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Introduction

Extensive work has been carried out in the past decade to image the elastic
properties of human soft tissues by inducing motion. This broad �eld, called elas-
ticity imaging or elastography, is based on the initial idea that shear elasticity can
be correlated with the pathology of tissues [60].

There are several techniques that can be classi�ed according to the type of
mechanical excitation chosen (static compression, monochromatic, or transient vi-
bration) and the way these excitations are generated (externally or internally).
Di�erent imaging modalities can be used to estimate the resulting tissue displace-
ments.

A very interesting approach to assessing elasticity is to use the acoustic radi-
ation force of an ultrasonic focused beam to remotely generate mechanical vibra-
tions in organs. The acoustic force is generated by the momentum transfer from
the acoustic wave to the medium. The radiation force essentially acts as a dipolar
source. A spatio-temporal sequence of the propagation of the induced transient
wave can be acquired, leading to a quantitative estimation of the viscoelastic pa-
rameters of the studied medium in a source-free region [33, 34].

Our aim in this thesis is to provide a solid mathematical foundation for this
transient technique and to design accurate methods for anomaly detection using
transient measurements. We consider both the acoustic and elastic cases. We
develop e�cient reconstruction techniques from not only complete measurements
but also from limited-view transient data and adapt them in the case of viscous
media, where the elastic waves are attenuated and/or dispersed.

We begin with transient imaging in a non-dissipative medium. We develop
anomaly reconstruction procedures that are based on rigorously established inner
and outer time-domain asymptotic expansions of the perturbations in the transient
measurements that are due to the presence of the anomaly. It is worth mentioning
that in order to approximate the anomaly as a dipole with certain polarizability,
one has to truncate the high-frequency component of the far-�eld measurements.

Using the outer asymptotic expansion, we design a time-reversal imaging tech-
nique for locating the anomaly. Based on such expansions, we propose an optimiza-
tion problem for recovering geometric properties as well as the physical parameters
of the anomaly. We justify both theoretically and numerically that scale separation
can be used to obtain local and precise reconstructions. We show the di�erences
between the acoustic and the elastic cases, namely, the anisotropy of the focal spot
and the birth of a near �eldlike e�ect by time reversing the perturbation due to an
elastic anomaly. These interesting �ndings were experimentally observed and �rst
reported in [43]. Our asymptotic formalism clearly explains them.

In the case of limited-view transient measurements, we construct Kirchho�-,
back-propagation-, MUSIC-, and arrival time-type algorithms for imaging small
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2 INTRODUCTION

anomalies. Our approach is based on averaging of the limited-view data, using
weights constructed by the geometrical control method [29]. It is quite robust with
respect to perturbations of the non-accessible part of the boundary. Our main
�nding is that if one can construct accurately the geometric control then one can
perform imaging with the same resolution using partial data as using complete
data.

We also use our asymptotic formalism to explain how to reconstruct a small
anomaly in a viscoelastic medium from wave�eld measurements. The visco-elastic
medium obeys a frequency power-law. For simplicity, we consider the Voigt model,
which corresponds to a quadratic frequency loss. By using the stationary phase
theorem, we express the ideal elastic �eld without any viscous e�ect in terms of
the measured �eld in a viscous medium. We then generalize the imaging tech-
niques developed for a purely quasi-incompressible elasticity model to recover the
viscoelastic and geometric properties of an anomaly from wave�eld measurements.

The thesis is organized as follows. In Chapter 1 we provide a mathematical
foundation for the acoustic radiation force imaging. From the rigorously estab-
lished asymptotic expansions of near- and far-�eld measurements of the transient
wave induced by the anomaly, we design asymptotic imaging methods leading to a
quantitative estimation of physical and geometrical parameters of the anomaly.

In Chapter 2 we consider a purely quasi-incompressible elasticity model. We
rigorously establish asymptotic expansions of near- and far-�eld measurementsof
the transient elastic wave induced by a small elastic anomaly. Our proof uses layer
potential techniques for the modi�ed Stokes system. Based on these formulas, we
design asymptotic imaging methods leading to a quantitative estimation of elastic
and geometrical parameters of the anomaly. Using time-reversal, we show how to
reconstruct the location and geometric features of the anomaly from the far-�eld
measurements. We put a particular emphasis on the di�erence between the acoustic
and the elastic cases, namely, the anisotropy of the focal spot and the birth of a
near �eldlike e�ect by time reversing the perturbation due to an elastic anomaly.

In Chapter 3 we consider for the wave equation the inverse problem of identify-
ing locations of point sources and dipoles from limited-view data. Using as weights
particular background solutions constructed by the geometrical control method, we
recover Kirchho�-, back-propagation-, MUSIC-, and arrival time-type algorithm s
by appropriately averaging limited-view data. We show both analytically and nu-
merically that if one can construct accurately the geometric control, then one can
perform imaging with the same resolution using limited-view as using full-view
data.

Chapter 4 is devoted to the problem of reconstructing a small anomaly in a
viscoelastic medium from wave�eld measurements. Expressing the ideal elastic
�eld without any viscous e�ect in terms of the measured �eld in a viscous medium,
we generalize the methods described in Chapter 3 to recover the viscoelastic and
geometric properties of an anomaly from wave�eld measurements.

The four chapters of this thesis are self-contained and can be read indepen-
dently. Results in this thesis will appear in [4, 8, 11, 37, 61 ].



Introduction en Francais

L'imagerie d'�elasticit�e, ou �elastographie consiste �a imager les propr i�et�es visco-
�elastiques des tissus mous du corps humain en observant la r�eponse en d�eformation �a
une excitation m�ecanique. Cette probl�ematique a donn�e lieu dans les dix derni�eres
ann�ees �a de nombreux travaux, motiv�es par la corr�elation entre pr�esence d'une
pathologie et observation d'un contrast d'�elasticit�e [ 60]. Di��erentes techniques peu-
vent être mises en oeuvre selon le type d'excitation choisie, et la mani�ere d'estimer
les d�eformations r�esultantes.

Parmi les techniques se trouve une tr�es int�er�essante qui consiste �a induire dans le
tissu mou une onde de d�eplacement et �a observer la propagation de l'onde pendant
sa travers�ee du milieu d'int�erêt. La r�esolution d'un probl�eme inverse p ermet de
d�eduire des donn�ees de d�eplacement une estimation de la carte d'�elasticit�e du milieu
[33, 34].

L'objectif du travail pr�esent�e dans ce document est de donner un cadre math�ema
tique rigoureux �a ce technique, en même temps dessiner des m�ethodes e�ectives
pour la d�etection des anomalies �a l'aide des mesures en r�egime temporel. On a
consider�e le cadre acoustic et le cadre �elastique. On a d�evelopp�e des techniques
de reconstruction e�caces pour des mesures compl�etes sur la fronti�ere mais aussi
pour des mesures temporelles incompl�etes, on a adapt�e ces techniques au cadre
visco�elastique, ca veut dire que les ondes sont att�enu�e ou dispers�e ou le deux.

On commence pour consid�erer une milieu sans dissipation. On a d�evelopp�e des
m�ethodes de reconstruction des anomalies qui sont bas�e sur des d�eveloppements
asymptotiques de champ proche et de champ lointain, qui sont rigoureusement
�etablis, du perturbation des mesures cause par l'anomalie. Il faut remarquer que
pour approximer l'e�et de l'anomalie par un dipôle il faut couper les composant de
haut fr�equence des mesures de champ lointain.

Le d�eveloppement asymptotique de champ lointain nous permet de d�evelopper
une technique de type r�egression temporel pour localiser l'anomalie. On propose
en utilisant le d�eveloppement asymptotique de champ proche une probl�eme de op-
timisation pour r�ecup�erer les propri�et�es g�eom�etriques et les param�etres ph ysiques
de l'anomalie. On justi�e d'une mani�ere th�eorique et num�erique que la s�eparati on
des �echelles permet de s�eparer les di��erentes informations cod�ees aux di��erentes
�echelles. On montre les di��erences entre le cadre acoustique et l'�elastique, prin-
cipalement la tache focal anisotrope et l'e�et de champ proche qu'on obtient en
faisant le retournement temporal de la perturbation cause par l'anomalie. Cesob-
servations ont �et�e observ�e exp�erimentalement et report�e pour la premi� ere fois en
[43], les quelles sont bien expliques par nos d�eveloppements asymptotiques.

En ce qui concerne le cadre des mesures partiels, on d�eveloppe des algorithmes
de type Kirchho�, back-propagation, MUSIC et arrival-time pour localiser l' anomalie.
On utilise le m�ethode du control g�eom�etrique [ 29] pour aborder la probl�ematique
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4 INTRODUCTION EN FRANCAIS

des mesures partiels, comme resultat on obtient une m�ethode qui est robuste en ce
qui concerne aux perturbations dans la partie de la fronti�ere qui n'est pas accessi-
ble. Si on construit de manier pr�ecise le control g�eom�etrique, on obtient la même
r�esolution d'imagerie que dans le cadre des mesures complet.

On utilise les d�eveloppements asymptotiques pour expliquer comment recon-
struire une petite anomalie dans un milieu visco-�elastique �a partir des mesures du
champ de d�eplacement. Dans le milieu visco-�elastique la fr�equence ob�eit une loi
de puissance, pour simplicit�e on consid�ere le mod�ele Voigt qui correspond �a une
fr�equence en puissance deux. On utilise le th�eor�eme de la phase stationnaire pour
exprimer le champ dans un milieu sans e�et de viscosit�e, que on nommera champ
id�eal , en termes du champ dans un milieu visco-�elastique. Apr�es on g�en�eralise
les techniques d'imagerie d�eveloppes pour le model�e purement �elastique quasi in-
compressible pour reconstruire les propri�et�es visco-�elastiques et g�eom�etriques d'une
anomalie a partir des mesures du champ de d�eplacement.

Le document s'articule de la facon suivante. Dans le chapitre 1, il est donn�e un
cadre math�ematique rigoureux �a l'imagerie par force de radiation acoustique. En
utilisant les expressions asymptotiques rigoureusement �etablis pour les mesuresdu
champ proche et lointaine de l'onde temporel cause par l'anomalie, on d�eveloppe
des m�ethodes asymptotiques d'imagerie qui permet de estimer quantitativement les
param�etres physiques et g�eom�etriques de l'anomalie.

Dans le chapitre 2 on consid�ere un mod�ele purement �elastique quasi incom-
pressible. Dans le même esprit que le chapitre pr�ec�edent des expansions asympto-
tiques sont rigoureusement �etablis pour les mesures proche et lointaine de l'onde
�elastique en r�egime temporel induit par une petite anomalie �elastique. Dans les
d�emonstrations, on utilise des techniques de layer potentiel pour le syst�emede
Stokes modi�e. En utilisant les formules on d�eveloppe des m�ethodes asymptotiques
d'imagerie qui permet de estimer quantitativement les param�etres physiques et
g�eom�etriques de l'anomalie. En utilisant une technique de retournement temporel
on montre comment reconstruire les propri�et�es g�eom�etriques et localiser l'anomalie
a partir des mesures du champ lointaine. On insiste sur les di��erences entre le cadre
acoustique et l'�elastique en particulier la tache focal anisotrope et le e�et dechamp
proche qu'on obtient en faisant le retournement temporel de la perturbation cause
par l'anomalie �elastique.

Dans le chapitre 3 on consid�ere pour l'�equation d'onde le probl�eme inverse de
localiser point source et dipôles a partir des mesures partiels. En utilisant des
solutions particuliers construit par le m�ethode de control g�eom�etrique comme fonc-
tions de poids, on recouvre des algorithmes du type Kirchho�, back-propagation,
MUSIC, arrival-time si on fait une moyen convenable sur les mesures partiels. On
montre de manier analytique et num�erique que si on arrive �a construire pr�ecis�ement
le control g�eom�etrique alors on peut e�ectuer l'imagerie avec la même r�esolution en
utilisant mesures partiels ou mesures complet.

Le chapitre 4 est d�edi�e �a l'extension des techniques de reconstruction au cadre
de la visco-�elastique dynamique. A partir d'exprimer le champ id�eal en termes des
mesures du champ dans une milieu visco-�elastique , on g�en�eralise les m�ethodes d�ecrit
dans le Chapitre 3 pour r�ecup�erer les propri�et�es visco-�elastiques et g�eom�etr iques de
l'anomalie a partir de mesures du champ desplacement.

Les cinq chapitres de cette th�ese sont ind�ependants et peuvent etre lus s�epar�ement.
Les r�esultats de cette th�ese seront publi�es dans [4, 8, 11, 37, 61 ].
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CHAPTER 1

Transient acoustic imaging

Abstract. This chapter is devoted to provide a solid mathematical foun da-
tion for a promising imaging technique based on the acoustic radiation force,
which acts as a dipolar source. From the rigorously establis hed asymptotic ex-
pansions of near- and far-�eld measurements of the transien t wave induced by
the anomaly, we design asymptotic imaging methods leading t o a quantitative
estimation of physical and geometrical parameters of the an omaly.

1.1. Introduction

An interesting approach to assessing elasticity is to use the acoustic radiation
force of an ultrasonic focused beam to remotely generate mechanical vibrations in
organs [60]. The acoustic force is generated by the momentum transfer from the
acoustic wave to the medium. The radiation force essentially acts as a dipolar
source. A spatio-temporal sequence of the propagation of the induced transient
wave can be acquired, leading to a quantitative estimation of the viscoelastic pa-
rameters of the studied medium in a source-free region [33, 34].

The aim of this chapter is to provide a solid mathematical foundation for this
technique and to design new methods for anomaly detection using the radiation
force. These reconstruction procedures are based on rigorously established inner
and outer asymptotic expansions of the perturbations of the wave�eld that are due
to the presence of the anomaly.

To be more precise, suppose that an anomalyD of the form

D = �B + z

is present, where� is the (small) diameter of D , B is a reference domain, andz
indicates the location of D . A spherical wave

U�y (x; t ) :=
� t = jx � �y j

4� jx � �yj

is generated by a point source located at �y far away from z. When this wave
hits the anomaly D , it is perturbed. We will derive asymptotic expansions of this
perturbation near and far away from the anomaly as� tends to 0. In fact, we will
derive asymptotic expansions of the perturbationu � U�y after the high frequency
component is truncated, whereu is the solution to

(
@2

t u � r �
�
� (R3 n D) + k� (D )

�
r u = � x =�y � t =0 in R3� ]0; + 1 [;

u(x; t ) = 0 for x 2 R3 and t � 0:

For example, after truncation of the high-frequency component of the solution, the
derived asymptotic expansion far away from the anomaly shows that when the
spherical waveU�y reaches the anomaly, it is polarized and emits a new wave. The

7



8 1. TRANSIENT ACOUSTIC IMAGING

threshold of the truncation is determined by the diameter of the anomaly and is of
order O(� � � ) for 0 � � < 1.

Derivations of asymptotic expansions in this chapter are rigorous. They are
based on careful and precise estimates of the dependence with respect to the fre-
quency of the remainders in associated asymptotic formulas for the Helmholtz equa-
tion. Using the outer asymptotic expansion, we design a time-reversal imaging
technique for locating the anomaly from measurements of the perturbations in the
wave�eld in the far-�eld. It turns out that using the far-�eld measurement we can
reconstruct the location and the polarization tensor of the anomaly. However,It is
known that it is impossible to separate geometric features such as the volume from
the physical parameters using only the polarization tensor. We show that in order
to reconstruct the shape and to separate the physical parameters of the anomaly
from its volume one should use near-�eld perturbations of the wave�eld. Based
on such expansions, we propose an optimization problem for recovering geometric
properties as well as the parameters of the anomaly. The connection between our
expansions and reconstruction methods for the wave equation in this chapter and
those for the Helmholtz equation is discussed in some detail.

In connection with this work, we shall mention on one hand the papers [103,
15, 62] for the derivations of asymptotic formula for the Helmholtz equation in the
presence of small volume anomalies and on the other hand, the review paper [26]
and the recent book [14] on di�erent algorithms in wave imaging.

The chapter is organized as follows. We rigorously derive in Section 1.2 as-
ymptotic formulas for the Helmholtz equation and estimate the dependence of the
remainders in these formulas with respect to the frequency. Based on these esti-
mates, we obtain in Section 1.3 formulas for the transient wave equation that are
valid after truncating the high-frequency components of the �elds. These formulas
describe the e�ect of the presence of a small anomaly in both the near and far
�eld. In Section 1.4 we propose di�erent methods for detecting the physical and
geometric parameters of the anomaly. A time-reversal method is proposed to locate
the anomaly and �nd its polarization tensor from far-�eld measurements while an
optimization problem is formulated for reconstructing geometric parameters ofthe
anomaly and its conductivity.

1.2. Asymptotic expansions for the Helmholtz equation

In this section we rigorously derive asymptotic formulas for the Helmholtz
equation and estimate the dependence of the remainders in these formulas with
respect to the frequency. For doing so, we rely on a layer-potential technique.

1.2.1. Layer potentials. For ! � 0, let

(1.1) � ! (x) = �
e

p
� 1! jx j

4� jxj
; x 2 R3; x 6= 0 ;

which is the fundamental solution for the Helmholtz operator �+ ! 2. For a bounded
Lipschitz domain 
 in R3 and ! � 0, let S!


 be the single-layer potential for �+ ! 2,
that is,

(1.2) S!

 [' ](x) =

Z

@

� ! (x � y)' (y) d� (y); x 2 R3;
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for ' 2 L 2(@
). When ! = 0, S0

 is the single layer potential for the Laplacian.

Note that u = S!

 [' ] satis�es the Helmholtz equation (� + ! 2)u = 0 in 
 and in

R3 n 
. Moreover, if ! > 0, it satis�es the radiation condition, namely,

(1.3)

�
�
�
�
@u
@r

�
p

� 1!u

�
�
�
� = O

�
r � 2

�
as r = jxj ! + 1 uniformly in

x
jxj

:

It is well-known that the normal derivative of the single-layer potential on
Lipschitz domains obeys the following jump relation

(1.4)
@(S!


 [' ])
@�

�
�
�
�
�

(x) =
�

�
1
2

I + ( K � !

 ) �

�
[' ](x) a.e. x 2 @
 ;

for ' 2 L 2(@
), where ( K � !

 ) � is the singular integral operator de�ned by

(K � !

 ) � [' ](x) = p.v.

Z

@


@� ! (x � y)
@�(x)

' (y)d� (y):

Here and throughout this chapter the subscripts � denote the limit from outside
and inside of @
.

The operator S0

 is bounded from L 2(@
) into H 1(@
) and invertible in three

dimensions [102]. Moreover, one can easily see that there exists! 0 > 0 such that
for ! < ! 0

(1.5) kS!

 [' ] � S0


 [' ]kH 1 (@
) � C! k' kL 2 (@
)

for all ' 2 L 2(@
) where C is independent of ! . It is also well-known that the
singular integral operator (K 0


 ) � is bounded on L 2(@
) (see [ 17] for example).
Similarly to (1.5), one can see that for there exists! 0 > 0 such that for ! < ! 0

k(K � !

 ) � [' ] � (K 0


 ) � [' ]kL 2 (@
) � C! k' kL 2 (@
)

for some constantC independent of ! . In view of (1.4), it amounts to

(1.6)







@(S!

 [' ])
@�

�
�
�
�
�

�
@(S0


 [' ])
@�

�
�
�
�
�







L 2 (@
)

� C! k' kL 2 (@
) :

1.2.2. Derivations of the asymptotic expansions. Let D be a smooth
anomaly with conductivity 0 < k 6= 1 < + 1 inside a background medium with
conductivity 1. Suppose that D = �B + z, where B is a domain which plays the
role of a reference domain,� denotes the small diameter ofD , and z indicates the
location of D .

Let �y be a point in R3 such that j �y � zj >> � , and let

(1.7) V (x; ! ) := � ! (x � �y) = �
e

p
� 1! jx � �y j

4� jx � �yj
;

so that V satis�es

(1.8) � V + ! 2V = � x =�y ;

together with the radiation condition (1.3).
Let v(x; ! ) be the solution to

(1.9) r � (� (R3 n D) + k� (D )) r v + ! 2v = � x =�y

satisfying the radiation condition (1.3). In this section, we derive asymptotic ex-
pansion formula for v � V as � tends to 0. An important feature of the asymptotic
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formula derived in this section is a careful estimate of the dependency of the re-
mainder term on the frequency.

Put w = v � V . Then w is a unique solution to

(1.10) r � (� (R3 n D) + k� (D )) r w + ! 2w = (1 � k)r � � (D )r V in R3

with the radiation condition. In other words, w is the solution to

(1.11)

8
>>>>>>>>>>><

>>>>>>>>>>>:

� w +
! 2

k
w = (1 �

1
k

)! 2V in D;

� w + ! 2w = 0 in R3 n D;
wj+ � wj � = 0 on @D;

@w
@�

�
�
�
�
+

� k
@w
@�

�
�
�
�
�

= ( k � 1)
@V
@�

;

w satis�es the radiation condition.

Therefore, w can be represented as

(1.12) w(x; ! ) =

8
><

>:

(
1
k

� 1)! 2
Z

D
� !p

k
(x � y)V (y)dy + S

!p
k

D [' ](x); x 2 D;

S!
D [ ](x); x 2 R3 n D;

where (';  ) 2 L 2(@D)2 is the solution to the integral equation
(1.13)8
>>><

>>>:

S
!p

k
D [' ] � S!

D [ ] = (1 �
1
k

)! 2
Z

D
� !p

k
(� � y)V (y)dy;

k
@S

!p
k

D [' ]
@�

�
�
�
�
�

�
@S!

D [ ]
@�

�
�
�
�
+

= (1 � k)! 2 @
@�

Z

D
� !p

k
(� � y)V (y)dy + (1 � k)

@V
@�

;

on @D. The unique solvability of (1.13) will be shown in the sequel.
Let

e' (~x) = ' (� ~x + z); ~x 2 @B;

and de�ne e likewise. Then, after changes of variables, (1.13) takes the form

(1.14)

8
>><

>>:

S
�!p

k
B [ e' ] � S�!

B [ e ] = F;

k
@S

�!p
k

B [ e' ]
@�

�
�
�
�
�

�
@S�!

B [ e ]
@�

�
�
�
�
+

= G;
on @B;

where

F (~x; ! ) = (1 �
1
k

)�! 2
Z

B
� �!p

k
(~x � ~y)V (� ~y + z)d~y;(1.15)

G(~x; ! ) = (1 � k)�! 2 @
@�

Z

B
� �!p

k
(~x � ~y)V (� ~y + z)d~y + (1 � k)

@V
@�

(� ~x + z):(1.16)

De�ne an operator T : L 2(@B) � L 2(@B) ! H 1(@B) � L 2(@B) by

(1.17) T( e'; e ) :=

0

@S
�!p

k
B [ e' ] � S�!

B [ e ]; k
@S

�!p
k

B [ e' ]
@�

�
�
�
�
�

�
@S�!

B [ e ]
@�

�
�
�
�
+

1

A :
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We then decomposeT as

(1.18) T = T0 + T� ;

where

(1.19) T0( e'; e ) :=

 

S0
B [ e' ] � S0

B [ e ]; k
@S0

B [ e' ]
@�

�
�
�
�
�

�
@S0

B [ e ]
@�

�
�
�
�
+

!

;

and T� := T � T0. In view of (1.5) and (1.6), we have

(1.20) kT� ( e'; e )kH 1 (@B) � L 2 (@B) � C�! (ke' kL 2 (@B) + k e kL 2 (@B) )

for some constantC independent of � and ! .
SinceS0

B : L 2(@B) ! H 1(@B) is invertible, we readily see that T0 : L 2(@B) �
L 2(@B) ! H 1(@B) � L 2(@B) is invertible. In fact, we have the following lemma.

Lemma 1.1. For (f; g ) 2 H 1(@B) � L 2(@B) let ( e'; e ) = T � 1
0 (f; g ). Then

e' = e + ( S0
B ) � 1[f ];

e =
�

k + 1
2(k � 1)

I � (K 0
B ) �

� � 1 �
k

k � 1
(�

1
2

I + ( K 0
B ) � )(S0

B ) � 1[f ] �
1

k � 1
g
�

:

Thanks to (1.18) and (1.20), there is� 0 > 0 such that T is invertible if �! � � 0

and

(1.21) T � 1 = T � 1
0 + E;

where the operatorE satis�es

kE(f; g )kL 2 (@B) � L 2 (@B) � C�! (kf kH 1 (@B) + kgkL 2 (@B) )

for some constantC independent of � and ! .
Suppose that �! � � 0 < 1. Let ( e' ! ; e ! ) be the solution to (1.14). Then by

(1.21) we have

(1.22) (e' ! ; e ! ) = T � 1
0 (F; G) + E(F; G):

Observe that

(1.23) kF kH 1 (@B) � C�! 2:

On the other hand, G can be written as

G(~x) = (1 � k)r V (z; ! ) � � (~x) + G1(~x);

where G1 satis�es

kG1kL 2 (@B) � C�! 2:

Therefore, we have

(1.24) (e' ! ; e ! ) = T � 1
0 (0; (1 � k)r V (z) � � ) + T � 1

0 (F; G1) + E(F; G):

Note that

kT � 1
0 (F; G1) + E(F; G)kL 2 (@B) � L 2 (@B) � C�! 2:
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We also need asymptotic expansion of@e' !
@! and @e !

@! . By di�erentiating both
sides of (1.14) with respect to! , we obtain
(1.25)8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

S
�!p

k
B

�
@e' !

@!

�
� S�!

B

"
@e !

@!

#

=
@F
@!

�
�

4�
p

k

Z

@B
e

p
� 1 �!p

k
j�� ~y j e' ! (~y)d� (~y) +

�
4�

Z

@B
e

p
� 1�! j�� ~y j e ! (~y)d� (~y);

k
@

@�
S

�!p
k

B

�
@e' !

@!

� �
�
�
�
�

�
@

@�
S�!

B

"
@e !

@!

# �
�
�
�
+

=
@G
@!

�
�

4�
p

k

@
@�

Z

@B
e

p
� 1 �!p

k
j�� ~y j e' ! (~y)d� (~y) +

�
4�

@
@�

Z

@B
e

p
� 1�! j�� ~y j e ! (~y)d� (~y)

on @B. One can see from (1.15) and (1.16) that

@F
@!

= O(�! ) and
@G1
@!

= O(�! ):

Using the same argument as before, we then obtain

(1.26) (
@e' !

@!
;

@e !

@!
) = T � 1

0

�
0; (1 � k)r

@V
@!

(z; ! ) � �
�

+ O(�! );

where the equality holds in L 2(@B) � L 2(@B).
We obtain the following proposition from Lemma 1.1 (with f = 0), (1.24), and

(1.26).

Proposition 1.2. Let ( e' ! ; e ! ) be the solution to (1.14). There exists� 0 > 0
such that if �! < � 0, then the following asymptotic expansions hold:

e' ! =
�

k + 1
2(k � 1)

I � (K 0
B ) �

� � 1

[� ] � r V (z; ! ) + O(�! 2);(1.27)

e ! =
�

k + 1
2(k � 1)

I � (K 0
B ) �

� � 1

[� ] � r V (z; ! ) + O(�! 2);(1.28)

and

@e' !

@!
=

�
k + 1

2(k � 1)
I � (K 0

B ) �
� � 1

[� ] � r
@V
@!

(z; ! ) + O(�! );(1.29)

@e !

@!
=

�
k + 1

2(k � 1)
I � (K 0

B ) �
� � 1

[� ] � r
@V
@!

(z; ! ) + O(�! );(1.30)

where all the equalities hold inL 2(@B).

We are now ready to derive the inner expansion ofw = v � V . Let 
 be a set
containing D and let e
 = 1

� 
 � z. After changes of variables, (1.12) takes the form
(1.31)

w(� ~x+ z; ! ) =

8
><

>:

(
1
k

� 1)� 2! 2
Z

B
� �!p

k
(~x � ~y)V (� ~y + z)d~y + � S

�!p
k

B [ e' ! ](~x); ex 2 B;

� S�!
B [ e ! ](~x); ~x 2 e
 n B:

Since 
 S

�!p
k

B [ e' ! ] � S0
B [ e' ! ]




H 1 (@B) � C�! ke' ! kL 2 (@B) ;
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we have

w(� ~x + z; ! ) =

(
� S0

B [ e' ! ](~x) + O(� 2! 2); ex 2 B;

� S0
B [ e ! ](~x) + O(� 2! ); ~x 2 e
 n B:

Here we assumed that! � 1 since the case when! < 1 is much easier to handle.
It then follows from (1.27) and (1.28) that

w(� ~x + z; ! ) = � S0
B

�
k + 1

2(k � 1)
I � (K 0

B ) �
� � 1

[� ](~x) � r V (z; ! ) + O(� 2! 2); ex 2 e
 :

On the other hand, we have

@w
@!

(� ~x + z; ! ) =

8
>>><

>>>:

� S
�!p

k
B

�
@e' !

@!

�
(~x) + O(� 2! ); ex 2 B;

� S
�!p

k
B

"
@e !

@!

#

(~x) + O(� 2! ); ~x 2 e
 n B:

Therefore, we have from (1.29) and (1.30)

@w
@!

(� ~x+ z; ! ) = � S0
B

�
k + 1

2(k � 1)
I � (K 0

B ) �
� � 1

[� ](~x) �r
@V
@!

(z; ! )+ O(� 2! ); ex 2 e
 :

Let

v̂1(~x) := S0
B

�
k + 1

2(k � 1)
I � (K 0

B ) �
� � 1

[� ](~x):

Note that v̂1 is a vector-valued function. It is well-known that v̂1 is the solution to

(1.32)

8
>>>>>>>>><

>>>>>>>>>:

�^v1 = 0 in R3 n B;

�^v1 = 0 in B;

v̂1j � � v̂1j+ = 0 on @B;

k
@̂v1

@�

�
�
�
�
�

�
@̂v1

@�

�
�
�
�
+

= ( k � 1)� on @B;

v̂1(~x) = O(j~xj � 2) as j~xj ! + 1 :

We �nally obtain the following theorem.

Theorem 1.3. Let 
 be a bounded domain containingD and let

(1.33) R(x; ! ) = v(x; ! ) � V (x; ! ) � � v̂1

�
x � z

�

�
� r V (z; ! ):

There exists � 0 > 0 such that if �! < � 0, then

(1.34) R(x; ! ) = O(� 2! 2); r x R(x; ! ) = O(�! 2) x 2 
 :

Moreover,

(1.35)
@R
@!

(x; ! ) = O(� 2! ); r x

�
@R
@!

�
(x; ! ) = O(�! ) x 2 
 :

Note that the estimates for r x R in (1.34) and r x ( @R
@! ) in (1.35) can be derived

using (1.31).
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Based on Theorem 1.3 we can easily derive an asymptotic expansion ofv(x; ! ) �
V (x; ! ) for jx � zj � C > 0 for some constantC. For doing so, we �rst de�ne the po-
larization tensor M = M (k; B ) associated with the domainB and the conductivity
contrast k, 0 < k 6= 1 < + 1 ; as follows (see [17]):

(1.36) M (k; B ) := ( k � 1)
Z

B
r (v̂1(~x) + ~x) d~x:

It should be noticed that the polarization tensor M can be explicitly computed
for balls and ellipsoids in three-dimensional space. We also list important properties
of M [17]:

(i) M is symmetric.
(ii) If k > 1, then M is positive de�nite, and it is negative de�nite if 0 < k < 1.
(iii) The following Hashin-Shtrikman bounds

(1.37)

8
>><

>>:

1
k � 1

trace(M ) � (2 +
1
k

)jB j;

(k � 1) trace(M � 1) �
2 + k
jB j

;

hold [80, 39], where trace denotes the trace of a matrix.

It is worth mentioning that the equality in the second inequality in (1.37) hol ds if
and only if B is an ellipsoid [72].

Note that u := v � V satis�es

(� + ! 2)u = ( k � 1)r � � (D )r v;

with the radiation condition. Therefore, using the Lipmann-Schwinger integral
representation

v(x; ! ) � V (x; ! ) = (1 � k)
Z

D
r v(y; ! ) � r � ! (x � y) dy;

together with the asymptotic expansion of v in D in Theorem 1.3, we obtain that
for x away from z, there exists � 0 > 0 such that if �! < � 0, then

v(x; ! ) � V (x; ! ) = (1 � k)
Z

D

�
r V (y; ! ) + r v̂1(

y � z
�

) � r V (z; ! )
�

� r � ! (x � y) dy

+ O(� 4! 3):

Now if we approximate r V (y; ! ) and r � ! (x � y) for y 2 D by r V (z; ! ) and
r � ! (x � z), respectively, we obtain the following theorem.

Theorem 1.4. Let 
 0 be a compact region away fromD (dist(
 0; D ) � C > 0
for some constantC) and let

(1.38) R(x; ! ) = v(x; ! ) � V (x; ! ) + � 3r V (z; ! )M (k; B )r � ! (x � z):

There exists � 0 > 0 such that if �! < � 0, then

(1.39) R(x; ! ) = O(� 4! 3); x 2 
 0:

Moreover,

(1.40)
@R
@!

(x; ! ) = O(� 4! 2); x 2 
 0:
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Note that, in view of the asymptotic formulae derived in [63] for the case of
a circular anomaly, the range of frequencies for which formula (1.39) is valid is
optimal.

1.3. Far- and near-�eld asymptotic formulas for the transient wave
equation

Let D be a smooth anomaly with conductivity 0 < k 6= 1 < + 1 inside a
background medium with conductivity 1. Suppose that D = �B + z as before.

Let �y be a point in R3 such that j �y � zj � C > 0 for some constantC. De�ne

(1.41) U�y (x; t ) :=
� t = jx � �y j

4� jx � �yj
;

where � is the Dirac mass.
U�y is the Green function associated with the retarded layer potentials and

satis�es [53, 58]
(

(@2
t � �) U�y (x; t ) = � x =�y � t =0 in R3 � R;

U�y (x; t ) = 0 for x 2 R3 and t � 0:

For � > 0, we de�ne the operator P� on tempered distributions by

(1.42) P� [ ](t) =
Z

j ! j� �
e�

p
� 1!t  ̂ (! ) d!;

where  ̂ denotes the Fourier transform of  . The operator P� truncates the high-
frequency component of . Since

Û�y (x; ! ) = V (x; ! ) :=
e

p
� 1! jx � �y j

4� jx � �yj

using the notation in (1.7), we have

(1.43) P� [U�y ](x; t ) =
Z

j ! j� �
e�

p
� 1!t V(x; ! )d! =

 � (t � j x � �yj)
4� jx � �yj

for x 6= �y;

where

(1.44)  � (t) :=
2 sin�t

t
=

Z

j ! j� �
e�

p
� 1!t d!:

One can easily show thatP� [U�y ] satis�es

(1.45) (@2
t � �) P� [U�y ](x; t ) = � x =�y  � (t) in R3 � R:

We consider the wave equation in the whole three-dimensional space with ap-
propriate initial conditions:

(1.46)

(
@2

t u � r �
�
� (R3 n D) + k� (D )

�
r u = � x =�y � t =0 in R3� ]0; + 1 [;

u(x; t ) = 0 for x 2 R3 and t � 0:

The purpose of this section is to derive asymptotic expansions forP� [u �
U�y ](x; t ). For that purpose, we observe that

(1.47) P� [u](x; t ) =
Z

j ! j� �
e�

p
� 1!t v(x; ! )d!;
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where v is the solution to (1.9). Therefore, according to Theorem 1.3, we have

P� [u � U�y ](x; t ) � � v̂1

�
x � z

�

�
� r P� [U�y ](x; t ) =

Z

j ! j� �
e�

p
� 1!t R(x; ! )d!:

Suppose that jt j � c0 for some positive number c0 (c0 is of order the distance
between �y and z). Then, we have by an integration by parts
�
�
�
�
�

Z

j ! j� �
e�

p
� 1!t R(x; ! )d!

�
�
�
�
�

=

�
�
�
�
�
1
t

Z

j ! j� �

d
d!

e�
p

� 1!t R(x; ! )d!

�
�
�
�
�

�
1
jt j

(jR(x; � )j + jR(x; � � )j) +
Z

j ! j� �

�
�
�
�

@
@!

R(x; ! )

�
�
�
� d!

� C� 2� 2:

Since� v̂1
�

x � z
�

�
� r P� [U�y ] = O(�� ), we arrive at the following theorem.

Theorem 1.5. Suppose that� = O(� � � ) for some � < 1. Then

P� [u � U�y ](x; t ) = � v̂1

�
x � z

�

�
� r P� [U�y ](x; t ) + O(� 2(1 � � ) ):

We now derive a far-�eld asymptotic expansion for P� [u � U�y ]. De�ne

(1.48) Uz (x; t ) :=
� t = jx � zj

4� jx � zj
:

We have

P� [Uz ](x; t ) =
Z

j ! j� �
e�

p
� 1!t � ! (x � z) d!:

From Theorem 1.4, we compute
Z

j ! j� �
e�

p
� 1!t (v(x; ! ) � V (x; ! )) d!

= � � 3
Z

j ! j� �
e�

p
� 1!t r V (z; ! )M (k; B )r � ! (x � z) d!

+
Z

j ! j� �
e�

p
� 1!t R(x; ! ) d!;

where the remainder is estimated by
Z

j ! j� �
e�

p
� 1!t R(x; ! ) d! = O(� 4(1 � 3

4 � ) ):

Since
Z

j ! j� �
e�

p
� 1!t r V (z; ! )M (k; B )r � ! (x � z) d!

=
Z

R
r (

 � (t � � � j x � zj)
4� jx � zj

)M (k; B )r (
 � (� � j z � �yj)

4� jz � �yj
) d�;

and

� 3
Z

R
r P� [Uz ](x; t � � ) � M (k; B )r P� [U�y ](z; � ) d� = O(� 3� 2);

the following theorem holds.
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Theorem 1.6. Suppose that� = O(� � � ) for some � < 1. Then for jx � zj �
C > 0, the following far-�eld expansion holds

P� [u � U�y ](x; t ) = � � 3
Z

R
r P� [Uz ](x; t � � ) � M (k; B )r P� [U�y ](z; � ) d� + O(� 4(1 � 3

4 � ) )

for x away from z.

It should be noted that Theorem 1.6 says that the perturbation due to the
anomaly is (approximately) a wave emitted from the point z at t = T := jz � �yj.
The anomaly behaves then like a dipolar source. This is the key point of our
approach for designing time-reversal imaging procedure in the next section. We also
emphasize that the approximation holds after truncation of the frequencies higher
than � � � (� < 1). This has an important meaning in relation to the resolution
limit in imaging as explained in the next section. Moreover, from the optimality of
the range of frequencies for which formula (1.38) is valid, it follows that� < 1 is
indeed the optimal exponent.

1.4. Reconstruction methods

A model problem for the acoustic radiation force imaging is (1.46), where �y
is the location of the pushing ultrasonic beam. The transient waveu(x; t ) is the
induced wave. The inverse problem is to reconstruct the shape and the conductivity
of the small anomaly D from either far-�eld or near-�eld measurements of u.

1.4.1. Time-reversal. Let w(x; t ) := u(x; t ) � U�y (x; t ). We present a method
for detecting the location z of the anomaly from measurements ofw for x away from
z. To detect the anomaly one can use a time-reversal technique. The main idea of
time-reversal is to take advantage of the reversibility of the wave equation in a non-
dissipative unknown medium in order to back-propagate signals to the sources that
emitted them. See [54, 41, 89, 55 ]. Some interesting mathematical works started
to investigate di�erent aspects of time-reversal phenomena: see, for instance, [28]
for time-reversal in the time-domain, [51, 84, 64, 44, 45 ] for time-reversal in the
frequency domain, and [57, 36] for time-reversal in random media.

In the context of anomaly detection, one measures the perturbation of the
wave on a closed surface surrounding the anomaly, and retransmits it through the
background medium in a time-reversed chronology. Then the perturbation will
travel back to the location of the anomaly.

Suppose that we are able to measure the perturbationw and its normal deriv-
ative at any point x on a sphereS englobing the anomaly D . The time-reversal
operation is described by the transformt 7! t0 � t . Both the perturbation w and its
normal derivative on S are time-reversed and emitted fromS. Then a time-reversed
perturbation, denoted by wtr , propagates inside the volume 
 surrounded by S.
Taking into account the de�nition (1.48) of the outgoing fundamental solution, s pa-
tial reciprocity and time reversal invariance of the wave equation, the time-reversed
perturbation wtr due to the anomaly D in 
 should be de�ned as follows.

Definition 1.7. The time-reversed perturbation is given by

wtr (x; t ) =
Z

R

Z

S

�
Ux (x0; t � s)

@w
@�

(x0; t0 � s) �
@Ux
@�

(x0; t � s)w(x0; t0 � s)
�

d� (x0) ds;
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where

Ux (x0; t � s) =
� t = s+ jx � x 0j

4� jx � x0j
:

However, with the high frequency component ofw truncated, we take the fol-
lowing de�nition:

(1.49)
wtr (x; t ) =

Z

R

Z

S

�
Ux (x0; t � s)

@P� [u � U�y ]
@�

(x0; t0 � s)

�
@Ux
@�

(x0; t � s)P� [u � U�y ](x0; t0 � s)
�

d� (x0) ds :

According to Theorem 1.6, we have

P� [u � U�y ](x; t ) � � � 3
Z

R
r P� [Uz ](x; t � � ) � p(z; � ) d�

where

(1.50) p(z; � ) = M (k; B )r P� [U�y ](z; � ):

Therefore it follows that

wtr (x; t ) � � � 3
Z

R
p(z; � ) �

Z

R

Z

S

�
Ux (x0; t � s)

@r zP� [Uz ]
@�

(x0; t0 � s � � )

�
@Ux
@�

(x0; t � s)r zP� [Uz ](x0; t0 � s � � )
�

d� (x0) ds d�;

� � � 3
Z

R
p(z; � ) � r z

Z

R

Z

S

�
Ux (x0; t � s)

@P� [Uz ]
@�

(x0; t0 � s � � )

�
@Ux
@�

(x0; t � s)P� [Uz ](x0; t0 � s � � )
�

d� (x0) ds d�:

Multiplying the equation
�

@2
s � � x 0

�
Ux (x0; t � s) = � s= t � x 0= x

by P� [Uz ](x0; t0 � � � s), integrating by parts, and using the equation
�

@2
s � � x 0

�
P� [Uz ](x0; t0 � � � s) =  � (s � t0 + � )� x 0= z in R3 � R;

we have

(1.51)

Z

R

Z

S

�
Ux (x0; t � s)

@P� [Uz ]
@�

(x0; t0 � s � � )

�
@Ux
@�

(x0; t � s)P� [Uz ](x0; t0 � s � � )
�

d� (x0) ds

= P� [Uz ](x; t 0 � � � t) � P� [Uz ](x; t � t0 + � ):

It then follows that

(1.52) wtr (x; t ) � � � 3
Z

R
p(z; � ) � r z

�
P� [Uz ](x; t 0 � � � t) � P� [Uz ](x; t � t0 + � )

�
d�:

The formula (1.52) can be interpreted as the superposition of incoming and
outgoing waves, centered on the locationz of the anomaly. To see it more clearly,
let us assume thatp(z; � ) is concentrated at � = T := jz � �yj, which is reasonable
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sincep(z; � ) = M (k; B )r P� [U�y ](z; � ) peaks at � = T. Under this assumption, the
formula (1.52) takes the form

(1.53) wtr (x; t ) � � � 3p � r z
�
P� [Uz ](x; t 0 � T � t) � P� [Uz ](x; t � t0 + T)

�
;

where p = p(z; T). It is clearly sum of incoming and outgoing spherical waves.
Formula (1.53) has an important physical interpretation. By changing the

origin of time, T can be set to 0 without loss of generality. By taking Fourier
transform of (1.52) over the time variable t, we obtain that

(1.54) ŵtr (x; ! ) / � 3p � r
�

sin(! jx � zj)
jx � zj

�
;

where ! is the wavenumber. This shows that the anti-derivative of time-reversal
perturbation wtr focuses on the locationz of the anomaly with a focal spot size
limited to one-half the wavelength which is in agreement with the Rayleigh resolu-
tion limit. It should be pointed out that in the frequency domain, (1.54) is v alid
only for � = 2 �=! � � , � being the characteristic size of the anomaly. In fact,
according to Theorem 1.6, it is valid for frequencies less thanO(� � � ) for � < 1.

In the frequency domain, suppose that one measures the perturbationv � V
and its normal derivative on a sphereS englobing the anomalyD . To detect the
anomaly D one computes

ŵ(x; ! ) :=
Z

S

�
� ! (x � x0)

@(v � V )
@�

(x0; ! ) � (v � V )(x0; ! )
@� !

@�
(x � x0)

�
d� (x0);

in the domain 
 surrounded by S. Observe that ŵ(x; ! ) is a solution to the
Helmholtz equation: (� + ! 2)ŵ = 0 in 
.

An identity parallel to (1.51) can be derived in the frequency domain. Indeed,
it plays a key role in achieving the resolution limit. Applying Green's theorem to
� ! (x � x0) and � ! (z � x0), we have

(1.55)

Z

S

�
� ! (x � x0)

@� !

@�
(z � x0) � � ! (z � x0)

@� !

@�
(x � x0)

�
d� (x0)

= 2
p

� 1=m � ! (z � x):

In view of (1.55), we immediately �nd from the asymptotic expansion in Theorem
1.4 that

(1.56) (v � V )(x; ! ) / � 3p̂ � r
�

sin(! jx � zj)
jx � zj

�
;

where p̂ = M (k; B )r V (z; ! ). The above approximation shows that the anti-
derivative of ŵ(x; ! ) has a peak at the locationz of the anomaly and also proves
the Rayleigh resolution limit. Note that (1.54) is in a good agreementwith (1.56)
even though the high-frequency component has been truncated.

It is also worth noticing that a formula similar to (1.56) can be derived in an
inhomogeneous medium 
 surrounded byS. We have

Z

S

�
G(x � x0; ! )

@G
@�

(x0 � z; ! ) � G(x0 � z; ! )
@G
@�

(x � x0; ! )
�

d� (x0)

= 2
p

� 1=m G(x � z; ! );(1.57)

where G is the Green function in the inhomogeneous medium 
. Identity (1.57)
shows that the sharper the behavior of=m G at z is, the higher is the resolution.
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It would be quite interesting to see how the behavior of =m G depends on the
heterogeneity of the medium.

Once the location z of the anomaly is found, the polarization tensor associ-
ated with the anomaly D can be found using the formula in Theorem 1.6. Since
M (k; D ) = � 3M (k; B ), we minimize over symmetric positive matricesM (k; D ) the
quantity

LX

l =1

�
�
�
�P� [u � U�y ](x l ; t) +

Z

R
r P� [Uz ](x l ; t � � )M (k; D ) � r P� [U�y ](z; � ) d�

�
�
�
� ;

for L measurement pointsx1; : : : ; xL . It is worth emphasizing that the polarization
tensor M (k; D ) contains the mixed information of volume jD j and the conductivity
k of the anomaly and it is not possible to separate these two information from M .

However, from the near-�eld measurements, the shape and the conductivity of
the anomaly D can be approximately reconstructed.

1.4.2. Kirchho� imaging. Suppose that jz � �yj � 1 and jx � zj � 1. Then

(1.58) v(x; ! ) � V (x; ! ) � �
! 2� 3

16� 2

(z � �y)M (k; B )(z � x)
jz � �yj2jz � xj2

e�
p

� 1!z �( �y
j �y j + x

j x j ) ;

which holds for a broadband of frequencies. Then, for a given search pointzS , the
Kirchho� imaging functional can be written as

I KI (zS ;
x

jxj
) :=

1
L

X

! l ;l =1 ;:::;L

1
! 2

l
e

p
� 1! l zS � ( �y

j �y j + x
j x j ) (v(x; ! l ) � V (x; ! l )) ;

where L is the number of frequencies (! l ). See [52] and the references therein.
In view of (1.58), we have

I KI (zS ;
x
jxj

) � Cd

Z

!
e

p
� 1! l (zS � z) �( �y

j �y j + x
j x j ) d!;

for some constantCd independent of ! and zS and therefore,

I KI (zS ;
x

jxj
) � Cd � (zS � z) �( �y

j �y j + x
j x j )=0 :

Hence, to determine the locationz of the anomaly, one needs three di�erent mea-
surement directionsx=jxj.

1.4.3. Back-propagation imaging. From single frequency measurements,
one can detect the anomaly using a back-propagation-type algorithm. Let� l =
x l =jx l j for l = 1 ; : : : ; L; be L measurement directions. For a given search pointzS ,
the back-propagation imaging functional is given by

I BP (zS ) :=
1
L

X

� l ;l =1 ;:::;L

e
p

� 1!z S � ( �y
j �y j + � l ) (v(r� l ; ! ) � V (r� l ; ! )) ; r � 1:

Since for su�ciently large L , since

1
L

LX

l =1

e
p

� 1!� l �x �

(
j 0(! jxj) for d = 3 ;

J0(! jxj) for d = 2 ;
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where j 0 is the spherical Bessel function of order zero andJ0 is the Bessel function
of the �rst kind and of order zero, it follows from (1.58) that

I BP (zS ) � Cd

(
j 0(! jz � zS j) for d = 3 ;

J0(! jz � zS j) for d = 2 :

for some constantCd independent of zS .
Note that I BP uses a single frequency which can be selected as the highest one

among those that maximize the signal-to-noise ratio.

1.4.4. Near-�eld imaging. In view of Theorem 1.5, to reconstruct the shape
and the conductivity of the anomaly D we solve analogously to [10] the following
minimization problem. Suppose that the location z of the anomaly D = z+ �B and
its characteristic size� are known. Let W be a domain containingD and de�ne the
functional

L (f; k ) =
1

2� T

Z T + � T
2

T � � T
2




 P� [u � U�y ](x; t ) � � v̂1

�
x � z

�

�
� r P� [U�y ](x; t )






2

L 2 (W )
dt

+ �
Z

W
jr f (x)j dx;

where k is the conductivity of D , � is a regularization parameter, f is the binary
representation of D , i.e.,

f (x) =

(
1 if x 2 D;
� 1 if x =2 D;

and v̂1 is the function corresponding to B as de�ned in (1.32). Here it su�ces to
take � T to be of order O( �p

k
). We then minimize over binary functions f and

constants 0< k < + 1

(1.59) min
k;f

L(f; k )

subject to (1.32). We may relax the minimization problem (1.59) to function of
bounded variation. We refer to [10] for the details.

Note that we have to choose a windowW that is not so small to preserve some
stability and not so big so that we can gain some accuracy. We refer to [9] for a
discussion on the critical size of the windowW that switches between far-�eld and
near-�eld reconstructions.

1.5. Numerical illustrations

To illustrate our main �ndings in this chapter, we �rst tested the accuracy of
the derived asymptotic expansions. Then we implemented the imaging algorithms
for anomaly detection.

The con�guration is the following: a spherical anomaly of radius 0:05 and
physical parameterk = 3 is placed at z = ( � 0:1; 0; 0). The source is at �y = (3 ; 0; 0).
To truncate the high frequencies, we took� = 2 :15 or equivalently � = 1=3.

Figure 1.1 shows comparisons between the �elds computed by the asymptotic
formulas and by the direct Freefem++ code. The Freefem++ code is based on a
�nite element discretization in space and a �nite di�erence scheme in time. We
have chosen a Crank-Nicolson scheme with step �t = 0 :01. The near �elds were
computed at x = ( � 0:3; 0; 0) and the far-�elds were computed at x = ( � 8; 0; 0).
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The �elds obtained from the asymptotic formulas are in good agreement with those
computed by the Freefem++ code.

-5 0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

Time

M
a

g
n

it
u

d
e

Freefem++
Asymptotic formula

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8
x 10

-5

Time

M
a

g
n

it
u

d
e

Figure 1.1. Comparisons between the near �elds (on the left) and
between the far-�elds (on the right).

Now we turn to imaging. Figure 1.2 shows the performance of the time-reversal
for detecting the anomaly.

Figure 1.2. Detection result using the time-reversal technique.
Here '*' shows the transceiver location.

Consider a linear array of 58 receivers placed parallel to they-axis and spaced
by half a wavelength. Figure 1.3 shows the detection result by back-propagation.

Now, consider receivers located at

[4� cos(�= 4); 4� sin(�= 4); 0]; [4� cos(�= 4); � 4� sin(�= 4); 0]; [4� cos(�= 4); 0; 4� sin(�= 4)]:

Figures 1.4, 1.5, and 1.6 show the results of the Kirchho� imaging functionals
for these three di�erent receiver locations. The position of the anomaly is obtained
as the intersection of the three planes where each of the Kirchho� functional attains
its maximum. See Figure 1.8.
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Figure 1.3. Real and imaginary parts of the Back-propagation
functional. Here '*' and '+' respectively show the transceiver and
receiver locations.

Figure 1.4. Real and imaginary part of the Kirchho� functional
when the receiver is at [4� cos(�= 4); 4� sin(�= 4); 0], '*' indicates
the transceiver location and '+' the receiver location.

Figure 1.5. Real and imaginary part of the Kirchho� functional
when the receiver is at [4� cos(�= 4); � 4� sin(�= 4); 0].

1.6. Concluding remarks

In this chapter, based on careful estimates of the dependence with respect to the
frequency of the remainders in asymptotic formulas for the Helmholtz equation, we
have rigorously derived the e�ect of a small conductivity anomaly on transient wave.
We have provided near- and far-�eld asymptotic expansions of the perturbation
in the wave�eld after truncating its high-frequency component. The threshold of
the frequency truncation is of order � � � (� < 1) where � is the diameter of the
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Figure 1.6. Real and imaginary part of the Kirchho� functional
when the receiver is at the position [4� cos(�= 4); 0; 4� sin(�= 4)].

Figure 1.7. Sum of the Real and the imaginary parts of the Kirch-
ho� functional.

Figure 1.8. Intersection of the three planes where the real parts of
the Kirchho� functionals attain their maximum for three di�erent
receivers.
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anomaly. We have also designed a time-reversal imaging technique for locating
the anomaly from far-�eld measurements of the perturbations in the wave�eld and
reconstructing its polarization tensor. Using a near-�eld asymptotic formula, we
have proposed an optimization problem to reconstruct the shape and to separate
the physical parameters of the anomaly from its volume. The connection between
our expansions and reconstruction methods for the wave equation in this chapter
and those for the Helmholtz equation has been discussed.

The method and the results of this chapter will be generalized in Chapter 2 to
dynamic elastic imaging which has important applications in medical imaging [34]
as well as in seismology [1].





CHAPTER 2

Transient elasticity imaging and time reversal

Abstract. In this chapter we consider a purely quasi-incompressible e lastic-
ity model. We rigorously establish asymptotic expansions o f near- and far-�eld
measurements of the transient elastic wave induced by a smal l elastic anom-
aly. Our proof uses layer potential techniques for the modi� ed Stokes system.
Based on these formulas, we design asymptotic imaging method s leading to a
quantitative estimation of elastic and geometrical parame ters of the anomaly.

2.1. Introduction

In this chapter, we neglect the viscosity e�ect of tissues and only consider a
purely quasi-incompressible elasticity model. We derive asymptotic expansions of
the perturbations of the elastic wave�eld that are due to the presence of a small
anomaly in both the near- and far-�eld regions as the size of the anomaly goes
to zero. Then we design an asymptotic imaging method leading to a quantitative
estimation of the shear modulus and shape of the anomaly from near-�eld measure-
ments. Using time-reversal, we show how to reconstruct the location and geometric
features of the anomaly from the far-�eld measurements. We put a particular
emphasis on the di�erence between the acoustic and the elastic cases, namely, the
anisotropy of the focal spot and the birth of a near-�eld like e�ect by time rever sing
the perturbation due to an elastic anomaly.

The results of this chapter extend those in Chapter 1 to transient wave propa-
gation in elastic media.

The chapter is organized as follows. In Section 2.2 we rigorously derive asymp-
totic formulas for quasi-incompressible elasticity and estimate the dependence of
the remainders in these formulas with respect to the frequency. Based on these
estimates, we obtain in Section 2.3 formulas for the transient wave equation that
are valid after truncating the high-frequency components of the elastic �elds. These
formulas describe the e�ect of the presence of a small elastic anomaly in both the
near- and far-�eld. We then investigate in Section 2.4 the use of time-reversal for
locating the anomaly and detecting its overall geometric and material parameters
via the viscous moment tensor. An optimization problem is also formulated for
reconstructing geometric parameters of the anomaly and its shear modulus from
near-�eld measurements.

2.2. Asymptotic expansions

We suppose that an elastic medium occupies the whole spaceR3. Let the
constants � and � denote the Lam�e coe�cients of the medium, that are the elastic
parameters in absence of any anomaly. With these constants,L �;� denotes the

27
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linear elasticity system, namely

(2.1) L �;� u := � � u + ( � + � )rr � u:

The traction on a smooth boundary @
 is given by the conormal derivative @u=@�
associated withL �;� ,

(2.2)
@u
@�

:= � (r � u)N + � br uN ;

where N denotes the outward unit normal to @
. Here br denotes the symmetric
gradient, i.e.,

(2.3) br u := r u + r uT ;

where the superscriptT denotes the transpose.
The time-dependent linear elasticity system is given by

(2.4) @2
t u � L �;� u = 0 :

The fundamental solution or the Green function for the system (2.4) is given by
G = ( Gij ) where
(2.5)

Gij =
1

4�
3 i  j � � ij

r 3 H
p

�
p

� +2 �
(x; t )+

1
4� (� + 2 � )

 i  j

r
� t = rp

� +2 �
�

1
4��

 i  j � � ij

r
� t = rp

�
:

Here r = jxj;  i = x i =r, � ij denotes the Kronecker symbol,� denotes the Dirac

delta function, and H
p

�
p

� +2 �
(x; t ) is de�ned by

(2.6) H
p

�
p

� +2 �
(x; t ) :=

8
<

:

t if
r

p
� + 2 �

< t <
r

p
�

;

0 otherwise.

Note that (1=r3) H
p

�
p

� +2 �
(x; t ) behaves like 1=r2 for times (r=

p
� + 2 � ) < t <

(r=
p

� ). See [1].
Suppose that there is an elastic anomalyD , given by D = �B + z, which has

the elastic parameters (e�; ~� ). Here B is a C2-bounded domain containing the origin,
z the location of the anomaly, and � a small positive parameter representing the
order of magnitude of the anomaly size.

For a given point source �y away from the anomaly D and a constant vector
a, we consider the following transient elastic wave problem in the presence of an
anomaly:

(2.7)

8
>>>>>>>>>><

>>>>>>>>>>:

@2
t u � L �;� u = � t =0 � x =�y a in (R3 n D) � R;

@2
t u � L ~�; ~� u = 0 in D � R;

u
�
�
+ � u

�
�
� = 0 on @D� R;

@u
@�

�
�
+ �

@u
@~�

�
�
� = 0 on @D� R;

u(x; t ) = 0 for x 2 R3 and t � 0;

where @u=@� and @u=@~� denote the conormal derivatives on@Dassociated re-
spectively with L �;� and L ~�; ~� . Here and throughout this chapter the subscripts �
denote the limit from outside and inside D, respectively.
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As was observed in [60, 82], the Poisson ratio of human tissues is very close
to 1=2, which amounts to �=� and ~�= ~� being very large. So we seek for a good
approximation of the problem (2.7) as � and e� go to +1 . To this end, let

p :=
�

� r � u in (R3 n D) � R;
e� r � u in D � R:

One can show by modifying a little the argument in [10] that as � and e� go to +1
with e�=� of order one, the displacement �eld u can be represented in the form of
the following series:

u(x; t ) = u0(x; t ) + (
1
�

� (R3 n D) +
1
e�

� (D )) u1(x; t )

+ (
1
� 2 � (R3 n D) +

1
e� 2

� (D )) u2(x; t ) + : : : ;

p = p0 + (
1
�

� (R3 n D) +
1
~�

� (D )) p1 + (
1
� 2 � (R3 n D) +

1
~� 2

� (D )) p2 + : : : ;

where the leading-order term (u0(x; t ); p0(x)) is solution to the following homoge-
neous time-dependent Stokes system

(2.8)

8
>><

>>:

@2
t u0 � r � (~�� (D ) + �� (R3 n D))r u0 � r p0 = � t =0 � x = y a in R3 � R;

r � u0 = 0 in R3 � R;

u0(x; t ) = 0 for x 2 R3 and t � 0:

The inverse problem considered in this chapter is to image an anomalyD with
shear modulus ~� inside a background medium of shear modulus� 6= ~� from near-
�eld or far-�eld measurements of the transient elastic wave u(x; t ) (approximated
by u0(x; t )) that is the solution to (2.7) (approximated by (2.8)).

In order to design an accurate and robust algorithm to detect the anomalyD
incorporating the fact that D is of small size of order� , we will derive an asymptotic
expansion ofu0 as � ! 0. As shown in [3], this scale separation methodology yields
to accurate imaging algorithms.

2.2.1. Layer potentials for the Stokes system. We begin by reviewing
some basic facts on layer potentials for the Stokes system, which we shall use in
the next subsection. Relevant derivations or proofs of these facts can be found in
[77] and [10].

We consider the following modi�ed Stokes system:

(2.9)

(
(� + � 2)v � r q = 0 ;

r � v = 0 :

Here v is the displacement �eld and q is the pressure. Let@i = @
@xi

. The funda-
mental tensor � � = (� �

ij )3
i;j =1 and F = ( F1; F2; F3) to (2.9) in three dimensions are

given by

(2.10)

8
>>>><

>>>>:

� �
ij (x) = �

� ij

4�
e

p
� 1� jx j

jxj
�

1
4�� 2 @i @j

e
p

� 1� jx j � 1
jxj

;

Fi (x) = �
1

4�
x i

jxj3
:
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If � = 0, let

(2.11) � 0
ij (x) = �

1
8�

� � ij

jxj
+

x i x j

jxj3

�
:

Then � 0 = (� 0
ij ) together with F is the fundamental tensor for the standard Stokes

system given by (
� v � r q = 0 ;

r � v = 0 :

One can easily see that

(2.12) � �
ij (x) = � 0

ij (x) �
� ij �

p
� 1

6�
+ O(� 2)

uniformly in x as long asjxj is bounded.
For a bounded C2-domain D and � � 0, let

(2.13)

8
>><

>>:

S�
D [' ](x) :=

Z

@D
� � (x � y)' (y)d� (y);

QD [' ](x) :=
Z

@D
F(x � y) � ' (y) d� (y);

x 2 R3

for ' = ( ' 1; ' 2; ' 3) 2 L 2(@D)3. When � = 0, S0
D is the single layer potential

for the Stokes system. It is worth emphasizing that S�
D [' ](x) is a vector while

QD [' ](x) is a scalar, and the pair (S�
D [' ]; QD [' ]) is a solution to (2.9).

By abuse of notation, let

@u
@N

= ( br u)N on @D:

We de�ne the conormal derivative @=@n(for the Stokes system) on@Dby

@v
@n

�
�
�
�
�

=
@v
@N

�
�
�
�
�

� q
�
�
� N

for a pair of solutions (v ; q) to (2.9). It is well-known that

(2.14)
@S�

D [' ]
@n

�
�
�
�
�

= ( �
1
2

I + ( K �
D ) � )[' ] a.e. on@D;

where K �
D is the boundary integral operator de�ned by

(2.15)

K �
D [' ](x) := p.v.

Z

@D

�
@

@N (y)
(� � (x � y)' (y)) + F(x � y)N (y) � ' (y)

�
d� (y)

for almost all x 2 @Dand (K �
D ) � is the L 2-adjoint operator of K � �

D :
(2.16)

(K �
D ) � [' ](x) := p.v.

Z

@D

�
@

@N (x)
(� � (x � y)' (y)) + F(x � y) � ' (y)N (x)

�
d� (y):

Here p.v. denotes the Cauchy principal value.
Let H 1(@D) := f ' 2 L 2(@D); @'=@�2 L 2(@D)g, @=@�being the tangential

derivative. The operator S0
D is bounded fromL 2(@D)3 into H 1(@D)3 and invertible

in three dimensions. Moreover, one can see that for� small

(2.17) kS�
D [' ] � S0

D [' ]kH 1 (@D) � C� k' kL 2 (@D)



2.2. ASYMPTOTIC EXPANSIONS 31

for all ' 2 L 2(@D)3, where C is independent of � . It is also well-known that the
singular integral operator (K 0

D ) � is bounded onL 2(@D)3. Similarly to (2.17), one
can see that for� small

k(K � �
D ) � [' ] � (K 0

D ) � [' ]kL 2 (@D) � C� k' kL 2 (@D)

for some constantC independent of � , which in view of (2.14) yields

(2.18)







@(S�
D [' ])
@n

�
�
�
�
�

�
@(S0

D [' ])
@n

�
�
�
�
�







L 2 (@D)

� C� k' kL 2 (@D) :

2.2.2. Derivation of asymptotic expansions. Recall that �y is a point
source in R3 such that j �y � zj � � . Taking the Fourier transform of (2.8) in
the t-variable yields

(2.19)

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(� +
! 2

�
)û0 �

1
�

r p̂0 =
1
�

� x =�y a in R3 n D;

(� +
! 2

~�
)û0 �

1
~�

r p̂0 = 0 in D;

û0j+ � û0j � = 0 on @D;

(p̂0j � � p̂0j+ )N + �
@̂u0

@N

�
�
�
+

� ~�
@̂u0

@N

�
�
�
�

= 0 on @D;

r � û0 = 0 in R3;

subject to the radiation condition:
(2.20)8

<

:

p̂0(x) ! 0 asr = jxj ! + 1 ;

@r r � û0 �
p

� 1
!

p
�

r � û0 = o(
1
r

) as r = jxj ! + 1 uniformly in
x
jxj

;

where û0 and p̂0 denote the Fourier transforms of u0 and of p0, respectively. We
say that (û0; p̂0) satis�es the radiation condition if (2.20) holds.

Let

Û 0(x; ! ) : =
1
�

�
!p

� (x � �y)a;(2.21)

q̂0(x) : = F(x � �y) � a:(2.22)

Then the pair ( Û 0(x; ! ); q̂0(x)) satis�es

(2.23)

8
><

>:

(� +
! 2

�
)Û 0 �

1
�

r q̂0 =
1
�

� x =�y a in R3;

r � Û 0 = 0 in R3:

In view of (2.19) and (2.23), it is natural to expect that û0 converges toÛ 0 as
� tends to 0. We shall derive an asymptotic expansion for̂u0 � Û 0 as � tends to
zero and carefully estimate the dependence of the remainder on the frequency! .

Let w = û0 � Û 0 and introduce

p :=

8
>><

>>:

1
�

(p̂0 � q̂0) in R3 n D;

1
~�

(p̂0 � q̂0) in D:
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Then the pair (w ; p) satis�es

(2.24)

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

(� +
! 2

�
)w � r p = 0 in R3 n D;

(� +
! 2

~�
)w � r p = (

1
�

�
1
~�

)( ! 2Û 0 � r q̂0) in D;

w j+ � w j � = 0 on @D;

� (
@w
@N

�
�
�
+

� pj+ N ) � ~� (
@w
@N

�
�
�
�

� pj � N ) = (~� � � )
@̂U 0

@N
on @D;

r � w = 0 ;

(w ; p) satis�es the radiation condition :

Therefore, we can represent (w ; p) as
(2.25)

w(x) =

8
><

>:

(
1
�

�
1
~�

)
Z

D
�

!p
~� (x � y)( ! 2Û 0(y) � r q̂0(y)) dy + S

!p
~�

D [' ](x) in D;

S
!p

�

D [ ](x) in R3 n D;

and
(2.26)

p(x) =

8
<

:

(
1
�

�
1
~�

)
Z

D
F(x � y) � (! 2Û 0(y) � r q̂0(y)) dy + QD [' ](x) in D;

QD [ ](x) in R3 n D;

where (';  ) is the solution to the following system of integral equations
(2.27)8

>>>>>>>>>>>><

>>>>>>>>>>>>:

S
!p

~�

D [' ](x) � S
!p

�

D [ ](x) = (
1
�

�
1
~�

)
Z

D
�

!p
~� (x � y)( ! 2Û 0(y) � r q̂0(y)) dy;

�
@S

!p
�

D [' ]
@n

�
�
�
+

(x) � ~�
@S

!p
~�

D [ ]
@n

�
�
�
�

(x) = (~� � � )
@̂U 0

@N

+(
~�
�

� 1)
@

@N

Z

D
�

!p
~� (x � y)( ! 2Û 0(y) � r q̂0(y)) dy

� (
~�
�

� 1)
Z

D
F(x � y) � (! 2Û 0(y) � r q̂0(y)) dy N :

In order to prove the unique solvability of (2.27), let us make a change of
variables: Recalling that D is of the form D = �B + z, we put

(2.28) ~' (~x) = ' (� ~x + z); ~x 2 @B;

and de�ne similarly ~ . Then after scaling, (2.27) takes the form

(2.29)

8
>><

>>:

S
�!p

~�

B [ ~' ](~x) � S
�!p

�

B [ ~ ](~x) = A (~x);

~�
@S

�!p
~�

B [ ~' ]
@n

�
�
�
�

(~x) � �
@S

�!p
�

D [ ~ ]
@n

�
�
�
+

(~x) = B (~x);
~x 2 @B
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where A = ( A1; A2; A3) and B = ( B1; B2; B3) are de�ned in an obvious way,
namely

(2.30) A (~x) = � (
1
�

�
1
~�

)
Z

B
�

�!p
~� (~x � ~y)( ! 2Û 0(� ~y + z) � r q̂0(� ~y + z)) d~y;

and

B (~x) = (~� � � )
@̂U 0

@N
(� ~x + z)

+ � (
~�
�

� 1)
@

@N

Z

B
�

�!p
~� (~x � ~y)( ! 2Û 0(� ~y + z) � r q̂0(� ~y + z)) d~y(2.31)

� � (
~�
�

� 1)
Z

D
F(~x � ~y) � (! 2Û 0(� ~y + z) � r q̂0(� ~y + z)) dy N (~x):

We emphasize that the normal vectorN above is that on @B.
We may rewrite (2.29) as

(2.32) T ( ~'; ~ ) = ( A ; B );

where T is an operator from L 2(@B)3 � L 2(@B)3 into H 1(@B)3 � L 2(@B)3 de�ned
by

T ( ~'; ~ ) =

0

B
B
@

S
�!p

~�

B � S
�!p

�

B

~�
@

@n
S

�!p
~�

B j � � �
@

@n
S

�!p
�

B j+

1

C
C
A

0

@
~'

~ 

1

A :

We then decompose the operatorT as

(2.33) T = T0 + T� ;

where

T0( ~'; ~ ) :=

0

B
@

S0
B � S0

B

~�
@

@n
S0

B j � � �
@

@n
S0

B j+

1

C
A

0

@
~'

~ 

1

A ;

and T� = T � T 0. Then by (2.17) and (2.18), it follows that

(2.34) jjT� ( ~'; ~ )jjH 1 (@B) � L 2 (@B) � C�! (jj ~' jjL 2 (@B) + jj ~ jjL 2 (@B) ):

Note that S0
B is invertible, and since j ~� + �

2(~� � � ) j > 1
2 , the operator � (~� + � )

2(~� � � ) I +
(K 0

B ) � is invertible as well (see [10]). Thus one can see thatT0 is also invertible.
In fact, one can readily check that the solution is explicit.

Lemma 2.1. For (f ; g) 2 H 1(@B)3 � L 2(@B)3 the solution ( ~'; ~ ) = T � 1
0 (f ; g)

is given by

~' = ~ + ( S0
B ) � 1[f ];

(2.35)

~ =
1

~� � �

�
�

(~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1
�
� ~� (�

1
2

I + ( K 0
B ) � )(S0

B ) � 1[f ] + g
�

:

(2.36)
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In view of (2.33) and (2.34), one can see that there is� 0 > 0 such that T is
invertible as long as�! � � 0. Moreover T � 1 takes the form

(2.37) T � 1 = T � 1
0 + E;

where the operatorE satis�es

(2.38) kE(f ; g)kL 2 (@B) � L 2 (@B) � C�! (kf kH 1 (@B) + kgkL 2 (@B) );

for some constantC independent of � and ! .
Suppose that �! � � 0 < 1. Let ( e' ! ; e ! ) be the solution to (2.29). Then by

(2.37) we have
( e' ! ; e ! ) = T � 1

0 (A ; B ) + E(A ; B ):
In view of (2.30) we have

(2.39) kA kH 1 (@B) � C� (! 2 + 1) :

On the other hand, according to (2.31),B can be written as

B (~x) = (~� � � ) br Û 0(z; ! )N (~x) + B 1(~x);

where B 1 satis�es

(2.40) kB 1kL 2 (@B) � C� (! 2 + 1) :

Therefore, we have

(2.41) (e' ! ; e ! ) = (~� � � )T � 1
0

�
0; br Û 0(z; ! )N

�
+ T � 1

0 (A ; B 1) + E(A ; B ):

Because of (2.38), (2.39), and (2.40), the last two terms in the aboveequation are
error terms satisfying

kT � 1
0 (A ; B 1) + E(A ; B )kL 2 (@B) � L 2 (@B) � C� (! 2 + 1) :

We also need to derive asymptotic expansions for@e' !

@! and @e !

@! . By di�erenti-
ating both sides of (2.29) with respect to! , we obtain

S
�!p

~�

B

h@e' !

@!

i
(~x) � S

�!p
�

B

h@e !

@!

i
(~x) =

@A (~x)
@!

�
Z

@B

@
@!

�
�!p

~� (~x � ~y) ~' ! (~y)d� (~y)

+
Z

@B

@
@!

�
�!p

� (~x � ~y) ~ ! (~y)d� (~y)(2.42)

and

~�
@

@n
S

�!p
~�

B

h@e' !

@!

i �
�
�
�
�

(~x) � �
@

@n
S

�!p
�

B

h@e !

@!

i �
�
�
�
+

(~x) =
@B (~x)

@!

�
@

@n

Z

@B

@
@!

�
�!p

~� (~x � ~y) ~' ! (~y)d� (~y) +
@

@n

Z

@B

@
@!

�
�!p

� (~x � ~y) ~ ! (~y)d� (~y)(2.43)

on @B.
Straightforward computations using (2.10) and (2.30) show that the right-hand

side of the equality in (2.42) is of order� (! + 1) in the H 1(@B)-norm. We can also
show using (2.31) that @G1

@! is also of order � (! + 1) in the L 2(@B)-norm. Thus,
using the same argument as before, we readily obtain

(2.44) (
@e' !

@!
;

@e !

@!
) = (~� � � )T � 1

0

 

0; br (
@̂U 0

@!
)(z; ! )N

!

+ O(� (! + 1)) ;

where the equality holds in L 2(@B)3 � L 2(@B)3.
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In view of (2.41) and (2.44), applying Lemma 2.1 (with f = 0) yields the
following result.

Proposition 2.2. Let ( e' ! ; e ! ) be the solution to (2.29). There exists� 0 > 0
such that if �! < � 0, then the following asymptotic expansions hold:

e' ! =
�

� (~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br Û 0(z; ! )N ] + O(� (! 2 + 1)) ;(2.45)

e ! =
�

� (~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br Û 0(z; ! )N ] + O(� (! 2 + 1)) ;(2.46)

and

@e' !

@!
=

�
� (~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br
@

@!
Û 0(z; ! )N ] + O(� (! + 1)) ;(2.47)

@e !

@!
=

�
� (~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br
@

@!
Û 0(z; ! )N ] + O(� (! + 1)) ;(2.48)

where all the equalities hold inL 2(@B).

We are now ready to derive the inner expansion forw. Let 
 be a domain
containing D and let e
 = 1

� 
 � z. After a change of variables, (2.25) and (2.26)
take the forms:
(2.49)

w(� ~x + z; ! ) =

8
>>><

>>>:

� 2(
1
�

�
1
~�

)
Z

B
�

�!p
~� (~x � ~y)( ! 2Û 0(� ~y + z) � r q̂0(� ~y + z)) d~y

+ � S
�!p

~�

B [ ~' ! ](~x) in B;

� S
�!p

�

B [ ~ ! ](~x) in R3 n B;

and
(2.50)

p(� ~x + z; ! ) =

8
>><

>>:

� (
1
�

�
1
~�

)
Z

B
F(~x � ~y) � (! 2Û 0(� ~y + z) � r q̂0(� ~y + z)) d~y

+ � QB [ ~' ! ](~x) in B;

� QB [ ~ ! ](~x) in R3 n B:

Since

 S

�!p
�

B [ e' ! ] � S0
B [ e' ! ]




H 1 (@B) � C�! ke' ! kL 2 (@B) ;

we have

w(� ~x + z; ! ) =

(
� S0

B [ e' ! ](~x) + O(� 2(! 2 + 1)) ; ex 2 B;

� S0
B [ e ! ](~x) + O(� 2(! + 1)) ; ~x 2 e
 n B:

It then follows from (2.45) and (2.46) that
(2.51)

w(� ~x + z; ! ) = � S0
B

�
�

(~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br Û 0(z; ! )N ](~x) + O(� 2(! 2 + 1))

for ex 2 e
.
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On the other hand, we have

@w
@!

(� ~x + z; ! ) =

8
>>><

>>>:

� S
�!p

~�

B

�
@e' !

@!

�
(~x) + O(� 2(! + 1)) ; ex 2 B;

� S
�!p

�

B

"
@e !

@!

#

(~x) + O(� 2); ~x 2 e
 n B:

Therefore, from (2.47) and (2.48) we obtain that
(2.52)
@w
@!

(� ~x+ z; ! ) = � S0
B

�
�

(~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br
@

@!
Û 0(z; ! )N ](~x)+ O(� 2(! +1))

for ex 2 e
.
Let

v (~x) := S0
B

�
�

(~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br Û 0(z; ! )N ](~x);

q(~x) := QB

�
�

(~� + � )
2(~� � � )

I + ( K 0
B ) �

� � 1

[ br Û 0(z; ! )N ](~x):

It is easy to check that (v ; q) is the solution to

(2.53)

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

� � v � r q = 0 in R3 n B;

~� � v � r q = 0 in B;

v j � � v j+ = 0 on @B;

(qN � ~�
@v
@N

)

�
�
�
�
�

� (qN � �
@v
@N

)

�
�
�
�
+

= (~� � � ) br Û 0(z; ! )N on @B;

r � v = 0 in R3;

v (~x) ! 0 as j~xj ! + 1 ;

q(~x) ! 0 as j~xj ! + 1 :

We �nally obtain the following theorem from (2.51) and (2.52).

Theorem 2.3. Let 
 be a small region containingD and let

(2.54) R (x; ! ) = û0(x; ! ) � Û 0(x; ! ) � � v
�

x � z
�

�
; x 2 
 :

There exists � 0 > 0 such that if �! < � 0, then

(2.55) R (x; ! ) = O(� 2(! 2 + 1)) ; r x R (x; ! ) = O(� (! 2 + 1)) ; x 2 
 :

Moreover,

(2.56)
@R
@!

(x; ! ) = O(� 2(! + 1)) ; r x

�
@R
@!

�
(x; ! ) = O(� (! + 1)) ; x 2 
 :

Note that the estimates for r x R in (2.55) and r x ( @R
@! ) in (2.56) can be derived

using (2.49).
We now derive the outer expansion ofu0. To this end, let us �rst recall the

notion of the viscous moment tensor (VMT) from [10]. Let (v k` ; p), for k; ` = 1 ; 2; 3,
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be the solution to

(2.57)

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

� � v k` � r p = 0 in R3 n B;

~� � v k` � r p = 0 in B;

v k` j � � v k` j+ = 0 on @B;

(pN � ~�
@v k`

@N
)

�
�
�
�
�

� (pN � �
@v k`

@N
)

�
�
�
�
+

= 0 on @B;

r � v k` = 0 in R3;

v k` (~x) � ~xk e` +
� k`

3

3X

j =1

~x j ej = O(j~xj � 2) as j~xj ! + 1 ;

p(~x) = O(j~xj � 3) as j~xj ! + 1 :

Here (e1; e2; e3) is the standard basis ofR3.

Definition 2.4. The VMT V(~�; �; B ) = ( Vijk` ) i;j;k;` =1 ;2;3 is de�ned by

(2.58) Vijk` (~�; �; B ) := (~� � � )
Z

B
r v k` (~x) : br (~x i ej ) d~x;

where : denotes the contraction of two matrices, i.e.,A : B =
P 3

ij =1 aij bij .

Since (̂u0 � Û 0; p̂0 � q̂0) satis�es
(2.59)8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

(� +
! 2

�
)( û0 � Û 0) �

1
�

r (p̂0 � q̂0) = 0 in R3 n D;

(� +
! 2

�
)( û0 � Û 0) �

1
�

r (p̂0 � q̂0) = ! 2
�

1
�

�
1
~�

�
û0 �

�
1
�

�
1
~�

�
r p̂0 in D;

(û0 � Û 0)
�
�
+ � (û0 � Û 0)

�
�
� = 0 on @D;

�
1
�

(p̂0 � q̂0)
�
�
+ N +

@
@N

(û0 � Û 0)
�
�
+

= �
1
�

(p̂0 � q̂0)
�
�
� N +

@
@N

(û0 � Û 0)
�
�
� +

~� � �
�

@̂u0

@N

�
�
�
�
�

on @D;

r � (û0 � Û 0) = 0 in R3;

together with the radiation condition, the integration of the �rst equation i n (2.59)
against the Green function �

!p
� (x; y) over y 2 R3 n D and the divergence theorem

give us the following representation formula:

û0(x) = Û 0(x) + (
~�
�

� 1)
Z

@D
�

!p
� (x; y)

@̂u0

@N

�
�
�
�
�

(y)d� (y)

� (
1
�

�
1
~�

)
Z

D
�

!p
� (x; y)r p̂0(y) dy + ! 2(

1
�

�
1
~�

)
Z

D
�

!p
� (x; y)û0(y) dy:(2.60)

It follows from the inner expansion in Theorem 2.3 that, for y 2 @D,

(2.61)
@̂u0

@N
(y) =

@̂U 0

@N
(y) +

@v
@N

�
y � z

�

�
+ O(� )
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and, for x 2 D ,

r p̂0(x) = ~� 4 û0 + ! 2û0 =
~�
�

(4 v )
�

x � z
�

�
+ O(1) =

1
�

(r q)
�

x � z
�

�
+ O(1):

(2.62)

Since

~�
Z

@D

@̂u0

@N

�
�
�
�
�

(y) d� (y) �
Z

D
r p̂0(y) dy = � ! 2

Z

D
û0(y) dy;

we obtain that for x far away from z, the following outer expansion holds:

û0(x) � Û 0(x) � � 3
3X

i;j;` =1

@i �
!p

�

`j (x; z)
�
(

~�
�

� 1)
Z

@B

 
@̂U 0

@N
(z) +

@v
@N

�
�
�
�
�

(� )

!

j

� i d� (� )

(
1
�

�
1
~�

)
Z

B
@j q(� )� i d�

�
e` ;

where @i �
!p

�

`j (x; z) is the di�erentiation with respect to the x variable and
�

@v
@N

�
j

is the j -th component of @v
@N , which we may further simplify as follows

(2.63)
(û0 � Û 0)(x)

� � � 3(
~�
�

� 1)
3X

i;j;` =1

�
@i �

!p
�

`j (x; z)
Z

B
@j v i (� ) + @i v j (� ) + @j Û 0i (z) + @i Û 0j (z) d�

�
e` :

Here v j denotes thej -th component of v .
Since

(2.64) v (� ) =
3X

p;q=1

@qÛ 0(z)pvpq(� ) � r Û 0(z)�;

we have
(2.65)

(û0 � Û 0)(x)

� � � 3(
~�
�

� 1)
3X

i;j;`;p;q =1

�
@i �

!p
�

`j (x; z)@qÛ 0(z)p

Z

B
@j (v kl ) i (� ) + @i (v kl ) j (� ) d�

�
e` :

We have the following theorem for the outer expansion.

Theorem 2.5. Let 
 0 be a compact region away fromD, namely dist(
 0; D ) �
C > 0 for some constantC, and let

(2.66) R (x; ! ) = û0(x; ! ) � Û 0(x; ! ) +
� 3

�

3X

i;j;p;q;` =1

Vijkl @i �
!p

�

`j (x; z)@qÛ 0(z)pe` :

There exists � 0 > 0 such that if �! < � 0, then

(2.67) R (x; ! ) = O(� 4(! 3 + 1)) ; x 2 
 0:

Moreover,

(2.68)
@R
@!

(x; ! ) = O(� 4(! 2 + 1)) ; x 2 
 0:
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2.3. Far- and near-�eld asymptotic formulas in the transient regi me

Recall that the inverse Fourier transform, U 0, of Û 0 satis�es
8
><

>:

(@2
t � � �) U 0(x; t ) � r F = � x =�y � t =0 a in R3 � R;

r � U 0 = 0 in R3 � R;

U 0(x; t ) = 0 for x 2 R3 and t � 0:

For � > 0, we de�ne the operator P� on tempered distributions by

(2.69) P� [ ](t) =
Z

j ! j� �
e�

p
� 1!t  ̂ (! ) d!;

where  ̂ denotes the Fourier transform of  . The operator P� truncates the high-
frequency component of .

One can easily show thatP� [U 0] satis�es

(2.70)
(@2

t � �) P� [U 0](x; t ) � r P� [F ](x � y) = � x =�y  � (t)a in R3 � R;

r � P� [U 0] = 0 in R3 � R;

where

 � (t) :=
2 sin�t

t
=

Z

j ! j� �
e�

p
� 1!t d!:

The purpose of this section is to derive and asymptotic expansions forP� [u0 �
U 0](x; t ). For doing so, we observe that

(2.71) P� [u0](x; t ) =
Z

j ! j� �
e�

p
� 1!t û0(x; ! )d!;

where û0 is the solution to (2.19). Therefore, according to Theorem 2.3, we have

P� [u0 � U 0](x; t )� �
3X

p;q=1

@qP� [U 0](z; t)p[vpq(x)� xpeq] =
Z

j ! j� �
e�

p
� 1!t R (x; ! )d!:

Suppose that jt j � c0 for some positive number c0 (c0 is of order the distance
between �y and z). Then, integrating by parts gives
�
�
�
�
�

Z

j ! j� �
e�

p
� 1!t R (x; ! )d!

�
�
�
�
�

=

�
�
�
�
�
1
t

Z

j ! j� �

d
d!

e�
p

� 1!t R (x; ! )d!

�
�
�
�
�

�
1
jt j

(jR (x; � )j + jR (x; � � )j) +
Z

j ! j� �

�
�
�
�

@
@!

R (x; ! )

�
�
�
� d!

� C� 2� 2:

Since

�
3X

p;q=1

@qP� [U 0](z; t)p[vpq(x) � xpeq] = O(�� );

we arrive at the following theorem.

Theorem 2.6. Suppose that� = O(� � � ) for some � < 1. Then

P� [u0 � U 0](x; t ) = �
3X

p;q=1

@qP� [U 0](z; t)p[vpq(x) � xpeq] + O(� 2(1 � � ) ):
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We now derive a far-�eld asymptotic expansion forP� [u0 � U 0]. Let G 1 (x; y; t )
be the inverse Fourier transform of�

!p
� (x; y). Note that G 1 is the limit of G given

by (2.5) as
p

� + 2 � ! + 1 . It then follows that

P� [G 1 ](x; y; t ) =
Z

j ! j� �
e�

p
� 1!t �

!p
� (x; y)d!

=
1

4�
3 i  j � � ij

r 3

�
� � (t) � � � (t �

r
p

�
)
�

�
1

4��
 i  j � � ij

r
 � (t �

r
p

�
);(2.72)

where � � (t) :=
Rt

0  � (s)ds.
From Theorem 2.5, we get

Z

j ! j� �
e�

p
� 1!t (û0(x; ! ) � Û 0(x; ! )) d!

= �
� 3

�

Z

j ! j� �
e�

p
� 1!t

0

@
3X

i;j;p;q;` =1

Vijpq @i �
!p

�

`j (x; z)@qÛ 0(z)pe`

1

A d!

+
Z

j ! j� �
e�

p
� 1!t R (x; ! ) d!;

where the remainder is estimated by
Z

j ! j� �
e�

p
� 1!t R (x; ! ) d! = O(� 4(1 � 3

4 � ) ):

Since
Z

j ! j� �
e�

p
� 1!t

0

@
3X

i;j;p;q;` =1

Vijpq @i �
!p

�

`j (x; z)@qÛ 0(z)pe`

1

A d!

= � � 1
Z

j ! j� �
e�

p
� 1!t

0

@
3X

i;j;p;q;k;` =1

Vijpq @i �
!p

�

`j (x; z)@q�
!p

�

pk (z; �y)ak e`

1

A d!

= � � 1
Z

R

0

@
3X

i;j;p;q;k;` =1

Vijpq @i P� [G 1 ]`j (x; z; t � � )@qP� [G 1 ]pk (z; �y; � )ak e`

1

A d�;

the following theorem holds.

Theorem 2.7. Let Û 0(x; ! ) := 1
� �

!p
� (x � �y)a. Suppose that� = O(� � � ) for

some� < 1. Then for jx � zj � C > 0, the following far-�eld expansion holds
(2.73)

P� [u0 � U 0](x; t )

= �
� 3

� 2

Z

R

0

@
3X

i;j;p;q;k;` =1

Vijpq @i P� [G 1 ]`j (x; z; t � � )@qP� [G 1 ]pk (z; �y; � )ak e`

1

A d�

+ O(� 4(1 � 3
4 � ) ):

Note that if we plug (2.72) in the far-�eld formula (2.73) then we can see that,
unlike the acoustic case investigated in [8], the perturbation P� [u0 � U 0](x; t ) can
be seen not only as a polarized wave emitted from the anomaly but it contains,
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because of the term (1=r3)� � (t) in (2.72), a near-�eld like term which does not
propagate.

2.4. Asymptotic imaging

2.4.1. Far-�eld imaging: time-reversal. We present a time-reversal tech-
nique for detecting the location z of the anomaly from measurements of the per-
turbations at x away from the location z. As in the acoustic case, the main idea
is to take advantage of the reversibility of the elastic wave equation in a non-
viscous medium in order to back-propagate signals to the sources that emitted
them [28, 57].

Let S be a sphere englobing the anomalyD . Consider, for simplicity, the
harmonic regime, we get

Z

S

�
@�

!p
�

@n
(x; z)�

!p
� (x; y) � �

!p
� (x; z)

@�
!p

�

@n
(x; y)

�
d� (x) = 2

p
� 1=m�

!p
� (y; z);

for y 2 
, and therefore, for w(x) := û0(x; ! ) � Û 0(x; ! ), it follows that

Z

S

�
@w
@n

(x; ! )�
!p

� (x; z) � w(x; ! )
@�

!p
�

@n
(x; z)

�
d� (x)

= 2
p

� 1
� 3

�
r Û 0(z; ! )V (~�; �; B )r z=m�

!p
� (y; z) + O(� 4! 3);

if ! > 1.
This shows that the anti-derivative of time-reversal perturbation focuses on the

location of the anomaly with an anisotropic focal spot. Because of the structure
of the Green function �

!p
� (y; z), time-reversing the perturbation gives birth to a

near-�eld like e�ect. Moreover, the resolution limit depends on the direction. It is,
unlike the acoustic case, anisotropic. These interesting �ndings were experimentally
observed and �rst reported in [43]. Our asymptotic formula (2.73) clearly explains
them.

2.4.2. Near-�eld imaging: optimization approach. Set 
 to be a window
containing the anomaly D . As in Chapter 1, Theorem 2.6 suggests to reconstruct
the shape and the shear modulus of the elastic inclusionD by minimizing the
following functional:

Z T +� T

T � � T
jjP� [u0 � U 0](x; t ) � �

3X

p;q=1

@qP� [U 0](z; t)p[vpq(x) � xpeq]jj2
L 2 (
) ;

where T = j �y � zj=
p

� is the arrival time and � T is a window time. One can add
a total variation regularization term.

The choice of the space and time window sizes are critical as observed in [9] for
the time-harmonic regime. If they are too large, then noisy images are obtained. If
they are too small, then resolution is poor. The optimal window sizes are related
to the signal-to-noise ratio of the recorded near-�eld measurements. They express
the trade-o� between resolution and stability.
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2.5. Concluding remarks

In this chapter we have rigorously establish asymptotic expansions of near-
and far-�eld measurements of the transient elastic wave induced by a small elastic
anomaly. We have proved that, after truncation of the high-frequency component,
the perturbation due to the anomaly can be seen not only as a polarized wave
emitted from the anomaly but it contains unlike the acoustic case a near-�eld
like term which does not propagate. We have also shown that time-reversing this
perturbation gives birth to a near-�eld like e�ect. Moreover, the resolution lim it is
anisotropic. We have then explained the experimental �ndings reported in [43].

In this chapter we have only considered a purely quasi-incompressible elasticity
model. In Chapter 4, we will consider the problem of reconstructing a small anomaly
in a viscoelastic medium from wave�eld measurements. The Voigt model his a
common model to describe the viscoelastic properties of tissues. Cathelineet al.
[42] have shown that this model is well adapted to describe the viscoelastic response
of tissues to low-frequency excitations. Expressing the ideal elastic �eld without any
viscous e�ect in terms of the measured �eld in a viscous medium, we will generalize
the methods described here to recover the viscoelastic and geometric properties of
an anomaly from wave�eld measurements.



CHAPTER 3

Transient imaging with limited-view data

Abstract. We consider for the wave equation the inverse problem of iden ti-
fying locations of point sources and dipoles from limited-v iew data. Using as
weights particular background solutions constructed by th e geometrical con-
trol method, we recover Kirchho�-, back-propagation-, MUS IC-, and arrival
time-type algorithms by appropriately averaging limited- view data. We show
that if one can construct accurately the geometric control, then one can per-
form imaging with the same resolution using limited-view as using full-view
data.

3.1. Introduction

In Chapter 1, we have investigated the imaging of small anomalies using tran-
sient wave boundary measurements; see also the recent works [5, 7]. Di�erent ap-
proaches for locating them and reconstructing some information about their sizes
and physical parameters have been designed. The detection algorithms make use
of complete boundary measurements. They are of Kirchho�-, back-propagation,
MUSIC-, and arrival time-types. The resolution of those algorithms in the time-
harmonic domain is �nite. It is essentially of order one-half the wavelength. See,
for instance, [3].

In this work, we extend those algorithms to the case with limited-view mea-
surements. For simplicity, we model here the small anomalies as point sourcesor
dipoles. We refer the reader to Chapter 1 and [5, 7] for rigorous derivations of these
approximate models and their higher-order corrections. It is worth mentioning that
in order to model a small anomaly as a point source or a dipole, one has to truncate
the high-frequency component of the transient wave reected by the anomaly.

By using the geometrical control method [29], we show how to recover all
the classical algorithms that have been used to image point sources and dipole
locations. Our main �nding in this chapter is that if one can construct accurately
the geometric control then one can perform imaging with the same resolutionusing
partial data as using complete data. Our algorithms apply equally well to the caseof
many source points or dipole locations and are robust with respect to perturbations
of the boundary. This is quite important in real experiments since one does not
necessarily know the non-accessible part of the boundary with good accuracy.

The chapter is organized as follows. In Section 3.2 we provide a key identity
based on the averaging of the limited-view data, using weights constructed by the
geometrical control method. Section 3.3 is devoted to developing, for di�erent
choices of weights, Kirchho�-, back-propagation-, MUSIC-, and arrival time-typ e
algorithms for transient imaging with limited-view data. In Section 3.4 we discuss
potential applications of the method in emerging biomedical imaging. In Section 3.5

43
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we present results of numerical experiments and comparisons among the proposed
algorithms.

3.2. Geometric control

The basic model to be considered in this chapter is the following wave equation:

(3.1)
@2p
@t2

(x; t ) � c2� p(x; t ) = 0 ; x 2 
 ; t 2 ]0; T[;

for some �nal observation time T, with the Dirichlet boundary conditions

(3.2) p(x; t ) = 0 on @
 � ]0; T[;

the initial conditions

(3.3) p(x; t )jt =0 = 0 in 
 ;

and

(3.4) @t p(x; t )jt =0 = � x = z or @t p(x; t )jt =0 = m0 � r � x = z in 
 :

Here c is the acoustic speed in 
 which we assume to be constant, andm0 is a
constant nonzero vector. We suppose thatT is large enough so that

(3.5) T >
diam(
)

c
:

The purpose of this chapter is to design e�cient algorithms for reconstructing
the location z from boundary measurements of@p

@� on � � ]0; T[, where � � @
.
Suppose thatT and � are such that they geometrically control 
, which roughly

means that every geometrical optic ray, starting at any point x 2 
, at time t = 0,
hits � before time T at a nondi�ractive point; see [ 29, 78]. Let � 2 C1

0 (
) be a
cuto� function such that � (x) � 1 in a sub-domain 
 0 of 
, which contains the
source point z.

For a given function w which will be speci�ed later, we construct by the geo-
metrical control method a function v(x; t ) satisfying

(3.6)
@2v
@t2

� c2� v = 0 in 
 � ]0; T[;

with the initial condition

(3.7) v(x; 0) = c2� (x)w(x); @t v(x; 0) = 0 ;

the boundary condition v = 0 on @
 n �, and the �nal conditions

(3.8) vjt = T =
@v
@t

�
�
�
t = T

= 0 in 
 :

Let

(3.9) gw (x; t ) := v(x; t ) on � � ]0; T[:

Multiplying (3.1) by v and integrating over 
 � [0; T] lead to the following key
identity of this chapter:

(3.10)
Z T

0

Z

�

@p
@�

(x; t )gw (x; t ) d� (x) dt = w(z) or � m0 � r w(z):
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Note that the probe function constructed in [5] corresponds to one of the fol-
lowing choices forw in 
:

(3.11) w(x) :=
�

�
� � j x � y j

c

�

4� jx � yj
in three dimensions

or

(3.12) w(x) := �
�

� �
1
c

� � x
�

in two dimensions;

where � is a unit vector.
The reader is referred, for instance, to [25, 106, 68 ] for numerical investigations

of the geometrical control method.

3.3. Imaging algorithms

In this section, we only consider the initial condition @t p(x; t )jt =0 = � x = z in 
.
One can treat the case of the initial data @t p(x; t )jt =0 = m0 � r � x = z in the exactly
same way. Using the functionsv constructed by the geometrical control method
with di�erent choices of initial data w, one recovers several classical algorithms for
imaging point sources. For simplicity, we only consider a single point source, but
the derived algorithms are e�cient for locating multiple sources as well. The reader
is referred to [48] for a review on source localization methods.

3.3.1. Kirchho� algorithm. Let y 2 Rd n 
 ; d = 2 ; 3; and ! 2 R. Set

w(x) = e
p

� 1! jx � y j ; x 2 
 :

Then, for a given search pointzS in 
, we have from (3.10)
Z

R
e�

p
� 1! jzS � y j

Z T

0

Z

�

@p
@�

(x; t )gw (x; t ) d� (x) dt d! =
Z

R
e�

p
� 1! ( jzS � y j�j z� y j ) d!

= � j zS � y j�j z� y j=0 ;

where � is the Dirac mass. Taking a (virtual) planar array of receivers y outside 

yields then a Kirchho�-type algorithm for �nding z.

In fact, let ! k ; k = 1 ; : : : ; K , be a set of frequencies and lety1; : : : ; yN , be a
set of virtual receivers. To �nd the location z one maximizes overzS the following
imaging functional:

I KI (zS ) :=
1
K

<e
X

! k

X

yn

e�
p

� 1! jzS � yn j
Z T

0

Z

�

@p
@�

(x; t )gwk;n (x; t ) d� (x) dt;

where wk;n (x) = e
p

� 1! k j x � yn j .

3.3.2. Back-propagation algorithm. If one takes w to be a plane wave:

w(x) = e
p

� 1!� �x ; � 2 Sd� 1;

where Sd� 1 is the unit sphere in Rd, then one computes for a given search point
zS 2 
,
Z

Sd � 1
e�

p
� 1!� �zS

Z T

0

Z

�

@p
@�

(x; t )gw (x; t ) d� (x) dt d� (� ) =
Z

Sd � 1
e

p
� 1!� �(z� zS ) d� (� ):
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But
Z

Sd � 1
e

p
� 1!� �(z� zS ) d� (� ) =

(
j 0(! jz � zS j) for d = 3 ;

J0(! jz � zS j) for d = 2 ;

where j 0 is the spherical Bessel function of order zero andJ0 is the Bessel function
of the �rst kind and of order zero.

This is a back-propagation algorithm. Let � 1; : : : ; � N , be a discretization of the
unit sphere Sd� 1. One plots at each point zS in the search domain the following
imaging functional:

I BP (zS ) :=
1
N

<e
X

� n

e�
p

� 1!� n �zS
Z T

0

Z

�

@p
@�

(x; t )gwn (x; t ) d� (x) dt;

wherewn (x) = e
p

� 1!� n �x . The resulting plot will have a large peak at z. Note that
the higher the frequency! is, the better is the resolution. However, high frequency
oscillations cause numerical instabilities. There is a trade-o� between resolution
and stability.

3.3.3. MUSIC algorithm. Take

w(x) = e
p

� 1! ( � + � 0) �x ; �; � 0 2 Sd� 1:

It follows from (3.10) that
Z T

0

Z

�

@p
@�

(x; t )gw (x; t ) d� (x) dt = e
p

� 1! ( � + � 0) �z :

Therefore, one can design a MUSIC-type algorithm for locatingz. For doing so, let
� 1; : : : ; � N be N unit vectors in Rd. De�ne the matrix A = ( Ann 0)N

n;n 0=1 by

Ann 0 :=
Z T

0

Z

�

@p
@�

(x; t )gwn;n 0(x; t ) d� (x) dt;

with
wn;n 0(x) = e

p
� 1! ( � n + � n 0) �x :

Let P be the orthogonal projection onto the range ofA. Given any point zS in the
search domain form the vector

h(zS ) := ( e
p

� 1!� 1 �zS
; : : : ; e

p
� 1!� N �zS

)T ;

where T denotes the transpose. Then plot the MUSIC imaging functional:

I MU (zS ) :=
1

jj (I � P)h(zS )jj
:

The resulting plot will have a large peak at z. Again, the higher the frequency !
is, the better is the resolution.

3.3.4. Arrival time and time-delay of arrival algorithms. Taking w to
be a distance function,

w(x) = jy � xj;

to a virtual receiver y on a planar array outside 
 yields arrival-time and time-delay
of arrival algorithms. In fact, we have

Z T

0

Z

�

@p
@�

(x; t )gw (x; t ) d� (x) dt = jy � zj:
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Let y1; : : : ; yN be N receivers and compute

r n :=
Z T

0

Z

�

@p
@�

(x; t )gwn (x; t ) d� (x) dt;

with wn (x) = jyn � xj. Then, the point z can be found as the intersection of spheres
of centersyn and radii r n .

Using time-of-arrival di�erences instead of arrival times would improve the
robustness of the algorithm. Introduce the time-of-arrival di�erence, tn;n 0, between
the receiver yn and yn 0 as follows:

tn;n 0 :=
Z T

0

Z

�

@p
@�

(x; t )(gwn � gwn 0)(x; t ) d� (x) dt:

At least N = 4 sources are required to locatez. The location z can be found as the
intersection of three sets of hyperboloids. See, for instance, [40, 104, 96, 47, 66,
32, 48].

3.4. Applications to emerging biomedical imaging

In this section we show how to apply the designed algorithms to emerging
biomedical imaging. Of particular interest are radiation force imaging, magneto-
acoustic current imaging, and photo-acoustic imaging.

3.4.1. Radiation force imaging. As it has been said Chapter 1, in radiation
force imaging, one generates vibrations inside the organ, and acquires a spatio-
temporal sequence of the propagation of the induced transient wave to estimate the
location and the viscoelastic parameters of a small anomaly inside the medium.

Let z be the location of the anomaly. Let 
 be a large ball englobing the
anomaly. In the far-�eld, the problem, roughly speaking, reduces to �nding the
location of the anomaly from measurements of the pressurep on @
 � ]0; T[, that
is, the solution to (3.1) with the initial conditions

(3.13) p(x; t )jt =0 = 0 and @t p(x; t )jt =0 = m0 � r � x = z in 
 :

A time-reversal technique can be designed to locate the anomaly. Suppose that
one is able to measurep and its normal derivative at any point x on @
. If both p
and its normal derivative on @
 are time-reversed and emitted from @
, then the
time-reversed wave travels back to the locationz of the anomaly. See Chapter 1.

Suppose now that the measurements ofp and its normal derivative are only
done on the part � of @
. Note �rst that

@p
@�

j@
 � ]0;T [ = � DtN [pj@
 � ]0;T [];

where � DtN is the Dirichlet-to-Neumann operator for the wave equation in R3 n 
.
For any function v satisfying (3.6), (3.7), and (3.8), integrating by parts yields

Z T

0

Z

@

p(x; t )(� �

DtN [v] +
@v
@�

)(x; t ) d� (x) dt = m0 � r w(z);

where � �
DtN denotes the adjoint of � DtN . Next, constructing by the geometrical

control method, gw such that v satis�es (3.6), (3.7), and (3.8), together with the
boundary condition

� �
DtN [v] +

@v
@�

=

(
0 on @
 n � � ]0; T[

gw on � � ]0; T[;
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one obtains Z T

0

Z

�
p(x; t )gw (x; t ) d� (x) dt = m0 � r w(z):

Making similar choices for w to those in the previous section provide di�erent
algorithms for locating the anomaly.

3.4.2. Magneto-acoustic current imaging. In magneto-acoustic current
imaging, one detects a pressure signal created in the presence of a magnetic �eld
by electrically active tissues [70, 90, 91 ]. In the presence of an externally applied
magnetic �eld, biological action currents, arising from active nerve or muscle�bers,
experience a Lorentz force. The resulting pressure or tissue displacement contains
information about the action current distribution.

Let z 2 
 be the location of an electric dipole, which represents an active nerve
or muscle �ber, with strength c. The wave equation governing the induced pressure
distribution p is (3.1), with the boundary condition (3.2), the initial conditions
(3.3), and

(3.14) @t p(x; t )jt =0 = � x = z in 
 :

The algorithms constructed in the previous section apply immediately to �nding z
from partial boundary measurements of the normal derivative ofp.

3.4.3. Photo-acoustic imaging. The photo-acoustic e�ect refers to the gen-
eration of acoustic waves by the absorption of optical energy [105, 56 ]. In photo-
acoustic imaging, energy absorption causes thermo-elastic expansion of the tissue,
which in turn leads to propagation of a pressure wave. This signal is measured by
transducers distributed on the boundary of the organ, which is in turn used for
imaging optical properties of the organ. Mathematically, the pressurep satis�es
(3.1) with the boundary condition (3.2) and the initial conditions

(3.15) p(x; t )jt =0 = a� x = z in 
 ;

and

(3.16) @t p(x; t )jt =0 = 0 in 
 :

Here a is the absorbed energy.
Construct by the geometrical control method a function v(x; t ) satisfying (3.6),

the initial condition (3.7), the boundary condition v = 0 on @
 n �, and the �nal
conditions (3.8). Choosingw as in Section 3.4 yields di�erent detection algorithms.

3.5. Numerical illustrations

To test the geometrical control imaging approach, we implemented numerical
simulations of both the forward problem, the wave equation (3.1)-(3.4), and the
inverse problem where we compute the geometrical control function (3.6)-(3.9) and
implement the inversion algorithms of Section 3.3.

To simulate the wave equation, we used a standard P1-�nite elements discretiza-
tion in space and a �nite di�erence scheme in time. For time-cost considerations,
we settled with an explicit (leap-frog) scheme along with the use of mass lumping
(row-sum technique).

The method we present here has been implemented and tested on various types
of two-dimensional meshes. We will present results obtained on three di�erent sets
of meshes (see Figure 3.1 and Table 3.1):
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Set name Coarse mesh Fine mesh
# of nodes # of elements h # of nodes # of elements 2h

squareReg0 36 50 0.2 121 200 0.1
squareReg2 441 800 0.05 1681 3200 0.025

circle 270 490 0.0672 1029 1960 0.0336
Table 3.1. Geometries and meshes.

� squareReg0 and squareReg2 are regular meshes of the unit square [� 0:5 0:5]2.
� circle are unstructured meshes of the unit disc.
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Figure 3.1. The coarse and �ne meshes used on the square and
circular geometries.

For computation of imaging functionals of Kirchho�-, back-propagation-, and
MUSIC-types, one has to be very careful with the spatial frequency! . One has
to make sure that the function w(x; ! ) is accurately represented on the meshes we
use. This imposes strict limitations on the range of frequencies that can be used.
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Finally, the considered initial conditions for the simulated measurements are
p(x; 0) = 0 and @p

@t(x; 0) = � h (x0), where � h is a Gaussian approximation of the
Dirac distribution and x0 = [0 :21 � 0:17] (see Figure 3.2).

Figure 3.2. Initial time derivative, for the three geometries, used
for the simulated measures.

To illustrate the performance of our approach with regards to limiting the view,
we applied the algorithm to both a full and a partial view setting.

For the square medium, we assumed measurements were taken only on two
adjacent edges - this corresponds to the theoretical (and practical) limit that still
ensures geometric controllability. For the circular medium, we assumed measure-
ments between angles�

4 and 3�
2 , as shown in Figure 3.4.

Figure 3.3. Limited-view observation boundaries for square and disc.

Before presenting the numerical results, we describe the numerical method used
for computing the geometrical control, which is based on the Hilbert Uniqueness
Method (HUM) of Lions.
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3.5.1. Geometrical control: HUM using conjugate gradient iterati on
on a bi-grid mesh. The solution gw of (3.6)-(3.9) has been shown to be unique
provided that T and the control boundary � geometrically control 
 [ 29]. A system-
atic and constructive method for computing such a control is given by the Hilbert
Uniqueness Method (HUM) of Lions [79]. A detailed study of the algorithm can be
found in [59], [25], and [106]. The method applies a conjugate gradient algorithm
as follows:

� Let e0; e1 2 H1
0(
) � L2(
), where H 1

0(
) is the standard Sobolev space
with zero boundary values;

� Solve forwards on (0; T) the wave equation

(3.17)

8
>>>><

>>>>:

@2�
@t2

(x; t ) � c2� � (x; t ) = 0 ;

� (x; t ) = 0 on @
 ;

� (x; 0) = e0(x);
@�
@t

(x; 0) = e1(x);

� Solve backwards the wave equation

(3.18)

8
>>>>>>><

>>>>>>>:

@2 
@t2

(x; t ) � c2�  (x; t ) = 0 ;

 (x; t ) =

(
0 on @
 n�� ;
@�
@� (x; t ) on � ;

 (x; T ) = 0 ;
@ 
@t

(x; T ) = 0;

� Set

(3.19) �( e0; e1) =
�

@ 
@t

(x; 0); �  (x; 0)
�

;

� The solution v of (3.6)-(3.8) can be identi�ed with  when

�( e0; e1) =
�

0; � c2� (x)w(x)
	

and gw (x; t ) =  (x; t ) on �.

Remark 3.1. In the case where the initial condition is a pressure �eld (e.g.,
photo-acoustics) p(x; 0) = p0(x), @p

@t(x; 0) = 0 , we need to havev(x; 0) = 0 ,
@v
@t(x; 0) = c2� (x)w(x). This can be easily obtained by solving : �( e0; e1) =�
c2� (x)w(x); 0

	
.

To proceed, we used a conjugate gradient algorithm on a discretized version �h

of the operator de�ned in (3.19), where we solve the wave equation using the �nite-
element �nite-di�erence discretization described previously. To deal with unwanted
e�ects linked with high spatial frequencies, we used a bi-grid method of Glowinski
[59] based on a �ne mesh with discretization length h and a coarse mesh with
length 2h. The wave equation is solved on the �ne mesh and the residuals of �h
are computed after projection onto the coarse mesh.

Let us de�ne I 2h
h and I h

2h to be the projectors from the �ne mesh to the coarse
mesh and vice versa. The conjugate gradient algorithm is now as follows:

� Let e0
0; e0

1 be given initial guesses on the coarse mesh;
� Solve numerically (3.17) forwards with initial conditions I h

2h e0
0, I h

2h e0
1 and

solve (3.18) backwards, both on the �ne grid;
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� Compute the initial residuals g0 = f g0
0 ; g0

1g on the coarse grid as follows:
8
<

:
� � g0

0 = I 2h
h

 1 �  � 1

2� t
� I 2h

h u1 in 
 ;

g0
0 = 0 on @
 ;

and

g0
1 =  0 � I 2h

h u0;

� If the norm of the residuals

kf g0
0 ; g0

1gk2
h =

Z

Th

jg0
1 j2 + jr g0

0 j2

is small enough, we have our solution, else we set the �rst search direction
w0 = g0 and start the conjugate gradient;

� Suppose we knowek = f ek
0 ; ek

1g, gk = f gk
0 ; gk

1 g and wk = f wk
0 ; wk

1 g;
� Solve numerically (3.17) forwards with initial conditions I h

2h wk
0 , I h

2h wk
1 and

solve (3.18) backwards both on the �ne grid;
� Compute the remaining residuals � k = f � k

0 ; � k
1 g on the coarse grid as

follows: 8
<

:
� � h � k

0 = I 2h
h

 1 �  � 1

2� t
;

� k
0 = 0 on @
 ;

and

� k
1 =  0;

� Calculate the length of the step in the wk direction

� k =
kgk kh

h� k ; wk i h
;

where h� k ; wk i h =
Z

Th

r � k
0 r wk

0 + � k
1 wk

1 ;

� Update the quantities

ek+1 = ek � � k wk ;

gk+1 = gk � � k � k ;

� If kgk+1 kh is small, then ek+1 is our solution, else compute

 k =
kgk+1 kh

kgk kh
;

and set the new descent direction

wk+1 = gk+1 +  k wk :

Remark 3.2 (Remarks on the numerical convergence). The numerical proce-
dure described in the previous section has been proved to converge in the case of
�nite di�erence method on the unit square [68]. This result can be easily extended
in the case of a �nite element method on a regular mesh. Convergence results for
more general meshes are not available yet. They will be the subject of a future study.
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3.5.2. Reconstruction results. We present here some results obtained by
algorithms presented in Section 3.4. For each algorithm we will consider both the
full view and the partial view cases.

� Kirchho� algorithm. We limited ourselves to the frequency range :
W = [ � ! max ; ! max ] with a step-size � ! = ! max =n! where ! max and n!

depend on the mesh coarseness.
For time considerations we chose a reduced array of three virtual

receivers
{ Y = f [0:6 � 0:6]; [0:6 0]; [0:6 0:6]g for the square medium.
{ Y = f [1 � 1]; [1 0]; [1 1]g for the circular medium.

We compute and represent the functionI KI (zS ) for zS on the �ne
mesh. The estimated position is at the maximum of I KI (zS ). Recon-
struction results are given in Figure 3.4.

� Back-propagation algorithm. We chose frequencies well represented
on the mesh (! = 9 for squareReg0,! = 30 for squareReg2 and! = 20
for circle) and a 30-point discretization of the unit circle for � .

We compute and represent the functionI BP (zS ) for zS on the �ne
mesh. The estimated position is at the maximum ofI BP (zS ). Results are
given in Figure 3.5.

� Arrival-time algorithm. We considered minimal arrays of two virtual
receiversY = f [0 0:6]; [0:6 0]g for the square medium. For each receiver
we computed the value of r k = d(x0; yk ), where x0 is the position of
the source andyk the position of the receiver. We represent the circles
C(yk ; r k ) and their intersections. Results are given in Figure 3.6.

� MUSIC algorithm. Working with the same parameters, we compute
and represent the function I MU (zS ) for zS on the �ne mesh. The esti-
mated position is at the maximum of I MU (zS ). Reconstruction results
are given in Figure 3.7.

In Table 3.2 we give the estimationsxest of the source locationx0 = [0 :21� 0:17]
for each algorithm, and the error d(x0; xest ). For comparison, we givehmin , the
smallest distance between 2 points in the �ne mesh.

3.5.3. Case of multiple sources. Except for the arrival-time algorithm, all
the methods presented in this chapter are well-suited for identifying several point-
like sources. To illustrate this, we simulated measurements on squareReg2 with
three sources located at [0:21 � 0:17], [� 0:22 � 0:3] and [0:05 0:27].

� We applied the Kirchho� imaging algorithm with a di�erent set of virtual
receivers:

Y = f [0:6 0]; [0:6 0:6]; [0 0:6]; [� 0:6 0:6]; [� 0:6 0]g:

The reason for taking more virtual receivers is that Kirchho� works on in-
tersecting circles centered at the receivers and passing through the sources.
Too few receivers can generate false positives. Results are given in Figure
3.10.

� We ran the back-propagation and MUSIC algorithms with exactly the
same parameters as previously. Results are given in Figures 3.11 and 3.12
respectively.



54 3. TRANSIENT IMAGING WITH LIMITED-VIEW DATA

Algorithm Mesh View xest hmin d(x0; xest )
Kirchho� squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224
squareReg2 Full [0.2 -0.175] 0.025 0.0112

Partial [0.2 -0.175] 0.0112
circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171
Back-propagation squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224
squareReg2 Full [0.2125 -0.175] 0.025 0.0056

Partial [0.2125 -0.175] 0.0056
circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171
Arrival time squareReg0 Full [0.1877 -0.1433] 0.1 0.0348

Partial [0.1882 -0.1314] 0.0444
squareReg2 Full [0.2050 -0.1768] 0.025 0.0085

Partial [0.2048 -0.1774] 0.009
circle Full [0.1802 -0.2196] 0.0336 0.0579

Partial [0.1790 -0.2119] 0.0522
MUSIC squareReg0 Full [0.15 -0.2] 0.1 0.0671

Partial [0.15 -0.2] 0.0671
squareReg2 Full [0.175 -0.1625] 0.025 0.0358

Partial [0.175 -0.175] 0.0354
circle Full [0.2804 -0.139] 0.0336 0.0769

Partial [0.2416 -0.0974] 0.0792
Table 3.2. Numerical results for localization of the source atx0 =
[0:21; � 0:17] using four algorithms and three geometries.

3.5.4. Boundary perturbation. In real experiments, one does not neces-
sarily know the uncontrolled part of the boundary with good accuracy. A major
concern for real applications of the method is thus its robustness with respect to
perturbations of the boundary.

We tested our algorithms by perturbing the boundary nodes outwards

x i; perturbed = x i + �Un x i ;

where � is an amplitude factor, U is a uniform random variable in [0 1] andnx i is
the outward normal at the point x i . We simulated measurements on the perturbed
mesh, which is then supposed unknown since we computed the geometric control
on the unperturbed mesh.

To illustrate the results, we used squareReg2 with three levels of perturbation,
� = 0 :01, 0:025 and 0:05 (see Figure 3.5.4) and the same initial condition as before,
that is a Dirac approximation located at [0:21 � 0:17].

We give the results, with the three perturbations, for the Kirchho� (Figure
3.13), the back-propagation (Figure 3.14) and the arrival-time (Figure 3.15) algo-
rithms. Modifying the mesh as we did generates smaller elements and thus changes
the CFL condition for the wave-equation solver. Computation time becomes too
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Figure 3.4. Kirchho� results for the geometries of Table 3.1
- from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

expensive for the MUSIC algorithm. For this reason we do not present MUSIC
results here.

As expected the estimation of the source position deteriorates as we increase
the boundary uncertainty. The errors are summarized in Table 3.3.
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Figure 3.5. Back-propagation results for the geometries of Table
3.1 - from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

3.6. Concluding remarks

In this chapter we have constructed Kirchho�-, back-propagation-, MUSIC-,
and arrival time-type algorithms for imaging point sources and dipoles from limited-
view data. Our approach is based on averaging of the limited-view data, using
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Figure 3.6. Example of arrival time results for squareReg2 geometry.

weights constructed by the geometrical control method. It is quite robust with
respect to perturbations of the non-accessible part of the boundary. We have shown
that if one can construct accurately the geometric control then one can perform
imaging with the same resolution using partial data as using complete data.
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Figure 3.7. MUSIC results for the geometries of Table 3.1 - from
top to bottom: sqReg0, sqReg2, circle. The (black/white) x de-
notes the (numerical/theoretical) center of the source.
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Figure 3.8. Initial time derivative for the case of multiple sources.
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Figure 3.9. Perturbation of the mesh for � = 0 :01, 0:025 and 0:05.
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Figure 3.10. Kirchho� results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.11. Back-propagation results for the geometry sqReg2
with several inclusions.
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Figure 3.12. MUSIC results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.13. Kirchho� results for the geometry sqReg2 with per-
turbed boundary (from left-to-right, � = 0 :01, 0:025 and 0:05). The
(black/white) x denotes the (numerical/theoretical) center of the
source.
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Figure 3.14. Back-propagation results for the geometry sqReg2
with perturbed boundary (from left-to-right, � = 0 :01, 0:025 and
0:05). The (black/white) x denotes the (numerical/theoretical)
center of the source.
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Figure 3.15. Arrival-time results for the geometry sqReg2 with
perturbed boundary (from left-to-right, � = 0 :01, 0:025 and 0:05)
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Algorithm Perturbation amplitude � xest d(x0; xest )
Kirchho� 0.01 [0.2 -0.1625] 0.0125

0.025 [0.2 -0.1625] 0.0125
0.05 [0.1875 -0.15] 0.03

Back-propagation 0.01 [0.2125 -0.1625] 0.0079
0.025 [0.2 -0.1625] 0.0125
0.05 [0.1875 -0.15] 0.03

Arrival time 0.01 [0.2022 -0.1687] 0.0079
0.025 [0.1917 -0.167] 0.0186
0.05 [0.1944 -0.1643] 0.0166

Table 3.3. Numerical results for localization of the source atx0 =
[0:21 � 0:17] using sqReg2 geometry with boundary perturbations.





CHAPTER 4

Imaging in visco-elastic media obeying a frequency
power-law

Abstract. In this chapter we consider the problem of reconstructing a s mall
anomaly in a viscoelastic medium from wave�eld measurement s. We choose
Szabo's model [95] to describe the viscoelastic properties of the medium.
Expressing the ideal elastic �eld without any viscous e�ect in terms of the
measured �eld in a viscous medium, we generalize the imaging procedures
in Chapter 2 to detect an anomaly in a visco-elastic medium fr om wave�eld
measurements.

4.1. Introduction

In Chapter 2 we have considered anomaly imaging in a purely quasi-incompressible
elastic medium. In this chapter, we consider the problem of reconstructing a small
anomaly in a viscoelastic medium from wave�eld measurements. The Voigt model
is a common model to describe the viscoelastic properties of tissues. Cathelineet
al. [42] have shown that this model is well adapted to describe the viscoelastic
response of tissues to low-frequency excitations. We choose a more general model
derived by Szabo [95] that describes observed power-law behavior of many vis-
coelastic materials. It is based on a time-domain statement of causality.It reduces
to the Voigt model for the speci�c case of quadratic frequency loss. Expressing
the ideal elastic �eld without any viscous e�ect in terms of the measured �eld in a
viscous medium, we generalize the methods described in Chapter 2 to recover the
viscoelastic and geometric properties of an anomaly from wave�eld measurements.

The chapter is organized as follows. In Section 4.2 we introduce a general visco-
elastic wave equation. Section 4.3 is devoted to the derivation of the Green function
in a viscoelastic medium. In Section 4.4 we present anomaly imaging procedures in
visco-elastic media.

4.2. General visco-elastic wave equation

When a wave travels through a biological medium, its amplitude decreases with
time due to attenuation. The attenuation coe�cient for biological tissue may be
approximated by a power-law over a wide range of frequencies. Measured attenua-
tion coe�cients of soft tissue typically have linear or greater than linear dependence
on frequency [95].

In an ideal medium, i.e., without attenuation, Hooke's law expresses the fol-
lowing relationship between stress and strain tensors:

(4.1) T = C : S;

65
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where T ; C and S are respectively the stress, the sti�ness and the strain tensor of
orders 2; 4 and 2 and : represents the tensorial product.

Consider a dissipative medium. Suppose that the medium is homogeneous and
isotropic. We write

C = [ Cijkl ] = [ �� ij � kl + � (� ik � jl + � il � jk )] ;(4.2)

� = [ � ijkl ] = [ � s � ij � kl + � p(� ik � jl + � il � jk )] ;(4.3)

where� is the Kronecker delta function, �; � are the Lam�e parameters, and� s; � p are
the shear and bulk viscosities, respectively. Here we have adopted the generalized
summation convention over the repeated index.

Throughout this chapter we suppose that

(4.4) � p; � s << 1:

For a medium obeying a power-law attenuation model and under the smallness
condition (4.4), a generalized Hooke's law reads [95]

(4.5) T (x; t ) = C : S(x; t ) + � : M (S)(x; t )

where the convolution operator M is given by

(4.6) M (S) =

8
>>>>><

>>>>>:

� (� 1)y=2 @y � 1 S
@ty � 1 y is an even integer;

2
� (y � 1)!(� 1)(y+1) =2 H (t )

t y � S y is an odd integer;

� 2
� �( y) sin(y�= 2) H (t )

j t j y � S y is a non integer:

Here H (t) is the Heaviside function and � denotes the gamma function.
Note that for the common case,y = 2, the generalized Hooke's law (4.5) reduces

to the Voigt model,

(4.7) T = C : S + � :
@S
@t

:

Taking the divergence of (4.5) we get

r � T =
� �� + ��

�
r (r � u) + �� � u;

where

�� = � + � pM (�) and �� = � + � sM (�):

Next, considering the equation of motion for the system,i.e.,

(4.8) �
@2u
@t2

� F = r � T ;

with � being the constant density andF the applied force and using the expression
for r � T , we obtain the generalized visco-elastic wave equation

(4.9) �
@2u
@t2

� F =
� �� + ��

�
r (r � u) + �� � u:

4.3. Green's function

In this section we �nd the Green function of the viscoelastic wave equation
(4.9). For doing so, we �rst need a Helmholtz decomposition.
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4.3.1. Helmholtz decomposition. The following lemma holds.

Lemma 4.1. If the displacement �eld u(t; x ) satis�es (4.9) and if the body force
F = r ' f + r �  f then there exist potentials' u and  u such that

� u = r ' u + r �  u ; r �  u = 0 ;
� @2 ' u

@t2 = ' f

� + c2
p� ' u + � pM (� ' u ) � ' f

� � � p M (' f )
�c 2

p
+ c2

p� ' u + � p

c2
p

M (@2
t ' u );

� @2  u
@t2 =  f

� + c2
s �  u + � sM (�  u ) �  f

� � � s M ( f )
�c 2

s
+ c2

s �  u + � s
c2

s
M (@2

t  u ),

with

c2
p =

� + 2 �
�

; c2
s =

�
�

; � p =
� p + 2 � s

�
; and � s =

� s

�
:

Let

(4.10) K m (! ) = !
r

(1 �
� m

c2
m

M̂ (! )) ; m = s; p;

where the multiplication operator M̂ (! ) is the Fourier transform of the convolution
operator M .

Supposing that ' u and  u are causal implies the causality of the inverse Fourier
transforms of K m (! ); m = s; p. Applying the Kramers-Kr•onig relations, it follows
that
(4.11)

�= mK m (! ) = H
�
<eKm (! )

�
and <eKm (! ) = H

�
=mK m (! )

�
; m = p; s;

whereH is the Hilbert transform. Note that H 2 = � I . The convolution operator M
given by (4.6) is based on the constraint that causality imposes on (4.5). Under the
smallness assumption (4.4), the expressions in (4.6) can be found from the Kramers-
Kr•onig relations (4.11). One drawback of (4.11) is that the attenuation, =mK m (! ),
must be known at all frequencies to determine the dispersion,<eKm (! ). However,
bounds on the dispersion can be obtained from measurements of the attenuation
over a �nite frequency range [85].

4.3.2. Solution of (4.9) with a concentrated force. Let uij denote the
i -th component of the solution u j of the elastic wave equation related to a forceF
concentrated in the x j -direction. Let j = 1 for simplicity and suppose that

(4.12) F = T(t)� (x � � )e1 = T(t)� (x � � )(1; 0; 0);

where � is the source point and (e1; e2; e3) is an orthonormal basis of R3. The
corresponding Helmholtz decomposition of the forceF can be written as

(4.13)

8
>>>>><

>>>>>:

F = r ' f + r �  f ;

' f = � T ( t )
4�

@
@x1

�
1
r

�
;

 f = T ( t )
4�

�
0; @

@x3

�
1
r

�
; � @

@x2

�
1
r

� �
;

where r = jx � � j [88].
Consider the Helmholtz decomposition foru1 as

(4.14) u1 = r ' 1 + r �  1;
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where ' 1 and  1 are respectively the solutions of the equations

� ' 1 �
1
c2

p

@2 ' 1

@t2
+

� p

c4
p

M (@2
t ' 1) =

' f

c2
p�

�
� pM (' f )

�c 4
p

;(4.15)

�  1 �
1
c2

s

@2 1

@t2
+

� s

c4
s

M (@2
t  1) =

 f

c2
s �

�
� sM ( f )

�c 4
s

:(4.16)

Taking the Fourier transform of (4.14),(4.15) and (4.16) with respect to t we
get

û1 = r '̂ 1 + r �  ̂ 1(4.17)

� '̂ 1 +
K 2

p (! )

c2
p

'̂ 1 =
'̂ f

�c 2
p

�
� pM̂ (! )'̂ f

�c 4
p

;(4.18)

�  ̂ 1 +
K 2

s (! )
c2

s
 ̂ 1 =

 ̂ f

�c 2
s

�
� sM̂ (! ) ̂ f

�c 4
s

;(4.19)

with K m (! ); m = p; s; given by (4.10).
It is well known that the Green functions of the Helmholtz equations (4.18)

and (4.19) are

ĝm (r; ! ) =
e

p
� 1 K m ( ! )

c m
r

4�r
; m = s; p:

Therefore, following [88], we get the following expression for ^' 1:

(4.20) ^' 1(x; ! ; � ) = �
1

�c 2
p

(1 �
� pM̂ (! )

c2
p

)
T̂ (! )
4��

@
@x1

�
1
r

� Z r=c p

0
�e

p
� 1K p ( ! ) � d�:

In the same way, the vector  ̂ 1 is given by
(4.21)

 ̂ 1(x; ! ; � ) =
1

�c 2
s

(1�
� sM̂ (! )

c2
s

)
T̂ (! )
4��

�
0;

@
@x3

�
1
r

�
; �

@
@x2

�
1
r

�� Z r=c s

0
�e

p
� 1K s ( ! ) � d�:

Introduce the following notation:

I m (x; ! ) = Am

Z r=c m

0
�e

p
� 1K m ( ! ) � d�(4.22)

Em (x; ! ) = Am e
p

� 1K m ( ! ) r
c m ;(4.23)

Am (! ) = (1 �
� m M̂ (! )

c2
m

); m = p; s:(4.24)

We obtain, after a lengthy but simple calculation, that ûi 1 is given by

ûi 1 = T̂ ( ! )
4��

@2

@xi x 1

�
1
r

�
[I s(r; ! ) � I p(r; ! )] + T̂ ( ! )

4��c 2
p r

@r
@xi

@r
@x1

Ep(r; ! )

+ T̂ ( ! )
4��c 2

s r

�
� i 1 � @r

@xi
@r

@x1

�
Es(r; ! );

and therefore, it follows that the solution uij for an arbitrary j is

ûij = T̂ ( ! )
4�� (3 i  j � � ij ) 1

r 3 [I s(r; ! ) � I p(r; ! )] + T̂ ( ! )
4��c 2

p
 i  j

1
r Ep(r; ! )

+ T̂ ( ! )
4��c 2

s
(� ij �  i  j ) 1

r Es(r; ! );
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where  i = ( x i � � i )=r.

4.3.3. Green's function. If we substitute T(t) = � (t), where delta is the
Dirac mass, then the functionuij = Gij is the i -th component of the Green function
related to the force concentrated in thex j -direction. In this case we haveT̂(! ) = 1.
Thus we have the following expression forĜij :

Ĝij = 1
4�� (3 i  j � � ij ) 1

r 3 [I s(r; ! ) � I p(r; ! )] + 1
4��c 2

p
 i  j

1
r Ep(r; ! )

+ 1
4��c 2

s
(� ij �  i  j ) 1

r Es(r; ! );

which implies that

(4.25) Ĝij (r; ! ; � ) = ĝp
ij (r; ! ) + ĝs

ij (r; ! ) + ĝps
ij (r; ! );

where

(4.26) ĝps
ij (r; ! ) =

1
4��

(3 i  j � � ij )
1
r 3 [I s(r; ! ) � I p(r; ! )] ;

(4.27) ĝp
ij (r; ! ) =

Ap(! )
�c 2

p
 i  j ĝp(r; ! );

and

(4.28) ĝs
ij (r; ! ) =

As(! )
�c 2

s
(� ij �  i  j ) ĝs(r; ! ):

Let G(r; t ; � ) = ( Gij (r; t ; � )) denote the transient Green function of (4.9) asso-
ciated with the source point � . Let Gm (r; t ; � ) and Wm (r; t ) be the inverse Fourier
transforms of Am (! )ĝm (r; ! ) and I m (r; ! ); m = p; s, respectively. Then, from (4.25-
4.28), we have

Gij (r; t ; � ) = 1
�c 2

p
 i  j Gp(r; t ; � ) + 1

�c 2
s

(� ij �  i  j ) Gs(r; t ; � )

+ 1
4�� (3 i  j � � ij ) 1

r 3 [Ws(r; t ) � Wp(r; t )] :

Note that by a change of variables,

Wm (r; t ) =
4�
c2

m

Z r

0
� 2Gm (�; t ; � )d�:

4.4. Imaging procedure

Consider the limiting case� ! + 1 . The Green function for a quasi-incompressible
visco-elastic medium is given by

Gij (r; t ; � ) = 1
�c 2

s
(� ij �  i  j ) Gs(r; t ; � )

+ 1
16� 2 �c 2

s
(3 i  j � � ij ) 1

r 3

Rr
0 � 2Gs(�; t ; � )d�:

To generalize the detection algorithms presented in Chapter 2 to the visco-elastic
case we shall express the ideal Green function without any viscous e�ect in terms
of the Green function in a viscous medium. From

Gs(r; t ; � ) =
1

p
2�

Z

R
e�

p
� 1!t As(! )gs(r; ! ) d!;
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it follows that

Gs(r; t ; � ) =
1

p
2�

Z

R
As(! )

e
p

� 1( � !t + K s ( ! )
c s

r )

4�r
d!:

4.4.1. Approximation of the Green function. Introduce the operator

L� (t) =
1

2�

Z

R

Z + 1

0
As(! )� (� )e

p
� 1K s ( ! ) � e�

p
� 1!t d� d!;

for a causal function � . We have

Gs(r; t ; � ) = L(
� (� � r=cs)

4�r
);

and therefore,

L � Gs(r; t ; � ) = L � L(
� (� � r=cs)

4�r
);

where L � is the L 2(0; + 1 )-adjoint of L .
Consider for simplicity the Voigt model. Then, M̂ (! ) = �

p
� 1! and hence,

K s(! ) = !

s

1 +

p
� 1� s

c2
s

! � ! +

p
� 1� s

2c2
s

! 2;

under the smallness assumption (4.4). The operatorL can then be approximated
by

~L� (t) =
1

2�

Z

R

Z + 1

0
As(! )� (� )e

� � s
2c 2

s
! 2 �

e
p

� 1! ( � � t ) d� d!:

Since

Z

R
e

� � s
2c 2

s
! 2 �

e
p

� 1! ( � � t ) d! =

p
2�c sp
� s �

e�
c 2

s ( � � t ) 2

2 � s � ;

and
p

� 1
Z

R
!e

� � s
2c 2

s
! 2 �

e
p

� 1! ( � � t ) d! = �

p
2�c sp
� s �

@
@t

e�
c 2

s ( � � t ) 2

2 � s � ;

it follows that

(4.29) ~L� (t) =
Z + 1

0

t
�

� (� )
csp

2�� s �
e�

c 2
s ( � � t ) 2

2 � s � d�:

Analogously,

(4.30) ~L � � (t) =
Z + 1

0

�
t

� (� )
csp

2�� st
e�

c 2
s ( � � t ) 2

2 � s t d�:

Since the phase in (4.30) is quadratic and� s is small then by the stationary
phase theorem 4.2, we can prove that

~L � � � � +
� s

2c2
s

@tt (t� ); ~L� � � +
� s

2c2
s

t@tt �;

and

(4.31) ~L � ~L� � � +
� s

c2
s

@t (t@t � );
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and therefore,

(4.32) (L � ~L) � 1� � � �
� s

c2
s

@t (t@t � ):

4.4.2. Reconstruction methods. From the previous section, it follows that
the ideal Green function, � (� � r=cs)=(4�r ), can be approximately reconstructed
from the viscous Green function,Gs(r; t ; � ), by either solving the ODE

� +
� s

c2
s

@t (t@t � ) = L � Gs(r; t ; � );

with � = 0 ; t � 0 or just making the approximation

� (� � r=cs)=(4�r ) � L � Gs(r; t ; � ) �
� s

c2
s

@t (t@t L � Gs(r; t ; � )) :

Once the ideal Green function is reconstructed, one can �nd its source� using
the algorithms in Chapter 2. One can also �nd the shear modulus of the anomaly
using the ideal near-�eld measurements which can be reconstructed from the near-
�eld measurements in the viscous medium.

4.5. Numerical illustrations

For the following illustrations, we take � = 1000, cs = 1, cp = 40, r = 0 :015
and � p = 0.

Figure 1 : We plot, for di�erents values of y and � sthe function

t !
1

�c 2
p

(Gp(r; t ; � ) + Gs(r; t ; � )) +
1

4��r 3 [Ws(r; t ) � Wp(r; t )] :

Figure 2 : We plot, for di�erents values of y and � s at t = 0 :015 the function

(x; y) !
1

�c 2
p

�
(x=r )2Gp(r; t ; � ) + (1 � (x=r )2)Gs(r; t ; � )

�
+

1
4��r 3 (3(x=r )2� 1) [Ws(r; t ) � Wp(r; t )] :

Figure 3 : For � (t) = exp(� 50 � (t � 1):2)00, an L 1 -error between L� and
� + � s

2c2
s
t� 00 is ploted : we observe an error of two, as expected by stationary phase

theorem.

4.6. Concluding remarks

In this chapter we have computed the Green function in a visco-elastic medium
obeying a frequency power-law. For the Voigt model, which corresponds to a qua-
dratic frequency loss, we have used the stationary phase theorem to reconstruct
the ideal Green function from the visco-elastic one by solving an ODE. Once the
ideal Green function is reconstructed, one can �nd its source� using the algorithms
in Chapter 2. For more general power-law media, one can recover the ideal Green
function from the visco-elastic one by inverting a fractional derivative operator.
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Figure 4.1. Temporal response to a spatiotemporal delta function using a
purely elastic Green's function (red line) and a viscous Gre en's function (blue
line) : Left, y = 1 :5, � s = 4 ; Center, y = 2, � s = 0 :2 ; Right, y = 2 :5,

� s = 0 :002: 2

Appendix A: Proof of the approximation formula

The proof of formula (4.31) is based on the following theorem (see [65, Theorem
7.7.1]).

Theorem 4.2. (Stationary Phase) Let K � [0; 1 ) be a compact set,X an
open neighborhoud ofK and k a positive integer. If  2 C2k

0 (K ), f 2 C3k+1 (X )
and Im (f ) � 0 in X , Im (f (t0)) = 0 , f 0(t0) = 0 , f 00(t0) 6= 0 , f 0 6= 0 in K n f t0g
then for � > 0
�
�
�
�
�
�

Z

K
 (t)eif ( t )=� dx � eif ( t 0 )=� (�f 00(t0)=2�i ) � 1=2 X

j<k

� j L j  

�
�
�
�
�
�

� C� k
X

� � 2k

supj ( � ) (x)j:

Here C is bounded whenf stays in a bounded set inC3k+1 (X ) and jt � t0j=jf 0(t)j
has a uniform bound. With,

gt 0 (t) = f (t) � f (t0) �
1
2

f 00(t0)( t � t0)2;

which vanishes up to third order att0, we have

L j  =
X

� � � = j

X

2� � 3�

i � j 2� �

� !� !
(� 1)� f 00(t0) � � (g�

t 0
 )(2 � ) (t0): 2
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Figure 4.2. 2D spatial response to a spatiotemporal delta function at t =
0:015 with a purely elastic Green's function, a viscous Green' s function with
y = 2, � s = 0 :2 and y = 2 :5, � s = 0 :002: 2
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Figure 4.3. Approximation of L via stationary phase theorem : Left, com-
parison between L� and � + � s

c2
s

t� 00where � s
c2

s
= 0 :0001 and � is a mexican hat,

Right, error � s
c2

s
! k L� � � + � s

c2
s

k1 in logarithmic scale. 2

Note that L 1 can be expressed as the sumL 1 = L 1
1 + L 2

1 + L 3
1 , where L j

1
is respectively associate to the pair (� j ; � j ) = (1 ; 0); (2; 1); (3; 2) and is identi�ed to
8
>><

>>:

L 1
1 = � 1

2i f 00(t0) � 1 (2) (t0);

L 2
1 = 1

22 2!i f 00(t0) � 2(gt 0 u)(4) (t0) = 1
8i f 00(t0) � 2

�
g(4)

t 0
(t0) (t0) + 4 g(3)

t 0
(t0) 0(t0)

�
;

L 3
1 = � 1

23 2!3! i f 00(t0) � 3(g2
t 0

 )(6) (t0) = � 1
23 2!3! i f 00(t0) � 3(g2

t 0
)(6) (t0) (t0):
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Now we turn to the proof of formula (4.31). Let us �rst consider the case of
operator L � . We have

~L � � (t) =
Z + 1

0

�
t

� (� )
csp

2�� st
e�

c 2
s ( � � t ) 2

2 � s t d� =
1

t
p

�

� Z + 1

0
 (� )eif ( � )=�

�
;

with, f (� ) = i� (� � t)2, � = 2�� s t
c2

s
and  (� ) = � � (� ). Remark that the phase f

satis�es at � = t , f (t) = 0, f 0(t) = 0, f 00(t) = 2 i� 6= 0. Moreover, we have
8
><

>:

eif ( t )=�
�
� � 1f 00(t)=2i�

� � 1=2
=

p
�

gt (� ) = f (� ) � f (t) � 1
2 f 00(t)( � � t)2 = 0

L 1 (t) = L 1
1 (t) = � 1

2i f 00(t) � 1 
00
(t) = 1

4� (t� )00:

Thus, Theorem 4.2 implies that
�
�
�
�
~L � � (t) �

�
� (t) +

� s

2c2
s

(t� )00
� �

�
�
� �

C
t

� 3=2
X

� � 4

supj(t� )( � ) j:

The case of the operator~L is very similar. Note that

~L� (t) =
Z + 1

0

t
�

� (� )
csp

2�� s �
e�

c 2
s ( � � t ) 2

2 � s � d� =
t

p
�

� Z + 1

0
 (� )eif ( � )=�

�
;

with f (� ) = i� ( � � t )2

� , � = � s
2�c 2

s
and  (� ) = � (� )� � 3

2 . It follows that

f 0(� ) = i�
�

1 �
t2

� 2

�
; f 00(� ) = 2 i�

t2

� 3 ; f 00(t) = 2 i�
1
t
;

and the function gt (� ) equals to

gt (� ) = i�
(� � t)2

�
� i�

(� � t)2

t
= i�

(t � � )3

� t
:

We deduce that
(

(gt  )(4) (t) =
�

g(4)
t (t) (t) + 4 g(3)

t (t) 0(t)
�

= i�
�

24
t 3  (t) � 24

t 2  0(t)
�

(g2
t  )(6) (t) = ( g2

t )(6) (t) (t) = � � 2 6!
t 4  (t);

and then,
8
>>>><

>>>>:

L 1
1 = � 1

i

�
1
2 (f 00(t)) � 1 00(t)

�
= 1

4� t
�

~�p
t

� 00
= 1

4�

� p
t ~� 00(t) �

~� 0( t )p
t

+ 3
4

~�
t 3= 2

�

L 2
1 = 1

8i f 00(t) � 2
�

g(4)
t (s) (s) + 4 g(3)

t (t) 0(t)
�

= 1
4�

�
3

�
~� ( t )p

t

� 0
� 3

~� ( t )
t 3= 2

�
= 1

4�

�
3

~� 0( t )p
t

� 9
2

~� ( t )
t 3= 2

�

L 3
1 = � 1

23 2!3! i f 00(t) � 3(g2
t )(6) (t) (s) = 1

4�

�
15
4
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