N. Asherie, Protein crystallization and phase diagrams, Methods, vol.34, issue.3, pp.266-272, 2004.
DOI : 10.1016/j.ymeth.2004.03.028

B. J. Kirby, Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements, Lab Chip, vol.5, issue.2, pp.184-90, 2005.

T. Nisisako, S. Okushima, and T. Torii, Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system, Soft Matter, vol.20, issue.124, pp.23-27, 2005.
DOI : 10.1039/b501972a

D. Arcy, A. , A. Macsweeney, and A. Haber, Practical aspects of using the microbatch method in screening conditions for protein crystallization, Methods, vol.34, issue.3, pp.323-328, 2004.

C. Bunick, A. C. North, and G. Stubbs, Evaporative microdialysis: an effective improvement in an established method of protein crystallization, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.11, p.56, 2001.
DOI : 10.1107/S0907444900011203

S. Doublié, Macromolecular Crystallography Protocols: Preparation and Crystallization of Macromolecules, 2007.

D. Chirgadze, Protein Crystallisation in Action [Ressource électronique], 2001.

C. Hansen and S. R. Quake, Microfluidics in structural biology: smaller, faster??? better, Current Opinion in Structural Biology, vol.13, issue.5, pp.538-582, 2003.
DOI : 10.1016/j.sbi.2003.09.010

C. J. Gerdts, Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization, Angew Chem Int Ed Engl, issue.48, pp.45-8156, 2006.

P. Tabeling, Introduction à la microfluidique. Editions Belin, 0109.

A. E. Kamholz, Quantitative Analysis of Molecular Interaction in a Microfluidic Channel:?? The T-Sensor, Analytical Chemistry, vol.71, issue.23, pp.71-5340, 1999.
DOI : 10.1021/ac990504j

M. J. Anderson, C. L. Hansen, and S. R. Quake, Phase knowledge enables rational screens for protein crystallization, Proceedings of the National Academy of Sciences, vol.103, issue.45, pp.16746-51, 2006.
DOI : 10.1073/pnas.0605293103

M. A. Unger, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

J. Goulpeau, Experimental study and modeling of polydimethylsiloxane peristaltic micropumps, Journal of Applied Physics, vol.98, issue.4, p.98, 2005.
DOI : 10.1063/1.1947893

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.298-580, 2002.
DOI : 10.1126/science.1076996

URL : http://infoscience.epfl.ch/record/117344

C. L. Hansen, Systematic investigation of protein phase behavior with a microfluidic flormulator, pp.14431-14436, 2007.

C. L. Hansen, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, Proceedings of the National Academy of Sciences, vol.99, issue.26, pp.99-16531, 2002.
DOI : 10.1073/pnas.262485199

C. L. Hansen, A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination, J Am Chem Soc, issue.10, pp.128-3142, 2006.

H. P. Chou, C. Hansen, and S. R. Quake, A Microfabricated Rotary Pump, Biomedical Microdevices, vol.3, issue.4, pp.323-330, 2001.
DOI : 10.1023/A:1012412916446

F. R. Salemme, A free interface diffusion technique for the crystallization of proteins for X-ray crystallography, Archives of Biochemistry and Biophysics, vol.151, issue.2, p.533, 1972.
DOI : 10.1016/0003-9861(72)90530-9

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using ???flow focusing??? in microchannels, Applied Physics Letters, vol.82, issue.3, pp.364-366, 2003.
DOI : 10.1063/1.1537519

T. Thorsen, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Physical Review Letters, vol.86, issue.18, pp.4163-4166, 2001.
DOI : 10.1103/PhysRevLett.86.4163

P. Garstecki, Formation of droplets and bubbles in a microfluidic T-junction???scaling and mechanism of break-up, Lab on a Chip, vol.12, issue.3, pp.693-693, 2006.
DOI : 10.1039/b510841a

L. Li, Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins, Proceedings of the National Academy of Sciences, vol.103, issue.51, pp.19243-19251, 2006.
DOI : 10.1073/pnas.0607502103

C. J. Gerdts, The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS), Acta Crystallographica Section D Biological Crystallography, vol.64, issue.11, pp.1116-1138, 2008.
DOI : 10.1107/S0907444908028060

P. Laval, A microfluidic device based on droplet storage for screening solubility diagrams, Lab on a Chip, vol.96, issue.7, pp.829-834, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.044

L. Kahlenberg, On the Nature of the Process of Osmosis and Osmotic Pressure with Observations Concerning Dialysis, The Journal of Physical Chemistry, vol.10, issue.3, pp.141-209, 1906.
DOI : 10.1021/j150075a001

S. Loeb, S. Sourirajan, R. , and J. Neel, Sea water demineralization by means of an osmotic membrane Transfert Selectif a Travers Des Membranes Actives, Adv. Chem. Ser. Journal De Chimie Physique, vol.38, issue.5, pp.117-132, 1962.

P. Aptel, Application of the pervaporation process to separate azeotropic mixtures, Journal of Membrane Science, vol.1, issue.3, pp.271-287, 1976.
DOI : 10.1016/S0376-7388(00)82272-3

G. Li, Time-dependence of pervaporation performance for the separation of ethanol/water mixtures through poly(vinyl alcohol) membrane, Journal of Colloid and Interface Science, vol.306, issue.2, pp.337-381, 2007.
DOI : 10.1016/j.jcis.2006.10.052

A. Fahmy and M. E. , Membrane Processes for the Dehydratation of Organic Compounds. 101p, Thèse de doctorat, 2002.

H. Brüschke, Multilayered membrane and its use in separating liquid mixtures by the pervaporation method, p.570, 1983.

J. H. Kim, K. H. Lee, and S. Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes, Journal of Membrane Science, vol.169, issue.1, pp.81-93, 2000.
DOI : 10.1016/S0376-7388(99)00335-X

C. Lipski and P. Cote, The Use of Pervaporation for the Removal of Organic Contaminants from Water. Environmental Progress, pp.254-261, 1990.

P. Sampranpiboon, Separation of aroma compounds from aqueous solutions by pervaporation using polyoctylmethyl siloxane (POMS) and polydimethyl siloxane (PDMS) membranes, Journal of Membrane Science, vol.174, issue.1, pp.55-65, 2000.
DOI : 10.1016/S0376-7388(00)00365-3

N. Wynn, Pervaporation comes of age, Chemical Engineering Progress, issue.10, pp.97-66, 2001.

S. Sommer, Performance efficiency of tubular inorganic membrane modules for pervaporation, AIChE Journal, vol.73, issue.23, pp.162-177, 2005.
DOI : 10.1002/aic.10289

M. Amrani, Approche thermodynamique appliquée au choix de membranes pervaporatives, Revista Ingeniería e Investigación, vol.26, pp.42-49, 2006.

R. Clément, A. Jonquières, P. Lochon, J. G. , and R. W. Baker, Etat de l'art sur la pervaporation et la perméation en phase vapeur The Solution-Diffusion Model -a Review, Groupe Ensic Journal of Membrane Science, vol.107, issue.12, pp.1-21, 1995.

J. De-jong, R. G. Lammertink, and M. Wessling, Membranes and microfluidics: a review, Lab on a Chip, vol.61, issue.8, pp.1125-1164, 2006.
DOI : 10.1039/b603275c

T. C. Merkel, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), Journal of Polymer Science Part B: Polymer Physics, vol.10, issue.3
DOI : 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z

I. Blume, Vapour sorption and permeation properties of poly (dimethylsiloxane) films, Journal of Membrane Science, vol.61, pp.85-97, 1991.
DOI : 10.1016/0376-7388(91)80008-T

B. H. Timmer, Micro-evaporation electrolyte concentrator, Sensors and Actuators B: Chemical, vol.91, issue.1-3, pp.342-346, 2003.
DOI : 10.1016/S0925-4005(03)00108-4

E. Verneuil, A. Buguin, and P. Silberzan, Permeation-induced flows: Consequences for silicone-based microfluidics, Europhysics Letters (EPL), vol.68, issue.3, pp.412-418, 2004.
DOI : 10.1209/epl/i2004-10221-7

G. M. Walker and D. J. Beebe, An evaporation-based microfluidic sample concentration method, Lab on a Chip, vol.2, issue.2, pp.57-61, 2002.
DOI : 10.1039/b202473j

N. Goedecke, J. Eijkel, and A. Manz, Evaporation driven pumping for chromatography application, Lab on a Chip, vol.2, issue.4, pp.219-223, 2002.
DOI : 10.1039/b208031c

J. Leng, Microevaporators for Kinetic Exploration of Phase Diagrams, Physical Review Letters, vol.96, issue.8, pp.96-084503, 2006.
DOI : 10.1103/PhysRevLett.96.084503

URL : https://hal.archives-ouvertes.fr/hal-00016965

J. U. Shim, Control and Measurement of the Phase Behavior of Aqueous Solutions Using Microfluidics, Journal of the American Chemical Society, vol.129, issue.28, pp.129-8825, 2007.
DOI : 10.1021/ja071820f

P. G. Petrov, S. V. Ahir, and E. M. Terentjev, Rheology at the phase transition boundary: 1. Lamellar L-alpha phase of AOT surfactant solution, Langmuir, issue.24, pp.18-9133, 2002.

J. Leng, M. Joanicot, and A. Ajdari, Microfluidic Exploration of the Phase Diagram of a Surfactant/Water Binary System, Langmuir, vol.23, issue.5, pp.2315-2322, 2007.
DOI : 10.1021/la063169k

URL : https://hal.archives-ouvertes.fr/hal-00110623

D. Bartolo, Microfluidic stickers, Lab Chip, vol.304, issue.2, pp.274-279, 2008.
DOI : 10.1039/B712368J

V. Studer, Scaling properties of a low-actuation pressure microfluidic valve, Journal of Applied Physics, vol.95, issue.1, pp.393-398, 2004.
DOI : 10.1063/1.1629781

C. W. Li, R. Chen, and M. Yang, Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution, Lab on a Chip, vol.128, issue.10, pp.1371-1374, 2007.
DOI : 10.1039/b705525k

N. L. Jeon, Generation of Solution and Surface Gradients Using Microfluidic Systems, Langmuir, vol.16, issue.22, pp.8311-8316, 2000.
DOI : 10.1021/la000600b

J. Goulpeau, Building up longitudinal concentration gradients in shallow microchannels, Lab on a Chip, vol.124, issue.9, pp.1154-61, 2007.
DOI : 10.1039/b706340g

M. Yamada, A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing, Lab on a Chip, vol.26, issue.2, pp.179-84, 2006.
DOI : 10.1039/b514054d

W. Siyan, Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance, Journal of Pharmaceutical and Biomedical Analysis, vol.49, issue.3, pp.806-810, 2009.
DOI : 10.1016/j.jpba.2008.12.021

K. Campbell and A. Groisman, Generation of complex concentration profiles in microchannels in a logarithmically small number of steps, Lab Chip, vol.4, issue.2, pp.264-72, 2007.
DOI : 10.1039/B610011B

S. K. Dertinger, Generation of Gradients Having Complex Shapes Using Microfluidic Networks, Analytical Chemistry, vol.73, issue.6, pp.1240-1246, 2001.
DOI : 10.1021/ac001132d

X. Jiang, A General Method for Patterning Gradients of Biomolecules on Surfaces Using Microfluidic Networks, Analytical Chemistry, vol.77, issue.8, pp.2338-2385, 2005.
DOI : 10.1021/ac048440m

M. Schindler and A. Ajdari, Modeling phase behavior for quantifying micro-pervaporation experiments, The European Physical Journal E, vol.28, issue.1, 2008.
DOI : 10.1140/epje/i2008-10419-y

P. Laval, J. B. Salmon, and M. Joanicot, A microfluidic device for investigating crystal nucleation kinetics, Journal of Crystal Growth, vol.303, issue.2, pp.622-628, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.044

A. D. Cadman, R. Fleming, and R. H. Guy, Diffusion of lysozyme chloride in water and aqueous potassium chloride solutions, Biophysical Journal, vol.37, issue.3, pp.569-574, 1982.

D. C. Duffy, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) Analytical Chemistry, pp.4974-4984, 1998.

T. Deng, Prototyping of Masks, Masters, and Stamps/Molds for Soft Lithography Using an Office Printer and Photographic Reduction, Analytical Chemistry, vol.72, issue.14, pp.72-3176, 2000.
DOI : 10.1021/ac991343m

Y. N. Xia and G. M. Whitesides, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

M. Bender, High resolution lithography with PDMS molds, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, pp.3229-3232, 2004.
DOI : 10.1116/1.1824057

D. Courjon and C. Bainier, Le champ proche optique: theorie et applications Determining the optimal PDMS-PDMS bonding technique for microfluidic devices, Publié par Springer, p.18, 2001.

J. Goulpeau, Intégration de puce à ADN dans un microsystème fluidique. 203p, Thèse de Doctorat: Physique, 2006.

R. H. Liu, Passive mixing in a three-dimensional serpentine microchannel, Journal of Microelectromechanical Systems, vol.9, issue.2, pp.190-197, 2000.
DOI : 10.1109/84.846699

A. D. Stroock, Chaotic Mixer for Microchannels, Science, vol.295, issue.5555, pp.295-647, 2002.
DOI : 10.1126/science.1066238

R. Matsumoto, H. F. Zadeh, and P. Ehrhard, Quantitative measurement of depth???averaged concentration fields in microchannels by means of a fluorescence intensity method, Experiments in Fluids, vol.468, issue.4, pp.722-729, 2005.
DOI : 10.1007/s00348-005-0005-9

D. Sparks, A microfluidic system for the measurement of chemical concentration and density. Boston Transducers'03: Digest of Technical Papers, pp.300-303, 2003.

P. Domachuk, Compact resonant integrated microfluidic refractometer, Applied Physics Letters, vol.88, issue.9, p.88, 2006.
DOI : 10.1063/1.2181204

S. Calixto, Capillary refractometer integrated in a microfluidic configuration, Applied Optics, vol.47, issue.6, pp.843-848, 2008.
DOI : 10.1364/AO.47.000843

O. J. Schueller, Reconfigurable diffraction gratings based on elastomeric microfluidic devices. Sensors and Actuators a-Physical, pp.149-159, 1999.

N. Hautière, D. Aubert, and M. Jourlin, Application à la mesure de distance de visibilité par caméra embarquée, pp.145-158, 2006.

E. Peli, Contrast in complex images, Journal of the Optical Society of America A, vol.7, issue.10, pp.2032-2072, 1990.
DOI : 10.1364/JOSAA.7.002032

J. Rogers and P. A. Winsor, Change in the optic sign of the lamellar phase (G) in the aerosol OT/water system with composition or temperature, Journal of Colloid and Interface Science, vol.30, issue.2, p.247, 1969.
DOI : 10.1016/S0021-9797(69)80011-1

J. B. Salmon, Raman imaging of interdiffusion in a microchannel, Applied Physics Letters, vol.86, issue.9, p.86, 2005.
DOI : 10.1063/1.1873050

URL : https://hal.archives-ouvertes.fr/hal-00107980

C. Haslego and . Crystallization, Ressource électronique]. The Chemical Engineers' Resource Page

D. Kashchiev and G. M. Van-rosmalen, Review: Nucleation in solutions revisited, Crystal Research and Technology, vol.38, issue.78, pp.555-574, 2003.
DOI : 10.1002/crat.200310070

M. Löffelmann and A. Mersmann, How to measure supersaturation?, Chemical Engineering Science, vol.57, issue.20, pp.4301-4310, 2002.
DOI : 10.1016/S0009-2509(02)00347-0

B. C. Kim, Y. H. Kim, and K. Fukui, Crystallization monitoring in supersaturated solution with a quartz crystal sensor Analytica Chimica Acta, pp.491-71, 2003.

M. T. Zafarani-moattar and R. Sadeghi, Liquid???liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium dihydrogen phosphate or disodium hydrogen phosphate, Fluid Phase Equilibria, vol.181, issue.1-2, pp.95-112, 2001.
DOI : 10.1016/S0378-3812(01)00373-9

N. J. Bridges, K. E. Gutowski, and R. D. Rogers, Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt???salt ABS), Green Chem., vol.137, issue.2, pp.177-183, 2007.
DOI : 10.1039/B611628K

Y. Gao, Thermodynamics of ammonium sulfate?polyethylene glycol aqueous twophase systems. Part1. Experiment and correlation using extended uniquac equation. Fluid Phase Equilibria, pp.157-171, 1991.

X. Pan and S. R. Bhatia, Effect of counterion substitution on the viscosity anomaly in AOT microemulsions, Journal of Colloid and Interface Science, vol.327, issue.1, pp.152-158, 2008.
DOI : 10.1016/j.jcis.2008.08.001

G. Onori and A. Santucci, Viscosity studies of water-containing reversed aot micelles, Journal of Colloid and Interface Science, vol.150, issue.1, pp.195-199, 1992.
DOI : 10.1016/0021-9797(92)90280-Y

E. I. Franses and T. J. Hart, Phase behavior and molecular motion of aerosol OT in liquid-crystalline phases with water, Journal of Colloid and Interface Science, vol.94, issue.1, pp.1-13, 1983.
DOI : 10.1016/0021-9797(83)90228-X

D. C. Phillips, The Three-Dimensional Structure of an Enzyme Molecule, Scientific American, vol.215, issue.5, pp.78-90, 1966.
DOI : 10.1038/scientificamerican1166-78

R. A. Judge, The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals, Biophysical Journal, vol.77, issue.3, pp.1585-1593, 1999.
DOI : 10.1016/S0006-3495(99)77006-2

W. Iwai, Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state, Journal of Synchrotron Radiation, vol.15, issue.3, pp.312-315, 2008.
DOI : 10.1107/S0909049507059559

C. J. Hodgson, S. N. Maduck, and D. S. Rahman, A Study in Hen Egg White Lysozyme Crystal Growth, DUJS, vol.1, issue.1, pp.30-34, 1999.