S. Kasouit, J. Damon-lacoste, R. Vanderhaghen, P. Roca, and . Cabarrocas, Contribution of plasma generated nanocrystals to the growth of microcrystalline silicon thin films, Journal of Non-Crystalline Solids, vol.338, issue.340, pp.338-34086, 2004.
DOI : 10.1016/j.jnoncrysol.2004.02.027

V. L. Dalal, J. H. Zhu, M. Welsh, and M. Noack, Microcrystalline Si:H solar cells fabricated using ECR plasma deposition, IEE Proceedings ? Circuits, Devices and Systems, 2003.
DOI : 10.1049/ip-cds:20030629

J. Poortmans and V. Arkhipov, Thin Film Solar Cells : Fabrication, Characterization and Applications, 2006.
DOI : 10.1002/0470091282

S. Lee, M. Ko, C. Kim, and N. Hwang, Gas phase nucleation of crystalline silicon and their role in low-temperature deposition of microcrystalline films during hot-wire chemical vapor deposition, Journal of Crystal Growth, vol.310, issue.15, pp.3103659-3662, 2008.
DOI : 10.1016/j.jcrysgro.2008.05.009

E. Iwaniczko, Y. Xu, R. E. Schropp, and A. H. Mahan, Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD, Proceedings of the Second International Conference on Cat-CVD (Hot Wire CVD) Process, pp.212-215, 2003.
DOI : 10.1016/S0040-6090(03)00113-5

S. Klein, F. Finger, R. Carius, and J. Lossen, Improved deposition rates for ??c-Si:H at low substrate temperature, Proceedings of the Third International Conference on Hot-Wire CVD (Cat-CVD) Process, pp.43-46, 2006.
DOI : 10.1016/j.tsf.2005.07.105

Y. Ide, Y. Saito, A. Yamada, and M. Konagai, Microcrystalline silicon thin film solar cells prepared by hot wire cell method, Photovoltaic Energy Conversion Proceedings of 3rd World Conference on, pp.1772-1775, 2003.

J. K. Rath, A. J. Hardeman, C. H. Van-der-werf, P. A. Van-veenendaal, M. Y. Rusche et al., Deposition of HWCVD poly-Si films at a high growth rate, Proceedings of the Second International Conference on Cat-CVD (Hot Wire CVD) Process, pp.67-72, 2003.
DOI : 10.1016/S0040-6090(03)00074-9

G. Bugnon, A. Feltrin, F. Meillaud, J. Bailat, and C. Ballif, Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance, Journal of Applied Physics, vol.105, issue.6, p.64507, 2009.
DOI : 10.1063/1.3095488

L. Guo and M. Kondo, Makoto Fukawa, Kimihiko Saitoh, and Akihisa Matsuda. High rate deposition of microcrystalline silicon using conventional Plasma-Enhanced Chemical Vapor Deposition

B. Rech, T. Roschek, J. Müller, S. Wieder, and H. Wagner, Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 Mhz) plasma excitation frequencies, Solar Energy Materials and Solar Cells, vol.66, pp.1-4267, 2001.

M. Kondo, Microcrystalline materials and cells deposited by RF glow discharge, Solar Energy Materials and Solar Cells, vol.78, issue.1-4, pp.543-566, 2003.
DOI : 10.1016/S0927-0248(02)00451-8

B. Rech, T. Repmann, M. N. Van-den-donker, M. Berginski, T. Kilper et al., Challenges in microcrystalline silicon based solar cell technology, EMSR 2005 -Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics -Symposium F, pp.511-512548, 2006.
DOI : 10.1016/j.tsf.2005.12.161

Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov, P. Roca et al., in microcrystalline silicon pin solar cells by using a ??c-Si:F:H intrinsic layer, RRL) -Rapid Research Letters, pp.154-156, 2008.
DOI : 10.1002/pssr.200802106

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima et al., Thin-film poly-Si solar cells on glass substrate fabricated at low temperature, Applied Physics A: Materials Science & Processing, vol.69, issue.2, pp.179-185, 1999.
DOI : 10.1007/s003390050988

D. P. Dewitt and G. D. Nutter, Theory and Practice of Radiation Thermometry, 1988.
DOI : 10.1002/9780470172575

P. Roca-i-cabarrocas, P. Bulkin, D. Daineka, T. H. Dao, P. Leempoel et al., Advances in the deposition of microcrystalline silicon at high rate by distributed electron cyclotron resonance, Thin Solid Films, vol.516, issue.20, pp.5166834-6838, 2008.
DOI : 10.1016/j.tsf.2007.12.067

URL : https://hal.archives-ouvertes.fr/hal-00915445

T. Hai and D. , Dépôt de couches minces de siliciumàsilicium`siliciumà grande vitesse par plasma MDECR, 2007.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger et al., Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth, Philosophical Magazine A, vol.118, issue.6, 1998.
DOI : 10.1103/PhysRevB.36.3344

. G. Jr, M. F. Jellison, S. M. Chisholm, and . Gorbatkin, Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry, Applied Physics Letters, issue.25, pp.623348-3350, 1993.

P. Roca-i-cabarrocas, S. Hamma, A. Hadjadj, J. Bertomeu, and J. Andreu, New features of the layer???by???layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy, Applied Physics Letters, vol.69, issue.4, pp.529-531, 1996.
DOI : 10.1063/1.117776

G. E. Jr, Data analysis for spectroscopic ellipsometry, Thin Solid Films, vol.234, pp.416-422, 1993.

G. E. Jellison, Use of the biased estimator in the interpretation of spectroscopic ellipsometry data, Applied Optics, vol.30, issue.23, pp.3354-3360, 1991.
DOI : 10.1364/AO.30.003354

A. Fontcuberta-i-morral, P. Roca-i-cabarrocas, and C. Clerc, Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements, Physical Review B, vol.69, issue.12, p.69125307, 2004.
DOI : 10.1103/PhysRevB.69.125307

A. Fontcuberta, P. Morral, . Roca, and . Cabarrocas, Etching and hydrogen diffusion mechanisms during a hydrogen plasma treatment of silicon thin films, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302196, 2002.
DOI : 10.1016/S0022-3093(01)01001-8

H. Touir, P. Roca, and . Cabarrocas, Optical dispersion relations for crystalline and microcrystalline silicon, Physical Review B, vol.65, issue.15, p.155330, 2002.
DOI : 10.1103/PhysRevB.65.155330

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2003.

G. Viera, S. Huet, and L. Boufendi, Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy, Journal of Applied Physics, vol.90, issue.8, pp.904175-4183, 2001.
DOI : 10.1063/1.1398601

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low???pressure chemical vapor deposition, Journal of Applied Physics, vol.78, issue.12, pp.786999-7006, 1995.
DOI : 10.1063/1.360468

Z. Iqbal, A. P. Webb, and S. Vep?ek, Polycrystalline silicon films deposited in a glow discharge at temperatures below 250?????C, Applied Physics Letters, vol.36, issue.2, pp.163-165, 1980.
DOI : 10.1063/1.91416

M. H. Brodsky, M. Cardona, and J. J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Physical Review B, vol.16, issue.8, pp.3556-3571, 1977.
DOI : 10.1103/PhysRevB.16.3556

C. Godet, B. Marchon, and M. P. Schmidt, Characterization of microcrystallinity in hydrogenated silicon thin films, Thin Solid Films, vol.155, issue.2, pp.227-242, 1987.
DOI : 10.1016/0040-6090(87)90068-X

C. Smit, R. A. Van-swaaij, H. Donker, A. M. Petit, W. M. Kessels et al., Determining the material structure of microcrystalline silicon from Raman spectra, Journal of Applied Physics, vol.94, issue.5, pp.943582-3588, 2003.
DOI : 10.1063/1.1596364

R. Tsu, J. Gonzalez-hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, Critical volume fraction of crystallinity for conductivity percolation in phosphorus???doped Si:F:H alloys, Applied Physics Letters, vol.40, issue.6, pp.40534-535, 1982.
DOI : 10.1063/1.93133

E. Bustarret, M. A. Hachicha, and M. Brunel, Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy, Applied Physics Letters, vol.52, issue.20, pp.521675-1677, 1988.
DOI : 10.1063/1.99054

E. Vallat-sauvain, C. Droz, F. Meillaud, J. Bailat, A. Shah et al., Determination of Raman emission cross-section ratio in hydrogenated microcrystalline silicon, Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors, pp.1200-1203, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.128

Z. Iqbal, S. Veprek, A. P. Webb, and P. Capezzuto, Raman scattering from small particle size polycrystalline silicon, Solid State Communications, vol.37, issue.12, pp.993-996, 1981.
DOI : 10.1016/0038-1098(81)91202-3

B. Kalache, A. I. Kosarev, R. Vanderhaghen, P. Roca, and . Cabarrocas, Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties, Journal of Applied Physics, vol.93, issue.2, pp.1262-1273, 2003.
DOI : 10.1063/1.1524707

B. Pivac, K. Furi´cfuri´c, D. Desnica, A. Borghesi, and A. Sassella, Raman line profile in polycrystalline silicon, Journal of Applied Physics, vol.86, issue.8, pp.4383-4386, 1999.
DOI : 10.1063/1.371374

I. H. Campbell and P. M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors, Solid State Communications, vol.58, issue.10, pp.58739-741, 1986.
DOI : 10.1016/0038-1098(86)90513-2

H. Richter, Z. P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Communications, vol.39, issue.5, pp.625-629, 1981.
DOI : 10.1016/0038-1098(81)90337-9

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang et al., Raman shifts in Si nanocrystals, Applied Physics Letters, vol.69, issue.2, pp.200-202, 1996.
DOI : 10.1063/1.117371

V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn et al., Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, Journal of Applied Physics, vol.86, issue.4, pp.1921-1924, 1999.
DOI : 10.1063/1.370988

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, Electron cyclotron resonance plasma enhanced chemical vapour deposition and optical properties of SiOx thin films, Journal of Non-Crystalline Solids, vol.226, issue.1-2, pp.58-66, 1998.
DOI : 10.1016/S0022-3093(98)00362-7

URL : https://hal.archives-ouvertes.fr/hal-00915367

A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon, Physical Review B, vol.45, issue.23, pp.4513367-13377, 1992.
DOI : 10.1103/PhysRevB.45.13367

A. H. Smets, W. M. Kessels, and M. C. Van-de-sanden, Vacancies and voids in hydrogenated amorphous silicon, Applied Physics Letters, vol.82, issue.10, pp.1547-1549, 2003.
DOI : 10.1063/1.1559657

U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution, Journal of Applied Physics, vol.80, issue.9, pp.4971-4975, 1996.
DOI : 10.1063/1.363541

A. H. Smets, T. Matsui, and M. Kondo, Infrared analysis of the bulk silicon-hydrogen bonds as an optimization tool for high-rate deposition of microcrystalline silicon solar cells, Applied Physics Letters, vol.92, issue.3, p.92033506, 2008.
DOI : 10.1063/1.2837536

T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius et al., Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: Influence on material properties and solar cell performance, Journal of Applied Physics, vol.105, issue.7, p.74509, 2009.
DOI : 10.1063/1.3104781

F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur et al., Stability of microcrystalline silicon for thin film solar cell applications, IEE Proc. ? Circuits Devices Syst, pp.300-308, 2003.
DOI : 10.1049/ip-cds:20030636

K. Brühne, M. B. Schubert, C. Köhler, and J. H. Werner, Nanocrystalline silicon from hot-wire deposition ? a photovoltaic material? Thin Solid Films, pp.163-168, 2001.

V. A. Burrows, Y. J. Chabal, G. S. Higashi, K. Raghavachari, and S. B. Christman, Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology, Applied Physics Letters, vol.53, issue.11, pp.53998-1000, 1988.
DOI : 10.1063/1.100053

E. Vallat-sauvain, U. Kroll, J. Meier, A. Shah, and J. Pohl, Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution, Journal of Applied Physics, vol.87, issue.6, pp.3137-3142, 2000.
DOI : 10.1063/1.372311

S. J. Soo-young-yoon, K. H. Park, J. Kim, C. O. Jang, and . Kim, Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase, Journal of Applied Physics, vol.87, issue.1, pp.609-611, 2000.
DOI : 10.1063/1.371906

R. B. Bergmann and J. H. Werner, The future of crystalline silicon films on foreign substrates, Thin Solid Films, vol.403, issue.404, pp.403-404162, 2002.
DOI : 10.1016/S0040-6090(01)01556-5

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, Correlation between Microstructure and Photovoltaic Performance of Polycrystalline Silicon Thin Film Solar Cells, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 1, pp.20-27, 2002.
DOI : 10.1143/JJAP.41.20

T. Kitagawa, M. Kondo, and A. Matsuda, In situ observation of low temperature growth of crystalline silicon using reflection high-energy electron diffraction, Journal of Non-Crystalline Solids, vol.266, issue.269, pp.266-26964, 2000.
DOI : 10.1016/S0022-3093(99)00730-9

J. H. Werner, R. Dassow, T. J. Rinke, J. R. Kohler, and R. B. Bergmann, From polycrystalline to single crystalline silicon on glass, Thin Solid Films, vol.383, issue.1-2, pp.95-100, 2001.
DOI : 10.1016/S0040-6090(00)01788-0

M. Fonrodona, D. Soler, J. M. Asensi, J. Bertomeu, and J. Andreu, Studies on grain boundaries in nanocrystalline silicon grown by hot-wire CVD, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-30214, 2002.
DOI : 10.1016/S0022-3093(01)00943-7

M. Goerlitzer, P. Torres, N. Beck, N. Wyrsch, H. Keppner et al., Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique, Journal of Non-Crystalline Solids, vol.227, issue.230, pp.227-230996, 1998.
DOI : 10.1016/S0022-3093(98)00257-9

B. D. Cullity, Elements of X-Ray Diffraction, pp.96-102, 1956.

P. Harold, L. E. Klug, and . Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials Crystallite-size determination from line broadening, page 491 to 538 of the second printing of, 1954.

R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, 1989.

R. A. Burdo and G. H. Morrison, Table of Atomic and Molecular Lines for Spark Source Mass Spectrometry of Complex Sample-Graphite Mixes, Materials Science Center, 1971.

M. Goerlitzer, P. Torres, C. Droz, and A. Shah, Extension of the a-Si:H electronic transport model to ??c-Si:H: use of the ??0??0 product to correlate electronic transport properties and solar cell performances, Solar Energy Materials and Solar Cells, vol.60, issue.2, pp.195-200, 2000.
DOI : 10.1016/S0927-0248(99)00085-9

S. Okur, M. Günes, O. Göktas, F. Finger, and R. Carius, Electronic transport properties of microcrystalline silicon thin films prepared by VHF-PECVD, Journal of Materials Science: Materials in Electronics, vol.15, issue.3, pp.187-191, 2004.
DOI : 10.1023/B:JMSE.0000011360.00838.c9

P. St-'ahel, S. Hamma, P. Sládek, P. Roca, and . Cabarrocas, Metastability studies in silicon thin films: from short range ordered to medium and long range ordered materials, Journal of Non-Crystalline Solids, pp.227-230276, 1998.

C. Droz, M. Goerlitzer, N. Wyrsch, and A. Shah, Electronic transport in hydrogenated microcrystalline silicon: similarities with amorphous silicon, Journal of Non-Crystalline Solids, vol.266, issue.269, pp.266-269319, 2000.
DOI : 10.1016/S0022-3093(99)00718-8

J. P. Kleider, C. Longeaud, R. Brüggemann, and F. Houzé, Electronic and topographic properties of amorphous and microcrystalline silicon thin films, Thin Solid Films, vol.383, issue.1-2, pp.57-60, 2001.
DOI : 10.1016/S0040-6090(00)01614-X

M. Brinza, J. Willekens, M. L. Benkhedir, E. V. Emelianova, and G. J. Adriaenssens, Photoconductivity methods in materials research, Journal of Materials Science: Materials in Electronics, vol.76, issue.11-12, pp.703-713, 2005.
DOI : 10.1007/s10854-005-4972-7

M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch et al., Ambipolar diffusion length and photoconductivity measurements on ??????midgap?????? hydrogenated microcrystalline silicon, Journal of Applied Physics, vol.80, issue.9, pp.5111-5115, 1996.
DOI : 10.1063/1.363491

D. Ritter, E. Zeldov, and K. Weiser, Steady???state photocarrier grating technique for diffusion length measurement in photoconductive insulators, Applied Physics Letters, vol.49, issue.13, pp.791-793, 1986.
DOI : 10.1063/1.97548

S. Nakayama, ECR (electron cyclotron resonance) plasma for thin film technology, Pure and Applied Chemistry, vol.62, issue.9, 1990.
DOI : 10.1351/pac199062091751

S. M. Gorbatkin and L. A. Berry, Contamination by sputtering in mirror field electron cyclotron resonance microwave plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, issue.5, pp.3104-3113, 1992.
DOI : 10.1116/1.577872

S. Somiya, H. Toyoda, Y. Hotta, and H. Sugai, Suppression of Oxygen Impurity Incorporation into Silicon Films Prepared from Surface-Wave Excited H 2 /SiH 4 Plasma, Japanese Journal of Applied Physics, issue.11A, pp.437696-7700, 2004.

M. Pichot, A. Durandet, J. Pelletier, Y. Arnal, and L. Vallier, Microwave multipolar plasmas excited by distributed electron cyclotron resonance: Concept and performance, Review of Scientific Instruments, vol.59, issue.7, pp.1072-1075, 1988.
DOI : 10.1063/1.1139728

URL : https://hal.archives-ouvertes.fr/hal-00282399

E. Dufour-gergam, F. Meyer, F. Delmotte, M. C. Hugon, B. Agius et al., Electrical properties of silicon nitride films grown on a SiGe layer by distributed electron cyclotron resonance plasma-enhanced chemical vapor deposition, Thin Solid Films, vol.294, issue.1-2, pp.214-216, 1997.
DOI : 10.1016/S0040-6090(96)09264-4

S. Béchu, O. Maulat, Y. Arnal, D. Vempaire, A. Lacoste et al., Multi-dipolar plasmas for plasma-based ion implantation and plasma-based ion implantation and deposition, Surface and Coatings Technology, vol.186, issue.1-2, pp.170-176, 2004.
DOI : 10.1016/j.surfcoat.2004.04.036

P. Bulkin, R. Brenot, B. Drévillon, and R. Vanderhaghen, Structure and transport properties of integrated distributed electron cyclotron resonance grown micro-crystalline silicon, Journal of Non-Crystalline Solids, vol.231, issue.3, pp.268-272, 1998.
DOI : 10.1016/S0022-3093(98)00451-7

URL : https://hal.archives-ouvertes.fr/hal-00915368

P. Bulkin, N. Bertrand, and B. Drévillon, Deposition of SiO2 in integrated distributed electron cyclotron resonance microwave reactor, European Materials Research Society 1996 Spring Meeting, Symposium B: Thin Film Materials for Large Area Electronics, pp.66-68, 1997.
DOI : 10.1016/S0040-6090(96)09380-7

URL : https://hal.archives-ouvertes.fr/hal-00915373

J. Asmussen and M. Dahimene, The experimental test of a microwave ion beam source in oxygen, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.5, issue.1, pp.328-331, 1987.
DOI : 10.1116/1.583895

M. Sadowski, Plasma confinement with spherical multipole magnetic field, Physics Letters A, vol.25, issue.9, pp.695-696, 1967.
DOI : 10.1016/0375-9601(67)90480-X

R. Limpaecher and K. R. Mackenzie, Magnetic Multipole Containment of Large Uniform Collisionless Quiescent Plasmas, Review of Scientific Instruments, vol.44, issue.6, pp.726-731, 1973.
DOI : 10.1063/1.1686231

M. Moisan and J. Pelletier, Microwave Excited Plasmas, 1992.

J. Perrin, Physico-Chimie d'un Plasma Multipolaire de Silane et Processus de Déposition du Silicium Amorphe Hydrogéné, 1983.

J. Pelletier and T. Lagarde, Chemical vapor deposition in high-density low-pressure plasmas: reactor scale-up and performance, Thin Solid Films, vol.241, issue.1-2, pp.240-246, 1994.
DOI : 10.1016/0040-6090(94)90433-2

T. Lagarde and J. Pelletier, Procédé de production de plasmasélémentairesplasmasélémentaires en vue de créer un plasma uniforme pour une surface d'utilisation et dispositif de production d'un tel plasma

A. Lacoste, S. Béchu, J. Pelletier, and Y. Arnal, Dispositif de confinement de plasma, 28 mars, 2002.

T. Vinh and T. , Caractérisation et modélisation des plasmas micro-ond multi-dipolaires ? Applicationà Application`Applicationà la pulvérisation assistée par plasma multi-dipolaire, 2006.

G. J. Hagelaar, K. Makasheva, L. Garrigues, and J. Boeuf, Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance, Journal of Physics D: Applied Physics, vol.42, issue.19, p.42, 2009.
DOI : 10.1088/0022-3727/42/19/194019

. A. Jr, C. Ivanov, M. Rouillé, Y. Bacal, S. Arnal et al., H ? ion production in electron cyclotron resonance driven multicusp volume source, Review of Scientific Instruments, vol.75, issue.5, pp.1750-1753, 2004.

T. Lagarde, Y. Arnal, J. Lacoste, and . Pelletier, Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field, Plasma Sources Science and Technology, vol.10, issue.2, 2001.
DOI : 10.1088/0963-0252/10/2/308

A. Lacoste, . Lagarde, Y. Béchu, J. Arnal, and . Pelletier, Multi-dipolar plasmas for uniform processing: physics, design and performance, Plasma Sources Science and Technology, vol.11, issue.4, pp.407-412, 2002.
DOI : 10.1088/0963-0252/11/4/307

L. Latrasse, A. Lacoste, J. C. Sánchez-lópez, A. B-`-es, M. Rayar et al., High deposition rates of uniform films in tetramethylsilane-based plasmas generated by elementary microwave sources in matrix configuration, Surface and Coatings Technology, vol.203, issue.16, pp.2032343-2349, 2009.
DOI : 10.1016/j.surfcoat.2009.02.121

URL : https://hal.archives-ouvertes.fr/in2p3-00385208

L. Latrasse, . Lacoste, J. Sirou, and . Pelletier, High density distributed microwave plasma sources in a matrix configuration: concept, design and performance, Plasma Sources Science and Technology, vol.16, issue.1, 2007.
DOI : 10.1088/0963-0252/16/1/002

URL : https://hal.archives-ouvertes.fr/in2p3-00167270

P. Bulkin, A. Hofrichter, R. Brenot, and B. Drévillon, Deposition of microcrystalline silicon in an integrated distributed electron cyclotron resonance PECVD reactor, Thin Solid Films, vol.337, issue.1-2, pp.37-40, 1999.
DOI : 10.1016/S0040-6090(98)01376-5

URL : https://hal.archives-ouvertes.fr/hal-00915359

P. Roca-i-cabarrocas, P. Bulkin, D. Daineka, T. H. Dao, P. Leempoel et al., Advances in the deposition of microcrystalline silicon at high rate by distributed electron cyclotron resonance, Thin Solid Films, vol.516, issue.20, pp.5166834-6838, 2008.
DOI : 10.1016/j.tsf.2007.12.067

URL : https://hal.archives-ouvertes.fr/hal-00915445

M. Calafat, D. Escaich, R. Clergereaux, P. Raynaud, and Y. Segui, Particle formation in acetylene very low-pressure high density magnetized plasmas, Applied Physics Letters, vol.91, issue.18, p.91181502, 2007.
DOI : 10.1063/1.2804007

J. Perrin, O. Leroy, and M. C. Bordage, Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry, Contributions to Plasma Physics, vol.184, issue.1, 1996.
DOI : 10.1002/ctpp.2150360102

P. Bulkin, N. Bertrand, and B. Drévillon, Deposition of SiO2 in integrated distributed electron cyclotron resonance microwave reactor, Thin Solid Films, vol.296, issue.1-2, pp.66-68, 1996.
DOI : 10.1016/S0040-6090(96)09380-7

URL : https://hal.archives-ouvertes.fr/hal-00915373

R. Botha, Deposition of thin films in a high-density low-pressure plasma system: the influence of the SiH 4 injection on the deposition kinetics and material properties of SiO 2, 2008.
URL : https://hal.archives-ouvertes.fr/pastel-00004404

I. Bicher-haj, The deposition of multilayer and gradient index thin films by MDECR-PECVD, 2007.

A. Hofrichter, Dépôt plasma de couches minces d'alliages de siliciumàsilicium`siliciumà fonctionnalités optiques et mécaniques sur polycarbonate, 2001.

T. Hai and D. , Dépôt de couches minces de siliciumàsilicium`siliciumà grande vitesse par plasma MDECR, 2007.

D. Daineka, P. Bulkin, G. Girard, J. Bourée, and B. Drévillon, High density plasma enhanced chemical vapor deposition of optical thin films, The European Physical Journal Applied Physics, vol.26, issue.1, 2004.
DOI : 10.1051/epjap:2004013

URL : https://hal.archives-ouvertes.fr/hal-00914155

T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius et al., Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: Influence on material properties and solar cell performance, Journal of Applied Physics, vol.105, issue.7, p.74509, 2009.
DOI : 10.1063/1.3104781

B. Rech, T. Repmann, M. N. Van-den-donker, M. Berginski, T. Kilper et al., Challenges in microcrystalline silicon based solar cell technology, EMSR 2005 -Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics -Symposium F, pp.511-512548, 2006.
DOI : 10.1016/j.tsf.2005.12.161

S. Kumar, B. Drevillon, and C. Godet, spectroscopic ellipsometry study of the growth of microcrystalline silicon, Journal of Applied Physics, vol.60, issue.4, pp.1542-1544, 1986.
DOI : 10.1063/1.337289

J. Meier, R. Flückiger, H. Keppner, and A. Shah, solar cell???Crystalline or amorphous cell behavior?, Applied Physics Letters, vol.65, issue.7, pp.860-862, 1994.
DOI : 10.1063/1.112183

J. P. Kleider, C. Longeaud, R. Brüggemann, and F. Houzé, Electronic and topographic properties of amorphous and microcrystalline silicon thin films, Thin Solid Films, vol.383, issue.1-2, pp.57-60, 2001.
DOI : 10.1016/S0040-6090(00)01614-X

S. Ray, S. Mukhopadhyay, T. Jana, and R. Carius, Transition from amorphous to microcrystalline Si:H: effects of substrate temperature and hydrogen dilution, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302761, 2002.
DOI : 10.1016/S0022-3093(01)01122-X

P. St-'ahel, S. Hamma, P. Sládek, P. Roca, and . Cabarrocas, Metastability studies in silicon thin films: from short range ordered to medium and long range ordered materials, Journal of Non-Crystalline Solids, pp.227-230276, 1998.

F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur et al., Stability of microcrystalline silicon for thin film solar cell applications, IEE Proc. ? Circuits Devices Syst, pp.300-308, 2003.
DOI : 10.1049/ip-cds:20030636

E. A. Hamers, A. Fontcuberta-i-morral, C. Niikura, R. Brenot, P. Roca et al., Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films, Journal of Applied Physics, vol.88, issue.6, pp.3674-3688, 2000.
DOI : 10.1063/1.1289523

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF (70 MHz) GD technique, Journal of Non-Crystalline Solids, vol.227, issue.230, pp.227-23068, 1998.
DOI : 10.1016/S0022-3093(98)00329-9

P. Roca-i-cabarrocas, P. Bulkin, D. Daineka, T. H. Dao, P. Leempoel et al., Advances in the deposition of microcrystalline silicon at high rate by distributed electron cyclotron resonance, Thin Solid Films, vol.516, issue.20, pp.5166834-6838, 2008.
DOI : 10.1016/j.tsf.2007.12.067

URL : https://hal.archives-ouvertes.fr/hal-00915445

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger et al., Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth, Philosophical Magazine A, vol.118, issue.6, 1998.
DOI : 10.1103/PhysRevB.36.3344

J. Meier, S. Dubail, J. Cuperus, U. Kroll, R. Platz et al., Recent progress in micromorph solar cells, Journal of Non-Crystalline Solids, vol.227, issue.230, pp.227-2301250, 1998.
DOI : 10.1016/S0022-3093(98)00352-4

N. Beck, J. Meier, J. Fric, Z. Remes, A. Poruba et al., Enhanced optical absorption in microcrystalline silicon Amorphous Semiconductors-Science and Technology, Journal of Non-Crystalline Solids, issue.2, pp.198-200903, 1996.

R. Brenot, R. Vanderhaghen, B. Drévillon, P. Roca, and . Cabarrocas, Real-time measurement of the evolution of carrier mobility in thin-film semiconductors during growth, Applied Physics Letters, vol.74, issue.1, pp.58-60, 1999.
DOI : 10.1063/1.123132

B. Rezek, J. Stuchlík, A. Fejfar, and J. Ko?ka, Local characterization of electronic transport in microcrystalline silicon thin films with submicron resolution, Applied Physics Letters, vol.74, issue.10, pp.741475-1477, 1999.
DOI : 10.1063/1.123585

J. Kocka, A. Fejfar, H. Stuchlíková, J. Stuchlík, P. Fojtík et al., Basic features of transport in microcrystalline silicon, Critical review of amorphous and microcrystalline silicon materials and solar cells, pp.493-512, 2003.
DOI : 10.1016/S0927-0248(02)00449-X

V. Svrcek, A. Fejfar, P. Fojtik, T. Mates, A. Poruba et al., Importance of the transport isotropy in µc-Si:H thin films for solar cells deposited at low substrate temperatures, Journal of Non-Crystalline Solids, pp.299-302395, 2002.

A. V. Shah, J. Meier, E. Vallat-sauvain, N. Wyrsch, U. Kroll et al., Material and solar cell research in microcrystalline silicon, Critical review of amorphous and microcrystalline silicon materials and solar cells, pp.469-491, 2003.
DOI : 10.1016/S0927-0248(02)00448-8

Y. W. John and . Seto, The electrical properties of polycrystalline silicon films, Journal of Applied Physics, vol.46, issue.12, pp.5247-5254, 1975.

C. Droz, M. Goerlitzer, N. Wyrsch, and A. Shah, Electronic transport in hydrogenated microcrystalline silicon: similarities with amorphous silicon, Journal of Non-Crystalline Solids, vol.266, issue.269, pp.266-269319, 2000.
DOI : 10.1016/S0022-3093(99)00718-8

M. Goerlitzer, P. Torres, C. Droz, and A. Shah, Extension of the a-Si:H electronic transport model to ??c-Si:H: use of the ??0??0 product to correlate electronic transport properties and solar cell performances, Solar Energy Materials and Solar Cells, vol.60, issue.2, pp.195-200, 2000.
DOI : 10.1016/S0927-0248(99)00085-9

J. Hubin, A. V. Shah, E. Sauvain, and P. Pipoz, ???Si:H, Journal of Applied Physics, vol.78, issue.10, pp.786050-6059, 1995.
DOI : 10.1063/1.360545

R. Brenot, R. Vanderhaghen, B. Drévillon, P. Roca-i-cabarrocas, R. Rogel et al., Transport mechanisms in hydrogenated microcrystalline silicon, Thin Solid Films, vol.383, issue.1-2, pp.53-56, 2001.
DOI : 10.1016/S0040-6090(00)01791-0

M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch et al., Ambipolar diffusion length and photoconductivity measurements on ??????midgap?????? hydrogenated microcrystalline silicon, Journal of Applied Physics, vol.80, issue.9, pp.5111-5115, 1996.
DOI : 10.1063/1.363491

M. Goerlitzer, P. Torres, N. Beck, N. Wyrsch, H. Keppner et al., Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique, Journal of Non-Crystalline Solids, vol.227, issue.230, pp.227-230996, 1998.
DOI : 10.1016/S0022-3093(98)00257-9

J. Robertson, Thermodynamic model of nucleation and growth of plasma deposited microcrystalline silicon, Journal of Applied Physics, vol.93, issue.1, pp.731-735, 2003.
DOI : 10.1063/1.1529090

S. Veprek, Z. Iqbal, and F. Sarott, A thermodynamic criterion of the crystalline-to-amorphous transition in silicon, Philosophical Magazine Part B, vol.13, issue.1, pp.137-145, 1982.
DOI : 10.1080/13642818208246392

R. A. Street, -Si:H, Physical Review B, vol.43, issue.3, pp.2454-2457, 1991.
DOI : 10.1103/PhysRevB.43.2454

URL : https://hal.archives-ouvertes.fr/hal-01408938

A. Matsuda, Growth mechanism of microcrystalline silicon obtained from reactive plasmas, Thin Solid Films, vol.337, issue.1-2, pp.1-6, 1999.
DOI : 10.1016/S0040-6090(98)01165-1

C. C. Tsai, G. B. Anderson, R. Thompson, and B. Wacker, Control of silicon network structure in plasma deposition, Journal of Non-Crystalline Solids, vol.114, pp.151-153, 1989.
DOI : 10.1016/0022-3093(89)90096-3

T. Akasaka and I. Shimizu, real time studies of the formation of polycrystalline silicon films on glass grown by a layer???by???layer technique, Applied Physics Letters, vol.66, issue.25, pp.663441-3443, 1995.
DOI : 10.1063/1.113381

C. Niikura, N. Itagaki, and A. Matsuda, High rate growth of high-quality microcrystalline silicon films from plasma by interconnected multi-hollow cathode, Proceedings of the Fifth Asian-European International Conference on Plasma Surface Engineering -AEPSE 2005, Proceedings of the Fifth Asian-European International Conference on Plasma Surface Engineering, pp.9-115463, 2007.
DOI : 10.1016/j.surfcoat.2006.07.009

S. Hamma, P. Roca, and . Cabarrocas, correlation between the optical and electrical properties of thin intrinsic and n-type microcrystalline silicon films, Journal of Applied Physics, vol.81, issue.11, pp.817282-7288, 1997.
DOI : 10.1063/1.365325

A. Fontcuberta, P. Morral, . Roca, and . Cabarrocas, Etching and hydrogen diffusion mechanisms during a hydrogen plasma treatment of silicon thin films, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302196, 2002.
DOI : 10.1016/S0022-3093(01)01001-8

A. Fontcuberta, P. Morral, . Roca, and . Cabarrocas, Role of hydrogen diffusion on the growth of polymorphous and microcrystalline silicon thin films, The European Physical Journal Applied Physics, vol.35, issue.3, pp.165-172, 2006.
DOI : 10.1051/epjap:2006094

K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda et al., Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon, Applied Physics Letters, vol.71, issue.23, pp.713403-3405, 1997.
DOI : 10.1063/1.120324

A. Asano, Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films, Applied Physics Letters, vol.56, issue.6, pp.533-535, 1990.
DOI : 10.1063/1.102736

A. A. Howling, B. Strahm, and C. Hollenstein, Non-intrusive plasma diagnostics for the deposition of large area thin film silicon, Proceedings on the Sixth Symposium on Thin Films for Large Area Electronics, pp.6218-6224, 2009.
DOI : 10.1016/j.tsf.2009.02.053

P. Bulkin, A. Hofrichter, R. Brenot, and B. Drévillon, Deposition of microcrystalline silicon in an integrated distributed electron cyclotron resonance PECVD reactor, Thin Solid Films, vol.337, issue.1-2, pp.37-40, 1999.
DOI : 10.1016/S0040-6090(98)01376-5

URL : https://hal.archives-ouvertes.fr/hal-00915359

M. N. Van-den-donker, B. Rech, F. Finger, W. M. Kessels, and M. C. Van-de-sanden, Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow, Applied Physics Letters, vol.87, issue.26, p.263503, 2005.
DOI : 10.1063/1.2152115

H. Shirai, D. Das, I. Hanna, and . Shimizu, A novel preparation technique for preparing hydrogenated amorphous silicon with a more rigid and stable Si network, Applied Physics Letters, vol.59, issue.9, pp.1096-1098, 1991.
DOI : 10.1063/1.106355

S. Hamma, P. Roca, and . Cabarrocas, Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications, Solar Energy Materials and Solar Cells, vol.69, issue.3, pp.217-239, 2001.
DOI : 10.1016/S0927-0248(00)00391-3

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami et al., Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry, Applied Surface Science, vol.175, issue.176, pp.175-176543, 2001.
DOI : 10.1016/S0169-4332(01)00145-3

P. Roca-i-cabarrocas, J. B. Chévrier, J. Huc, A. Lloret, J. Y. Parey et al., A fully automated hot???wall multiplasma???monochamber reactor for thin film deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.4, pp.2331-2341, 1991.
DOI : 10.1116/1.577318

A. H. Smets, T. Matsui, and M. Kondo, Infrared analysis of the bulk silicon-hydrogen bonds as an optimization tool for high-rate deposition of microcrystalline silicon solar cells, Applied Physics Letters, vol.92, issue.3, p.92033506, 2008.
DOI : 10.1063/1.2837536

Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov, P. Roca et al., in microcrystalline silicon pin solar cells by using a ??c-Si:F:H intrinsic layer, RRL) -Rapid Research Letters, pp.154-156, 2008.
DOI : 10.1002/pssr.200802106

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng et al., Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers, Applied Physics Letters, vol.87, issue.7, p.73503, 2005.
DOI : 10.1063/1.2011771

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben et al., Intrinsic microcrystalline silicon: A new material for photovoltaics, Solar Energy Materials and Solar Cells, vol.62, issue.1-2, pp.97-108, 2000.
DOI : 10.1016/S0927-0248(99)00140-3

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech et al., Thickness dependence of microcrystalline silicon solar cell properties, Solar Energy Materials and Solar Cells, vol.66, issue.1-4, pp.1-4345, 2001.
DOI : 10.1016/S0927-0248(00)00193-8

Y. Nasuno, M. Kondo, A. Matsuda, H. Fukuhori, and Y. Kanemitsu, Formation of interface defects by enhanced impurity diffusion in microcrystalline silicon solar cells, Applied Physics Letters, vol.81, issue.17, pp.3155-3158, 2002.
DOI : 10.1063/1.1514396

S. Guha and J. Yang, Microcrystalline silicon solar cells National Renewable Energy Laboratory (NREL) and United Solar Ovonic Corporation, 2005.

A. Gross, O. Vetterl, A. Lambertz, F. Finger, H. Wagner et al., N-side illuminated microcrystalline silicon solar cells, Applied Physics Letters, vol.79, issue.17, pp.792841-2843, 2001.
DOI : 10.1063/1.1395518

URL : http://juser.fz-juelich.de/record/40755/files/5520.pdf

S. Okur, M. Günes, O. Göktas, F. Finger, and R. Carius, Electronic transport properties of microcrystalline silicon thin films prepared by VHF-PECVD, Journal of Materials Science: Materials in Electronics, vol.15, issue.3, pp.187-191, 2004.
DOI : 10.1023/B:JMSE.0000011360.00838.c9

U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution, Journal of Applied Physics, vol.80, issue.9, pp.4971-4975, 1996.
DOI : 10.1063/1.363541

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima et al., Thin-film poly-Si solar cells on glass substrate fabricated at low temperature, Applied Physics A: Materials Science & Processing, vol.69, issue.2, pp.179-185, 1999.
DOI : 10.1007/s003390050988

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, Correlation between Microstructure and Photovoltaic Performance of Polycrystalline Silicon Thin Film Solar Cells, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 1, pp.20-27, 2002.
DOI : 10.1143/JJAP.41.20

S. Klein, F. Finger, R. Carius, and J. Lossen, Improved deposition rates for ??c-Si:H at low substrate temperature, Proceedings of the Third International Conference on Hot-Wire CVD (Cat-CVD) Process, pp.43-46, 2006.
DOI : 10.1016/j.tsf.2005.07.105

M. Nath, P. Roca-i-cabarrocas, E. V. Johnson, A. Abramov, and P. Chatterjee, The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity, Proceedings on Advanced Materials and Concepts for Photovoltaics EMRS 2007 Conference, pp.6974-6978, 2008.
DOI : 10.1016/j.tsf.2007.12.052

E. V. Johnson, M. Nath, P. Roca-i-cabarrocas, A. Abramov, and P. Chatterjee, Why does the open-circuit voltage in a micro-crystalline silicon PIN solar cell decrease with increasing crystalline volume fraction?, Amorphous and Nanocrystalline Semiconductors, 22nd International Conference on Amorphous and Nanocrystalline Semiconductors -Science and Technology, pp.19-252455, 2008.
DOI : 10.1016/j.jnoncrysol.2007.09.021

M. N. Van-den-donker, S. Klein, B. Rech, F. Finger, W. M. Kessels et al., Microcrystalline silicon solar cells with an open-circuit voltage above 600 mV, Applied Physics Letters, issue.18, p.90183504, 2007.

E. Iwaniczko, Y. Xu, R. E. Schropp, and A. H. Mahan, Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD, Proceedings of the Second International Conference on Cat-CVD (Hot Wire CVD) Process, pp.212-215, 2003.
DOI : 10.1016/S0040-6090(03)00113-5

O. Vetterl, A. Groß, T. Jana, S. Ray, A. Lambertz et al., Changes in electric and optical properties of intrinsic microcrystalline silicon upon variation of the structural composition, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302772, 2002.
DOI : 10.1016/S0022-3093(01)00981-4

R. B. Bergmann and J. H. Werner, The future of crystalline silicon films on foreign substrates, Thin Solid Films, vol.403, issue.404, pp.403-404162, 2002.
DOI : 10.1016/S0040-6090(01)01556-5

Y. Nasuno, M. Kondo, and A. Matsuda, Microcrystalline silicon thin-film solar cells prepared at low temperature using PECVD, Solar Energy Materials and Solar Cells, vol.74, pp.1-4497, 2002.

A. Abramov, P. Roca, and . Cabarrocas, Addition of SiF 4 to standard SiH 4 +H 2 plasma: an effective way to reduce oxygen contamination in µc-Si:H films, 2010.

. G. Jr, M. F. Jellison, S. M. Chisholm, and . Gorbatkin, Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry, Applied Physics Letters, issue.25, pp.623348-3350, 1993.

E. A. Hamers, J. Bezemer, and W. F. Van-der-weg, Positive ions as growth precursors in plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon, Applied Physics Letters, vol.75, issue.5, pp.609-611, 1999.
DOI : 10.1063/1.124456

J. K. Rath, Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications, Solar Energy Materials and Solar Cells, vol.76, issue.4, pp.431-487, 2003.
DOI : 10.1016/S0927-0248(02)00258-1

B. Kalache, A. I. Kosarev, R. Vanderhaghen, P. Roca, and . Cabarrocas, Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties, Journal of Applied Physics, vol.93, issue.2, pp.1262-1273, 2003.
DOI : 10.1063/1.1524707

H. Jia, J. K. Saha, N. Ohse, and H. Shirai, for high rate growth of highly crystallized microcrystalline silicon films, The European Physical Journal Applied Physics, vol.33, issue.3, pp.153-159, 2006.
DOI : 10.1051/epjap:2006018

T. Hai and D. , Dépôt de couches minces de siliciumàsilicium`siliciumà grande vitesse par plasma MDECR, 2007.

D. L. Williamson, Microstructure of amorphous and microcrystalline Si and SiGe alloys using X-rays and neutrons, Solar Energy Materials and Solar Cells, vol.78, issue.1-4, pp.41-84, 2003.
DOI : 10.1016/S0927-0248(02)00433-6

M. Birkholz, E. Conrad, and W. Fuhs, Crystallinity of Thin Silicon Films Deposited at Low Temperatures: Combined Effect of Biasing and Structuring the Substrate, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 6A, pp.4176-4180, 2001.
DOI : 10.1143/JJAP.40.4176

K. Sanjay, L. Ram, and . Kroely, Pavel Bulkin, and Pere Roca i Cabarrocas. Effect of ion energy on structural and electrical properties of intrinsic microcrystalline silicon layer deposited in matrix distributed electron cyclotron resonance plasma reactor, 2010.

J. Kocka, H. Stuchlíková, J. Stuchlík, B. Rezek, T. Mates et al., Model of transport in microcrystalline silicon, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302355, 2002.
DOI : 10.1016/S0022-3093(02)00931-6

M. Konuma, H. Curtins, F. Sarott, and S. Veprek, Dependence of electrical conductivity of nanocrystalline silicon on structural properties and the effect of substrate bias, Philosophical Magazine Part B, vol.46, issue.3, pp.377-389, 1987.
DOI : 10.1007/BF00566860

P. Bulkin, R. Brenot, B. Drévillon, and R. Vanderhaghen, Structure and transport properties of integrated distributed electron cyclotron resonance grown micro-crystalline silicon, Journal of Non-Crystalline Solids, vol.231, issue.3, pp.268-272, 1998.
DOI : 10.1016/S0022-3093(98)00451-7

URL : https://hal.archives-ouvertes.fr/hal-00915368

S. Kasouit, Mécanismes de croissance et transport dans le silicium microcristallin fluoré. Application aux transistors en couches minces et transfert technologique, 2003.

T. Söderström, F. Haug, V. Terrazzoni-daudrix, X. Niquille, M. Python et al., N/I buffer layer for substrate microcrystalline thin film silicon solar cell, Journal of Applied Physics, vol.104, issue.10, p.104104505, 2008.
DOI : 10.1063/1.3021053

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fa¨yfa¨y et al., Microcrystalline silicon and the impact on micromorph tandem solar cells, Solar Energy Materials and Solar Cells, vol.74, issue.1-4, pp.1-4457, 2002.
DOI : 10.1016/S0927-0248(02)00111-3

Y. Nasuno, M. Kondo, and A. Matsuda, Passivation of oxygen-related donors in microcrystalline silicon by low temperature deposition, Applied Physics Letters, vol.78, issue.16, pp.2330-2332, 2001.
DOI : 10.1063/1.1364657

Y. Sun, T. Miyasato, and J. K. Wigmore, Possible origin for (110)-oriented growth of grains in hydrogenated microcrystalline silicon films, Applied Physics Letters, vol.70, issue.4, pp.508-510, 1997.
DOI : 10.1063/1.118195

J. Kumar-saha, N. Ohse, K. Hamada, H. Matsui, T. Kobayashi et al., Fast deposition of microcrystalline Si films from SiH 2 Cl 2 using a high-density microwave plasma source for Si thin-film solar cells, Solar Energy Materials and Solar Cells, issue.3, pp.94524-530, 2010.

V. L. Dalal, J. H. Zhu, M. Welsh, and M. Noack, Microcrystalline Si:H solar cells fabricated using ECR plasma deposition, IEE Proceedings ? Circuits, Devices and Systems, 2003.
DOI : 10.1049/ip-cds:20030629

M. N. Van-den-donker, R. Schmitz, W. Appenzeller, B. Rech, W. M. Kessels et al., The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells, Thin Solid Films, vol.511, issue.512, pp.511-512562, 2006.
DOI : 10.1016/j.tsf.2005.12.167

C. Smit, A. Klaver, B. A. Korevaar, A. M. Petit, D. L. Williamson et al., High-rate deposition of microcrystalline silicon with an expanding thermal plasma, Thin Solid Films, vol.491, issue.1-2, pp.280-293, 2005.
DOI : 10.1016/j.tsf.2005.06.032

C. Chen, S. Qiu, C. Liu, Y. Wu, P. Li et al., Low temperature fast growth of nanocrystalline silicon films by rf-PECVD from SiH 4 /H 2 gases: microstructural characterization, Journal of Physics D: Applied Physics, p.41, 2008.

S. Okur, M. Günes, F. Finger, and R. Carius, Diffusion length measurements of microcrystalline silicon thin films prepared by hot-wire/catalytic chemical vapor deposition (HWCVD) Thin Solid Films, Proceedings of the Third International Conference on Hot-Wire CVD (Cat-CVD) Process, pp.137-140, 2006.

T. Kilper, U. Zastrow, D. Hrunski, R. Carius, and A. Gordijn, The influence of oxygen incorporation on the properties µc-si and the performance of µc-si based solar cells, 2008.

S. Somiya, H. Toyoda, Y. Hotta, and H. Sugai, Suppression of Oxygen Impurity Incorporation into Silicon Films Prepared from Surface-Wave Excited H 2 /SiH 4 Plasma, Japanese Journal of Applied Physics, issue.11A, pp.437696-7700, 2004.

T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius et al., Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: Influence on material properties and solar cell performance, Journal of Applied Physics, vol.105, issue.7, p.74509, 2009.
DOI : 10.1063/1.3104781

J. Woerdenweber, T. Merdzhanova, H. Stiebig, W. Beyer, and A. Gordijn, Critical oxygen concentration in hydrogenated amorphous silicon solar cells dependent on the contamination source, Applied Physics Letters, vol.96, issue.10, p.96103505, 2010.
DOI : 10.1063/1.3357424

M. Kondo, Microcrystalline materials and cells deposited by RF glow discharge, Solar Energy Materials and Solar Cells, vol.78, issue.1-4, pp.543-566, 2003.
DOI : 10.1016/S0927-0248(02)00451-8

T. Matsui, A. Matsuda, and M. Kondo, High-rate microcrystalline silicon deposition for p???i???n junction solar cells, Solar Energy Materials and Solar Cells, vol.90, issue.18-19, pp.3199-3204, 2006.
DOI : 10.1016/j.solmat.2006.06.019

E. V. Johnson, L. Kroely, P. Roca, and . Cabarrocas, Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics, Solar Energy Materials and Solar Cells, vol.93, issue.10, pp.931904-1906, 2009.
DOI : 10.1016/j.solmat.2009.06.018

E. V. Johnson, L. Kroely, M. Moreno, P. Roca, and . Cabarrocas, Characterization of Microcrystalline Silicon by High Wavenumber Raman Scattering, MRS Spring Meeting Symposium A proceedings, 2009.
DOI : 10.1002/pssr.200802106

K. Brühne, M. B. Schubert, C. Köhler, and J. H. Werner, Nanocrystalline silicon from hot-wire deposition ? a photovoltaic material? Thin Solid Films, pp.163-168, 2001.

M. Fonrodona, D. Soler, J. M. Asensi, J. Bertomeu, and J. Andreu, Studies on grain boundaries in nanocrystalline silicon grown by hot-wire CVD, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-30214, 2002.
DOI : 10.1016/S0022-3093(01)00943-7

M. Nath, P. Chatterjee, J. Damon-lacoste, P. Roca, and . Cabarrocas, Criteria for improved open-circuit voltage in a???Si:H(N)???c???Si(P) front heterojunction with intrinsic thin layer solar cells, Journal of Applied Physics, vol.103, issue.3, p.34506, 2008.
DOI : 10.1063/1.2838459

A. Datta, J. Damon-lacoste, P. Roca-i-cabarrocas, and P. Chatterjee, Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell, Solar Energy Materials and Solar Cells, vol.92, issue.11, pp.921500-1507, 2008.
DOI : 10.1016/j.solmat.2008.06.015

H. Jia and H. Shirai, In situ study on the growth of microcrystalline silicon film using the high-density microwave plasma for si thin film solar cells. Thin Solid Films, The Joint Meeting of 7th APCPST (Asia Pacific Conference on Plasma Science and Technology) and 17th SPSM (Symposium on Plasma Science for Materials) -7th APCPST/17th SPSM, pp.506-50727, 2006.

T. F. Schulze, H. N. Beushausen, T. Hansmann, L. Korte, and B. Rech, Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating, Applied Physics Letters, vol.95, issue.18, p.95182108, 2009.
DOI : 10.1063/1.3255018

J. E. Stevens, Electron Cyclotron Resonance Plasma Sources, High Density Plasma Sources, pp.312-379, 1996.
DOI : 10.1016/B978-081551377-3.50009-8

S. N. Abolmasov, L. Kroely, P. Roca, and . Cabarrocas, Negative corona in silane-argonhydrogen mixtures at low pressures, Journal of Physics D: Applied Physics, issue.166pp, p.41165203, 2008.

S. N. Abolmasov, L. Kroely, P. Roca, and . Cabarrocas, Negative corona discharge: application to nanoparticle detection in rf reactors, Plasma Sources Science and Technology, vol.18, issue.1, p.15005, 2008.
DOI : 10.1088/0963-0252/18/1/015005

E. V. Johnson, L. Kroely, P. Roca, and . Cabarrocas, Raman scattering analysis of Si?H stretching peaks in hydrogenated microcrystalline silicon, Solar Energy Materials & Solar Cells, issue.10, pp.931904-1906, 2009.

E. V. Peer-reviewed-proceedings, L. Johnson, M. Kroely, P. Moreno, . Roca et al., Characterization of Microcrystalline Silicon by High Wavenumber Raman Scattering, MRS Spring Meeting Symposium A proceedings, 2009.

S. K. Ram, L. Kroely, P. Bulkin, P. Roca, and . Cabarrocas, Effect of ion energy on structural and electrical properties of intrinsic microcrystalline silicon layer deposited in a matrix distributed electron cyclotron resonance plasma reactor, physica status solidi (a), vol.16, issue.340, pp.591-594, 2010.
DOI : 10.1002/pssa.200982905

URL : https://hal.archives-ouvertes.fr/hal-00913538

L. Kroely, S. K. Ram, P. Bulkin, P. Roca, and . Cabarrocas, Microcrystalline silicon films and solar cells deposited at high rate by Matrix Distributed Electron Cyclotron Resonance (MDECR) plasma, physica status solidi (c), vol.7, pp.3-4517, 2010.
DOI : 10.1002/pssc.200982789

URL : https://hal.archives-ouvertes.fr/hal-00913541

S. K. Ram, L. Kroely, S. Kasouit, P. Bulkin, P. Roca et al., Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system, physica status solidi (c), vol.7, pp.3-4553, 2010.
DOI : 10.1002/pssc.200982817

URL : https://hal.archives-ouvertes.fr/hal-00913544

E. V. Johnson, L. Kroely, P. Roca, and . Cabarrocas, Assignment of High Wave-number Absorption and Raman Scattering Peaks in Microcrystalline Silicon. Accepted for publication in the 2010 MRS Spring Meeting proceedings. Posters presented in international conferences and work- shops

L. Kroely, P. Roca-i-cabarrocas, S. Abolmasov, P. Bulkin, D. Daineka et al., Transient effects in the growth of microcrystalline silicon films from pure silane in MDECR plasmas, CIP07 ? 16 th International Colloquium on Plasma Processes Toulouse (France), 2007.

L. Kroely, S. K. Ram, P. Roca, P. Cabarrocas, and . Bulkin, Optimization of microcrystalline silicon thin film solar cells deposited at high rate by distributed microwave plasma. European School " Physics of solar cells : from basics to last developments Posters presented in national conferences and workshops, Les Houches (France), 2009.

L. Kroely, P. Roca-i-cabarrocas, D. Daineka, P. Bulkin, and T. Novikova, Optimisation de cellules photovolta¨?quesphotovolta¨?ques multispectralesàmultispectralesà base de couches minces de silicium déposéesdéposéesà grande vitesse. ´ Electricité solaire photovolta¨?quephotovolta¨?que, Colloque national ADEME?ANR, Aix-les-Bains (France), 2007.

L. Kroely, P. Roca-i-cabarrocas, S. Abolmasov, P. Bulkin, and D. Daineka, Comment mesurer la température du substrat dans un réacteur MDECR de dépôt de silicium microcristallin ? 6 ` emes Journées du Réseau Plasmas Froids, Bonascre (France), 2007.