J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompressible navier-stokes equations, Journal of Computational Physics, vol.85, issue.2, pp.257-283, 1985.
DOI : 10.1016/0021-9991(89)90151-4

M. Ben-artzi, J. Croisille, and D. Fishelov, Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier???Stokes System, SIAM Journal on Numerical Analysis, vol.44, issue.5
DOI : 10.1137/05062915X

M. Ben-artzi, D. Fishelov, and S. Trachtenberg, Vorticity dynamics and numerical Resolution of Navier-Stokes Equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.2, pp.313-330, 2001.
DOI : 10.1051/m2an:2001117

J. Blasco, R. Codina, and A. Huerta, A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm, International Journal for Numerical Methods in Fluids, vol.87, issue.10, pp.1391-1419, 1998.
DOI : 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5

M. Bonnet, Equations intégrales et éléments de frontière : Applications en mécanique des solides et des fluides, Eyrolles, 1995.

O. Botella, Résolution des équations de Navier Sotkes par des schémas de Projection Tchebychev, 1996.

O. Botella and Y. Cheny, The ls-stag method : a new immersed boundary/levelset method for the computation of incompressible viscous flows in complex geometries, CFM, vol.18, 2007.

D. L. Brown, R. Cortez, and M. L. Minion, Accurate Projection Methods for the Incompressible Navier???Stokes Equations, Journal of Computational Physics, vol.168, issue.2, pp.467-499, 2001.
DOI : 10.1006/jcph.2001.6715

P. M. Bungay and H. Brenner, The motion of a closely fitting sphere in a fluidfilled tube, International Journal of Multiphase Flow, pp.1-25, 1973.

D. Calhoun, A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions, Journal of Computational Physics, vol.176, issue.2, pp.231-275, 2002.
DOI : 10.1006/jcph.2001.6970

R. Celorrio, V. Dominguez, and F. Sayaz, An interior???exterior Schwarz algorithm and its convergence, Comptes Rendus Mathematique, vol.334, issue.10, p.1334, 2002.
DOI : 10.1016/S1631-073X(02)02362-2

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, p.745, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, vol.23, issue.106, p.341, 1969.
DOI : 10.1090/S0025-5718-1969-0242393-5

A. Dagan, Numerical consistency and spurious boundary layer in the projection method. computers et fluids, pp.1213-1232, 2003.

H. Van and . Vorst, A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.631-644, 1992.
DOI : 10.1137/0907059

E. Weinan and J. Liu, Projection method i : convergence and numerical boundary layers, SIAM J. Numer. Anal, vol.32, pp.1017-1057, 1995.

E. Weinan and J. Liu, Vorticity boundary conditions and related issues for finite difference schemes, Journal of computational physics, vol.124, pp.368-382, 1995.

E. Weinan and J. Liu, Projection method ii : Godunov-ryabenki analysis

E. Weinan and J. Liu, Gauge method for viscous incompressible flows

A. Ern and J. Guermond, Theory and Pratice of Finite Elements, 2004.

H. Faxen, Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes, Proc. of a Royal Swedish Academy of Engineering Sciences, vol.187, issue.1, 1946.

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, p.457, 1999.
DOI : 10.1006/jcph.1999.6236

F. Gibou, R. P. Fedkiw, L. Cheng, and M. Kang, A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains, Journal of Computational Physics, vol.176, issue.1, pp.205-227, 2002.
DOI : 10.1006/jcph.2001.6977

R. Glowinski, T. W. Pan, T. I. Heslaand, and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. W. Pan, and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.112, issue.1-4, pp.133-148, 1994.
DOI : 10.1016/0045-7825(94)90022-1

K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, vol.30, issue.1, pp.76-95, 1979.
DOI : 10.1016/0021-9991(79)90088-3

P. M. Gresho and R. L. Sani, On pressure boundary conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.304, issue.10, pp.1111-1145, 1987.
DOI : 10.1002/fld.1650071008

J. L. Guermond, Un r??sultat de convergence d'ordre deux en temps pour l'approximation des ??quations de Navier???Stokes par une technique de projection incr??mentale, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.1, pp.169-189, 1999.
DOI : 10.1051/m2an:1999101

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, 2005.
DOI : 10.1016/j.cma.2005.10.010

J. L. Guermond and J. Shen, Quelques r??sultats nouveaux sur les m??thodes de projection, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.333, issue.12, pp.1111-1116, 2001.
DOI : 10.1016/S0764-4442(01)02157-7

J. Happel and H. Brenner, Low Reynolds number hydrodynamics, 1973.
DOI : 10.1007/978-94-009-8352-6

F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.8, issue.12, p.2182, 1965.
DOI : 10.1063/1.1761178

C. W. Hirst and B. D. Nichols, Volume of fluid methods for the dynamics of free boundaries, Journal of computationnal physics, vol.30, pp.201-255, 1981.

M. Ismail, Methode de la frontière élargie pour la résolution de problème elliptique dans des domaines perforés, 2004.

M. Israeli and S. A. Orszag, Numerical simulation of viscous incompressible flows, Annual Review of Fluid Mechanics, vol.6, pp.281-318, 1974.

M. Israeli, S. A. Orszag, and O. Deville, Boundary conditions for incompressible flows, Journal of Scientific Computing, vol.1, pp.75-111, 1986.

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM: Proceedings, vol.14, pp.115-123, 2005.
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

Z. Jomaa and C. Macaskill, The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions, Journal of Computational Physics, vol.202, issue.2, pp.488-506, 2005.
DOI : 10.1016/j.jcp.2004.07.011

J. Van-kan, A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.870-891, 1986.
DOI : 10.1137/0907059

G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol.97, issue.2, pp.414-443, 1991.
DOI : 10.1016/0021-9991(91)90007-8

L. Lee, Immersed Interface Method for incompressible flow with moving interface, 2002.

A. Lefebvre, Fluid-Particle simulations with FreeFem++, ESAIM: Proceedings, vol.18, pp.120-132, 2007.
DOI : 10.1051/proc:071810

URL : https://hal.archives-ouvertes.fr/hal-00728387

R. J. Leveque and J. Oliger, Numerical methods based on additive splittings for hyperbolic partial differential equations, Mathematics of Computation, vol.40, issue.162, pp.469-497, 1983.
DOI : 10.1090/S0025-5718-1983-0689466-8

E. Maitre, Review of numérical methods for free interfaces Ecole thématique des Houches : Modèle de champ de phase pour l'évolution de structures complexes, pp.1-28, 2006.

G. I. Marchuk, Handbook of Numerical Analysis, 1990.

B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains, Journal of Computational Physics, vol.156, issue.2, pp.325-351, 1999.
DOI : 10.1006/jcph.1999.6365

B. Maury, A fat boundary method for the poisson problem in a domain with holes, SIAM J. of Sci. Comput, vol.16, pp.319-339, 2001.

P. D. Minev, L. J. Timmermans, and F. N. Van-de-vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, vol.22, pp.673-688, 1996.

P. Moin and J. Kim, On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries, Journal of Computational Physics, vol.35, issue.3, pp.381-392, 1980.
DOI : 10.1016/0021-9991(80)90076-5

P. Moin and J. Kim, Application of a fractional-step method to incompressible navier-stokes equations, Journal of computational physics, vol.59, pp.308-323, 1985.

N. A. Patankar and N. Sharma, A fast projection scheme for the direct numerical simulation of rigid particulate flows, Communications in Numerical Methods in Engineering, vol.23, issue.8, pp.419-432, 2005.
DOI : 10.1002/cnm.756

C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

A. Quarteroni, F. Saleri, and A. Veneziani, Analysis of the Yosida method for the incompressible Navier???Stokes equations, Journal de Math??matiques Pures et Appliqu??es, vol.78, issue.5, pp.473-503, 1999.
DOI : 10.1016/S0021-7824(99)00027-6

I. Ramière, Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numérique d'écoulements diphasique, 2006.

T. Randrianarivelo, G. Pianet, S. Vincent, and J. Caltagirone, Numerical modelling of solid particle motion using a new penalty method, International Journal for Numerical Methods in Fluids, vol.34, issue.10-11, pp.1245-1251, 2007.
DOI : 10.1002/fld.914

A. B. Richou, A. Ambari, M. Lebey, and J. K. Naciri, Drag force on a circular midway between two paralel plates at a very low reynolds numbers. part 2 : moving uniformly (numerical and experimental), Chemical Engineering Science, vol.60, 2005.

J. Ritz and J. Caltagirone, A numerical continuous model for the hydrodynamics of fluid particle systems, International Journal for Numerical Methods in Fluids, vol.271, issue.8, pp.1067-1090, 1999.
DOI : 10.1002/(SICI)1097-0363(19990830)30:8<1067::AID-FLD881>3.0.CO;2-6

D. Russell and Z. J. Wang, A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, Journal of Computational Physics, vol.191, issue.1, pp.177-205, 2003.
DOI : 10.1016/S0021-9991(03)00310-3

V. K. Saul-'ev, On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. Journal, vol.4, pp.912-925, 1963.

J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes, Mathematics of Computation, vol.65, issue.215, pp.1039-1065, 1996.
DOI : 10.1090/S0025-5718-96-00750-8

P. Sonnelved, Cgs : A fast lanczos-type solver fon nonsymmetric linear system

J. C. Strikwerda and Y. S. Lee, The accuracy of the fractionnal step method, SIAM J. Numer. Anal, vol.37, 1999.

R. Temam, Remark on the pressure boundary condition for the projection method, Theoretical and Computational Fluid Dynamics, vol.7, issue.4, p.181, 1991.
DOI : 10.1007/BF00271801