M. Cooke, Filling the THz gap with new applications, Semiconductor Today, pp.39-43, 2007.

J. Pierce, Traveling Wave Tubes, Bell Syst. Tech. J, vol.29, p.390460, 1950.

G. Gartner, P. Geittner, H. Lydtin, and A. Ritz, Emission properties of top-layer scandate cathodes prepared by LAD, Applied Surface Science, vol.111, p.1117, 1997.
DOI : 10.1016/S0169-4332(96)00698-8

R. Longo, L. Adler, and . Falce, Dispenser cathode life prediction model, 1984 International Electron Devices Meeting, 1984.
DOI : 10.1109/IEDM.1984.190712

P. Zalm and A. Van-stratum, Osmium dispenser cathodes, Philips Technical Review, vol.27, issue.34, p.6975, 1966.

J. Pierce, Rectilinear Electron Flow in Beams, Journal of Applied Physics, vol.11, issue.8, p.548, 1940.
DOI : 10.1063/1.1712815

R. Fowler and L. Nordheim, Electron emission in intense electric elds, Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character, vol.119, p.173181, 1928.

C. Spindt, A Thin???Film Field???Emission Cathode, Journal of Applied Physics, vol.39, issue.7, p.3504, 1968.
DOI : 10.1063/1.1656810

C. Spindt, C. Holland, I. Schwoebel, and . Brodie, Field emitter array development for microwave applications. I, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.16, 1986.

C. Spindt, A. Ce-holland, I. Rosengreen, . Brodie, M. Int et al., Field-emitter arrays for vacuum microelectronics, IEEE Transactions on Electron Devices, vol.38, issue.10, p.23552363, 1991.
DOI : 10.1109/16.88525

W. Zhu, Vacuum microelectronics, 2001.
DOI : 10.1002/0471224332

C. O. Bozler, C. T. Harris, S. Rabe, D. D. Rathman, M. A. Hollis et al., Arrays of gated field-emitter cones having 0.32 ??m tip-to-tip spacing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.2, p.629, 1994.
DOI : 10.1116/1.587401

M. Benjamin and R. Jenkins, The Distribution of Autelectronic Emission from Single Crystal Metal Points. I. Tungsten, Molybdenum, Nickel in the Clean State, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.176, issue.965, pp.262-279, 1940.
DOI : 10.1098/rspa.1940.0089

V. T. Binh, N. Garcia, and S. Purcell, Electron eld emission from atom-sources : fabrication, properties, and applications of nanotips, Advances in Imaging and Electron Physics, p.63155, 1996.

Q. Wang, . Td-corrigan, . Dai, A. Chang, and . Krauss, Field emission from nanotube bundle emitters at low fields, Applied Physics Letters, vol.70, issue.24, p.3308, 1997.
DOI : 10.1063/1.119146

K. Teo, . Lacerda, . Yang, . Teh, . Law-robinson et al., Carbon nanotube technology for solid state and vacuum electronics, IEE Proceedings-Circuits, Devices and Systems, pp.443-451, 2004.
DOI : 10.1049/ip-cds:20040408

K. Teo, M. Chhowalla, . Amaratunga, P. Wi-milne, G. Legagneux et al., Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.2, p.693, 2003.
DOI : 10.1116/1.1545755

F. Baker, J. Osborn, and . Williams, Field Emission from Carbon Fibres: A New Electron Source, Nature, vol.39, issue.3, p.9697, 1972.
DOI : 10.1038/239096a0

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.5658, 1991.
DOI : 10.1038/354056a0

W. A. De-heer, A. Chatelain, and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source, Science, vol.270, issue.5239, p.1179, 1995.
DOI : 10.1126/science.270.5239.1179

A. Rinzler, P. Jh-hafner, P. Nikolaev, . Nordlander, . Colbert et al., Unraveling nanotubes : eld emission from an atomic wire, Science, issue.5230, p.2691550, 1995.

S. Purcell, P. Vincent, C. Journet, and V. T. Binh, Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current, Physical Review Letters, vol.88, issue.10
DOI : 10.1103/PhysRevLett.88.105502

J. M. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A. De-heer et al., Field emission properties of multiwalled carbon nanotubes, Ultramicroscopy, vol.73, issue.1-4, pp.1-4715, 1998.
DOI : 10.1016/S0304-3991(97)00129-0

E. Minoux, O. Groening, K. B. Teo, S. H. Dalal, L. Ganglo et al., Achieving High-Current Carbon Nanotube Emitters, Nano Letters, vol.5, issue.11, p.21352138, 2005.
DOI : 10.1021/nl051397d

X. Calderon-colon, H. Geng, B. Gao, L. An, G. Cao et al., A carbon nanotube eld emission cathode with high current density and long-term stability, Nanotechnology, p.205, 2009.

M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Carbon nanotube growth by PECVD: a review, Plasma Sources Science and Technology, vol.12, issue.2, p.205216, 2003.
DOI : 10.1088/0963-0252/12/2/312

L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller et al., Scanning field emission from patterned carbon nanotube films, Applied Physics Letters, vol.76, issue.15, p.2071, 2000.
DOI : 10.1063/1.126258

Z. Chen, Q. Zhang, P. Lan, B. Zhu, T. Yu et al., Ultrahigh-current eld emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength, Nanotechnology, issue.26, p.18265702265702, 2007.

D. S. Hsu and J. L. Shaw, Open aperture microgated carbon nanotube FEAs, 2007 IEEE 20th International Vacuum Nanoelectronics Conference, pp.8-128081, 2007.
DOI : 10.1109/IVNC.2007.4480941

W. Milne, . Teo, R. Gaj-amaratunga, P. Lacerda, G. Legagneux et al., Aligned carbon nanotubes/bers for applications in vacuum microwave devices, Current Applied Physics, vol.4, issue.5, p.513517, 2004.

L. Ganglo, E. Minoux, P. Teo, . Vincent, . Semet et al., Self-aligned, gated arrays of individual nanotube and nanowire emitters, Nano Lett, vol.4, issue.9, p.15751579, 2004.

W. Kang, A. Davidson, . Wisitsora-at, S. Kerns, and . Kerns, Recent development of diamond microtip field emitter cathodes and devices, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.3, p.936, 2001.
DOI : 10.1116/1.1368667

S. Xavier, S. Mate-tempi, E. Ferain, S. Purcell, S. Enouz-védrenne et al., Stable eld emission from arrays of vertically aligned free-standing metallic nanowires, Nanotechnology, issue.21, pp.19215601-215601, 2008.

O. Groening, P. Kuttel, L. Groening, and . Schlapbach, Field emission properties of nanocrystalline chemically vapor deposited-diamond lms, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.17, 1970.

A. Karabutov, . Vd-frolov, V. Pimenov, and . Konov, Grain boundary eld electron emission from CVD diamond lms, Diamond and related materials, vol.8, issue.25, p.763767, 1999.
DOI : 10.1016/s0925-9635(98)00308-2

O. Groening, E. Kuttel, P. Schaller, L. Groning, and . Schlapbach, Vacuum arc discharges preceding high electron field emission from carbon films, Applied Physics Letters, vol.69, issue.4, p.476, 1996.
DOI : 10.1063/1.118145

J. Tsai, W. Teo, and . Milne, Using a self-structured thin-lm edge emitter to improve the eld emission from tetrahedral amorphous carbon, Materials Science & Engineering A, vol.353, issue.12, p.5661, 2003.

Y. Saito and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, vol.38, issue.2, p.169182, 2000.

D. R. Whaley, R. Duggal, C. M. Armstrong, C. L. Bellew, C. E. Holland et al., Spindt. 100 W Operation of a Cold Cathode TWT, IEEE T. Electron. Dev, vol.56, issue.5, p.896905, 2009.

A. Lichtenberg, Prebunched beam traveling-wave tube studies, IRE Transactions on Electron Devices, vol.9, issue.4, p.345351, 1962.
DOI : 10.1109/T-ED.1962.14995

D. Whaley, C. Gannon, . Smith, C. Armstrong, and . Spindt, Application of eld emitter arrays to microwave power ampliers, IEEE T. Plasma. Sci, vol.28, issue.3, pp.727-747, 2000.

A. Hae and L. Nergaard, A wide-band inductive-output amplier, Proceedings of the IRE, p.126130, 1940.

J. Rowe and J. Meeker, Interaction of Premodulated Electron Streams with Propagating Circuits???, Journal of Electronics and Control, vol.42, issue.6, p.439466, 1960.
DOI : 10.1103/PhysRev.56.276

J. Morton and R. Ryder, Design Factors of the Bell Telephone Laboratories 1553 Triode, Bell System Technical Journal, vol.29, issue.4, p.496517, 1950.
DOI : 10.1002/j.1538-7305.1950.tb03650.x

C. Bower, D. Shalom, W. Zhu, D. Lopez, . Kochanski et al., A micromachined vacuum triode using a carbon nanotube cold cathode, IEEE Transactions on Electron Devices, vol.49, issue.8
DOI : 10.1109/TED.2002.801247

K. Jensen, An analytical model of an emission-gated Twystrode using a field emitter array, Journal of Applied Physics, vol.83, issue.12, p.7982, 1998.
DOI : 10.1063/1.367980

K. Jensen, R. Abrams, and R. Parker, Field emitter array development for high frequency applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.2, p.749, 1998.
DOI : 10.1116/1.590217

F. Charbonnier, . Barbour, W. Garrett, and . Dyke, Basic and applied studies of eld emission at microwave frequencies, IEEE J PROC, vol.51, issue.7, p.9911004, 1963.

K. B. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell et al., Microwave devices: Carbon nanotubes as cold cathodes, Nature, vol.362, issue.7061, p.437968, 2005.
DOI : 10.1063/1.126258

P. Legagneux, E. Minoux, L. Hudanski, K. Teo, O. Griening et al., GHz modulation of carbon nanotube cathodes for microwave ampliers, 5th IEEE conference on Nanotechnology, p.865867, 2005.

L. Hudanski, Modulation of the electron beam emitted by carbon nanotube based carthode, application to microwave tubes, 2008.

N. and L. Sech, Photocathode à base de nanotubes de carbone sur substrats semi-conducteurs de type III/V -Application aux amplicateurs hyperfréquences, 2010.

T. Blaney, . Edwards, . Bw-jollie, P. Knight, and . Woods, Absolute frequencies of the methane-stabilized HeNe laser (3.39µm) and the CO2, R (32) stabilized laser (10.17µm), Journal of Physics D : Applied Physics, vol.9, p.13231330, 1976.

W. Krieger, T. Suzuki, M. Volcker, and H. Walther, Generation of microwave radiation in the tunneling junction of a scanning tunneling microscope, Physical Review B, vol.41, issue.14, p.411022910232, 1990.
DOI : 10.1103/PhysRevB.41.10229

L. Arnold, W. Krieger, and H. Walther, Laser???frequency mixing in the junction of a scanning tunneling microscope, Applied Physics Letters, vol.51, issue.11, p.786, 1987.
DOI : 10.1063/1.98866

L. Arnold, W. Krieger, and H. Walther, Laser???frequency mixing using the scanning tunneling microscope, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.2, p.466, 1988.
DOI : 10.1116/1.575397

W. Krieger, H. Koppermann, T. Suzuki, and H. Walther, The generation of laser difference frequencies using the scanningtunneling microscope, IEEE Transactions on Instrumentation and Measurement, vol.38, issue.5, p.10191021, 1989.

H. Nguyen, P. Cutler, Z. H. Te-feuchtwang, Y. Huang, . Kuk et al., Mechanisms of current rectication in an STM tunnel junction and the measurement of an operational tunneling time, IEEE Transactions on Electron Devices, issue.11 2, p.3626712678, 1989.

M. Volcker, W. Krieger, and H. Walther, Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.3, p.2129, 1994.
DOI : 10.1116/1.587723

T. Gutjahr-loser, A. Hornsteiner, W. Krieger, and H. Walther, Laser-frequency mixing in a scanning tunneling microscope at 1.3 ??m, Journal of Applied Physics, vol.85, issue.9, p.6331, 1999.
DOI : 10.1063/1.370134

C. Balanis, Antenna theory : analysis and design, 1982.

D. W. Pohl and D. Courjon, Near eld optics, Kluwer Dordrecht, 1993.

M. Hagmann, Photomixing in resonant laser-assisted eld emission-a new technique for wide-band-tunable terahertz sources, IEEE T. Microw. Theory, vol.52, issue.10, p.23612365, 2004.

M. Brugat and M. Hagmann, Measurements of modulation of the total emitted current in laser-assisted eld emission, Ultramicroscopy, vol.79, issue.1-4, p.181188, 1999.

T. Kokubo, A. Gallagher, and J. Hall, Optical heterodyne detection at a silver scanning tunneling microscope junction, Journal of Applied Physics, vol.85, issue.3, p.1311, 1999.
DOI : 10.1063/1.369332

S. Grafstrom, Photoassisted scanning tunneling microscopy, Journal of Applied Physics, vol.91, issue.4, p.1717, 2002.
DOI : 10.1063/1.1432113

M. Volcker, W. Krieger, and H. Walther, Laser-driven scanning tunneling microscope. Physical review letters, p.17171720, 1991.

B. Deconihout, F. Vurpillot, B. Gault, G. Da-costa, M. Bouet et al., Toward a laser assisted wide-angle tomographic atom-probe, Surface and Interface Analysis, vol.15, issue.77, p.278282, 2007.
DOI : 10.1002/sia.2491

P. Hommelho, C. Kealhofer, and M. A. Kasevich, Ultrafast electron pulses from a Tungsten tip triggered by low-power femtosecond laser pulses. Physical review letters, p.97247402, 2006.

. Références, On a remarkable case of uneven distribution of light in a diraction grating spectrum, Proceedings of the Physical Society of London, p.269275, 1902.

R. Wood, Diraction gratings with controlled groove form and abnormal distribution of intensity, p.310317, 1912.

U. Fano, The theory of anomalous diraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves), Journal of the Optical Society of America, issue.3, p.31213222, 1941.

D. Pines, Collective Energy Losses in Solids, Reviews of Modern Physics, vol.28, issue.3, p.184198, 1956.
DOI : 10.1103/RevModPhys.28.184

U. Fano, Atomic Theory of Electromagnetic Interactions in Dense Materials, Physical Review, vol.103, issue.5, p.12021218, 1956.
DOI : 10.1103/PhysRev.103.1202

R. Ritchie, Plasma losses by fast electrons in thin lms, Physical Review, vol.106874, issue.5, p.881, 1957.

R. Ritchie, . Arakawa, R. Cowan, and . Hamm, Surface-plasmon resonance eect in grating diraction, Physical Review Letters, vol.21, issue.22, p.15301533, 1968.

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reection. Zeitschrift fur Physik A Hadrons and Nuclei, p.398410, 1968.

E. Kretschmann and H. Raether, Radiative decay of nonradiative surface plasmons excited by light. z, Naturforsch. A, vol.23, p.21352136, 1968.

U. Kreibig and P. Zacharias, Surface plasma resonances in small spherical silver and gold particles. Zeitschrift fur Physik A Hadrons and Nuclei, p.128143, 1970.

M. Fleischmann, A. Hendra, and . Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, vol.26, issue.2, p.163166, 1974.
DOI : 10.1016/0009-2614(74)85388-1

B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators, vol.4, issue.2, p.299304, 1983.
DOI : 10.1016/0250-6874(83)85036-7

F. Lopez-tejeira, S. G. Rodrigo, L. Martin-moreno, F. Garcia-vidal, E. Devaux et al., Ecient unidirectional nanoslit couplers for surface plasmons, Nature Physics, vol.3, p.324328, 2007.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu et al., Plasmonic surface-wave splitter, Applied Physics Letters, vol.90, issue.16, p.161130, 2007.
DOI : 10.1063/1.2731524

URL : http://ir.semi.ac.cn/handle/172111/9526

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Bidirectional subwavelength slit splitter for THz surface plasmons, Optics Express, vol.15, issue.26, p.1805018055, 2007.
DOI : 10.1364/OE.15.018050

Z. Ruan and M. Qiu, Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface, Applied Physics Letters, vol.90, issue.20, p.201906, 2007.
DOI : 10.1063/1.2740174

J. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.85, issue.18, p.39663969, 2000.
DOI : 10.1103/PhysRevLett.85.3966

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol.424, issue.6950, p.424824830, 2003.
DOI : 10.1038/nature01937

URL : https://hal.archives-ouvertes.fr/hal-00472360

J. J. Greet and R. Carminati, Image formation in near-eld optics, Progress in surface science, vol.56, issue.3, p.133237, 1997.

W. Barnes, . Preist, J. Sc-kitson, and . Sambles, Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings, Physical Review B, vol.54, issue.9, pp.6227-6244, 1996.
DOI : 10.1103/PhysRevB.54.6227

F. Pincemin and J. J. Greet, Propagation and localization of a surface plasmon polariton on a nite grating, Journal of the Optical Society of America B, vol.13, issue.7, p.14991509, 1996.

S. Mair, B. Gompf, and M. Dressel, Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer, Applied Physics Letters, vol.84, issue.7, p.1219, 2004.
DOI : 10.1063/1.1647707

E. D. Palik and G. Ghosh, Handbook of optical constants of solids Academic press, 1985.

G. Agrawal and S. Radic, Phase-shifted ber Bragg gratings and their application for wavelength demultiplexing, IEEE photonics technology letters, vol.6, issue.8, p.995997, 1994.

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, vol.9, issue.9, p.919933, 1973.
DOI : 10.1109/JQE.1973.1077767

M. Carras and A. Rossi, Field concentration by exciting surface defect modes, Optics Letters, vol.31, issue.1, p.4749, 2006.
DOI : 10.1364/OL.31.000047

J. Weeber, A. Bouhelier, and G. , Colas des Francs, L. Markey, and A. Dereux. Submicrometer in-plane integrated surface plasmon cavities, Nano Letters, vol.7, issue.5, p.13521359, 2007.

J. Young and R. Nelson, A summary and systematic analysis of FDTD algorithms for linearlydispersive media, IEEE Antennas and Propagation Magazine, vol.43, issue.1, p.61126, 2001.

M. Carras, Optimisation électronique et électromagnétique de détecteurs quantiques dans l'infrarouge, 2008.

J. Plouin, E. Richalot, O. Picon, M. Carras, and A. De-rossi, Photonic band structures for bi-dimensional metallic mesa gratings, Optics Express, vol.14, issue.21, p.847848, 2004.
DOI : 10.1364/OE.14.009982

M. Qiu, Photonic band structures for surface waves on structured metal surfaces, Optics Express, vol.13, issue.19, p.847848, 2004.
DOI : 10.1364/OPEX.13.007583

L. Stabellini, M. Carras, A. De-rossi, and G. Bellanca, Design and Optimization of High- Q Surface Mode Cavities on Patterned Metallic Surfaces, IEEE Journal of Quantum Electronics, issue.10, p.44905910, 2008.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, Optimization of the Q factor in photonic crystal microcavities, IEEE Journal of Quantum Electronics, vol.38, issue.7, p.850856, 2002.
DOI : 10.1109/JQE.2002.1017597

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Q photonic doubleheterostructure nanocavity, Nature materials, vol.4, issue.3, p.207210, 2005.
DOI : 10.1038/nmat1320

W. A. De-heer, A. Chatelain, and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source, Science, vol.270, issue.5239, p.1179, 1995.
DOI : 10.1126/science.270.5239.1179

A. Rinzler, P. Jh-hafner, P. Nikolaev, . Nordlander, . Colbert et al., Unraveling nanotubes : eld emission from an atomic wire, Science, issue.5230, p.2691550, 1995.

. Zf-ren, . Huang, . Xu, P. Wang, . Bush et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, issue.5391, p.2821105, 1998.

K. Teo, M. Chhowalla, . Amaratunga, . Wi-milne, G. Dg-hasko et al., Uniform patterned growth of carbon nanotubes without surface carbon, Applied Physics Letters, vol.79, issue.10, p.1534, 2001.
DOI : 10.1063/1.1400085

L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller et al., Scanning field emission from patterned carbon nanotube films, Applied Physics Letters, vol.76, issue.15, p.2071, 2000.
DOI : 10.1063/1.126258

K. Teo, M. Chhowalla, . Amaratunga, G. Wi-milne, P. Pirio et al., Field emission from dense, sparse, and patterned arrays of carbon nanofibers, Applied Physics Letters, vol.80, issue.11, p.2011, 2002.
DOI : 10.1063/1.1461868

R. Fowler and L. Nordheim, Electron emission in intense electric elds, Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character, vol.119, p.173181, 1928.

L. Nordheim, The eect of the image force on the emission and reexion of electrons by metals, Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character, vol.121, p.626639, 1928.

I. Brodie and C. Spindt, Vacuum microelectronics Advances in electronics and electron physics, p.1106, 1992.

E. W. Muller, Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope, Journal of Applied Physics, vol.26, issue.6, p.732, 1955.
DOI : 10.1063/1.1722081

R. D. Young, Theoretical total-energy distribution of eld-emitted electrons, Physical Review, vol.113, issue.1, p.110114, 1959.

J. Gadzuk and E. Plummer, Field emission energy distribution (FEED) Reviews of Modern Physics, p.487548, 1973.

E. Hauge and J. Stovneng, Tunneling times: a critical review, Reviews of Modern Physics, vol.61, issue.4, p.917936, 1989.
DOI : 10.1103/RevModPhys.61.917

M. Buttiker and R. Landauer, Traversal time for tunneling, Physical Review Letters, vol.49, issue.23, p.17391742, 1982.

L. Keldysh, Ionization in the eld of a strong electromagnetic eld, Sov. Phys. JETP, vol.20, p.13071314, 1965.

P. Hommelho, C. Kealhofer, A. Aghajani-talesh, Y. R. Sortais, S. M. Foreman et al., Extreme localization of electrons in space and time, Ultramicroscopy, vol.109, issue.5, p.423429, 2009.

P. Hommelho, C. Kealhofer, and M. A. Kasevich, Ultrafast electron pulses from a Tungsten tip triggered by low-power femtosecond laser pulses. Physical review letters, p.97247402, 2006.

P. Hommelho, Y. Sortais, A. Aghajani-talesh, and M. A. Kasevich, Field emission tip as a nanometer source of free electron femtosecond pulses. Physical review letters, p.77401, 2006.

B. Barwick, C. Corder, J. Strohaber, N. Chandler-smith, C. Uiterwaal et al., Laser-induced ultrafast electron emission from a field emission tip, New Journal of Physics, vol.9, issue.5, p.142, 2007.
DOI : 10.1088/1367-2630/9/5/142

M. Hagmann, Photomixing in resonant laser-assisted eld emission-a new technique for wide-band-tunable terahertz sources, IEEE T. Microw. Theory, vol.52, issue.10, p.23612365, 2004.

A. Melechko, V. Merkulov, . Mcknight, . Ma-guillorn, D. Kl-klein et al., Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly, Journal of Applied Physics, vol.97, issue.4, p.41301, 2005.
DOI : 10.1063/1.1857591

N. De-jonge, M. Allioux, J. T. Oostveen, K. B. Teo, and W. I. Milne, Low noise and stable emission from carbon nanotube electron sources, Applied Physics Letters, vol.87, issue.13, p.133118, 2005.
DOI : 10.1063/1.2058225

O. Groening, E. Kuttel, P. Schaller, L. Groning, and . Schlapbach, Vacuum arc discharges preceding high electron field emission from carbon films, Applied Physics Letters, vol.69, issue.4, p.476, 1996.
DOI : 10.1063/1.118145

R. Gao, Z. Pan, and Z. L. Wang, Work function at the tips of multiwalled carbon nanotubes, Applied Physics Letters, vol.78, issue.12, p.1757, 2001.
DOI : 10.1063/1.1356442

W. A. De-heer, J. M. Bonard, K. Fauth, A. Châtelain, L. Forro et al., Electron eld emitters based on carbon nanotube lms, ADVANCED MATERIALS- DEERFIELD BEACH, vol.9, p.8789, 1997.

T. L. Mj-fransen, P. Van-rooy, and . Kruit, Field emission energy distributions from individual multiwalled carbon nanotubes, Applied Surface Science, vol.146, issue.1-4, pp.1-4312327, 1999.
DOI : 10.1016/S0169-4332(99)00056-2

G. Allaire, Analyse numérique et optimisation, Ecole Polytechnique, 2004.

C. Edgcombe and U. Valdre, The enhancement factor and the characterization of amorphous carbon eld emitters, Solid State Electronics, vol.45, issue.6, p.857863, 2001.

C. Edgcombe and U. Valdre, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters, Journal of Microscopy, vol.203, issue.2, p.188, 2001.
DOI : 10.1046/j.1365-2818.2001.00890.x

G. Kokkorakis, A. Modinos, and J. Xanthakis, Local electric field at the emitting surface of a carbon nanotube, Journal of Applied Physics, vol.91, issue.7, p.4580, 2002.
DOI : 10.1063/1.1448403

E. Minoux, Etude et développement de sources électroniques à émission de champ à base de nanotubes de carbone. Application aux tubes hyperfréquences, 2006.

L. Nilsson, O. Groening, P. Groening, and L. Schlapbach, Collective emission degradation behavior of carbon nanotube thin-film electron emitters, Applied Physics Letters, vol.79, issue.7, p.1036, 2001.
DOI : 10.1063/1.1392982

E. Minoux, O. Groening, K. B. Teo, S. H. Dalal, L. Ganglo et al., Achieving High-Current Carbon Nanotube Emitters, Nano Letters, vol.5, issue.11, p.21352138, 2005.
DOI : 10.1021/nl051397d

E. D. Palik and G. Ghosh, Handbook of optical constants of solids Academic press, 1985.

C. Bohren and D. Human, Absorption and scattering of light by small particles
DOI : 10.1002/9783527618156

R. Forbes, C. Edgcombe, and U. Valdre, Some comments on models for field enhancement, Ultramicroscopy, vol.95, issue.1-4, p.57, 2003.
DOI : 10.1016/S0304-3991(02)00297-8

B. Gault, A. Vella, F. Vurpillot, A. Menand, D. Blavette et al., Optical and thermal processes involved in ultrafast laser pulse interaction with a eld emitter, Ultramicroscopy, vol.107, issue.9, p.713719, 2007.

E. G. Pogorelov, A. I. Zhbanov, and Y. C. Chang, Field enhancement factor and eld emission from a hemi-ellipsoidal metallic needle, Ultramicroscopy, vol.109, issue.4, p.373378, 2009.

Y. Wang, K. Kempa, B. Kimball, G. Carlson, . Benham et al., Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes, Applied Physics Letters, vol.85, issue.13, p.2607, 2004.
DOI : 10.1063/1.1797559

K. B. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell et al., Carbon nanotubes as cold cathodes, Nature, issue.7061, p.437968, 2005.
DOI : 10.1038/437968a

D. Whaley, C. Gannon, . Smith, C. Armstrong, and . Spindt, Application of eld emitter arrays to microwave power ampliers, IEEE T. Plasma. Sci, vol.28, issue.3, pp.727-747, 2000.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez et al., CASINO V 2. 42-A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users, Scanning, issue.3, p.2992101, 2007.

G. Owen, Methods for proximity effect correction in electron lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.8, issue.6, p.1889, 1990.
DOI : 10.1116/1.585179

E. Minoux, Etude et développement de sources électroniques à émission de champ à base de nanotubes de carbone. Application aux tubes hyperfréquences, 2006.

A. G. Kim and . Rinzler, Crystalline ropes of metallic carbon nanotubes, Science, vol.273, issue.5274, p.483, 1996.

E. Minoux, O. Groening, K. B. Teo, S. H. Dalal, L. Ganglo et al., Achieving High-Current Carbon Nanotube Emitters, Nano Letters, vol.5, issue.11, p.21352138, 2005.
DOI : 10.1021/nl051397d

W. Zhao, N. Kawakami, A. Sawada, and M. Takai, Field emission from screen-printed carbon nanotubes irradiated by tunable ultraviolet laser in different atmospheres, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.4, p.1734, 2003.
DOI : 10.1116/1.1587136

A. Sawada, M. Iriguchi, C. Zhao, M. Ochiai, and . Takai, Emission site control in carbon nanotube field emitters by focused ion and laser irradiation, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.1, p.362, 2003.
DOI : 10.1116/1.1527597

W. Rochanachirapar, K. Murakami, N. Yamasaki, S. Abo, F. Wakaya et al., Influence of gas atmosphere during laser surface treatment of CNT cathode, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.2, p.762, 2005.
DOI : 10.1116/1.1868698

K. Chen, Y. Chen, . Jiang, Y. Ly-jiang, . Chang et al., Field emission image uniformity improvement by laser treating carbon nanotube powders, Applied Physics Letters, vol.88, issue.19
DOI : 10.1063/1.2203206

J. Hwang, . Kf-chen, Y. Chan, and . Chang, Using infrared laser to enhance field emission of carbon nanotube, Applied Physics Letters, vol.89, issue.3, p.33103, 2006.
DOI : 10.1063/1.2222337

Z. Chen, F. Zhu, Y. Wei, K. Jiang, L. Liu et al., Scanning focused laser activation of carbon nanotube cathodes for field emission flat panel displays, Nanotechnology, vol.19, issue.13, p.135703, 2008.
DOI : 10.1088/0957-4484/19/13/135703

W. Kim, H. Oki, A. Kinoshita, K. Murakami, S. Abo et al., Relationship between field-emission characteristics and defects measured by Raman scattering in carbon-nanotube cathodes treated by plasma and laser, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.2, p.760, 2008.
DOI : 10.1116/1.2884853

W. Yi, L. Lu, Z. Dian-lin, S. Zw-pan, and . Xie, Linear specic heat of carbon nanotubes, Physical Review B, vol.59, issue.14, p.90159018, 1999.

P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current saturation and electrical breakdown in multiwalled carbon nanotubes. Physical review letters, p.31283131, 2001.

P. Guiset, N. L. Sech, A. Gohier, A. Caillard, G. Rose et al., Pulsed laser annealing of carbon nanotube based cathodes for microwave ampliers, 2011.

P. Guiset, T. Antoni, M. Carras, A. De-rossi, and V. Berger, Imaging the near eld of Surface Bloch Modes, 2011.

T. Antoni, P. Guiset, M. Carras, A. De-rossi, and V. Berger, Superlens with zero focal length, 2011.

P. Legagneux, P. Guiset, N. Le-sech, J. P. Schnell, L. Ganglo et al., Microwave ampliers" in a book entitled "Carbon nanotube and related eld emitter : fundamentals and applications, Saïto, published in John Wiley and Sons (Asia) Pte Ltd, pp.439-468, 2010.

C. , .. P. Guiset, S. Combrie, T. Antoni, M. Carras et al., oral keynote presentation, "Optically driven Field Emission Array for THz ampliers, International Vacuum Electronics Conference

P. Guiset, S. Combrie, A. De-rossi, M. Carras, J. P. Schnell et al., Surface plasmon localization on eld emitters arrays for the microwave modulation of tunneling currents, SPIE Nanoscience and engineering

P. Guiset, S. Combrie, M. Carras, A. D. Rossi, J. Schnell et al., Surface plasmon localization on eld emitters arrays for the microwave modulation of tunneling currents, International Field Emission Symposium

P. Guiset, S. Combrie, M. Carras, A. D. Rossi, J. Schnell et al., Surface wave concentration for laser-assisted eld emissionTechnological bricks and concepts for THz remote sensing, Research Conference on Photonic Nano-objects, Les Houches (France) Conférences avec publications 1 Photonics Society Winter Topicals Meeting Series (WTM) 2010, pp.1-2

T. Antoni, M. Carras, V. Berger, P. Guiset, and A. D. Rossi, A zero-Focal-Length superlens for QWIPs and other infrared detectors, Infrared Technology and Applications XXXVI, p.766023
DOI : 10.1117/12.853526

P. Guiset, S. Combrie, T. Antoni, M. Carras, A. De-rossi et al., Optically driven Field Emission Array for THz ampliers, IEEE International, pp.325-326, 2009.

P. Legagneux, N. L. Sech, P. Guiset, L. Ganglo, C. Cojocaru et al., Carbon nanotube based cathodes for microwave ampliers, IEEE International, pp.80-81, 2009.
DOI : 10.1109/ivelec.2009.5193378

V. Pham, A. Krozer, M. Fiorello, D. Dispenza, S. Pribat et al., The European project OPTHER for the development of a THz tube amplier, IEEE International, pp.100-101, 2009.

P. Guiset, S. Combrie, A. De-rossi, M. Carras, J. P. Schnell et al., oral presentationSurface plasmon localization on eld emitters arrays for the microwave modulation of tunneling currents, Proceedings of SPIE 2008, Carbon nanotubes and associated devices, pp.70370-70371

L. Sech, P. Guiset, L. Hudanski, J. Ph, P. Schnell et al., Carbon nanotube based cathodes and photocathodes for electron tubes, International Vacuum Nanoelectronics Conference, pp.38-39, 2008.

. De-rossi-titre, Cold cathode electronic tube with optical control

:. P. Invention-disclosure-depositaires, N. Guiset, J. P. Le-sech, P. Schnell, and . Legagneux-titre, Cathode froides à pointes renversées et procédé de fabrication