Y. P. Raizer, Gas discharge physics, 1991.
DOI : 10.1007/978-3-642-61247-3

A. D. White, New Hollow Cathode Glow Discharge, Journal of Applied Physics, vol.30, issue.5, p.711, 1959.
DOI : 10.1063/1.1735220

M. Miclea, K. Kunze, G. Musa, J. Franzke, and K. Niemax, The dielectric barrier discharge ??? a powerful microchip plasma for diode laser spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.56, issue.1
DOI : 10.1016/S0584-8547(00)00286-X

J. P. Boeuf, Plasma display panels: physics, recent developments and key issues, Journal of Physics D: Applied Physics, vol.36, issue.6
DOI : 10.1088/0022-3727/36/6/201

M. Teschke, J. Kedzierski, E. G. Finantu-dinu, D. Korzec, and J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet, IEEE Transactions on Plasma Science, vol.33, issue.2, p.310, 2005.
DOI : 10.1109/TPS.2005.845377

A. Koutsospyros, S. Y. Yin, C. Christodoulatos, and K. Becker, Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma Reactor, IEEE Transactions on Plasma Science, vol.33, issue.1, p.42, 2005.
DOI : 10.1109/TPS.2004.841925

Z. Q. Yu, K. Hoshimiya, J. D. Williams, S. F. Polvinen, and G. J. Collins, Radio-frequency-driven near atmospheric pressure microplasma in a hollow slot electrode configuration, Applied Physics Letters, vol.83, issue.5, p.854, 2003.
DOI : 10.1063/1.1564640

E. Moreau, C. Louste, G. Artana, M. Forte, and G. Touchard, Contribution of Plasma Control Technology for Aerodynamic Applications, Plasma Processes and Polymers, vol.10, issue.52, p.697, 2009.
DOI : 10.1002/ppap.200600059

H. Yoshiki, K. Taniguchi, and Y. Horiike, Localized Removal of a Photoresist by Atmospheric Pressure Micro-plasma Jet Using RF Corona Discharge, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 9, p.5797, 2002.
DOI : 10.1143/JJAP.41.5797

A. Bass, C. Chevalier, and M. W. Blades, A capacitively coupled microplasma (CC??P) formed in a channel in a quartz wafer, J. Anal. At. Spectrom., vol.6, issue.9, p.919, 2001.
DOI : 10.1039/B103507J

D. W. Liu, J. J. Shi, and M. G. Kong, Electron trapping in radio-frequency atmospheric-pressure glow discharges, Applied Physics Letters, vol.90, issue.4, p.41502, 2007.
DOI : 10.1063/1.2425045

A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Transactions on Plasma Science, vol.26, issue.6, p.1685, 1998.
DOI : 10.1109/27.747887

Y. Yin, J. Messier, and J. Hopwood, Miniaturization of inductively coupled plasma sources, IEEE Transactions on Plasma Science, vol.27, issue.5, p.1516, 1999.
DOI : 10.1109/27.799834

T. Ito and K. Terashima, Thermoelectron-enhanced micrometer-scale plasma generation, Applied Physics Letters, vol.80, issue.15, p.2648, 2002.
DOI : 10.1063/1.1468898

F. Iza and J. Hopwood, Rotational, Vibrational, and Excitation Temperatures of a Microwave-Frequency Microplasma, IEEE Transactions on Plasma Science, vol.32, issue.2, p.498, 2004.
DOI : 10.1109/TPS.2004.826145

N. Yamamoto, S. Kondo, T. Chikaoka, H. Nakashima, and H. Masui, Effects of magnetic field configuration on thrust performance in a miniature microwave discharge ion thruster, Journal of Applied Physics, vol.102, issue.12, p.123304, 2007.
DOI : 10.1063/1.2822456

H. Koizumi and H. Kuninaka, Low Power Micro Ion Engine Using Microwave Discharge, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p.4531, 2008.
DOI : 10.2514/6.2008-4531

M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, 2005.
DOI : 10.1002/0471724254

J. C. Eijkel, H. Stoeri, and A. Manz, A Molecular Emission Detector on a Chip Employing a Direct Current Microplasma, Analytical Chemistry, vol.71, issue.14, p.2600, 1999.
DOI : 10.1021/ac990257j

F. Adler, E. Davliatchine, and E. Kindel, Comprehensive parameter study of a micro-hollow cathode discharge containing xenon, Journal of Physics D: Applied Physics, vol.35, issue.18, p.2291, 2002.
DOI : 10.1088/0022-3727/35/18/310

M. Moselhy and K. H. Schoenbach, Excimer emission from cathode boundary layer discharges, Journal of Applied Physics, vol.95, issue.4, p.1642, 2004.
DOI : 10.1063/1.1640789

K. H. Schoenbach, A. El-habachi, W. Shi, and M. Ciocca, High-pressure hollow cathode discharges, Plasma Sources Science and Technology, vol.6, issue.4, p.468, 1997.
DOI : 10.1088/0963-0252/6/4/003

S. J. Park, J. Chen, C. Liu, and J. G. Eden, Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays, Applied Physics Letters, vol.78, issue.4, p.419, 2001.
DOI : 10.1063/1.1338971

R. H. Stark and K. H. Schoenbach, Direct current glow discharges in atmospheric air, Applied Physics Letters, vol.74, issue.25, p.3770, 1999.
DOI : 10.1063/1.124174

K. Makasheva, G. J. Hagelaar, J. P. Boeuf, . Th, L. C. Callegari et al., Ignition of Microcathode Sustained Discharge, IEEE Transactions on Plasma Science, vol.36, issue.4, p.1236, 2008.
DOI : 10.1109/TPS.2008.924516

V. Puech, ), The European Physical Journal Applied Physics, vol.42, issue.1, p.17, 2008.
DOI : 10.1051/epjap:2007154

J. G. Eden, S. J. Park, N. P. Ostrom, S. T. Mccain, C. J. Wagner et al., Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors, Journal of Physics D: Applied Physics, vol.36, issue.23, p.2869, 2003.
DOI : 10.1088/0022-3727/36/23/001

T. Dufour, R. Dussart, P. Lefaucheux, P. Ranson, L. Overzet et al., Eect of limiting the cathode surface on direct current microhollow cathode discharge in helium, Appl. Phys. Lett, vol.98, p.71508, 2008.

D. J. Sturges and H. J. Oskam, Studies of the Properties of the Hollow Cathode Glow Discharge in Helium and Neon, Journal of Applied Physics, vol.35, issue.10, p.2887, 1964.
DOI : 10.1063/1.1713124

P. Kurunszi, H. Shah, and K. Becker, mixtures, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.32, issue.22, p.651, 1999.
DOI : 10.1088/0953-4075/32/22/103

K. H. Schoenbach, M. Moselhy, W. Shi, and R. Bentley, Microhollow cathode discharges, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.4, p.1260, 2003.
DOI : 10.1116/1.1565154

I. Petzenhauser, L. D. Biborosh, U. Ernst, K. Frank, and K. H. Schoenbach, Comparison between the ultraviolet emission from pulsed microhollow cathode discharges in xenon and argon, Applied Physics Letters, vol.83, issue.21, p.4297, 2003.
DOI : 10.1063/1.1626020

P. S. Kothnur and L. L. Raja, Simulation of Direct-Current Microdischarges for Application in Electro-Thermal Class of Small Satellite Propulsion Devices, Contributions to Plasma Physics, vol.33, issue.98, p.9, 2006.
DOI : 10.1002/ctpp.200710003

J. R. Roth, Industrial plasma engineering : Principles. Institute of Physics Publishing, 1995.
DOI : 10.1887/0750308257

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, Predicted properties of microhollow cathode discharges in xenon, Applied Physics Letters, vol.86, issue.7, p.71501, 2005.
DOI : 10.1063/1.1862781

F. Gardiol, Traité d'électricité. Presses polytechniques et universitaires romandes, 2002.

A. Lofthus and H. P. Krupenie, The spectrum of molecular nitrogen, Journal of Physical and Chemical Reference Data, vol.6, issue.1, p.113, 1977.
DOI : 10.1063/1.555546

N. Sadeghi and D. W. Setser, ) vibrational levels in Ar and Ne, The Journal of Chemical Physics, vol.79, issue.6, p.2710, 1983.
DOI : 10.1063/1.446175

S. G. Belostotskiy, T. Ouk, V. M. Donnelly, D. J. Economou, and N. Sadeghi, Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy, Journal of Applied Physics, vol.107, issue.5, p.53305, 2010.
DOI : 10.1063/1.3318498

URL : https://hal.archives-ouvertes.fr/hal-01005905

F. Roux and F. Michaud, High-resolution Fourier spectrometry of 14N2 infrared emission spectrum: Extensive analysis of the B3??g-A3??u+ system, Journal of Molecular Spectroscopy, vol.97, issue.2, p.253, 1983.
DOI : 10.1016/0022-2852(83)90266-7

W. L. Wiese, D. E. Kelleher, and D. R. Paquette, Detailed Study of the Stark Broadening of Balmer Lines in a High-Density Plasma, Physical Review A, vol.6, issue.3, p.1132, 1972.
DOI : 10.1103/PhysRevA.6.1132

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Optical diagnostics of atmospheric pressure air plasmas, Plasma Sources Science and Technology, vol.12, issue.2, p.125, 2003.
DOI : 10.1088/0963-0252/12/2/301

M. Ickovic, S. Jovicevic, and N. Konjevic, Low electron density diagnostics: development of optical emission spectroscopic techniques and some applications to microwave induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.5, p.591, 2004.
DOI : 10.1016/j.sab.2004.02.005

J. Torres, M. J. Van-de-sande, J. J. Van-der-mullen, A. Gamero, and A. Sola, Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.61, issue.1, p.58, 2006.
DOI : 10.1016/j.sab.2005.11.002

A. I. Strinic, G. N. Malovic, Z. J. Petrovic, and N. Sadeghi, Electron excitation coefficients and cross sections for excited levels of argon and xenon ions, Plasma Sources Science and Technology, vol.13, issue.2, p.333, 2004.
DOI : 10.1088/0963-0252/13/2/021

R. Johnsen, A. Chen, and M. A. Biondi, ions in their parent gases from 78 to 300 K, The Journal of Chemical Physics, vol.73, issue.4, p.1717, 1980.
DOI : 10.1063/1.440307

E. Hinnov and J. G. Hirschberg, Electron-Ion Recombination in Dense Plasmas, Physical Review, vol.125, issue.3, p.795, 1962.
DOI : 10.1103/PhysRev.125.795

F. J. Mehr and M. A. Biondi, Electron-Temperature Dependence of Electron-Ion Recombination in Argon, Physical Review, vol.176, issue.1, p.322, 1968.
DOI : 10.1103/PhysRev.176.322

H. R. Griem, Principle of Plasma spectroscopy, Cambridge Monographs on Plasma Physics, vol.2, 1997.

W. L. Wiese, G. A. Martin, and H. L. Anderson, A Physicist's Desk Reference, 1989.

M. Kushner, Modelling of microdischarge devices: plasma and gas dynamics, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1633, 2005.
DOI : 10.1088/0022-3727/38/11/001

M. Miclea, U. Kunze, S. Heitmann, J. Florek, K. Franzke et al., Diagnostics and application of the microhollow cathode discharge as an analytical plasma, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1709, 2005.
DOI : 10.1088/0022-3727/38/11/011

C. Penache, M. Miclea, A. Brauning-demian, O. Hohn, S. Schossler et al., Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy, Plasma Sources Science and Technology, vol.11, issue.4, p.476, 2002.
DOI : 10.1088/0963-0252/11/4/314

T. Deconinck and L. L. Raja, Modeling of Mode Transition Behavior in Argon Microhollow Cathode Discharges, Plasma Processes and Polymers, vol.12, issue.5, p.335, 2009.
DOI : 10.1002/ppap.200800144

R. Foest, M. Schmidt, and K. H. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology, International Journal of Mass Spectrometry, vol.248, issue.3, p.87, 2006.
DOI : 10.1016/j.ijms.2005.11.010

K. H. Becker, K. H. Schoenbach, and J. G. Eden, Microplasmas and applications, Journal of Physics D: Applied Physics, vol.39, issue.3, p.55, 2006.
DOI : 10.1088/0022-3727/39/3/R01

B. N. Sismanoglu and J. Amorim, Microhollow cathode discharge and breakdown in micron separations, The European Physical Journal Applied Physics, vol.41, issue.2, p.165, 2008.
DOI : 10.1051/epjap:2008004

A. V. Phelps, Z. Lj, and . Petrovic, Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons, Plasma Sources Science and Technology, vol.8, issue.3, p.21, 1999.
DOI : 10.1088/0963-0252/8/3/201

J. P. Molnar, -Processes of Electron Emission Employing Pulsed Townsend Discharges on a Millisecond Time Scale, Physical Review, vol.83, issue.5, p.940, 1951.
DOI : 10.1103/PhysRev.83.940

URL : https://hal.archives-ouvertes.fr/lirmm-00807299

R. N. Varney, Liberation of Electrons by Positive-Ion Impact on the Cathode of a Pulsed Townsend Discharge Tube, Physical Review, vol.93, issue.6, p.1156, 1953.
DOI : 10.1103/PhysRev.93.1156

J. D. Cobine, Gaseous conductors, 1958.

H. Debontride, J. Derouard, P. Edel, R. Romestain, N. Sadeghi et al., Transient current and sheath motion following the photoelectron-initiated avalanche in dc glow discharges, Physical Review A, vol.40, issue.9, p.5208, 1989.
DOI : 10.1103/PhysRevA.40.5208

B. Lay, R. S. Moss, S. Rauf, and M. J. Kushner, Breakdown processes in metal halide lamps, Plasma Sources Science and Technology, vol.12, issue.1, p.8, 2003.
DOI : 10.1088/0963-0252/12/1/302

V. A. Godyak and N. Sternberg, Smooth plasma-sheath transition in a hydrodynamic model, IEEE Transactions on Plasma Science, vol.18, issue.1, p.159, 1990.
DOI : 10.1109/27.45519

K. Riemann, The Bohm criterion and boundary conditions for a multicomponent system, IEEE Transactions on Plasma Science, vol.23, issue.4, p.709, 1995.
DOI : 10.1109/27.467993

A. Rousseau and X. Aubert, Self-pulsing microplasma at medium pressure range in argon, Journal of Physics D: Applied Physics, vol.39, issue.8, p.1619, 2006.
DOI : 10.1088/0022-3727/39/8/021

J. H. Kolts and D. W. Setser, ) atoms in argon, The Journal of Chemical Physics, vol.68, issue.11, p.4848, 1978.
DOI : 10.1063/1.435638

E. Ellis and N. D. Twiddy, Time-resolved optical absorption measurements of excited-atom concentrations in the argon afterglow, Journal of Physics B: Atomic and Molecular Physics, vol.2, issue.12, p.1366, 1969.
DOI : 10.1088/0022-3700/2/12/317

D. P. Lymberopoulos and D. J. Economou, Fluid simulations of glow discharges: Effect of metastable atoms in argon, Journal of Applied Physics, vol.73, issue.8, p.3668, 1993.
DOI : 10.1063/1.352926

B. E. Cherrington, Modeling of low-pressure gas discharges, IEEE Transactions on Electron Devices, vol.26, issue.2, p.148, 1979.
DOI : 10.1109/T-ED.1979.19393

K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, Microhollow cathode discharges, Applied Physics Letters, vol.68, issue.1, p.13, 1996.
DOI : 10.1063/1.116739

F. Adler, D. Kindel, and E. , Comprehensive parameter study of a micro-hollow cathode discharge containing xenon, Journal of Physics D: Applied Physics, vol.35, issue.18, p.2291, 2002.
DOI : 10.1088/0022-3727/35/18/310

M. Kushner, Modelling of microdischarge devices: plasma and gas dynamics, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1633, 2005.
DOI : 10.1088/0022-3727/38/11/001

J. P. Boeuf, L. C. Pitchford, and K. Schoenbach, Predicted properties of microhollow cathode discharges in xenon, Applied Physics Letters, vol.86, issue.7, p.71501, 2005.
DOI : 10.1063/1.1862781

G. J. Kim, F. Iza, and J. Lee, Electron and ion kinetics in a micro hollow cathode discharge, Journal of Physics D: Applied Physics, vol.39, issue.20, p.4386, 2006.
DOI : 10.1088/0022-3727/39/20/014

T. Deconinck and L. Raja, Modeling of Mode Transition Behavior in Argon Microhollow Cathode Discharges, Plasma Processes and Polymers, vol.12, issue.5, p.335, 2009.
DOI : 10.1002/ppap.200800144

E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. Kroesen, Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials, Plasma Sources Science and Technology, vol.11, issue.4, p.383, 2002.
DOI : 10.1088/0963-0252/11/4/304

R. Rahul, Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1750, 2005.
DOI : 10.1088/0022-3727/38/11/016

M. Moselhy, W. Shi, and S. Robert, A flat glow discharge excimer radiation source, IEEE Transactions on Plasma Science, vol.30, issue.1, p.198, 2002.
DOI : 10.1109/TPS.2002.1003992

M. Sankaran, R. , and G. Konstantinos, Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition, Journal of Applied Physics, vol.92, issue.5, p.2406, 2002.
DOI : 10.1063/1.1497719

A. Rousseau and A. , Self-pulsing microplasma at medium pressure range in argon, Journal of Physics D: Applied Physics, vol.39, issue.8, p.1619, 2006.
DOI : 10.1088/0022-3727/39/8/021

X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech et al., Analysis of the self-pulsing operating mode of a microdischarge, Plasma Sources Science and Technology, vol.16, issue.1, p.23, 2007.
DOI : 10.1088/0963-0252/16/1/004

A. I. Strinic, G. N. Malovic, Z. Petrovic, . Lj, and . Sadeghi, Electron excitation coefficients and cross sections for excited levels of argon and xenon ions, Plasma Sources Science and Technology, vol.13, issue.2, p.333, 2004.
DOI : 10.1088/0963-0252/13/2/021

R. Johnsen, A. Chen, and M. A. Biondi, ions in their parent gases from 78 to 300 K, The Journal of Chemical Physics, vol.73, issue.4, p.1717, 1980.
DOI : 10.1063/1.440307

E. Hinnov and J. Hirschberg, Electron-Ion Recombination in Dense Plasmas, Physical Review, vol.125, issue.3, p.795, 1962.
DOI : 10.1103/PhysRev.125.795

F. J. Mehr and M. A. Biondi, Electron-Temperature Dependence of Electron-Ion Recombination in Argon, Physical Review, vol.176, issue.1, p.322, 1968.
DOI : 10.1103/PhysRev.176.322

F. Roux and F. Michaud, High-resolution Fourier spectrometry of 14N2 infrared emission spectrum: Extensive analysis of the B3??g-A3??u+ system, Journal of Molecular Spectroscopy, vol.97, issue.2, p.253, 1983.
DOI : 10.1016/0022-2852(83)90266-7

L. G. Piper, K. W. Holtzclal, B. Green, and W. Blumberg, ) transition, The Journal of Chemical Physics, vol.90, issue.10, p.5337, 1989.
DOI : 10.1063/1.456439

H. Debontride, J. Derouard, P. Edel, R. Romestain, N. Sadeghi et al., Transient current and sheath motion following the photoelectron-initiated avalanche in dc glow discharges, Physical Review A, vol.40, issue.9, p.5208, 1989.
DOI : 10.1103/PhysRevA.40.5208

R. 1. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, Microhollow cathode discharges, Applied Physics Letters, vol.68, issue.1, p.13, 1996.
DOI : 10.1063/1.116739

F. Adler, E. Davliatchine, and . Kindel, Comprehensive parameter study of a micro-hollow cathode discharge containing xenon, Journal of Physics D: Applied Physics, vol.35, issue.18, p.2291, 2002.
DOI : 10.1088/0022-3727/35/18/310

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, Predicted properties of microhollow cathode discharges in xenon, Applied Physics Letters, vol.86, issue.7, p.71501, 2005.
DOI : 10.1063/1.1862781

G. J. Kim, F. Iza, and J. K. Lee, Electron and ion kinetics in a micro hollow cathode discharge, Journal of Physics D: Applied Physics, vol.39, issue.20, p.4386, 2006.
DOI : 10.1088/0022-3727/39/20/014

S. Belostotskiy, R. Khandelwal, Q. Wang, V. M. Donnelly, D. J. Economou et al., Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering, Applied Physics Letters, vol.92, issue.22, p.221507, 2008.
DOI : 10.1063/1.2939437

S. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, Spatially Resolved Measurements of Argon Metastable <formula formulatype="inline"><tex Notation="TeX"> $(1{\rm s}_{5})$</tex></formula> Density in a High Pressure Microdischarge Using Diode Laser Absorption Spectroscopy, IEEE Transactions on Plasma Science, vol.37, issue.6, p.852, 2009.
DOI : 10.1109/TPS.2009.2015949

T. Deconinck and L. Raja, Modeling of Mode Transition Behavior in Argon Microhollow Cathode Discharges, Plasma Processes and Polymers, vol.12, issue.5, p.335, 2009.
DOI : 10.1002/ppap.200800144

R. Rahul, O. Stan, A. Rahman, E. Littlefield, K. Hoshimiya et al., Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1750, 2005.
DOI : 10.1088/0022-3727/38/11/016

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, A flat glow discharge excimer radiation source, IEEE Transactions on Plasma Science, vol.30, issue.1, p.198, 2002.
DOI : 10.1109/TPS.2002.1003992

P. Mohan-sankaran and P. G. Konstantinos, Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition, Journal of Applied Physics, vol.92, issue.5, p.2406, 2002.
DOI : 10.1063/1.1497719

A. Rousseau and X. Aubert, Self-pulsing microplasma at medium pressure range in argon, Journal of Physics D: Applied Physics, vol.39, issue.8, p.1619, 2006.
DOI : 10.1088/0022-3727/39/8/021

X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech et al., Analysis of the self-pulsing operating mode of a microdischarge, Plasma Sources Science and Technology, vol.16, issue.1, p.23, 2007.
DOI : 10.1088/0963-0252/16/1/004

C. Lazzaroni, P. Chabert, A. Rousseau, and N. Sadeghi, The excitation structure in a micro-hollow cathode discharge in the normal regime at medium argon pressure, Journal of Physics D: Applied Physics, vol.43, issue.12, p.124008, 2010.
DOI : 10.1088/0022-3727/43/12/124008

URL : https://hal.archives-ouvertes.fr/hal-01005900

W. L. Wiese and G. A. Martin, A Physicist's Desk Reference, p.101, 1989.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Optical diagnostics of atmospheric pressure air plasmas, Plasma Sources Science and Technology, vol.12, issue.2, p.125, 2003.
DOI : 10.1088/0963-0252/12/2/301

M. Ivkovic, S. Jovicevic, and N. Konjevic, Low electron density diagnostics: development of optical emission spectroscopic techniques and some applications to microwave induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.5, p.591, 2004.
DOI : 10.1016/j.sab.2004.02.005

M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke et al., Diagnostics and application of the microhollow cathode discharge as an analytical plasma, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1709, 2005.
DOI : 10.1088/0022-3727/38/11/011

M. Moselhy, I. Petzenhauser, K. Frank, and K. H. Schoenbach, Excimer emission from microhollow cathode argon discharges, Journal of Physics D: Applied Physics, vol.36, issue.23, p.2922, 2003.
DOI : 10.1088/0022-3727/36/23/009

C. Penache, M. Miclea, A. Bräuning-demian, O. Hohn, S. Schössler et al., Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy, Plasma Sources Science and Technology, vol.11, issue.4, p.476, 2002.
DOI : 10.1088/0963-0252/11/4/314