearized NS operator to a harmonic forcing with
an imposed frequency, and its consequences on the asymptotic behavior of the separated
�ows, are investigated. Even if all the modes are damped temporally, the �ow, being
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(a)

(b)

(c)

(d)

(e)

Figure 5.2: Streamwise component of the perturbation (shaded contours) and streamlines
(white lines) for base �ows bf1 (a), bf2 (b), bf3 (c), bf4 (d) and bf5 (e). The �rst three
base �ow have been obtained forRe = 200 and the three suction pro�les in Figure 5.1,
whereas the fourth and the �fth have been computed for the same suction pro�le as bf3,
with Re = 215 and Re = 220, respectively.
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X bf1 bf2 bf3 bf4 bf5
X s 49.5 45.8 40.8 39.8 39
X r 189 194 204 238 253

Table 5.1: Distance fromx in of the separation and reattachment points, referenced asX s

and X r respectively, for the �ve base �ows.

Figure 5.3: Pseudo-spectrum of the separated �ow bf1. The iso-levels� log10 (") are
shown for three domain sizes:L1 = 450 (solid line), L2 = 425 (dashed line) andL3 = 400
(long-dashed line) discretized byNx = 270, 265, and 260grid points, respectively.

strongly separated, is subject to convective instabilities. Thus, the existence of convective
waves as a response to a harmonic forcingF = f e�i� f t is investigated in a global frame-
work.
The separated �ow bf1 is considered �rst. Figure 5.3 provides its pseudospectrum (de�ned
in equation (3.38)), represented by plotting the contours of�log 10("). At each point on
the real axis (! i = 0), the contour value represents the sensitivity of the �ow to external
forcing with the corresponding pulsation� f = ! r ; a high value of such parameter (� 10�6

for the case here considered) means that the �ow is able to get a large response to an
external real forcing at a selected frequency� f . Furthermore, it is worth to notice that
such a value does not depend on the domain size as shown by the" levels in Figure 5.3, so
that one can argue that it is an intrinsic property of the separated �ow. As shown in Fig-
ure 5.3, large sensitivity areas appear around each temporal mode. A pseudo-resonance,
resulting from the high non-orthogonality of the eigenvectors, may thus occur even far
away from the considered modes. The response to a real frequency is dominated by the
global KH/TS-like modes, the most sensitive one corresponding to the most unstable one.
The separated �ows bf2, bf3, bf4 and bf5 are found to show as well an high sensitivity
to external forcing, although the pseudospectrum associated with such base �ows is not
shown here for brevity (the one for bf3 is shown in Figure 4.25).
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Figure 5.4: Curve of the resolventR versus the forcing frequency� f for bf1 (N = 1300
modes are considered). The dashed line indicates the maximum value of the resolvent,
Rmax , and the frequency for which such value is reached,� max .

5.2.2 Optimal response to a localized harmonic forcing

Once the high sensitivity of the �ow to an external forcing has been proved, it would
be useful to investigate which perturbation is able to induce an optimal response to a
harmonic forcing at a given frequency. Thus, the resolventR, which has been de�ned in
section 3 as the maximum response of the �ow to a given forcing, has been computed.
The base �ow bf1 is considered, although similar results have been found for the di�erent
base �ows. The resolventR computed for such a base �ow is plotted in Figure 5.4 for
N = 1300. As it is suggested by the pseudospectrum analysis, one observes a strong
ampli�cation of the value of R which reaches a maximum value for� f = 0:08. Two
quantities characterizing the intensity of the optimal response and the associated forcing
frequency, denoted byRmax and � max , are introduced, which are de�ned as

8
<

:

Rmax = max � f (R (� f ))

� max = f� f 3 R (� f ) = Rmax :g

�
�

�
�5.1

Such parameters are sketched in Figure 5.4. The dependence of such quantities on the
number of modes used in the computation ofR (� f ) is shown in Figures 5.5 (a) and (b).
One could observe a good convergence of the most ampli�ed frequency which reaches
an almost constant value forN = 800. The value of Rmax exhibits a fast increase for
moderate values ofN and a slow convergence whenN ! 1.

Therefore, N = 1300 modes are here considered su�cient to capture the optimal
response and its associated frequency. The streamwise distribution of the optimal forcing
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(a) (b)

Figure 5.5: Evolution of � max (a) and Rmax (b) with the number of modes for bf1 and
L x = 450.

and its respective response, both represented by the following variable:

Ux (x) =
Z L y

0
u2 (x; y) dy;

�
�

�
�5.2

are shown in Figures 5.6 (a) and (b), whereUx (x) has been normalized by the quantity
maxx (Ux (x)). It appears that a number of modes greater thanN = 800 leads to a quite
converged spatial distribution of the optimal response and forcing, whose streamwise
components are shown in Figures 5.7 (a) and (b). One can observe that, forN = 1300,
the optimal forcing is localized close to the separation point of the bubble leading to
a response which is ampli�ed along the shear layer and reaches a maximum after the
reattachment point. Consequently, it could be argued that the optimal frequency and
the corresponding response are well described by a limited number of modes despite the
slow convergence ofRmax . In particular, such a slow convergence may be ascribed to
the di�culty to recover the tilting of the initial perturbation upstream of the bubble by
means of a reduced model based on a global modes expansion. Indeed, the action of the
shear on structures tilted att = 0 in the direction opposed to the mean �ow may lead,
through an Orr-mechanism, to an increase of the energy gain, as observed by Blackburn
et al. (2008) by means of a direct optimal growth strategy. On the other hand, such a
mechanism is not perfectly observed in the works by Åkervik et al. (2007) and Ehrenstein
and Gallaire (2008), where a global modes expansion strategy is used. Furthermore, in
the work by Åkervik et al. (2008) on a �at plate boundary layer it is demonstrated that
the Orr-mechanism doesn't a�ect the value of the optimal response frequency but only
the value of the maximum energy gain.

A further validation is also carried out with respect to the domain length. Although
Figure 5.8 shows that the eigenvalue spectrum for base �ow bf1 is in�uenced by the
streamwise domain size, namelyL x = 400 (triangles), L x = 425 (diamonds) andL x = 450
(circles), the resulting resolvent is not. Figure 5.9 shows that the resolvent curves do not
depend on the streamwise domain size, meaning that the overall sensitivity features of
the �ow are not in�uenced by the computational box.
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(a)

(b)

Figure 5.6: In�uence of the number of modesN on the streamwise distribution of the
optimal forcing (a) and the optimal response (b), represented by the variableUx (x) com-
puted for bf1 andL x = 450 with N = 1300 (solid line), N = 800 (dashed line),N = 300
(long-dashed line) andN = 100 (dashed-dotted line). The vertical lines correspond to
the separation point and the reattachment point denoted byX s and X r , respectively.

(a)

(b)

Figure 5.7: Streamwise componentu of the optimal forcing (a) and response (b) computed
for base �ow bf1. The black line is the separation streamline.
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Figure 5.8: In�uence of the computational box on the spectrum associated with bf1, for
three di�erent streamwise domain length, namelyL x = 450 (circles),L x = 425 (diamonds)
and L x = 400 (deltas), discretized byNx = 270, Nx = 265 and Nx = 260 grid points in
the streamwise direction, respectively.

Figure 5.9: ResolventR (� f ) obtained for bf1 with 1300 modes and for three di�erent
streamwise domain lengths, namelyL x = 450 (solid line), L x = 425 (short-dashed line)
and L x = 400 (long-dashed line), discretized byNx = 270, Nx = 265 and Nx = 260 grid
points in the streamwise direction, respectively.
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Finally, a validation of the previously discussed results is carried out by means of a
perturbative linearized version of the NS equations in 3.1. The equations are written as
follows:

u t + (U � 5)u + (u � 5)U = � 5 p +
1

Re
5 2 u + F ;

�
�

�
�5.3

5 � u = 0;

whereF represents the forcing term,U = (U; V )T is the two-dimensional base �ow and
q = (u; v; p )T is the perturbation vector in the two-dimensional case. The boundary
conditions which close the system (5.3) are identical to the ones used in the previous
chapter.
The system has been forced with the optimal forcing �eld computed by the global model
at two circular frequencies:� f = 0:08and � f = 0:13. The instantaneous perturbation has
been extracted from the DNS after the transient, and compared with the one resulting
from the temporal modes expansion withN = 1300. Figures 5.10 (a) and (b) show that
the linearized simulation results are in a very good agreement with the ones of the global
eigenvalue analysis. Such a computation is a good validation of the temporal modes
expansion which has been found to be an appropriate reduced model for the description
of the optimal response to external forcing in the asymptotic regime. Being con�dent
about the results derived from the present method, the physical destabilizing mechanism
associated with the optimal response has been investigated.

Physical mechanism associated with the optimal response

In Figure 5.11 it is plotted the vector perturbation �eld (u; v) for � max in the asymptotic
regime for bf3. One may observe that the action of the perturbation on the base �ow
originates a series of counter-rotating vortices along the shear layer and the decelerated
zone. A visualization of the instantaneous vorticity �eld of the optimal response,�! z =

 z + "! z, where 
 z is the vorticity of the base �ow and where" is �xed arbitrarily to
10%of the maximum value ofU, is provided in Figure 5.12. The destabilizing mechanism
associated with the most responsive disturbance described above leads to the formation
of rolling vortices ampli�ed along the shear layer which are advected in the attached
boundary layer and dies away. Such process seems to be a speci�c feature underlying the
optimal behaviour of separated �ows, similar to the counter-rotating structures observed
by Blackburn et al. (2008) in a �ow over a backward facing step resulting from the optimal
ampli�cation of a localized wave packet.

In order to determine the e�ects of the size of the recirculation area on the values of
R (� f ), the response curves are performed for the di�erent base �ows previously de�ned,
as provided in Figure 5.13. One can observe the strong increase of the optimal response
value Rmax with the size of the recirculation zone which reaches a very high maximum
energy gain of order� 109 for bf5. In particular, the most responsive frequency range is
found to reduce when the Reynolds number and/or the pressure gradient at the upper
boundary increases, leading to a more de�ned peak around� max . Furthermore, Figures
5.14 (a), (b) and (c) show that the most responsive disturbance moves toward the end
of the separated zone until reaching a maximum for bf4 at the reattachment point. An
inviscid-type Kelvin-Helmholtz mechanism, similar to the one observed in separated �ows
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(a)

(b)

Figure 5.10: Values of the streamwise velocityu at y = 8, obtained by linearized DNS
(solid line) and temporal modes expansion withN = 1300 (dashed line) for bf1, with a
forcing of frequency� f = 0:08 (a) and � f = 0:13 (b). The vertical lines correspond to the
separation point and the reattachment point denoted byX s and X r , respectively.

Figure 5.11: Perturbation vectors(u; v) obtained for bf3 and a forcing frequency� max .
The separation streamline is represented by the dashed line.

Figure 5.12: Snapshot of the instantaneous vorticity obtained asymptotically for bf3
and � max for a value of the perturbation equal to10%of the maximum value ofU.
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Figure 5.13: Evolution ofR (� f ) for bf1, bf2, bf3, bf4 and bf5 (from bottom to top). The
values of� max are sketched by the black dots.

(a)

(b)

(c)

Figure 5.14: Streamwise distribution of the optimal responseUx for bf1 (a), bf3 (b) and
bf4 (c).
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by Lin and Pauley (1996) for instance, which results in the roll-up of the shear layer,
appears to be the cause of the increase of the optimal response with respect to the bubble
size.

5.2.3 The relation between the global optimal response and the
onset of unsteadiness.

The analysis of the global response of the �ve �ows has assessed that �at plate separated
�ows may exhibit a large response to a harmonic forcing for a range of frequencies at
moderate Reynolds number. Indeed, the bubble may act as a selective ampli�er of fre-
quencies, due to the strong convectively unstable character of the �ow.
A typical feature of recirculation bubbles is the onset of self-sustained oscillations char-
acterized by the triggering of shedded vortices, as shown by the numerical simulations of
Pauley et al. (1990), Ripley and Pauley (1993) and Wasistho et al. (1997), and by the
experiments of Haggmark et al. (2000). Moreover, such �ows are subject to a certain level
of noise in experiments as well as in numerical simulations due to the discretization errors.
Therefore, it is worth to investigate whether a connection exist between the emergence of
coherent structures in the considered �ow subject to noise and the ampli�er dynamics re-
lated to the optimal response to forcing, which leads to the generation of counter-rotating
structures, as previously discussed.
With this aim, the two-dimensional Navier-Stokes equations have been integrated by su-
perposing a random noise with small amplitude (10�6 ) to the base �ow inlet velocities.
Simulations are carried out for bf3 and bf5. First, the analysis has been focused on bf3.
Figures 5.15 and 5.16 show a time series and a Fourier analysis of the vorticity compo-
nent at the wall extracted at two di�erent locations, the reattachment point x = 204 and
x = 262, after that the simulation has reached a statistically stationary state. Although
a white noise perturbation is imposed at the in�ow, the Fourier spectra shown in Fig-
ures 5.16 (a) and (b) provide a narrow banded response whose peak is localized around
� = 0:092. This behavior is in agreement with the optimal response analysis realized in
section 5.2.2. In particular, the peak and the range of excited pulsations are close to the
predictions of the theoretical analysis based on a temporal modes summation.
The Fourier spectra relative to the largest bubble denoted by bf5 are shown in Figures 5.17
(a) and (b). Again, the corresponding spectral densities as well as the peak of intensity are
consistent with the frequencies leading to an optimal response in the asymptotic regime
provided in Figure 5.13. Thus, it could be hypothized that the ampli�cation mechanism
provided by the optimal response analysis is able to describe a possible scenario for the
onset of unsteadiness in the considered separated �ow. Under a su�ciently large pressure
gradient and/or Reynolds number, even a two-dimensional globally stable separated �ow,
is able to select by means of sensitivity an optimal range of frequencies out of the existing
numerical noise, generating optimal-like counter-rotating structures which can trigger a
self-excited vortex shedding. This selective noise ampli�er mechanism can be compared
to the unsteadiness taking the form of Kelvin-Helmholtz-like shedded vortices observed
in the asymptotic regime in numerical simulations of similar con�gurations by Pauley
et al. (1990), Ripley and Pauley (1993) and Wasistho et al. (1997). Indeed, such authors
have observed that under a su�ciently large pressure gradient, a strong unsteady behav-
ior taking the form of self-excited vortex shedding occurs even at low Reynolds number
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Figure 5.15: Evolution of the wall vorticity in time at the reattachment point x = 204
extracted from the DNS for bf3.

(a) (b)

Figure 5.16: Fourier spectrum in time of the wall-vorticity perturbation at the reattach-
ment point, x = 204, (a) and at x = 262 (b) computed for bf3 by a DNS continuously
perturbed at the in�ow by a random noise with amplitude equal to10�6 . The optimal
response to a localized forcing for bf3 is represented by the black line.
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(a) (b)

Figure 5.17: Fourier spectrum in time of the wall-vorticity perturbation at the reattach-
ment point, x = 253 (a), and at x = 282 (b) computed for bf5 by a DNS continuously
perturbed at the in�ow by a random noise with amplitude equal to10�6 . The optimal
response to a localized forcing for bf5 is represented by the black line.

(Re = 300 for Pauley et al. (1990), and from400 to 800 for Wasistho et al. (1997)). A
natural generation of convective waves from the existing numerical noise is thus suggested
by Wasistho et al. (1997) as an explanation.
Focusing on the relation between optimal response and the vortex shedding observed in
previous investigations, a typical parameter characterizing the unsteadiness behavior has
been computed. In particular, the shedding frequency non-dimensionalized by the bound-
ary layer momentum thickness� s and the local freestream velocityU1 at the separation
point with no applied gradient pressure has been considered, namely the Strouhal number:

St � = f
�

� s

U1

�
�
�

�
�5.4

where f denotes the shedding frequency. According to Pauley et al. (1990), Ripley and
Pauley (1993) and Pauley (1994b) for �at plate separated �ows or Lin and Pauley (1996)
in an airfoil con�guration, a typical Strouhal number associated with unsteadiness varies
in the range0:0055to 0:008. It is worth to notice that such a value is not constant in the
di�erent con�gurations due to the dependence of the shedding frequency to the pressure
distribution along the �at plate (Ripley and Pauley (1993)). Therefore, the shedding
frequency is slightly geometry dependent.

The Strouhal numbers associated with the frequency leading to an optimal response
are computed and summarized in table 5.2. Such values are found to be consistent with
the ones obtained by the authors previously mentioned. In order to verify that the
optimal response is able to trigger unsteadiness in the nonlinear regime, a larger white
noise amplitude is superposed at in�ow points in a direct numerical simulation. The
base �ow bf3 and an in�ow perturbation of amplitude 10�5 are considered. After the
transient, nonlinear saturation occurs. Figure 5.18 provides an instantaneous vorticity
�eld showing the vortex-shedding behavior resulting from the selective noise ampli�er
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� s � max St�
bf1 0.508 0.08 0.00647
bf2 0.500 0.089 0.00708
bf3 0.489 0.092 0.00716
bf4 0.480 0.088 0.00673
bf5 0.477 0.084 0.00638

Table 5.2: Values of� s, � max and St � at X s for the �ve separated �ows.

Figure 5.18: Instantaneous vorticity �eld from DNS subject to a random white noise at
the in�ow of amplitude 10�5 for bf3 at T = 2000.

mechanism att = 2000. It is worth to notice the strong similarity between the resulting
two-dimensional structures and the computations of previous investigations by Pauley
et al. (1990), Ripley and Pauley (1993) and Wasistho et al. (1997).
Such results support the hypothesis that �at plate separated �ows could act as a selective
noise ampli�er, whose selected frequencies could be recovered by an optimal response
analysis; such ampli�er behaviour leads to the onset of a self-excited vortex shedding
phenomenon.

5.3 Discussion of the results

As argued by Marquet et al. (2008) and Blackburn et al. (2008), the ampli�er dynamics
predicted by an optimal growth analysis could yield a possible scenario explaining the
onset of unsteadiness in separated �ows under the in�uence of localized disturbances.
Nevertheless, in this chapter a di�erent point of view has been adopted, with the purpose
of investigating whether a connection exists between the triggering of unsteadiness in the
asymptotic regime and the selective noise ampli�er behavior of the separated �ows under
consideration. For that purpose, the global linear response to a localized forcing leading
to a maximum energy gain in the asymptotic regime has been studied, as well as the
associated ampli�cation mechanism and its connection with the onset of unsteadiness, for
�ve di�erent �at plate separated �ows.
The global temporal modes approach has been found able to identify the instability mech-
anism related to the linear response to a harmonic forcing introduced into a laminar �at
plate separated �ow. In particular, it has been outlined a destabilizing mechanism involv-
ing the shear layer and inducing a strong ampli�cation of disturbances at the selected fre-
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quencies. Indeed, the most responsive disturbance takes the form of Kelvin-Helmholtz-like
vortices, which roll up and amplify themselves along the shear layer, until being advected
and die away in the attached boundary layer. The strong ampli�cation of such harmonic
perturbations could be explained by the pseudo-resonance of the temporal modes due to
the high non-normality of the temporal evolution operator of the linearized Navier-Stokes
equations. Moreover, an analysis of the evolution of the response, for an increase of the
Reynolds number and/or the suction at the upper boundary, have clari�ed the strong
in�uence of the shear layer on the maximum response.
Such elements suggest that �at plate separated �ows may act as a strong selective noise
ampli�er. In order to �nd out if a connection exists between the global optimal response
of the �ow and the unsteadiness observed in experiments and direct numerical simulation,
a DNS has been performed in which the base �ow is continuously perturbed at inlet points
with a random noise. The DNS results have shown that the selected frequencies recovered
by Fourier transform in the asymptotic regime are in agreement with the ampli�ed fre-
quencies derived from the optimal response analysis. The most ampli�ed frequency has
been then compared with the shedding frequencies measured by Pauley et al. (1990), Rip-
ley and Pauley (1993), Lin and Pauley (1996) and Wasistho et al. (1997). The Strouhal
number recovered by the authors previously mentioned has been found consistent with
the most ampli�ed frequency of the global optimal response.
Thus, in this part of the thesis a connection has been established between the global
optimal response to external forcing and the onset of vortex shedding and unsteadiness
at subscritical Reynolds numbers in presence of low-level noise in a separated boundary
layer �ow.
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6
The onset of three-dimensional centrifugal

global modes in a separated boundary layer

In the previous chapter it has been demonstrated that �at plate separated �ows may
act as a strong selective noise ampli�er. Moreover, a connection has been established
between the response of the �ow to an external forcing (either induced or present in the
background noise) and the onset of unsteadiness and vortex shedding observed in exper-
iments and direct numerical simulations (see Pauley et al. (1990) and Wasistho et al.
(1997), for instance). Nevertheless, as discussed in Chapter 2, a resonator dynamics
could occur in separated �ows, which is associated with a three-dimensional global steady
unstable mode. This global mode has been observed for the �rst time in a �at plate
separated �ow by Theo�lis et al. (2000), and in an experimental framework for a �ow
past a backward-facing step by Beaudoin et al. (2004). Thus, it can be supposed that
such three-dimensional mechanism could appear in the considered �ow and dominate its
asymptotic space-time dynamics.
Altough many studies have been devoted to the primary three-dimensional instability of
separated �ow in a linear framework (see Barkley et al. (2002), Gallaire et al. (2007) and
Marquet et al. (2009) for instance), none of them has clari�ed whether this asymptotical
mechanism would dominate the dynamics of the �ow or if it would be bypassed by the
transient one due to the high sensitivity of the �ow to disturbances. Therefore, an analy-
sis of the onset and origin of such unstable three-dimensional mode and of its interaction
with the KH/TS mechanism of ampli�cation of the disturbances along the shear layer, is
of interest.
Thus, by means of the three-dimensional global eigenvalue analysis, the steady unsta-
ble mode is recovered, together with several stable three-dimensional ones a�ecting the
dynamics of the �ow. Such modes are analyzed by means of two di�erent centrifugal
instability analysis (the Rayleigh criterion and the Gortler equations). Finally, direct nu-
merical simulations are carried out aiming at identifying the onset of such global modes
in the instability dynamics of the �ow, and at understanding their role in the transition
process at small and large times.
This part of the thesis has been developed in cooperation with Dr. F. Alizard (Arts et
Métiers ParisTech, France), and it has been submitted for publication to Physics of Fluids
in February 2010.
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Figure 6.1: Streamwise velocity contours for the base �ow bf3 atRe = 200. The solid
line is the separation streamline, whereas the dashed line represents theu = 0 contour.

6.1 Problem formulation

A rectangular computational domain is employed, having dimensionsL x = 425, L y = 30,
L z = 62:8 . For the base �ow computation and the DNS, at inlet points, placed atx in = 65
from the leading edge of the bottom wall, a Blasius boundary-layer pro�le is imposed for
the streamwise and wall-normal components of the velocity vector, and the spanwise
component is set to zero. At outlet points, a standard convective condition is employed.
At the bottom wall, the no-slip boundary condition is prescribed. At the upper boundary,
three di�erent suction-and-blowing pro�les have been imposed on the wall-normal velocity
component, and the spanwise component and the vorticity are set to zero. Three base
�ows, bf1, bf2 and bf3, have been obtained by imposing the three suction-and-blowing
pro�les of Chapter 5, shown in Figure 5.1. Most of the computations would be performed
on the base �ow bf3. Finally, in the spanwise direction, periodicity is imposed for the
three velocity components. All numerical simulations have been performed discretizing
the computational domain by a Cartesian grid stretched in the wall-normal direction. The
computational domain contains501� 150� 81 grid points, the height of the �rst cell close
to the wall being equal to0:1.
The three-dimensional global eigenvalue analysis is employed, where� and the spanwise
component of the perturbation are chosen to be di�erent from zero. At upper and inlet
boundary points, a zero perturbation condition is imposed, whereas at the out�ow a
Neumann condition is prescribed. The base �ow is discretized usingNx = 230 collocation
points in the x-direction and Ny = 47 collocation points in the y-direction. For the
transient growth computations,N = 1500 modes have been employed.

6.2 Linear dynamics using the three-dimensional global
eigenvalue analysis

6.2.1 Spectrum analysis

Figure 6.1 shows the streamwise velocity contours for bf3 atRe = 200. For such a base
�ow and � = 0:1, the three-dimensional global eigenvalue analysis provides the spectrum
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Figure 6.2: Spectrum associated with the base �ow bf3 for� = 0:1. The dashed rectangles
identify the di�erent families of modes.

shown in Figure 6.2, which is found to be unstable. The spectrum is di�erent from the
two-dimensional one provided in Figure 4.4. Di�erent families of modes can be detected,
some of them having a very low growth rate. The three most ampli�ed families, enclosed
in the dashed rectangles in Figure 4.4, are here considered. Two modes for each family
are analyzed, namely,MS and MG for the steady-modes family;MUS1 and MUS2 , placed
on the branch of the unsteady low-frequency modes;MT S1 and MT S2 , placed on the con-
vective branch. All of these modes are found to be relevant in the dynamics of the �ow,
as shown in the following sections.
The asymptotic behavior of the �ow is driven by the most unstable mode, labelledMS

in Figure 4.4, which is a three-dimensional steady mode (!r = 0), similar to the unstable
weakly growing mode found in Theo�lis et al. (2000) for a three-dimensional separated �ow
induced by an adverse pressure gradient. The contours of the streamwise and spanwise
velocity components of such a mode can be observed in Figures 6.3 (a) and (b), respec-
tively, showing that a great part of the perturbation is concentrated within the bubble.
Figure 6.3 (c) provides the contours of the local energy, de�ned ase = u2 + v2 + w2 ;
one could notice that the energy is concentrated within the recirculation zone. In the
spanwise direction, such a mode take the form of alternated �at roll structures, which
follow the curvature of the streamlines of the base �ow, as shown by the spanwise vortic-
ity iso-surfaces in Figure 6.4 (a). Similar modes have been recovered in several separated
�ows induced by the geometry of the �ow, such as a step (Barkley et al., 2002, Marquet
et al., 2009, Marino and Luchini, 2009) or a bump (Gallaire et al., 2007).
The less stable steady mode is the one labelledMG in Figure 4.4. Figure 6.4 (b) shows
that its spanwise vorticity distribution presents some similarities with the one of mode
MS, being characterized by �at roll structures following the curvature of the streamlines.
Therefore it can be supposed that both these three-dimensional global modes could have
a common origin, which could be linked to a centrifugal instability (Gallaire et al., 2007),
being both strongly a�ected by the curvature of the streamlines. On the other hand,
the two modes present some di�erences, as shown in Figure 6.5, which provides the local
energy contours of modeMG. By comparing such a Figure with Figure 6.3 (c), one can
observe that a great part of the energy is concentrated in the attached zone and in the
shear layer; not within the bubble as it has been previously found for modeMS. Thus,
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(a)

(b)

(c)

Figure 6.3: Contours of the streamwise (a) and spanwise (b) velocity perturbation nor-
malized by the maximum value of the streamwise velocity, and of the local energy,e,
(c) normalized by its maximum value, for the unstable steady mode (MS) at Re = 200.
The black line is the separation streamline, whereas dashed contours represent positive
velocities and dotted contours represent negative velocities.

MS is mainly located inside the bubble, whereasMG has a strong spatial development,
as one can also observe by comparing Figures 6.4 (a) and (b).
The second family of modes is characterized by the low-frequency unsteady eigenvalues
shown in the second (from left to right) dashed rectangle of Figure 4.4. The spanwise
velocity component of the modes labeled asMUS1 and MUS2 are provided in Figures
6.6 (a) and (b), respectively. Such modes are characterized by streamwise-alternated
sickle-shaped packets, which are localized within the separation bubble, mostly in its up-
stream part. One can notice that the two modes have a similar shape, but the second
one is characterized by structures of smaller wavelength. It is noteworthy that, in the
two-dimensional spectrum computed for the same base �ow, shown in Chapter 4 (see
Figure 4.4), the �rst two families of modes are not recovered. Thus, it is possible to infer
that modes MS, MG, MUS1, and MUS2 are purely three-dimensional, since they are not
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(a)

(b)

Figure 6.4: Iso-surfaces of spanwise vorticity for the most ampli�ed steady modesMS (a)
andMG (b) at the Reynolds numberRe = 200. The black line is the separation streamline,
whereas the dark and light surfaces represent the0:15 and �0:15 values of spanwise
vorticity, respectively. The perturbations have been normalized by their maximum value.
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Figure 6.5: Local energye of the second most ampli�ed steady mode,MG, at the Reynolds
number Re = 200. The black line is the separation streamline.

recovered by a two-dimensional analysis which does not take into account the spanwise
dynamics.
The third family of modes, which is recovered also in a two-dimensional case, is charac-
terized by the high-frequency unsteady modes placed on the 'convective branch', shown
in the third (from left to right) dashed rectangle of Figure 4.4. Such eigenvalues are
reminiscent of the classical KH/TS modes predicted by a local approach (Schmid and
Henningson, 2001), although they appear to be slightly tilted in the streamwise direction,
as one can observe in Figure 6.7, providing the streamwise velocity contours of mode
MT S1 . The dynamics of such highly non-normal modes, which are the ones responsible
for the strong ampli�er dynamics of the bubble, has been extensively studied in the two
previous Chapters for a two-dimensional case.

6.2.2 Analysis of centrifugal modes

In the previous subsection it has been conjectured that modesMS and MG could both
have a centrifugal origin, due to the �at roll structure they show. However, the mechanism
of their generation could di�er, since they are characterized by a di�erent distribution of
the energy. In particular, MS could be originated by an intrinsic centrifugal instability,
due to the curvature of the streamlines within the separated zone, as conjectured by pre-
vious authors such as Barkley et al. (2002) and Gallaire et al. (2007), in the case of a
geometry-induced separation bubble, whereas the stable modeMG seems to have a con-
vective nature similar to a Gortler instability. Indeed, some authors (see Inger (1987))
have conjectured that a weak concave streamline curvature occurring around a separation
bubble may give rise to a Gortler instability despite the absence of curved walls. More-
over, Pauley (1994a) and Wilson and Pauley (1998) observed the onset of Gortler vortices
in the case of the �ow past a laminar separation bubble over a �at plate. In order to verify
such conjectures about the origin of modesMS and MG, two di�erent analysis are here
proposed. Concerning modeMS, a generalized form of the Rayleigh criterion provided
by Sipp and Jacquin (2000) is used, whereas for modeMG, a Gortler stability study is
performed.

Rayleigh's criterion (see Drazin and Reid (1981), Bayly (1987)) is an inviscid condition
for centrifugal instability. Such a criterion is based on the physical consideration that in a
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(a)

(b)

Figure 6.6: Spanwise velocity contours of the most ampli�ed non-steady modes (MUS1

and MUS2) at the Reynolds numberRe = 200. The black line is the separation stream-
line, whereas dashed contours represent positive velocities and dotted contours represent
negative velocities.

Figure 6.7: Streamwise velocity contours of modeMT S1 on the convective branch, at the
Reynolds numberRe = 200. The black line is the separation streamline, whereas dashed
contours represent positive velocities and dotted contours represent negative velocities.
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�ow with closed streamlines, instability could be originated if there is an outward decrease
in the angular momentum of the base �ow. A su�cient condition for instability, based
on a generalization of such a criterion to generic closed streamlines, has been provided
by Sipp and Jacquin (2000) for a two-dimensional inviscid �ow. In order to identify the
centrifugal zones inside the recirculation region, the Rayleigh discriminant�(x) is de�ned
as follows:

�(x) = 2
�

jU(x) j
%(x)

�
$ (x);

�
�

�
�6.1

where x is a point of the considered streamline,� ; jU(x)j is the norm of the base �ow
velocity; $ (x) = Vx � Uy is the spanwise base �ow vorticity; and%(x)is the local algebraic
radius of curvature of the streamline, de�ned as:

%(x) =
jU(x) j3

(5�) � (U(x) � 5U(x) )
:

�
�

�
�6.2

The �ow is unstable if a closed streamlines,� 0, exists such that:

max
� 0

(�(x)) < 0;
�
�

�
�6.3

wheremax� denotes the maximum over the streamline� . It is worth to notice that such a
criterion compares the sign of the absolute angular velocity of the particle (jU(x) j=%(x))
to the sign of its vorticity $ (x), so that the �ow is unstable if these quantities have
opposite signs along a whole streamline 0 (Sipp and Jacquin, 2000).
The Rayleigh discriminant has been computed for the base �ow here considered and is

shown in Figure 6.8. Five centrifugal zones are recovered, de�ned by the negative values of
the Rayleigh discriminant; the three of them which are placed within the bubble, namely,
Z1, Z2, and Z3, are analyzed. Recalling that criterion (6.3) is only a su�cient condition for
instability, it is possible to point out that, even if no closed streamline has been recovered
along which the Rayleigh discriminant remains negative, the �uid particles which follow
closed streamlines within the recirculation zone, would periodically pass through these
centrifugal zones, so that they could feel the e�ect of the instability, especially close to
the wall where the lowest values of the Rayleigh discriminant are recovered (inZ2). The
large curvature of the streamlines would cause the perturbation to be displaced away from
the centre of the bubble, where the presence of the wall would force it to move in the
spanwise direction, inducing the formation of the roll structures observed in Figure 6.4
(a).

The Rayleigh discriminant has been computed also for base �ows bf2 and bf1, which
have the same Reynolds number of bf3 and a blowing and suction wall-normal velocity of
smaller intensity (see Figure 5.1). The Rayleigh's discriminant contours for the base �ows
bf2 and bf1 are shown in Figure 6.8 (b) and (c), respectively. By comparing Figures 6.8
(a), (b) and (c), one could notice that for smaller bubbles, the spatial extent of the cen-
trifugal zonesZ1, Z2 and Z3 decreases, and the minimal value of�(x ) within the bubble is
found to increase from�3:8 � 10�5 (for bf3) to �6:9 � 10�6 (for bf1). The ampli�cation rate
of modeMS has been computed for all of the base �ows, and is provided in Figure 6.9 as
a function of the minimum value of the Rayleigh discriminant within the bubble. One can
observe that the ampli�cation rate decreases when the Rayleigh discriminant increases,
meaning that a correlation exists between the intensity of the centrifugal mechanism and
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(a)

(b)

(c)

Figure 6.8: Rayleigh's discriminant contours for bf3 (a), bf2 (b) and bf1 (c). The black
line is the separation streamline, whereas the dotted line is the zero discriminant contour.
The three centrifugal zones within the bubble are labelled asZ1, Z2 and Z3, whereas the
centrifugal zones outside the bubble are labelled asZ4 and Z5.
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Figure 6.9: Values of the ampli�cation rate of modeMS versus the minimal value of the
Rayleigh discriminant for base �ows bf3, bf2 and bf1, from left to right.

the onset of modeMS. Finally, it is worth to point out that Gallaire et al. (2007) have
given a proof of the centrifugal origin of the three-dimensional primary instability a�ecting
the separated �ow over a bump. In such a work the authors have computed, by means of
a viscous extention of the WKB method, the net amount of growth rate along the closed
streamline within a separation bubble presenting three centrifugal zones inside the bubble
not satisfying the Rayleigh's criterion. Indeed, it is likely that the same instability mech-
anism could act in the separated �ow here considered, whose centrifugal zones strongly
resemble in shape and location the ones described by Gallaire et al. (2007).

Concerning modeMG, a Gortler analysis has been performed for the streamlines past
the bubble. At this purpose, the formalism of Hall (1982) has been followed, which was
proposed to study the in�uence of the curvature of the wall on the instability dynamics of
a three-dimensional boundary layer. It is straightforward that, in the case under consid-
eration, no curved wall is present, but it has been conjectured that the curvature of the
streamlines past the separation bubble could have a similar e�ect on the instability of the
boundary layer. Thus, a local cylindrical coordinate system (�x; �y; �z) has been de�ned
along a streamline,� G, past the separated zone (see Figure 6.10 (a)), namely:

8
>>>><

>>>>:

�x = � %

�y = (r � %)
p

Re

�z = z
p

Re

;
�
�

�
�6.4

where%is the local radius of curvature,� is the azimuthal coordinate, andr is the radial
one. The variables�y and �z have been scaled with the square root of the Reynolds number
in order to account for the di�erent scaling of the boundary layer coordinates; for the
same reason, the following non dimensional velocities have been de�ned:

(�u; �v; �w) = (u � ; vr

p
Re; w

p
Re);

�
�

�
�6.5

where u� and vr are the velocities along the azimuthal and radial coordinates� and
r , respectively. Since the instability is expected to be steady and three-dimensional, the
perturbation has been considered sinusoidal in the spanwise direction, namely:

(�u; �v; �w; �p) = (~ucos(�z ); ~vcos(�z ); ~wsin(�z ); ~pcos(�z )):
�
�

�
�6.6
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By assuming that the instability has an inviscid nature and that the curvature is small,
one can obtain the linearized equations governing the evolution of a perturbation evolving
on the base �ow( �U; �V ;0) as follows:

@~u
@�x

+
@~v
@�y

+ � ~w = 0
�
�

�
�6.7a
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whereG = 2� �
p

Re=%is the Gortler number, characterizing the in�uence of the curvature
with respect to the viscous e�ects. For computational purposes, the variables�p and �w
have been eliminated. Following Hall (1982), an equation for�u and �v has been recovered
from equations (6.7a), (6.7c), and (6.7d), whereas equation (6.7b) has been left untouched.
The system has been thus reduced to a pair of equations for the variables�u and �v, which
have been integrated marching in the�x direction by a fourth-order-accurate Runge�Kutta
scheme. The space marching has been initialized atx0G = 200. Previous studies (Saric
(1994), Goulpié et al. (1996)) have shown that, in the space marching problem under
consideration, the spatial evolution of the perturbation is strongly dependent on the
initial velocity pro�le imposed at the inlet points. Thus, in order to allow a meaningful
comparison with the results of the global eigenvalue analysis, the inlet wall-normal and
streamwise components of the perturbations have been chosen to be equal to the velocity
pro�le extracted at x = 200 from modeMG computed by the global eigenvalue analysis.

The Gortler equations have been integrated for di�erent values of� , Figure 6.10 (b)
showing the streamwise component of the perturbation for� = 0:17. Such a perturbation
has been found very similar to the global modeMG, which is provided in Figure 6.10 (a)
for � = 0:17, for comparison. The spanwise vorticity perturbation, provided in Figure
6.11, shows that the perturbation obtained by the Gortler model presents the same �at
roll structure of the global modeMG, indicating that the mechanism underlying the onset
of such longitudinal vortex is of the Gortler type. As a further validation, the spatial
ampli�cation of the perturbation has been analyzed by computing the streamwise local
energy

Ex (�x) =
Z �L z

0

Z �ymax

0

�
�u2 + �v2 + �w2

�
d�yd�z:

�
�

�
�6.8

following the streamline� G. For both the Gortler approximation and the global analysis,
the largest value of the spatial energy gainEx (�x)=Ex (x0G ) is recovered slightly down-
stream of the reattachment point, close to the point where the maximum value ofG is
attained, reaching a value close to5:6. Moreover, both solutions present a positive slope
at the outlet of the domain, namely@Ex (�x)=@�x � 0:0345for the Gortler approximation
and @Ex (�x)=@�x � 0:0234for the global perturbation, with � = 0:17. Such a spatial
ampli�cation of the energy on the attached boundary layer induces the generation of
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(a)

(b)

Figure 6.10: Streamwise component of velocity represented over the streamline� G for the
global modeMG (a) and for the perturbation resulting from the space integration of the
Gortler equations (b).

(a)

(b)

Figure 6.11: Spanwise vorticity perturbation represented over the streamline� G for the
global modeMG (a) and for the perturbation resulting from the space integration of the
Gortler equations (b).
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the streamwise vortices shown in Figure 6.10 and 6.11. The maximum value of such an
ampli�cation has been measured at� = 0:19 for the spatially developing perturbation
computed with the Gortler approximation.

6.2.3 Spanwise analysis

Once clari�ed the physical mechanisms connected to the onset of the two steady global
modes under consideration,MS and MG, the in�uence of the spanwise wavenumber,� , on
the ampli�cation rate of such modes is investigated. Several spectra have been computed
for the base �ow BF1, for di�erent values of � . Figures 6.12 (a), (b), (c) and (d) show the
curves of the ampli�cation rate, ! i , versus the spanwise wavenumber,� , for modesMS,
MUS1, MG and MT S1 , respectively. The ampli�cation rate of the modesMS and MUS1 is
shown only for0:03� � � 0:28, whereas, forMG, it is shown for 0:03� � � 0:22. This is
due to the fact that the steady three-dimensional modes change their nature becoming a
complex pair of unsteady modes, when the spanwise length of the domains becomes too
narrow or too large (see Barkley et al. (2002)). It is noteworthy that the ampli�cations
rates of such unsteady modes is considerably lower than the ones of their steady homolo-
gus.
In Figure 6.12 (a), one can notice that modeMS is unstable for0:038� � � 0:22. Such
a mode reaches the maximum ampli�cation rate for� = 0:1 (hereafter called the most
ampli�ed spanwise wavenumber for modeMS, � Smax ). The ampli�cation rate of mode
MUS1 achieves its maximum for the same value of� but, unlike mode MS, it is always
stable, as shown in Figure 6.12 (b). Finally, modeMG presents an higher value of the
most ampli�ed spanwise wavenumber, namely� Gmax = 0:17. Such a discrepancy could
be a consequence of the di�erent nature of the two steady modes, the �rst one (MS)
having an intrinsic origin, the second one (MG) arising from a convective mechanism.
Indeed, it is worth to point out that the peak of the spatial ampli�cation of the pertur-
bation computed with the Gortler approximation was recovered for� = 0:19, which is
not far from the value of � providing the maximal temporal ampli�cation of mode MG.
This is a further validation of the Gortler convective nature of modeMG. Concerning
the growth rate of the most ampli�ed Tollmienn-Schlichting modeMT S1 , Figure 6.12 (d)
provides its variation with � : as expected, the ampli�cation rate of such mode decreases
with � , con�rming the statements of the Squire theorem (Schmid and Henningson (2001)).

The in�uence of the spanwise wavenumber� on the transient ampli�cation of the pertur-
bations is now analyzed. Figure 6.13 shows the curves of the optimal energy gain,G(t),
for � = 0, � = 0:1, � = 0:2 and � = 0:3. The energy gain, which reaches a value of order
3 � 108 in the two-dimensional case, as shown by the solid line in Figure 6.13, has been
found to decrease with� , as shown by the dashed, dotted and dashed-dotted lines pro-
viding the optimal energy gain curves computed by the global model for� = 0:1, � = 0:2
and � = 0:3. One could also observe the presence of the �apping phenomenon (which has
been extensively analyzed in Chapter 4) for� = 0 and � = 0:1, as well as the asymptoti-
cal instability of the steady modeMS for the curves at � = 0:1 and � = 0:2, the second
one showing a lower ampli�cation rate. It is noteworthy that the �apping phenomenon
is not recovered for high values of� , due to the lowering of the convective TS branch of
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the spectrum for increasing spanwise wavenumber. In Figure 6.14 (a) the dependence of
the maximum value of the optimal energy gain on the spanwise wavenumber� is shown.
Although such a parameter decreases with� , the decrease has been found to be very slow
for � < 0:1. Such a behaviour could be due to the coexistence of the convective ampli-
�cation of KH/TS waves, of the lift-up mechanism and of the energy growth due to the
asymptotical instability of modeMS. In particular, for such a large separation bubble, the
energy gain is mostly due to the ampli�cation of KH/TS waves, which reaches the highest
value of spatial ampli�cation when � = 0 (Schmid and Henningson (2001)). On the other
hand, the ampli�cation due to the lift-up mechanism, which is active only when� 6= 0and
increases with the spanwise wavenumber up to� = 0:6 (see Corbett and Bottaro (2000),
as well as the spanwise analysis in the next Chapter), is able to reach an energy gain of
order 102 for an attached boundary layer at the same Reynolds number. An even lower
ampli�cation is reached at short time by the weakly growing unstable modeMS, reaching
at t � 400 (close to the time at which the maximum value of the energy gain is reached,
tmax ) a value of theG(t) of about order101. Such ampli�cation values are very low with
respect to the one due to KH/TS waves, so that an optimal dynamics is recovered for the
KH/TS optimal wavenumber, � = 0. It is worth to notice that, for a separation bubble
in which the two-dimensional ampli�cation reaches a maximum value of the energy gain
comparable to the one due to thelift-up mechanism, an optimal wavenumber greater than
zero would be recovered (see the results in Marquet et al. (2008), for a separation bubble
after a backward facing step).
A similar explanation could be provided concerning the dependence oftmax on the span-
wise wavenumber. Figure 6.14 (b) shows thattmax increases for� � 0:1 and decreases for
greater values of the spanwise wavenumber. Such a trend recalls the one of the ampli�ca-
tion rate of modeMS, suggesting that the increase oftmax for � � 0:1 could be due to the
ampli�cation factor of mode MS, which reaches its maximum for� = 0:1. On the other
hand, tmax decreases for� > 0:1 due to the increasing e�ect of the lift-up mechanism
with respect to the energy growth of KH/TS waves. Indeed, the lift-up mechanism is
associated with lower values oftmax , its optimal time being around 250 for an attached
boundary layer at � = 0:6, as it would be shown in the next Chapter.
In the following section it will be investigated the occurrence of the global modes here
discussed in the non-linear dynamics of the separated �ow under consideration, the �ow
being perturbed by disturbances of di�erent shape and amplitude.

6.3 Dynamics of small amplitude perturbations: the
onset of centrifugal global modes

6.3.1 Two-dimensional perturbations

This section aims at verifying the existence of the modes identi�ed by the global eigen-
value analysis in a non-linear framework and at investigating their role in the transition
mechanism. Non-linear simulations have been performed initializing the computation by
superposing to the base �ow the two-dimensional optimal perturbation with amplitude
A0 = 10�8 . The length of the domain in the spanwise direction has been chosen equal to
the most ampli�ed wavelength of modeMS (L z = 2�=� Smax = 62:8). Figure 6.15 shows

114



6.3. DYNAMICS OF SMALL AMPLITUDE PERTURBATIONS: THE ONSET
OF CENTRIFUGAL GLOBAL MODES

(a)

(b)

(c)

(d)

Figure 6.12: Ampli�cation rate of the unstable modeMS (a), of the unsteady modeMUS1

(b), of the Gortler mode MG (c), and of the Tollmien�Schlichting modeMT S1 (d) versus
the spanwise wavenumber� .
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Figure 6.13: Energy gain curves computed by the global model for� = 0 (solid line),
� = 0:1 (dashed line),� = 0:2 (dotted line) and � = 0:3 (dashed-dotted line).

on a semi-logarithmic scale the time evolution of the normalized energy obtained by the
three-dimensional DNS (solid line) and by a two-dimensional one (dashed-dotted line),
performed with the same parameters. It is worth to notice that fort < 1500 the two
energy gain curves are overlapped, meaning that the ampli�cation dynamics of the per-
turbation remains quasi two-dimensional. In both cases the disturbance initially placed
close to the separation point of the bubble is ampli�ed and convected downstream, result-
ing in a packet of TS waves in the attached zone, as shown in the two previous Chapters.
Some di�erences are recovered in the asymptotic regime, due to the appearance of the
three-dimensional steady weakly-growing mode which has been found to become unstable
at Re = 200. Indeed, looking at the energy gain curve, one can observe that, after the
transient has passed, the perturbation begins to be ampli�ed with an exponential growth
rate. By computing

� i (T ) =
1

2E(T )
dE(t)

dt

�
�
�
�
T

�
�

�
�6.9

at a large time T, one obtains a growth rate of about� i = 0:000463, which is very
close to the one recovered by the global model for modeMS, ! i = 0:000474(the dotted
line in Figure 6.15 shows the growth of the energy theoretically associated with such
an ampli�cation rate). Furthermore, a similar behaviour is recovered by a linearized
DNS, whose results are shown in Figure 6.15 by the dashed line. In such a case, the
appearance of the three-dimensional mode (characterized by the same ampli�cation rate
of the weakly non-linear case) is delayed of about1000time units, so that the perturbation
is continuously damped until t = 2600, except for a weak increase of the energy gain at
t � 1600due to the �apping e�ect. Such a discrepancy between the linear and non-linear
simulation is due to the fact that non-linear interactions of the perturbation at di�erent
frequencies contribute to the onset of the wavenumber associated with modeMS, despite
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(a)

(b)

Figure 6.14: Maximum value of the energy gain (a) and time at which such a value is
reached (b) obtained by the global model versus the spanwise wavenumber� .
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Figure 6.15: Time evolution of the normalized energy computed by a three-dimensional
DNS (solid line), a two-dimensional one (dashed-dotted line), and a the linearized three-
dimensional DNS (dashed line) initialized with the optimal perturbation obtained atRe =
200 and A0 = 10�8 . The dotted line represent the theoretical trend of the ampli�cation
rate of modeMS computed by the global model.

the �ow has been forced with a perturbation having� = 0. It can be argued that, altough
the appearance of the three-dimensional unstable mode is not directly due to a non-linear
mechanism, non-linear interactions seem to accelerate its onset. Such a behaviour will be
investigated in detail in section 6.4.
The perturbation has been extracted from the DNS at several times. Figure 6.16 shows

the spanwise perturbation vorticity iso-surfaces at a very large time,t = 12000. Vorticity
rolls, very similar to the ones of modeMS, can be observed, con�rming that the �ow
perturbed by a small amplitude disturbance tends towards the linearly most ampli�ed
three-dimensional mode, asymptotically. Nevertheless, at small times, the dynamics is
more complex, as it can be observed in Figure 6.17, providing the spanwise velocity
contours in the plane atz = 26. Figure 6.17 (a) shows att = 600 the spanwise component
of the KH and TS waves being convected downstream by the mean �ow. At this time
the dynamics is almost two-dimensional, so that the spanwise component of the velocity
is very small with respect to the wall-normal and streamwise ones. Nevertheless, the
dynamics begins to di�er qualitatively from the purely two-dimensional one when a small
amount of perturbation is "left behind" in the separated zone close to the reattachment
point. Such a spanwise perturbation is convected upstream by the recirculation base �ow
increasing its extension due to the strong non-parallel e�ects which are present in this
region (see Figure 6.17 (b)). Therefore, when the KH/TS wave packet leaves the separated
zone, a residual perturbation is present inside the bubble, which is characterized by two
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Figure 6.16: Iso-surfaces of the spanwise vorticity att = 12000extracted by a three-
dimensional DNS withL z = 62:8 perturbed with the two-dimensional optimal disturbance
of amplitude A0 = 10�8 . The solid line is the separation streamline, whereas dark and
light surfaces represent the0:15and �0:15 values of spanwise vorticity, respectively. The
perturbation has been normalized by its maximum value.

sickle-shaped packets with alternating sign, as shown in Figure 6.17 (c). The shape of such
perturbations could be due to the presence of a negative shear close to the wall, which
stretches the perturbation upstream, as well as a positive shear close to the separation
streamline, stretching the perturbation downstream. Moreover, it is worth to point out
that the shape of such wave packets recalls the one of the most unstable unsteady global
mode, provided in Figure 6.6 (a). The further evolution of the spanwise perturbation in
Figure 6.17 (d) shows that the main part of the wave packet continues to be convected
upstream, whereas a residual part remains close to the reattachment point, although
being stretched upstream. It is noteworthy that this part of the perturbation is placed
in the strong centrifugal zoneZ2 (shown in Figure 6.8 (a)); therefore, it is likely that
such a spanwise perturbation increases in size under the e�ect of the outward decrease
of the momentum close to the wall. Att = 2100 (see Figure 6.17 (e)) the wave packet
placed upstream has decreased its size in the wall-normal direction and has approached
the separation point, whereas the downstream part of the perturbation continues to be
stretched in the streamwise direction, increasing in size. Again, it is worth to point out
that the upstream part of the perturbation is very similar to the second most unstable
unsteady global mode provided in Figure 6.6 (b). Finally, one can observe in Figure 6.17
(f) that at t = 2900 the upstream negative spanwise perturbation has been stretched
along the �rst half of the separation streamline, so that it takes the form of the unstable
three-dimensional modeMS (see Figure 6.3 (b)).

Therefore, it has been found that several global modes appear on the planex � y
during the changeover of the early transient towards the asymptotical dynamics. The
in�uence of the spanwise shape of the perturbation on its time evolution is now inves-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.17: Evolution of the spanwise vorticity in the separated region at the time
instants: t = 600 (a), t = 700 (b), t = 900 (c), t = 1500 (d), t = 2100 (e), t = 2900 (f) on
the planez = 26. The black line is the separation streamline.
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(a)

(b)

(c)

(d)

Figure 6.18: Fourier transform inz of the streamwise velocity extracted from a DNS
initialized by the two-dimensional optimal initial perturbation at the point of greater
ampli�cation within the separated region at the time instants: t = 700 (a), t = 1700 (b),
t = 2500 (c), t = 12000 (d).
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tigated. Indeed, being the spanwise length of the domain chosen as the one giving the
largestampli�cation rate of the most unstable global mode, one could infer that the dom-
inant spanwise frequency would be equal to� Smax (� = 0:1) when non-linear e�ects are
weak, as in the present computations. In order to verify such a possibility, the Fourier
transform in the spanwise direction has been performed at di�erent instants of time at
the streamwise and wall-normal position whithin the separated region where the pertur-
bation of highest amplitude is localized. Figures 6.18 (a) and (b) show a wide spectrum
of frequencies for small times (t= 700 and t = 1700, respectively), due to the interactions
of the several modes a�ecting the dynamics of the �ow, as previously shown. At larger
times (see Figures 6.18 (c) and (d) fort = 2500 and t = 12000, respectively), the spectrum
results to be narrower, and dominated by the most ampli�ed wavenumber� Smax , since the
asymptotical dynamics is dominated by the occurence of the unstable modeMS. Most
importantly, one can notice in Figures 6.18 (a) and (b) that fort < 2500the dominant
frequency is not� Smax but its double, � = 0:2. Such a result means that at small times the
spanwise perturbation is essentially composed by packets having a spanwise wavelength
smaller than the most ampli�ed one, as shown in Figure 6.19 (a) by the iso-surfaces of the
spanwise velocity component, fort = 700. These packets, localized in the spanwise and
streamwise direction, slowly increase their size asymptotically in time (see Figure 6.19 (b)
for t = 1500), approching the spanwise wavenumber� Smax .

Figure 6.20 (a) shows the spanwise perturbation vorticity iso-surfaces att = 2500 for
the initial optimal perturbation of amplitude A0 = 10�8 . It is possible to observe that
some vorticity rolls are present in the separated region, together with elongated structures
in the attached zone. The latter ones recall the streamwise vortices associated with the
convective modeMG (one can compare with Figure 6.11), although a small streamwise
oscillation of the structures is observed. Such an oscillation is due to the vortex shedding
induced by the high sensitivity of the �ow to the noise generated by the numerical errors
(see the discussion in Chapter 5), and it can be observed because of the low amplitude
of the perturbation. In fact, at t = 2500, the perturbation has been only slightly am-
pli�ed by the asymptotic mechanism, and the vorticity perturbation is of order 10�11 ,
just one order of magnitude greater than the numerical residual. Indeed, if the optimal
perturbation is initialized with a larger amplitude, A0 = 10�6 , the elongated structures
recall exactly the structure of modeMG, as shown in Figure 6.20 (b). Thus, it is likely
that such a mode dominates the dynamics during the transient inducing in the frequency
spectrum a dominating wavenumber close to0:17. Indeed, althoughMG is asymptotically
stable, it could be excited during the transient by means of non-linear interactions of the
modes developing and amplifying into the �ow. Nevertheless, due to the asymptotical in-
stability of mode MS, at a larger time the structures having smaller wavelength begin to
merge each other, resulting in rolls of spanwise vorticity alternated at the most ampli�ed
wavenumber� Smax , so that modeMS become the dominant one.
In order to verify such an hypothesis on the excitation of the Gortler mode by means of
linear ampli�cation of mode MS and non-linear interactions among the perturbations, a
DNS has been performed in which the spanwise domain length has been chosen equal to
the most ampli�ed wavelength for the onset of the Gortler mode (L z = 2�=� Gmax = 37).
In order to perform a comparison with the results shown in Figure 6.18, an initial pertur-
bation identical in shape and amplitude to the one previously used has been superposed
to the base �ow. A Fourier transform in z of the streamwise velocity signal has been
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(a)

(b)

Figure 6.19: Blow up in the separated region of the iso-surfaces of the spanwise velocity
at t = 700 (a), where the dark and light surfaces represent the7 � 10�11 and �7 � 10�11

value, respectively, and att = 1500 (b), where the dark and light surfaces represent the
2 � 10�11 and �2 � 10�11 value, respectively. The black line is the separation streamline.
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performed at the point of greater ampli�cation whithin the separated region att = 700
and t = 1700. As shown in Figure 6.21, the dominant frequency is always coincident to
the Gortler most ampli�ed wavenumber (� = � Gmax = 0:17). It is worth to notice that, in
the previous case (forL z = 2�=� Smax = 62:8) the dominant wavenumber was the double
of the minimum one allowed in the �ow (� = 0:1), whereas forL z = 2�=� Gmax = 37 it
is equal to such minimum, which is� = 0:17. Thus, in both cases the wavenumber that
dominates the �ow during the transient is very close to the most ampli�ed wavenumber
for the onset of the Gortler mode, corroborating the hypothesis that such mode has indeed
a role in the transient process leading to the asymptotic self-sustained ampli�cation of
modeMS.

6.3.2 Three-dimensional perturbations

The dynamics of the �ow has been analysed with respect to a three-dimensional pertur-
bation of small amplitude. The optimal spanwise-modulated perturbation computed by
the global model for� = � Smax has been superposed to the base �ow with an amplitude
A0 = 10�8 . The transient evolution of the perturbation does not present remarkable
di�erences from the one observed in the previous simulations, except for the spanwise-
modulation of the TS waves convected by the separation bubble, and the lower peak value
of the energy gain curve. The Fourier transform in the spanwise direction of the stream-
wise component of the velocity at the point of maximum ampli�cation within the bubble,
is shown fort = 700 and t = 4700 in Figures 6.22 (a) and (b), respectively. In the early
transient phase preceeding the onset of modeMS, the dominant spanwise wavenumber
remains the one at which the �ow has been perturbed, which is equal to the most am-
pli�ed wavenumber for modeMS. Surprisingly, at sligthly larger times (approximately
for 1000< t < 6000), the dominant wavenumber doubles, as shown in Figure 6.22 (b)
for t = 4700. Such a behaviour could not be ascribed to non-linear e�ects or secondary
instability of the growing waves, due to the very low amplitude of the perturbations at
such time. In fact, considering that an initial perturbation of magnitudeA0 = 10�8 has
been used to initialize the DNS, and that att = 4700 an ampli�cation of about 6:8 has
been reached, one could conclude that at such times non-linearity does not play any role.
The same conclusion can be drawn about secondary instability, which is usually triggered
when perturbations reach a �nite amplitude. Thus, as in the previous case, this behaviour
has to be ascribed to some linear mechanism. Indeed, the dominating wavenumber, al-
though di�ering from the initial-perturbation one, is very close to the most ampli�ed MG

one, and is found to dominate the transient dynamics �nally leading to the formation
of streamwise vortices recalling modeMG, as in the previously discussed case. Such re-
sults con�rm the important role of Gortler mode in the self-sustained process leading to
asymptotical instability of the mode MS, being able to arise in the �ow even when the
wavenumber of the initial perturbation is equal to� Smax . The same dynamics is observed
in simulations initialized by the same perturbation at a larger amplitude,A0 = 10�6 ,
altough some di�erences due to non-linear e�ects are observed.
On the other hand, a di�erent behaviour is recovered when the base �ow is initialized
with the optimal asymptotic initial condition estimated by the global model at a large
time, namely, T = 5000 for � = 0:1, shown in Figure 6.23. It is known that the optimal
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(a)

(b)

Figure 6.20: Blow-up of the shaded contours of the spanwise vorticity extracted from
a three-dimensional DNS initialized by the optimal initial perturbation with amplitude
A0 = 10�8 (a) and with amplitude A0 = 10�6 (b) at z = 42 and t = 2500. The
perturbation has been normalized by its maximum value.
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(a)

(b)

Figure 6.21: Fourier transform inz of the streamwise velocity extracted from a DNS
initialized by the two-dimensional optimal initial perturbation at the point of greater
ampli�cation whithin the separated region for L z = 2�=� Gmax = 37 at the time instants
t = 700 (a), t = 1700 (b).

(a)

(b)

Figure 6.22: Fourier transform inz of the streamwise velocity extracted from a DNS
initialized by the optimal initial perturbation for � = 0:1 at the point of greater ampli�-
cation whithin the separated region forL z = 2�=� Smax = 62:8 at the time instants t = 700
(a), t = 4700 (b).
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Figure 6.23: Contours of the spanwise velocity component of the optimal perturbation
computed by the global model forT = 5000 and � = 0:1.

asymptotical initial condition leading an unstable mode to asymptotical growth, usually
having the same form of its adjoint counterpart, is able to optimally induce its onset
(for instance, see Marquet et al. (2009)). In fact, the Fourier spectra computed in the
spanwise direction at di�erent instants of time is always dominated only by the most
ampli�ed wavenumber � = 0:1. Thus, it could be inferred that the onset of the Gortler
modes depends on the spatial structure of the perturbation.
In particular, the mechanism of selection of modesMS and MG could be linked to some
intrinsic features of the �ow, such as its structural sensitivity. Giannetti and Luchini
(2007) have discussed how �nite amplitude perturbations present into the �ow could in-
duce modi�cations of the Navier-Stokes operator; every mode could thus be di�erently
a�ected by such modi�cations, depending on its zones of maximum structural sensitiv-
ity. The sensitivity of an eigenvalue! to a perturbation of the operator � A is given by
Giannetti and Luchini (2007):

�! = "
(q̂+ ; � A � q̂)
(q̂+ ; B � q̂)

;
�
�

�
�6.10

where q̂ is the eigenvector associated with! , and q̂+ is its adjoint counterpart. The
authors demonstrate that�! is always smaller than:

�(x; y ) =
jj q̂jj jj q̂+ jj

Rxout

x in

RL y

0 q̂ � q̂+ dxdy
;

�
�

�
�6.11

where jj � jj indicates the modulus of the vector. Thus, the sensitivity vanishes in regions
where either the direct global mode or the adjoint global mode vanishes; whereas, the
regions where� is greater than zero may be identi�ed as the wave-maker regions. Such
regions have been identi�ed for both modesMS and MG and are provided in Figures
6.24 (a) and (b), respectively. One could observe that the sensitivity region associated
with mode MS is localized mainly inside the recirculation bubble, whereas, for mode
MG it is localized in the shear layer. Thus, it is possible to conclude that KH waves
being convected through the shear layer of the bubble, like the ones generated by the
optimal initial perturbation, would excite the MG mode. Instead, a perturbation whose
energy is distributed over all the recirculation zone (like the optimal perturbation for
T = 5000 and � = 0:1) would induce the onset of modeMS. Such a result could mean
that in the linear regime a mechanism exists for the onset of modeMS which does not

127



CHAPTER 6. THE ONSET OF THREE-DIMENSIONAL CENTRIFUGAL
GLOBAL MODES IN A SEPARATED BOUNDARY LAYER

(a)

(b)

Figure 6.24: Contours of the� parameter estimating the structural sensitivity of modes
MS (a) and MG (b).

depend from the excitement of the Gortler mode, but that usually such a mechanism is
skipped because it is not the one leading to the largest energy ampli�cation, and mode
MG is often observed during the transient leading to modeMS. Therefore, a perturbation
placed at the upstream part of the bubble leads to an energy ampli�cation through the
KH mechanism; transiently evolves in the form of TS waves and unsteady wave packets
recalling modesMUS; consequently excites the Gortler modes and �nally takes the form
of modeMS.
The conjecture here discussed on the role of modeMG will be analyzed in detail in the
following section, dealing with the dynamics of large amplitude perturbations.

6.4 Dynamics of large amplitude perturbations: pri-
mary and secondary transition

Figure 6.25 shows the energy gain provided by a DNS initialized by the two-dimensional
optimal disturbance with an amplitude A0 = 10�4 . As one can observe, two zones of
transition are identi�ed (enclosed by the dashed lines, hereafter referred as primary and
secondary transition). The �rst one, for 400 < t < 1000, is transient, and is due to the
strong spatial ampli�cation of KH/TS waves. For t > 1000 a relaminarization occurs,
followed by the onset of modeMS. At t > 8000, a self-sustained cycle of transition
occurs, which is due to the presence of the asymptotically unstable modeMS, although
at t � 10000, t � 11500, t � 13500, t � 19500the perturbation is found to decrease
temporary, a�ecting the energy gain curve with a low-frequency modulation. In the
following, the dynamics of the perturbation for400< t < 1000and for t > 8000will be
analyzed in detail.
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Figure 6.25: Energy gain obtained by DNS for the initial optimal perturbation with
amplitude A0 = 10�4

6.4.1 K-type transition

Figures 6.26 (a), (b), (c) and (d) show the streamwise velocity contours att = 300, t = 400,
t = 500 and t = 600, respectively. At t = 300, the dynamics is similar to the one recovered
by a two-dimensional computation in the case of a large-amplitude initial perturbations,
shown in Chapter 4. A convectively ampli�ed two-dimensional wave packet is identi�ed in
the attached zone, which is the result of the excitement, by means of the high sensitivity
of the base �ow, of a local spatial instability (see Chapter 4). As shown in Figure 6.26 (b),
such a wave packet is convected downstream and is ampli�ed until non-linear interactions
kick in, introducing a modulation in the spanwise direction. Some subharmonics of the
dominant wavelength are recovered also in the streamwise direction (see Figure 6.26 (c)
at x = 380). At the same time, another wave packet is created and shed by the bubble, as
shown in Figure 6.26 (d), which undergoes an irregular evolution. Therefore, an unsteady
behaviour is established in the attached zone, which highly resembles the scenario of
the K-type transition, which has been discussed in Chapter 2. In particular, regions of
high wall-normal shear can be identi�ed, which are associated with strong velocityspikes,
shown in Figure 6.27 by the isolines of the spanwise-vorticity att = 1000. Such results
strongly recall the ones provided by Rist and Maucher (1994) and Rist and Fasel (1995)
for the transition scenario via secondary instability of TS waves. Indeed, the TS packets
convected by the separation bubble experience secondary instability and transition via
the formation of �-vortices, which are often recovered in correspondence of the velocity
spikes in the late stage ofK -type transition. Such vortical structures have been identi�ed
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here using the iso-surfaces of the Q-criterion, i.e., the positive values of the quantity

Q =
1
2

(jj
jj 2 � jjS jj 2);
�
�

�
�6.12

S being the rate-of-strain tensor and
 the vorticity tensor (Hunt et al., 1988). In Figure
6.28, showing the Q-criterion iso-surfaces att = 600, two pairs of �-vortices are recovered.
They are followed by a second pair of�-vortices (not shown) aligned with the �rst one,
con�rming that the primary transition is a typical K -type transition. Finally, at such low
Reynolds number, transition via TS waves is not sustained, so that, fort > 1000, the �ow
relaminarizes.

It is noteworthy that a similar scenario has also been recovered when the �ow is per-
turbed by a time-continuous three-dimensional random white noise at the inlet points, as
it may happen in real experiments, where the inlet �ow may be a�ected by some noise. In
such a case, theK -type transition is sustained also for disturbances of smaller amplitude.
Figure 6.29 shows the energy gain curve provided by a three-dimensional computation con-
tinuously perturbed at the inlet with random disturbances of amplitudeA0 = 10�6 . One
can observe that the �ow does not relaminarize, di�erently from the case of an impulsively
injected perturbation (see Figure 6.25), but directly transitions toward turbulence. Since
such a transition scenario is induced by the production and convection of KH/TS waves,
it is straightforward to investigate about the existence, in a three-dimensional framework,
of a typical two-dimensional mechanism such as the �apping frequency. In order to shed
light on such issue, a Fourier transform in time has been performed of the energy signal
provided by the three-dimensional computation shown in Figure 6.29. As shown in Figure
6.30, several low frequencies are recovered, the lowest one being close to the value of the
primary �apping frequency disscussed in Chapter 4. Thus, as anticipated by the global
instability analysis (see Figure 6.13), it seems that also in a three-dimensional framework
the interaction of backward-forward induced KH/TS waves induces a low-frequency beat-
ing, which represents a robust feature of separated boundary-layer �ows.
In the case of a perturbation of lower amplitude ,A0 = 10�7 , a partial relaminarization is
observed (the energy gain temporary decreases fort � 1000), although TS waves are found
to be continously convected and amplifyed by the separated zone, due to the continous
forcing at the inlet, and an unsteady mechanism of vortex shedding is established. Thus,
it is possible to infer that the second type of transition arising at large times as a conse-
quence of the onset of modeMS, would not be recovered in an experimental framework
in presence of high levels of noise, since transition would directly occurs via theK -type
route. This could explain the di�culties arising in recovering the three-dimensional mode
MS in experiments, its onset being observed only in low-levels-of-noise environments (see
Beaudoin et al. (2004), for instance).

6.4.2 Transition via Gortler modes breakdown

In this Section, the secondary transition at large times will be analyzed in detail. In Fig-
ure 6.25 one can observe the onset of modeMS for t > 2000and its successive saturation
(the slope of the energy gain curve decreases with time for2000< t < 8000), followed by
an unsteady behaviour fort > 8000. Figures 6.31 (a) and (b) show two snapshots of the
spanwise vorticity iso-surfaces att = 8500 and t = 9500, respectively. At t = 8500, one
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(a)

(b)

(c)

(d)

Figure 6.26: Streamwise velocity contours on the planez = 25 extracted from a DNS
initialized by the initial optimal perturbation with amplitude A0 = 10�4 at t = 300 (a),
t = 400 (b), t = 500 (c), and t = 600 (d).

Figure 6.27: Contours of the spanwise vorticity extracted from a DNS initialized by the
initial optimal perturbation with amplitude A0 = 10�4 at t = 1000 in the plane z = 25.
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Figure 6.28: Iso-surfaces of the Q-criterion identifying vortical structures extracted from
a DNS initialized by the initial optimal perturbation with amplitude A0 = 10�4 at t = 600

Figure 6.29: Evolution in time of the energy gain obtained perturbing the �ow at the
inlet points by a three-dimensional random white noise of amplitudeA0 = 10�6 (solid
line) and A0 = 10�7 (dashed line).
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Figure 6.30: Fourier trasnform in time of the energy signal obtained perturbing the �ow
at the inlet points by a three-dimensional random white noise of amplitudeA0 = 10�6 .

can observe roll structures, spatially extended in the streamwise direction, which strongly
recall modeMG, shown in Figure 6.4 (b). Later, the �ow is clearly transitioning toward
turbulence, since an unsteady behaviour begins to be established. In particular, transi-
tion occurs in a narrow region localized in the spanwise direction, although extended in
the streamwise direction from the reattachment point throughout the attached boundary
layer. Figures 6.32 (a) and (b) provide the streamwise velocity perturbation contours at
t = 8500 on the planesz = 36 and z = 26, respectively. The shaded contours have been
obtained by the DNS, whereas, the solid-line contours have been obtained by the global
eigenvalue analysis. Strong similarities can be observed between the two solutions; in
Figure 6.32 (a) a great part of the energy is concentrated at the exterior of the recircu-
lation bubble, indicating the presence of a structure very similar to modeMG. Such a
structure follows the high shear region along the separation streamline, and develops in
a spatially extended streamwise vortex. The presence of modeMG implies the selection
of the most ampli�ed Gortler spanwise wavenumber which is larger than the one asso-
ciated with mode MS, as previously demonstrated, explaining the concentration of the
vorticity perturbation in a narrow zone in the spanwise direction. It is noteworthy that
unsteadiness is recovered on a narrow spanwise region of similar extent, also when a larger
spanwise dimension of the computational domain is chosen.
In Figure 6.32 (b) one can observe some structures recalling modeMS, the perturbation
being mostly located within the bubble. Thus, as shown by the contours of Figures 6.32
(a) and (b), both modes,MS and MG, are recovered within the �ow, and play a role in
the transition mechanism. In particular, it is possible to classify modeMS as aresonator
(see Marquet et al. (2008) and Chapter 2) placed within the separated zone, which is able
to generate a self-sustained perturbation cycle; whereas, modeMG can be considered the
ampli�er of the perturbations produced by the resonator, so that transition occurs via
a convective mechanism resulting from the interaction of both modes. In particular, the
Gortler mode, although asymptotically stable, is able to strongly spatially amplify the
perturbations sustained within the separation bubble byMS, so that disturbances reach

133



CHAPTER 6. THE ONSET OF THREE-DIMENSIONAL CENTRIFUGAL
GLOBAL MODES IN A SEPARATED BOUNDARY LAYER

large amplitudes leading the �ow to unsteadiness. Moreover, the cycle of interaction be-
tween the two modes appears to be promoted by non-linear e�ects, due energy saturation,
which does not allow modeMS to grow asymptotically. Indeed, for large-amplitude per-
turbations, � Gmax remains among the dominating wavenumber at large times, although
the spectrum is wider than in the case of small amplitude perturbations, as shown by
Figure 6.33 providing the Fourier transform in the spanwise direction of the streamwise
velocity at t = 12000. Such results stress the crucial role of modeMG in the transition
dynamics, and con�rm the role of non-linear interactions in the onset of modeMS via the
excitation of the Gortler modes.
In order to investigate in which way the Gortler mode, feeded by the steady resonator
MS, experiences transition, the streamwise perturbation velocity is reported in Figure
6.34 on the planey = 1 at several instants of time. Figure 6.34 (a) shows streamwise
elongated structures att = 4500 due to the onset of modesMS and MG. At t = 8500 (see
Figure 6.34 (b)) the elongated structures having positive streamwise velocity (red con-
tours) split into two parts in the spanwise direction, followed by an injection of negative
streamwise velocity (blue contours) from the reattachment point along the region between
the two high-speed elongated structures. Therefore, three pairs of streamwise vortices are
created inside the attached zone. One could conjecture that this is due to non-linear
e�ects which are able to produce subharmonics of the dominant wavenumber. Moreover,
it could also be conjectured that, since modesMS and MG present a di�erent wall-normal
and spanwise distribution of the regions with positive and negative spanwise vorticity,
the interaction of these modes could easily induce the generation of spanwise-alternated
zones of positive and negative spanwise vorticity, as shown in Figure 6.31. Att = 9500,
the elongated structures seem to experience secondary instability (Figure 6.34 (c)), due
to the close interaction of low- and high-momentum regions in the spanwise and wall-
normal direction. In particular, the low-velocity structure at the middle of the spanwise
domain experiences symmetric streamwise oscillations. Secondary instability suddenly
evolve into a more complex pattern, the unsteadiness spreading out through the attached
boundary layer, as shown in Figure 6.34 (d). Structures of smaller scale are recovered
into the �ow, which are spread out in the spanwise direction. Eventually, such a pattern
does not evolve into turbulence, but the perturbation temporarily decreases and the �ow
seems to partially relaminarize, as shown in Figure 6.34 (e). Such a phenomenon is as-
sociated with the temporary decrease of the energy already noticed in Figure 6.25. This
phenomenon seems to be similar to the �apping phenomenon, which has been recovered
in a linear three-dimensional framework by the global model in section 6.2.3. A power
density FFT transform has been performed of the energy signal multiplied by a Hamming
window-function on a sampling period fromt = 8500 to t = 26500. The dominant wave
number in time has been found rather close to the low-frequency one recovered by the
global model (! = 0:0045by FFT, ! = 0:006by the global model). Nevertheless, during
the secondary transition here analysed, no evidence of TS/KH waves is found, so that the
modulation on the energy gain could be due to a di�erent mechanism.
Going back to the time evolution of the perturbation, at larger times, a further increase
of the energy, associated with a strong unsteady behaviour of the �ow is observed, as
provided in Figure 6.34 (f) for t = 12000. In order to investigate the primary cause of
the breakdown of such elongated structures, the iso-surfaces of the Q-criterion (de�ned in
the previous section), have been analyzed att = 10000, when the Gortler rolls are about
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(a)

(b)

Figure 6.31: Iso-surfaces of spanwise vorticity att = 8500 (a) and at t = 9500 (b), where
the dark and ligth surfaces represent the�0:03 and 0:03 values. The solid line is the
separation streamline
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(a)

(b)

Figure 6.32: Contours of streamwise velocity of the perturbation extracted by the DNS
at t = 8500 and z = 36 (shaded contours) and of the modeMG (solid lines) (a); of the
perturbation extracted from DNS at t = 8500 and z = 26 (shaded contours) and of mode
MS (solid lines) (b). In both cases the solid lines and the shaded contours represents14
contours from �1 to 1, where the perturbations have been normalized with respect to
their maximum value.

Figure 6.33: Fourier transform in the spanwise direction of the streamwise velocity ex-
tracted by a DNS initialized by the optimal initial perturbation with amplitude A0 = 10�4

at t = 12000, x = 250 and y = 1.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.34: Streamwise component of velocity aty = 1 and t = 4500 (a), t = 8500
(b), t = 9500 (c), t = 10500 (d), t = 11000 (e), t = 12000 (f), extracted from a DNS
initialized with the optimal perturbation of amplitude 10�4 . The dashed lines represents
the separation and reattachment abscissae.
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Figure 6.35: Power density FFT transform in time of the energy signal fromt = 8500to
t = 26500.

Figure 6.36: Iso-surfaces of the vortical structures identi�ed by the Q-criterion (light
surfaces) and of negative streamwise perturbation (dark surfaces) att = 10000 (surfaces
for Q = 6, u = �0:2).
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to breakdown. As shown in Figure 6.36 (a) by the light iso-surfaces, a series of hairpin
vortices are clearly identi�ed at this stage, all of them presenting a low-momentum region
between their legs (the blue surface represents a negative streamwise perturbation). Evi-
dence of hairpin structures have been experimentally (Swearingen and Blackwelder, 1987,
Peerhossaini and Wesfreid, 1988) and theoretically (see Yu and Liu (1994), for instance)
found for a quasi-varicose secondary instability of Gortler vortices. Figure 6.37 shows the
shaded contours of the streamwise component of perturbation att = 10000 on the plane
x = 260. One can observe the mushroom-like structure typical of non-linearly saturated
Gortler vortices which is distorted on the peak of the low-speed region as well as on both
sides of the stem region. Such regions correspond to the ones where the varicose secondary
mode computed by Yu and Liu (1994) for a pair of non-linearly saturated Gortler vortices
attains its maximum value. The authors found that the varicose secondary instability of
Gortler vortices is mainly due to the Reynolds stress-conversion mechanism associated
with the wall-normal rate of strain @U=@yof the base �ow, whereas sinuous modes are
mostly associated with the spanwise rate of strain@U=@z. It is so likely that, in the
considered case, the presence of alternated Gortler vortices in the wall-normal direction
(a feature of both modesMS and MG) induces a strong wall-normal shear, generating
varicose oscillations and the subsequent hairpin vortices which are the primary cause of
the secondary transition in the considered �ow.
Such an hypothesis has been veri�ed by extracting snapshots of the perturbation velocity
and vortical structures at di�erent instants of time when the energy of perturbations is
about to rapidly increase, namely fort � 9000(see Figure 6.25). Figures 6.38 (a), (b) and
(c) provide the low and high speed streaks (blue and light blue surfaces, respectively) and
the vortical structures (yellow surfaces) fort = 9000, t = 9100 and t = 9300, respectively.
The vectors are shown on the plane crossing the vortical structure between the high- and
low-speed elongated structure (z= 28:5) for t = 9000, t = 9100, and on the plane crossing
the low-speed streak and the head of the hairpin (z = 32:5) for t = 9300. The dashed
line in Figure 6.38 (a) shows that a shear layer is created by the vertical interaction of
the low- and high-speed regions, which is almost parallel to the wall. A streamwise vor-
tex can be observed between the two elongated structures and in correspondence with
such a shear layer. A second vortical structure is also present on the opposite �ank of
the low-momentum zone (not shown). Att = 9100, the elongated vortex is broken into
smaller pieces by the wall-normal oscillations of the low-speed streak due to its secondary
instability, as shown in Figure 6.38 (b). Thus, several inclined shear layers are created
(only two of them are shown by the dashed lines in Figure 6.38 (b)), all of them generated
by the interaction of the low- and high-momentum regions. Att = 9300, the inclined
vortices at the two �anks of the low-speed region are found to connect through vortical
regions called the 'heads' of the hairpin, which are represented by the black circles in
Figure 6.38 (c). Finally, a train of hairpin vortices in streamwise succession is generated,
leading the �ow to unsteadiness.
Thus, the present computations have shown that a secondary scenario of transition exists
in a separated boundary layer �ow at a low level of noise, which involves the breakdown
of Gortler vortices and the generation of hairpin-like structures. It has been observed
that the hairpin vortices are induced by the wall-normal shear layer present between the
positive and negative Gortler vortices, validating the hypothesis that unsteadiness in this
con�guration is due to the secondary varicose instability of such elongated structures.

139



CHAPTER 6. THE ONSET OF THREE-DIMENSIONAL CENTRIFUGAL
GLOBAL MODES IN A SEPARATED BOUNDARY LAYER

Figure 6.37: Shaded contours of the streamwise component of perturbation and stream-
lines extracted by DNS att = 10000 on the plane atx = 260.

6.5 Discussion of the results

In this chapter the role of global centrifugal modes on the instability dynamics and the
successive transition of a separated boundary layer �ow has been investigated. The global
eigenvalue analysis has been used in order to identify the three-dimensional centrifugal
modes having the highest ampli�cation rate. Among the others, two steady modes have
been mostly analyzed, the unstable modeMS and the stable oneMG. A Rayleigh criterion
for MS and a Gortler analysis forMG have shown that these have both a centrifugal origin,
the former due to an intrisic mechanism due to the curvature of the closed streamlines
within the bubble, the latter due to a convective mechanism of Gortler type on the
streamlines past the recirculation.
By means of DNS the onset of such centrifugal modes in the dynamics of the �ow has
been investigated, with respect to small or large amplitude perturbations. Both modes
MS and MG have been recovered in the �ow when it is perturbed with small amplitude
perturbations. In particular, by means of a structural sensitivity analysis, it has been
shown that the stable modeMG could be excited by the convection of KH/TS waves
along the shear layer, which a typical mechanism inducing a strong transient energy
ampli�cation in the considered separation bubble.
In the case of large amplitude initial perturbations, two di�erent scenarios of transition are
observed. The �rst scenario, which strongly recalls the K-type transition, is transient and
due to the strong ampli�cation and secondary instability of KH/TS waves. The second
one, which is asymptotical and recovered for large times, is due to a convective mechanism
resulting from the interaction of both modesMS and MG. In particular, it has been
observed that a self-generation cycle of the perturbations is established; modeMS has the
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(a)

(b)

(c)

Figure 6.38: Surfaces of positive and negative streamwise velocity (dark and gray surfaces
for u = 0:1 and u = �0:1, respectively) and of vortical structures represented by the
Q-criterion at (a) t = 9000 (light surface for Q = 5), (b) t = 9100 (for Q = 5) and (c)
t = 9300 (for Q = 20).
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role of aresonator, placed within the separated zone, which is able to continuously sustain
perturbations on the shear layer, exciting modeMG which behaves as anampli�er of the
perturbations produced by the resonator. Thus, Gortler rolls on the attached boundary
layer are created and sustained, which undergo secondary varicose instability due to the
wall-normal shear induced by the interaction of low- and high-momentum regions. Such
mechanism induces the formation of a train of hairpin vortices in streamwise succession,
which are often observed in the presence of Gortler vortices, leading the �ow to transition.
Thus, global and convective centrifugal modes have shown to play an important role in
the destabilization and large-time transition of the separated �ow under consideration.
The scenario of transition via breakdown of Gortler rolls has been found to involve the
formation of hairpin vortices in streamwise succession, which are a recurrent structure in
transitional boundary layer �ows (see Wu and Moin (2009)).
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7
Three-dimensional optimal localized

perturbations in an attached boundary layer

In the previous Chapters it has been investigated which kind of perturbation most easily
brings a �at-plate separated boundary-layer �ow on the verge of turbulence. It has been
found that the most ampli�ed disturbance in such a �ow is a wave packet which tran-
siently grows, while travelling downstream at the group velocity; for �nite amplitudes, it
could experience secondary instability inducing a K-type transition at small times.
For attached boundary layers, the perturbations inducing the maximum energy ampli�-
cation have been computed in the eighties by means of local methods (see Corbett and
Bottaro (2000), for instance); local optimal perturbations have been found to consist of
pairs of counter-rotating streamwise vortices, capable to elicit streamwise streaks by the
lift-up e�ect (Landahl (1980)). If growth is su�cient, such elongated structures could ex-
perience secondary instability and breakdown, due to the in�ection of the velocity pro�les
in their interaction zone (Schoppa and Hussain (2002)).
Nevertheless, the local optimal perturbation concept has the limitation of focusing onto a
single wavenumber/frequency at a time, plus that of neglecting non-linear e�ects. When a
direct simulation is performed to assess the e�ectiveness of such perturbations in trigger-
ing transition, suboptimal disturbances are found to be much more e�cient than optimals
(Biau and Bottaro (2009)). Indeed, in practical cases boundary layers undergo transition
by receptively selecting and amplifying exogenous disturbances, which are often localized
and/or characterized by a wide spectrum of frequencies. Thus, it makes sense to inquire
on the initial spatially localized �ow patterns which most easily amplify and cause break-
down. However, nothing has been done so far to identify such initial localized states which
are able to induce the formation of a turbulent spot.
In this Chapter the initial localized disturbances capable to provoke breakdown to turbu-
lence e�ectively in a boundary layer are identi�ed. The aim is to optimize not simply an
initial state (at x = 0 or t = 0) characterized by a single wavenumber and/or frequency,
but a wave packet, localized in the streamwise direction (and eventually also of limited
spanwise extent). Direct-adjoint iterations have been used on a non-parallel boundary-
layer �ow in a localized domain, with no assumption on the shape and the frequency
spectrum of the perturbation in all directions. To assess whether the optimal localized
�ow state is e�ective in provoking breakdown, direct numerical simulations are then per-
formed, highlighting the importance of non-linear e�ects which lie at the heart of the
origin of a turbulent spot.
This part of the thesis has been accepted for publication in the Journal of Fluid Mechanics
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in January 2010.

7.1 Problem formulation

An attached boundary layer �ow is here considered, evolving on a �at plate. Several
rectangular computational domains are employed, the reference one havingL x = 400,
L y = 20 and L z = 2Z = 10:5. The inlet is placed atx in = 200 from the leading edge of
the wall, whereas the outlet of the reference domain is placed atxout = 600.
For the base �ow computation and the DNS, at inlet points, a Blasius boundary�layer
pro�le is imposed for the streamwise and wall-normal components of the velocity vector,
and the spanwise component is set to zero. At outlet points, a standard convective
condition is employed. At the bottom wall, the no-slip boundary condition is prescribed.
At the upper boundary, the wall-normal velocity component of the Blasius pro�le is
imposed, whereas the spanwise component and the vorticity are set to zero. Finally, in
the spanwise direction, periodicity is imposed for the three velocity components. Most of
the computations have been carried out atRe = 610.
For the direct-adjoint computations, a fringe region of lengthL f = 90 is adopted for the
computations on the reference domain, which has been described in Section 3.4. For the
solution of the linearized Navier�Stokes equations, the reference computational domain
is discretized by a501� 150� 41 Cartesian grid stretched in the wall-normal direction
(the height of the �rst cell close to the wall is equal to0:1, whereas the lengths of the
cell in the x and z direction are 0:98 and 0:25, respectively). In order to ascertain that
such a grid is su�ciently �ne to accurately describe the linear dynamics of the considered
�ow, computations have been performed using a801� 200� 61 grid, and the results have
been found essentially unchanged. Non-linear simulations have been performed using a
�ner grid ( 801� 200� 121) chosen in order to resolve also the small scales of turbulence.
Moreover, the reference physical domain is increased toL x = 490, to allow for a longer
development of turbulent structures; this is achieved by replacing the fringe region with
the convective boundary condition. A longer domain can thus be studied at a reduced
computational cost.
Concerning the global model, the problem (3.27) is discretized employingN = 1100
modes. The modes are discretized usingnx = 230 collocation points in the x-direction
and ny = 47 collocation points in y-direction.

7.2 The linear optimal dynamics

Direct-adjoint computations are carried out atRe = 610, for a domain with dimensions
L x = 400, L y = 20, L z = 10:5, where the value ofL z is selected in order to obtain
the largest ampli�cation, as shown in Section 7.2.2. The optimal energy gain,G(t), is
found to reach, at the chosen convergence levelerr = 10�5 (see the convergence study in
Appendix B), a maximum of about736, at time Tmax � 247. Such a value is greater than
that found by a local parallel approach at the same Reynolds number.

In order to get some insight onto the ampli�cation mechanism, the evolution of the
optimal perturbation in time is analyzed. In �gure 7.1 the initial (at t = 0) optimal
perturbation on the plane z � y for a given streamwise position,x = 450, is depicted.
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Figure 7.1: Optimal initial perturbation on the x = 450plane for Re = 610. The vectors
represent thev and w components whereas the shading is relative to the normalized
streamwise velocity.

The optimal spatially localized initial disturbance is characterized by a counter-rotating
vortex pair in the z � y plane. In previous works, several authors (see Farrell, 1988,
Butler and Farrell, 1992, Luchini, 2000, Schmid, 2000, Corbett and Bottaro, 2000) have
optimized locally the time ampli�cation in terms of the energy density of a perturbation
characterized by a given wave number in both the streamwise and spanwise direction
(denoted respectively by� and � ). Those authors have found that the local optimal
perturbation is characterized by a counter-rotating vortex pair in thez � y plane, with
no modulation in the streamwise direction (� = 0), ampli�ed in time by means of the
lift-up mechanism (Landahl (1980)). In the present case, where the perturbation has no
pre-assigned wavelength, a modulation is found in thex direction, the perturbation being
composed by upstream-elongated structures with velocity components of alternating signs
also in the x � y plane, as shown by the iso-surfaces of the streamwise, wall-normal and
spanwise velocity in �gure 7.2. The time evolution of such an optimal solution shows
that the perturbation tilts downstream via the Orr mechanism (Schmid and Henningson
(2001)), while being ampli�ed by the lift-up mechanism, resulting at the optimal time,
Tmax , in streaky structures with alternating-sign velocity components in thex direction,
as displayed in �gure 7.3. Indeed, the ampli�cation of the initial perturbation is also due
to the Orr mechanism and to the spatial growth related to the non-parallelism of the �ow.

In order to estimate the importance of such e�ects, a direct-adjoint optimization is
performed using a two-dimensional domain withL x = 400 and L y = 20, for which the
lift-up mechanism is inhibited. In this case the energy gain reaches only a maximum value
of 80 at time t � 650, which is very low with respect to the maximum ampli�cation of the
three-dimensional case, proving that both the Orr mechanism and the convective spatial
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(a)

(b)

(c)

Figure 7.2: Iso-surfaces of the streamwise (a), wall-normal (b), and spanwise (c) velocity
components of the optimal initial perturbation at Re = 610, for a longitudinal domain
length L x = 800. Light and dark surfaces indicate positive and negative values of the
velocity components, respectively. The absolute values of their magnitude are0:01 for
the streamwise,0:1 for the wall-normal, and 0:22 for the spanwise component. All the
perturbations are normalized by the maximum value of the spanwise velocity component.
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(a)

(b)

(c)

Figure 7.3: Iso-surfaces of the streamwise (a), wall-normal (b), and spanwise (c) velocity
components of the optimal disturbance att = Tmax . Light and dark surfaces indicate
positive and negative values of the velocity components, respectively. The absolute values
of their magnitude are1:8 for the streamwise,0:1 for the wall-normal, and 0:5 for the
spanwise component. All the perturbations are normalized by the maximum value of the
spanwise velocity component att = 0.
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Figure 7.4: Envelope of the optimal energy gain computed by direct-adjoint method at
Re = 610 for L x 1 = 400 (squares),L x 2 = 800 (triangles), L x 3 = 1200 (diamonds).

growth have a secondary role in the three-dimensional optimal dynamics atRe = 610. In
order to �nd how large is the contribution of the convective spatial growth mechanism,
the two-dimensional optimization is also performed using the parallel �ow obtained by
reproducing at each abscissa the inlet base �ow pro�le. The optimization gives an optimal
value of the energy gain equal to35, indicating that about one half of the two-dimensional
energy growth is due to the convective ampli�cation induced by the non-parallelism of
the base �ow.

7.2.1 Analysis of the streamwise modulation of the optimal per-
turbation

To investigate the in�uence of the longitudinal domain length on the transient ampli�-
cation, two computations are performed withL x 2 = 800 and L x 3 = 1200, equal to two
and three times the length of the reference domain. These two domains are discretized
by 1001 and 1501 points in the streamwise direction, respectively. As shown in �gure
7.4, the optimal energy gain reaches a peak of1250at T � 490 using L x 2 and 1720at
T � 821 using L x 3, increasing of about500 and 1000units with respect to the value of
Gmax in the reference case. Such a strong increase of the energy gain with the longitudinal
length of the domain is mostly due to a combined e�ect of the Orr mechanism and of the
spatial ampli�cation linked to the non-parallelism of the �ow. Indeed, a two-dimensional
direct-adjoint optimization performed usingL x 2 = 800 predicts again an increase of about
500units for the G(t) peak with respect to the value found for the reference domain with
L x 1 = 400. Moreover, the value of the optimal time increases linearly with the streamwise
domain length. This could be expected by considering that the perturbation is convected
by the base �ow through the whole domain while amplifying itself, so thatt / L x=U1 .
The e�ects of the variation of the domain length on the shape of the optimal perturbation
are shown in �gure 7.5, where the optimal initial solutions are provided, forL x 1 and L x 2

using dashed and solid lines, respectively. In order to allow a meaningful comparison, the
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Figure 7.5: Contours of the streamwise component of the optimal initial perturbation
for L x 1 (dashed contours) andL x 2 (solid contours) at Re = 610. The perturbations has
been normalized by their maximum value; contours with absolute value equal to0:15are
shown.

perturbation is plotted using normalized coordinates: the wall-normal self-similar coor-
dinate � = y

p
Re=x, and the scaled abscissaxL = xL x1 =Lx . It can be noticed that the

longitudinal extent, the inclination, and the modulation of the perturbations are approx-
imately the same, meaning that, when observed in normalized coordinates, the result of
the optimization depends mildly on the streamwise domain size considered to compute
the objective function.

To verify such a result, the characteristic streamwise wavenumber (� c ), de�ned as the
most ampli�ed wave number recovered in the optimal initial perturbation by means of a
spatial Fourier transform, is extracted from the optimal perturbation computed at di�er-
ent target times for the three domain lengthsL x 1, L x 2, L x 3 and scaled byL x=Lx1 . The
three normalized curves of� c are plotted with respect to the scaled timetL = tL x1 =Lx .
Figure 7.6 shows that the three curves collapse reasonably well onto one another, con�rm-
ing the result that, using normalized coordinates, the shape of the optimal perturbation is
approximately invariant with respect to the longitudinal length used in the optimization.
Such a result allows us to reduce the number of independent parameters in the optimiza-
tion, as the streamwise wavelength of the perturbation scales withL x . It is noteworthy
that the characteristic streamwise wave number,� c, is rather high at small times and
decreases with time towards an asymptotic value.

A similar analysis is carried out focusing on the in�uence of the Reynolds number
on the optimal initial perturbation: the direct-adjoint optimization is performed for two
smaller Reynolds numbers,Re = 300 and Re = 150. Both values ofRe are chosen with
the aim of keeping the entire �ow, from the inlet to the outlet, locally stable with respect
to Tollmien-Schlichting modes, in order to ensure that thex-modulation of the optimal
perturbation is not due to the interaction of local optimals with such modes. Figure 7.7
provides the spanwise velocity component contours of the optimal initial perturbation
computed at Re = 610 (solid line), Re = 300 (dashed line),Re = 150 (dotted line) and
L x = L x 1. At all values of Re the optimal perturbation displays a modulation in thex-
direction. Moreover, the streamwise extent of the perturbation in normalized coordinates
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Figure 7.6: Normalized time versus the most ampli�ed normalized longitudinal wave
number at Re = 610, for L x 1 = 400 (squares),L x 2 = 800 (diamonds) and L x 3 = 1200
(circles).

is found to vary, with an increase of the characteristic wavenumber withRe. To assess
the variation of the streamwise modulation with the Reynolds number, the characteristic
streamwise wave number,� c, is extracted from the optimal initial perturbations computed
at di�erent target times for the three values of Re. The values of� c, shown in Figure
7.8 (a) for each value of the target time (T = 166; 247; 330; 420, represented by squares,
diamonds, circles and triangles, respectively) are found to scale well with the square root
of the Reynolds number. Indeed, dividing the� c values by the square root of the Reynolds
number, the three curves collapse onto one for su�ciently large times (see Figure 7.8 (b)).

The results indicate that � c behaves as

� c /

p
Re

L x
;

�
�

�
�7.1

providing the variation of the optimal streamwise modulation with the domain length
employed to integrate the objective function and with the Reynolds number. Using such
a scaling law, one may recover the classical result on the optimal temporal growth in a
parallel boundary layer �ow, since it yields� c ! 0 for an in�nitely long domain.

Once the dependence of the characteristic streamwise modulation on the independent
parameters of the optimization,Re and L x , is analyzed, the origin of such a modulation
needs to be investigated. Since the global optimal perturbation is found to be charac-
terized by more than one wavenumber inx, it is conjectured that it can originate from
a superposition of local optimal single-wavenumber perturbations. Thus, following the
method of Corbett and Bottaro (2000), a local optimization is performed using the inlet
velocity pro�le as a base �ow. Such an optimization is carried out for160 values of �
varying in the range �0:4; 0:4. To allow a meaningful comparison, the wave number of
largest module,0:4, is chosen larger than the largest streamwise wavenumber obtained by
a spatial Fourier transform of the global optimal perturbation. Similar criterion is used
to pick the wavenumber of smallest module,0:005. A three-dimensional perturbation is
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Figure 7.7: Contours of the spanwise component of the optimal initial perturbation for
Re = 610 (solid contours), Re = 300 (dashed contours) andRe = 150 (dotted contours).
The perturbations have been normalized by their maximum value; contours with absolute
value equal to0:15are shown.

thus reconstructed as a superposition of the local optimal (� = 0) and all the suboptimal
(� 6= 0) solutions computed at the target timeTmax , namely:

q(x; y; z) =
nX

j =1

� j �qj (y) exp(i�z � i� j x) ;
�
�

�
�7.2

where n = 160, �qj (y) is the result of the local optimization at a given value of� (see
Corbett and Bottaro (2000)), and � j is linked to the energy of each single-wavenumber
perturbation. For the present analysis, a value of� equal to0:6is employed, corresponding
to the optimal spanwise wavenumber (see section 7.2.2). Att = 0, all the locally optimized
perturbations are superposed with initial energy equal to1. Figure 7.9 shows fort = Tmax

that such a reconstruction is able to qualitatively reproduce packets of counter-rotating
vortices as well as thex-modulated streak-like structures, demonstrating that the three-
dimensional dynamics of a boundary layer is characterized by the superposition of modes
with zero and non-zero streamwise wave number. The analysis of the variation of� c

with time is also performed for the three-dimensional perturbation reconstructed as a
superposition of local optimal and suboptimal perturbations. As shown in �gure 7.10, the
� c curves obtained from the global optimal perturbation and the superposition of local
optimal and suboptimal solutions, forL x = 800, are found to be very close for all times
but the smallest (t = 41), meaning that such a reconstruction is able to reproduce the
streamwise wave number dominating the optimal dynamics.

7.2.2 Analysis of the spanwise modulation of the optimal pertur-
bation

The e�ect of the spanwise domain length on the optimal dynamics is analyzed by perform-
ing the energy optimization for several lengths. Figure 7.11 (a) shows the behaviour of the
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(a)

(b)

Figure 7.8: Most ampli�ed longitudinal wave number versus the Reynolds number for
T = 166 (solid line), T = 250 (dashed line),T = 330 (dashed-dotted line) andT = 420
(dotted line) (a). Most ampli�ed longitudinal wavenumber normalized with respect top

Re versus the normalized time forRe = 610 (squares), Re = 300 (diamonds) and
Re = 150 (circles) (b).
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Figure 7.9: Iso-surfaces of the streamwise velocity component of the perturbation com-
puted for t = Tmax by a superposition of local optimal and suboptimal perturbations for
� = 0:6 and Re = 610. Light and dark surfaces indicate respectively positive and negative
values of the velocity components of absolute value0:75. The perturbation is normalized
by its maximum value.

Figure 7.10: Most ampli�ed longitudinal wave number versus time atRe = 610, obtained
by the direct-adjoint method for L x = 800 (diamonds) and by the superposition of local
optimal and suboptimal perturbations (squares).
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Figure 7.11: Peak value of the optimal energy gain versus the spanwise minimum
wavenumber,� L , obtained by the global model (squares) and by the direct-adjoint method
(circles) with � L = (2 � )=Lz.

maximum optimal energy gain versus the spanwise minimum wave number,� L = (2 � )=Lz,
computed by means of the global model (squares) and by the direct-adjoint procedure (cir-
cles). It is worth to point out that, concerning the global model, the wavenumber of the
optimal perturbation is prescribed,� = � L , whereas in the direct-adjoint computation� L

represents the minimum allowed value of the optimal perturbation wavenumber. Since the
problem under consideration is homogeneous in the spanwise direction, it is anticipated
that the result of the optimization would contain only one wavenumber in that direction,
namely the one which is able to induce the largest ampli�cation among the multiples of
� L . Thus, for small values of� L , the two optimization methods would give di�erent re-
sults, as one can notice in �gure 7.11 (a). Indeed, the global model predicts a well de�ned
peak for � L = 0:6, hereafter called� opt, corresponding toL z = 10:5, which is very close
to the optimal wave number computed locally by Corbett and Bottaro (2000). In the
direct-adjoint optimization, for high values of � L , the optimal ampli�cation peaks match
those computed by the global model, whereas a plateau is found for subharmonic values
of � opt, namely, � L = 0:1; 0:2;0:3. For such values, the wavenumber characterizing the
perturbation is equal to � opt, whereas for� L = 0:4 one has� = 0:8. A similar behaviour
is found for the optimal time (not shown): for subharmonic values of� opt, the time of
maximum growth in the direct-adjoint procedure matches the optimal time found when
� = 0:6, whereas the global model predicts a large increase of the optimal time for low
values of� L .

The e�ect of the spanwise size of the domain onto the shape of the optimal pertur-
bation is now analyzed. Figure 7.12 (a) shows the variation in time of the characteristic
wavenumber,� c, for several values of� L larger than optimal. The values of� c decrease
for increasing � L , showing a trend which is not far from that displayed for� L = � opt

(solid line). Indeed, they are found to slowly converge to a value di�erent from zero,
which is very close to that achieved asymptotically when� L = � opt. Figure 7.12 (b) shows
the variation of � c with time for two values of � L smaller than optimal, more represen-
tative of realistic cases. The value� L = 0:035 is chosen to be incommensurable with
the optimal one. All the curves almost overlap the optimal one, indicating that, for a
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(a) (b)

Figure 7.12: Most ampli�ed longitudinal wave number versus time atRe = 610, ob-
tained by direct-adjoint method for � L = 0:6 (squares),� L = 0:8 (triangles), � L = 1:0
(diamonds), � L = 1:3 (circles) (a), and for � L = 0:6 (squares), � L = 0:1 (diamonds),
� L = 0:035(circles) (b).

su�ciently large domain, the streamwise shape of the optimal perturbation matches that
obtained for � = � opt. This is true even when the spanwise domain length is not an
exact multiple of the optimal one. In conclusion, the three-dimensional optimal pertur-
bation in a boundary layer is characterized, for large spanwise domain lengths (small� L ),
by streamwise elongated structures alternated in thex and z directions with an angle
� opt = arctan( � opt=� opt) (� opt � 4:5� ).

7.3 The near-optimal linear dynamics

The results of the previous analysis show that the optimal three-dimensional perturba-
tion is localized inx and characterized by a wide frequency spectrum in the streamwise
direction. On the other hand, it is well known that such a perturbation has a spanwise
sinusoidal shape since the problem under consideration is homogeneous in the spanwise
direction. It could be argued that such a disturbance is not realistic; indeed, in a real
framework, disturbances are most likely characterized by a range of frequencies, and not
by a monochromatic signal, and are often localized in wave packets, for example when they
are caused by a localized roughness element or a by gap on the wall. Thus, anear-optimal
perturbation is now focused upon, characterized by the following features:

1. it must show a wide spectrum of spanwise frequencies,

2. it must be localized in bothx and z,

3. it must amplify essentially as much as the "true" global optimal disturbance.
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Figure 7.13: Normalized increment of the objective function versus the number of di-
rect/adjoint iterations represented in a semi-logarithmic scale att = 247 and � L = 0:1 for
a computation initialized by a wave packet (solid line) and a single-wavenumber initial
guess (dashed line). The crosses indicates the convergence levels at which thenear-optimal
wave packets have been extracted.

In order to compute such anear-optimal perturbation, an arti�cial wave packet is built
in the two domains of largest spanwise extent (corresponding to� L = 0:1 and � L = 0:035),
by multiplying the optimal single-wavenumber perturbation times an envelope of the
form exp�(z 2=Lz). Such a wave packet is then used as initial guess for the optimization
procedure. Figure 7.13 provides the variation of the objective function versus the number
of iterations for two computations with � L = 0:1: the �rst one, initialized by the arti�cial
wave packet (solid line); the second one, initialized by a single-spanwise-wavenumber
perturbation (dashed line). One could observe that both curves experience a marked
change in slope and that, in the �rst case, the convergence is slower. The partially
optimized perturbation is extracted at two levels of convergence,err (de�ned in the
appendix). Figure 7.14 shows such intermediate solutions aterr 1 = 10�3 and err 2 = 10�4

(indicated with crosses in Figure 7.13), as well as the wave packet used as the initial
guess. It is possible to notice that aterr 1 the perturbation is still spanwise localized,
although its shape has changed. In particular, the streak-like structures at the edge
of the wave packet are inclined with respect to thez axis, resulting in oblique waves
bordering the wave packet. Such a tilting is linked to the superposition of di�erent
modes in the spanwise direction. Indeed, Fourier transforms inz of the perturbation
at di�erent streamwise locations show that it is composed by many di�erent modes, the
spectrum being centered around the optimal wave number, as displayed in �gure 7.15 (a).
On the other hand, at the convergence levelerr 2 the disturbance is spread out in the
whole domain, although a single-spanwise-wavenumber signal is not yet recovered. Most
importantly, both solutions, although strongly di�erent in the spanwise direction, are
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(a)

(b)

(c)

Figure 7.14: Contours of the perturbation streamwise velocity component for the initial
guess (a), for the intermediate solution aterr 1 = 10�3 (b), and at err 2 = 10�4 (c).
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(a) (b)

Figure 7.15: Fourier transform inz at y = 1 and x = 400 of the streamwise velocity
component of the solution at the convergence levelerr 1 = 10�3 for � L = 0:1 (a) and
� L = 0:035(b). F( � ) is the normalized Fourier coe�cient.

very much ampli�ed, reaching a value ofG which di�ers by less than1%from the optimal
one (G(t)opt = 736, G(t) err 1 = 728, G(t) err 2 = 734). Thus, it is possible to conclude
that several near-optimal perturbations exist, intermediate solutions of the optimization
process, characterized by di�erent shapes in the spanwise direction, and producing very
large growth in disturbance energy. It is worth to point out that such a result could have
been anticipated, since the linearized Navier-Stokes operator is self-adjoint in the spanwise
direction for the considered �ow. Indeed, no transient energy growth can be produced in
the spanwise direction, so that the in�uence of the spanwise shape of the perturbation on
the energy gain is weak with respect to the streamwise and wall-normal ones. Therefore,
a perturbation composed by a superposition of wavenumbers in the range0:5 � � L � 0:8
(like the near-optimal wave packets aterr 1 for � L = 0:1 and � L = 0:035 whose spectra
are shown in �gure 7.15 (a) and (b)) induce a quasi-optimal energy gain. Finally, it
should be pointed out that the self-adjoint character of the Navier-Stokes operator in the
spanwise direction may also explain the reduction of the convergence rate observed in
�gure 7.13 after levelerr 1, when the largest residual adjustments of the solution occur in
the spanwise direction. In the following section the non-linear evolution of anear-optimal
wave packet is studied, using the intermediate solution extracted aterr 1 = 10�3 . Figure
7.16 (a) and (b) show such a state att = 0 and t = Tmax , respectively, for� L = 0:035.

7.4 The non-linear dynamics

Although the optimal perturbation computed in the previous section is able to induce
a very signi�cant growth of the disturbance energy density in a linearized framework,
it is not straightforward that it should e�ectively provoke transition. Therefore, the
investigation of the non-linear evolution of such a global optimal state is worthwhile.
Simulations of the Navier-Stokes equations are thus performed after superposing the initial
optimal disturbance (with a given amplitude) to the base �ow. The optimal transversal
domain length L z = 10:5 and a streamwise length ofL x = 490 are chosen. To allow a
comparison with some of the most probable transition mechanisms already known in the
literature, a direct numerical simulation is carried out also for the evolution of the local
optimal (with � = 0) and suboptimal (with � = � L opt ) perturbation superposed to the
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(a) (b)

Figure 7.16: Iso-surfaces of the streamwise component of the near-optimal perturbation
at the convergence levelerr 1 = 10�3 for L z = 180 at the time instants t = 0 (a) and
t = Tmax (b). Light and dark surfaces indicate respectively positive and negative values
of the velocity component of absolute value0:03 (a) and 3 (b), the perturbation being
normalized by the maximum value of the spanwise velocity component att = 0.

base �ow, using the same initial energy as for the global optimal case. Figure 7.17 shows
the mean skin friction coe�cient obtained in the simulations initialized with three di�erent
initial energies: E0(a) = 0:5, E0(b) = 2 and E0(c) = 10. The lowest and highest thin lines
in �gures 7.17 represent the theoretical distributions of the laminar and turbulent skin
friction coe�cient in a boundary layer, whereas the solid, dashed and dash-dotted lines
are the mean skin friction coe�cients obtained in the simulations initialized using the
global optimal, the local optimal and the local suboptimal perturbation, respectively.
The value of the energyE0(a) is found to be the lowest able to cause transition in the
�ow perturbed by the global optimal disturbance. Indeed, �gure 7.17 (a) shows that
in such a case the mean skin friction (solid line), which initially follows the theoretical
laminar value, rises up towards the turbulent value. On the other hand, the skin friction
coe�cient curves relative to the local optimal and suboptimal cases lay on the theoretical
laminar curve for E0(a) = 0:5. Figure 7.17 (frames b and c) shows that the suboptimal
x-modulated perturbation begins to induce transition for the energy valueE0(b) , whereas
the zero-streamwise wave number perturbed �ow experiences transition only for a rather
large initial disturbance energy,E0(c) . It is worth observing that such an initial energy
value results in a streak amplitude prior to transition of28% of the freestream velocity
value, which is close to the threshold amplitude identi�ed by Andersson et al. (2001)
for sinuous breakdown of streaks. Moreover, such results point out the e�ectiveness of
suboptimal perturbations in inducing transition, con�rming those by Biau et al. (2008)
for a square duct �ow. It is interesting to observe that, when initialized by the global
optimal disturbance, transition always starts aroundx = 400, almost irrespective of the
initial energy level. This could be the signal of the emergence of aglobal mode(Huerre
and Monkewitz (1990)).

To generalize the result to larger spanwise domain lengths, the non-linear evolution
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(a) (b)

(c)

Figure 7.17: Distribution of the mean skin friction coe�cient at t = 700 for the base �ow
initially perturbed by: the global three-dimensional optimal (solid line); the local optimal
with � = 0 (dashed line); the suboptimal with� = � opt (dash-dotted line). Three initial
energy levels are considered:E0 = 0:5 (a); E0 = 2 (b); and E0 = 10 (c). The lowest
and highest thin lines represent the theoretical distributions of the mean skin friction
coe�cient for a laminar and a turbulent boundary layer, respectively.
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(a)

(b)

Figure 7.18: Contours of the streamwise component of the near-optimal perturbation for
� L = 0:035on the y = 1 plane at t = 0 (a) and its linear evolution at t = Tmax (b).

of the near-optimal wave packet, discussed in the previous section, is simulated using
a computational domain with L z = 180. The initial energy is E0 = 0:5 so that the
�ow is found to experience transition. Figure 7.18 (a) shows the perturbation on an
x � z plane at t = 0, and the angle� in the �gure is equal to that obtained in the
optimal case (� opt � 4:5� ). Figure 7.18 (b) displays a snapshot of the state at the target
time, Tmax = 247, obtained by solving the linearized Navier�Stokes equations, for later
comparison. The wave packet is convected downstream without remarkable structural
changes and the angle� is unchanged with respect to 7.18 (a). Figure 7.19 (a) provides
an instantaneous image of the non-linear evolution of thenear-optimal packet at t = 160.
The perturbation is mostly convected downstream, while being ampli�ed. Whereas the
streamwise modulation of the packet is almost una�ected compared to the initial solution,
the �ow structure experiences spanwise di�usion. Att = 220 (�gure 7.19 (b)), the streaks
partially merge, and twokinks appear near the leading edge of the most ampli�ed streak,
a�ecting the streamwise modulation of the wave packet. To better analyze such a stage
of breakdown, local views of the contours of the wall-normal, spanwise, and streamwise
perturbation velocity components are shown in �gures 7.20 (a), (b), and (c), respectively.
Two kinks are visible in the wall-normal and streamwise perturbation velocity components,
alternated in the streamwise direction and symmetric with respect to thez = 0 axis. On
the other hand, an array of spanwise-antisymmetric transversal velocity packets alternated
in the longitudinal direction are observed in �gure 7.20 (b). Such patterns are similar to
those observed in the case of quasi-varicose streak breakdown (see Brandt et al. (2004)),
likely to occur when a low-speed streak interacts with a high velocity one incoming in its
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(a)

(b)

(c)

(d)

(e)

Figure 7.19: Contours of the streamwise component of the perturbation for� L = 0:035
and y = 1, obtained by the DNS att = 160 (a), t = 220 (b), t = 250 (c), t = 330 (d) and
t = 420 (e).
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(a) (b)

(c)

Figure 7.20: Contours of the wall-normal (a), spanwise (b) and streamwise (c) pertur-
bation velocity components for� L = 0:035 and y = 1 at t = 220. The dotted line is
the z = 0 axis, whereas solid and dashed lines in (c) represent respectively positive and
negative spanwise velocity contours.
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Figure 7.21: Iso-surfaces of the streamwise velocity, (blue represents negative perturba-
tions whereas green indicates positive perturbations of absolute value equal to0:5) and
of the vortical structures identi�ed by the Q-criterion (the light blue surfaces represents
the positive valueQ = 660) at t = 180.

front. In �gure 7.20 (c) it can observed that the spanwise perturbations a�ect not only
the streaks A and B on thez = 0 axis, but also the high-speed ones on the two sides
of the z = 0 axis (labelled C and D). Indeed, the spanwise perturbations, although anti-
symmetric about thez = 0 axis, are almost symmetric with respect to the middle axis of
C and D. As a consequence, they induce spanwise oscillations on such streaks, resulting
in a pattern which is typical of quasi-sinuous streak breakdown (cf. Brandt et al. (2004)).
Thus, it can be concluded that both the scenarios of quasi-sinuous and quasi-varicose
breakdown can be identi�ed in the present case because of the staggered arrangement of
the streaks, so that both front and side interactions between fast and slow velocity regions
take place simultaneously. Therefore, in the highly symmetric con�guration examined
here, four streaks break down simultaneously, explaining the e�ectiveness of the global
optimal and near-optimal perturbations in inducing transition.

To better study the vortical structure in the interaction zone, the Q-criterion (Hunt
et al. (1988)) is adopted, which has been de�ned in Chapter 6. Figure 7.21 shows that,
before breakdown, a hairpin vortex is present in the interaction zone of the streaks labeled
as A, B, C, and D, preceded upstream by a pair of quasi-streamwise vortices. At the
interior of the hairpin, a low-momentum region is found, corresponding to the low-speed
streak B. This region tilts downstream, as also observed in the experiments by Lundell and
Alfredsson (2004). To illustrate the mechanism of creation and breakdown of the hairpin
vortex, the Q-contours identifying the hairpin vortex are plotted at four di�erent times,
together with the velocity perturbation vectors on the x � y plane through its head.
Figure 7.22 (a) shows the incipient hairpin att = 145: two quasi-streamwise vortices,
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which are placed on the �anks of the low-speed streak, begin to increase their size in
the wall-normal direction, due to the increasing downstream tilting of the low-momentum
streamwise �uctuations. Ahead of such streamwise vortices, an inclined shear layer is
produced, induced by the front interaction of the upstream high-speed streak with the
downstream low-speed one. At timet = 165, due to the further increase (because of lift-
up) of the low- and high-momentum perturbations, non-linear e�ects allow the formation
of a vortical region at the edge of the inclined shear layer, as shown in Figure 7.22 (b)
by the black circle. Such a region of high spanwise vorticity generates an arch vortex
connecting the two quasi-streamwise vortices, thus forming the head of the hairpin. At
t = 180 (see �gure 7.22 (c)), this head is lifted from the wall, and a second arch vortex
appears upstream of the �rst, along the inclined zone of interaction of the low and high-
speed streaks (shown by the second black circle in the �gure). Finally, att = 190, the �rst
hairpin vortex further increases in size, while breaking up into smaller coherent patches
of vorticity, although remnants of the original structure are still visible, cf. �gure 7.22
(d).

A similar mechanism of generation of packets of hairpins has been discussed by Adrian
(2007) for the case of fully developed turbulent boundary layers; in particular, the self-
generation of packets of hairpins in streamwise succession, with size increasing down-
stream, was reported. Evidence for the presence of hairpin vortices in transitional �ows
has been recently given by Wu and Moin (2009), which have attributed the generation of
such structures to the presence of�-vortices excited by receptivity to free-stream turbu-
lence. In the present computation, it appears that the front interaction of the low and
high momentum streaks is the primary cause of the hairpin formation in the early stages
of transitions, whereas the subsequent induction of new hairpins is probably linked to the
oscillations of the low-momentum �uid comprised between the legs of the hairpin.

Such a transition scenario is interesting because it somehow connects two opposite
views of transition, namely that grounded on transient growth and secondary instability
of the streaks (Brandt et al. (2004), Schoppa and Hussain (2002)), and the other based on
vortex regeneration (Adrian (2007)). In fact, in previous studies of transitional boundary
layer �ows under free-stream turbulence (Brandt et al. (2004)), the presence of hairpin
vortices was not observed, and the breakdown of the streaks was attributed to an in-
stability of the in�ectional velocity pro�les due to the interaction of low and high-speed
streaks.

Going back to the evolution in time of the perturbation, �gure 7.19 (c) shows the
presence of several subharmonics in both the streamwise and spanwise direction. Indeed,
due to streak breakdown, close to the linearly optimal time (att = 250) the most ampli�ed
elongated structures in the middle of the wave packet have already experienced transition.
Later, as shown in �gure 7.19 (d), the turbulent region spreads out in the spanwise and
streamwise direction leading the nearest streaky structures to break up. Finally, att = 420
(�gure 7.19 (e)), the linear wave packet has totally disappeared and the disturbance takes
the form of a localizedturbulent spot. The spanwise rate of spread of the spot, de�ned
as the angle at its virtual origin between its plane of symmetry and its mean boundary,
is measured by using the criterion of the2% freestream velocity contours proposed by
Wygnanski et al. (1976). Such an angle is very close to that measured by Wygnanski
et al. (1976) for a boundary layer �ow, namely about9� . It is about twice the optimal
inclination of the initial wave packet (� opt = 4:5� ), showing that turbulence spreads out
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(a) (b)

(c) (d)

Figure 7.22: Iso-surfaces of the Q parameter and perturbation velocity vectors on the
z = 0 plane at t = 145 (a), t = 165 (b), t = 180 (c), and t = 190 (d). The surfaces
represent the positive valuesQ = 370 for (a) and (b), and Q = 700 for (c) and (d).
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more quickly in the spanwise direction than in the streamwise one. Moreover, �gure
7.19 (e) shows the presence of acalmed regiontrailing behind the chaotic zone, which
is a typical feature of a turbulent spot (Schubauer and Klebano� (1955)). Thus, the
near-optimal wave packet computed by means of the three-dimensional direct-adjoint
optimization represents a linear precursor of aturbulent spot. The size and position
of a turbulent spot are usually chosen by receptivity, a process which in the present
computations is bypassed by injecting on the base �ow a localized disturbance of given
energy resulting from an incomplete optimization procedure. For such a reason, no general
conclusion about the streamwise position of turbulent spots in a real boundary layer �ow
can be drawn from here. Nonetheless, it can be concluded that the transition mechanism
investigated here represents one � among many � viable path of transition via localized
disturbances.

7.5 Discussion of the results

In this Chapter it has been investigated which initial disturbances are capable to provoke
breakdown to turbulence e�ectively in a boundary layer. The aim has been to optimize
not simply an initial state (at x = 0 or t = 0) characterized by a single wavenumber (in
space) and/or frequency (in time), but a wave packet, localized in the streamwise and
spanwise direction.

A direct-adjoint three-dimensional optimization procedure and a global eigenvalue
analysis have been employed to compute the spatially localized perturbation capable
to cause the largest growth of the disturbance energy in a �nite non-parallel �at-plate
boundary layer. The optimal initial perturbation is characterized by a pair of streamwise-
modulated counter-rotating vortices, tilted upstream, resulting at optimal time in streak-
like structures alternated in the streamwise direction. This indicates that perturbations
with non-zero streamwise wavenumber have a role in the transient dynamics of a bound-
ary layer. A scaling law has been provided describing the variation of the streamwise
modulation of the optimal initial perturbation with the streamwise domain length and
the Reynolds number.
Since the domain is homogeneous in the spanwise direction, the optimal initial perturba-
tion is always characterized by a single wavenumber in this direction. Nevertheless, since
for su�ciently large domains it is unlikely that a single-spanwise wavenumber disturbance
emerges in a boundary layer as a result of exogenous forcing, a near-optimal localized per-
turbation characterized by a large spectrum of frequencies has been extracted during the
optimization process. Such near-optimal initial disturbance is a wave packet of elongated
disturbances modulated in the spanwise and streamwise direction, attaining a gain which
is less than1% smaller than the true optimal disturbance.
The capability of the localized optimal perturbations to induce transition has been in-
vestigated by means of direct numerical simulations. It is shown that the global optimal
disturbance is able to induce transition for lower levels of the initial energy than local
optimal and suboptimal perturbations. Interestingly, the local Reynolds number at which
transition is initiated does not vary much with the initial energy level of the global op-
timal disturbance. Simulations are also carried out for the non-linear evolution of the
near-optimal wave packet, which is found to evolve in aturbulent spot spreading out in
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the boundary layer.
Transition is initiated in a region of the �ow close to the center of the packet, by means of
a mechanism including features of both quasi-sinuous and quasi-varicose breakdown. In
fact, it is found that in this zone the streaks are able to interact on their sides as well as
on their fronts, due to their alternated arrangement, so that more than one streak under-
goes transition at the same time, explaining the e�ciency of the optimal perturbation (as
well as the near-optimal one) in yielding a chaotic behaviour. A hairpin vortex emerges
in the region of interaction of the streaks prior to transition, generated by the inclined
shear layer resulting from the front interaction of a low and a high-speed streak. Such an
intense primary hairpin induces secondary hairpins and late stages of the breakdown see
the continuous re-generation of such coherent structures.
The transition scenario presented here appears to connect two di�erent views of transi-
tion, that based on transient growth and secondary instability of the streaks (Schoppa
and Hussain (2002), Brandt et al. (2004)), and that which describes breakdown via the
continuous regeneration of vortices (Adrian (2007), Wu and Moin (2009)). Although the
present optimization is not capable to determine uniquely thex-position of a turbulent
spot, an occurrence which depends on both receptivity and nonlinearity, the optimal and
near-optimal wave packets computed by means of the three-dimensional direct-adjoint
optimization represent a linear precursor of the spot, and the mechanism investigated
here is a viable path to transition.
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8
Conclusions and Outlook

The research presented in this thesis contributes to the study of the global instability
dynamics in boundary-layer �ows over a �at plate in a linear and non-linear framework.
The goal has been to study in detail the di�erent mechanisms inducing unsteadiness and
transition in separated and attached �ows over a �at plate, and to identify the distur-
bances which most e�ectively lead the �ow to turbulence.
In Chapters 4, 5, and 6, several separated boundary layer �ows are considered, obtained
for di�erent suction-and-blowing pro�les at the upper boundary of the domain and for
di�erent values of the Reynolds number, all of them being highly non-parallel. In order to
take into account the non-parallelism of the �ows, a global eigenvalue analysis has been
used in both a two- and three-dimensional framework, together with direct numerical
simulations aimed at identifying the e�ects of non-linearity on the instability dynamics.
A study of the two-dimensional dynamics of the considered separated �ows in Chapter 4
has clari�ed the role of non-normality and non-linearity of the di�erential Navier�Stokes
operator on their instability. Linear eigenvalue analysis as well as numerical simulations
with weakly non-linear perturbations have shown that the non-orthogonality of the con-
vective Tollmien�Schlichting modes allows the bubble to act as a strong ampli�er of small
disturbances, due to a Kelvin-Helmholtz mechanism acting over the separation stream-
line. For �nite amplitude initial perturbations, the energy exchange between modes due
to non-linear e�ects induces the bubble to establish a wave packet cycle, similar to the
one occurring at supercritical Reynolds numbers. Non-linear interactions contribute also
to the excitation of a convectively unstable mode in the attached-�ow region due to the
high sensitivity of the boundary layer, inducing a further transient ampli�cation of �-
nite amplitude perturbations as well as an asymptotical instability at slightly subcritical
Reynolds numbers.
Topological �ow changes of the base �ow have been found to occur close to transition,
supporting the hypothesis of some authors (Dallmann et al., 1995, Theo�lis et al., 2000)
that the unsteadiness of separated �ows could be due to structural changes within the
bubble. Furthermore, non-normality e�ects have shown to play an active role also at large
times, inducing a low-frequency oscillation, known as �apping frequency, due to the su-
perposition of two convective non-normal modes. The onset of such a �apping frequency
has been linked with the presence of topological �ow changes of the base �ow, and a
possible explanation of such a behavior has been provided, in which it is conjectured that
the oscillations are due to the interaction of the main wave packet with the perturbations
carried upstream by the back�ow inside the bubble. A scaling law based on the previous
assumption is able to predict accurately the dependence of the �apping frequency on the
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Reynolds number and the onset of a secondary frequency close to transition.
The ampli�er dynamics and the �apping phenomenon could yield a possible scenario
explaining the onset of unsteadiness in separated �ows under the in�uence of localized
disturbances, at subcritical and supercritical Reynolds numbers. However, the high non-
normality of the considered separated �ows has suggested that they may also act as a
selective noise ampli�er (Trefethen and Embree (2005)). Thus, in order to investigate
whether and how the �ow may select and amplify certain frequencies from the back-
ground noise, leading asymptotically the �ow to unsteadiness, the sensitivity of the �ow
and its optimal response to an external forcing have been studied in Chapter 5 for several
separated base �ows.
It has been found that the most responsive disturbance takes the form of Kelvin-Helmholtz-
like vortices, which roll up and amplify themselves along the shear layer, until being ad-
vected and die away in the attached boundary layer. An analysis of the value of the
maximum response with respect to the size of the bubble has pointed out the crucial
role of the shear layer in the response mechanism. Randomly perturbed direct numerical
simulations have shown that the selected frequencies recovered by Fourier transform of
the velocity signal in the asymptotic regime are in agreement with the most ampli�ed
frequencies derived from the optimal response analysis. For each �ow a Strouhal number
has been computed based on such frequencies, which has been found consistent with the
ones based on the shedding frequencies measured by Pauley et al. (1990), Ripley and
Pauley (1993), Lin and Pauley (1996) and Wasistho et al. (1997).
Thus, a connection has been established between the optimal response to external forcing
and the asymptotical sustainement of vortex shedding at subscritical Reynolds numbers in
separated �at-plate boundary-layer �ows. However, it is known that in certain separated
�ows, a resonator dynamics associated with a three-dimensional global steady unstable
mode may occur, which could dominate its asymptotic space-time dynamics.
In Chapter 6, by means of three-dimensional global eigenvalue analysis, a steady unstable
mode has been recovered, together with a number of stable three-dimensional ones a�ect-
ing the dynamics of the �ow. The unstable and the less stable steady modes have been
analyzed by means of a Rayleigh criterion and a Gortler analysis, demonstrating that
such modes are originated by an intrinsic and convective (of Gortler type) centrifugal
mechanism, respectively. By means of DNS, the onset and evolution of such centrifugal
modes have been studied in a weakly non-linear framework. In particular, by means of
a structural sensitivity analysis, it has been shown that the stable Gortler mode could
be excited by the convection of KH/TS waves along the shear layer, which is a typical
mechanism inducing a strong transient energy ampli�cation in the considered separation
bubble.
In the case of large amplitude initial perturbations, two di�erent scenarios of transition
are observed. The �rst scenario, which strongly recalls the K-type transition, is transient
and due to the strong ampli�cation and secondary instability of two-dimensional KH/TS
waves. The second one, which is asymptotic and purely three-dimensional, is due to the
interaction of the stable and unstable centrifugal modes. In particular, it has been ob-
served that a self-generation cycle of the perturbations is established; the intrinsic mode
has the role of aresonator, placed within the separated zone, which is able to continu-
ously sustain perturbations on the shear layer, exciting the Gortler mode which behaves
as anampli�er of the perturbations produced by the resonator. Thus, Gortler rolls on the
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attached boundary layer are created and sustained, until they undergo secondary varicose
instability due to the wall-normal shear induced by the interaction of low- and high-
momentum regions. Such mechanism induces the formation of a train of hairpin vortices
in streamwise succession, which are often observed in the presence of Gortler vortices, and
which leads the �ow to transition. Thus, global and convective centrifugal modes have
shown to play an important role in the destabilization and large-time transition of the
separated �ow under consideration.
For the attached boundary layer, the aim has been to identify the initial localized states
which most easily bring the �ow to turbulence. In fact, local optimization (Corbett and
Bottaro, 2000) could only focus onto a single wavenumber/frequency at a time, whereas
in most practical cases boundary layers undergo transition by receptively selecting and
amplifying exogenous localized disturbances characterized by a large spectrum of frequen-
cies.
In Chapter 7 the initial wave packet capable to provoke breakdown to turbulence e�ec-
tively in a boundary layer has been computed by means of a direct-adjoint method, with
no assumption on the shape and the frequency spectrum of the perturbation in all direc-
tions. The global optimal initial perturbation is characterized by a pair of streamwise-
modulated counter-rotating vortices, tilted upstream, resulting at optimal time in streak-
like structures alternated in the streamwise direction; this indicates that perturbations
with non-zero streamwise wavenumber have a crucial role in the transient dynamics of a
boundary layer. A scaling law has been provided describing the variation of the stream-
wise modulation of the optimal initial perturbation with the streamwise domain length
and the Reynolds number. In order to obtain a wave packet localized also in the spanwise
direction, for su�ciently large domains a spanwise localized perturbation characterized by
a large spectrum of frequencies has been extracted during the optimization process. Such
near-optimal initial disturbance is a wave packet of elongated disturbances modulated in
the spanwise and streamwise direction, attaining an energy gain which is less than1%
smaller than the true optimal disturbance.
The capability of the localized optimal perturbations to induce transition has been in-
vestigated by means of direct numerical simulations. It has been shown that the global
optimal disturbance is able to induce transition for lower levels of the initial energy than
local optimal and suboptimal perturbations. Moreover, the near-optimal wave packet has
been found to evolve in aturbulent spot spreading out in the boundary layer. Transition
is initiated in a region of the �ow close to the center of the packet, by means of a mech-
anism including features of both quasi-sinuous and quasi-varicose breakdown. In fact, it
is found that in this zone the streaks are able to interact on their sides as well as on
their fronts, due to their alternated arrangement, so that more than one streak under-
goes transition at the same time, explaining the e�ciency of the optimal perturbation (as
well as the near-optimal one) in yielding a chaotic behaviour. A hairpin vortex emerges
in the region of interaction of the streaks prior to transition, generated by the inclined
shear layer resulting from the front interaction of a low and a high-speed streak. Such an
intense primary hairpin induces secondary hairpins and late stages of the breakdown see
the continuous re-generation of such coherent structures.
The transition scenario presented here appears to connect two di�erent views of transi-
tion, that based on transient growth and secondary instability of the streaks (Schoppa
and Hussain (2002), Brandt et al. (2004)), and that which describes breakdown via the
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continuous regeneration of vortices (Adrian (2007), Wu and Moin (2009)). The optimal
and near-optimal wave packets computed by means of the three-dimensional direct-adjoint
optimization could thus represent a linear precursor of the spot, and the mechanism in-
vestigated here is a viable path to transition.

8.1 Future works

In this thesis we studied the mechanisms which most e�ectively lead a �at plate boundary-
layer �ow to transition. An optimization of the energy based on the linearized Navier�
Stokes equations is performed for both the separated or attached �ows, aimed at iden-
tifying the perturbations inducing an optimal energy ampli�cation at a �nite time. For
separated boundary-layer �ows, only perturbations having a single spanwise wavenumber
are considered, whereas, for the attached boundary layer, spanwise-localized perturba-
tions are taken into account. It has been shown that such perturbations induce an energy
gain close to optimal, and are able to e�ectively induce a turbulent spot. Thus, a similar
analysis on spanwise-localized near-optimal disturbances could be performed on separated
boundary-layer �ows, in order to investigate which is the role of the spanwise direction
in the ampli�cation process, and whether spanwise-localized disturbances could induce
turbulence e�ectively in such �ows.
In this thesis, an optimization based on the linearized Navier�Stokes equations is used, and
the e�ects of non-linearity are studied by performing direct numerical simulations follow-
ing the evolution of the perturbations computed by means of the optimization. However,
non-linear e�ects are not taken into account during the optimization process, so that some
purely non-linear mechanisms might be neglected by such analysis. In fact, recent studies
by Nagata (1990, 1997), Wale�e (1998), Faisst and Eckhardt (2003), Wedin and Kerswell
(2004), Eckhardt et al. (2007) have outlined the possibility that transition could be re-
lated to some non-linear equilibrium solutions of the Navier�Stokes equations. The recent
theory of Exact Coherent Structures (ECS) (Wale�e (1998, 2003)) has demonstrated some
e�ectiveness in describing late stages of transition. The more convincing evidence for this
has come from the circular pipe �ow: ECS in the form of streamwise travelling waves
have been identi�ed in a pipe (Faisst and Eckhardt (2003), Wedin and Kerswell (2004))
which have close qualitative and quantitative similarities to the transient �ow structures
within a pu� (Hof et al. (2004)).
Nevertheless, it is still unclear which type of perturbation is the most suited to excite
such unstable states, taking the �ow on the edge of chaos. Indeed, a weak connection
has been found between the local linear optimal perturbations and the occurrence of
travelling waves in a �ow. Thus, a non-linear optimization could be carried out, aimed
at investigating the existence of purely non-linear optimals, and of the non-linear mech-
anisms inducing energy growth and transition. Towards this end, an extension of the
direct-adjoint optimization described here to non-linear Navier�Stokes equations is cur-
rently being pursued, and will be the object of future works aimed at clarifying which
perturbations could optimally induce transition in �at-plate boundary-layer �ows.

174







A
Suction velocity pro�les:Vtop (x)

The following tables de�ne the values taken byVtop along the streamwise positionx � x in

for base �ows bf1, bf2, bf3.

x � x in 0 10 20 30 40 50 60
bf1 0.0227 0.0249 0.0308 0.0418 0.0614 0.0900 0.1155
bf2 0.0253 0.0277 0.0343 0.0467 0.0688 0.0983 0.1254
bf3 0.0295 0.0323 0.0401 0.0544 0.0780 0.1110 0.1406

x � x in 70 80 90 100 111 120 130
bf1 0.1241 0.0097 0.0068 0.0445 0.0233 0.0029 -0.0164
bf2 0.1352 0.1083 0.0789 0.0547 0.0315 0.0084 -0.0142
bf3 0.1523 0.1266 0.0974 0.0722 0.0470 0.0206 -0.0066

x � x in 140 150 160 170 180 190 200
bf1 -0.0329 -0.0448 -0.0532 -0.0529 -0.0411 -0.0263 -0.0149
bf2 -0.0357 -0.0546 -0.0685 -0.0734 -0.0670 -0.0523 -0.0355
bf3 -0.0335 -0.0597 -0.0862 -0.1041 -0.1014 -0.0813 -0.0557

x � x in 210 220 230 240 250 260 270
bf1 -0.0077 -0.0043 -0.0030 -0.0013 0.0014 0.0036 0.0042
bf2 -0.0212 -0.0108 -0.0039 0.0003 0.0028 0.0041 0.0048
bf3 -0.0337 -0.0187 -0.0096 -0.0034 -0.0012 0.0041 0.0053

x � x in 280 290 300 310 320 330 340
bf1 0.0038 0.0032 0.0028 0.0027 0.0027 0.0027 0.0026
bf2 0.0050 0.0050 0.0049 0.0047 0.0045 0.0042 0.0040
bf3 0.0054 0.0051 0.0048 0.0047 0.0046 0.0045 0.0043

x � x in 350 360 370 380 390
bf1 0.0025 0.0024 0.0024 0.0023 0.0023
bf2 0.0038 0.0037 0.0035 0.0034 0.0033
bf3 0.0041 0.0039 0.0037 0.0036 0.0035
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B
Convergence analysis of the optimization

methods

B.1 The direct-adjoint method

The convergence properties of the algorithms are analyzed for the case of the attached
boundary layer at Re = 610, using a domain with dimensionsL x = 400, L y = 20,
L z = 10:5. The direct-adjoint optimization reaches a maximum value of the optimal
energy gain,G(t), of about 736 approximately at time Tmax � 247 as shown in Figure
B.1 (a). Figure B.1 (b) provides the normalized increment of the objective function,
err = (E (T )(n) � E(T )(n�1) )=E(T )(n) , versus the number of iterations,n, for a direct-
adjoint computation performed at the optimal time. The algorithm is able to reach very
quickly a level of convergence of about10�4 ; then, the convergence rate decreases, so that
about 80 iterations are needed to reach a level of convergence of10�5 . Provided that only
minor di�erences are observed between the solutions corresponding to the two convergence
levels10�4 and 10�5 , the convergence level10�4 can be considered satisfactory.

It is worth to point out that the iterative optimization technique is equivalent to per-
form power iterations for the maximization of a Rayleigh quotient, a procedure which
is mathematically guaranteed to converge to the global optimum. The convergence his-
tory depends slightly on the initial guess, as shown in �gure B.2 (a) which provides the
normalized increment of the objective function,err , versus the number of iterations for
an initial guess resulting from: 1) the direct-adjoint optimization stopped at the level
of convergenceerr = 10�3 (diamonds); 2) the global model optimization (squares); 3)
the global model optimization with a random noise of amplitude10�8 superposed at the
inlet points (triangles). It is observed that, although the convergence is accelerated for an
initial guess extracted from a previous direct-adjoint optimization, the slope of the con-
vergence curve slightly varies. Moreover, when the initial guess is perturbed with some
noise, although the normalized increment,err , temporarily increases, a rapidly decreasing
curve is quickly re-established. A study of the convergence history is carried out also with
respect to the time step chosen for the computation: the convergence curves are found to
be independent of such a parameter.
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APPENDIX B. CONVERGENCE ANALYSIS OF THE OPTIMIZATION
METH ODS

(a) (b)

Figure B.1: Envelope of the optimal energy gain obtained by the direct-adjoint method
(black squares) and the global model (solid line) (a); normalized incrementerr of the
objective function versus the number of iterations atT = 247 represented in a semi-
logarithmic scale.

(a) (b)

Figure B.2: Normalized incrementerr of the objective function versus the number of iter-
ations at T = 247 represented in a semi-logarithmic scale for an initial guess resulting from
a direct-adjoint optimization stopped at the level of convergenceerr = 10�3 (diamonds),
from the global model optimization (squares), and from the global model optimization
with a random noise of amplitude10�8 superposed at the inlet points (triangles) (a).
Envelope of the optimal energy gain computed by the global model for1100modes (solid
line), 1000 modes (dashed line) and900 modes (dashed-dotted line) atRe = 610 and
L x = 400 (b).
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B.2. THE GLOBAL EIGENVALUE ANALYSIS

B.2 The global eigenvalue analysis

The optimal energy gain is computed also by the global model of section 3.5. The resulting
curve follows qualitatively the data obtained by the direct-adjoint method, although the
maximum G(t) is lower than that previously computed, and is equal to710 at t = 235,
as shown in �gure B.1 (a) (solid line). A possible reason for this mild discrepancy is that
the continuous spectrum is captured only in a discrete sense by the present procedure.
Hence it becomes important to employ both a large value ofL y (together with acceptable
resolution along y) while capturing the largest possible numberN of modes. In the
solution of equation (3.34) we have used up toN = 1100 modes, which is the maximum
allowed by our computing systems for the storage of the matrices in (3.27). To verify
that N = 1100 is su�cient, the convergence of the global model optimization has been
studied by varying the number of modes chosen for the optimization. Figure B.2 (b)
shows the optimal energy gain curves computed withN = 900 (dashed-dotted line),
N = 1000 (dashed line) andN = 1100 modes (solid line). Although for the two better
resolved computations the energy gain curves change only slightly, the convergence is not
yet perfect.

B.3 Computational costs

Concerning the computational cost, the direct-adjoint optimization is able to reach in
about 8 hours of CPU time on a single processor Intel(R) Core(TM) @ 2.67-GHz, a
convergence level of10�4 at the optimal target time. Concerning the global model, with
N = 1100 modes, about70 hours are needed to compute the global spectrum using the
eight cores of two Intel Itanium 2 Quad core @ 667-MHz processors. Once the spectrum
is computed, such a method can quickly determine the energy gain curve with a high
resolution in time; for example, three hours of computation on a single core of an Intel
Itanium 2 @ 667 MHz processor are necessary to compute the energy gain curve with a
time resolution of10 (the G(t) values are computed fort = 10n with n = 1; 2; :::;60). The
same task takes about500 hours when using the direct-adjoint optimization. Thus, it is
possible to conclude that the global model yields an acceptable estimate of the time at
which the energy peaks; from this point on it is best to adopt the direct-adjoint procedure
to accurately evaluate the maximum gain by optimizing in a small window of the optimal
time provided by the global model.
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������� �� ������ � ����� ���	���� ���  ������ ���� ������������ ������� � !� ���� ������� ��������� ����
������� � ����� � �� � ��� � ������������ � ���������"������ � #��� � ��� � �������� � ��������� � �������
������������������������������������������������������������  ������������ ��������� �������
������������������������������������������������$��������������������	����������������������
�������	����� � ��� � ��������������� � � � ��� � ���� �� � ! � �% � ��� � ��� �  ��� � ����� ������� � ����
����������� � �� � ����� � ���������� � �� � ����������������&� ��%� ��� � ��� � �  ��� � �� � ��� � ���������
����������������������������	����
������ �������� &����%��������� �������������������������������
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������ � �����	��� � �� � ��� � � � ��� � �������� �� � ��� � ����������� � ���������� � ����������� � �� � ����
 �������� � ��������� � ���� � ��� � � ��������� � ������������� � �� � ���������� � �� � ��������������
��������� � ��� � ����� ������� � �� � �������� � ��� � ������������ �$�� � ������ � ��� � �  ��� � �� � �� � ����
������������������������������������������������� ����������������������������������������������
����������� � ��������� � ������� � ��� � ��� � �������� � ��� � ��� � ����������� � �� � ����	� � �������
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 �� )	����� �� ��	��� �	�������� ������������	������������������������������ �� ����	�
�����	����������������������������� ��*�������� ���������������*������������������)	��
��������������������������	���������������������	��������	�������������������������������
����� � �*� � ������ � ����������� � ������	��! � �	� � ������ � ���������� � �������� � ��� � �	� � ��������"�����
������+�������(���	��������������������������������������������������������������������� ���	��
�����������������	��������������  �������������	��	��	����������������� ��	�� ��*������,���
��������������(���	�������� ��	������������������������� ��*������	������������ �����	������� �
�	� �  ����*��� �  ������ � �� � �	� � ����� � � � ������������! � �%��	� � ����� � �*������������� � �����������
����� �������& � ��% � �	� � ������������ � �  ���� � ���	 � �� � �	� � � �������� � �	��������& � ���% � �	� � 	��	�
����������������������� �����&���%��	���������������������	���������������������-����������	��
�����	�������������������	������	����������������� ��������+����������������	������+������
�����	������� ������������	�������*�������.������*�������������������������������������
����� �������� � (� � ��� � �� � ������ � �	� � �  ���� � � � ������������ � �� � �	� � ����������� � ���	�������
������ ��� � �� � �	� � ������ � ����� � ��������� � ��������� � ����� � �������� � ����������� � 	��� � �����
�� ���� � �� � � � �*�� � ��� � �	�������������� �  ���*�, �  � � ���	 � �	� � �����	�� � ��� � ���������
������������� ��*���)	������������ ��	��������������*	��	��������������������	�� ��*�����
�	� � ���� � � � ��������� � 	��� � ���� � �������� � #�  ���� � �������� � � � ��������� � 	��� � �����
��������������	�����	����������������	�� ��*���������������	��������������+�������������
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