Z. Pan, S. Xie, B. Chang, C. Wang, L. Lu et al., Very long carbon nanotubes, Nature, vol.394, p.631632, 1998.

P. Ajayan, Nanotubes from Carbon, Chemical Reviews, vol.99, issue.7, p.17871799, 1999.
DOI : 10.1021/cr970102g

J. Bahr and J. Tour, Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds, Chemistry of Materials, vol.13, issue.11, p.38233824, 2001.
DOI : 10.1021/cm0109903

S. Kharchenko, J. Douglas, J. Obrzut, E. Grulke, and K. Migler, Flow-induced properties of nanotube-lled polymer materials, Nat Mater, vol.3, p.564568, 2004.

M. Moniruzzaman and K. Winey, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, vol.39, issue.16, p.51945205, 2006.
DOI : 10.1021/ma060733p

E. Hobbie, Shear rheology of carbon nanotube suspensions, Rheologica Acta, vol.72, issue.4, 2010.
DOI : 10.1007/s00397-009-0422-4

L. Chico, V. Crespi, L. Benedict, S. Louie, and M. Cohen, Pure Carbon Nanoscale Devices: Nanotube Heterojunctions, Physical Review Letters, vol.76, issue.6, p.971974, 1996.
DOI : 10.1103/PhysRevLett.76.971

P. Mceuen, Single-wall carbon nanotubes, Physics World, vol.13, issue.6, p.3136, 2000.
DOI : 10.1088/2058-7058/13/6/26

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler et al., Macroscopic bers and ribbons of oriented carbon nanotubes, Science, issue.5495, p.29013311334, 2000.

Z. Wu, Z. Chen, X. Du, J. Logan, J. Sippel et al., Transparent, conductive carbon nanotube lms, Science, issue.5688, p.30512731276, 2004.
DOI : 10.1126/science.1101243

URL : http://real.mtak.hu/6061/1/1170134.pdf

M. Shim, N. Kam, R. Chen, Y. Li, and H. Dai, Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition, Nano Letters, vol.2, issue.4, p.285288, 2002.
DOI : 10.1021/nl015692j

N. Kam, T. Jessop, P. Wender, and H. Dai, Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells, J Am Chem Soc, vol.126, issue.22, p.68506851, 2004.

S. Ramesh, L. Ericson, V. Davis, R. Saini, C. Kittrell et al., Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation, The Journal of Physical Chemistry B, vol.108, issue.26, p.87948798, 2004.
DOI : 10.1021/jp036971t

V. Davis, L. Ericson, A. Parra-vasquez, H. Fan, Y. Wang et al., Phase Behavior and Rheology of SWNTs in Superacids, Macromolecules, vol.37, issue.1, p.154160, 2004.
DOI : 10.1021/ma0352328

C. Clinard, J. Rouzaud, S. Delpeux, F. Beguin, and J. Conard, Electron microscopy, growth and defects of carbon nanotubes, Journal of Physics and Chemistry of Solids, vol.55, issue.7, p.651657, 1994.
DOI : 10.1016/0022-3697(94)90065-5

G. Dimitrakopulos, V. Dravid, T. Karakostas, and R. Pond, The Defect Character of Carbon Nanotubes and Nanoparticles, Acta Crystallographica Section A Foundations of Crystallography, vol.53, issue.3, p.341351, 1997.
DOI : 10.1107/S0108767397000287

N. Fakhri, D. Tsyboulski, L. Cognet, B. Weisman, R. Pasquali et al., Diameterdependent bending dynamics of single-walled carbon nanotubes in liquids, P Natl Acad Sci, vol.106, issue.34, p.1421914223, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00670287

G. Champetier, R. Buvet, J. Néel, and P. Sigwalt, Chimie Macromoléculaire I. Hermann, 1970.

M. Castignolles, Etudes de la synthèse et de la structure par microscopie électronique des nanotubes de carbone purs et dopés à l'azote, 2004.

E. Evans, J. Thomas, P. Thrower, and P. Walker, Growth of lamentary carbon on metallic surfaces during the pyrolysis of methane and acetone, Phys Rev B, vol.11, issue.5, p.441442, 1973.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.5658, 1991.
DOI : 10.1038/354056a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603605, 1993.
DOI : 10.1038/363603a0

R. Ruo, D. Qian, and W. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, p.9031008, 2003.

Y. Yuh, N. Allinger, and J. Lii, Molecular mechanics -the mm3 force-eld for hydrocarbons, J Am Chem Soc, vol.11, issue.23, p.85518566, 1989.

R. Tuzun, D. Noid, R. Sumpter, and R. Merkle, Dynamics of uid ow inside carbon nanotubes, Nanotechnology, vol.7, issue.3, p.241246, 1996.

J. Terso, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys Rev Lett, issue.25, p.6128792882, 1988.

D. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond lms, Phys Rev B, vol.42, issue.15, p.94589471, 1990.

D. Robertson, D. Brenner, and J. Mintmire, Energetics of nanoscale graphitic tubules, Physical Review B, vol.45, issue.21, p.1259212595, 1992.
DOI : 10.1103/PhysRevB.45.12592

L. Girifalco and R. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, The Journal of Chemical Physics, vol.25, issue.4, p.693697, 1956.
DOI : 10.1063/1.1743030

L. Girifalco, Molecular properties of c 60 in the gas and solid phases, J Phys Chem, vol.96, issue.2, p.858861, 1992.

Y. Wang, D. Tomanek, and G. Bertsch, Stiness of a solid composed of c 60 clusters, Phys Rev B, vol.44, issue.12, p.65626565, 1991.

J. Salvetat, A. Kulik, J. Bonard, G. Briggs, T. Stockli et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes, Advanced Materials, vol.11, issue.2, p.161165, 1999.
DOI : 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J

O. Lourie and H. Wagner, Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy, Journal of Materials Research, vol.4, issue.09, p.24182422, 1998.
DOI : 10.1103/PhysRevB.51.10048

M. Yu, B. Files, S. Arepalli, and R. Ruo, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, p.55525555, 2000.
DOI : 10.1103/PhysRevLett.84.5552

A. Krishnan, E. Dujardin, T. Ebbesen, and J. Gibson, Young's modulus of singlewalled carbon nanotubes, Phys Rev B, vol.58, issue.20, p.1401314019, 1998.

M. Yu, L. O. Dyer, M. Moloni, K. Kelly, T. Ruo et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, p.287637640, 2000.
DOI : 10.1126/science.287.5453.637

H. Wagner, L. O. Feldman, Y. Tenne, and R. , Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Applied Physics Letters, vol.72, issue.2, p.188190, 1998.
DOI : 10.1063/1.120680

F. Li, H. Cheng, S. Bai, G. Su, and M. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Applied Physics Letters, vol.77, issue.20, p.7731613163, 2000.
DOI : 10.1063/1.1324984

Z. Pan, S. Xie, L. Lu, B. Chang, L. Sun et al., Tensile tests of ropes of very long aligned multiwall carbon nanotubes, Applied Physics Letters, vol.74, issue.21, p.7431523154, 1999.
DOI : 10.1063/1.124094

B. Yakobson, C. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, vol.76, issue.14, p.25112514, 1996.
DOI : 10.1103/PhysRevLett.76.2511

T. Belytschko, S. Xiao, G. Schartz, and R. Ruo, Atomistic simulations of nanotube fracture, Physical Review B, vol.65, issue.23, 2002.
DOI : 10.1103/PhysRevB.65.235430

J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, p.5962, 1998.

B. Wei, R. Vajtai, and P. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, p.11721174, 2001.
DOI : 10.1063/1.1396632

S. Hong and M. S. , Nanotube electronics: A exible approach to mobility, Nat Nanotechnol, vol.2, issue.4, p.207208, 2007.

J. Bonard, H. Kind, T. Stockli, and L. Nilsson, Field emission from carbon nanotubes: The rst ve years, Solid-State Electronics, vol.45, p.893914, 2001.

E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Letters, vol.6, issue.1, pp.96-100, 2006.
DOI : 10.1021/nl052145f

S. Saito, Carbon nanotubes for next-generation electronics devices

M. Fuhrer, J. Nygård, L. Shih, M. Forero, Y. Yoon et al., Crossed Nanotube Junctions, Science, vol.288, issue.5465, p.288494497, 2000.
DOI : 10.1126/science.288.5465.494

H. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Carbon nanotube singleelectron transistors at room temperature, Science, vol.293, issue.5527, p.7679, 2001.

S. Tans, A. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, issue.6680, p.4952, 1998.

V. Derycke, R. Martel, J. Appenzeller, and A. Ph, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, p.453456, 2001.
DOI : 10.1021/nl015606f

T. Rueckes, K. Kim, E. Joselevich, G. Tseng, C. Cheung et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, p.2899497, 2000.
DOI : 10.1126/science.289.5476.94

M. Radosavljevic, M. Freitag, K. Thadani, and A. Johnson, Nonvolatile molecular memory elements based on ambipolar nanotube eld eect transistors, Nano Lett, vol.2, issue.7, p.761764, 2002.

H. Schmid and H. Fink, Carbon nanotubes are coherent electron sources, Applied Physics Letters, vol.70, issue.20, p.26792680, 1997.
DOI : 10.1063/1.118978

J. Bonard, T. Stöckli, O. Noury, and A. Châtelain, Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes, Applied Physics Letters, vol.78, issue.18, p.7827752777, 2001.
DOI : 10.1063/1.1367903

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig et al., A nanotube-based eld-emission at panel display, Appl Phys Lett, issue.22, p.7229122913, 1998.

G. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang et al., Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, Applied Physics Letters, vol.81, issue.2, p.355, 2002.
DOI : 10.1063/1.1492305

H. Dai, J. Hafner, A. Rinzler, D. Colbert, and R. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, vol.384, issue.6605, p.147150, 1996.
DOI : 10.1038/384147a0

J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng et al., Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, p.287622625, 2000.
DOI : 10.1126/science.287.5453.622

Y. Wong, W. Kang, J. Davidson, A. Wisitsora-at, and K. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection, Sensors and Actuators B: Chemical, vol.93, issue.1-3, pp.1-3327332, 2003.
DOI : 10.1016/S0925-4005(03)00213-2

R. Singh, D. Pantarotto, D. Mccarthy, O. Chaloin, J. Hoebeke et al., Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:?? Toward the Construction of Nanotube-Based Gene Delivery Vectors, Journal of the American Chemical Society, vol.127, issue.12, p.12743884396, 2005.
DOI : 10.1021/ja0441561

A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Current Opinion in Chemical Biology, vol.9, issue.6, p.674679, 2005.
DOI : 10.1016/j.cbpa.2005.10.005

Y. Zhao, G. Xing, and C. Z. Nanotoxicology, Are carbon nanotubes safe?, Nat Nanotechnol, vol.3, issue.4, p.191192, 2008.

R. Andrews, D. Jacques, A. Rao, T. Rantell, F. Derbyshire et al., Nanotube composite carbon bers, Appl Phys Lett, vol.75, issue.9, p.13291331, 1999.

Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei et al., Study on poly(methyl methacrylate)/carbon nanotube composites, Materials Science and Engineering: A, vol.271, issue.1-2, p.395400, 1999.
DOI : 10.1016/S0921-5093(99)00263-4

C. Mitchell, J. Bahr, S. Arepalli, J. Tour, and R. Krishnamoorti, Dispersion of Functionalized Carbon Nanotubes in Polystyrene, Macromolecules, vol.35, issue.23, p.88258830, 2002.
DOI : 10.1021/ma020890y

P. Pötschke, T. Fornes, and D. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, vol.43, issue.11, p.32473255, 2002.
DOI : 10.1016/S0032-3861(02)00151-9

M. Abdel-goad and P. Potschke, Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites, Journal of Non-Newtonian Fluid Mechanics, vol.128, issue.1
DOI : 10.1016/j.jnnfm.2005.01.008

B. Satapathy, R. Weidisch, P. Pötschke, and A. Janke, Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites, Composites Science and Technology, vol.67, issue.5, p.867879, 2007.
DOI : 10.1016/j.compscitech.2006.01.036

C. Martin, J. Sandler, M. Shaer, M. Schwarz, W. Bauhofer et al., Formation of percolating networks in multi-wall carbon-nanotube???epoxy composites, Composites Science and Technology, vol.64, issue.15, p.23092316, 2004.
DOI : 10.1016/j.compscitech.2004.01.025

J. Kim, D. Seong, T. Kang, and J. Youn, Eects of surface modication on rheological and mechanical properties of cnt/epoxy composites, Carbon, issue.10, p.441898, 1905.

S. Rahatekar, K. Koziol, S. Butler, J. Elliott, M. Shaer et al., Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes, Journal of Rheology, vol.50, issue.5, p.599610, 2006.
DOI : 10.1122/1.2221699

S. Yuen, M. Chen-chi, H. Wu, H. Kuan, W. Chen et al., Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites, J Appl Polym Sci, vol.103, issue.2, p.12721278, 2007.

T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota, Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites, Composites Part A: Applied Science and Manufacturing, vol.35, issue.1, p.6774, 2004.
DOI : 10.1016/j.compositesa.2003.09.003

F. Dalmas, L. Chazeau, C. Gauthier, K. Masenelli-varlot, R. Dendievel et al., Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties, Journal of Polymer Science Part B: Polymer Physics, vol.63, issue.10, p.4311861197, 2005.
DOI : 10.1002/polb.20409

URL : https://hal.archives-ouvertes.fr/hal-00436785

X. Shi, J. Hudson, P. Spicer, J. Tour, . Krishnamoorti et al., Rheological behavior and mechanical characterisation of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering

Y. Song, Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites, Rheologica Acta, vol.44, issue.2, p.231238, 2006.
DOI : 10.1007/s00397-006-0137-8

L. Licea-jiménez, P. Henrio, A. Lund, T. Laurie, S. Pérez-garcía et al., Mwnt reinforced melamineformaldehyde containing alpha-cellulose, Compos Sci Technol, vol.67, issue.5, p.844854, 2007.

T. Liu, Y. Tong, and W. Zhang, Preparation and characterization of carbon nanotube/polyetherimide nanocomposite lms, Compos Sci Technol, vol.67, pp.3-4406412, 2007.

S. Peeterbroeck, F. Laoutid, J. Taulemesse, F. Monteverde, J. Lopez-cuesta et al., Mechanical properties and ame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites, Adv Funct Mater, issue.15, p.1727872791, 2007.

R. Baughman, A. Zakhidov, and W. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, p.787792, 2002.
DOI : 10.1126/science.1060928

B. Schartel, P. Pötschke, U. Knoll, A. , and M. , Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites, European Polymer Journal, vol.41, issue.5, p.10611070, 2005.
DOI : 10.1016/j.eurpolymj.2004.11.023

L. Girifalco, M. Hodak, and R. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, p.1310413110, 2000.
DOI : 10.1103/PhysRevB.62.13104

B. Kim, H. Park, and S. W. , Rheological behavior of multiwall carbon nanotubes with polyelectrolyte dispersants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.256, issue.2-3, p.123127, 2005.
DOI : 10.1016/j.colsurfa.2004.12.063

M. Islam, E. Rojas, D. Bergey, A. Johnson, and A. Yodh, High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, vol.3, issue.2, p.269273, 2003.
DOI : 10.1021/nl025924u

V. Lordi and N. Yao, Molecular mechanics of binding in carbon-nanotubepolymer composites, J Mater Res, vol.15, issue.12, p.27702779, 2000.

E. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, issue.13, p.611899, 1912.
DOI : 10.1016/S0266-3538(01)00094-X

C. Singh, M. Shaer, I. Kinloch, and A. Windle, Production of aligned carbon nanotubes by the CVD injection method, Physica B: Condensed Matter, vol.323, issue.1-4, pp.1-4339340, 2002.
DOI : 10.1016/S0921-4526(02)01045-1

C. Singh, M. Shaer, and A. Windle, Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon, vol.41, issue.2, p.359368, 2003.
DOI : 10.1016/S0008-6223(02)00314-7

Z. Huang, J. Xu, Z. Ren, J. Wang, M. Siegal et al., Growth of highly oriented carbon nanotubes by plasma-enhanced hot lament chemical vapor deposition, Appl Phys Lett, issue.26, p.7338453847, 1998.

T. Panagiotou, J. Bernard, and M. Sv, Deagglomeration and dispersion of carbon nanotubes using microuidizer R high shear uid processors, p.3942, 2008.

K. Lu, R. Lago, Y. Chen, M. Green, P. Harris et al., Mechanical damage of carbon nanotubes by ultrasound, Carbon, vol.34, issue.6, p.814816, 1996.
DOI : 10.1016/0008-6223(96)89470-X

S. Badaire, P. Poulin, M. Maugey, and C. Zakri, In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering, Langmuir, vol.20, issue.24, p.1036710370, 2004.
DOI : 10.1021/la049096r

M. Shaer and A. Windle, Analogies between polymer solutions and carbon nanotube dispersions, Macromolecules, vol.32, issue.20, p.68646866, 1999.

C. Hong, J. Lee, P. Kalappa, and S. Advani, Eects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites, Compos Sci Technol, vol.67, issue.6, p.10271034, 2007.

D. Schaefer, J. Zhao, J. Brown, D. Anderson, and D. Tomlin, Morphology of dispersed carbon single-walled nanotubes, Chemical Physics Letters, vol.375, issue.3-4, pp.3-4369375, 2003.
DOI : 10.1016/S0009-2614(03)00867-4

W. Zhou, M. Islam, H. Wang, D. Ho, A. Yodh et al., Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks, Chemical Physics Letters, vol.384, issue.1-3, pp.1-3185189, 2004.
DOI : 10.1016/j.cplett.2003.11.106

F. Du, J. Fischer, and K. Winey, Eect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys Rev B, vol.72, issue.12, p.14, 2005.

M. Doi and S. Edwards, The Theory of Polymer Dynamics, 1987.

C. Petrie, The rheology of bre suspensions, J Non-Newton Fluid Mech, vol.87, issue.2- 3, p.369402, 1999.

B. Landi, H. Ruf, J. Worman, and R. Raaelle, Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon Nanotubes, The Journal of Physical Chemistry B, vol.108, issue.44, pp.17089-17095, 2004.
DOI : 10.1021/jp047521j

Y. Huang, S. Ahir, and E. Terentjev, Dispersion rheology of carbon nanotubes in a polymer matrix, Physical Review B, vol.73, issue.12, p.19, 2006.
DOI : 10.1103/PhysRevB.73.125422

M. Shaer, X. Fan, and A. Windle, Dispersion and packing of carbon nanotubes, Carbon, vol.36, p.16031612, 1998.

V. Georgakilas, K. Kordatos, M. Prato, D. Guldi, M. Holzinger et al., Organic Functionalization of Carbon Nanotubes, Journal of the American Chemical Society, vol.124, issue.5, p.760761, 2002.
DOI : 10.1021/ja016954m

Y. Sun, K. Fu, Y. Lin, and W. Huang, Functionalized Carbon Nanotubes:?? Properties and Applications, Accounts of Chemical Research, vol.35, issue.12, p.10961104, 2002.
DOI : 10.1021/ar010160v

C. Dyke and J. Tour, Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions, Nano Letters, vol.3, issue.9, p.12151218, 2003.
DOI : 10.1021/nl034537x

C. Dyke and J. Tour, Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization, Chem -Eur J, vol.10, issue.4, p.812817, 2004.

F. Liang, J. Beach, P. Rai, W. Guo, R. Hauge et al., Highly Exfoliated Water-Soluble Single-Walled Carbon Nanotubes, Chemistry of Materials, vol.18, issue.6, p.15201524, 2006.
DOI : 10.1021/cm0526967

F. Du, R. Scogna, W. Zhou, S. Brand, J. Fischer et al., Nanotube Networks in Polymer Nanocomposites:?? Rheology and Electrical Conductivity, Macromolecules, vol.37, issue.24, p.3790489055, 2004.
DOI : 10.1021/ma049164g

L. Hough, M. Islam, P. Janmey, and A. Yodh, Viscoelasticity of Single Wall Carbon Nanotube Suspensions, Physical Review Letters, vol.93, issue.16, p.16810211681024, 2004.
DOI : 10.1103/PhysRevLett.93.168102

Y. Song and J. Youn, Inuence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, vol.43, p.13781385, 2005.

B. Grady, The Use of Solution Viscosity to Characterize Single-Walled Carbon Nanotube Dispersions, Macromolecular Chemistry and Physics, vol.37, issue.23, p.21672169, 2006.
DOI : 10.1002/macp.200600473

Z. Fan and S. Advani, Rheology of carbon nanotube suspensions, J Rheol, vol.51, issue.4, 2007.

J. Obrzut, J. Douglas, S. Kharchenko, and K. Migler, Shear-induced conductorinsulator transition in melt-mixed polypropylene-carbon nanotube dispersions, Phys Rev B, issue.19, p.76, 2007.

S. Lin-gibson, J. Pathak, E. Grulke, H. Wang, and E. Hobbie, Elastic ow instability in nanotube suspensions, Phys Rev Lett, vol.92, issue.4, p.483021483024, 2004.

A. Ma, M. Mackley, and R. Ss, Experimental observation on the owinduced assembly of carbon nanotube suspensions to form helical bands, Rheol Acta, vol.46, issue.7, p.979987, 2007.

A. Ma, F. Chinesta, T. Tuladhar, and M. Mackley, Filament stretching of carbon nanotube suspensions, Rheologica Acta, vol.54, issue.5, p.447457, 2008.
DOI : 10.1007/s00397-007-0247-y

URL : https://hal.archives-ouvertes.fr/hal-00287277

A. Parra-vasquez, I. Stepanek, V. Davis, V. Moore, E. Haroz et al., Simple Length Determination of Single-Walled Carbon Nanotubes by Viscosity Measurements in Dilute Suspensions, Macromolecules, vol.40, issue.11, p.4040434047, 2007.
DOI : 10.1021/ma062003n

P. Rai, N. Parra-vasquez, J. Chattopadhyay, R. Pinnick, F. Liang et al., Dispersions of functionalized single-walles carbon nanotubes in strong acids: Solubility and rheology, J Nanosci Nanotechno, vol.7, p.33783385, 2007.

A. Ma, F. Chinesta, and M. Mackley, The rheology and modeling of chemically treated carbon nanotubes suspensions, Journal of Rheology, vol.53, issue.3, p.547573, 2009.
DOI : 10.1122/1.3093105

URL : https://hal.archives-ouvertes.fr/hal-01500183

Z. Fan and S. Advani, Characterization of orientation state of carbon nanotubes in shear ow, Polymer, vol.46, issue.14, p.52325240, 2005.

S. Marceau, P. Dubois, R. Fulchiron, and P. Cassagnau, Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime, Macromolecules, vol.42, issue.5, p.14331438, 2009.
DOI : 10.1021/ma802628q

URL : https://hal.archives-ouvertes.fr/hal-00374480

S. Rahatekar, K. Koziol, S. Kline, E. Hobbie, J. Gilman et al., Length-Dependent Mechanics of Carbon-Nanotube Networks, Advanced Materials, vol.19, issue.8, 2009.
DOI : 10.1002/adma.200802670

A. Ma, F. Chinesta, and M. Mackley, The Rheology of Carbon Nanotube (CNT) Suspensions: Experiments and Modelling, AIP Conference Proceedings, p.752754, 2008.
DOI : 10.1063/1.2964834

W. Ma, F. Chinesta, A. Ammar, and M. Mackley, Rheological modeling of carbon nanotube aggregate suspensions, Journal of Rheology, vol.52, issue.6, p.13111330, 2008.
DOI : 10.1122/1.2982932

URL : https://hal.archives-ouvertes.fr/hal-01007375

E. Hobbie and D. Fry, Nonequilibrium Phase Diagram of Sticky Nanotube Suspensions, Physical Review Letters, vol.97, issue.3, 2006.
DOI : 10.1103/PhysRevLett.97.036101

W. Song, I. Kinloch, and A. Windle, Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes, Science, vol.302, issue.5649, p.1363, 2003.
DOI : 10.1126/science.1089764

S. Badaire, C. Zakri, M. Maugey, A. Derre, J. Barisci et al., Liquid Crystals of DNA-Stabilized Carbon Nanotubes, Advanced Materials, vol.4, issue.13, p.16731676, 2005.
DOI : 10.1002/adma.200401741

T. Asada, H. Muramatsu, R. Watanabe, and S. Onogi, Rheo-optical studies of racemic poly(?-benzyl glutamate) liquid crystals, Macromolecules, vol.13, issue.4, p.867871, 1980.

M. Pasquali, Polymer composites: Swell properties and swift processing, Nature Materials, vol.3, issue.8, p.509510, 2004.
DOI : 10.1103/PhysRevLett.90.024502

W. Ma, The microstructure and rheology of carbon nanotube suspensions, International Journal of Material Forming, vol.87, issue.2, 2008.
DOI : 10.1007/s12289-008-0375-7

URL : https://hal.archives-ouvertes.fr/hal-00290462

E. Hinch and L. Leal, The eect of brownian motion on the rheological properties of a suspension of nonspherical particles, J Fluid Mech, vol.52, p.683712, 1972.

M. Sepehr, P. Carreau, M. Grmela, G. Ausias, and P. Laeur, Comparison of rheological properties of ber suspensions with model predictions, J Polym Eng, vol.24, issue.6, pp.579-610, 2004.

M. Rajabian, C. Dubois, and M. Grmela, Suspensions of semiexible bers in polymeric uids: Rheology and thermodynamics, Rheol Acta, vol.44, issue.5, p.521535, 2005.

F. Folgar, I. Tucker, and . Cl, Orientation behavior of bers in concentrated suspensions, J Reinf Plast Comp, vol.3, issue.2, p.98119, 1984.

R. Larson, The Structure and Rheology of Complex Fluids, 1999.

J. Xu, S. Chatterjee, K. Koelling, Y. Wang, and S. Bechtel, Shear and extensional rheology of carbon nanober suspensions, Rheol Acta, vol.44, issue.6, p.537562, 2005.

R. Bird, C. Curtiss, R. Amstrong, and O. Hassager, Dynamics of polymer liquids, 1987.

A. Montesi, D. Morse, and M. Pasquali, Brownian dynamics algorithm for bead-rod semiexible chain with anisotropic friction, J Chem Phys, vol.122, issue.084903, 2005.

D. Morse, Viscoelasticity of concentrated isotropic solutions of semiexible polymers . 1. model and stress tensor, Macromolecules, issue.20, p.3170307043, 1998.

V. Shankar, M. Pasquali, and M. Dc, Theory of linear viscoelasticity of semiexible rods in dilute solution, J Rheol, vol.46, issue.5, p.11111154, 2002.

P. Flory, Statistical mechanics of chain molecules, 1969.

M. Kröger, Models for Polymeric and Anisotropic Liquids, 2005.

P. Langevin, Sur la théorie du mouvement brownien, Comptes Rendus, vol.146, p.530, 1908.

H. Ottinger, Stochastic Processes in Polymeric Fluids, 1996.
DOI : 10.1007/978-3-642-58290-5

D. Ermak and J. Mccammon, Brownian dynamics with hydrodynamic interactions, The Journal of Chemical Physics, vol.69, issue.4
DOI : 10.1063/1.436761

M. Pear and J. Weiner, Brownian dynamics study of a polymer chain of linked rigid bodies. II. Results for longer chains, The Journal of Chemical Physics, vol.72, issue.7, p.39393947, 1980.
DOI : 10.1063/1.439663

S. Hatzikiriakos and D. Vlassopoulos, Brownian dynamics simulations of shearthickening in dilute polymer solutions, Rheo Acta, vol.35, issue.3, p.274287, 1996.

U. Agarwal, R. Bhargava, and R. Mashelkar, Brownian dynamics simulation of a polymer molecule in solution under elongational flow, The Journal of Chemical Physics, vol.108, issue.4, pp.1610-1617, 1998.
DOI : 10.1063/1.475531

M. Cass, D. Heyes, and R. English, Brownian Dynamics Simulations of Associating Diblock Copolymers, Langmuir, vol.23, issue.12, p.65766587, 2007.
DOI : 10.1021/la063210j

S. Jin and C. Lr, Dynamics of dissolved polymer chains in isotropic turbulence, New Journal of Physics, vol.9, issue.10, 2007.
DOI : 10.1088/1367-2630/9/10/360

V. Venkataramani, R. Sureshkumar, and B. Khomami, Coarse-grained modeling of macromolecular solutions using a configuration-based approach, Journal of Rheology, vol.52, issue.5, pp.1143-1177, 2008.
DOI : 10.1122/1.2964201

J. Dwyer and V. Bloomeld, Brownian dynamics simulations of probe and selfdiusion in concentrated protein and dna solutions, Biophys J, vol.65, issue.5, p.18101816, 1993.

H. Merlitz, K. Rippe, K. Kienin, and J. Langowski, Looping dynamics of linear dna molecules and the eect of dna curvature: A study by brownian dynamics simulation

J. García-de-la-torre, P. Sánchez, H. Ortega, A. Hernández, J. Fernandes et al., Calculation of the solution properties of exible macromolecules: Methods and applications, Eur Biophys J, vol.32, issue.5, p.477486, 2003.

M. Kenward and K. Dorfman, Coarse-Grained Brownian Dynamics Simulations of the 10-23 DNAzyme, Biophysical Journal, vol.97, issue.10, p.27852793, 2009.
DOI : 10.1016/j.bpj.2009.09.003

G. Ansell and E. Dickinson, Brownian dynamics simulation of the fragmentation of a large colloidal oc in simple shear ow, J Colloid Interf Sci, vol.110, issue.1, p.7381, 1986.

W. Xue and G. Grest, Brownian dynamics simulations for interacting colloids in the presence of a shear ow, Phys Rev A, vol.40, issue.3, p.17091712, 1989.

D. Heyes and A. Branka, Brownian dynamics simulations of self-diusion and shear viscosity of near-hard-sphere colloids, Phys Rev E, vol.50, issue.3, p.23772380, 1994.

B. Bijsterbosch, M. Bos, E. Dickinson, J. Van-opheusden, and P. Walstra, Brownian dynamics simulation of particle gel formation: from argon to yoghurt, Faraday Discussions, vol.101, p.5164, 1995.
DOI : 10.1039/fd9950100051

M. Tokuyama, Eective diusion model on brownian dynamics of hard-sphere colloidal suspensions, Physica A, vol.265, issue.3, p.333340, 1999.

M. Miyahara, S. Watanabe, and K. Higashitani, Modeling adsorption and order formation by colloidal particles on a solid surface: A Brownian dynamics study, Chemical Engineering Science, vol.61, issue.7, p.6121422149, 2006.
DOI : 10.1016/j.ces.2004.02.024

M. Schmidt, P. Royall, C. Van-blaaderen, A. Dzubiella, and J. , Non-equilibrium sedimentation of colloids: confocal microscopy and Brownian dynamics simulations, Journal of Physics: Condensed Matter, vol.20, issue.49
DOI : 10.1088/0953-8984/20/49/494222

N. Mori, H. Fujioka, R. Semura, and K. Nakamura, Brownian dynamics simulations for suspension of ellipsoids in liquid crystalline phase under simple shear ows, Rheol Acta, vol.42, issue.1, p.102109, 2003.

C. Siettos, M. Graham, and I. Kevrekidis, Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation, The Journal of Chemical Physics, vol.118, issue.22, p.1014910156, 2003.
DOI : 10.1063/1.1572456

Y. Song and J. Youn, Modeling of rheological behavior of nanocomposites by brownian dynamics simulation, Korea-Aust Rheol J, vol.16, issue.4, p.201212, 2004.

M. Mendes, H. Schmidt, and M. Pasquali, Brownian dynamics simulations of singlewall carbon nanotube separation by type using dielectrophoresis, J Phys Chem B, vol.112, issue.25, p.74677477, 2008.

R. Nayac, Molecular simulation of liquid crystal polymer ow: a wavelet-nite element analysis, 1998.

A. Lozinski and C. Chauviere, A fast solver for fokker-planck equation applied to viscoelastic ows calculations: 2d fene model, J Comput Phys, vol.189, issue.2, p.607625, 2003.

A. Lozinski, C. Chauviere, J. Fang, and R. Owens, Fokker-planck simulations of fast ows of melts and concentrated polymer solutions in complex geometries, J Rheol, vol.47, issue.2, p.535561, 2003.

C. Chauviere, J. Fang, A. Lozinski, and R. Owens, On the numerical simulation of ows of polymer solutions using high-order methods based on the fokker-planck equation, Int J Mod Phys B, vol.17, issue.12, p.914, 2003.

C. Chauviere and A. Lozinski, Simulation of dilute polymer solutions using a fokkerplanck equation, Comput Fluids, vol.33, pp.5-6687696, 2004.

J. Suen, R. Nayak, R. Armstrong, and R. Brown, A wavelet-galerkin method for simulating the doi model with orientation-dependent rotational diusivity, J Non- Newton Fluid, vol.114, issue.2-3, 2003.

A. Ammar, D. Ryckelynck, F. Chinesta, and R. Keunings, On the reduction of kinetic theory models related to nitely extensible dumbbells, -3 SPEC. ISS.):136147, 2006.

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modeling of complex uids, J Non-Newton Fluid, vol.139, issue.3, p.153176, 2006.

M. Laso and H. Öttinger, Calculation of viscoelastic ow using molecular models: the connessit approach, J Non-Newton Fluid, issue.C, p.47120, 1993.

K. Feigl, M. Laso, and H. Öttinger, Connessit approach for solving a twodimensional viscoelastic uid problem, Macromolecules, vol.28, issue.9, p.32613274, 1995.

C. Hua and J. Schieber, Application of kinetic theory models in spatiotemporal ows for polymer solutions, liquid crystals and polymer melts using the connessit approach, Chem Eng Sci, vol.51, issue.9, p.14731485, 1996.

M. Laso, M. Picasso, and H. Öttinger, 2-D time-dependent viscoelastic ow calculations using CONNFFESSIT, AICHE J, vol.43, issue.4, p.877892, 1997.
DOI : 10.1002/aic.690430404

C. Hua and J. Schieber, Viscoelastic ow through brous media using the connessit approach, J Rheol, vol.42, issue.3, p.477491, 1998.

J. Cormenzana, A. Ledda, M. Laso, and B. Debbaut, Calculation of free surface ows using connessit, J Rheol, vol.45, issue.1, p.237258, 2001.

R. Keunings, Micro-Macro Methods for the Multiscale Simulation of Viscoelastic Flow using Molecular Models of Kinetic Theory, p.6798, 2004.

A. Ammar, F. Chinesta, E. Cueto, and T. Phillips, Review on discretization techniques for complex uid ow models: Past, present and future, pp.1336-1341, 2007.

P. Rouse, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, p.12721280, 1953.
DOI : 10.1063/1.1699180

H. Warner, Kinetic theory and rheology of dilute suspensions of nitly extendible dumbbells, Ind Eng Chem Fundamen, vol.11, issue.3, 1972.

J. Marko and E. Siggia, Stretching DNA, Macromolecules, vol.28, issue.26, 1995.
DOI : 10.1021/ma00130a008

D. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Review, vol.43, issue.3, p.525546, 2001.
DOI : 10.1137/S0036144500378302

M. Somasi, B. Khomami, N. Woo, J. Hur, and E. Shaqfeh, Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues, Journal of Non-Newtonian Fluid Mechanics, vol.108, issue.1-3, pp.1-3227255, 2002.
DOI : 10.1016/S0377-0257(02)00132-5

J. Atkinson, C. Goh, and N. Phan-thien, Bead-spring models for an adsorbed polymer molecule in a shear ow, J Chem Phys, vol.80, issue.12, p.63056317, 1983.

S. Fetsko and P. Cummings, Brownian dynamics simulation of bead-spring chain models for dilute polymer solutions in elongational ow, J Rheol, vol.39, issue.2, p.285299, 1995.

M. Fixman, Implicit algorithm for Brownian dynamics of polymers, Macromolecules, vol.19, issue.4, p.11951204, 1986.
DOI : 10.1021/ma00158a042

H. Kramers, The behavior of macromolecules in inhomogeneous ow, J Chem Phys, vol.14, issue.7, p.415424, 1946.

R. Bird, H. Warner, and D. Evans, Advances in Polymer Science, 1971.

C. Macosko and . Rheology, Principles, measurements and applications, 1994.

I. Vattulainen, T. Ala-nissila, and K. Kankaala, Physical Tests for Random Numbers in Simulations, Physical Review Letters, vol.73, issue.19, p.25132516, 1994.
DOI : 10.1103/PhysRevLett.73.2513

J. Kirkwood and J. Riseman, The intrinsic viscosities and diusion constants of exible macromolecules in solution, J Chem Phys, vol.16, issue.6, p.465573, 1948.

B. Zimm, Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss, The Journal of Chemical Physics, vol.24, issue.2, p.269278, 1956.
DOI : 10.1063/1.1742462

G. Thurston and A. Peterlin, Influence of Finite Number of Chain Segments, Hydrodynamic Interaction, and Internal Viscosity on Intrinsic Birefringence and Viscosity of Polymer Solutions in an Oscillating Laminar Flow Field, The Journal of Chemical Physics, vol.46, issue.12, pp.4881-4885, 1967.
DOI : 10.1063/1.1840651

K. Osaki, J. Schrag, and J. Ferry, Innite-dilution viscoelastic properties of poly(?methylstyrene ). applications of zimm theory with exact eigenvalues, Macromolecules, vol.5, issue.2, p.144147, 1972.

M. Fixman, Construction of langevin forces in the simulation of ydrodynamic interaction, Macromolecules, vol.19, issue.4, p.12041207, 1986.

J. Ferry, Viscoelastic properties of polymers, 1970.

T. Liu, Flexible polymer chain dynamics and rheological properties in steady ows

O. Hassager, Kinetic theory and rheology of bead-rod models for macromolecular solutions, J Chem Phys, vol.60, issue.5, p.21112124, 1974.

X. Fan and T. Liu, Equilibrium and steady-state ow properties of a suspension of freely rotating chains, J Non-Newton Fluid, vol.19, issue.3, p.303321, 1986.

M. Fixman, Simulation of polymer dynamics. II. Relaxation rates and dynamic viscosity, The Journal of Chemical Physics, vol.69, issue.4, p.15381545, 1978.
DOI : 10.1063/1.436726

M. Gottlieb and R. Bird, A molecular dynamics calculation to conrm the incorrectness of the random-walk distribution for describing the kramers freely jointed bead-rod chain, J Chem Phys, vol.65, issue.6, p.24672468, 1976.

M. Pear and J. Weiner, Brownian dynamics study of a polymer chain of linked rigid bodies, The Journal of Chemical Physics, vol.71, issue.1, p.212224, 1979.
DOI : 10.1063/1.438119

M. Fixman, Simulation of polymer dynamics. I. General theory, The Journal of Chemical Physics, vol.69, issue.4, p.15271537, 1978.
DOI : 10.1063/1.436725

E. Helfand, Flexible vs rigid constraints in statistical mechanics, The Journal of Chemical Physics, vol.71, issue.12, p.50005007, 1979.
DOI : 10.1063/1.438314

E. Hinch, Brownian motion with sti bonds and rigid constraints, J Fluid Mech, vol.271, p.219234, 1994.
DOI : 10.1017/s0022112094001746

P. Grassia, E. Hinch, and L. Nitsche, Computer simulations of Brownian motion of complex systems, Journal of Fluid Mechanics, vol.96, issue.-1, p.373403, 1995.
DOI : 10.1063/1.456046

P. Grassia and E. Hinch, Computer simulations of polymer chain relaxation via Brownian motion, Journal of Fluid Mechanics, vol.2, issue.-1, p.255288, 1996.
DOI : 10.1063/1.1724163

M. Pasquali and D. Morse, An efficient algorithm for metric correction forces in simulations of linear polymers with constrained bond lengths, The Journal of Chemical Physics, vol.116, issue.5, pp.1834-1838, 2002.
DOI : 10.1063/1.1428747

S. Allison and J. Mccammon, Multistep brownian dynamics: Application to short wormlike chains, Biopolymers, vol.20, issue.2, p.363375, 1984.
DOI : 10.1002/bip.360230214

D. Ermak and J. Mccammon, Brownian dynamics with hydrodynamic interactions, The Journal of Chemical Physics, vol.69, issue.4
DOI : 10.1063/1.436761

P. Doyle, E. Shaqfeh, and A. Gast, Dynamic simulation of freely draining exible polymers in steady linear ows, J Fluid Mech, vol.334, p.251291, 1997.

D. Morse, Theory of Constrained Brownian Motion, Adv Chem Phys, vol.128, p.65189, 2004.
DOI : 10.1002/0471484237.ch2

M. Fixman and J. Kovac, Dynamics of sti chains. ii. freely jointed chain, J Chem Phys, p.49504955, 1974.

S. Lijima, T. Ichihashi, and Y. Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, vol.356, issue.6372, p.776778, 1992.
DOI : 10.1038/356776a0

V. Binh, P. Vincent, F. Feschet, and J. Bonard, Local analysis of the morphological properties of single-wall carbon nanotubes by Fresnel projection microscopy, Journal of Applied Physics, vol.88, issue.6, p.33853391, 2000.
DOI : 10.1063/1.1289786

M. Ouyang, J. Huang, C. Cheung, and C. Lieber, Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions, Science, vol.291, issue.5501, p.29197100, 2001.
DOI : 10.1126/science.291.5501.97

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1010&context=chemistrycheung

A. Vijayaraghavan, C. Marquardt, S. Dehm, F. Hennrich, and R. Krupke, Imaging defects and junctions in single-walled carbon nanotubes by voltage-contrast scanning electron microscopy, Carbon, vol.48, issue.2, pp.48-2010
DOI : 10.1016/j.carbon.2009.09.067

B. Xue, X. Shao, and W. Cai, Comparison of the Properties of Bent and Straight Single-Walled Carbon Nanotube Intramolecular Junctions, Journal of Chemical Theory and Computation, vol.5, issue.6, p.15541559, 2009.
DOI : 10.1021/ct900039v

P. Ajayan, V. Ravikumar, and J. Charlier, Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.81, issue.7, p.14371440, 1998.
DOI : 10.1103/PhysRevLett.81.1437

J. Han, M. Anantram, R. Jae, J. Kong, and H. Dai, Observation and modeling of single-wall carbon nanotube bend junctions, Physical Review B, vol.57, issue.23, p.1498314989, 1998.
DOI : 10.1103/PhysRevB.57.14983

K. Wako, T. Oda, M. Tachibana, and K. Kojima, Bending Deformation of Single-Walled Carbon Nanotubes Caused by 5???7 Pair Couple Defect, Japanese Journal of Applied Physics, vol.47, issue.8, p.47, 2008.
DOI : 10.1143/JJAP.47.6601

P. Lambin and V. Meunier, Structural properties of junctions between two carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.68, issue.3, p.263266, 1999.
DOI : 10.1007/s003390050886

R. Duggal and M. Pasquali, Dynamics of Individual Single-Walled Carbon Nanotubes in Water by Real-Time Visualization, Physical Review Letters, vol.96, issue.24, p.96, 2006.
DOI : 10.1103/PhysRevLett.96.246104

D. Tsyboulski, S. Bachilo, and R. Weisman, Versatile visualization of individual single-walled carbon nanotubes with near-infrared uorescence microscopy, Nano Lett, vol.5, issue.5, p.975979, 2005.

W. Clauss, Scanning tunneling microscopy of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, p.275281, 1999.
DOI : 10.1007/s003390051002

I. Kinloch, S. Roberts, and A. Windle, A rheological study of concentrated aqueous nanotube dispersions, Polymer, vol.43, issue.26, p.74837491, 2002.
DOI : 10.1016/S0032-3861(02)00664-X

J. Loos, A. Alexeev, N. Grossiord, C. Koning, and O. Regev, Visualization of singlewall carbon nanotube (swnt) networks in conductive polystyrene nanocomposites by charge contrast imaging, Ultramicroscopy, vol.104, issue.2, p.160167, 2005.

C. Lamprecht, J. Danzberger, P. Lukanov, C. Tîlmaciu, A. Galibert et al., AFM imaging of functionalized double-walled carbon nanotubes, Ultramicroscopy, vol.109, issue.8, p.109899906, 2009.
DOI : 10.1016/j.ultramic.2009.03.034

J. Huang and W. Choi, Controlled growth and electrical characterization of bent single-walled carbon nanotubes, Nanotechnology, vol.19, issue.50, 2008.
DOI : 10.1088/0957-4484/19/50/505601